LIST OF FIGURES

1.1	Future challenges of 5G defined by ITU-R	1
1.2	IoT wireless networks serving massive number $(N_b \times N_d)$ devices and N_a Apps.	2
2.1	Tanner graph of systematic Raptor codes.	8
2.2	Bipartite graph of LDGM in transmitter and receiver sides	9
2.3	Generator (G) and Parity Check (H) Matrix representations from Bipartite graph	
	of LDGM codes	9
2.4	LT encoder representations: (a) Bipartite graph, (b) Generator matrix	10
2.5	LT decoding process of 3 source symbols	12
2.6	General decoder structure for EXIT analysis.	13
2.7	EXIT chart illustrating VND and CND.	14
2.8	The proposed LDGM-Raptor codes structure for EXIT analysis in BEC and its	
	corresponding degree distributions	15
2.9	LDGM-Raptor codes structure used for soft decoding analysis	20
3.1	Transmitter and receiver structure of the proposed broadband IoT system	22
3.2	64-QAM mapping constellation for 5G systems	23
3.3	Binary erasure channel with erasure probability of ϵ	24
3.4	AWGN Channels with variance of the noise σ^2	25
4.1	EXIT chart showing the contribution of LDGM-Raptor codes that move the in-	
	tersection point from Z to Q , which is closer to mutual information of 1.0	31
4.2	EXIT chart of the proposed LDGM-Raptor codes over multipath Rayleigh fad-	
	ing channels.	32
4.3	Expected BER of LDGM-Raptor codes (without fading)	33
4.4	LDGM-Raptor codes structure used for global iteration analysis in EXIT chart.	34
4.5	Transmitter and receiver structure for EXIT charts demapper analysis	34
4.6	Mutual information after 64-QAM demapper.	35
4.7	EXIT charts in AWGN channels for the proposed optimal degree distributions.	36
4.8	An example of EXIT charts in AWGN channels for un-optimal degree distribu-	
	tions	37
4.9	LDGM codes structure at the receiver: (a) a typical H matrix of LDGM codes,	
	(b) the corresponding graph of LDGM codes for soft decoding, (c) LDGM codes	
	structure used for peeling decoding.	39

4.10	Definitions of LLR for several nodes: (a) LLR connected to CND, (b) LLR con- nected to VND for internal iterations. (c) LLR connected to VND for external	
	iterations	40
5.1	Transmitter and receiver structure for communication between device and BS without channel coding for validation.	42
5.2	Validation of BER simulation and theory for uncoded 5G NR 64-QAM under	
	AWGN and frequency-flat Rayleigh fading channels.	43
5.3	BER performances of the proposed LDGM-Raptor codes in AWGN channels	
	with different block-length.	45
5.4	BER performances of the proposed LDGM-Raptor codes in AWGN channels	
	for different iteration patterns for complexity analysis.	46
5.5	BER performance of the proposed LDGM-Raptor codes in Rayleigh fading	
	channels for analysis of complexity effect due to practical usage	47
5.6	FER performances under multipath fading channels for investigation on the ef-	
	fect on complexity using different iteration pattern.	48