PENGALIH CITRA KARAKTER KOREA-INDONESIA MENGGUNAKAN KLASIFIKASI K-NEAREST NEIGHBOUR DAN TEMPLATE MATCHING

KARUNIA PUTRI SARI

Informasi Dasar

108 kali
111081047
621.382 2
Karya Ilmiah - Skripsi (S1) - Reference

ABSTRAKSI: Pada tugas akhir ini telah dirancang sebuah sistem yang mampu mendefinisikan kata dalam bahasa Korea ke dalam bahasa Latin, dan kemudian diterjemahkan ke dalam Bahasa Indonesia. Citra masukannya berupa gambar dengan format .bmp yang diformat secara langsung untuk kemudian diketahui hasilnya.

Metode yang digunakan yaitu Template Matching dan K-Nearest Neighbour. Secara umum, proses yang dilakukan ada lima tahap, dimulai dari tahapan preprocessing, segmentasi, ekstraksi ciri dengan menggunakan Gabor wavelet, dan pengenalan huruf dengan metode Template Matching dan K-NN. Selanjutnya pencocokan hasil dari tahap sebelumnya dengan artinya dalam Bahasa Indonesia. Pada tahap preprocessing, tahapannya yaitu mengubah citra RGB ke dalam grayscale, lalu diubah ke dalam citra black & white. Segmentasi yang dilakukan merupakan segmentasi sukukata.

Dari hasil pengujian diperoleh nilai threshold 0.7 untuk Template Matching dengan tingkat akurasi 85%. Sedangkan untuk KNN nilai threshold 0.6 dengan jumlah ekstraksi ciri yaitu 24 ciri, dengan tingkat akurasi 72%.Kata Kunci : Template Matching, K-Nearest Neighbour, HangulABSTRACT: In this final project, has designed a system that capable of defining the words in the Korean laguage into Latin, and then translated into Indonesian. Input image is an image with a format .bmp formatted directly for knowing results.

The method used is Template Matching and K-Nearest Neighbor. In general, the process is performed in five stages, starting from the stage of preprocessing, segmentation, feature extraction using Gabor wavelet, then the introduction of the letter with Template Matching method and K-NN. And then matching the results of the previous stage with the meaning in Indonesian. In the preprocessing stage, the step is change the RGB image into grayscale, then converted to black & white image. Segmentation conducted a segmentation of syllables.

Through the experiment with Template Matching method, test result obtained threshold 0.7 and accuracy 85%. And the result from KNN obtained threshold 0.6 with 24 features and accuracy 72%.Keyword: Template Matching, K-Nearest Neighbour, Hangul

Subjek

Pengolahan Sinyal Informasi
 

Katalog

PENGALIH CITRA KARAKTER KOREA-INDONESIA MENGGUNAKAN KLASIFIKASI K-NEAREST NEIGHBOUR DAN TEMPLATE MATCHING
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

KARUNIA PUTRI SARI
Perorangan
Iwan Iwut Tritoasmoro, Eko Susatio
 

Penerbit

Universitas Telkom
Bandung
2012

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini