Disease Classification of Cassava Plant Leaves Using EfficientNet-B7 - Dalam bentuk pengganti sidang - Artikel Jurnal

MOHAMMAD HANIF AULIA RAHMAN

Informasi Dasar

69 kali
25.04.7139
005.1
Karya Ilmiah - Skripsi (S1) - Reference

This study proposes an enhanced EfficientNet-B7 model for the classification of cassava leaf diseases by integrating the Convolutional Block Attention Module (CBAM) and Squeeze-and-Excitation (SE) attention mechanisms. The model was trained on a Kaggle dataset consisting of 21,397 labeled images across five categories: Cassava Brown Streak Disease (CBSD), Cassava Green Mottle (CGM), Cassava Bacterial Blight (CBB), Cassava Mosaic Disease (CMD), and healthy leaves. The results showed that all model configurations achieved an accuracy of 80%, with the CBAM model outperforming others, achieving the highest F1-score of 81%. Despite challenges in classifying CGM due to its similarity to CMD, attention mechanisms improved feature representation, reduced misclassification, and enhanced model robustness. The research also highlighted the effectiveness of attention mechanisms in stabilizing training and improving classification accuracy, suggesting that future work could incorporate advanced segmentation techniques and multi-task learning to further improve performance, particularly for challenging diseases like CGM.
 

Subjek

Computer vision
 

Katalog

Disease Classification of Cassava Plant Leaves Using EfficientNet-B7 - Dalam bentuk pengganti sidang - Artikel Jurnal
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MOHAMMAD HANIF AULIA RAHMAN
Perorangan
Febryanti Sthevanie, Kurniawan Nur Ramadhani
 

Penerbit

Universitas Telkom, S1 Informatika (International Class)
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini