DROWSINESS EYES DETECTION : OPTIMIZING REALTIME OBJECT DETECTION USING LITERT FOR MICROCONTROLLER ON ESP32-S3 - Dalam bentuk buku karya ilmiah

RIDHO AL HARITS

Informasi Dasar

123 kali
25.05.940
000
Karya Ilmiah - Thesis (S2) - Reference

Traffic accidents in Indonesia have increased by 34.37\% over the past four years, with drowsy driving identified as a major contributing factor. To address this issue, this thesis presents a real-time drowsiness detection system designed for resource constraint device, utilizing lightweight deep learning models deployed on the ESP32-S3 microcontroller. The system targets the challenge of real-time detection in resource-constrained environments by employing MobileNetV1 and MobileNetV2 architectures, optimized through post-training quantization to produce low-complexity models suitable for low-power devices. The detection workflow includes image capture, preprocessing, and classification of the driver’s eye state (drowsy or awake). On the microcontroller, the model is run with the TensorFlow Lite For Micro (LiteRT) library. In baseline evaluation, MobileNetV1 achieved an accuracy of 88\% with an average inference time of 81.5 milliseconds per frame, requiring only 89,488 bytes of memory. MobileNetV2 reached 94\% accuracy in baseline evaluation, and when deployed on the ESP32-S3, demonstrated an inference time of 329 milliseconds per image, utilizing 238,258 bytes of PSRAM and 31,608 bytes of internal RAM for image capture and classification. By balancing performance and computational efficiency, this research contributes to the development of embedded systems aimed at enhancing driver safety.

Subjek

EDGE COMPUTING
 

Katalog

DROWSINESS EYES DETECTION : OPTIMIZING REALTIME OBJECT DETECTION USING LITERT FOR MICROCONTROLLER ON ESP32-S3 - Dalam bentuk buku karya ilmiah
 
x, 58p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RIDHO AL HARITS
Perorangan
Nyoman Bogi Aditya Karna, Inung Wijayanto
 

Penerbit

Universitas Telkom, S2 Teknik Elektro
Bandung
2025

Koleksi

Kompetensi

  • TTI6D3 - INTERNET OF THINGS

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini