Informasi Umum

Kode

24.04.5368

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Science

Dilihat

129 kali

Informasi Lainnya

Abstraksi

Abstract. <br /> Purpose: This research analyzes sentiment on the 2024 Indonesian Presidential Election using X data, employing a <br /> hybrid CNN-GRU model optimized with a Genetic Algorithm (GA) to improve accuracy and efficiency. It also explores <br /> GloVe feature expansion for enhanced sentiment classification, aiming for deeper insights into public opinion through <br /> advanced deep learning and optimization techniques. <br /> Methods: This research employs a deep learning approach that integrates Convolutional Neural Network (CNN) and <br /> Gated Recurrent Unit (GRU) models, Term Frequency-Inverse Document Frequency (TF-IDF), Global Vectors <br /> (GloVe), and GA. The dataset comprises 62.955 Indonesian tweets focusing on the 2024 General Election using various <br /> keywords. <br /> Result: The results indicated that the Genetic Algorithm significantly improved model accuracy. The CNN-GRU + <br /> GA model achieved 84.72% accuracy for the Top 10 ranking, a 1.94% increase from the base model. In comparison, <br /> the GRU-CNN + GA model achieved 84.69% accuracy for the Top 5 ranking, a 2.76% increase from the base model, <br /> demonstrating enhanced performance with GA across configurations. <br /> Novelty: This research uses a hybrid CNN-GRU model to introduce a novel sentiment analysis approach for the 2024 <br /> Indonesian Presidential Election. The model enhances accuracy by combining CNN's spatial feature extraction with <br /> GRU's temporal context capture and GloVe's word semantics. Genetic Algorithm optimization further refines <br /> performance. Comprehensive pre-processing ensures high-quality data, and focusing on election-specific keywords <br /> adds relevance. This study advances sentiment analysis through its innovative hybrid model, feature expansion, and <br /> optimization techniques. 

  • CII4E4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MAHRUNISSA AZMIMA FITRIA
Jenis Perorangan
Penyunting Erwin Budi Setiawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi