Informasi Umum

Kode

25.04.3202

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Internet Of Things

Dilihat

43 kali

Informasi Lainnya

Abstraksi

Distributed Denial of Service (DDoS) attacks pose significant threats to the Internet of Medical Things (IoMT), potentially disrupting critical healthcare services. A significant challenge in detecting these attacks is the high imbalance in network traffic data, which can bias classification models. This study introduces a hybrid approach that integrates the XGBoost algorithm with Principal Component Analysis (PCA) and undersampling to address class imbalance and enhance<br /> detection performance. Three configurations were tested: (1) XGBoost + PCA + Undersampling, (2) XGBoost + PCA, and (3)XGBoost + Undersampling. The model was evaluated using a&nbsp;publicly available multiclass DDoS dataset under an 80:20&nbsp;training-testing split. The XGBoost + Undersampling method achieved the highest performance, with accuracy, precision, recall, and F1-score of 99.98%. Despite these results, potential limitations&mdash;such as data loss due to undersampling and excluding cross-validation or external testing. Thus, the proposed ensemble learning technique has proven to robustly improve the performance of DDoS attack detection in unbalanced dataset conditions.&nbsp;

  • CAK3JAB3 - PEMBELAJARAN MESIN

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama NISRINA NURHALIZA
Jenis Perorangan
Penyunting Sudianto, Pradana Ananda Raharja
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Teknik Informatika - Kampus Purwokerto
Kota Purwokerto
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi