Implementasi Camel Algorithm Support Vector Machine dalam Memprediksi Penghambat Angiotensin Converting Enzyme (ACE) sebagai Agen Antihipertensi - Dalam bentuk pengganti sidang - Artikel Jurnal

RAIHAN FATHUL BAYAN

Informasi Dasar

109 kali
25.04.531
000
Karya Ilmiah - Skripsi (S1) - Reference

Hypertension is a serious medical condition and a leading cause of death worldwide. The development of accurate predictive methods for Angiotensin Converting Enzyme (ACE) Inhibitors is crucial in the treatment of hypertension. This study aims to develop a predictive model using Camel Algorithm for feature selection and Support Vector Machine (SVM) for building the predictive model with three types of kernels including Radial Basis Function (RBF), SVM-Linear, and Polynomial. The dataset used consists of 255 compounds with ACE inhibitory activity in Rattus norvegicus rats, sourced from the ChEMBL database, structured in SMILES notation, and then converted into SDF format. Experimental results show that the RBF kernel model provides the best performance, with an R² value of 0.8728 on the training data and 0.5620 on the testing data. This study highlights the effectiveness of the Camel Algorithm-Support Vector Machine combination in developing the ACE Inhibitor prediction methodology, and provides a signific

Subjek

Machine Learning
 

Katalog

Implementasi Camel Algorithm Support Vector Machine dalam Memprediksi Penghambat Angiotensin Converting Enzyme (ACE) sebagai Agen Antihipertensi - Dalam bentuk pengganti sidang - Artikel Jurnal
 
iv, 8p.: il,; pdf file
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RAIHAN FATHUL BAYAN
Perorangan
Isman Kurniawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR
  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini