
Chapter I

Introduction

1.1 Background

Voronoi diagram is a method that divides the plane into smaller area/region
based on the nearest distance to an object [1]. Voronoi diagrams are very use-
ful in computational geometry, particularly for representation or quantization
problems, used in the field of robotics for creating a protocol for avoiding de-
tected obstacles [6]. The regions in a Voronoi diagram are called Voronoi cells.
When a cell considers a point as the nearest neighbour it is called ordinary
Voronoi diagram. As describe in Figure 1.1a, each Voronoi cells contain a
single information of the nearest generator point. When a cell considers more
than one point as k nearest neighbour, it is called Higher Order Voronoi dia-
gram. The number of nearest generator points information on a Voronoi cell
are depend on its k value itself. In Figure 1.1b is higher order Voronoi diagram
order-3, it means each Voronoi cell will have 3 nearest generator points infor-
mation. This reference [4] revealed that the complexity of Voronoi diagram is
at most quadratic.

Since ordinary Voronoi diagram and higher order Voronoi diagram doesn’t
provides a detailed distance sequence to all generator points in each Voronoi
cell, then comes a new variation of Voronoi diagram called highest order
Voronoi diagram (HSVD). Highest order Voronoi diagram (HSVD) is an ex-
tension of Higher Order Voronoi Diagram (HOVD) with wider possible ap-
plications. Highest order Voronoi diagram can be used on the field of query
processing such as reverse k-nearest neighbour (RKNN), k farthest neighbour
(KFN), k nearest neighbour(KNN), etc [1]. Figure 1.1 shows the differences
between an ordinary Voronoi diagram, highest order Voronoi diagram order-3
and highest order Voronoi diagram from 5 generator points. From Figure 1.1c,
can be seen that HSVD construct more Voronoi cells than other Voronoi dia-
gram variant and also calculate the sequence of Voronoi cells to all generator
points. The complexity of HSVD construction is on O(m4), where m is the
number of generator points [1].

1



Figure 1.1: An example of Voronoi diagram based on the order.

From related works, there are method called Fast Labelling and Interchange
Position (FLIP) and Left with Least-Angle Movement (LAM) used to construct
highest order Voronoi diagram [1] [3]. But, both of this method implemented
on conventional computing and have limitation on number of points that can
be processed and execution time is quite high. Processing on conventional
computing caused an inefficiency of reuse a working set of data process which
caused the execution time is quite high and limit the number of points that
can be processed. Beside that, conventional computing didn’t utilize all the
available resources.

There are frameworks that can be used to utilize all the available resources
to optimize the computing process called distributed computing framework.
The popular distributed computing frameworks are Hadoop and Apache Spark.
Compared to Hadoop, this paper [14] showed that Apache Spark work well on
iterative process that reuse a set of data because of the ability to do in-memory
processing. Apache Spark is a distributed computing framework that focussed
on reuse a working set of data across multiple parallel operations [14]. Apache
Spark usually used on the field of data mining and machine learning that
processing a large file size data as input and resulting on much smaller size
of data output [14]. But, this implementation do the opposite. Apache Spark
started with small file size data (less than 1 MB) as an input, then the input
data processed on Apache Spark and generate more large size of data as the
output data.

2



Figure 1.2: Comparison on reuse processing of list of data

Considering Apache Spark will distribute the task to all available resources
and put in-memory processing first, the process of reuse a working set of data
on highest order Voronoi diagram construction can be improved. As shown
in Figure 1.2, when conventional computing have to access disk repeatedly to
get list of query data, by keeping the processed data in memory, costly disk
accesses can be avoided. In the next process when the data is needed then
in-memory processing can be done. To optimize the in-memory processing
of highest order Voronoi diagram on Apache Spark, two diferrent labelling
method are tried. Those two labelling method are flip labelling and centroid
labelling. The comparison of two labelling method will be done and the method
with smaller execution time will be choosen.

This minor thesis shows that with the help of Apache Spark framework,
the number of point that can be processed increase to 24 with the execution
time is 60% faster than LAM implementation in average. This minor thesis
also wanted to find out how Apache Spark perform on generating large size
of data from small size data input compared to conventional computing by
comparing the execution time of this implementation with the previous [3]
implementation of highest order Voronoi diagram construction.

1.2 Statement of Problem

Based on the above overview, problems can be formulated as follows:

1. How to reuse a working set of data, so the execution time of highest
order Voronoi processing on Apache Spark can be reduced?

2. How does highest order Voronoi diagram construction method on Apache

3



Spark performance in term of execution time and number of point that
can be processed ?

1.3 Objective

The objective that we want to be achieved on this final project are as
follows:

1. Adapt the most suitable method on highest order Voronoi diagram con-
struction on Apache Spark so that reuse a working set of data can be
done efficiently.

2. Analyze the highest order Voronoi diagram construction on Apache Spark
performance.

1.4 Scope

The scopes of this minor thesis is the point dataset used is random uniform
distributed.

1.5 Hypothesis

Apache Spark is a distributed computing framework that focussed on reuse
a working set of data across multiple parallel operations. In highest order
Voronoi diagram construction from previous implementation there are ineffi-
ciency of reuse a working set of data process which caused the execution time
is quite high and limit the numeber of points that can be processed. Therefore,
with the help of Apache Spark framework, we can achieve what we desired,
which is increase the number of point that can be processed and able to reduce
the execution time of highest order Voronoi diagram construction.

4


