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Introduction

Alice LaPlante

The Internet of Things (IoT) is growing quickly. More than 28 bil‐
lion things will be connected to the Internet by 2020, according to
the International Data Corporation (IDC).1 Consider that over the
last 10 years:2

• The cost of sensors has gone from $1.30 to $0.60 per unit.
• The cost of bandwidth has declined by 40 times.
• The cost of processing has declined by 60 times.

Interest as well as revenues has grown in everything from smart‐
watches and other wearables, to smart cities, smart homes, and
smart cars. Let’s take a closer look:

Smart wearables
According to IDC, vendors shipped 45.6 million units of weara‐
bles in 2015, up more than 133% from 2014. By 2019, IDC fore‐
casts annual shipment volumes of 126.1 million units, resulting
in a five-year compound annual growth rate (CAGR) of 45.1%.3

This is fueling streams of big data for healthcare research and
development—both in academia and in commercial markets.
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4 Frost & Sullivan. “Urbanization Trends in 2020: Mega Cities and Smart Cities Built on
a Vision of Sustainability,” 2015.

5 World Financial Symposiums, “Smart Cities: M&A Opportunities,” 2015.
6 BI Intelligence. The Connected Home Report. 2014.
7 Ibid.
8 Michelle Bertoncello and Dominik Wee (McKinsey & Co.). Ten Ways Autonomous

Driving Could Reshape the Automotive World. June 2015.

Smart cities
With more than 60% of the world’s population expected to live
in urban cities by 2025, we will be seeing rapid expansion of city
borders, driven by population increases and infrastructure
development. By 2023, there will be 30 mega cities globally.4

This in turn will require an emphasis on smart cities: sustaina‐
ble, connected, low-carbon cities putting initiatives in place to
be more livable, competitive, and attractive to investors. The
market will continue growing to $1.5 trillion by 2020 through
such diverse areas as transportation, buildings, infrastructure,
energy, and security.5

Smart homes
Connected home devices will ship at a compound annual rate of
more than 67% over the next five years, and will reach 1.8 bil‐
lion units by 2019, according to BI Intelligence. Such devices
include smart refrigerators, washers, and dryers, security sys‐
tems, and energy equipment like smart meters and smart light‐
ing.6 By 2019, it will represent approximately 27% of total IoT
product shipments.7

Smart cars
Self-driving cars, also known as autonomous vehicles (AVs),
have the potential to disrupt a number of industries. Although
the exact timing of technology maturity and sales is unclear,
AVs could eventually play a “profound” role in the global econ‐
omy, according to McKinsey & Co. Among other advantages,
AVs could reduce the incidence of car accidents by up to 90%,
saving billions of dollars annually.8

In this O’Reilly report, we explore the IoT industry through a vari‐
ety of lenses, by presenting you with highlights from the 2015 Strata
+ Hadoop World Conferences that took place in both the United
States and Singapore. This report explores IoT-related topics
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through a series of case studies presented at the conferences. Topics
we’ll cover include modeling machine failure in the IoT, the compu‐
tational gap between CPU storage, networks on the IoT, and how to
model data for the smart connected city of the future. Case studies
include:

• Spark Streaming to predict failure in railway equipment
• Traffic monitoring in Singapore through the use of a new IoT

app
• Applications from the smart city pilot in Oulu, Finland
• An ongoing longitudinal study using personal health data to

reduce cardiovascular disease
• Data analytics being used to reduce risk in human space mis‐

sions under NASA’s Orion program

We finish with a discussion of ethics, related to the algorithms that
control the things in the Internet of Things. We’ll explore decisions
related to data from the IoT, and opportunities to influence the
moral implications involved in using the IoT.
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PART I

Data Processing and
Architecture for the IoT





CHAPTER 1

Data Acquisition and
Machine-Learning Models

Danielle Dean

Editor’s Note: At Strata + Hadoop World in Singapore, in December
2015, Danielle Dean (Senior Data Scientist Lead at Microsoft) presen‐
ted a talk focused on the landscape and challenges of predictive main‐
tenance applications. In her talk, she concentrated on the importance
of data acquisition in creating effective predictive maintenance appli‐
cations. She also discussed how to formulate a predictive maintenance
problem into three different machine-learning models.

Modeling Machine Failure
The term predictive maintenance has been around for a long time
and could mean many different things. You could think of predictive
maintenance as predicting when you need an oil change in your car,
for example—this is a case where you go every six months, or every
certain amount of miles before taking your car in for maintenance.

But that is not very predictive, as you’re only using two variables:
how much time has elapsed, or how much mileage you’ve accumula‐
ted. With the IoT and streaming data, and with all of the new data
we have available, we have a lot more information we can leverage to
make better decisions, and many more variables to consider when
predicting maintenance. We also have many more opportunities in
terms of what you can actually predict. For example, with all the
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data available today, you can predict not just when you need an oil
change, but when your brakes or transmission will fail.

Root Cause Analysis
We can even go beyond just predicting when something will fail, to
also predicting why it will fail. So predictive maintenance includes
root cause analysis.

In aerospace, for example, airline companies as well as airline engine
manufacturers can predict the likelihood of flight delay due to
mechanical issues. This is something everyone can relate to: sitting
in an airport because of mechanical problems is a very frustrating
experience for customers—and is easily avoided with the IoT.

You can do this on the component level, too—asking, for example,
when a particular aircraft component is likely to fail next.

Application Across Industries
Predictive maintenance has applications throughout a number of
industries. In the utility industry, when is my solar panel or wind
turbine going to fail? How about the circuit breakers in my net‐
work? And, of course, all the machines in consumers’ daily lives. Is
my local ATM going to dispense the next five bills correctly, or is it
going to malfunction? What maintenance tasks should I perform on
my elevator? And when the elevator breaks, what should I do to fix
it?

Manufacturing is another obvious use case. It has a huge need for
predictive maintenance. For example, doing predictive maintenance
at the component level to ensure that it passes all the safety checks is
essential. You don’t want to assemble a product only to find out at
the very end that something down the line went wrong. If you can
be predictive and rework things as they come along, that would be
really helpful.

A Demonstration: Microsoft Cortana Analytics Suite
We used the Cortana Analytics Suite to solve a real-world predictive
maintenance problem. It helps you go from data, to intelligence, to
actually acting upon it.
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The Power BI dashboard, for example, is a visualization tool that
enables you to see your data. For example, you could look at a sce‐
nario to predict which aircraft engines are likely to fail soon. The
dashboard might show information of interest to a flight controller,
such as how many flights are arriving during a certain period, how
many aircrafts are sending data, and the average sensor values com‐
ing in.

The dashboard may also contain insights that can help you answer
questions like “Can we predict the remaining useful life of the differ‐
ent aircraft engines?”or “How many more flights will the engines be
able to withstand before they start failing?” These types of questions
are where the machine learning comes in.

Data Needed to Model Machine Failure
In our flight example, how does all of that data come together to
make a visually attractive dashboard?

Let’s imagine a guy named Kyle. He maintains a team that manages
aircrafts. He wants to make sure that all these aircrafts are running
properly, to eliminate flight delays due to mechanical issues.

Unfortunately, airplane engines often show signs of wear, and they
all need to be proactively maintained. What’s the best way to opti‐
mize Kyle’s resources? He wants to maintain engines before they
start failing. But at the same time, he doesn’t want to maintain things
if he doesn’t have to.

So he does three different things:

• He looks over the historical information: how long did engines
run in the past?

• He looks at the present information: which engines are showing
signs of failure today?

• He looks to the future: he wants to use analytics and machine
learning to say which engines are likely to fail.
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Training a Machine-Learning Model
We took publicly available data that NASA publishes on engine run-
to-failure data from aircraft, and we trained a machine-learning
model. Using the dataset, we built a model that looks at the relation‐
ship between all of the sensor values, and whether an engine is going
to fail. We built that machine-learning model, and then we used
Azure ML Studio to turn it into an API. As a standard web service,
we can then integrate it into a production system that calls out on a
regular schedule to get new predictions every 15 minutes, and we
can put that data back into the visualization.

To simulate what would happen in the real world, we take the NASA
data, and use a data generator that sends the data in real time, to the
cloud. This means that every second, new data is coming in from
the aircrafts, and all of the different sensor values, as the aircrafts are
running. We now need to process that data, but we don’t want to use
every single little sensor value that comes in every second, or even
subsecond. In this case, we don’t need that level of information to
get good insights. What we need to do is create some aggregations
on the data, and then use the aggregations to call out to the
machine-learning model.

To do that, let’s look at numbers like the average sensor values, or
the rolling standard deviation; we want to then predict how many
cycles are left. We ingest that data through Azure Event Hub and use
Azure Stream Analytics, which lets you do simple SQL queries on
that real-time data. You can then do things like select the average
over the last two seconds, and output that to Power BI. We then do
some SQL-like real-time queries in order to get insights, and show
that right to Power BI.

We then take the aggregated data and execute a second batch, which
uses Azure Data Factory to create a pipeline of services. In this
example, we’re scheduling an aggregation of the data to a flight level,
calling out to the machine-learning API, and putting the results
back in SQL database so we can visualize them. So we have informa‐
tion about the aircrafts and the flights, and then we have lots of dif‐
ferent sensor information about it, and this training data is actually
run-to-failure data, meaning we have data points until the engine
actually fails.
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Getting Started with Predictive Maintenance
You might be thinking, “This sounds great, but how do I know if I’m
ready to do machine learning?” Here are five things to consider
before you begin doing predictive maintenance:

What kind of data do you need?
First, you must have a very “sharp” question. You might say,
“We have a lot of data. Can we just feed the data in and get
insights out?” And while you can do lots of cool things with vis‐
ualization tools and dashboards, to really build a useful and
impactful machine-learning model, you must have that question
first. You need to ask something specific like: “I want to know
whether this component will fail in the next X days.”

You must have data that measures what you care about
This sounds obvious, but at the same time, this is often not the
case. If you want to predict things such as failure at the compo‐
nent level, then you have to have component-level information.
If you want to predict a door failure within a car, you need
door-level sensors. It’s essential to measure the data that you
care about.

You must have accurate data
It’s very common in predictive maintenance that you want to
predict a failure occurring, but what you’re actually predicting
in your data is not a real failure. For example, predicting fault. If
you have faults in your dataset, those might sometimes be fail‐
ures, but sometimes not. So you have to think carefully about
what you’re modeling, and make sure that that is what you want
to model. Sometimes modeling a proxy of failure works. But if
sometimes the faults are failures, and sometimes they aren’t,
then you have to think carefully about that.

You must have connected data
If you have lots of usage information—say maintenance logs—
but you don’t have identifiers that can connect those different
datasets together, that’s not nearly as useful.

You must have enough data
In predictive maintenance in particular, if you’re modeling
machine failure, you must have enough examples of those
machines failing, to be able to do this. Common sense will tell
you that if you only have a couple of examples of things failing,
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you’re not going to learn very well; having enough raw examples
is essential.

Feature Engineering Is Key
Feature engineering is where you create extra features that you can
bring into a model. In our example using NASA data, we don’t want
to just use that raw information, or aggregated information—we
actually want to create extra features, such as change from the initial
value, velocity of change, and frequency count. We do this because
we don’t want to know simply what the sensor values are at a certain
point in time—we want to look back in the past, and look at features.
In this case, any kinds of features that can capture degradation over
time are very important to include in the model.

Three Different Modeling Techniques
You’ve got a number of modeling techniques you can choose from.
Here are three we recommend:

Binary classification
Use binary classification if you want to do things like predict
whether a failure will occur in a certain period of time. For
example, will a failure occur in the next 30 days or not?

Multi-class classification
This is for when you want to predict buckets. So you’re asking if
an engine will fail in the next 30 days, next 15 days, and so forth.

Anomaly detection
This can be useful if you actually don’t have failures. You can do
things like smart thresholding. For example, say that a door’s
closing time goes above a certain threshold. You want an alert to
tell you that something’s changed, and you also want the model
to learn what the new threshold is for that indicator.

These are relatively simplistic, but effective techniques.

Start Collecting the Right Data
A lot of IoT data is not used currently. The data that is used is
mostly for anomaly detection and control, not prediction, which is
what can provide us with the greatest value. So it’s important to
think about what you will want to do in the future. It’s important to
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collect good quality data over a long enough period of time to
enable your predictive analytics in the future. The analytics that
you’re going to be doing in two or five years is going to be using
today’s data.
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CHAPTER 2

IoT Sensor Devices and
Generating Predictions

Bruno Fernandez-Ruiz

Editor’s Note: At Strata + Hadoop World in San Jose, in February
2015, Bruno Fernandez-Ruiz (Senior Fellow at Yahoo!) presented a
talk that explores two issues that arise due to the computational
resource gap between CPUs, storage, and network on IoT sensor devi‐
ces: (a ) undefined prediction quality, and (b ) latency in generating
predictions.

Let’s begin by defining the resource gap we face in the IoT by talking
about wearables and the data they provide. Take, for example, an
optical heart rate monitor in the form of a GPS watch. These
watches measure the conductivity of the photocurrent, through the
skin, and infer your actual heart rate, based on that data.

Essentially, it’s an input and output device, that goes through some
“black box” inside the device. Other devices are more complicated.
One example is Mobileye, which is a combination of radar/lidar
cameras embedded in a car that, in theory, detects pedestrians in
your path, and then initiates a braking maneuver. Tesla is going to
start shipping vehicles with this device.

Likewise, Mercedes has an on-board device called Sonic Cruise,
which is essentially a lidar (similar to a Google self-driving car). It
sends a beam of light, and measures the reflection that comes back.
It will tell you the distance between your car and the next vehicle, to
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initiate a forward collision warning or even a maneuver to stop the
car.

In each of these examples, the device follows the same pattern—col‐
lecting metrics from a number of data sources, and translating those
signals into actionable information. Our objective in such cases is to
find the best function that minimizes the minimization error.

To help understand minimization error, let’s go back to our first
example—measuring heart rate. Consider first that there is an actual
value for your real heart rate, which can be determined through an
EKG. If you use a wearable to calculate the inferred value of your
heart rate, over a period of time, and then you sum the samples, and
compare them to the EKG, you can measure the difference between
them, and minimize the minimization error.

What’s the problem with this?

Sampling Bias and Data Sparsity
The key issue is you’re only looking at a limited number of scenar‐
ios: what you can measure using your device, and what you can
compare with the EKG. But there could be factors impacting heart
rate that involve temperature, humidity, or capillarity, for example.
This method therefore suffers from two things: sampling bias and
data sparsity. With sampling bias, you’ve only looked at some of the
data, and you’ve never seen examples of things that happen only in
the field. So how do you collect those kinds of samples? The other
issue is one of data sparsity, which takes into account that some
events actually happen very rarely.

The moral is: train with as much data as you can. By definition,
there is a subsampling bias, and you don’t know what it is, so keep
training and train with more data; this is continuous learning—
you’re just basically going in a loop all of the time.

Minimizing the Minimization Error
Through the process of collecting data from devices, we minimize
error by considering our existing data samples, and we infer values
through a family of functions. A key property of all these functions
is that they can be parametrized by a vector—what we will call w. We

10 | Chapter 2: IoT Sensor Devices and Generating Predictions



find out all of these functions, we calculate the error, and one of
these functions will minimize the error.

There are two key techniques for this process; the first is gradient
descent. Using gradient descent, you look at the gradient from one
point, walk the curve, and calculate for all of the points that you
have, and then you keep descending toward the minimum. This is a
slow technique, but it is more accurate than the second option we’ll
describe.

Stochastic jumping is a technique by which you look at one sample at
a time, calculate the gradient for that sample, then jump, and jump
again—it keeps approximating. This technique moves faster than
gradient descent, but is less accurate.

Constrained Throughput
In computational advertising, which is what we do at Yahoo!, we
know that we need two billion samples to achieve a good level of
accuracy for a click prediction. If you want to detect a pedestrian,
for example, you probably need billions of samples of situations
where you have encountered a pedestrian. Or, if you’re managing
electronic border control, and you want to distinguish between a
coyote and a human being, again, you need billions of samples.

That’s a lot of samples. In order to process all of this data, normally
what happens is we bring all of the data somewhere, and process it
through a GPU, which gives you your optimal learning speed,
because the memory and processing activities are in the same place.
Another option is to use a CPU, where you move data between the
CPU and the memory. The slowest option is to use a network.

Can we do something in between, though, and if so, what would that
look like? What we can do is create something like a true distributed
hash table, which says to every computational node, “I’m going to
spin off the storage node,” and you start routing requests.

Implementing Deep Learning
Think about dinosaurs. They were so big that the electrical impulses
that went through their neurons to their backbone would take too
long. If a dinosaur encountered an adversary, by the time the signals
went to the brain and made a decision, and then went to the tail,
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there was a lag of several milliseconds that actually mattered to sur‐
vival. This is why dinosaurs had two or more brains—or really,
approximations of brains—which could make fast decisions without
having to go to “the main CPU” of the dinosaur (the brain). Each
brain did not have all of the data that the main brain had, but they
could be fast—they could move the dinosaur’s limbs in times of
necessity.

While deep learning may not always be fast, the number of applica‐
tions that it opens up is quite immense. If you think about sensor-
area networks and wireless sensor networks in applications from 5–
10 years ago, you’ll see that this is the first time where machine-to-
machine data is finally becoming possible, thanks to the availability
of cheap compute, storage, and sensory devices.

12 | Chapter 2: IoT Sensor Devices and Generating Predictions



CHAPTER 3

Architecting a Real-Time Data
Pipeline with Spark Streaming

Eric Frenkiel

Editor’s Note: At Strata + Hadoop World in Singapore, in December
2015, Eric Frenkiel (CEO and cofounder at MemSQL) presented a talk
that explores modeling the smart and connected city of the future with
Kafka and Spark.

Hadoop has solved the “volume” aspect of big data, but “velocity”
and “variety” are two aspects that still need to be tackled. In-
memory technology is important for addressing velocity and variety,
and here we’ll discuss the challenges, design choices, and architec‐
ture required to enable smarter energy systems, and efficient energy
consumption through a real-time data pipeline that combines
Apache Kafka, Apache Spark, and an in-memory database.

What does a smart city look like? Here’s a familiar-looking vision: it’s
definitely something that is futuristic, ultra-clean, and for some rea‐
son there are always highways that loop around buildings. But here’s
the reality: we have a population of almost four billion people living
in cities, and unfortunately, very few cities can actually enact the
type of advances that are necessary to support them.

A full 3.9 billion people live in cities today; by 2050, we’re expected
to add another 2.5 billion people. It’s critical that we get our vision of
a smart city right, because in the next few decades we’ll be adding
billions of people to our urban centers. We need to think about how
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we can design cities and use technology to help people, and deliver
real value to billions of people worldwide.

The good news is that the technology of today can build smart cities.
Our current ecosystem of data technologies—including Hadoop,
data warehouses, streaming, and in-memory—can deliver phenom‐
enal technology at a city-level scale.

What Features Should a Smart City Have?
At its most minimum, a smart city should have four features:

• City-wide WiFi
• A city app to report issues
• An open data initiative to share data with the public
• An adaptive IT department

Free Internet Access
With citywide WiFi, anyone in the city should be able to connect for
free. This should include support for any device that people happen
to own. We’re in a time when we should really consider access to the
Internet as a fundamental human right. The ability to communicate
and to share ideas across cities and countries is something that
should be available for all. While we’re seeing some initiatives across
the world where Internet is offered for free, in order to build the
applications we need today, we have to blanket every city with con‐
nectivity.

Two-Way Communication with City Officials
Every city should have an application that allows for two-way com‐
munication between city officials and citizens. Giving citizens the
ability to log in to the city app and report traffic issues, potholes,
and even crime, is essential.

Data Belongs to the Public
When it comes to the data itself, we have to remember that it
belongs to the public. Therefore, it’s incumbent upon the city to
make that data available. San Francisco, for example, does a phe‐
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nomenal job of giving public data to the community to use in any
way. When we look at what a smart city should become, it means
sharing data so that everyone can access it.

Empower Cities to Hire Great Developers
Most importantly, every city that is serious about becoming smart
and connected needs to have an adaptive, fast-moving IT depart‐
ment. If we want to get our public sector moving quickly, we have to
empower cities with budgets that let them hire great developers to
work for the city, and build applications that change people’s lives.

Designing a Real-Time Data Pipeline with the
MemCity App
Let’s discuss an example that utilizes a real-time data pipeline—the
application called MemCity. This application is designed to capture
data from 1.4 million households, with data streaming from eight
devices, in each home, every minute. What this will do is let us
pump 186,000 transactions per second from Kafka, to Spark, to
MemSQL.

That’s a lot of data. But it’s actually very cheap to run an application
like this because of the cloud—either using Amazon or other cloud
services. Our example is only going to cost $2.35 an hour to run,
which means that you’re looking at about $20,000 annually to oper‐
ate this type of infrastructure for a city. This is very cost-affordable,
and a great way to demonstrate that big data can be empowering to
more than just big companies.

In this example, we’re going to use a portfolio of products that we
call the Real-Time Trinity—Kafka, Spark, and MemSQL—which will
enable us to avoid disk as we build the application. Why avoid disk?
Because disk is the enemy of real-time processing. We are building
memory-oriented architectures precisely because disk is glacially
slow.

The real-time pipeline we’ll discuss can be applied across any type of
application or use case. In this particular example, we’re talking
about smart cities, but there are many applications that this archi‐
tecture will support.
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The Real-Time Trinity
The goal of using these three solutions—Kafka, Spark, and
MemSQL—is to create an end-to-end data pipeline in under one
second.

Kafka is a very popular, open source high-throughput distributed
messaging system, with a strong community of support. You can
publish and subscribe to Kafka “topics,” and use it as the centralized
data transport for your business.

Spark is an in-memory execution engine that is transient (so it’s not
a database). Spark is good for high-level operations for procedural
and programmatic analytics. It’s much faster than MapReduce, and
you’re able to do things that aren’t necessarily expressible in a con‐
ventional declarative language such as SQL. You have the ability to
model anything you want inside this environment, and perform
machine learning.

MemSQL is an in-memory distributed database that lets you store
your state of the model, capture the data, and build applications. It
has a SQL interface for the data streaming in, and lets you build
real-time, performant applications.

Building the In-Memory Application
The first step is to subscribe to Kafka, and then Kafka serializes the
data. In this example, we’re working with an event that has some
information we need to resolve. We publish it to the Kafka topic,
and it gets zipped up, serialized, and added to the event queue. Next,
we go to Spark, where we’ll deserialize the data and do some enrich‐
ment. Once you’re in the Spark environment, you can look up a
city’s zip code, for example, or map a certain ID to a kitchen appli‐
ance.

Now is the time for doing our real-time ingest; we set up the Kafka
feed, so data is flowing in, and we’re doing real-time transformations
in the data—cleaning it up, cleansing it, getting it in good order.
Next, we save the data and log in to the MemCity database, where
you can begin looking at the data itself using Zoomdata. You can
also connect it to a business intelligent application, and in this case,
you can compress your development timelines, because you have the
data flowing in through Spark and Kafka, and into MemSQL. So in
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effect, you’re moving away from the concept of analyzing data via
reports, and toward real-time applications where you can interact
with live data.

Streamliner for IoT Applications
Streamliner is a new open source application that gives you the abil‐
ity to have one-click deployment of Apache Spark. The goal is to
offer users a simple way to reduce data loading latency to zero, and
start manipulating data. For example, you can set up a GUI pipeline,
click on it, and create a new way to consume data into the system.
You can have multiple data pipelines flowing through, and the chal‐
lenge of “how do I merge multiple data streams together?” becomes
trivial, because you can just do a basic join.

But if we look at what justifies in-memory technology, it’s really the
fact that we can eliminate extract, transform, and load (ETL) activi‐
ties. For example, you might look at a batch process and realize that
it takes 12 hours to load the data. Any query that you execute
against that dataset is now at least 12 hours too late to affect the
business.

Now, many database technologies, even in the ecosystem of Hadoop,
are focused on reducing query execution latency, but the biggest
improvements you can make involve reducing data loading latency
—meaning that the faster you get access to the data, the faster you
can start responding to your business.

From an architectural perspective, it’s a very simple deployment
process. You start off with a raw cluster, and then deploy MemSQL
so that you can have a database cluster running in your environ‐
ment, whether that’s onpremise, in the cloud, or even on a laptop.
The next step is that one-click deployment of Spark. So you now
have two processes (a MemSQL process and Spark process) co-
located on the same machine.

The benefit of having two processes on the same machine is that you
can avoid an extra network hop. To complete this real-time data
pipeline, you simply connect Kafka to each node in the cluster, and
then you get a multi-threaded, highly parallelized write into the sys‐
tem. What you’re seeing here is memory-to-memory-to-memory,
and then behind the scenes MemSQL operates the disk in the back‐
ground.
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The Lambda Architecture
All of this touches on something broader than in-memory—it’s
about extending analytics with what is called a Lambda architecture.
The Lambda architecture enables a real-time data pipeline going
into your systems, so that you can manipulate the data very quickly.
If your business is focused around information, using in-memory
technology is critical to out-maneuver in the marketplace.

With Lambda architecture, you get analytic applications, not Excel
reports. An Excel report will come out of a data warehouse and it
will arrive in your inbox. An analytic application is live data for you
to analyze, and of course, it’s all predicated on real-time analytics.
You have the ability to look at live data and change the outcome.

The notion of getting a faster query is nice. It might save you a cup
of coffee or a trip around the block while you are waiting, but the
real benefit is that you can leverage that analytic to respond to what’s
happening now in your business or market. Real-time analytics has
the potential to change the game in how businesses strategize,
because if you know things faster than competitors, you’re going to
outcompete them in the long run.
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CHAPTER 4

Using Spark Streaming to
Manage Sensor Data

Hari Shreedharan and Anand Iyer

Editor’s Note: At Strata + Hadoop World in New York, in September
2015, Hari Shreedharan (Software Engineer at Cloudera) and Anand
Iyer (Senior Product Manager at Cloudera) presented this talk, which
applies Spark Streaming architecture to IoT use cases, demonstrating
how you can manage large volumes of sensor data.

Spark Streaming takes a continuous stream of data and represents it
as an abstraction, called a discretized stream. This is commonly
referred to as a DStream. A DStream takes the continuous stream of
data and breaks it up into disjoint chunks called microbatches. The
data that fits within a microbatch—essentially the data that streamed
in within the time slot of that microbatch—is converted to a resilient
distributed dataset (RDD). Spark then processes that RDD with reg‐
ular RDD operations.

Spark Streaming has seen tremendous adoption over the past year,
and is now used for a wide variety of use cases. Here, we’ll focus on
the application of Spark Streaming to a specific use case—proactive
maintenance and accident prevention in railways.

To begin, let’s keep in mind that the IoT is all about sensors—sensors
that are continuously producing data, with all of that data streaming
into your data center. In our use case, we fitted sensors to railway
locomotives and railway carriages. We wanted to resolve two differ‐
ent issues from the sensor data: (a) identifying when there is damage
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to the axle or wheels of the railway locomotive or railway carriages;
and (b) identifying damage on the rail tracks.

The primary goal in our work was to prevent derailments, which
result in the loss of both lives and property. Though railway travel is
one of the safest forms of travel, any loss of lives and property is pre‐
ventable.

Another goal was to lower costs. If you can identify issues early, then
you can fix them early; and in almost all cases, fixing issues early
costs you less.

The sensors placed on the railway carriages are continuously send‐
ing data, and there is a unique ID that represents each sensor.
There’s also a unique ID that represents each locomotive. We want
to know how fast the train was going and the temperature, because
invariably, if something goes wrong, the metal heats up. In addition,
we want to measure pressure—because when there’s a problem,
there may be excessive weight on the locomotive or some other
form of pressure that’s preventing the smooth rotation of the wheels.

The sound of the regular hum of an engine or the regular rhythmic
spinning of metal wheels on metal tracks is very different from the
sound that’s produced when something goes wrong—that’s why
acoustic signals are also useful. Additionally, GPS coordinates are
necessary so that we know where the trains are located as the signals
stream in. Last, we want a timestamp to know when all of these
measurements are taken. As we capture all of this data, we’re able to
monitor the readings to see when they increase from the baseline
and get progressively worse—that’s how we know if there is damage
to the axle or wheels.

Now, what about damage to the rail tracks? Damage on a railway
track occurs at a specific location. With railway tracks you have a left
and right track, and damage is likely on one side of the track, not
both. When a wheel goes over a damaged area, the sensor associated
with that wheel will see a spike in readings. And the readings are
likely to be acoustic noise, because you’ll have the metal clanging
sound, as well as pressure. Temperature may not come into play as
much because there probably needs to be a sustained period of dam‐
age in order to affect this reading. So in the case of a damaged track,
acoustic noise and pressure readings are likely to go up, but it will be
a spike. The minute the wheel passes that damaged area, the readings
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will come back down—and that’s our cue for damage on a railway
track.

Architectural Considerations
In our example, all of these sensor readings have to go from the
locomotive to the data center. The first thing we do when the data
arrives is write it to a reliable, high-throughput streaming channel,
or streaming transportation layer—in this case, we use Kafka. With
the data in Kafka, we can read it in Spark Streaming, using the direct
Kafka connector.

The first thing we do when these events come into the data center is
enrich them with relevant metadata, to help determine if there is
potential damage. For example, based on the locomotive ID, we
want to fetch information about the locomotive, such as the type—
for example, we would want to know if it’s a freight train, if it’s car‐
rying human passengers, how heavy it is, and so on. And if it is a
freight train, is it carrying hazardous chemicals? If that’s the case, we
would probably need to take action at any hint of damage. If it’s a
freight train that’s just coming back empty, with no cargo, then it’s
likely to be less critical. For these reasons, information about the
locomotive is critical.

Similarly, information about each sensor is critical. You want to
know where the sensor is on the train (i.e., is it on the left wheel or
the right wheel?). GPS information is also important because if the
train happens to be traveling on a steep incline, you might expect
temperature readings to go up. The Spark HBase model, which is
now a part of the HBase code base, is what we recommend for pull‐
ing in this data.

After you’ve enriched these events with all the relevant metadata, the
next task in our example is to determine whether a signal indicates
damage—either through a simple rule-based or predictive model.
Once you’ve identified a potential problem, you write an event to a
Kafka queue. You’ll have an application that’s continuously listening
to alerts in the queue, and when it sees an event, the application will
send out a physical alert (i.e., a pager alert, an email alert, or a phone
call) notifying a technician that something’s wrong.

One practical concern here is with regard to data storage—it’s help‐
ful to dump all of the raw data into HDFS, for two reasons. First,
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keeping the raw data allows data scientists to play with the data, and
possibly uncover new insights. Second, there will likely be bugs in
your application, and in your code, and you’ll want to do an audit
when things go wrong. Having the raw data in HDFS lets you write
simple batch jobs to figure out when things are wrong, either in
your application logic, or in certain cases, where the sensors might
have gone wrong.

Visualizing Time-Series Data
Once a technician knows that there’s a potential problem, it’s time to
diagnose the issue. In order to diagnose the issue, the technician will
have to look at readings from the sensors as time-series data—over
different windows of time. Being able to visualize when readings
occurred is enormously helpful; Grafana is one open source tool for
doing this, and you can always build something quickly using Java‐
Script. Once the technician has diagnosed the issue—depending on
what the problem is—he can either specify that the train be sent for
regular maintenance, or that it be stopped because it is carrying pas‐
sengers or hazardous chemicals.

The Importance of Sliding Windows
Sliding windows are critical in Spark Streaming. You always want to
specify a time period on which you want to apply your operation.
Rather than writing a custom code variant for looking into each
piece of data, to query whether anything happened in the last five
hours or last five minutes, you can implement a windowed structure.

A window DStream basically has a window interval, which is the
window in which you want to look at all of your previous events.
You also have a sliding interval that you can keep moving forward.
When you apply an operation, you apply it to individual windows.
Instead of applying operations on individual RDDs, you apply the
operation on all RDDs that arrive within a specified window. You can
have this window as any multiple of your microbatch interval. You
don’t want these windows to be long, because most of this data is
either cached in memory or written to local disk. If your window’s
size becomes, say, more than 24 hours, and you’re getting a million
events per hour, then you’re going to see a lot of data being stashed
in memory or written to disk, and your performance is going to suf‐
fer.
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There is an API called updateStateByKey that is very useful. Given a
key, you can apply any random operation on the previous value with
new information that you received over the last n minutes. So you
can combine windowing and updateStateByKey to apply these oper‐
ations for windows. You would take your incoming data, put it into
a window DStream with a specified window, and then apply the
state transformations using updateStateByKey.

Checkpoints for Fault Tolerance
One of the most important things about updateStateByKey or win‐
dowing is that you always want to enable checkpointing. Checkpoints
are used primarily for fault tolerance.

Think about it: what happens if an RDD goes missing from mem‐
ory? If you’ve used 60% or 70% of your memory, Spark will drop the
RDDs. At that point, you want to reconstruct those RDDs.

The Spark idea of failure tolerance is to get the original data and
apply the series of transformations that led to that RDD in the first
place. The problem is that it has to apply a large number of opera‐
tions on the original data. If this original data is from several weeks
ago, you could possibly use up all of your stack by just applying
operations. You could end up with a stack overflow and your opera‐
tion would never complete. In that case, you want to truncate that
chain of events, that chain of transformations, over the last n days,
and pick up the latest (as late as possible) value of the keys.

Spark will checkpoint the state of that RDD at any point in time, and
do a persistent storage like HDFS. So when you have an RDD that
has a long chain of events, but has a checkpoint, Spark will simply
recover from the checkpoint rather than trying to apply all of the
operations. So checkpointing will save your application from either
long-chain processing or huge stack overflow errors. And because a
checkpoint is in the state of the application when it died, you
recover from where the failure happened.

It’s fairly simple to write an application that restarts from a check‐
point. Instead of just creating a new streaming context, you apply a
function to create a new streaming context. And that function looks
at the checkpoint. If the checkpoint is there, it reads from that
instead of reading directly—creating a new Spark Streaming context
directly.
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Start Your Application from the Checkpoint
Checkpoints are terrific for fault tolerance or restarting your appli‐
cations, but they’re not good for upgrades. Checkpoints in Spark are
Java-serialized. Anyone who has ever used Java serialization knows
that if you upgrade your application, you change your code, you
change your classes, and your serialization is then useless.

The problem is that your checkpoint had all of your data. If you
change your application, suddenly all that data has disappeared—
not good. Most users want an application that does checkpointing,
but they also want to upgrade their applications.

In that case, what do we do? How do you upgrade a checkpoint? The
challenge is that your data would need to be separated from your
code. Because checkpoints are serialized classes, your data is now
tied into your code.

The answer is pretty simple if you think about it. Your application
has its own data. You know what you want to keep track of; it’s usu‐
ally some RDD that has been generated from your operations. It is
in some state that you generated from updateStateByKey, and it’s
usually the last offsets from Kafka that were reliably processed and
written out to HDFS. So if you know what you want to process and
save, why not do it separately?

Enable checkpointing in your application so that the truncation of
your chain happens all the time, but don’t use Spark Streaming con‐
text. Instead, get a create method to start your application from the
checkpoint. When you start your application, you start off fresh—
don’t use the get or create. Instead, read the state that you wrote out,
and then apply your operations from that point on.
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Case Studies in IoT Data





CHAPTER 5

Monitoring Traffic in Singapore
Using Telco Data

Thomas Holleczek

Editor’s Note: At Strata + Hadoop World in Singapore, in December
2015, Thomas Holleczek (Data Scientist at Singtel) outlined this case
study to illustrate how telecommunications companies are using loca‐
tion data to develop a system for subway and expressway traffic moni‐
toring.

People take a lot of factors into consideration when they travel on
mass transit or a highway. They don’t always take the shortest route.
Perhaps they want a less-crowded bus or subway, they want to take a
scenic route, or they don’t want to have to change buses or subways
more than once.

At Singtel, we found that we could use telco location data to under‐
stand how people travel on transportation networks. We studied the
Singapore transportation system using data from Singtel.

Understanding the Data
Singtel maintains a location-based system. Every time you use your
cell phone in Singapore, the location gets recorded. This happens in
both active and passive events. An active event is when you text
someone. Both your and your correspondent’s locations are recor‐
ded. The location in this case would be the cell towers to which the
phones are connected. This happens in real time, and the data
streams into the system through Kafka. The data is anonymized, but
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because the ID of the phone is constant, we can follow a person over
time, and learn about the behavior of people.

The Singapore transportation system generates about 200 million
records per day. This translates to a location point every 15 minutes,
per user. If you travel, there tend to be a lot more records, because
your phone updates the location (what we refer to as passive events).
If you travel on the train, for example, this might happen every two
stations. If you travel on expressways, this also happens frequently.
So, we can follow people as they move through the city.

Developing Real-Time Recommendations for
Train Travel
A recent client asked us to determine the size of crowds in the Sin‐
gapore subway system (MRT) in both stations and trains, using real-
time cell phone location data. Our task was to determine the
number of people who travel inside the MRT network, how long
they travel, and how long it takes them to get from point A to point
B.

We developed a system based on Kafka, to detect people on trains—
we know where they get on a train, where they get off, how they
interchange based on our location data. We found that the busiest
connections in Singapore are usually between Raffles Place and City
Hall (two stations located in the downtown finance center, where
most people work).

Most MRT stations in Singapore are underground. In some of these
stations we have 25–40 cell towers, and others have only 8–10. The
cell towers specifically serve the platforms of each station and the
tunnels. When we see a network event, we can tell the person is
inside the station, because you can’t connect to indoor cell towers
when you’re outdoors. We can also tell whether you’re in the tunnel
or on the platform, because the tunnel has particular cell towers that
only serve the tunnels.

When you start moving along a tunnel, the cell phones produce
location updates. This typically happens every two to three minutes.
At almost every station, there’s a location update. The trains are usu‐
ally pretty crowded. When you travel in the morning, you can’t pull
out a phone. You can’t surf the Web, because it’s just too crowded.
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But your phone still produces updates just because the phone
updates location with the cell towers.

The result: an accurate understanding of how crowded individual
stations and trains are at any given moment in the Singapore MRT
system. Based on this, we are currently developing an app that rec‐
ommends routes to subway riders. When we release it, you’ll be able
to tell the app where you are, and where you want to travel, and the
app will provide you with options based on real-time data, including
additional information including the current available capacity on a
train, whether there are seats available, and estimated travel time.

Expressway Data
When we do this kind of research project, we usually start off with
experimentation—we take phones, and we head out and make
experiments; then we look at the data that we record.

For this part of the project, we drove around on the expressways.
Our fear was that not enough data would be generated, because
most people don’t use their phones when they drive (or they
shouldn’t); they don’t text and they don’t use data. This meant that
we would be completely dependent on passive updates.

The terrific thing we found out was that when you start driving your
car, your phone produces a lot of location updates. In our experi‐
ment, we found handovers happening between cell towers along the
expressways, every three to five minutes. We were also able to detect
people who travel on buses, as most buses in Singapore are equipped
with machine-to-machine SIM cards, which allow the operators to
know bus locations. Most of the buses also have a GPS device, and
they transmit their location through the Singtel 3G network.

Getting a full view of what’s happening with transportation in Singa‐
pore allows us to address several challenges—it can help commuters
choose more efficient routes, it can serve as an aid in city planning,
and allow the subway system to improve operations, maintenance,
and planning of the network.
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CHAPTER 6

Oulu Smart City Pilot

Susanna Pirttikangas

Editor’s Note: At Strata + Hadoop World in New York, in September
2015, Susanna Pirttikangas (Project Researcher at the University of
Oulu) outlined the fully integrated use of IoT data in one of the top
seven smart cities in the world, the city of Oulu, in Finland. Oulu con‐
tinuously collects data from transportation, infrastructure, and people,
and develops services on top of the ecosystem that benefit the city, the
ecology, the economy, and the people. This talk presents selected exam‐
ples from a four-year project called “Data to Intelligence,” based on a
smart traffic pilot, as a testing platform.

The Intelligence Community Forum (ICF)—a New York–based
think tank—has voted Oulu as one of the top seven of the smartest
cities of the world, twice in a row. According to the ICF’s definition,
smart cities are cities and regions that use technology not just to
save money, or make things work better, but also to create high-
quality employment, increase citizen participation, and in general be
great places to live and work. We’re a very small city—only 200,000
inhabitants, but this is a good thing, as it allows us to pilot new serv‐
ices in an easy and agile manner.

31



Managing Emergency Vehicles, Weather, and
Traffic
One of the things we’ve done in Oulu is a preemption for emergency
vehicles. Whenever there’s an alarm for an emergency vehicle, the
system that operates the traffic lights locates the ambulance, police
car, or whatever emergency vehicle is in action, and the location is
sent to the servers. The turning signal for each vehicle is detected, so
the system knows if the ambulance is going to turn, and it will be
given a green light across the road in real time.

Within Oulu, we collect magnetic loop data from below the pave‐
ment, or asphalt, and we use this data to control the traffic signaling
system. We also can get data from traffic cameras, public transports,
and bus location data. We use Digiroad, which is a national spatial
database, but also Google maps and Open Street Maps.

We also collect road weather data, which is really important in Fin‐
land, in the wintertime. The city uses laser-range measurement devi‐
ces to detect the speed of the vehicles, and the distance between
them. We can even detect the profile of a vehicle and the amount of
snow on the road. In addition, we receive location data from taxis
operating throughout Finland, using onboard diagnostic connectors
that gather detailed information from the vehicles’ engines. We also
have real-time information about construction projects throughout
the city, which comes from city authorities, or crowd-sourced work‐
ers.

Creating Situation Awareness
All of this data collection is centered around the idea of situation
awareness. In order to avoid traffic congestion, decrease emissions,
and increase safety on the roads, you need information about traffic
speeds, construction, weather, and even available parking spaces.
You also need information about other drivers, bus locations, vehi‐
cles, vehicles behind corners, and so on.

It’s also important to have a high volume of data from each of these
sources. With enough data, you can make reliable assumptions
about the situation, and in traffic, where situations emerge fast, you
need the information to be updated and delivered quickly. One
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example relates to braking distance. In wintertime, the roads are
more slippery and the necessary distance you need in order to stop
your vehicle can be more than five times longer than usual.

We developed a system that detects the speed of the vehicles, the dis‐
tance between the vehicles, and the condition of the road, and then
sends a warning to the driver if there’s too short a distance between
their car and the next, according to the circumstances. To do this,
we used an onboard diagnostics device, with data delivered through
Bluetooth. For measuring the distance between vehicles, we use the
laser-range measurement, either in the infrastructure, or in the car.
We also used a camera—if you put a camera in the front window,
you can estimate the distance between vehicles from the images (but
that is actually not as reliable as the laser-range measurement,
because the weather conditions affect this considerably).

The biggest data in this example is the weather prediction. The Fin‐
nish Meteorological Institute collects a huge amount of information
from the atmosphere, gathered from different kinds of equipment
radars. Because this data is so big, the estimation—the data predic‐
tion—cannot be done more than four times a day. Each prediction
brings four terabytes of data into the system.

We have two kinds of approaches for processing all of this data: (a)
distributed reasoning, with lightweight RDF data, and (b) mobile
agents that process data in different locations in the network, based
on available resources. After testing several types of big data plat‐
forms, we selected the Lambda architecture. We are also testing dis‐
tributed Flume ingestion for better ingestion rates, and higher
availability.
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CHAPTER 7

An Open Source Approach to
Gathering and Analyzing

Device-Sourced Health Data

Ian Eslick

Editor’s Note: At Strata + Hadoop World in New York, in September
2015, Ian Eslick (CEO and cofounder of VitalLabs) presented a case
study that uses an open source technology framework for capturing
and routing device-based health data. This data is used by healthcare
providers and researchers, focusing particularly on the Health eHeart
initiative at the University of California San Francisco.

This project started by looking at the ecosystems that are emerging
around the IoT—at data being collected by companies like Validic
and Fitbit. Think about it: one company has sold a billion dollars’
worth of pedometers, and every smartphone now collects your step
count. What can this mean for healthcare? Can we transform clini‐
cal care, and the ways in which research is accomplished?

The Robert Wood Johnson Foundation (RWJ) decided to do an
experiment. It funded a deep dive into one problem surrounding
research in healthcare. Here, we give an overview of what we
learned, and some of our suggestions for how the open source com‐
munity, as well as commercial vendors, can play a role in transform‐
ing the future of healthcare.
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Generating Personal Health Data
Personal health data is the “digital exhaust” that is created in the
process of your everyday life, your posting behaviors, your phone
motion patterns, your GPS traces. There is an immense amount of
data that we create just by waking up and moving around in the
modern world, and the amount of that data is growing exponen‐
tially.

Mobile devices now allow us to elicit data directly from patients,
bringing huge potential for clinicians to provide better care, based
on the actual data collected. As we pull in all of this personal data,
we also have data that’s flowing in through the traditional medical
channels, such as medical device data. For example, it’s becoming
common for implanted devices to produce data that’s available to
the patient and physician. There is also the more traditional health‐
care data, including claims histories and electronic medical records.

So when researchers look at clinical data, we’re accustomed to living
in a very particular kind of world. It’s an episodic world, of low vol‐
ume—at least relatively low volume by IoT standards. Healthcare
tends to be a reactive system. A patient has a problem. He or she
arranges a visit. They come in. They generate some data. When a
payer or a provider is looking at a population, what you have are
essentially the notes and lab tests from these series of visits, which
might occur at 3-, 6-, or 12-month intervals.

Personal health data, on the other hand, is consistent, longitudinal,
high volume, and noisy. We can collect data over a period of time
and then look back on and try to learn from it. The availability of
personal health data is changing the model of how healthcare, as a
clinical operation, looks at data. It’s also changing how researchers
process and analyze that data to ask questions about health. Interest‐
ingly, it is relatively cheap to produce, compared to what it costs to
produce data in traditional healthcare.

Applications for Personal Health Data
There is a whole set of applications that come out of the personal
health data ecosystem. We are at the beginning of what is a pro‐
found shift in the way healthcare is going to operate. There is poten‐
tial for both an open source and commercial ecosystem that
supports “ultra scale” research and collaboration within the tradi‐
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tional healthcare system, and which supports novel applications of
personal health data.

The five “C’s” of healthcare outline some of the key topics to con‐
sider in this field:

Complexity
Healthcare data can be based on models that are completely dif‐
ferent from models commonly used in enterprise data. The
sheer complexity of the data models, and the assumptions that
you can make in healthcare, are unique.

Computing
There are reasons why healthcare is so difficult to do well. Inter‐
operability is a challenge that we’re still trying to figure out 20
years after EMR was introduced. Those in healthcare are still
asking questions like “How do I get my record from one hospi‐
tal to another?” and “How do I aggregate records across multi‐
ple hospitals into a single data center?”

Context
The context in which a particular data item was collected is usu‐
ally found in notes, not metadata. So again, you can’t filter out
those bad data points based on some metadata, because nobody
cares about entering the data for the purposes of automated
analysis. They care about doing it for purposes of communicat‐
ing to another human being.

Culture
Many times, an IT department at a hospital already has a tool
that will allow, for example, interoperability—but they may not
know about it. Accountants, not IT innovators, often run IT
departments, because there is a huge liability associated with
getting anything wrong, which notably, can be a counterbalance
to innovation.

Commerce
In healthcare, payment models don’t change quickly, and pay‐
ment due must be proven through clinical evidence. You need
to find a revenue stream that exists and figure out how to plug
into that—and that severely limits innovation.
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The Health eHeart Project
Health eHeart started a few years ago at UCSF, with the aim to
replace the Framingham Study. Framingham is a decades-old, longi‐
tudinal study of a population of 3,000 people in Framingham, Mas‐
sachusetts. It is the gold standard of evidence that’s used to drive
almost all cardiovascular care worldwide. People in small, rural
towns in India are being treated based on risk models calculated by
these 3,000 people in Framingham. Why? Because it is the only
dataset that looks at a multi-decade-long evolution of cardiovascular
health.

The hypothesis of the UCSF team was that with technology we
could dramatically lower the cost of doing things like Framingham
over the long term while adding tremendous depth to our under‐
standing of individual patients. All we would need to do is grab data
off of their phones. The phone can become a platform for testing
new mobile health devices.

Anybody can sign up to volunteer for Health eHeart. It’ll send you
six-month follow-ups, and you can also share all of your Fitbit data.

The goals of Health eHeart include:

• Improve clinical research cycle time
• Provide a test bed for new health technology innovations on a

well-characterized cohort
• Derive new prediction, prevention, and treatment strategies
• Pilot new healthcare delivery systems for cardiovascular disease

Now, how do we test out what we learn and actually deliver it into
the clinical care system?

This is an example of the kind of profile that’s created when you
look at a contributor to Health eHeart. We have blood pressure,
which is a key measure of cardiovascular disease, and we have peo‐
ple with Bluetooth blood-pressure cuffs uploading their data on a
longitudinal basis to the cloud. We’re also following weight.

By late 2014, Health eHeart had 25,000 registered users, 11,000 ECG
traces, and 160,000 Fitbit measures from the 1,000 users who were
giving us longitudinal data, and these numbers are climbing aggres‐
sively; the goal is to get to one million.

38 | Chapter 7: An Open Source Approach to Gathering and Analyzing Device-Sourced Health
Data



You have two colliding worlds here in the Health eHeart context.
Clinical researchers understand population data, and they under‐
stand the physiology. They understand what is meaningful at the
time, but they don’t understand it from the standpoint of doing
time-series analysis. It’s a qualitatively different kind of analysis that
you have to do to make sense of a big longitudinal dataset, both at
an individual level and at a population level. For example, is there a
correlation between your activity patterns as measured by a Fitbit
and your A-fib events, as measured by your ECG with the AliveCor
ECG device? That’s not a question that has ever been asked before. It
couldn’t possibly be asked until this dataset existed.

What you immediately start to realize is that data is multi-modal.
How do you take a 300-Hertz signal and relate that to an every few
minutes summary of your pedometer data, and then measure that
back against the clinical record of that patient to try to make sense
of it?

This data is also multi-scale. There is daily data, and sometimes the
time of day matters. Sometimes the time of month matters. Data has
a certain inherent periodicity. You’re also dealing with three-month
physical follow-ups with doctors, so you want to try to take detailed,
deep, longitudinal data and mash it up against these clinical records.

Registration is a surprisingly interesting challenge—particularly
when considering: what is my baseline? If time of day is important,
and you’re trying to look at the correlations of activity to an event
that happened within the next hour, you might want to align all the
data points by hour. But then the number of such aggregated points
that you get is small. The more that you try to aggregate your indi‐
vidual data, the more general your dataset becomes, and then it’s
harder to ask specific questions, where you’re dealing with time and
latency.

Registration problems require a deep understanding of the question
you’re trying to answer, which is not something the data scientists
usually know, because it’s a deep sort of physiological question about
what is likely to be meaningful. And obviously, you’ve got lots of
messy data, missing data, and data that’s incorrect. One of the things
you realize as you dig into this, is the scale that you need to get
enough good data—and this is ignoring issues of selection bias—
that you can really sink your teeth into and start to identify interest‐
ing phenomena.
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The big takeaway is that naive analysis breaks down pretty quickly.
All assumptions about physiology are approximations. For any
given patient, they’re almost always wrong. And none of us, turns
out, is the average patient. We have different responses to drugs, dif‐
ferent side effects, different patterns. And if you build a model based
on these assumptions, when you try to apply it back to an individual
case, it turns out to be something that only opens up more ques‐
tions.

Health eHeart Challenges
At an ecosystem level, the challenges we faced in the Health eHeart
project included limited resources, limited expertise in large-scale
data analysis, and even just understanding how to approach these
problems. The working model for Health eHeart has been to find
partnerships that are going to allow us to do this.

This is where we started running into big problems with the health‐
care ecosystem. I can go to UCSF, plug my computer in, pull data
down to my system, and perform an analysis on it. But if I try to do
that from an outside location, that’s forbidden because of the differ‐
ent kinds of regulations being placed on the data in the Health
eHeart dataset. What you can do with some of the data is also limi‐
ted by HIPAA.

This was one of the first problems we addressed, by creating the
“trusted analytics container.” We created a platform where we can
take the medical data from the IRB study, and vendor data from a
third-party system, and bring them together in the cloud, where
analysts can do their calculations, do their processing, and essen‐
tially queue up the resulting aggregated data. Then the UCSF owner
of the data reviews the results to make sure you’re not leaking per‐
sonal health information. This process is completed within a data-
use agreement. Ultimately, however, commercial collaborators still
need a way to create commercial collaboration around scaled access
to longitudinal time-series data.
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CHAPTER 8

Leverage Data Analytics to Reduce
Human Space Mission Risks

Haden Land and Jason Loveland

Editor’s Note: At Strata + Hadoop World in New York, in September
2015, Haden Land (Vice President, Research & Technology at
Lockheed Martin) and Jason Loveland (Software Engineer at Lockheed
Martin) presented a case study that uses data analytics for system test‐
ing in an online environment, to reduce human space flight risk for
NASA’s Orion spacecraft.

NASA’s Orion spacecraft is designed to take humans farther than
they’ve ever been able to travel before. Orion is a multi-purpose
crew vehicle, and the first spacecraft designed for long-duration
space flight and exploration. The program is focused on a sustaina‐
ble and affordable effort for both human and robotic exploration, to
extend the presence of human engagement in the solar system and
beyond.

In December 2014, the Delta IV rocket launched from Cape Canav‐
eral carrying the Orion vehicle. The mission was roughly four hours
and 24 minutes—a fairly quick mission. It orbited the earth twice.
The distance was approximately 15 times farther than the Interna‐
tional Space Station.

There were tremendous data points that were gathered. One that
was particularly interesting was that Orion traveled twice through
the Van Allen radiation belt. That’s a pretty extreme test, and this
vehicle did that twice, and was exposed to fairly substantial radia‐
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tion. Toward the end of the flight, upon entering the atmosphere,
the vehicle was going 20,000 miles per hour, and sustained heat of
an excess of 4,000 degrees Fahrenheit. As the parachute deployed, it
slowed down to 20 miles per hour before it splashed in the ocean,
about 640 miles south-southwest of San Diego. A ship gathered it
and brought it back home.

Over 300,000 Measurements of Data
Our job is to enable the Orion program to capture all the informa‐
tion coming off the test rigs, and to help those working on the rigs
to understand the characteristics of every single component of the
Orion spacecraft. The goal is to make launches like this successful.
The next mission is going to focus on human space flight: making it
human rated—that is, able to build a vehicle that can go up into
space and carry astronauts. With EFT-1 (the first launch that we just
described), there were 350,000 measurements—from sensors for
everything from temperature control systems, to altitude control
systems. We were collecting two terabytes of data per hour from
1,200 telemetry sensors that reported from the spacecraft, 40 times
per second.

When NASA tests from the ground, it’s the same story. They’re test‐
ing the exact same software and hardware that they’re going to fly
with in the labs. And the downlink from the Orion spacecraft is
1,000 times faster than the International Space Station, which means
we can send a lot more data back.

Where really big data comes into play in the Orion spacecraft is the
development of the vehicle. The downlink is actually pretty small
compared to what the test labs can produce. And so when we talk
about big data on Orion, we talk about petabytes of data, and one
gig networks that are running full time in seven different labs across
the country.

Telemetry is a sensor measurement that’s typically measured at a
remote location. So for the test labs, picture a room with compo‐
nents everywhere wired together on different racks. The test engi‐
neers connect all of the wires, and run various scenarios; scenarios
on test rigs can run for weeks.
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Microsecond Timestamps
These telemetry measurements are microsecond timestamped, so this
is not your typical time-series data. There are also different time
sources. The average spacecraft has a “space time” up on the vehicle,
and a ground time. With Orion, there are 12 different sources of
time, and they’re all computed differently based on different meas‐
urements. It’s a highly complex time series, because there’s correla‐
tion across all of the different sensors, at different times. And of
course, because it’s human flight, it requires a very high degree of
fault tolerance.

In the EFT-1, there were about 350,000 measurements possible. On
EM-1, which is the next mission, there are three million different
types of measurements. So it’s a lot of information for the spacecraft
engineers to understand and try to consume. They have subsystem
engineers that know specific sensor measurements, and they focus
on those measurements. Out of the three million measurements,
subsystem engineers are only going to be able to focus on a handful
of them when they do their analyses—that is where data analytics is
needed. We need algorithms that can parse through all of the differ‐
ent sensor measurements.

Identifying Patterns in the Data
NASA has seven labs across the country, and does different tests at
each lab. One of the goals as NASA builds this vehicle is to catalog
all of the test history and download it into a big data architecture.
That way, they can run post-analysis on all the tests, and correlate
across multiple tests. The idea is that this post-analysis will allow
NASA to see if they can identify different trending activities or pat‐
terns, to indicate that the vehicle is being built properly, and
whether it will operate properly in space.

The EM-1 is expected to be ready in 2018. It’ll have four times as
many computers, and twice as many instruments and subsystems as
the spacecraft used in EFT-1. Although they’re not sending a human
to space yet, all the subsystems need to be rated for human flight.

Orion and Lockheed Martin are building data analytics organiza‐
tions, which means that we have technology and platform develop‐
ers. We also have “ponderers”—people who want to ask questions of
the data and want to understand the patterns and abnormalities. In
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an organization like this, you also need subject matter experts—peo‐
ple on the programs who understand the different subsystems and
components of the subsystems and what they expect to be normal.

Our Goal: A Flexible Analytics Environment
Our goal is to provide NASA with a flexible analytics environment
that is able to use different programming languages to analyze tele‐
metry as data is streaming off of test rigs. We use a Lambda architec‐
ture. This means we have data ingest coming into a speed layer,
where we do stream processing. This is all done in parallel—we
apply our analytics on the stream, to identify test failure as soon as
possible.

As data comes in, we’re persisting raw sensor measurements down
to a batch layer, or a persistent object store, where we’re able to store
all the raw data so that we can go back and reprocess it over and
over again. We’re also creating real-time views for the data analytics
and visualization tools, so that subsystem engineers can analyze data
in near real time.

In addition to helping subsystem engineers randomly access data in
low latency, we want to enable the data scientists to work with this
data after it’s been ingested off the rig. We built a system we call
MACH-5 Insight™, which allows the data to tell the story about how
we’re building Orion, and how Orion should behave in normal
operating conditions. The key is that we’re capturing all of the data
—we’re indexing it and are processing it at parallel—allowing the
data to tell us how the system is performing.

Using Real-Time and Machine Learning
We can also—once we store the data—replay it as if it were live. So
we can replay tests over and over from the raw data. The data is also
able to be queried across the real-time layer, the speed layer, and the
historical layer, so we can do comparisons of the live data coming
through the system against the historical datasets.

We’re also doing machine learning, using unsupervised and super‐
vised learning to identify anomalies within windows of time. Then,
the output of all that processing then gets dumped to HBase, so that
we can do random access into all the results coming off the stream.
We’re starting to use a standard formatted data unit for the space
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telemetry data. It’s a CCSDS standard for space domain. So anybody
running a ground system for space can now push data into our plat‐
form, in this format. The interesting piece about this is that this for‐
mat that we construct on ingest has to be queryable 25 years from
now, when NASA comes back to do analysis.

We have a header and a body. A header has metadata. And the body
is the payload. So you can do analytics just on the header, without
having to explode the whole telemetry measurements. That makes
stream processing efficient. We used protocol buffers to take the
header and serialize that into an object, and then serialize the pay‐
load into the object. That payload in the body is a list of sensor
measurements given a time range. And they call that a packet.

The job for MACH-5 Insight™ is to take that packet, take out all the
different measurands with measurements within that packet, break
it out to individual rows, and propagate that into HBase. Then we
use Kafka, which allows us to scale the ingest so that, if we have mul‐
tiple tasks running, they could all be flowing data into the system.
We could be processing individual tests at individual rates based on
the infrastructure we allocate to a given test. So it processes all our
data for us.

Then, we can do downstream processing in ingest. We use Spark to
specifically perform real-time analytics and batch analytics. The
same code we write for our stream-processing jobs that do the con‐
version from SFDU into our internal format, we can do in a batch
manner. If we have long-term trending analytics that we need to run
across multiple tests or across multiple weeks or even years of data,
we could write one Spark job and be able to execute that on all the
data. And then, even propagate and share logic into the speed layer
where we’re doing stream processing.

The other beauty is that Spark is running on YARN. YARN effec‐
tively allows you to manage large cluster resources and have multi‐
ple components of the Hadoop ecosystem running in the same
infrastructure. The Kafka direct connect from Spark is especially
exciting. We can pull data directly out of Kafka, and guarantee that
data gets processed and ingested. And we can manage the offsets
ourselves in our Spark job using the Kafka direct connect.
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Analytics Using Stream and Batch Processing
Processing analytics is where it gets really important to NASA, and
Orion, and other customers of Lockheed Martin. We need to pro‐
vide stream processing and batch processing to do things like limit
checking on all the measurements coming off of the test rigs. We
need to understand the combination of all of these different meas‐
urements and how they relate.

When designing a system for human space flight, you need to vali‐
date that what you’re building meets the requirements of the con‐
tract and of the system itself. So what we do when we build the
system, and when we do our tests and integration, we go through
and run a whole bunch of validation tests to make sure that what the
output is producing is according to the specs.

We’re working on supervised and unsupervised learning approaches
to identifying anomalies in the datasets. And we’re seeing some
really interesting results. What we ultimately want to do is be able to
predict failure before it even happens, when Orion’s flying in 2018.
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PART III

Ethics of Algorithms in IoT





CHAPTER 9

How Are Your Morals?
Ethics in Algorithms and IoT

Majken Sander and Joerg Blumtritt

Editor’s Note: At Strata + Hadoop World in Singapore, in December
2015, Majken Sander (Business Analyst at BusinessAnalyst.dk) and
Joerg Blumtritt (CEO at Datarella) examined important questions
about the transparency of algorithms, including our ability to change
or affect the way an algorithm views us.

The codes that make things into smart things are not objective.
Algorithms bear value judgments—making decisions on methods,
or presets of the program’s parameters; these choices are based on
how to deal with tasks according to social, cultural, legal rules, or
personal persuasion. These underlying value judgments imposed on
users are not visible in most contexts. How can we direct the moral
choices in the algorithms that impact the way we live, work, and
play?

As data scientists, we know that behind any software that processes
data is the raw data that you can see in one way or another. What we
are usually not seeing are the hidden value judgments that drive the
decisions about what data to show and how—these are judgments
that someone made on our behalf.

Here’s an example of the kind of value judgment and algorithms that
we will be facing within months, rather than years—self-driving
cars. Say you are in a self-driving car, and you are about to be in an
accident. You have the choice: will you be hit straight on from a
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huge truck, or from the side? You would choose sideways, because
you think that will give you the biggest opportunity to survive,
right? But what if your child is in the car, and sitting next to you?
But how do you tell an algorithm to change the choice because of
your values? We might be able to figure that out.

One variation in algorithms already being taken into account is that
cars will obey the laws in the country in which they’re driving. For
example, if you buy a self-driving car and bring it to the United
Kingdom, it will obey the laws in the United Kingdom, but that
same car should adhere to different laws when driving in Germany.

That sounds fairly easy to put in an algorithm, but what about dif‐
ferences in culture and style—how do we put that in the algorithms?
How aggressively would you expect a car to merge into the flow of
the traffic? Well, that’s very different from one country to the next.
In fact, it could even be different from the northern part of a coun‐
try to the southern, so how would you map that?

Beta Representations of Values
Moving beyond liabilities and other obvious topics with the self-
driving car, we would like to suggest some solutions that involve
taking beta representations of our values, and using those to teach
the machines that we deal with who we are and what we want.

Actually, that’s not too exotic. We have that already. For example, we
have ad preferences from Google. Google assigns properties to us so
it can target ads (hygiene, toiletry, tools, etc.), but what if I’m a
middle-aged man working for an ad agency that has a lingerie com‐
pany as a client, with a line especially targeted for little girls? Google
would see me as weird. Google forces views on us based on the way
it looks at us.

What about a female journalist who is writing a story about the use
of IoT—and her fridge tells her that, because she’s pregnant, she may
not drink beer, because pregnant people are not allowed to drink
beer. And her grocery store that delivers groceries to her a couple of
times each week, suddenly adds orange juice, because everyone
knows that pregnant women like orange juice. And her smart TV
starts showing her ads for diapers. The problem is, the journalist is
not pregnant, but there’s nowhere she can go to say, “Hey, you’ve got
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it wrong—I’m not pregnant! Give me my beer and drop the orange
juice!”

And that’s the thing that we want to propose—we need these kinds
of interfaces to deal with these algorithmic judgments.

Choosing How We Want to Be Represented
There are the three ingredients for doing this. First, we have training
data—that’s the most important. We have to collect data on how we
act, so the machine can learn who we are. Next, we have the algo‐
rithms—usually some kind of classification and regression algo‐
rithm, such as decision trees, neural networks, or nearest neighbor.
You could just see who is like me, and then see how people who are
like me would have acted, and then extrapolate from that.

And then there’s the third ingredient: the boundary conditions—the
initial distribution that you would expect, and this is the really the
tricky part, because it’s always built into these kinds of probabilistic
machines, and it’s the least obvious of the three.

For example, take the self-driving car (again). One of the challenges
could be judging your state of mind when you get in the car. One
day, you’re going to work and just want to get there fast. Is there an
algorithm for it? Then there are days when you want to put the kids
in the car and drive around and see trees and buildings and fun
places. If you only do that on Sundays, that’s easy for an algorithm to
understand, but maybe it’s Thursday and you want this feeling of
Sunday.

Some software companies would solve it by having an assistant pop
up when you get in your car. You would have to click through 20
questions in a survey interface before your car would start. How are
you feeling today? Of course, no one wants to do that. Still, there
must be some easy way to suggest different routes and abstractions
for that.

There is. It’s already there. It’s just not controllable—by you. You
can’t teach Google Maps. It’s the guys in Mountain View that make
these decisions for you, and you really don’t see how they did it. But
it should not be a nerd thing—it should be easy to train these algo‐
rithms ourselves.
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Some companies are already experimenting with this idea. Netflix is
a very good example. It’s the poster child for recommendation
engines. There’s a very open discussion about how Netflix does it,
and the interesting thing is that Netflix is really aware of how impor‐
tant social context is for your decisions. After all, we don’t make
decisions on our own. Those who are near to us, like family, friends,
or neighbors, influence us. Also, society influences our decisions.

If you type in “target group” into Google’s image search, you get
images that show an anonymous mass of people, and actually, that is
how marketing teams tend to see human beings—as a target that
you shoot at. The idea of representation is closely tied to a target
group, because it gives you a meaningful aggregate—a set of people
who could be seen as homogeneous enough to be represented by
one specimen. You could do that by saying, well, as a market
researcher, I take a sample of 2,000 women, and then I take 200 of
them that might be women 20 to 39 years old. That’s how we do
market research; that’s how we do marketing.

We would take these 200 women, build the mean of their properties,
and all other women would be generalized as being like them. But
this is not really the world we live in. If a recommendation engine, a
search engine, or a targeting engine is done well, we don’t see people
represented as aggregated. We see each one represented as an indi‐
vidual. And we could use that for democracy also.

We have these kind of aggregates also in democracies, in the constit‐
uencies. It’s a one-size-fits-all, Conservative Party program. It’s a
one-size-fits-all Labor Party program, or Green Party program.
Maybe 150 years ago this would define who you are in terms of the
policies you would support. That made sense. But after the 1980s,
that changed. We can see it now. We can see that this no longer fits.
And our algorithmic representation might be a solution to scale,
because you can’t scale grassroots democracy.

A grassroots democracy is very demanding. You have everybody
always having to decide for every policy that’s on the table. That’s
not feasible. You can’t even do that in small villages like we have in
Switzerland. Some things have to be decided by a city council, so if
we want a nonrepresentative way of doing policies, of doing politics,
we could try using algorithmic representation to bulk suggest poli‐
cies that we would support.
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That need not be party programs. It could be very granular—single
decisions that we would tick off one by one. There are some down‐
sides, some problems that we have to solve.

For example, these algorithms tend to have a snowball effect for
some decisions. We made agent-based simulation models, and that
was one of the outcomes. And in general, democracies and societies
—even nondemocratic societies—don’t work by just doing majority
representation. We know that. We need some kind of minority pro‐
tection. We need to represent a multitude of opinions in every social
system.

Second, there are positive feedback loops. I might see the effect of
my voting together with others, and that’s like jumping on the band‐
wagon. That’s also seen in simulations. It’s very strong. It’s the con‐
forming trap.

And third, your data is always lagging behind. Your data is your past
self. How could it represent changes of your opinion? You might
think, well, last election, I don’t know, I was an angry, disappointed
employee, but now, I’m self-employed, and really self-confident. I
might change my views. That would not necessarily be mapped into
the data. So these are three things we should be careful about.

The fourth one is that we have to take care of the possibility that the
algorithm of me is slightly off. It could be in a trivial way, like what I
buy for groceries. It could be my movie preferences. So I have to
actually give my “algorithmic me” feedback. I have to adjust it,
maybe just a little bit, but I have to be able to deliver the feedback
that, in the earlier examples, we were lacking the skills to do.

As users, we actually need to ask questions. Instead of just accepting
that Google gives me the wrong product ads compared to my tem‐
perament, my fridge orders orange juice that I dislike, or my self-
driving car drives in a way that I find annoying, we need to say, hey,
the data is there. It’s my data. Ask me for it and I will deliver this, so
you can paint the picture of who I really am.

Choosing How We Want to Be Represented | 53



About the Author
Alice LaPlante is an award-winning writer who has been writing
about technology, and the business of technology, for more than 20
years. The former news editor of InfoWorld, and a contributing edi‐
tor to ComputerWorld, InformationWeek, and other national publi‐
cations, Alice was a Wallace Stegner Fellow at Stanford University
and taught writing at Stanford for more than two decades. She is the
author of six books, including Playing for Profit: How Digital Enter‐
tainment is Making Big Business Out of Child’s Play.


	Strata + Hadoop
	Copyright
	Table of Contents
	Introduction
	Part I. Data Processing and Architecture for the IoT
	Chapter 1. Data Acquisition and Machine-Learning Models
	Modeling Machine Failure
	Root Cause Analysis
	Application Across Industries
	A Demonstration: Microsoft Cortana Analytics Suite
	Data Needed to Model Machine Failure
	Training a Machine-Learning Model
	Getting Started with Predictive Maintenance
	Feature Engineering Is Key
	Three Different Modeling Techniques
	Start Collecting the Right Data


	Chapter 2. IoT Sensor Devices and Generating Predictions
	Sampling Bias and Data Sparsity
	Minimizing the Minimization Error
	Constrained Throughput
	Implementing Deep Learning

	Chapter 3. Architecting a Real-Time Data Pipeline with Spark Streaming
	What Features Should a Smart City Have?
	Free Internet Access
	Two-Way Communication with City Officials
	Data Belongs to the Public
	Empower Cities to Hire Great Developers

	Designing a Real-Time Data Pipeline with the MemCity App
	The Real-Time Trinity
	Building the In-Memory Application
	Streamliner for IoT Applications
	The Lambda Architecture

	Chapter 4. Using Spark Streaming to Manage Sensor Data
	Architectural Considerations
	Visualizing Time-Series Data
	The Importance of Sliding Windows
	Checkpoints for Fault Tolerance
	Start Your Application from the Checkpoint


	Part II. Case Studies in IoT Data
	Chapter 5. Monitoring Traffic in Singapore Using Telco Data
	Understanding the Data
	Developing Real-Time Recommendations for Train Travel
	Expressway Data

	Chapter 6. Oulu Smart City Pilot
	Managing Emergency Vehicles, Weather, and Traffic
	Creating Situation Awareness

	Chapter 7. An Open Source Approach to Gathering and Analyzing Device-Sourced Health Data
	Generating Personal Health Data
	Applications for Personal Health Data
	The Health eHeart Project
	Health eHeart Challenges


	Chapter 8. Leverage Data Analytics to Reduce Human Space Mission Risks
	Over 300,000 Measurements of Data
	Microsecond Timestamps
	Identifying Patterns in the Data
	Our Goal: A Flexible Analytics Environment
	Using Real-Time and Machine Learning
	Analytics Using Stream and Batch Processing


	Part III. Ethics of Algorithms in IoT
	Chapter 9. How Are Your Morals? Ethics in Algorithms and IoT
	Beta Representations of Values
	Choosing How We Want to Be Represented


	About the Author



