The Impact of Local Attention in LSTM for Abstractive Text Summarization

PURUSO MUHAMMAD HANUNGGUL

Informasi Dasar

107 kali
19.04.4106
005.13
Karya Ilmiah - Skripsi (S1) - Reference

An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. In previous research, it state that there is two class of attention, global attention and local attention. Since the previous research did not test the experiment for text summarization, this thesis compared the impact of the local attention by using LSTM model for generating abstractive text summarization. The result of the project from this thesis is a model that implemented with global attention and model that implemented with local attention.

Keywords: local attention, LSTM, summarization, model

Subjek

Natural language processing
 

Katalog

The Impact of Local Attention in LSTM for Abstractive Text Summarization
 
 
Inggris

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

PURUSO MUHAMMAD HANUNGGUL
Perorangan
Suyanto
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2019

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini