Comparison of Data Division Ratios and Particle Swarm Optimization for Phishing Website Detection Using the Random Forest Algorithm - Dalam bentuk pengganti sidang - Artikel Jurnal

MUHAMMAD RAIHAN AHSANTA

Informasi Dasar

100 kali
25.04.3448
005.8
Karya Ilmiah - Skripsi (S1) - Reference

Phishing is a widespread and dangerous form of cybercrime where attackers deceive users into disclosing sensitive information through fraudulent websites designed to mimic legitimate ones. This study explores the application of the Random Forest (RF) classification algorithm, optimized with Particle Swarm Optimization (PSO), for the detection of phishing websites using URL-based features. The research evaluates the impact of different data splitting ratios (80:20, 70:30, and 60:40) on the model's performance. The highest accuracy of 97.15% was achieved with an 80:20 split. These findings demonstrate that optimizing RF with PSO can significantly enhance phishing detection capabilities, offering a promising advancement for machine learning-based cybersecurity solutions.
 

Subjek

CYBER SECURITY
 

Katalog

Comparison of Data Division Ratios and Particle Swarm Optimization for Phishing Website Detection Using the Random Forest Algorithm - Dalam bentuk pengganti sidang - Artikel Jurnal
 
xlvi, 46p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMMAD RAIHAN AHSANTA
Perorangan
Rana Zaini Fathiyana, Demi Adidrana
 

Penerbit

Universitas Telkom, S1 Teknologi Informasi - Kampus Jakarta
Jakarta
2025

Koleksi

Kompetensi

  • CBK4BAA4 - Tugas Akhir

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini