BABI

PENDAHULUAN

1.1. Latar Belakang

Silikon merupakan material semikonduktor yang baik sebagai detektor cahaya, dan lazim digunakan pada divais elektronik dengan harga relatif murah. Tetapi silikon mudah pecah dan memiliki pita energi *indirect* sehingga tidak menghasilkan fotoluminesensi. Sedangkan MoS₂ (Molibdenum Disulfida) adalah semikonduktor jenis Metal Transisi Dikhalkogenida dengan sifat mekanik lebih kuat dan fleksibel dibanding silikon. Kekuatan dan fleksibilitas MoS₂ ditunjukkan oleh *Tensile Stength* sebesar 23 GPa dalam bentuk *single layer*, sedangkan silikon memiliki *Tensile Stength* sebesar 2,25 GPa dalam bentuk *thin film* [1,2]. Secara optoelektronik, *single layer* MoS₂ bersifat *direct-bandgap* dengan celah pita energi antara 1,8 - 3,1 eV [3].

Berdasarkan sifatnya, *single layer* MoS₂ memiliki potensi untuk diaplikasikan pada *flexible electronics* dan divais optoelektronik [3]. Namun tingkat keberhasilan untuk mendapatkan *single layer* MoS₂ yang luas dan homogen masih rendah. Faktor tersebut menjadi alasan untuk memodifikasi penelitian ini dengan alternatif membuat lapisan MoS₂ yang memiliki sifat optik dan listrik yang baik, sehingga dapat diterapkan pada divais elektronik. Ada beberapa metode yang dapat digunakan untuk mendapatkan lapisan MoS₂, seperti eksfoliasi fasa cair, pembelahan mikromekanik, dan pengendapan uap kimia [4]. Penelitian ini menggunakan metode eksfoliasi fasa cair untuk memodifikasi serbuk MoS₂. Metode tersebut dipilih karena dapat menghasilkan lapisan MoS₂ yang lebih luas dan homogen, serta biaya fabrikasinya lebih murah dibanding metode lainnya.

Proses modifikasi dilakukan dengan ultrasonikator *Elmasonic S10* berfrekuensi 37 KHz untuk mengeksfoliasi serbuk MoS₂ berukuran mikro produksi *Sigma-Aldrich Chemistry* (Kode Produksi: 1002050566) yang dilarutkan dalam NMP (N-Metil-2-Pirolidon), dan ditambah interkalator NaOH (Natrium

Hidroksida). Eksfoliasi *bulk* MoS₂ mudah terjadi karena struktur antar lapisan MoS₂ terikat lemah oleh ikatan *van der Waals* dan atom-atom penyusun tiap satu lapisan MoS₂ terikat kuat oleh ikatan kovalen [4,5]. Dengan sentrifugator, serbuk MoS₂ yang tereksfoliasi dapat dipisah menjadi substansi yang lebih berat (endapan) dan yang lebih ringan (*flakes*). *Flakes* yang didapat kemudian dideposisi ke bidang substrat dan menjadi lapisan tipis MoS₂. Ketebalan diukur dengan mengamati serapan cahaya lapisan MoS₂ pada kaca. Sedangkan sifat listrik diuji dengan mengamati kurva I-V lapisan MoS₂ yang terlapis di atas SiO₂.

1.2. Rumusan Masalah

Rumusan masalah yang diteliti meliputi:

- 1. Apa pengaruh konsentrasi MoS_2 dan NaOH terhadap proses eksfoliasi fasa cair?
- 2. Apa pengaruh ketebalan lapisan MoS₂ terhadap sifat optik dan listrik?

1.3. Tujuan Penelitian

Tujuan penelitian ini adalah sebagai berikut:

- 1. Mempelajari pengaruh konsentrasi MoS₂ dan NaOH terhadap proses eksfoliasi fasa cair.
- 2. Mempelajari pengaruh ketebalan lapisan MoS₂ terhadap sifat optik dan listrik.

1.4. Batasan Masalah

Batasan masalah yang ditetapkan pada penelitian ini, yaitu:

- 1. Konsentrasi serbuk MoS₂ dan NaOH masing-masing divariasi 1 3 mg/ml terhadap NMP.
- 2. Penentuan ketebalan dilakukan dengan mengukur serapan cahaya lapisan MoS₂ yang melekat di atas kaca berukuran 2 x 2 cm dengan tebal 0,2 cm.
- 3. Sifat listrik diuji sebagai informasi tambahan untuk melihat peluang aplikasi divais optoelektronik dan *flexible electronics* pada MoS₂.
- 4. Substrat yang digunakan untuk pengujian sifat listrik adalah SiO₂ setebal 3000 Å yang terlapis di atas wafer silikon dengan dimensi 0,7 x 0,6 cm.

- 5. Pengujian sifat optik dan listrik masing-masing menggunakan spektrofotometer *AvaSpec-ULS2048XL-EVO* dan *sourcemeter Keithley 2400*, sedangkan untuk sumber cahaya menggunakan lampu halogen *Ocean Optics HL2000*.
- Sifat optik dan listrik dianalisis berdasarkan hasil serapan cahaya dan kurva I-V.

1.5. Metodologi Penelitian

Metodologi penelitian yang dilakukan terbagi atas beberapa tahap, dengan rincian sebagai berikut:

Studi Literatur

Memahami dan mengimplementasikan teori serta metode yang terkait dengan penelitian ini menggunakan literatur yang relevan.

Proses Eksperimen

Melakukan eksperimen sesuai literatur atau memodifikasi metode untuk menghasilkan lapisan MoS_2 .

Proses Pengukuran

Substrat yang telah dideposisi lapisan MoS₂ diteliti dan diuji dengan pengukuran sesuai batasan yang telah ditentukan.

Analisis Hasil Pengukuran dan Kesimpulan

Data pengukuran yang diperoleh akan diolah dan dianalisa menjadi bahan pembahasan dan kesimpulan.

Penyusunan Laporan Akhir

Seluruh hasil pengukuran dan analisis ditulis dalam bentuk laporan Tugas Akhir.

1.6. Sistematika Penulisan

Sistematika penulisan Tugas Akhir ini terdiri dari lima bab, yaitu:

BAB I PENDAHULUAN

Menjelaskan alasan yang melatarbelakangi penelitian ini sebagai salah satu alternatif, disertai rumusan masalah yang diteliti, dan tujuan penelitian yang akan dicapai sesuai dengan batasan masalah yang ditetapkan.

BAB II TINJAUAN PUSTAKA

Menjelaskan teori yang terkait dengan eksfoliasi *bulk* MoS₂, efek interkalasi terhadap proses eksfoliasi, dan mekanisme konversi energi saat pengujian sifat optik dan listrik.

BAB III METODOLOGI PENELITIAN

Mendeskripsikan alur proses eksfoliasi fasa cair, deposisi *flakes* MoS_2 ke bidang substrat, pembuatan elektroda, pengujian sifat optik dan listik lapisan MoS_2 .

BAB IV HASIL DAN PEMBAHASAN

Menjelaskan hasil penelitian berdasarkan analisis data dan pembahasan yang dilakukan.

BAB V PENUTUP

Menjelaskan simpulan yang didapat dari hasil penelitian serta saran yang diajukan untuk pengembangan dan penelitian lebih lanjut.