Sequence Chunking on Quran in English Translation using Bidirectional Long Short-Term Memory

TRY ARIE RAHMAT INSANI

Informasi Dasar

71 kali
20.04.3747
000
Karya Ilmiah - Skripsi (S1) - Reference

Every Moslem is obliged to read and understand the meanings of the Quran. The problem is the amount of information contained in the Quran so that ordinary people have difficulty understanding the Quran as a whole. Neural networks can be used to extract important information in the Quran to solve this problem. Therefore, the author proposes a model to identify and classify tags using sequence chunking. The system will use the Bi-LSTM model where the system will be given various token from the Quran as the inputs to be identified as the correct tags. The author is using the dataset obtained from website quran.com. The evaluation of the proposed model produces an f-measure value of 0.903.

Subjek

COMPUTER SCIENCE
 

Katalog

Sequence Chunking on Quran in English Translation using Bidirectional Long Short-Term Memory
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

TRY ARIE RAHMAT INSANI
Perorangan
Moch. Arif Bijaksana
 

Penerbit

Universitas Telkom
 
2020

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini