Machine Learning Applications in Social Network Analysis for Indonesia Capital City Relocation: A Bibliometric Analysis - WRAP Researchship

PUTU MICHAEL JEHIAN THEO

Informasi Dasar

23 kali
25.04.5048
000
Karya Ilmiah - Skripsi (S1) - Reference

Indonesia’s capital relocation to Nusantara poses societal, economic, and environmental challenges. This bibliometric study analyzes 132 Scopus publications (2019–2024) to explore machine learning (ML) applications in social network analysis (SNA) for understanding public sentiment and infrastructure impacts. Using VOSviewer, results highlight the prominence of sentiment analysis via platforms like Twitter, with support vector machines (SVMs) commonly applied to assess environmental and land-use concerns. However, gaps exist in platform diversity, longitudinal sentiment tracking, and integrated spatial-social analytics. Practical recommendations include real-time sentiment dashboards, GIS-based environmental monitoring, and multi-platform social media analysis to support sustainable urban development. Future research should integrate sentiment analysis with geographic information systems (GIS), demographic data, and environmental metrics for holistic policy insights.
Keywords: Indonesia, machine learning, relocation, social network analysis

Subjek

Machine Learning
 

Katalog

Machine Learning Applications in Social Network Analysis for Indonesia Capital City Relocation: A Bibliometric Analysis - WRAP Researchship
 
vii, 22p.: il,; pdf file
indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

PUTU MICHAEL JEHIAN THEO
Perorangan
Ratna Komala Putri, Candiwan
 

Penerbit

Universitas Telkom, S1 Manajemen (Manajemen Bisnis Telekomunikasi & Informatika)
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini