Tulisan tangan dalam bahasa Arab memiliki tantangan tersendiri dalam proses pengenalan otomatis karena bentuk hurufnya yang kompleks, bersambung, serta adanya variasi gaya penulisan individu. Permasalahan ini menjadi penting untuk dipecahkan terutama dalam konteks digitalisasi dokumen dan aplikasi pendidikan berbasis teknologi. Penelitian ini bertujuan untuk mengembangkan sistem pendeteksi tulisan tangan bahasa Arab dengan memanfaatkan teknik You Only Look Once (YOLO), sebuah pendekatan object detection berbasis deep learning yang dikenal karena kecepatannya dalam mengenali objek secara real-time. Penelitian ini dibatasi pada deteksi huruf-huruf tunggal dalam tulisan tangan, bukan pada pengenalan kata utuh atau kalimat.
Metode yang digunakan melibatkan beberapa tahap utama, dimulai dari pengumpulan dataset tulisan tangan bahasa Arab yang telah dilabeli secara manual. Selanjutnya dilakukan proses pelatihan model menggunakan arsitektur YOLOv9 dengan menyesuaikan parameter agar optimal terhadap karakteristik huruf Arab. Model dilatih untuk mendeteksi dan mengklasifikasikan huruf secara individu dalam gambar tulisan tangan. Setelah pelatihan, dilakukan evaluasi menggunakan metrik seperti mean Average Precision (mAP), presisi, dan recall untuk mengukur performa sistem. Dalam proses ini juga dilakukan augmentasi data untuk meningkatkan generalisasi model terhadap berbagai bentuk tulisan tangan.
Hasil dari penelitian ini menunjukkan bahwa penggunaan YOLO efektif dalam mendeteksi tulisan tangan huruf Arab dengan akurasi yang cukup tinggi, terutama dalam kondisi pencahayaan dan latar belakang yang bervariasi. Sistem yang dikembangkan mampu melakukan deteksi secara cepat dan akurat, serta memiliki potensi untuk dikembangkan lebih lanjut dalam aplikasi OCR (Optical Character Recognition) untuk bahasa Arab. Penelitian ini diharapkan dapat menjadi langkah awal dalam pengembangan sistem pengenalan tulisan tangan Arab yang lebih kompleks di masa depan.
Kata Kunci: YOLO, Tulis tangan, OCR, Bahasa Arab.