ANALISIS PREDIKSI STUNTING PADA BALITA DI KABUPATEN BEKASI DENGAN MENGGUNAKAN RANDOM FOREST DAN NAIVE BAYES - Dalam bentuk buku karya ilmiah

CHINTYA ANNISAH SOLIN

Informasi Dasar

46 kali
25.04.1338
000
Karya Ilmiah - Skripsi (S1) - Reference

stunting in toddlers using data from the Bekasi District Health Office. The analysis process begins with data cleaning, normalization, and sampling using the Adaptive Synthetic Sampling (ADASYN) method to handle data imbalance, followed by validation with Stratified K-Fold Cross Validation. The implementation of the algorithm shows that Random Forest has the highest accuracy of 89.62% and an F1-Score of 89.09%. Naïve Bayes Gaussian produces an accuracy of 88.72% and an F1-Score of 88.81%, while Naïve Bayes Bernoulli has a lower performance with an accuracy of 67.83% and an F1-Score of 69.72%. Random Forest shows advantages in overcoming noise and imbalanced data, making it an optimal choice for stunting prediction. Meanwhile, the performance of Naïve Bayes is influenced by the characteristics of the data, where the Gaussian variation is more suitable for continuous data. The results of this study provide insight that choosing the right algorithm, especially on imbalanced data, is very important to improve prediction accuracy. This study also recommends more attention to data preprocessing to ensure optimal prediction quality, especially for minority classes. Keywords: Stunting; Naïve Bayes; Random Forest; Adasyn; K-Fold

Subjek

Sains Data
 

Katalog

ANALISIS PREDIKSI STUNTING PADA BALITA DI KABUPATEN BEKASI DENGAN MENGGUNAKAN RANDOM FOREST DAN NAIVE BAYES - Dalam bentuk buku karya ilmiah
 
9p.: il,; pdf file
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

CHINTYA ANNISAH SOLIN
Perorangan
Putu Harry Gunawan
 

Penerbit

Universitas Telkom, S1 Data Sains
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini