YOLOv9: Advancing Automated Brain Tumor Detection in MRI Scans - Dalam bentuk pengganti sidang - Artikel Jurnal

AKBAR MUHAMMAD PRAKOSO

Informasi Dasar

68 kali
25.04.093
658.382
Karya Ilmiah - Skripsi (S1) - Reference

This paper presents a novel method for detecting brain tumors using the YOLOv9 object detection framework. Brain tumors are among the most serious diseases, making accurate early detection crucial for improving patient outcomes, brain tumor identification by manually is time-consuming and prone to mistakes, which highlights the need for effective automated solutions. Leveraging the high accuracy and speed of YOLOv9, our approach aims to enhance the precision and efficiency of brain tumor identification in medical imaging. We utilized a comprehensive dataset of MRI scans for training and evaluation, implementing various preprocessing techniques to boost model performance. Our experimental results demonstrate that YOLOv9 effectively detects brain tumors. These findings indicate that YOLOv9 could be a valuable tool for early and accurate brain tumor diagnosis in clinical settings. Future work will focus on further optimizing the model and exploring its application to other medical imaging tasks.
Keywords—brain tumor detection, deep learning, medical imaging, MRI, object detection, YOLOv9

Subjek

ARTIFICIAL INTELLIGENCE IN HEALTHCARE
 

Katalog

YOLOv9: Advancing Automated Brain Tumor Detection in MRI Scans - Dalam bentuk pengganti sidang - Artikel Jurnal
 
14p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

AKBAR MUHAMMAD PRAKOSO
Perorangan
Bedy Purnama
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CCH3F3 - KECERDASAN BUATAN
  • CII4Q3 - VISI KOMPUTER

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini