Conversational Recommender System Using a Combination of Fine-Tuned GPT-4o and Retrieval-Augmented Generation for Laptop Recommendations - Dalam bentuk buku karya ilmiah

FATHAN ASKAR

Informasi Dasar

94 kali
25.04.470
000
Karya Ilmiah - Skripsi (S1) - Reference

Conversational recommender systems (CRS) have revolutionized personalized recommendations in recommender systems by using interactive and adaptive decision-making, particularly in complex domains (e.g., laptops). Existing CRS provides interaction between the system and the user through Form-based Layouts and Natural Language. Natural language- based interactions are typically constructed using Conventional Natural Language Processing (C-NLP) methods. While both interactions have shown certain successes, they also have limitations. Form-based layouts restrict users from expressing their preferences freely because of their rigid and structured nature. On the other hand, C-NLP allows for more dynamic interactions but relies heavily on domain-specific datasets and still struggles to interpret complex user requirements. To tackle these issues, we propose the development of a CRS using Large Language Models (LLMs). Specifically, we combined a Fine-Tuned GPT-4o model and the retrieval technique of Retrieval-Augmente

Subjek

RECOMMENDER SYSTEMS
 

Katalog

Conversational Recommender System Using a Combination of Fine-Tuned GPT-4o and Retrieval-Augmented Generation for Laptop Recommendations - Dalam bentuk buku karya ilmiah
 
v, 10p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

FATHAN ASKAR
Perorangan
Z. K. Abdurahman Baizal
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4H3 - SISTEM PEMBERI REKOMENDASI

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini