STUDI KASUS KLASIFIKASI STUNTING PADA BALITA DI KARYAJAYA SUMATERA SELATAN MENGGUNAKAN EXTREME GRADIENT BOOSTING DAN K-NEAREST NEIGHBORS - Dalam bentuk buku karya ilmiah

RAIHAN ABDURRAHMAN

Informasi Dasar

28 kali
25.04.1380
000
Karya Ilmiah - Skripsi (S1) - Reference

Stunting, a consequence of persistent malnutri- tion, severely hinders the physical and cognitive development of children under five years of age. In Indonesia, the incidence of stunting was 21.6% in 2022, presenting a significant public health challenge. This research seeks to create efficient machine learning (ML) models for identifying stunting status in chil- dren, utilizing a dataset of 3,000 physical measurements from the Karyajaya Health Center in South Sumatra. The study utilizes two classification algorithms: K-Nearest Neighbors (KNN) and Extreme Gradient Boosting (XGBoost). Data pre- processing encompassed feature selection, outlier elimination via the Interquartile Range (IQR) approach, and rectification of class imbalance through the Synthetic Minority Over- sampling Technique (SMOTE) and parameter optimization. The KNN model was set with five neighbors and distance-based weighting, resulting in an accuracy of 99.43% and an F1-score of 93.89%. The XGBoost model, optimized with a calibrated scale-pos-weight parameter, surpassed KNN by achieving an accuracy of 99.93% and an F1-score of 99.62%. These findings illustrate XGBoost’s exceptional capacity to manage intricate, unbalanced datasets and underscore its promise as a reliable instrument for early stunting identification. The application of XGBoost can assist policymakers and healthcare profes- sionals in delivering prompt interventions, therefore aiding the national objective of decreasing stunting prevalence to 14% by 2024. Subsequent study could improve model accuracy by integrating supplementary genetic and environmental variables across various demographic contexts.
 

Subjek

DATA SCIENCE
 

Katalog

STUDI KASUS KLASIFIKASI STUNTING PADA BALITA DI KARYAJAYA SUMATERA SELATAN MENGGUNAKAN EXTREME GRADIENT BOOSTING DAN K-NEAREST NEIGHBORS - Dalam bentuk buku karya ilmiah
 
iv, 8p.: il,; pdf file
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RAIHAN ABDURRAHMAN
Perorangan
Putu Harry Gunawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini