Informasi Umum

Kode

24.04.4953

Klasifikasi

006.312 - Data mining

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Mining

Dilihat

170 kali

Informasi Lainnya

Abstraksi

Perkembangan media sosial telah merubah cara penyebaran informasi, dengan Twitter memainkan peran utama. Penelitian ini bertujuan mengembangkan model prediksi retweet di Twitter menggunakan fitur content-based dan user-based, serta teknik oversampling untuk meningkatkan kinerja model. Hasil eksperimen menunjukkan bahwa meta learner tanpa oversampling pada fitur content-based memiliki macro average F1-score sebesar 0.52, namun dengan recall yang sangat rendah untuk kelas retweet (6%) dan F1-score 0.11. Sebaliknya, meta learner dengan oversampling pada fitur content-based memperbaiki performa dengan presisi 0.86, recall 0.77, dan F1-score 0.80 untuk retweet, dengan nilai macro average F1-score sebesar 0.82 yang menunjukan kenaikan dibandingkan dengan meta learner tanpa oversampling. Untuk model user-based, tanpa oversampling, macro average F1-score memiliki nilai 0.75 dengan keseimbangan baik antara presisi dan recall pada kelas non retweet. Setelah oversampling, model user-based mempertahankan keseimbangan yang baik dengan presisi, recall, F1-score, dan macro average F1- score masing-masing sebesar 0.88 pada kelas retweet dan non retweet. Secara keseluruhan, oversampling meningkatkan kinerja model, terutama pada fitur content-based, dengan model user-based menunjukkan performa yang paling konsisten dan baik

  • CII4E4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MUHAMAD FEBIANSYAH
Jenis Perorangan
Penyunting Jondri, Indwiarti
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi