Informasi Umum

Kode

24.04.5582

Klasifikasi

005.7 - Data in Computer Systems

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Science

Dilihat

335 kali

Informasi Lainnya

Abstraksi

<strong>Abstract</strong>— <strong>Background:</strong> The 2024 Indonesian Presidential Election is ideal for analyzing public sentiment on Twitter. Data collection began with crawling from the data source to create a dataset, which included 62,955 entries from Twitter, 126,673 entries from IndoNews, and a combined Tweet+IndoNews dataset totaling 189,628 entries. <strong>Objective:</strong> This study aims to explore sentiment using a hybrid model integrating Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) methods, with feature expansion via Word2Vec optimized by a Genetic Algorithm (GA). <strong>Methods:</strong> The research evaluates the effectiveness of the hybrid CNN-LSTM model in analyzing sentiment from 2024 Indonesian Presidential Election tweets, aiming for higher accuracy and deeper insights compared to traditional methods. <strong>Results:</strong> The hybrid CNN-LSTM model, optimized with a Genetic Algorithm, significantly enhances accuracy, achieving the highest accuracy of 84.78% for the news data, marking a 3.59% increase. <strong>Conclusion:</strong> This study illustrates the innovative application of a hybrid CNN-LSTM model with Word2Vec feature expansion and Genetic Algorithm optimization for sentiment analysis in a national election context, demonstrating how advanced techniques can improve accuracy and efficiency in sentiment analysis.<br />  

  • CII4E4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ATHALLAH ZACKY ABDULLAH
Jenis Perorangan
Penyunting Erwin Budi Setiawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi