DAFTAR GAMBAR

Gambar 2.1 Dioda p-n junction dengan bias maju (ConceptsElectronics.com,							
2015)7							
Gambar 2. 2 Proses fotogenerasi electron-hole (Ahmad Syaifudin, 2014)9							
Gambar 2.3 Rangkaian ekivalen sel surya9							
Gambar 2.4 Kurva arus-tegangan (IV) sel surya10							
Gambar 2.5 Suktrur sel surya yang akan dikembangkan							
Gambar 2.6 Mekanisme kerja sel surya TiO ₂ 13							
Gambar 2.7 Struktur crystal dari TiO ₂ (Three Bond Co., LTD., 2004)16							
Gambar 2.8 Struktur Lewis copper (II) nitrat (Qingdao Oulilai Chemical Co.,							
Ltd, 2015)16							
Gambar 2.9 Struktur kristal CuO (Anggaeni, 2013)							
Gambar 2. 10 Ilustrasi proses electroplating (Gumilar, 2014)23							
Gambar 3.1 Prosedur pembuatan sel surya							
Gambar 3.3 (a) Dispersi FTO menggunakan ultrasonic bath, dan (b) subsrat							
FTO siap digunakan28							
Gambar 3.4 (a) Larutan TiO_2 yang telah dicampur CuO, (b) alat spray, (c)							
hasil deposisi pada substrat29							
Gambar 3.5 LiOH dan polimer elektrolit yang dibuat							
Gambar 3.6 Sel surya yang dibuat (a) tampak atas FTO, (b) tampak bawah							
FTO							
Gambar 3.7 Rangkaian pengukuran I-V							
Gambar 4.1 Citra SEM CuO 0,5 M NaOH dengan perbesaran 10.000 kali35							
Gambar 4.2 Log Normal dari origin untuk lebar belt sampel 0,5 M NaOH36							

Gambar 4.3	Log Normal dari origin untuk panjang belt sampel 0,5 M NaOH.
Gambar 4. 4	Citra SEM CuO sampel 0,75 M NaOH dengan perbesaran
	10.000x
Gambar 4. 5	Log Normal dari origin untuk lebar sheet sampel 0,75 M NaOH.
Gambar 4. 6	Log Normal dari origin untuk panjang sheet sampel 0,75 M
	NaOH
Gambar 4. 7	Citra SEM sampel 1,5 M NaOH dengan perbesaran 10.000x39
Gambar 4. 9	Log Normal dari origin 8 untuk panjang seed sampel 1,5 M
	NaOH40
Gambar 4. 10	(a) Daerah spot EDS pada sampel 0,5 M NaOH, (b) hasil analisis
	EDS pada daerah spot41
Gambar 4. 1	(a) Daerah spot EDS pada sampel 0,75 M NaOH, (b) hasil
	analisis EDS pada daerah spot42
Gambar 4. 12	(a) Daerah spot EDS pada sampel 1,5 M NaOH, (b) hasil analisis
	EDS pada daerah spot43
Gambar 4. 13	Kurva I-V sel surya dengan <i>dopant</i> CuO berbeda precursor45
Gambar 4. 1	4 Grafik pengaruh beda molaritas prekursor CuO terhadap
	efisiensi sel surya47
Gambar 4. 15	Kurva I-V dengan variasi jumlah dopant CuO49
Gambar 4. 1	6 Grafik pengaruh jumlah dopant CuO terhadap efisiensi sel
	surya50
Gambar 4. 17	Kurva I-V dengan penambahan logam Cu52

Gambar	4.	18	Grafik	efisiensi	terhadap	perbedaan	sumber	listrik	metode	
electroplating										53

surya TiO ₂ perbesaran 20.000x55
surya TiO ₂ perbesaran 20.000x5

- Gambar 4. 20 Hasil citra SEM sel surya TiO₂ perbesaran 40.000x......55
- Gambar 4. 21 Fitting distribusi LogNormal untuk ukuran partikel TiO₂.......56
- Gambar 4. 23 Hasil SEM sel surya TiO₂ dengan *dopant* CuO dan penambahanlogam CuO dengan perbesaran 20.000x......58
- Gambar 4. 24 Hasil citra SEM sel surya TiO₂ dengan *dopant* CuO dan penambahan logam CuO dengan perbesaran 30.000x......59