Informasi Umum

Kode

24.04.5926

Klasifikasi

658.403.8 - Information Management

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Informatics

Dilihat

120 kali

Informasi Lainnya

Abstraksi

<p><i>Abstract</i>—Improvements in technology have led to an increasing number of internet users which support cyber-attack growth. Phishing attacks have multiplied rapidly since 2021 according to the Anti-Phishing Working Group (APWG). The time to identify legit and phishing sites quite take a long time in this fast-paced era. The difficulties in identifying phishing sites visually without a deep check can risk users and organizations for their security. To address this issue, automation using machine learning to speed up phishing site classifications is proposed. This study focused on developing phishing site detection using a machine learning approach. Specifically on Random Forest (RF), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), and Multi-Layer Perceptron (MLP) neural networks. Those algorithms are tested on three different datasets to evaluate the impact of feature quantity and dataset size towards model performance. Experimental results show the highest accuracy of 98.77% using XGB in the first dataset. Meanwhile, RF can achieve accuracy values of 98.2%.</p>

  • CII4E4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama TALITHA NABILA
Jenis Perorangan
Penyunting Hilal Hudan Nuha
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi

Download / Flippingbook