A Robust Ensemble Learning for DDoS Attack Classification on the Internet of Medical Things - Dalam bentuk pengganti sidang - Artikel Jurnal

NISRINA NURHALIZA

Informasi Dasar

40 kali
25.04.3202
000
Karya Ilmiah - Skripsi (S1) - Reference

Distributed Denial of Service (DDoS) attacks pose significant threats to the Internet of Medical Things (IoMT), potentially disrupting critical healthcare services. A significant challenge in detecting these attacks is the high imbalance in network traffic data, which can bias classification models. This study introduces a hybrid approach that integrates the XGBoost algorithm with Principal Component Analysis (PCA) and undersampling to address class imbalance and enhance
detection performance. Three configurations were tested: (1) XGBoost + PCA + Undersampling, (2) XGBoost + PCA, and (3)XGBoost + Undersampling. The model was evaluated using a publicly available multiclass DDoS dataset under an 80:20 training-testing split. The XGBoost + Undersampling method achieved the highest performance, with accuracy, precision, recall, and F1-score of 99.98%. Despite these results, potential limitations—such as data loss due to undersampling and excluding cross-validation or external testing. Thus, the proposed ensemble learning technique has proven to robustly improve the performance of DDoS attack detection in unbalanced dataset conditions. 

Subjek

INTERNET OF THINGS
 

Katalog

A Robust Ensemble Learning for DDoS Attack Classification on the Internet of Medical Things - Dalam bentuk pengganti sidang - Artikel Jurnal
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

NISRINA NURHALIZA
Perorangan
Sudianto, Pradana Ananda Raharja
 

Penerbit

Universitas Telkom, S1 Teknik Informatika - Kampus Purwokerto
Purwokerto
2025

Koleksi

Kompetensi

  • CAK3JAB3 - PEMBELAJARAN MESIN

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini