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Foreword

It gives me immense pleasure to reintroduce this handbook to the research/develop-
ment communities in the field of signal processing systems (SPS). The handbook
represents the first of its kind to provide a comprehensive coverage on state of the
arts of this field. The fact that it is already now the third edition is a clear attestation
of the high demand from all the related professional communities. It is truly an
influential and timely contribution to the field of SPS.

The driving force behind information technologies (IT) hinges critically upon the
major advances in both component integration and system integration. The major
breakthrough for the former is undoubtedly the invention of IC in the 1950s by Jack
S. Kilby, the Nobel Prize Laureate in Physics in 2000. In an integrated circuit, all
components were made of the same semiconductor material. Beginning with the
pocket calculator in 1964, there have been many increasingly complex applications
followed. In fact, processing gates and memory storage on a chip have since then
grown at an exponential rate, following Moore’s Law. (Moore himself admitted
that Moore’s Law had turned out to be more accurate, longer lasting, and deeper
in impact than he ever imagined.) With greater device integration, various signal
processing systems have been realized for many killer IT applications. Further
breakthroughs in computer sciences and Internet technologies have also catalyzed
large-scale system integration. All these have led to today’s IT revolution which has
profound impacts on our lifestyle and overall prospect of humanity. (It is hard to
imagine life today without mobiles or the Internet!)

The success of SPS requires a well-concerted integrated approach from multiple
disciplines, such as device, design, and application. It is important to recognize that
system integration means much more than simply squeezing components onto a
chip and, more specifically, there is a symbiotic relationship between applications
and technologies. Emerging applications, e.g., 5G communication, big data analysis,
machine learning, and the trendy Al, will prompt modern system requirements on
performance and power consumption, thus inspiring new intellectual challenges.
Therefore, the new paradigm of SPS architectures must be amenable to various
design facets such as overall system performance, flexibility, and scalability, pow-
er/thermal management, hardware-software partition, and algorithm developments.

vii



viii Foreword

With greater integration, system designs become more complex and there exists a
huge gap between what can be theoretically designed and what can be practically
implemented. It is critical to consider, for instance, how to deploy in concert an
ever increasing number of transistors with acceptable power consumption and how
to make hardware effective for applications and yet friendly to the users (easy to
program). Therefore, major advances in SPS must arise from close collaboration
between application, hardware/architecture, algorithm, CAD, and system design.

It is only fitting for Springer/Nature to produce this timely handbook. Springer/-
Nature has long played a major role in academic publication on SPS, many of
them have been in close cooperation with IEEE’s signal processing, circuits and
systems, and computer societies. For nearly 30 years, I have been the editor-in-chief
of Springer’s Journal of Signal Processing Systems, considered by many as a major
forum for the SPS researchers. Nevertheless, the idea has been around for years
that a single-volume reference book would very effectively complement the journal
in serving this technical community. Then, during the 2008 IEEE Workshop on
Signal Processing Systems, Washington D.C., Jennifer Evans from Springer and the
editorial team led by Prof. Shuvra Bhattacharyya met to brainstorm implementation
of such idea. The result was this series of right-on-time handbooks. Especially,
this edition has collected a vast pool of leaders/pioneers to cover architectures;
compilers, programming and simulation tools; and design tools and methodologies.

Indeed, the handbook offers a comprehensive and up-to-date treatment of the
driving forces behind SPS, current architectures, and new design trends. It provides
a solid foundation for several imminent technical areas, for instance, scalable,
reusable, and reliable system architectures, energy-efficient high-performance archi-
tectures, IP deployment and integration, system-on-chip, memory hierarchies, and
future cloud computing. Moreover, it covers a wide spectrum of applications,
including wireless/radio signal processing, image/video/multimedia processing,
control and communication, video coding, stereo vision, computer vision, data
mining, and machine learning.

Looking into the (near) future, we note that modern Al tools have become heavily
data-driven and data-intensive. As of now, on the daily basis, as many as 1 billion
photos and 10 billion messages are being handled by a single Internet company
and, moreover, such dazzling numbers are rapidly growing on par with Moore’s
law. In order to unravel useful information hidden in big data, it will require novel
(and possibly parallel processing) algorithmic designs which in turn will call for
special hardware/software technologies advocated here. In this sense, the handbook
is actually well positioned to support the increasingly data-driven Al technologies.

With the utmost enthusiasm, my sincere congratulations go to the authors and
editors for putting together such an outstanding contribution.

Department of Electrical Engineering S. Y. Kung
Princeton University
Princeton, NJ, USA



Preface

In this new edition of the Handbook of Signal Processing Systems, many of the
chapters from the previous editions have been updated, and several new chapters
have been added. The new contributions include chapters on signal processing meth-
ods for light field displays, throughput analysis of dataflow graphs, modeling for
reconfigurable signal processing systems, fast Fourier transform architectures, deep
neural networks, programmable architectures for histogram of oriented gradients
processing, high dynamic range video coding, system-on-chip architectures for data
analytics, analysis of finite word-length effects in fixed-point systems, and models
of architecture.

We hope that this updated edition of the handbook will continue to serve as
a useful reference to engineering practitioners, graduate students, and researchers
working in the broad area of signal processing systems. Selected chapters from the
book can be used as core readings for seminar- or project-oriented graduate courses
in signal processing systems. Given the wide range of topics covered in the book,
instructors have significant flexibility to orient such a course towards particular
themes or levels of abstraction that they would like to emphasize.

This new edition of the handbook is organized in three parts. Part I motivates
representative applications that drive and apply state-of-the-art methods for design
and implementation of signal processing systems; Part II discusses architectures
for implementing these applications; and Part III focuses on compilers, as well as
models of computation and their associated design tools and methodologies. The
chapters are ordered alphabetically by the first author’s last name in Parts I and
III, while they are ordered in Part II starting with chapters that cover more general
topics, and followed by chapters that are more application-specific.

We are very grateful to all of the authors for their valuable contributions, and for
the time and effort they have devoted to preparing the chapters. We would also like

ix



X Preface

to thank Courtney Clark, Caroline Flanagan, and Jennifer Evans for their support
and patience throughout the entire development process of the handbook.

College Park, MD, USA Shuvra S. Bhattacharyya
Leiden, The Netherlands Ed F. Deprettere
Aachen, Germany Rainer Leupers
Tampere, Finland Jarmo Takala

13 January 2018
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Signal Processing Methods for Light )
Field Displays e

Robert Bregovic, Erdem Sahin, Suren Vagharshakyan, and Atanas Gotchev

Abstract This chapter discusses the topic of emerging light field displays from
a signal processing perspective. Light field displays are defined as devices which
deliver continuous parallax along with the focus and binocular visual cues acting
together in rivalry-free manner. In order to ensure such functionality, one has to
deal with the light field, conceptualized by the plenoptic function and its adequate
parametrization, sampling and reconstruction. The light field basics and the corre-
sponding display technologies are overviewed in order to address the fundamental
problems of analyzing light field displays as signal processing channels, and of
capturing and representing light field visual content for driving such displays.
Spectral analysis of multidimensional sampling operators is utilized to profile the
displays in question, and modern sparsification approaches are employed to develop
methods for high-quality light field reconstruction and rendering.

1 Introduction

The unequivocal aim of visual media is to provide high realism of the scene
being visualized and to provide tools for interacting with visual content. Visual
information about real-world objects is carried by the light field, i.e., light of any
wavelength travelling in every direction through every point in space. Subsequently,
the light field data is rich in providing high spatial, angular, and spectral resolution
of the visual content. In order to utilize this richness and to convert it into highly
realistic and interactive visual experience, extensive research efforts have been made
to study the principles of light field formation, propagation, sensing and perception
along with the computational methods for extracting, processing and rendering the
visual information. In this list of methods, the light field display has a special place

R. Bregovic - E. Sahin - S. Vagharshakyan - A. Gotchev (E<)

Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
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as the ultimate light field reconstruction stage and device, where optics and signal
processing meet.

Attempting high-quality light field reconstruction from a large, yet limited,
collection of sensors, has demanded research on new sensing concepts and novel
sparse light field representations.

In this chapter, we review the light field basics in Sect. 2 and overview the light
field display technologies in Sect. 3, in order to prepare the ground for discussing
two fundamental signal processing challenges related with such displays. Departing
from the light field representation and propagation formalism, in Sect. 4 we present
our approach in profiling light field displays in terms of their throughput, which is
analyzed in spectral domain and quantified through the notion of display bandwidth.
In Sect. 5, we address the fundamental issue of preparing light field content for any
type of display. Our main representation is the so-called densely sampled light field
and our main tool is its sparse representation in directional transform domain.

2 Light Field Basics

2.1 Plenoptic Function

The light field (LF) was first conceptualized by Gershun as the amount of light
traveling in every direction through every point in space using light vectors [1].
That is, considering rays as the fundamental light carrier, any region of space is
interpreted as a collection of light rays. The plenoptic function [2] describes the
intensity distribution of these rays. In the most general case, it is a 7-dimensional
function parametrizing the crossing points (x, y, z), propagation directions (6, ¢), and
wavelengths (colors) (A) of the light rays at a given time (7). The measurement of the
plenoptic function can be characterized by considering a space filled with idealized
pinhole apertures at every location recording the intensity of the light at every angle
passing through it for each possible value of wavelength and time. When three-
dimensional (3D) objects (scenes) are viewed by an observer, the human visual
system samples the pattern of light rays filling the space around the objects. As
such, even though the plenoptic function is often considered as an idealized concept
due to difficulties specifying it completely for natural scenes, it can be regarded as
a communication link between (the objects in) the scene and the perceived retinal
images [2].

2.2 Light Field Parametrization

The plenoptic function can be reduced into a five-dimensional function of spa-
tial (3D) and angular (2D) coordinates for a static scene under monochromatic
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illumination. In case there is a transparent medium for the light to propagate in
and the analysis is limited to the subset of rays leaving a bounded object, i.e.,
including only the regions outside the convex hull of the object, the plenoptic
function contains redundant information [3, 4]. That is, the radiance along a ray
from one point to another remains constant (assuming no participating media). Thus,
the dimensionality of the function can be further reduced to 4D. Examples of such
LF representations include the 4D LF presented in [3], the Lumigraph [4] and the
photic field [5]. The 4D LF information can be parametrized in various ways, e.g.,
by considering points on a surface and directions for each point, pairs of points on
the surface of a 3D shape (cube, sphere) or pairs of points on two planes. The two-
plane parametrization of LF is often preferred, since it is well suited for modelling
widely studied LF capture and display techniques, such as integral imaging and
multiview capture/display, with one plane corresponding to the viewpoints and the
other one corresponding to the image/display plane of the camera/display device.
Let us consider the notation L(s, ¢, u, v) for the two-plane parametrization. That is,
each ray captured by the LF crosses the two planes at positions (s,#) and (u, V),
respectively. Alternatively, the LF can be parametrized as the rays on a single
plane (s, ) and two angles (6, ¢) representing the direction of each ray, resulting in
notation L(s, t, 6, ¢) for the 4D LF. These parametrizations are visualized in Fig. 1.

2.3 Light Ray Propagation

The analysis of LFs usually includes different parametrizations at different depths.
In order to link the LF representations at such different depths, it is necessary to
formulate the light propagation based on the LF paradigm. For simplicity, let us
assume 2D light fields, L(z,v) for fixed s and u, and L(¢,0) for fixed s and ¢.
Let us also assume that v represents the relative position with respect to crossing
point of the ray on f-coordinate (cf. Fig. 2). The relation between these two LF

Lis.t,u,v)

(a) (b)

Fig. 1 Two different 4D LF parametrizations. (a) Space-angle parametrization. (b) Two-plane
parametrization
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Fig. 2 Light ray propagation

in space, represented by two z
LF parametrizations
L, 1 .4
L.
s
d
L| 1 . 4 K ¥
A, .
t

representations is given by v = d; tan 6, where d, is the distance between the two
planes in the former parametrization and s is same in both representations. The
propagation of a light ray in space is illustrated in Fig. 2, where the two #-planes
are separated by d and the separation between ¢ and v planes is assumed to be unit
distance, i.e., d; = 1. Considering such LF parametrizations on both planes, the light
ray propagation can be expressed as [6, 7]

eo)=eG)-=GVE) o
s(a])=e(6)-n("a"]) o

where L; and L, refer to the two LFs at the first and second plane positions,
respectively. Thus, (1) and (2) actually link the two LFs defined at different
depths. In the case of two-plane parametrization, the position on the v-axis changes
according to a linear transformation of ray direction and distance. That is, a shifting
operation (shearing) is performed along the v-axis [8]. However, as can be seen
from (2), the relation between the LF parameters is not strictly linear in the plane
and angle parametrization.
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2.4 Epipolar Plane Images

As discussed in the previous sections, in its simplified form, LF can be described
by a 4D function, with the two-plane parameterization being the most common
representation (see Fig. 1b) of that function. However, even in this simplified
form, due to the complex nature of light, it is still difficult to analyze LF data in
a systematic way. Therefore one needs another simplification step—the Epipolar
plane images (EPIs) being one of the choices.

EPIs, originally introduced by Bolles et al. [9], are based on the concept that a
point in space at a distance z from the camera plane will follow certain geometrical
relation, to be described later, when mapped to different camera images at different
positions. Forming of an EPI in the case of a horizontal parallax only (HPO) LF is
illustrated in Fig. 3. A camera moving along ¢ axis, also referred to as the camera
plane, Fig. 3a, captures images at equidistant intervals, Fig. 3b. Those images are
then put into a 3D structure, Fig. 3c, referred to as the epipolar cube. An EPI, Fig.
3d, is then obtained by slicing the epipolar cube along the u axis. In other words, an
EPI consists of the same row from each image stacked together and as such it can
be considered to be a 2D image of size n¢o (horizontal camera resolution) by nipy,
(number of images or cameras). This maps a complex scene into regular structures
that have a higher predictability and are easier to analyze.

Denoting the camera-to-camera distance At = f, — #; and the change of the
position of the point in the images Av = v, — vy, it follows that the relation between
points in space in terms of camera pixels and camera position are given as

v v
= f‘ 0 ..-* v oV

Y V/Y\Y V¥V |

t L Ity e ity G | ' t, t,

(a) (d)

(c)
tE tb. rc. t'. t‘
(b)

Fig. 3 Forming of EPIs from a 3D scene. (a) 3D scene with denoted five camera positions #4 . . . tg.
(b) Captured images on camera positions #4 .. .#g. (¢) Epipolar cube constructed from captured
images. (d) One EPI for a large number of captured images with an EPI line marked in red
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‘v
A
‘u

D

B C
r /
| . |

Fig. 4 EPIs formed over different parts (image lines) of the same scene

vy — v
v = 2 l(t—t1)+vl=f(t—t1)+vl. 3)
n—n b4

Here f is the distance between the camera and image plane and Av = FAt.

The main benefits of EPI representation for processing LFs lies in the fact that
scene points appear as lines in an EPI, see Fig. 3d. The slope of a line is determined
by distance of the point from the camera, camera resolution and distance between
adjacent cameras. The points closer to the camera make a steeper slope (more
vertical) and also occlude points further away that have a more horizontal slope.
This will be utilized later on when discussing efficient LF interpolation techniques.

Four comments related to EPIs. First, although EPIs are structured, for the
same scene, the structure can differ considerably from EPI to EPI (different
lines in the images relate to different parts of the scene) as illustrated in Fig. 4.
Second, in comparison with the two-plane parameterization, see Fig. 1b, when
forming/denoting the EPIs the r-axis goes in the opposite direction and v axis is
sheared such to become relative with the point on the #-axis under consideration
(there is no common zero for the v-axis), see Fig. 3a for illustration. Third, there is
a one-to-one correspondence between EPI and ray-space notation—only v-axis has
to be replaced by ray angles. For small field of view (FoV) it can be assumed that
Ay = z tan A@ with z being the distance to the object and A« angular sampling
density [6]. Fourth, in the case of full parallax, in addition to EPIs in horizontal
direction, one can also form EPIs in vertical direction by slicing the 4D EPI cube
along the us-plane.
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. v EPI

>

f

(a) (b)

Fig. 5 EPI—from scene to representation in continuous Fourier domain. (a) Scene setup. (b) EPI
in spatial domain. (¢) EPI in continuous Fourier domain

2.5 Fourier Domain Representation

The regularities in the structure of an EPI can be further exploited by analyzing
the EPI in the Fourier domain [10, 11]. Assuming a scene with limited depth, as
illustrated in Fig. 5a, captured by a dense set of cameras, the spectrum of an EPI,
Fig. 5b, will be limited to a bow-tie shaped area with size (edges) depending on
Zmin and zmax, blue area in Fig. 5c. As one can see the spectrum of an EPI is very
well localized, particularly for scenes with shallow depth. Moreover, all points at the
same distance (layer) map into a line in spectral domain with the slope proportional
to the distance of the layer. Points in infinity map to the vertical axis (in spectral
domain) and objects at the camera plane, map to the horizontal axis.

As pointed out earlier, the frequency support of a depth layer is limited to a
line in the Fourier domain. In most general case a scene consists of objects at all
depths and therefore the spectrum is as the one indicated by the blue bow-tie in
Fig. 5c. However, in practice, the objects are typically grouped—each object can be
associated (approximated) with one or more depth layers. This is illustrated in Fig.
6. For objects with a single (shallow) layer/depth, as in Fig. 6a, the whole spectrum
is localized in the vicinity of one line. For a scene with objects at considerably
different depths, we have several layers that are reflected in the spectrum as several
lines. As seen for an example in Fig. 6b, there are three dominant layers and those
are clearly visible in the spectra. The fact that many scenes can be split into layers
has been used in several algorithms that work with LFs, e.g., [12].

In theory, the above discussion applies only to scenes without occlusion. In the
case of occlusions the spectra will be more spread out, as illustrated in Fig. 7 for
various levels of occlusions [11] with the most right image illustrating the case
of so called ‘dominant’ occlusions, that is, when a number of very close objects
occludes one or more far objects. However, as we can see in Fig. 6b, in practical
scenarios, even if there are occlusions, the aforementioned analysis can still be
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." )
(a)

Fig. 6 Scenes of different complexity—Image of the scene, one EPI, and its Fourier domain
representation. (a) Scene with a ‘single’ (shallow) layer. (b) Scene with several dominant layers

mm=)  More occlusions )

0, 0

v v

N T

oy PR
[, 2

(b)

Fig. 7 Fourier domain representation for scenes with different level of occlusions present in the
scene

applied. Therefore, in the rest of this chapter we will assume that the spectrum of a
scene behaves as in the case of non-occluded scenes.

2.6 Plenoptic Sampling

The continuous Fourier domain representation of an EPI, considered in the previous
section, is the natural domain for analyzing EPIs since LF of a scene is a band-
unlimited signal [13]. However, in practice one works with discrete systems which
means discretization. There are two types of discretization of LF that occur. First
one is due to capturing the scene with a limited (finite) number of cameras (angular
sampling) and second is due to the fact that each captured image has a finite
resolution (spatial sampling). Both of those either require bandlimited signals as
input, or proper antialiasing filters before sampling. Otherwise, the sampled LF will
be contaminated with spatial and/or interperspective aliasing.

Discretization in the spatial domain is illustrated in Fig. 8a. For a dense-enough
sampling (using high resolution cameras), vi, with respect to the scene there is
no overlap between the baseband (blue) and replicas (green). In such case the
continuous signal can be easily reconstructed, e.g., by a separable reconstruction
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Ta Q
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Fig. 8 Discretization of the plenoptic function with different sampling rates. (a) Different camera
resolution Av with Av; < Avy < Avz. (b) Different camera to camera distance At with
Al < At < Aty

filter marked in purple. For lower sampling densities, v2, v3, the spectrum replicas
close in on the baseband requiring a tighter 2D reconstruction filter, marked in
brown. If the camera resolution is further reduced, Av > Avs, then the baseband
and replicas start to overlap and reconstruction using standard multidimensional
sampling theory is no more possible. Similarly, the discretization in the angular
domain is illustrated in Fig. 8b. In this case, when the cameras are too far apart,
At > At3, replicas start to overlap and direct reconstruction is not anymore possible.

In practice, the discretization happens simultaneously in spatial and angular
domain. It is obvious that smaller scene features need a higher camera resolution
and closer objects need a denser set of cameras. However, neither of those can
be infinitely increased. The questions that arise here are: How to sample a scene
properly (to avoid or minimize aliasing)? What is the optimal sampling that would
enable the reconstruction of the scene’s continuous plenoptic function?

The answers to these questions, particularly to the second one, depends heavily
on the way how one wants to perform the reconstruction of the continuous plenoptic
function, that is, in addition to sampled visual data (images) is there any other
knowledge about the scene available (in the form of another modality) or are
there assumptions that can be made regarding the scene that could assist in the
reconstruction.

As discussed earlier, if only images of a scene are available, then, theoretically
for every scene one would need proper antialiasing filters in spatial and angular
domain in order to sample the scene without aliasing. Spatial antialiasing is typically
handled by the camera itself, however, it is not straightforward to implement an
antialiasing filter in the angular domain. Therefore, one needs to sample the scene
with a dense set of cameras (small®”). An attempt to define what means dense
enough is proposed in [13] that introduces the concept of essential bandwidth that is
defined as: “A compact region in the frequency domain that is symmetrical around
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the origin and that contains at least 81% of the plenoptic spectrum’s energy.” The
required sampling is estimated based on the knowledge of the highest frequency in
the scene and the depth range—for more about that estimation please see [13].

When in addition to images also depth information is available as an additional
modality, it has been shown in [10] that there is a compromise between the required
number of images and the amount of depth information expressed in terms of layers
(number of depths the scene is quantized) that will result in a similar reconstruction
quality. This compromise is illustrated in Fig. 9 and can be summarized as follows:
The more one knows about the geometry of the scene, the fewer images are needed
and vice versa.

This is as far as one can go using standard sampling theory. Going beyond that,
we will show in Sect. 5 that by making few assumptions about the scene (e.g.,
scene has no reflective surfaces) one can utilize the properties of EPIs, in spatial
and Fourier domain and go far beyond the classical sampling theory and reconstruct
the continuous function from a sparse (under-sampled) set of images without any
knowledge about the depth of objects in the scene.

2.7 Densely Sampled Light Field

As discussed in the previous section, when reconstructing the plenoptic function
out of an under-sampled (captured) LF, one needs to use advance reconstruction
techniques in order to avoid aliasing. However, in many cases (e.g., when speed is
essential) it is beneficial to achieve a good (satisfactory) reconstruction results by
using a simple interpolation technique, e.g., bilinear (or quadrilinear) interpolation
over the available LF samples. This is possible only if the LF is sampled densely
enough. A sampled LF from which the continuous plenoptic function can be
reconstructed by simple quadrilinear interpolation is referred to as densely sampled
light field (DSLF). Its characteristic is that the maximum disparity of any point in
the scene between adjacent views is less than or equal to one pixel. Such sampling
ensures that lines in EPI are unambiguous. This is illustrated in Fig. 10 for cases
where the disparity is three pixels, Fig. 10a, and one pixel, Fig. 10b, between
adjacent views. When interpolating views in between, in the first case one cannot use
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a simple bilinear interpolation since it will use (adjacent) pixels that are not part of
the EPI line, whereas in the second case the correct pixels will be utilized. Although
the reconstruction still might not be perfect, the effect of aliasing will be almost
negligible—no major errors due to aliasing will be introduced in the reconstructed
plenoptic function. One can claim that such sampling allows treating the disparity
space as a continuous space.

The required sampling density on the ¢ and v plane to achieve DSLF depends on
the (minimal) depth and (smallest) details in the scene. Scenes with objects closer
to the camera and more details will require a denser set of cameras and images of
higher resolution. As a side benefit, once the DSLF is available, one can properly
apply multidimensional filtering (removing/blurring objects in the scene) and then
downsample the LF to resolution that can be used, for example on a display, without
introducing aliasing at lower sampling rates.

3 Light Field Displays
3.1 Visual Cues

The human visual system (HVS) creates 3D perception based on 3D information
acquired via a number of depth cues. These visual cues can be coarsely classified
into physiological and psychological cues [14, 15]. Physiological cues such as
binocular disparity, convergence and accommodation produce information based on
physical reaction of the HVS. On the other hand, psychological cues such as linear
perspective and texture gradients are more related to learned experiences. The visual
cues can be also divided into four categories by a finer classification [15-17]:

¢ Oculomotor cues—Vergence and accommodation constitute the two oculomotor
functions that give rise to corresponding cues. Vergence is the rotation of
the two eyes in the opposite direction to fixate on the object and obtain a
single fused image. It is mainly driven by the binocular disparity stimulus [18].
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Accommodation is the adjustment of the focal length of the crystalline lens in
the human eye to focus (accommodate) on a given object and perceive sharp
image. The primary stimulus that drives accommodation is the retinal blur [18].
The strength of corresponding contraction or relaxation in the eye muscles
that control the focal length of the lens produce the depth information. The
oculomotor cues are effective at short distances (typically up to 2 m).

* Binocular disparity—The positional difference (disparity) in the image locations
of an object in the left and right retinal projections depends on the depth of the
object. Thus, depth information is extracted based on the disparity of matched
object points in those projections. Binocular disparity is a primary cue, which is
utilized in a wide depth range (typically, from around 10 cm up to 100 m).

* Pictorial cues—Shadows, perspective, occlusion, texture scaling, gradient, etc.
constitute pictorial monocular depth cues. HVS relies more on these cues
especially at long distances, where other cues (e.g., binocular depth cues and/or
motion parallax) cannot provide necessary information.

* Motion parallax (head parallax)—Closer objects appear to move faster than
further objects. Motion parallax is a physiological monocular cue that is created
by this relative motion of the objects at different depths, when the head is moved.
It is especially effective at long distances, e.g., where the accommodation cue is
not reliable.

In binocular viewing (stereopsis), the so-called Panum’s area and depth of focus
define 3D zones, with respect to the limits of binocular vision and accommodation
function, respectively, within which the viewing is considered to be comfortable
(i.e., with reduced visual fatigue or discomfort) [15, 17]. For a given position
of the eyes, there exists a surface in 3D space called as horopter, for which the
corresponding images in the left and right eyes produce zero retinal disparity [15].
Panum’s area defines a 3D zone around the horopter that puts a limit for the
allowable retinal disparity. The objects within the Panum’s area can be fused to a
single clear image (without double vision). On the other hand, the depth of focus is
related to accommodation function and it defines a 3D zone around the focused
depth within which the object points can be perceived sharp enough (in focus)
without requiring reaccommodation. The comfort zone can be considered as the
intersection of Panum’s area and depth of focus [15].

The two oculomotor functions accommodation and vergence usually work in
harmony [18]. Thus, the accommodation and vergence functions are actually
coupled, i.e., one response evokes the other and vice versa. Such a coupling
accelerates both accommodation and vergence, i.e., accommodation is faster in
binocular viewing compared to monocular viewing and vergence is faster when also
a blur signal (consistent with the disparity signal) is available and utilized [19].
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3.2 From Ideal to Real Light Field Display

3D displays aim at reproducing a real 3D scene in a visually indistinguishable
way. Thus, an ideal 3D display is expected to recreate all visual cues accurately
so that the viewer perceives the 3D image of a scene as close as possible to its
reality. An LF display is aimed at providing all the necessary cues (mainly vergence,
binocular disparity, motion parallax, and accommodation) with sufficient accuracy
by actually reconstructing the LF that includes a complete description of the scene.
In other words, an LF display is mainly intended to address the continuous (smooth)
motion parallax and accommodation-vergence conflict problem, which constitute
the two main deficiencies of the conventional 3D displays such as stereoscopic and
multiview displays.

While the stereoscopic displays do not provide motion parallax at all, the
motion parallax provided by the multiview displays is usually discontinuous. On
the other hand, since such conventional 3D displays mainly rely only on the
binocular disparity, they cannot provide (correct) accommodation cue. The eyes
of the viewer focus on the display surface, which is the location of the source of
the light, while they converge at the depth addressed by the (simulated) disparity
cue. The coupling between the vergence and accommodation cue is, thus, broken
and the so-called accommodation-vergence conflict occurs [18]. This conflict has
been reported to cause potentially serious visual discomfort in prolonged use of
such displays [20, 21]. The Percival’s zone of comfort defines a set of vergence
and accommodation responses, which can be achieved without discomfort [19]. Its
width is about one-third of the width the zone of clear single binocular vision, where
the accommodation and vergence are possible without excessive error in either [19].
Figure 11 illustrates these zones in relation with Panum’s area and depth of focus.

The design of an LF display is, thus, based on the motivations of providing
smooth motion parallax and avoiding (or reducing) the accommodation-vergence
conflict [15, 22]. Both are actually dictated by the characteristics of the HVS. The
two main system parameters of an LF display are the spatial and angular resolutions
of the emitted LF, which are characterized by the corresponding sampling steps Ax
and A6, respectively, as illustrated in Fig. 12. The reference plane represents the
spatial sampling plane of the LF which can be either right on the display surface
(e.g., in the case of super-multiview display) or separated from it (e.g., in the case
of integral imaging). The angular resolution of LF determines the resolution of
viewpoints at the observation distance d, as Av = d, A6 [22]. The relation between
the eye pupil size W, and Av then dictates the motion parallax and accommodation
cues. If W, > Av, then the motion parallax is continuously perceived. Regardless of
this requirement, motion parallax will be also smooth when the reconstructed image
is within one pixel disparity range, with respect to reference plane, for adjacent
viewpoints, i.e., Ax > |z;|A6 with z; being the distance of the image from the
reference plane [22].

On the other hand, if the so-called super-multiview (SMV) condition is satisfied,
i.e., there are two or more rays incident in the eye pupil, the accommodation cue
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(b) correspond to real world stimuli
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Fig. 12 The relation between the parametrization of a LF display and HVS

is invoked [23, 24], and the eye focuses on the reconstructed image even when
it is separated from the reference plane. Therefore, the accommodation-vergence
conflict is avoided (or reduced). Please note, however, that creation of the correct
accommodation cue depends on several other factors, such as the distance of
the reconstructed image from the reference plane [25, 26]. This issue is further
addressed in the following sections.
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In the following section, integral imaging, super-multiview displays, projection-
based displays, tensor displays, and holographic stereograms are discussed as
different examples of LF display techniques.

3.3 Overview of Current Light Field (Type) Displays
3.3.1 Integral Imaging

Integral imaging constitutes the oldest LF display technique, as it goes back to 1908,
when Lipmann [27] invented it with the original name of integral photography. The
idea was to capture and then reconstruct the LF by utilizing a two-dimensional lens
array. Figure 13 illustrates the capture and reconstruction stages of integral imaging
technique.

In the capture stage, the LF incident on the microlens array plane is spatially
sampled by the microlenses. Then, the so-called elemental images behind each
microlens record the local angular distribution of the LF. Thus, assuming that there
is no cross-talk between the elemental images (this can be satisfied e.g., by putting
physical barriers between the elemental images), the space-angle distribution of
the LF incident on the microlens array is recorded by the sensor pixels. In the
reconstruction stage, the 3D scene can be reconstructed by simply writing the
recorded sensor image onto a display. In case the same microlens array is to be used,
the pixel pitches of the sensor and display should be same. Otherwise, the system
can be scaled. As seen in Fig. 13b, integral imaging actually reconstructs focused
points in space by integrating several beams focused by different microlenses.
Thus, such sets of beams create continuous angular intensity distributions from
the focused points in space. When the viewer moves his/her head within such an
LF, he/she will perceive continuous motion parallax. The accommodation cue of
integral imaging has been addressed in several studies [24, 25, 28, 29]. As a result
of a subjective test presented in [25], 73% of the viewers are reported to actually
focus on the reconstructed image. Moreover, the conflict between the vergence and
accommodation is relieved in the super-multiview region [28].

One critical problem with direct reconstruction technique shown in Fig. 13 is
that the reconstructed images are pseudoscopic, i.e., reversed in depth. In order to
provide orthoscopic images with correct depths, one should digitally recalculate
the elemental images knowing the capture and display parameters [30]. Another
approach is to use virtual image presentation technique proposed by [31], which is
illustrated in Fig. 14.

In this technique, the captured elemental images are simply rotated around their
centers by 180" and the distance between the microlens array and the display plane
is chosen as I, = I, — 22(d. — f). By this way, a virtual image is obtained at
d, = d. — f from the microlens array plane, where d. and d, are the image planes
of sensor and display planes during capture and reconstruction, respectively, and f
is the focal length of the microlenses [32].
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Fig. 13 Capture (a) and reconstruction (b) of a scene by integral imaging

In both the direct display technique, /. = I > f, and the virtual image presentation
technique, /. > f > [, the scene regions inside the depth of field of the microlenses
are sharply reconstructed, however blurred reconstructions are inevitable outside
this region. An alternative approach to these “resolution-priority” cases is the
“depth-priority” technique, where /. = [, = f so that the resolution of the recon-
structed images are now dependent on the microlens pitch, i.e., sharp reconstruction
as in the resolution-priority case is not possible, but the resolution can be kept in a
much larger depth range around the focal plane [22, 33, 34].

For more detailed analysis, advances and recent issues in integral imaging, we
refer the reader to [32, 35].
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3.3.2 Super-Multiview Displays

Multiview displays (MVDs) usually employ a pair of flat-panel display (e.g., LCD)
and a horizontal array of optical elements or openings on a surface that refract or
direct the light in the horizontal direction, e.g., lenticular sheet [36, 37] or parallax
barrier [38, 39]. Thus, unlike integral imaging, they provide only horizontal parallax.
The red, green and blue sub-pixels of the flat-panel display create the full color
range by emitting light in the corresponding color. The light emitted from each sub-
pixel forms a vertical stripe of beam after being directed by the horizontal array of
optical elements. An RGB beam triplet (corresponding to an RGB sub-pixel triplet)
forms one color component to be perceived at the corresponding viewpoint. The
set of such triplets (from different lenticules or slits) forms a parallax image when
viewed at a given viewpoint at the intended viewing plane. The set of all those
parallax images at different viewpoints constitutes the so-called multiview images.
The vertical resolution of the perceived image is the same as the vertical resolution
of the display panel, whereas the horizontal resolution is reduced by a factor of
number of views, which is the (rounded) total horizontal number of pixels under a
single optical element. Thus, there is an uneven resolution loss in the vertical and
horizontal dimensions. The slanted lenticular approach proposed in [36] makes this
loss more even via sub-pixel multiplexing technique. For instance, for an 18-view
display the resolution loss can be chosen to be by a factor 3 in the vertical and 6 in
the horizontal direction.

Super-multiview displays (SMVDs) can be seen as advanced types of MVDs that
provide a very dense set of views (typically more than 50). In particular, the SMV
condition, which requires that there should be at least two rays incident in the eye
pupil of the viewer, is what separates a SMVD from MVDs. As shown in Fig. 15,
when this constraint is satisfied, the viewer is able to focus on the reconstructed
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image separated from the display surface and hence, the accommodation-vergence
conflict may be avoided [23, 40]. Furthermore, the viewer experiences smooth
motion parallax.

The condition for smooth motion parallax is actually less strict. Even when
the distance between viewpoints is larger than the pupil size, smooth motion
parallax can be perceived due to cross-talk between views. Both the smoothness
of the motion parallax and the accuracy of the accommodation response depend
not only on the SMV condition, but also on the crosstalk between the views, the
depth range of the scene, etc. For instance, for scene points that are not close
enough to the display surface, the accommodation response may not be accurate
or the motion parallax may not be smooth, even if the SMV condition is satisfied.
The corresponding depth range (around the display) is related to the capacity
(bandwidth) of the 3D display device. This issue is analyzed in more detail in
Sect. 4. A detailed analysis of motion parallax and accommodation aspects for the
lenticular based SMVD is presented in [26, 41] for several application scenarios.

The typical flat-panel display technique used in MVDs has been also demon-
strated to be effective for designing SMVD [37, 41]. However, the current available
resolutions of flat panel displays are not good enough to deliver both the required
number of views and high resolution 3D images. The number of views can be
considerably reduced, and thus the resolution can be increased, by utilizing eye
tracking algorithms and providing views only around the two eyes of the viewer
[37]. Besides this, several other SMVD design techniques have been proposed
such as focused light array, multi-projection, time-multiplexing and hybrid systems
consisting of both flat-panel and multi-projection systems [42]. The focused light
array technique was actually used in the first SMVD design, where a set of
laser diodes are focused at the same viewpoint and then they are scanned in two
dimensions to cover different viewpoints [42, 43]. The scanning requirement of this
technique is removed in multi-projection type of systems [44—46], where an array of
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projectors are used, in the expense of large space requirement. Time-multiplexing
technique has been used to reduce the number of projectors in such multi-projection
systems [47]. In the hybrid design, the images of all flat-panel displays are super-
imposed on the common screen using the projection lens array [42]. The total
number of viewpoints is the product of the number of flat-panel systems and the
number of viewpoints generated by the flat-panel displays. By using 16 flat-panel
displays having 16 views, a SMVD having as high as 256 views has been created
[48]. For more detailed information on different SMVD design techniques, the
reader is referred to [44].

3.3.3 Projection-Based Displays

A projection-based display that recreates an approximation of the continuous
plenoptic function out of a discrete set of rays consists, see Fig. 16a for illustration,
of the following two parts [49]: First, a set of projection engines that act as ray
generators (discrete sources of light), and second, a holographic screen that is a
special optical element that performs the discrete to continuous conversion of light
rays. The holographic screen, in its simplified form, for an HPO system can be
interpreted as an anisotropic diffusor that converts (diffuses) each ray into an angular
beam around the main direction of the ray, having a narrow horizontal angle §, and
wide vertical angle d, as illustrated in Fig. 16b. This ensures the visibility of a ray
from all vertical positions (in the front of the display) but only a narrow horizontal
range of positions. The display recreates an object in space by recombining rays
from different projection engines depending on the position of the observer and the
object itself. This is illustrated for three objects and two observers in Fig. 16a.
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The display has no pixel structure since rays originate from different sources and
hit the surface of the display on a non-regular grid. The number of rays determines
the overall throughput of the display in terms of angular and spatial resolution. For
the same number of rays, trade off can be made between spatial and angular details
by the mechanical design of the display — as it will be discussed in more detail in
Sect. 4.

Having a dense set of rays such displays are capable of maintaining continuous
parallax thereby providing (e.g., by dynamic rendering) the correct perspective in
e.g., free viewpoint video. This makes them one of the front-runners, among existing
LF displays of today, for visualizing immersive 3D content. The drawback is the
high hardware complexity of the system and the huge amount of data that the system
has to process. This makes it challenging for large setups as well as makes the
extension to full parallax very difficult, if not impossible.

3.3.4 Holographic Stereograms

The LF displays discussed above are based on ray reconstruction that is modelled via
the ray-based LF paradigm. Holographic stereogram (HS), on the other hand, can
be seen as a hybrid approach. It relies on holographic recording and reconstruction
principles, nevertheless, it utilizes a set of 2D images as the information source
[50-52]. The possibility of using real scene images recorded under white light
illumination is essentially what make HSs attractive compared to other (coherent)
holographic techniques. Nevertheless, their computational simplicity compared to
other coherent techniques is also critical in computer-generated holography (CGH),
especially for dynamic displays [53]. Display technologies utilizing HS technique
consist of static displays such as holographic prints [54, 55] and dynamic displays
which can be implemented e.g., via spatial light modulators (SLMs) [53] or
rewritable holographic materials [56, 57].

For optically recorded HSs, a set of 2D (multiview) images are projected one-
by-one on the hologram surface and the interference pattern of the projected
images and a reference beam is recorded hogel-by-hogel, where hogel refers
to a spatial holographic element on the hologram surface [58]. In the case of
computer-generated HSs, the corresponding fringe patterns to be written in a hogel
is calculated via physically simulating the interference process [50, 58]. More
specifically, a hogel on the hologram surface contains the information about the
2D image that would be seen from a very narrow window (as of the same size of
the hogel) at the location of the hogel [59]. This information is coded in the form of
a holographic fringe pattern, which has varying spatial frequency components. The
amplitudes of those components control the intensities and the spatial frequencies
control the directions of the rays to be sent to a particular direction. Each such ray
corresponds to one of the pixels of the corresponding 2D image that was utilized
during recording or computation at the given hogel location. The collection of all
those 2D images corresponds to a discrete LF representation (multiview images)
defined on the hologram surface. The necessary data for obtaining this LF can be



Signal Processing Methods for Light Field Displays 23

x s Y
Al
Xy e
t, Ha
Ly(x1,52) = Ly(s2,11) g 14y
hologram camera sensor
plane plane plane

Fig. 17 The relation between the captured LF and HS parameters (adapted from [60])

collected by a scanning camera rig (or via computer graphics rendering for synthetic
scenes) either on the hologram plane or on some other plane further away from the
hologram surface. As the scene is usually confined in a region around the hologram
surface, separation of capture plane from the hologram surface is usually preferred
for practical reasons. In this case, a remapping from captured images is necessary
to acquire the set of ray intensities to be utilized for a given hogel. The setup
shown in Fig. 17 illustrates this case (for 2D space), where different directional
ray components for a given hogel correspond to pixels from different view images
captured on the camera plane.

The wavefield (amplitude) expression for the HS shown in Fig. 17 is given as
[59, 60]

Ons(x) = Zmrect <x _AMAX> Zi\/Ll [m, i]exp (jZNfTix) , 4)

where f;”i is the spatial frequency component on the x-axis, for hogel m and ray
i. The spatial frequency is related to the direction of the corresponding ray via the
grating equation [61]

fmi = sin (07) — sin (Grer) )
A

where X is the wavelength (color) of the light and 6. is the incidence angle of the
planar reference beam R(x) to be used in calculating the interference pattern, i.e.,
|Ogs(x) + R()|? = |Ons(x)|* + |Rx)|> + 2 Re {Ops(x)R(x)*}. Please note that the
relevant holographic information is contained in the third term, which is called as
the bipolar intensity [58]. Thus, in CGH, this intensity pattern is usually treated to
be the actual HS. When illuminated with the same reference beam, the hogels of
the HS reconstruct the recorded content as planar wavefront segments, propagating
towards various directions with their intensities defined by the corresponding LF
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samples. As seen in (4), the fringe pattern in each hogel can be obtained by
inverse Fourier transform of the image segments [59]. When utilizing fast Fourier
transform implementations, care need to be taken for accurate calculation. As the
set of discretized spatial frequency values ( ;’” , I = 1,...,N) is fixed, the
corresponding discrete LF samples Li[m, i] are to be appropriately calculated from
the captured LF samples, e.g., via resampling from the captured LF L[, j] [60].

Assuming properly chosen hologram parameters, the HS is able to provide
continuous motion parallax, and maximized perceived resolution with respect to
the HVS [58]. In their original form described above, HSs can provide limited
accommodation response in a shallow depth range around the hologram. This is
one of their main drawbacks compared to (coherent) holographic display methods.
However, correct accommodation cues can be provided in a much larger depth range
via techniques that modulate the planar wavefront segments based on the depth
information of the captured ray (i.e., the information of the corresponding point
source in the scene) [62, 63].

3.3.5 Tensor Displays

The underlying idea of tensor displays is that the LF ray directionality can be
manipulated through a (ratter small) number of layers of light modulators with
varying transmittances. The joint multiplicative effect is a modulated light field with
desired characteristics. The idea can be traced back to the first proposal to create
directional views through parallax barriers [64]. In that early work, the directionality
is maintained by a mask of pinholes installed in front of a 2D display, which blocks
some rays and allows other rays coming from the 2D image source to go through and
to be seen from a specific perspective. Thus, different groups of pixels are visible
from different perspectives. This is somehow dual to using lenselets to direct the
light, as in the case of auto-stereoscopic displays [36, 38, 39]. Parallax barriers have
the apparent disadvantage of blocking some of the light rays thus reducing the image
brightness. Furthermore, the mask reduces the spatial resolution per view as the light
source behind it multiplexes all perspective views. The approach has been further
extended toward content-adaptive parallax barriers, where a few layers of barriers
have been multiplied in order to increase the degrees of freedom in manipulating
different directions and the pinholes have been replaced by varying-transmittance
elements (e.g. pixels of an LCD display), as illustrated in Fig. 18a, [65]. Very
fast panels can be used to additionally introduce time multiplexing. That is, layer
patterns are changed with a high rate above the rate at which the eye perceives
temporal flickering, and the time-multiplexed images are perceptually averaged to
perceive an LF with adapted directionality of rays (Fig. 18c). Eventually, directional
backlighting has been proposed to further extend the light field generation fidelity
[66] (Fig. 18d).

The elegancy of the approach comes from the fact that stacking panels with
varying-transmittance pixels can be mathematically modelled by the multi-linear
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Fig. 18 Tensor displays. (a) n layers (masks); (b) LF parameterization; (c) combining layers and
time multiplexing; (d) adding directional backlight. Adapted from [66]

algebra tools, which leads to effective solutions using tensors, thus giving the name
of this class of LF displays: tensor displays [66].

Let’s consider the general case of combining N stacked layers visualizing M
temporal frames each, as given in Fig. 18c. The n-th layer is at distance d,, from the
light field generating plane and the light field is parameterized with respect to some
reference plane at unit distance (Fig. 18b, see also Fig. 2 for reference). Each layer
has a corresponding transmittance /. Thus, the generated light field is formed by
multiplying the layer images and averaging the temporal frames

~ 1 M N
— (m)
Lev= > I, 6" +dw (©)

Dropping the time multiplexing will model the simpler case of layered LF
displays [67]. The case of directional backlight can be achieved by adding lenticular
optics at the light source place (Fig. 18d) and modelled by adding the corresponding
terms by, (¢, v) [66]

Law= Y o] i ¢+ dw) ™)

Given a desired LF L(t,v), one has to find the display transmittances f,,(f) and
possibly the directed backlights b,,(#,v). This can be solved by a least square
optimization procedure, constrained by the requirement for non-negativity of all
pixel values being optimized. For solving it, the representation of the layered
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planes in the form of tensors comes into play. Taking into account the discrete
form of pixel layers, the corresponding transmittances can be organized in vectors
£, £2 N | then the temporal frames are organized in matrices F™ =

[f&"), fg"), . fﬁ'/;)], and the combination of all transmittances takes the form of an

N-th order, rank-M tensor [[F(l),F(z), ...F&W )ﬂ. The generated light field in (6) can
be expressed in the explicit tensor form as

M
h 1 D2 N) 1 g®2 (N)
L‘:W@{Mzzlffn of® o f =W®[[F JFO, . F ﬂ @)

where o denotes the vector outer product, JVis a binary weight tensor picking up the
valid rays only through element-wise multiplication denoted by ® [66]. In practice,
one has to represent the desired LF L(z,v) in a tensor form £ by parametrizing all
rays by their intersections with all layers and then to solve the minimization problem

Z = W ® arg min
(F0}

- ZH . forF™ € [0, 1] 9)

The solution makes use of non-negative tensor factorization. For more details the
reader is referred to [66].

As discussed in [18], the tensor approach to LF displays is a form of compressive
display as it manages to factorize the LF into temporal and multiplicative light-
modulating layers. A frequency analysis has revealed that the multiplicative,
essentially non-linear manner of combining layers yields extended depth of field
and field of view. Brightness can be also gracefully maintained. These benefits come
for the price of increased computational complexity for solving the optimization
problem (9) through non-negative tensor optimization. Aligning multiple display
modules requires precise calibration and using multiple temporal frames requires
high frame rate hardware. Artifacts, such as Moiré, color crosstalk, and interreflec-
tions can be expected though optical engineering solutions for those do exist [66].
The tensor concept has been investigated also for the case of near-eye displays
[68] and projection based displays [69]. Tensor displays are potentially capable
of supporting focus cues. High angular resolution (i.e., dense viewing zones) can
be achieved either by increasing the pixel resolution of the display panels or by
increasing the distance between layers [18]. However, in these cases the diffraction
limit starts to play a significant role and has to be taken into account.

4 Display Specific Light Field Analysis

An LF display is a visualization system that strives to reproduce (approximate),
from a dense (though finite) set of light rays (samples), the underlying continuous
plenoptic function describing the scene that is visualized. This makes the display, in



Signal Processing Methods for Light Field Displays 27

Fig. 19 Ray propagation in a (0,0) ™)
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its essence, a multidimensional sampling system with various means of generating
rays (e.g., projectors, display panel) and possible implementations of the discrete-to-
continuous (D/C) converter (e.g., directional diffusor, lenticular sheet) [36, 37, 49].
Based on the LF analysis presented so far, in this section it will be shown how
the discrete nature of a typical LF display influences the LF reconstruction and more
importantly how the multidimensional sampling theory can be applied to optimize
the display setup (maximize the visual performance given a limited number of
rays) and how to capture/prepare/pre-process content for a given display that will
maximally utilize its capabilities. This will be done by using projection-based LF
displays [49, 70], where the ray generators act as discrete sources of light rays and
the holographic screen is the D/C converter that converts the set of samples (rays)
into its continuous representation that is observed by a viewer (see Fig. 16). The
presented analysis can be extended / to other types of LF displays as well.

4.1 Display-related Ray Propagation

A model of a typical LF display under consideration is presented in Fig. 19. Each
of the N, projection engines, uniformly distributed on the ray generators plane (p—
plane) with the distance between two adjacent engines being x,, generates N, rays
over its field of view FOV), for a total of N,N, rays generated by the display. Those
rays propagate along the z direction and at a certain distance hit the screen plane (s—
plane) parallel to the ray generators plane. The screen of the display is where rays
recombine to reconstruct the desired continuous LF function. Although not true for
large angles, we assume here that rays from one ray generator hit the screen plane at
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equidistant points and that the angular distribution of the rays is also uniform, that
is, ap = FOV),/Ny. Rays are parameterized by their spatial position and direction
(x, ¢) and thus represented as samples in the corresponding ray space with position
typically expressed in mm and angle in degree. At the screen plane, those can be
recalculated in the terms of equivalent spatial resolution (e.g., number of pixels per
mm or per screen size) and its angular resolution (e.g., number of rays per degree or
FOV of the display FOV4isp).

Following the discussion of Sect. 2.3, the propagation (position) of a ray r,
originating at one of the ray generators at distance z from its origin, is given as

|:xz(r) :| _ |:x(()r) + ztan ((p(r)) :| . 10

(py) o™

Here, x(()r) is the position of the ray on the ray generators plane and ¢ is the
direction of the ray. As seen from the equation, as well as Fig. 19, the direction
of the ray does not change with distance z. However, depending on the distance of
the screen (several cases shown with black lines in the figure) the ray crosses the
screen at different horizontal positions. This means that for different distances z,
a different set of rays will contribute to forming of an equivalent multiview pixel
originating at a given point on the screen. As it will be seen later, as a consequence,
on the screen plane the uniform distribution of rays from the ray generators plane is
lost.

For a fixed z, each ray is considered as a sample in the 2D (x, ¢) space. The
sampling pattern formed by those samples changes with the distance z and is
illustrated by means of an example in Fig. 20. Two things can be observed. First,
the propagation of rays is equivalent to shearing the ray space in x direction (on the
figure, samples of one ray generator are marked with blue), and second, at every
distance the sampling pattern might not be uniform, but it always will be regular.
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Fig. 20 Ray space spatial sampling patterns at different distances from the ray generators plane
with 0 < zp1 < Zp2 < 2Zp3
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This regularity will ensure a uniform performance of the display over the overall
screen and simplify the follow-up analysis.

4.2 Display Bandwidth

As a user of an LF display, one is interested in its visualization capabilities, that is,
what level of details one can visualize (see) on a given display? In order to answer
this question, one has to convert the display’s sampling pattern, which is determined
by the design configuration of the display, into a more meaningful (user friendly)
representation. One such representation is based around the concept of the display
bandwidth.

For analyzing a regular sampling pattern, one can utilize the multi-dimensional
sampling theory [71, 72] that can be summarized for the case under consideration
as follows [6, 8]:

1. Any regular 2D pattern can be described through a sampling lattice A with the
elements of the lattice being A(V) = {n1vy + navy | ny,ny € 3}. Here, vy, =

T
[v,ﬁx) v,E‘p)] for k = 1, 2 are two linearly independent vectors typically referred

to as basis vectors and T is the transpose operator.
EOINCY
2. The associated sampling matrix V (vy, v2) = [v1 v2] = %w) %(p) is not
v, v
1 Y

unique. There are different vectors that can be associated with the same sampling
pattern as shown in Fig. 21a, that is, A(V) = A(EV) for E being any integer
matrix with |detE| = 1

3. In practice, the sampling matrix V with shortest basis vectors is preferred, that

is, ;1 H + H;2H = min (||vq|| + ||v2|]). Finding the smallest basis vectors for a
given lattice is known as the lattice basis reduction problem and can be done as
discussed in [73].

4. A unit cell P, defined for a lattice A, is a set in R? such that the union of all
cells centred on each lattice sample covers the whole sampling space without
overlapping or leaving empty space. Similar to the basis vectors, the unit cell is
not unique, as illustrated in Fig. 21b.

5. The most compact unit cell (where all points in the cell are closer, based on the
Euclidian distance, to the cell’s sample than any other sample), is the Voronoi
cell (also known as Wigner-Seitz cell) [74, 75].

6. Thinking in terms of reconstruction of the underlying bandlimited continuous
function described by the lattice A, the periodicity and the baseband frequency
support are defined through the reciprocal lattice A*(V) = AV~ as
discussed in [6, 71].

7. There are many different unit cells for a given lattice A*. Consequently,
each of them describes a bandlimited function that can be represented with
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(a) (b)

Fig. 21 (a) Sampling pattern and two possible sets of basis vectors. (b) Some possible unit cells
P (shaded area) for a given lattice A (points)

(reconstructed from) the lattice samples. Out of all possible ones, in practice,
the most interesting one is again the Voronoi cell, denoted in this chapter as P”,
since it treats equally the spatial and angular direction in ray space representation
(this is beneficial from the HVS viewpoint) and represents, bandwidth-wise, the
‘most low-pass’ characteristic (support) provided by the pattern (this typically
matches the possible physically implementable D/C converters [49]).

8. This Voronoi cell in the frequency domain is also referred to as the display
passband since it specifies which spatio-angular frequencies the display is
capable of reconstructing.

In summary, by performing a frequency domain analysis of a typical LF display
it is possible to determine the throughput of the display in terms of its spatial and
angular resolution, which in turn is determined by (from) the Voronoi cell of the
sampling pattern in the Frequency domain. For this, one needs to know display
setup, that is, enumerated rays at the ray generators in terms of position and angle
and the distance between the ray generators and the screen. Alternatively, if one
does not have access to display specifications, for estimating the display passband,
one can also use the measurement based techniques as described in [76, 77]. The
throughput of the display can be then expressed in terms of its spatio-angular
bandwidth, also referred to as the display bandwidth. The display bandwidth enables
one to calculate the optimal amount of data that has to be captured and sent to the
display to maximally utilize its visual capability. Moreover, it gives the user a good
idea on what to expect from the display in terms of visual quality.
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4.3 Display-Camera Setup and Optimization

Based on the discussion presented in the previous two sections, one can estimate,
from the display configuration, the display bandwidth and the corresponding
optimal camera configuration for capturing the content or designing optimal filters
for adapting any content to the display. One can also, based on given (desired)
display bandwidth estimate the optimal display parameters (configuration) that
would result with such bandwidth. The corresponding display-camera setup, with
all adjustable parameters, covering those two cases, is illustrated in Fig. 22 and will
be discussed in the following two sections.

Notation-wise, tilde (~), hat (A) and bar (7), are used for denoting the parameters
after the lattice basis reduction operation, estimated parameters, and optimized
parameters, respectively.

4.3.1 Light Field Display Setup Optimization

In the ray space representation, the optimal sampling pattern on the screen plane can
be defined by the following sampling matrix:

V (e, ay) = [’“ 0] (11
0 oy
Ray Xp
generator A‘ A A
plane P(V(x ay,,z ))
p’“pr4p
" P(V (x5, a))
zp ap Xs
Screen Y W w j

plane FAYAY] WAYAVAN L \ s

a, PE |
Zc 15 as | XS >
Camera P(V(x., ac,—2.))
(viewing) = V‘ Y \ 4
plane Tox

Fig. 22 Light field display—camera setup together with notations for expected sampling patterns.
Subscripts p, s, and ¢ are used to denote the parameters related to the ray generator, screen, and
camera/viewer plane, respectively
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The reason for this being optimal is two-fold. First, from the perspective of
human visual system, the spatial and angular direction should be treated in a
similar manner. Second, a diffusor (D/C converter) is much easier to implement for
such configuration—this effectively is a separable rectangular (in practice typically
gauss-shaped) low-pass reconstruction element.

For such desired sampling grid on the screen plane defined by (xy, ), the
LF display optimization problem is to determine optimal parameters of the ray
generators (xp,cr,) and the distance between the ray generator plane and the screen
plane z, for which the sampling pattern generated by ray generators V(xp, o))
mapped to the screen plane

X tan o
V (xp.ap.zp) = [ 67 < o) p} (12)

will match the desired one V(xy, ay), that is, to minimize 6, given as

~

V (xpp.2p) — V(xs,cxs) (13)

Sy =

Here, V (x,,a,, z) is the lattice basis reduced sampling matrix of V(x,,ap,2p).
The obtained solution will ensure that the difference between unit cells generated
by the ray generators and the desired one ||P(V(xp, ap,zp)) — P(V(xs, ats))|| is small,
and consequently, the grids described by sampling lattices A(V(xp,ap,zp)) and
A(V(xs, ag)) match.

Although there are only three unknowns, the optimisation problem is highly non-
linear with a lot of local optima. Following the analysis in [8], it can be shown that a
good initial solution can be obtained by fixing one of the unknowns and estimating
the other two using the following expressions:

Zp = &~ a,=tan "’ (14)
tana) Zp
~ os . X
Xp=x; & Ap=oa . (15)
Ap Xp

Moreover, a good selection for o, is
ap ~ag/L for L € N. (16)
The optimal set of parameters (x P2 Up, 2 p) can be found by refining the result

using iterative search/general purpose optimization in range X, % x; /2.

Example: For illustration purpose the optimization will be demonstrated for a
display with desired spatial and angular resolution at the screen plane with,
xs = 1 mm and oy = 1°. Following (16), the angular resolution is selected as
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Fig. 23 Display optimization example: optimization error in the case of x; = 1 mm, oy = 1°, and
ap =0.0391°. (b) is zoomed in version of (a) around the global minima

ap = 0.03125" = 60°/1920px. For those parameters, the matching error §, on
the screen plane is calculated for various values of x, (20 mm < x, < 40 mm)
and z, (1000 mm < z, < 2500 mm) and shown in Fig. 23. As seen on the
figure, due to the non-convexity of the optimization problem, direct optimization
will not find the minimum, that can be read from the curves as (x P zp) =
(32.00 mm, 1832.51 mm). By applying the two-step optimization proposed above,
one gets an estimate in the first step (fp,?p) = (31.98 mm, 1833.00 mm) (see
(14) and (15)) and after performing single gradient-based optimization from this
estimate, ends up with the aforementioned values (x 2 p) corresponding to the
minimum. The values can be found in a fraction of a second instead of 10-15 min
needed for the grid search approach. For comparison, the estimated, optimized, and
desired Voronoi cells at the screen plane are shown in Fig. 24. As it can be seen,
the match with the desired P(V(xy, ces)) is almost perfect for the estimated and the
optimized solution.

The importance of a proper selection for o, is illustrated in Fig. 25. As seen in the
figure, for a good match in the example under consideration, «;, has to be selected
small enough, <0.01.

4.3.2 Camera Setup Optimization

In comparison to the display that is a band-limited device, a 3D scene (except a very
simple one) is not [13]. This makes the data capture (processing) for visualization
of a 3D scene on a display a two-fold problem. First, the scene must be recorded
without (noticeable) aliasing, and second, the captured data has to be ‘limited’ to
the reproduction capability of the display, that is, as discussed earlier, defined by its
bandwidth.
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Fig. 24 Unit cells at screen plane for the optimized display setup solution for x; = 1 mm, oy = 1°,
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Similar to the discussion in the previous section, the optimal solution for
matching the bandwidths of a capture system and the display is obtained by
matching the sampling patterns of the display and cameras at the screen plane. This
can be formulated as the following optimization problem (see also Fig. 22): For
given display specifications described by (x,, &p, zp) find (x¢, a¢, z.) that minimizes

5. = HV (¥ @p2p) = V (s e —20) | 17)

where V (x,,, ap,Z ,,) and V (x., a., —z.) are the lattice basis reduced sampling
matrices of the ray generators and cameras mapped to the screen plane, respectively.
The matching is done on the screen plane since this is the place where the
D/C conversion happens. The problem can be solved by iterative optimization
as described in Sect. 4.3.1. The optimized camera parameters are denoted as
(Xes e, Ze)-
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Fig. 26 Camera optimization example based on grid search for optimal P (V' (x,, &,)) optimized
for x; = 1 mm, oy = 1° and ap = 0.0391° with z. = 2500. (b) is zoomed in version of (a) around
the global minima

An important thing to point out is that this camera setup is optimal from the point
of view of the display, that is, the scene can be captured with this setup only if it has
the same or smaller bandwidth than the display. Otherwise, proper anti-aliasing has
to be applied during the capture stage or the scene has to be captured with a higher
density of cameras, pre-filtered and then decimated to the desired setup.

Example: Continuing the example from the previous section, for the obtained
optimized display setup defined by P (V (x prUp, 2 ,,)) that is an approximation of
the desired one P(V(xs, os)), one can evaluate the optimal camera/viewer setup, that
is, the optimal parameters (o, X., Z.) that would support the display bandwidth in
the best possible way. After fixing the screen to viewer distance z. = 2500 mm
and performing a grid search, the result of the optimization is shown in Fig. 26
with the dominant minimum being at (x., o¢;) = (43.80 mm, 0.05440) . As seen in
Fig. 27, the obtained passband matches well with the one obtainable by the opti-
mized ray-generator setup. Similar to the ray generator optimization, the algorithm
can be made more efficient by performing the grid search only in the vicinity of a
good initial estimation that can be obtained by assuming ideal unit cell at the screen
plane, that is (x5, o) and then performing the estimation using expressions similar
to (14), (15), and (16) with assumption that Z,,, X,, @, corresponds to Zc, Xc, Oc.

The sampling pattern in the spatial domain can be converted to the frequency
domain, see Sect. 4.2. By shearing the frequency domain unit cell belonging to the
optimized display pattern from the screen plane to the camera plane, we obtain the
bandwidth of the display—shown in blue in Fig. 28. As discussed before, one should
sample the scene with wide enough bandwidth to avoid aliasing, then pre-filter and
then downsample.
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5 Reconstruction of Densely Sampled Light Field

This section discusses how one can capture and generate content, which is suitable
for a wide range of light field displays. Our conceptual LF representation is the
DSLEF, as defined in Sect. 2.7. In DSLF, we require that the disparity between
corresponding points in neighboring views is 1 pixel at most. Having such repre-
sentation at hand, one can interpolate rays at arbitrary positions by simple (quadri)
linear interpolation and the synthesized novel views are free of ghosting artifacts
[78]. Thus, DSLF is instrumental in many applications, where an arbitrary set of
rays is required. Beside LF displays creating continuous parallax, the list of such
applications includes refocused image generation [79], dense depth estimation [80],
object segmentation [81], novel view generation for FVT [82], and holographic
stereography [83].

5.1 Plenoptic Modelling, Depth Layering and Rendering

A DSLF is captured by imposing the required distance between neighboring camera
positions based on the minimal scene depth (zmin) and the camera resolution [10].
The latter should be high enough to capture the desired spatial details. With
reference to Fig. 3, consider cameras with focal distance f, having a horizontal
sampling rate Av satisfying the Nyquist sampling criterion for scene’s highest
texture frequency. The required sampling rate Ar along the camera axis ¢ is

Zmin

At < ¥ Av. (18)
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This rate imposes a quite high number of cameras, which is not feasible in
practice. Therefore, the task is to synthesize the required number of intermediate
views based on input multiview images taken by a sparse set of cameras. Methods
of this type have been referred to as image-based rendering (IBR) [84]. Here, we
use the term ‘reconstruction’, in order to emphasize the links between sampling
and reconstruction of the underlying light field function in spatial (EPI) and Fourier
domains.

The EPIs of a DSLF are transformed in Fourier domain into spectra, whose
support is limited by the minimum and maximum depth and by the two sampling
rates, Av and At, as shown in Fig. 29a. The yellow line in the figure represents a
particular scene depth layer. Sparse cameras capture an aliased version of the light
field, as illustrated in Fig. 29b. Therefore, a direct bandlimited reconstruction of
DSLF is not possible. One has to resort to methods using more insights about the
geometry of the scene.

Unstructured Lumigraph Rendering [86] can be given as an example of a generic
IBR technique, which utilizes a few perspective images augmented with an accurate
geometric model. Then, a ray must intersect some point on a geometric proxy of
a scene in order to estimate its radiance. There is a trade-off between the number
of input camera views and accuracy of the geometric proxy: the less the number
of input camera views, the more the rendering quality depends on the accuracy of
the available geometry. An accurate and globally consistent estimation of the scene
geometry can be sought in terms of depth maps, point clouds, oriented planes, using
the given camera images and making use of methods for structure from motion
and depth estimation from two or multiple images [87-91]. Having depth maps as
a scene geometry model, one can render the required views also by perspective
reprojections using a technique referred to as depth-image based rendering [92].

Depth layering has also been employed to effectively extend the plenoptic
sampling model and improve the quality of rendered views [93]. Recall, that
depth layers appear as directed lines in the Fourier representation of EPIs. Then,
layering in a finite number of depth layers is equivalent to sectioning the Fourier
spectrum in narrow sectors and a minimum number of equidistant layers can be
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specified for a given camera sampling rate At, using (18). It has been shown in
[93] that a non-uniform layer sectioning, i.e., selecting densely-spaced layers around
intensive depth changes and coarsely-spaced layers in areas with no depth changes,
substantially improves the rendering quality. Depth layering has been implemented
through segmentation of spatial objects and estimating their evolution through the
given perspective views, thus separating depth layer volumes. Intermediate images
are then synthesized ‘layer-by-layer’ from the background to the foreground [93].
Depth layering is also in the core of our attempt to find and utilize a sparse LF
representation instrumental in DSLF reconstruction.

5.2 Reconstruction of DSLF in Directional Transform Domain

In general, natural scenes are composed by clustered objects forming a finite, rather
small number of depth layers. These depth layers appear as directional stripes in the
EPIs of the continuous LF and as ‘broken’ stripes in the EPIs of the coarsely sampled
LE. In frequency domain, directional filters should be able to analyze dominant
directions and provide guidance to the DSLF reconstruction. This is equivalent to
employing a proper frequency plane tiling. The case is illustrated in Fig. 29c where
the Fourier plane is tiled by four depth layers, with 1 pixel disparity range in each
layer. Given these layers, intermediate view interpolation is possible with no aliasing
artifacts. One can additionally simplify the search of depth layers, by combining it
with multiresolution analysis, as shown in Fig. 29d. The region L; in the figure is
free from aliasing and therefore can be reconstructed by low-pass filtering. Noting,
that the procedure of low-pass filtering followed by decimation can be interpreted
as increasing the pixel size and thus decreasing the disparity between the given
rows, one can reduce the sought depth layering directions, depending on the scale
number. This gives rise to a frequency plane tiling with corresponding directional
filters which are also scale dependent. Construction of such tilling for the DSLF
reconstruction is discussed further in the section.

5.2.1 Directional Transforms

The interest in directional transforms comes from the observation that natural
images are composed by objects delineated by edges. In their seminal work [94],
Olshausen and Field have shown that natural images can be sparsely coded by
oriented and localized multi-scale primitives (atoms). Such basis elements can be
learned from training image datasets but can also be constructed in fixed dictionaries
with certain properties, notably targeting directionality and anisotropy [95]. To
formalize the problem, let’s consider a class of piecewise-smooth functions £2(R?)
(also referred to as cartoon-like images), as discussed in [96-98]. A function
f € &%(R?) consists of two components and has a form f = fo + fi¥p, where
fo and f; are C>-smooth with support in [0, 1]?> and Rp is characteristic function
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of aset B C [0, 1]2 with bound §B being a closed C2-curve with bounded
curvature. The problem of reconstructing a function from £2(R?) space using its
given incomplete measurements can be addressed through sparse approximation in
a basis or frame. The quality of the representation in a given frame is described by
the asymptotic decay speed of the L? error of the approximation obtained using only
N largest coefficients of the frame decomposition. Consider the wavelet-domain
decomposition of functions in ¢2(R?). For it, the approximation error rate is O(N~"),
where N is the number of best wavelet coefficients. In comparison, adaptive triangle-
based approximation of the cartoon-like images provides O(N~2) approximation
rate [95], where N is the number of triangles used for image representation. In order
to provide better approximation than the wavelet transform, the desirable transform
should provide a good directional sensitivity due to approximation of singularities
distributed over the C2-smooth curve 8B which is the border between smooth image
pieces. Several frames and corresponding transforms have been constructed for
sparse representations, among them, tight curvelet frames by Candes and Donoho
[97] and countourlets by Do and Vetterli [99]. For the case of representing the light
field, one can observe that the anisotropic property of the EPI is caused by a shear
transform. This naturally leads to the idea of using a transform constructed with the
same property, namely the shearlet transform.

The optimal sparse approximation property of the tight shearlet frame has been
studied in [100]. Similar results for compactly supported shearlet frame have
been reported in [101]. Both types of shearlet frames provide an optimal sparse
approximation of f € £2(R?), in the sense that the N-term approximation fy
constructed by keeping N largest coefficients of the frame decomposition satisfies

If = fwl3 = 0 (N2(log N)?).

5.2.2 Shearlet Transform

Our goal is to construct a frame with directed multi-scale elements, tiling the Fourier
plane in the manner shown in Fig. 30a. This can be done by the so-called cone-
adapted shearlet system [98]. Let partition the plane into two cone-like regions
Cy, CVN/ complemented by a low-pass region Cy as drawn in Fig. 30b. For the

effective tiling of the cones, one needs shearlet atoms generated by a scaling

function ¢ € L*(R?) and two shearlets v, ¥ € L? (Rz). The shearlet system is
generated by the translation of the scaling function, and translation, shearing and
scaling of the shearlet transform

¢m:¢('_clm)v meZz,

JHJ/ |

S:=1Vjkm=2 Iy (SkAgj - —Mem) (19)

/+L7/ |

1»”j,k,m = JKD(STAz/ =M.m),



40 R. Bregovic et al.

Fig. 29 DSLF in Fourier domain. (a) Baseband (in green) and its replicas. (b) Aliased replicas
due to undersampling (sparser set of cameras, e.g., Af = 4 px). (¢) Discrete depth layers with 1
pixel disparity range. (d) Multiresolution analysis at three scales. © 2018 IEEE Reprinted with
permission from [85]

where S; = ((l)llc) is a shear matrix, M, = (c1 0) and ]CIC = (cz 0)
c

J ~
are sampling densities of the translation grid and A,; = (2 (_) ) and A,; =

~1
(2 0 20} ) are scaling matrices, specifically tailored for the case of EPI, so to handle

singularities over straight lines [85].
Few design and implementation remarks follow. First, it is desirable that the
shearlet frames are compactly supported in both frequency and EPI domains.



Signal Processing Methods for Light Field Displays 41

The design of compactly-supported shearlets goes through the design of two 1D
half-band filters and a directional non-separable filter [85]. Second, while the
construction is in continuous domain, the input data comes from digital sensors in
the form of discrete pixels f jl (n), n € Z2. This is handled by assuming that these
are samples of a continuous function at some sufficiently large scale J € N

fo =Y flm2’e(2/x—n). (20)

neZ?

The particular choice of J depends on the maximum disparity between input
views and for dyadic scales it can be set as [85]

J = [logydmax | - 21)

Third, for an efficient implementation, the transform has to be discretized, that
is to find the digital filters 1/;? .m corresponding to v/ ¢, . This should be done by

refining the regular grid 3% in order to make it invariant under the shear transforms
[85]. The corresponding frames are not orthogonal and the dual shearlet filters have
to be obtained as well. Furthermore, the shear operation is enforced to be with
positive sign, i.e., 0 < k <2/ 4 1 in order to apply it on EPIs (c.f. Fig. 30c).

Eventually, one gets analysis and synthesis frame elements represented through
pairs of digital filters enabling the direct and inverse shearlet transforms [85]. Figure
30d represents the frequency-domain support of the elements obtained following the
above design remarks for J = 2.

5.2.3 DSLF Reconstruction in Shearlet Domain

We consider the case of horizontal parallax first and make remarks about how to
generalize the method for full parallax later in the section. Consider a setting of
rectified cameras on a horizontal rig. The key starting point is to regard the given
set of camera views as a downsampled version of the unknown DSLF. For the sake
of simplicity, assume that the cameras are uniformly distributed over each [dpax |-
th view of DSLF, where dpax is the maximum disparity presented. An example is
shown in Fig. 31a, where EPI representation of four views with 16 pixels maximum
disparity is given. In Fig. 31b, the targeted densely sampled EPI is to be constructed
in such a way that the available data appears in rows with 16 px distance. Figure 31c
shows the same rows with respect to the fully reconstructed EPI, where the disparity
less than or equal to 1 pixel is maintained. The task is to inpaint the empty areas by
continuining the directional strips which only start to form in Fig. 31b.

Assume that the densely-sampled EPI is a square image reordered in a vector
y* e RN 2, where N = (K — 1)dmax + 1 and K is the number of input views. The
samples y € RY Yof y* are obtained by

y = Hy", (22)
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&,

Fig. 30 Construction of shearlet frame. (a) Desired frequency plane tiling. (b) Low-pass region
and two adjacent cones. (¢) Frame elements corresponding to admissible disparity directions (in
grey). (d) Frequency response of frame elements constructed by the use of particular filters. © 2018
IEEE Reprinted with permission from [85]

where H € RY xnN? is a diagonal sampling matrix, such that H(kdmax, kdmax) = 1,
k=0, ..., K and 0 elsewhere. The measurements y form an incomplete EPI
where only rows from the available images are presented, while everywhere else
the EPI values are 0. The shearlet analysis and synthesis transforms are defined as
S RN o RV g% RV RV where 1 is the number of all translation-
invariant transform elements. The solution for y* given the sampling matrix H
and the measurements y is constrained by the sparsity requirement in the shearlet
transform domain, i.e.,



Signal Processing Methods for Light Field Displays 43

a 0<d<16
tm
d; dy da v
bt
49%— |
33 T —————
17 L
1
d d, dg %
Ct
49

\Y

Fig. 31 Four given views of an undersampled LF. (a) All views stacked together. (b) Input views
distributes with respect to dma,x = 16 and views to be synthesized in between. (¢) The targeted
DSLE © 2018 IEEE Reprinted with permission from [85]

x* = argmin| S(x)||;, subjectto y = Hx, (23)

xeRN?

The problem (23) can be solved e.g., by making use of the iterative procedure
within the morphological component analysis approach [102, 103]. More specifi-
cally, the EPI y* is obtained by performing shearlet-domain regularization through
iterative thresholding

Xn+1 = s* (T)»,, (S +op(y — Hxn)))) , (24)

x(n), [x(n)| = A
0, |lx(n)| < A
adaptive acceleration parameter, which controls the convergence [85].

Note the influence of the parameter dpax. It determines the number of scales J as
in (21). For dyadic scales j =0, ..., J — 1, one gets 2/ +1 4 1 shears (disparities)
in each scale s; = 2jk+1 k=0,..., 2/t

Full-parallax imagery can be handled in a separable manner: The horizontal
views of targeted DSLF are reconstructed first followed by the same procedure in
vertical direction. This is illustrated in Fig. 32 and referred to as direct method. A
computationally more efficient method, referred to as hierarchical reconstruction
is presented in Fig. 32b. There, the reconstruction is performed in a specific

where (T).x) (n) = { , is a hard thresholding operator and «;, is an
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Fig. 32 Full-parallax DSLF reconstruction. (a) Direct reconstruction: input views in black, blue
views reconstructed first, green views reconstructed second. (b) Hierarchical reconstruction:
by alternating reconstructions in horizontal and vertical directions, one reduces the maximum
disparity between views. © 2018 IEEE Reprinted with permission from [85]

order aimed at reducing the maximum disparity and thus reducing the number of
directional shearlet frame elements [85].

DSLF reconstruction employing shearlet transform has shown superior results
compared with state of the art depth-based methods [85]. This is to be attributed
to the way the transform handles spatial and directional LF details. If attempting
to estimate (a globally-consistent) depth and use it as a geometry guidance in view
synthesis, one has always to associate a depth value to a pixel, thus compromising in
cases of semi-transparent scenes when such association is not possible. In contrast,
the reconstruction based on directional transform employs atoms which are natural
for the LF imagery. Regularization is implemented in a linear space of functions,
which yields a good reconstruction quality also for scenes where the depth layers
are being fused in the captured views, as in the case of semi-transparent materials.

5.2.4 Other Sparsifying Transforms

While the shearlet transform is a suitable methodological example of directional
transform being good for DSLF reconstruction, other sparsifying approaches should
be mentioned as well.

In the work [104], the LF sparsity in the angular domain has been acknowledged
and the corresponding sparse representation has been sought through continuous
Fourier transform. The work takes 1D viewpoint trajectories as input and applies
the Fourier projection slice theorem [79] to get a sparse representation. Both
the magnitudes and positions of the continuous Fourier atoms are estimated. The
algorithm demonstrates its power on non-Lambertian full-parallax scenes.

Instead of employing a fixed transform, a sparse LF decomposition can be
obtained by learning a dictionary of atoms from LF data. A number of works have
pursued this approach. In the work [105], 4D spatio-angular LF patches have been
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used to learn a dictionary to be used for the reconstruction of LF captured by a
single-sensor coded-mask optical system. In the work [106], LF patches have been
used to form dictionaries to be used for joint denoising and spatial/angular super-
resolution, which is essentially LF reconstruction. The problem of upsampling
camera arrays has been cast as a directional super-resolution in 4D space in the work
[107], where the generation of the desired perspective views has been performed
through patch matching. In the work [108], the directionality in EPI domain has been
employed to increase the dimensionality of image patches to 4D LF patches, which
can learn then a dictionary with atoms preserving the orientation-depth relationship.
The so-learned dictionaries have been used for depth estimation in light fields.
In the work [109], a view synthesis technique has been developed by a learning-
based approach using two convolutional neural networks for disparity and color
estimation correspondingly. Four corner views from the light fields have been used
to synthesize an intermediate view in attempt to increase the angular resolution of
the light field captured by commercial plenoptic camera.

6 Conclusions

The ultimate goal of a 3D visualization system is to perfectly recreate a desired
3D scene. To achieve this, such system must be able to generate all rays radiating
from the scene, that is, it must recreate the underlying continuous plenoptic function
describing the scene. Since in practice one deals with discrete data, the scene to
be visualized must be captured with a level of detail that is sufficient to avoid
artefacts due to sampling (e.g., aliasing), processed if needed (e.g., filtered to
display bandwidth) and finally reproduced by some means (converted back to its
continuous form at a resolution better than the resolution of the human eye). The
underlying concept for determining the requirements of visualization systems as
well as analyzing scenes in a systematic manner is based on the notion of LF.

This chapter presented the state of the art in the area of LF processing and
visualization. In the first half of the chapter, the basic LF concepts have been
introduced, emphasizing the concept of continuous plenoptic function and its
sampling for subsequent reconstruction. This has been followed by an overview of
the existing 3D display technologies summarizing their pros and cons with respect
to their ability to reproduce realistic 3D scenes, in terms of visual cues. In the second
part of the chapter, signal processing methods have been described for analyzing LF
displays and pre-processing data to be shown on such displays. These addressed
the two main problems related with today’s LF display, namely the display design
(how rays recreate an LF) and data manipulation (how to represent sampled LF and
process it for visualization).

It has been shown that the introduced concept of display bandwidth can be used
to either evaluate the quality of an LF display and optimize (pre-process) data
to be shown on the display or, if constructing the display, optimize the display
configuration such that the display specifications match the desired requirements.
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Equipped with this methodology, and with a good understanding of existing display
technology, one can identify and quantify the technology limitations, which in turn,
have to be addressed by proper data capture and processing. This part has been
addressed in the last section which overviewed the challenge of reconstructing
DSLF from a sparse set of captured images. The emphasis has been put on methods
based on directional transforms (and more specifically the shearlet transform), since
those are methodologically very elegant and result in the best LF reconstruction.

In conclusion, as illustrated in this chapter, although big leaps in the LF
technology have been made during recent years, further advancements are needed to
address e.g., the issues of display miniaturization (today’s systems are bulky), real
time processing of data to be visualized (today’s algorithms are computationally
demanding), and handling the storage and transmission of the large amount of data
associated with the high-quality LF visualization.
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Abstract Due to the universal presence of motion, vibration, and shock, inertial
motion sensors can be applied in various contexts. Development of the microelec-
tromechanical (MEMS) technology opens up many new consumer and industrial
applications for accelerometers and gyroscopes. The multiformity of applications
creates different requirements to inertial sensors in terms of accuracy, size, power
consumption and cost. This makes it challenging to choose sensors that are suited
best for the particular application. In addition, development of signal processing
algorithms for inertial sensor data require understanding on the physical principles
of both motion generated and sensor operation principles. This chapter aims to aid
the system designer to understand and manage these challenges. The principles
of operation of accelerometers and gyroscopes are explained with examples of
different applications using inertial sensors data as input. Especially, detailed
examples of signal processing algorithms for pedestrian navigation and motion
classification are given.

1 Introduction to Inertial Sensors

Inertial sensors measure motion parameters with respect to the inertial space.
They generally fall into two categories: (a) instruments sensing linear inertial
displacement, also known as accelerometers, (b) rotational inertial rate sensors, also
called angular rate sensors or gyroscopes.
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1.1 Accelerometers

An accelerometer is a device that measures translational acceleration resulting
from the forces acting on it. This acceleration is associated with the phenomenon
of weight experienced by a mass that resides in the frame of reference inside
accelerometer and can be described by Newton’s second law of motion: “A force F
acting on a body of mass m causes the body to accelerate with respect to inertial
space.” A typical accelerometer consists of a small mass, also known as a proof or
seismic mass, connected via a spring to the case of the instrument as shown in Fig. 1.

When the instrument experiences acceleration along its sensitive axis, the proof
mass is displaced with respect to the case of instrument; this is the scenario in
Fig. 1b. Under steady state conditions, the force acting on the mass will be balanced
by the tension in the spring. The extension (or contraction) of the spring creates
a force which is proportional to the displacement. When there is no drag force to
resist the movement of the proof mass, its displacement is directly proportional to
the acceleration. This way the applied acceleration can be measured by measuring
the displacement of the proof mass.

There are many different designs for accelerometer but most of them operate
in a manner similar to the simple spring and mass system described above. In
many applications, including navigation, the three dimensional vector of acceler-
ation is required. Normally, three single-axis accelerometers are used. In recent
years, tri-axis instruments have become very popular in the segment of low-cost
accelerometers. It is a common practice to mount the three accelerometers with
their sensitive axes mutually orthogonal, although any non-coplanar configuration
is acceptable as long as the angles between the sensitive axes are known.

Accelerometers are insensitive to the gravitational acceleration and unable to
separate the total acceleration from that caused by the presence of a gravitational
field [18]. These sensors instead provide measurements of the difference between
the true acceleration and the acceleration due to gravity. This quantity is the non-
gravitational force per unit mass exerted on the instrument, and often called a

Acceleration
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Fig. 1 A mass-and-spring accelerometer under different conditions: (a) at rest or in uniform
motion; (b) accelerating; (c) at rest
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specific force. For example, if we consider an accelerometer in free fall, the case
and the proof mass will fall together. Therefore, there will be no displacement of the
proof mass with respect to the case and the output of the instrument will remain at
zero. In other words, the acceleration a of the instrument with respect to an inertially
fixed set of axes equals the gravitational acceleration g and the specific force is zero.
If the accelerometer is held stationary, i.e. a = 0, it will measure the force which
is counteracting to stop it from falling, f = —mg, as visualized in Fig. Ic. This
specific force is required to offset the effect of gravitational attraction. Therefore, the
measurements provided by the accelerometer must be combined with knowledge of
the gravitational field in order to determine the acceleration of the sensor unit with
respect to the inertial space.

The various accelerometer technologies include [60]: mechanical, surface acous-
tic waves, piezoelectric, fiber optic, vibrating beam and solid-state microelectrome-
chanical (MEMS) accelerometers. Historically, mechanical accelerometers were the
first type of accelerometers in mass production. All mechanical accelerometers
are mass—spring type sensors. They can be implemented in open loop when a
displacement of a proof mass with respect to its ‘null’ position is proportional
to the specific force applied along its input axis. They can be also implemented
as closed loop or force feedback pendulous accelerometer in which the spring
is replaced by an electromagnetic device that produces force on the proof mass
to maintain it at its ‘null’ position. The most precise mechanical force-feedback
pendulous accelerometers are capable of measuring specific force with resolutions
of micro-g or better. This class of mechanical accelerometers is used in very
accurate (navigation grade) inertial navigation systems (INS).

Most of accelerometers nowadays are manufactured using MEMS technology
that was developed for the military and aerospace markets in the 1970s. In 2016, the
production volume of MEMS inertial sensors was about 7.5 billion units, dominated
by consumer electronics and automotive applications. MEMS accelerometers can
be fabricated in many different ways. The basic process modules include bulk
micromachining, surface micromachining, wafer bonding, and deep reactive-ion
etching (DRIE). In most cases, the fabrication involves a combination of two
modules or more. The majority of the commercial accelerometers are surface
micromachined. One advantage of surface micromachining is its potential of
Complementary Metal-Oxide-Semiconductor (CMOS) integration. However, due
to some technical challenges, two-chip solutions are still dominant in commercial
products. Bulk micromachining is often combined with wafer bonding (glass—
silicon or silicon—silicon) to produce high-performance accelerometers. A recent
development in which single crystal silicon (SCS) sensing elements are created
in CMOS substrate by using DRIE shows some promising results. In terms of
materials, almost all MEMS accelerometers are made of silicon including silicon
on insulator (SOI). More about MEMS accelerometers can be found in [20, Chapter
2.05].
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1.2 Gyroscopes

Gyroscope (or gyro for short) is a device for measuring or maintaining angular
orientation. It can measure turn rates caused by changes in attitude with respect
to inertial space. Historically the first sensors of this kind were mechanical gyros.
They exploit the inertial properties of a wheel spinning at high speed, which tends
to keep the direction of its spin axis due to the principles of conservation of
angular momentum. Although the axle orientation does not remain fixed, it changes
in response to an external torque much less and in a different direction than it
would without the large angular momentum associated with the disc’s high rate
of spin and moment of inertia. Since external torque is minimized by mounting the
device in gimbals, its orientation remains nearly fixed, regardless of any motion
of the platform on which it is mounted. There are several designs for mechanical
gyros including: dynamically tuned gyroscope (DTG), flex gyro, and dual-axis rate
transducer (DART) which is suitable only for low accuracy applications [60].

Following the development of spinning mass gyros, other kinds of angular rate
sensors, such as optical and vibrating gyros, were developed [4]. These sensors are
based on different physical principles than the conservation of angular momentum.
Optical gyros are based on the Sagnac effect which causes a phase shift between
two waves counter-propagating in a ring interferometer that is rotating; the shift is
proportional to the rate of rotation. Vibrating gyros are based on Coriolis effect that
induces a coupling between two resonant modes of a mechanical resonator. Optical
gyros can be effectively implemented using different integrated optics technologies
that generally fall into two categories: (a) ring laser gyroscopes (RLG) and (b)
fiber optics gyroscopes (FOG). RLGs can be made very accurate to meet the
requirements for navigation grade, but on the other hand, they are expensive, their
size increases with performance, and they are high-voltage devices. FOGs are less
accurate compared to RLGs, but they meet the requirements of medium accuracy
(tactical grade), medium cost gyroscopes.

Vibrating gyros are usually manufactured using MEMS technology [20, Chapter
2.06]. From the accuracy point of view, MEMS gyros are of low to medium accuracy
with their performance approaching FOG. They have low manufacturing costs,
small physical size, and low power consumption; moreover, they can survive severe
shocks and temperature changes. Therefore, MEMS technology is ideally suited for
mass production.

1.3 Areas of Application

Due to the universal presence of motion, vibration, and shocks, inertial sensors can
be applied almost everywhere, from aircraft and space navigation to underground
drilling, from hard disk fall protection to airbags in vehicles, and from video
games to performance improvement of athletes. The large variety of applications
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creates different requirements to inertial sensors in terms of accuracy, size, power
consumption, and cost. For example, the principal driving force for high-accuracy
inertial sensors development has been inertial navigation for aircraft and sub-
marines, precise aiming of telescopes, imaging systems, and antennas. For some
applications, improved accuracy is not necessarily the most important issue, but
meeting performance at reduced cost and size is. The major requirements to inertial
sensors in automotive industry are low cost, high reliability, and possibility of mass
production. In the following sections some examples of applications are given.

1.3.1 Navigation

An INS normally consists of three gyros and three accelerometers. The data from
inertial sensors is processed to calculate the position, velocity, and attitude of
the vehicle. Given the ability to measure the acceleration it would be possible to
calculate the change in velocity and position by performing successive mathematical
integrations of the acceleration with respect to time. In order to navigate with respect
to the desired reference frame, it is necessary to keep track of the direction in which
the accelerometers are pointing. Rotational motion of an INS with respect to the
inertial reference frame may be sensed by gyroscopes that are used to determine the
orientation of the accelerometers at all times. Given this information it is possible
to resolve the accelerations into the reference frame before the integration process
takes place.

High performance INSs require accurate sensors. Such systems are expensive,
weigh several kilos, and have significant power consumption. However, not in every
navigation application has a high-performance INS to be used. For example, land
vehicle navigation systems can significantly reduce INS error growth by applying
non-holonomic constraints! and using odometer measurements. Therefore, in many
land vehicle applications a lower cost tactical grade INS can be used instead of a
more expensive navigation grade INS. Pedestrian navigation systems take advantage
of biomechanics of walking. Recognizing that people move one step at a time, the
pedestrian mechanization restricts error growth by propagating position estimates in
a stride-wise fashion, rather than on a fixed time interval. Inertial sensors are used
to detect the occurrence of steps, and provide a means of estimating the distance
and direction in which the step was taken. For step detection, accelerometers do not
have to be of high accuracy. Pedestrian navigation is addressed more profoundly in
Sect. 3.

Tn short, non-holonomic constraints limit the lateral and vertical speeds of the vehicle and this
knowledge is translated into a measurement [53].
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1.3.2 Automotive

In modern cars, MEMS accelerometers are used in airbag deployment systems
to detect a rapid negative acceleration of the vehicle, determine if a collision
occurred, and estimate the severity of the collision. Another common automotive
use of MEMS gyros and accelerometers is in electronic stability control systems.
It compares the driver’s intended direction which can be determined through the
measured steering wheel angle to the vehicle’s actual direction determined through
measured lateral acceleration, vehicle yaw rotation, and individual wheel speeds.

Other automotive applications of MEMS accelerometers include monitoring of
noise, vibration, harshness, and conditions that cause discomfort for drivers and
passengers and may also be indicators of mechanical faults. Once the data has been
collected during road tests it can be analyzed and compared to previous captures
or against donor vehicles. Comparing data may highlight a problem within the
vehicle allowing the technician to proceed to a repair with confidence supported
by measurements taken.

1.3.3 Industrial

In industrial applications accelerometers are widely used to monitor machinery
vibrations. Analysis of accelerometer based vibration data allows the user to
detect conditions such as wear and tear of bearings, shaft misalignment, rotor
imbalance, gear failure, or bearing fault in rotating equipment such as turbines,
pumps, fans, rollers, compressors, and cooling towers. The early diagnosis of these
faults can prevent costly repairs, reduce downtime, and improve safety of plants
in such industries as automotive manufacturing, power generation, pulp and paper,
sugar mills, food and beverage production, water and wastewater, hydropower,
petrochemistry, and steel production.

1.3.4 Consumer Products

The availability of small size tri-axis accelerometers and gyroscopes with prices less
than $2 has opened up new markets for inertial sensors in video game controllers,
mobile phones, cameras, and other personal electronic devices. The applications of
inertial sensors in consumer devices can be divided into the following categories:
(a) orientation sensing, (b) gesture recognition, (c) motion input, (d) image stabi-
lization, (e) fall detection, and (f) sport and healthy lifestyle applications.

The most common application of orientation sensing by accelerometers is
converting the display to a horizontal or vertical format based on the way the device
is being held. For example STMicroelectronics LSM6DSL inertial module provide
configurable interrupts for change in orientation [59]. Third-party developers have
created thousands of motion-sensitive games and other fanciful applications with
orientation sensing features. With the use of the Global Positioning System (GPS)
and a magnetic compass, location-based services are enabled, making it possible to
identify special sales or lunch menus by just pointing a cell phone at a building.
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Computer or video games can exploit gesture recognition techniques and make
it possible to play the games or do virtual activities such as swinging a tennis racket
or drive a vehicle by moving a hand-held controller. Nintendo’s Wii video game
console uses a controller called a Wii Remote that contains a tri-axis accelerometer
and was designed primarily for motion input. The Sony PlayStation 4 uses the
DualShock 4 remote with embedded inertial module that can be used, for example,
to make steering more realistic in racing games.

Commonly used example of motion input application is darkening the dis-
play when not needed by detecting the motionless state. Some smartphones use
accelerometers for user interface control, for example, make selections by scrolling
down a list by tilting. The accelerometer-enabled wireless mouse makes it possible
to move an object in space and have a corresponding object or cursor follow in a
computer-generated visual model.

Cameras use inertial sensors for image stabilization to reduced blurring asso-
ciated with the motion of a camera during exposure [24]. It compensates for
angular yaw and pitch movement of the camera. There are two ways for images
stabilization in cameras: (1) make adjustments to the image sensor or the lenses
to ensure that the image remains as motionless as possible, (2) digital image
stabilization in which the physical image is allowed to track the scene on the sensor
by software to produce a stable image. The digital technique requires the pixel
count to be increased to allow the image to move on the sensor while keeping
reference points within the boundaries of the capture chip. Different companies
have different names for their image stabilization technology: Image Stabilizer
(Canon), Vibration Reduction (Nikon), Optical SteadyShot (Sony Cyber-Shot),
Super SteadyShot (Sony), MEGA Optical Image Stabilizer (Panasonic and Leica),
Optical Stabilizer (Sigma), Vibration Compensation (Tamron) and Shake Reduction
(Pentax).

Fall detection is an important safety feature to protect hard disk drives in laptops
and some other portable, “always on” devices like MP3 players [1]. Many of these
devices feature an accelerometer which is used to detect drops. If a drop is detected,
the heads of the hard disk are parked to avoid data loss and possible head or disk
damage caused by the shock.

1.3.5 Sport

The advent of small low-cost inertial sensors caused the boom in sensor-laden
sport equipment. Examples of MEMS inertial sensor application in sports include
running, golf, tennis, basketball, baseball, soccer, boxing. Wearable electronics
for running may include accelerometers, gyroscopes, magnetometer and pressure
sensor located in waistband, running shorts or footpod. It can measure different
running metrics, such as cadence, step length, braking, foot contact time, pelvic
rotation, tilt, etc.
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In ball games such as soccer and basketball inertial sensors are integrated in
the ball. In soccer the equipment estimates how hard the ball has been struck,
its speed, spin, and flight path [41]. In basketball the system detects shots made
and missed as well as throw distance, speed, spiral efficiency, and whether a ball
has been caught or dropped. In bat-and-ball games (baseball, softball, cricket) the
equipment is embedded in the bat and computes different swing metrics, including
power, speed, efficiency, and distance the bat travels in the hitting zone. In tennis
the inertial sensors are usually embedded in racket’s handle and they can detect the
type of shot (forehand, backhand, serve, and smash), ball spin (topspin, slice), swing
speed and ball impact spot. In golf the sensors are attached to the shaft of a club and
track the position, speed, and angle of the club as it moves through a swing.

Concussion detection is important in contact sports of all kinds, especially
in boxing, football and hockey [47]. MEMS accelerometers that are able to
measure more than 100 g are usually embedded in helmets, headbands or mouth
guards to measure the severity of an impact. In boxing a small device containing
accelerometer can be attached to the boxer hand wraps or gloves to measure punch
types and rate, power, hit/miss ratio.

Other examples of inertial sensors in sport include motion analysis such as figure
skating jumps, and trajectory analysis in ski jumping and javelin. Xsens MVN
Motion Capture [51, 67] is an interesting example of how inertial sensors can
be used to record human movement. The motion capture suit includes 17 inertial
trackers strapped to the different parts of the body. The data can be used in medical
and sports applications to analyze human movement and gait. It can be also used to
animate digital characters in movies, games, and virtual environments.

2 Performance of Inertial Sensors

Selection of the most suitable inertial sensors for a particular application is a
difficult task. Among the parameters that have to be considered are resolution,
dynamic range, accuracy, cost, power consumption, reliability, weight, volume,
thermal stability, and immunity to external disturbances. Usually when sensors are
examined for compliance, accuracy is the first parameter to start with; however,
accuracy cannot be expressed as a single quantity because several factors contribute
to it.

All accelerometers and gyros are subject to errors which limit their accuracy
in the measurement of the applied acceleration or angular rate. The measurement
error is defined as the difference between the measured and the true value of the
physical quantity. Generally, inertial sensor errors fall into two broad categories: (a)
systematic errors and (b) random errors. When measurement errors are analyzed,
the same methodology can be applied to gyros and accelerometers.

Systematic errors are measurable and sensor type specific. They are caused by
inaccuracy of system parameters and parasitic effects, streaming from the sensor
design, its fabrication processes, and the readout electronics. In the context of
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MEMS sensors, systematic errors apply to whole batches of sensors of a certain
type produced by the same process.

Random errors are caused by interference, noise, instability etc. They can be
divided into two groups: (a) wideband or uncorrelated noise and (b) colored
or correlated noise. Examples of uncorrelated noise are thermal noise [39] and
quantization errors in the analog-to-digital conversion of the output signal. These
errors can be modeled as additive Gaussian white noise process. The effect of zero-
mean white noise can be mitigated by averaging the signal over longer periods of
time; since the output rate of inertial sensors is typically very high (e.g., 1000 Hz),
the signals are usually down-sampled to a slower update rate by averaging.

Correlated noise is a more complicated and much more diverse phenomenon.
Some examples of correlated noise are random walk, Markov processes, and flicker
noise. Flicker or 1/f noise is a nonstationary, long-memory process (i.e., its
autocorrelation decays slower than exponentially) [34]. The name stems from the
fact that the power spectral density of 1/f noise is inversely proportional to the
frequency; this implies that a major part of the power of the noise is located at low
frequencies. In the context of inertial sensors, this noise process is also referred to
as bias instability [28], but in this chapter, we will use the term 1/f noise to refer to
this process and reserve the term “bias instability” for characterizing sensor quality
(see Sect. 2.1).

1/f noise has been observed in a wide range of different contexts, such as
semiconductors, time standards, and highway traffic; even the ancient records of
river Nile’s flood levels have a 1/f power spectral density [64]. However, the origin
of the phenomenon is not known, but it seems that there is no common physical
mechanism to cause it in all these contexts [34]. Therefore, in order to model inertial
sensor errors accurately, the contribution of 1/f noise must be handled carefully. A
common tool for characterizing the contributions of the different noise types is the
Allan variance which is described in Sect. 2.1.2. Other characterization methods do
exist [37], but using Allan variance is recommended in [29].

2.1 Effect of Different Sources of Error

When analyzing the measurement errors of inertial sensors, it is a common
practice to split the measurement error into several components that are mutually
independent and specific to different modes of operation. For instance, even if the
applied input signal is absent, the sensor output is not zero; this error source is called
an offset or bias. Therefore, the bias is defined as the average of sensor output over
a specified time interval that has no correlation with the input signal. Accelerometer
bias is measured in m/s> or fractions of g whereas gyro bias is measured in °/h
or °/s. In many cases the bias is not exactly constant but changes slowly in time.
This phenomenon is also called bias instability and can be quantified as the peak-
to-peak amplitude of the long-term bias drift.
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The next important error component is the scale factor error which is defined
as the error in the ratio relating the change in the output signal to a change in the
applied input signal. Scale factor error is commonly expressed as a ratio of output
error to input rate in parts per million (ppm), or, especially in the lower performance
class, as a percentage figure.

Cross-axis sensitivity errors result from the sensor’s sensitivity to signals applied
about axes that are perpendicular to the sensitive axis. Such errors can be due to
physical misalignments of the sensors’ sensitive axes or, particularly in the case
of MEMS sensors, electromagnetic interference between the channels. The cross-
axis sensitivity is also expressed in ppm or a percentage of the applied acceleration
or angular rate. Linearity (non-linearity) error is defined as the closeness of the
calibration curve to a specified straight line. The acceleration-dependent bias
(g-dependent bias) is an error which occurs in Coriolis vibratory gyros; it is
proportional to the translational acceleration of the sensor. Sudden impacts and
shocks may cause significant errors in the output of both accelerometers and
gyroscopes in other ways as well, e.g., as a hysteresis effect.

All the error sources mentioned above consist of both systematic and random
errors.

2.1.1 Calibration of Inertial Sensors

Calibration refers to correcting a measuring device by adjusting it to match
reference values. Calibration of inertial sensors can significantly improve their
performance. Long-term errors, i.e., those which remain constant for at least
3-5 years, can be corrected for in the factory. The factory calibration usually
includes temperature compensation to guarantee good performance over the entire
operational temperature range. This calibration eliminates a significant part of the
measurement errors. The residual errors are much smaller than the initial errors
and can be explained by the fact that the bias and scale factor errors can slightly
change when the system is turned on next time—the so-called day-fo-day error.
Furthermore, the temperature compensation does not eliminate all errors caused by
temperature variations.

Despite the fact that the residual errors are much smaller than the errors before
the factory calibration, the sensors’ performance can be improved even further if
these residual errors are calibrated out. The approach for calibration of these errors
depends on the application, the measurement scenario, and the type of error. From
the system’s perspective, one can approach the errors and their correction based
on the sensor transfer characteristic (static and dynamic). With the emergence of
digital signal processing and its use with sensors, this approach is becoming the
standard. Keeping in mind that all sources of measurement error cumulatively affect
the accuracy and resolution of a sensing system in a negative manner, the systems
obey the principle of “a chain only being as strong as its weakest link”. Errors
such as interference, noise, and instability could be eliminated through chopping
or dynamic amplification and division applied to individual sensors.
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2.1.2 Allan Variance

Named after Dr. David W. Allan, the Allan variance [2] is a quantity to characterize
the stability of oscillator systems. Although originally developed for frequency
standards, the Allan variance is widely used to characterize the performance of
inertial sensors; it reveals the contributions of uncorrelated and random walk type
error processes on the measurement noise. The Allan variance ai is a function of

the averaging time t, computed as

N-1

b 2 Geli + D) = 5e(0)? ()
i=1

200y =
A0 =5y -

where the data y have been partitioned into N disjoint bins of length 7, and y (i) is
the average value of the ith such bin. The square root of Allan variance is known as
the Allan deviation, which is in accordance with common statistical terminology.
Usually, the Allan variance function is visualized as a log—log graph; an example
is shown in Fig.2. Generally, the Allan variance curve is U-shaped. At short
averaging times, quantization and uncorrelated noise dominate the output. The
variance of independent and identically distributed data is inversely proportional
to the averaging time, which causes a negative slope to the Allan variance at short
averaging times. As the averaging time increases, after some point, 1/f noise starts
to dominate over uncorrelated noise and the curve levels off—the Allan variance
of 1/f noise is constant [64]. Eventually, the curve starts to increase due to rate
random walk. There are also other phenomena that can be identified using Allan
variance [29], but the three effects discussed above are usually the most significant.
Based on the Allan variance plot, it is possible to quantify certain characteristics
of the sensor noise. The spectral density of white noise can be estimated as the
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value of the descending white noise slope at T = 1s. The minimum value of the
Allan variance between the white noise and rate random walk slopes corresponds
to the square of the bias instability of the sensor; this value is directly related to the
power of 1/f noise [64].

2.1.3 Modeling the Measurement Errors

A key to estimating and compensating for inertial sensor measurement errors is an
accurate model of the evolution of the different error components with time. Some
of the most commonly encountered models of sensor error time series x () are

* random constant
x(1) =x(@ —1); 2
* first-order Gauss—Markov (GM) models of the form [9]
x(0)=e A x@t = 1)+ n@) (3)

where At is the time interval between steps, y is the correlation time of the
process, and 7 (i) are independent zero-mean Gaussian random variables; and
* random walk

x() =x(t =1 +n) “

where the random increments (i) are independent and zero-mean (but not
necessarily Gaussian).

These three models are closely related. It can be seen that when the correlation
time y tends to infinity, GM approaches the random walk process. On the other
hand, with y — 0, GM tends to white noise. Random walk and GM processes are
examples of autoregressive (AR) models which are more generally expressed as

t—1

x(t) =Y _a()x(@)+n) (5)

i=0

where a(i) are known coefficients and 7 (i) are independent zero-mean random
variables. Sometimes the noise process 7 is called the driving noise. Figure 3 shows
an example realization of white noise along with the random walk and GM processes
(y = 300 samples) generated using the same noise. It can be seen that the correlated
processes have significantly higher values than their driving noise.
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Fig. 3 Example realizations x(t)
of white noise, random walk, 60
and a first-order random walk
Gauss—Markov process r Gauss—Markov (y=300)
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Usually, scale factor errors are quite stable over time and can be modeled as
random constants.” In contrast, the bias of an inertial sensor can vary significantly
during operation, particularly in the case of MEMS sensors. Therefore, sensor biases
are often modeled as GM or random walk processes. It should be noted that they are
Markovian processes, i.e., the value of the process at time ¢ only depends on the
state of the process at f — 1, not on other past or future states.> Thus, they are
suboptimal for modeling the 1/f bias instability process which is known to have a
long memory.

It is possible to model 1/f processes as AR processes [35]. However, optimal
modeling of a long-memory process requires an infinite number of states to be
memorized [56]; for this reason, many authors have fitted finite-order AR models on
sequences of data in order to predict the future behavior of, e.g., a gyroscope’s bias.

2.2 Sensor Quality Grade

Inertial sensors are used for various purposes and not all use cases demand similar
performance. For instance, the requirements for the gyroscope of an automotive
stability control system are significantly different from the requirements for full
six-degrees-of-freedom inertial navigation. Traditionally, inertial sensors have been
categorized into several grades based on their performance.

2Scale factors are not exactly constant: for instance, the scale factors of MEMS sensors depend
strongly on the temperature.

3There exist higher-order Gauss—Markov process where the difference equation (3) contains older
values of the process.
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Navigation grade sensors are targeted for long-term autonomous navigation
whereas factical grade systems are manufactured for shorter intervals of navigation,
usually a few minutes. Typically, the required performance for a navigation-grade
system can be that the position error must not increase by more than one nautical
mile (1.85km) after 1 h of autonomous inertial navigation. For instance, navigation
grade sensors can be needed for navigation systems in aircraft while a tactical grade
unit can be sufficient for a missile. For examples of navigation grade IMUs, see,
e.g., [27, 31]; examples of tactical grade IMUs include [26, 46].

Consumer or automotive grade sensors are not capable of autonomous nav-
igation, but can be used for positioning temporarily, e.g., when satellite based
positioning is not available, such as when driving through an underpass. Consumer
grade sensors, e.g., [17, 59], are primarily installed for other purposes than naviga-
tion; examples of applications are given in Sect. 1.3.

Table 1 shows example specifications of different grades of inertial measurement
units (IMUs); the values should be regarded as indicative orders of magnitude
corresponding to the example devices referenced above, and should not be used as
a definition of the different quality levels. Anyway, it is clear that the gap between
consumer and navigation grades is large—the differences are in the order of many
decades. Misalignment errors have not been specified for consumer-grade units
because it is difficult, if not impossible, to separate their misalignment errors from
other cross-coupling effects such as inter-channel electromagnetic interference;
hence, the total cross-axis sensitivity is given for these IMUs instead. The consumer-
grade performance figures represent low-cost bulk-manufactured MEMS sensors
that are not individually calibrated by the manufacturer. When considering the size
and power consumption of such a MEMS IMU, one needs to account for other

Table 1 Indicative specifications for IMUs of different quality grades

Component Parameter Unit Navigation | Tactical | Consumer
Accelerometer Pre-calibration bias mg 0.03 1 30
Noise density wg/v/Hz 10 50 100
Scale factor error %o 0.01 0.03 1
Misalignment mrad 0.05 0.5 -
Cross-axis sensitivity | % - - 1
Gyroscope Pre-calibration bias °/h 0.005 1 1000
Bias instability °/h 0.003 0.1 20
Angular random walk | °/v/h 0.002 0.1 0.5
Scale factor error % 0.0005 0.01 1
Misalignment mrad 0.01 0.5 -
Cross-axis sensitivity | % - - 1
IMU assembly® | Weight kg 5 1 0.01
Volume cm? 1500 500 0.01
Power consumption w 10 5 0.01

4The figures given for MEMS IMUs correspond to the sensor chip only
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necessary components such as the circuit board and readout electronics in addition
to the sensor chip itself; these are not included in the example figures given for
a consumer-grade IMU in Table 1. Nevertheless, it is not challenging to build a
MEMS IMU into a package with size in the order of a few cubic centimeters.

When considering the performance parameters and requirements of sensors, it is
important to distinguish between errors before calibration and residual errors [55].
For instance, the large bias of a consumer gyroscope can be mostly compensated for
by frequent calibration (e.g., whenever the IMU is stationary), but the bias instability
ultimately determines the attainable performance. On the other hand, with high-
quality IMUs it may be possible to calibrate out misalignment errors to an accuracy
better than the physically achievable sensor alignment precision.

3 Pedestrian Dead Reckoning

The term dead reckoning (DR) refers to the method where a new position estimate
is computed by adding measured or estimated displacements to the coordinates of
a known starting point. Inertial sensors are well known devices for providing the
information on the direction and the distance traveled.

In inertial navigation, the data from three accelerometers and three gyroscopes
are used to update position estimates. As described in Sect. 1.3.1, position estimation
with INS involves the integration of gyroscope measurements to keep track of
the attitude of the sensor unit, followed by double integration of acceleration
measurements to obtain the velocity and position. The process of maintaining
the attitude estimate and integrating the accelerations is called the strapdown INS
mechanization. In this section, we will shortly discuss about the INS mechanisation
and its challenges. This is followed by the detailed description of Pedestrian Dead
Reckoning (PDR) and its accuracy analysis.

3.1 INS Mechanization

The traditional Inertial Navigation System (INS) mechanization includes the fol-
lowing tasks [60]:

1. Integration of the outputs of gyros to obtain the attitude of the system in the
desired coordinate reference frame

2. Using the obtained attitude of the system, transformation of the specific force
measurements to the chosen reference frame

3. Computing the local gravity in the chosen reference frame and adding it to the
specific force to obtain the device acceleration in space

4. If required by the chosen reference frame, the Coriolis correction is applied

5. Double-integration of the acceleration to obtain the velocity and the position of
the device
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For the first task, parameterization for rotations in three-dimensional space is
required. The ones selected in here are direction cosine matrix Cﬁ; and rotation
vector p with notation from [54]. Many other attitude parameterizations can be
used [45]. For example, identical presentation would be possible by switching
direction cosine matrices to quaternions. A 3 x 3 direction cosine matrix transforms
a 3 x 1 vector from reference frame A, to frame A

CalvA2 = v 6)

The rotation vector p defines an axis of rotation and its magnitude defines an angle to
be rotated. Similarly as direction cosine matrix, rotation vector can be used to define
attitude between frames A, and A;. If frame A is rotated about the rotation vector
p through the angle p = \/ p”p the new attitude can be uniquely used to define
frame A,. Conversely, for arbitrary frames A and A; we can find rotation vector
that defines the relative attitude, although not uniquely. The relationship between
direction cosine matrix and rotation vector is [5]

I+ Si“lgp) (px) + 1—c[;);(p) (px)(px) ifp#0

otherwise

CAl(p) = 7

and this can be used to transform any rotation vector to uniquely defined direction
cosine matrix. In Eq. (7) (px) denotes 3 x 3 skew symmetric form of 3 x 1 vector p.

In inertial navigation the orientation estimation beings with finding an initial
orientation Ai—o of the sensor unit with respect to some locally level frame L. Then
gyro triad measurements wﬁi‘ which satisfy

A Ao, A
Cyl = Cyl (@5 %) (8)
can be used to update the orientation. In Eq. (8) I refers to inertial (non-accelerating,

non-rotating) reference frame. With sufficiently short time update interval dt an
approximation p; &~ wﬁitd t can be used and then Task 1 is completed by updating

CI& at each computer cycle:

A¢_
Cx, < Cx_,Ci ' (p) ©)
In Task 2 the accelerometer triad measurement
agh = Fh — g™, (10)

is transformed to L frame using Eq. (9), which leads to differential equation for
position to be solved

i = C§ afy + g, (11)



Inertial Sensors and Their Applications 67

where g" is result from Task 3. Solving Eq. (11) completes Task 5. In this compact
introduction the Task 4 was neglected in Eq.(9). In the double-integration of
accelerations even a small error in acceleration measurement yields a large position
error drift in the output. Because the accelerometers measure the specific force
instead of the true acceleration of the sensor unit, as explained in Sect. 1.1, the
gravitational acceleration is added to the vertical acceleration component; this is
straightforward when the accelerations are first transformed to a local level frame
(Eq.(11)). However, because the gravity compensation of accelerations require
the coordinate transformation, any error in gyroscope output causes errors in
the transformed accelerations, which in turn introduces increasing errors to the
computed accelerations through the errors in the gravity compensation. As the gyro
outputs are integrated to form the coordinate transformation and the transformed
accelerations are double-integrated for position estimate, the gyro errors produce a
position error which increases with time cubed. Therefore the gyro performance is
very critical in INS implementations. Effect of gyro errors can be reduced with
GNSS integration but this is quite difficult with consumer-grade sensors due to
linearization problems [42].

As the requirements for sensor accuracies are very strict for the strapdown
INS mechanization, requiring very high-quality and expensive sensor units, the
developers of mass-market applications are looking for solutions where multiple
integrations of sensor errors can be avoided. In pedestrian applications, the cyclic
nature of the human gait can be utilized to enable navigation with low-cost inertial
sensors. Two approaches have become popular in the literature: mounting the
sensors to the user’s shoe and evaluating the INS mechanization equations in
a stepwise manner; and Pedestrian Dead Reckoning (PDR) where the position
estimate is propagated by detecting steps and estimating their length, and keeping
track of the heading using body-mounted sensors.

The concept of foot-mounted inertial navigation hinges on the idea that when
the sensor unit is known to be stationary, the velocity errors can be observed [19];
this condition holds regularly for a pedestrian’s foot when walking. In addition
to resetting velocity this allows to estimate and compensate for other errors that
are correlated with the velocity errors, e.g. position and attitude offsets and sensor
biases. The most important benefit of foot-mounted inertial navigation is the fact
that it is insensitive to the direction of the step and gait characteristics as long as the
foot stance periods can be properly detected. However, detecting the stance phase
is not trivial especially when the user is running or moving in stairs [50, 57]. In
addition, the foot is subject to higher dynamics than the rest of the body; the sensors
are subject to a significant shock whenever the foot hits the ground, which can lead
to temporary measurement errors.

In PDR, instead of double-integration of the accelerations, the speed of the walk
is estimated from the periodical acceleration waveform produced by pedestrian
movements. The speed can be estimated either from the main frequency of the
periodic signal or by detecting individual steps and estimating their lengths and



68 J. Collin et al.

durations from the acceleration waveform. This information along with estimated
heading is used to propagate the estimate of user position. It can be shown that PDR
mechanization is superior to the traditional INS mechanization for a person on foot
when the sensors are mounted on the user’s torso [44]. The main drawback of PDR
is the limitation to one motion mode; the mechanization works only when walking
while the general strapdown INS mechanization works without any assumptions
about the user motion. In addition, while foot-mounted inertial navigation is 3-
dimensional by nature, PDR is 2-dimensional and requires height information from
other sources such as map [66] or barometric altimeter.

3.2 Step Detection with Accelerometers

In this section step detection with torso mounted sensors are considered in detail.
With step we mean the displacement of one foot during walking movement, i.e.
the distance between two consecutive foot prints. The occurrence of a step can be
easily detected from the signal pattern of the vertical acceleration component [40].
However, this approach is sensitive to orientation errors of the sensor unit, as it
is assumed that one axis is aligned with vertical or that the transformation to the
vertical is known. Other possibility it to compute the magnitude of the measured
acceleration vector, i.e. the norm of acceleration [33]. Most commonly the step
detection is based on accelerometers but also gyroscopes can be used [14]. The
signal pattern varies according to where the user attaches the sensor unit [38].
Typical choices to wear the sensor unit are on the belt, e.g. on the side of the user
or on lower back, or onto upper parts of the torso, e.g. attach it to the shoulder
strap of a backpack or wear it in a chest pocket. Step detection is often based on
the detection of signal peaks [38] or crossings of the signal with its average [33] or
some other reference level [43]. Often the detection algorithm combines both peak
detection and detection of reference level crossings. For example, step detection
from acceleration norm may consists of the following steps:

1. Low pass filtering and resampling the signal; sampling frequency in the range
20-25Hz is high enough.
2. Computation of the norm of current acceleration sample, i.e.,

ay (t) = \/ag (1) + a2 (1) + a2 (1), (12)

where ay, (1) is the acceleration norm and ay (¢), ay (¢), and a; (¢) are the filtered
components of the measured acceleration.

3. Instances of step starts #; (k) are detected by observing the g-crossings of the
acceleration norm that are followed by a rise rate and a peak height that exceed
the preset limits, and requiring that the time between the current and previous
g-crossings is long enough.
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Fig. 4 Detection of steps an(t) (9)
from acceleration norm 13}

Step
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4. The step end ¢, (k) is considered to be found when the next step starts or when
a predefined time, considered as the maximum duration of one step, has passed
after the start of the current step.

An example with acceleration norm and the detected step starts is shown in Fig. 4.
The data for the figure were recorded using a sensor unit that was attached to the
belt and positioned to the back of the test walker. Other methods that can be used
to detect individual steps include the correlating of sensor signal with predefined
stride template [7]. The template is formed offline, e.g., by recording it from sample
walk [25]. The correlation method can be improved by using dynamic time warping
(DTW) which allows non-linear mapping between the template and the online
signal [52].

There are applications and devices, such as mobile phones, where the orientation
of the sensor unit cannot be assumed to be predetermined and constant. If the meth-
ods for step detection and step length estimation require e.g. vertical acceleration
component, the phone orientation need to be tracked or the motion classification
can be used to allow adapting different algorithms for different motion modes [13].

3.3 Step Length Estimation

There are two main categories for methods to estimate step length. The first category
includes models that are based on the biomechanical principles whereas the models
in the second category are based on empirical relationships between acceleration
signal pattern and step length. With biomechanical models, certain user-related
parameters, such as leg length, are needed in addition to the empirically determined
scaling parameters [32]. In empirical models, the acceleration norm a,(¢) or the
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vertical acceleration component a,(¢) are typically used for step length estimation.
The signal patterns that have been found to correlate well with step length include
the following:

Main frequency  pi (k) = 1/ (t. (k) — 5 (k)) 13)
Variance, a,  p2 (k) = var(a, (1)), t;(k) <t <t,(k) (14)
Variance, a,  p3 (k) = var(ay (), (k) <t <t, (k) (15

te(k)
Area integral  ps4 (k) = / la, (t) — gl dt (16)
15 (k)

Maximum difference, a, ps (k) = maxa, (t) — mina, (¢), 17
ts (k) <t <t (k)
Maximum difference, a,  pg (k) = maxa, (¢) — mina, (¢), (18)

ty (k) <t < t. (k)

Instead of (13), the main frequency of the periodical signal can be obtained
using Fast Fourier Transformation (FFT) [38, 40]. In (14)—(15) the variance of the
acceleration signal (e.g., norm or vertical component) is computed over a time
window comparable to some step durations [38], e.g. over one step. The area
integral (16) is obtained by integrating over one step duration the absolute value
of the acceleration norm where the local gravity has been subtracted [33]. In (17)—
(18) the difference between the maximum and minimum acceleration (e.g., norm or
vertical component) of a detected step is used [32].

Also the use of combinations of these signal patterns has been proposed [32,
38], as well as slightly different patterns from these [43]. The empirical step length
model often includes at least one empirically determined parameter. In many cases
a non-linear function, such as raising to a power or extraction of root, has to be
applied to the signal pattern. It is also common to add constant offsets to the pattern
or the function [23, 38]. A generic form of the step length model can be written as

Asc = Kjg pj (07 +b (19)

where Asy is the distance traveled and p; (k) is the signal pattern, both computed
for the kth step. K; 4 is the scaling factor, b is the offset, and ¢ is the exponent that
defines the function to be applied on p;. The performance of step length estimation
with different functions applied on different signal patterns were demonstrated with
real pedestrian data in [11]. With the best combinations, the relative error in the
estimated distance traveled was 2-3%.

The step length models discussed here are applicable in flat floor or terrain.
In stairs, the step length is forced to be shorter. A method based on analysis of
accelerometer and gyro signal patterns can be used to detect forward direction and
going up or down in stairs [36].
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Fig. 5 Block diagram of the " Gyro ” 3D-accelerometer
PDR algorithm
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3.4 PDR Mechanization

In PDR mechanization, the dead reckoning process involves step detection and step
length estimation, as shown in the diagram of Fig. 5. The PDR position estimate is
computed by starting from initial coordinates, xg, yo, and initial heading angle .
As the DR method is not able to determine absolute positions, these initial estimates
have to determined using alternative positioning methods, such as radio navigation
or satellite based positioning.

While the position in PDR algorithm is updated only when step ends are detected,
the heading is updated every At seconds, i.e., at the sampling frequency of the gyro:

Ya = Y1 + o Aty, (20)

where w, is the angular rate measurement by the gyro at the sampling instance A Afg.
In position estimation, a heading estimate representative of the whole step duration
is needed. Therefore the heading is averaged over the step duration:

sk _,_te®

v ! dow A A : A s an int
= s = N 1S an mmteger,
T * ¢ 8 Aty Aty

reAg

} . (2D

where ny is the number of samples in Ay. The heading and horizontal coordinates
are propagated by

Xip—1 + Asi cos 1/_fk
Yk = Yk—1 + Asg sin Y,

Xk

(22)

where Asy is the estimated step length, i.e., the distance traveled during the step
with index k (Fig. 6). Position estimates that are based on step detection and step
length estimation are available at step intervals Af, which vary according to the
walking style and the speed of the pedestrian.
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Fig. 6 Dead reckoning in y
two dimensions
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The orientation of the sensor unit with respect to the direction of pedestrian
travel is not fixed in smart phones and many other mobile devices. To determine
the step direction, the knowledge about the orientation of the device with respect
to the environment is required but it is not enough [13, 36]. Methods to estimate
the unknown alignment between the mobile device and the pedestrian (and the step
direction) are compared in [12].

3.5 Effect of Sensor Quality Grade to the Accuracy of PDR

Although PDR mechanization is not as sensitive to sensor errors as the traditional
INS mechanization, the grade of sensors still has an effect to the performance of the
PDR. In this section, the accumulation of errors in PDR is studied based on simple
test cases.

From (13)—(18) it can be seen that the step length estimate is not sensitive to
accelerometer bias: in p2, p3, ps, and pg the bias is totally canceled out and in p;
and py its effect is small. Contrary to the bias error, the effect of the scale factor
error on all other signal patterns except p; is directly proportional to the sensor
error. However, taking square root, cube root or the fourth root of the signal pattern
decreases the effect of accelerometer scale factor error on the step length estimate,
as can be seen in Table 2.

If the scale factor error of the accelerometer is constant, its effect can be taken
into account in the scaling factor of the step length model (19). In practice the
scale factor error of a consumer grade accelerometer based on MEMS technology is
slowly changing as a function of internal conditions of the sensing element, such as
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Table 2 Effect of 1% scale factor error in accelerometer to functions of signal patterns for step
length estimation

Raw Square root Cube root Fourth root
Function p; (k) p;(k)'/> k)3 pj()'/*
Step length error (%) 1.00 0.50 0.33 0.25
a b
Heading error (degrees) y-coordinate (m)
—True .
4+ | ,
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Fig. 7 Effect of 25°/h gyro bias when the pedestrian is walking with constant speed along the
positive x-axis: (a) heading error; (b) true and estimated coordinates; (c) relative position error

the temperature. If the temperature effect on the sensor scale factor at its maximum
is 1%, then the effect on the estimated distance traveled is the same as the relative
error of the evaluated function (Table 2) at the most. These values are small when
compared with step length modeling errors reported in literature [11, 32].

The effect of the gyro quality to PDR estimates can be analyzed by the simulation
of a PDR system defined by (20)—-(22). The effect of the gyro bias is simulated by
using a scenario where the pedestrian walks with constant step length of 0.75 m and
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Table 3 Comparison of gyro grade with respect to the effect of uncompensated bias to the PDR
error build-up

Navigation Tactical Consumer
Bias instability (°/h) 0.0035 1 25
Time to 2% relative position error 27 days 23h 5.5min
Time to 3% relative position error 41 days 3.4h 8.3 min
Time to 3° heading error 35 days 3.0h 7.2 min

constant frequency of 2 steps/s along the positive x-axis. The gyro bias is assumed
to be 25°/h, which is a typical bias instability of consumer grade gyros (Table 1).
The development of heading error, error in estimated position and the position error
relative to the distance traveled is shown in Fig. 7. The heading error grows linearly
(Fig. 7a), the error in the y-coordinate grows quadratically* with respect to the x-
coordinate and time (Fig.7b), and the relative position error with respect to the
distance traveled grows almost linearly (Fig. 7c). With the best step length models,
the long term average in the relative positioning error is about 2-3% [11]. With the
given simulation parameters, the relative positioning error introduced by the gyro
bias is smaller in the beginning, but exceeds 2% in less than 6 min and 3% in less
than 9 min.

To compare the gyro grades described in Table 1, the simulations were also run
with gyro instabilities typical to navigation and tactical grade gyros. The results are
shown in Table 3.

The effect of the gyro scale factor error is simulated by using a scenario where
the pedestrian first makes a 180° turn and then walks with a constant step length of
0.75 m and a constant frequency of 2 steps/s along the positive x-axis. The gyro scale
factor error is assumed to be 1%, which corresponds to the scale factor uncertainty
due to the temperature sensitivity over S0K in a consumer grade gyro [6]. The
heading error, the error in the estimated position, and the position error relative
to the distance traveled are shown in Fig. 8. In this simulation, the heading error
grows in the turn to 1.8° and then stays constant, as the scale factor error has
an effect only when the gyro senses a non-zero anular rate (Fig.8a). Due to the
constant heading error, the position error grows linearly with respect of time and
x-coordinate (Fig. 8b). In the initial turn, the position error relative to the distance
traveled jumps directly to more than 3% (Fig. 8c). That is, with the parameters used
in this simulation and after a 180° turn, the error due to the gyro scale factor error is
larger than the error introduced by the best step length models in [11].

To compare the gyro grades described in Table 1, the simulations were also run
with gyro scale factor errors typical to navigation and tactical grade gyros. The
results are shown in Table 4.

4The growth is almost quadratic with small heading errors; however, with larger heading errors,
the sine and cosine functions in (22) bound the error growth.
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Table 4 Comparison of gyro grade with respect to the effect of uncompensated scale factor error

to the PDR error build-up

Scale factor error (%)
Constant heading error (degrees)
Constant relative position error (%)

Navigation Tactical Consumer
0.001 0.015 1

0.0018 0.027 1.8
0.00314 0.047 3.14

It should be noted that the simulation results given in this section apply only on
PDR mechanization of inertial sensors. The growth of position error is much faster
with traditional INS mechanization, partly due to the low speed of the pedestrian
and partly due to the algorithm simplifications allowed by the characteristics of
pedestrian movements. Another important remark considers the effect of the tilt
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error of the heading gyro: the simulations assume that the sensitive axis of the gyro
is aligned with vertical. However, in practice the sensor unit easily gets tilted by a
couple of degrees, which introduces a scaling error to the gyro output.

4 Infering Context with Inertial Sensors

In addition to providing data for navigation purposes, inertial sensors can be used
to increase the context awareness of a device. One widely used application is
motion mode classification. In Fig.9 the waveform of the norm of accelerometer
measurements, as defined in Eq.(12), is shown. The different characteristics in
waveform depending on motion mode is clearly seen. When walking, foot impacts
clearly increase the variability of the signal. When driving a car, engine vibrations,
vehicle accelerations, and road imperfections cause variations which are smaller
than those occurring during walking. Yet, these variations are distinguishable from
the case of a stationary device where the only source of variation is measurement
noise.

a b
a (t) (9) a (t) (9)
1.5 1.5
1 1
05 ] 2 3 s %% 1 2 3 4
t(s) t(s)
c
a () (9
1.5

0.5

t(s)

Fig. 9 Norm of accelerometer output in different motion modes: (a) walking, 0 = 0.24 g; (b)
driving, o = 0.071 g; (c) stationary, o = 0.0084 g
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In order to have a computer to identify these motion modes, features such as
sample variance or peak frequency need to be extracted from the acceleration data.
Figure 10 shows two such features: the sample standard deviation o and the peak
frequency from non-overlapping 5-s windows. In this example, the classification
is relatively easy, as the characteristics are clearly distinguishable and there is
only one label to learn. In practice, the classification problems are more complex,
with overlapping features and multiple labels [69]. Thus, proper algorithms and
statistical tools are needed to obtain useful classification results. In this section a
brief introduction to such tools is given.

4.1 Pattern Recognition

As a simplified statistical example, pattern recognition problem can be considered
as discrimination between r multivariate normal populations. The Bayes theorem
is applied to obtain the probability of the originating population class (e.g. motion
mode) given the statistics (e.g. features) obtained from the sensor data. A training
data set with labeled motion modes is needed to obtain the class means u;
and covariances X'; for each class j. Then, according to the model, the future
observations collated to a g-dimensional feature vector z are distributed as

zj ~ N(uj, Xj). (23)

It should be stressed that due to limited size of the training data set the mean
vector ;1 € R? and the covariance matrix X; € R?*¢ are actually estimates of
the true model parameters. Further simplification is made by assuming that the prior
probability P(C = j), where C = j denotes an event that the correct class is j is
known. Under these assumptions, Bayes’ theorem can be applied to obtain

. P(C = )
PC=jloy="" ) 7 24)
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where

pi=Y_ psP(C=i). (25)
i=1

The actual classification result is obtained by finding the class that maximizes the
posterior probability P(C = j|z). Adding inference for sequential data can be
done, for example, using Markov model for state transition probabilities P(C; =
h)|P(C;—1 = k) for all possible states 7,k = 1, ..., r. In practice, the assumption
that distributions and correlations between features are known is often invalid as
the feature set may include binary features, multimodally distributed features and
Wishart distributed features (due to sampling in training phase). Thus, in modern
machine learning more generalizable and scalable methods, such as gradient tree
boosting are popular [10]. Even though the new methods in machine learning require
less assumptions for the inputs, there is still a need to understand what kind of data
and features should be included. When inertial sensors are used for classification
there are many options for feature engineering if the basic principles of inertial
sensors are understood well. Features can be extracted from raw data (angular
rates, specific force) or from integrated data (position, velocity, orientation). When
characteristics of sensor noise are identified the effectiveness of high frequency
versus low frequency features may become apparent. Such examples of advanced
features are given in the following section.

4.2 Feature Extraction

Two very important features for classification of motion modes shown in Fig. 10
were examples of statistical (variance) and frequency domain (peak frequency)
features. Using windowed raw sensor data there are many other features easily
obtainable such as [16]:

* Skewness

* Mean absolute deviation

e Zero-crossing rate

* Sub band energies and their ratios

* Change in the peak frequency over 4 sub-frames
* Frequency domain entropy

To make the classification more efficient, there exist efficient algorithms that
can be used reduce the dimensionality of feature space by utilizing the correlation
between features [65].

To show how knowledge of inertial navigation theory may help in classification
the effect known as coning is introduced. The relation between gyroscope measure-
ments and device orientation with fast processing rate was shown in Egs. (7) and (9).
However, the exact relation between rotation vector and gyroscope measurements
is [5]
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psin(p) A
21— cos(py P ® X @) (26)

1 1
b=+ o+ Lo
and the last two terms, describing non-commutativity rate, begin to play a role if the
attitude update rate is too slow. Important feature in this equation is that the cross
product terms remain zero if gyro signal vector (wﬁgl) keeps its direction. If the
gyro signal is constant or the object can rotate only about one fixed axis, then there
is no problem of non-commutativity. The problem arises if gyro data is averaged,
assuming

P~ Wy 27)

and the true rotation is lost due to non-commutativity of rotations. Typically in
inertial sensor processing this is avoided by performing the direction cosine update
with fast rate with respect to motion (or applying coning correction terms). In this
context we loosely define the error due to approximation in Eq.(27) as coning
motion. To see why this is important in motion classification, consider following
scenarios for time period n — m

* Unit is in smartwatch attached to wrist of a pedestrian
» Unit is fixed to a vehicle that is cornering
» Unit is stationary on table, gyros have constant bias

Gyroscope data samples at 20 Hz from these scenarios is shown in Fig.11. To
see the effect of coning errors, this data is resampled by averaging to 1 Hz and
maximum angle error with respect to 20 Hz reference is plotted in Fig.12. By
combining amount of coning error in each case we will see that first example
has quite large non-commutativity rate, vehicular motion clearly less and the in
the static case the coning error is negligible. The coning effect computed this
way is a direct measure of complexity of angular motion experienced, and thus
an useful, acceleration independent feature for motion mode classification. It may
also help obtaining more insight on how the user experiences the motion [61]. It
should be noted that orientation with fast rate is already computed by the inertial
processing algorithm, so the only extra work for deriving this feature is to take
direct average of gyro data, multiply it by time interval and apply it in Eq. (7) (p <«
N > w). Extension this method to specific coning correction algorithms [30] and
accelerometer processing (velocity rotation compensation) is also straightforward.
This illustrates the importance of feature engineering in machine learning, to build
effective feature it is important to know what the sensors actually measure.

Combination of bias and moderate non-coning motion (such as in vehicle mode)
may also result in large coning error. This is because direction of apparent rotation
vector is changing when another component changes its magnitude. Thus the motion
mode recognition and orientation estimation are not necessarily independent tasks.
The quality of sensors affects input features, but on the other hand, known motion
mode can be used to infer gyroscope biased, for example.
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4.3 Classification Accuracy

In practice it is impossible to implement a classifier that makes no mistakes; mis-
classifications will occur from time to time. From the viewpoint of the application
designer, the classification accuracy can be evaluated for two different cases: (a)
the expected misclassification rate prior to observing the features, and (b) the
probability of misclassification given the observed feature vector. For the former,
the overlap in the training data is a good indicator. For the latter, (24) directly
gives such probability, but as mentioned the multinormal model for features is
rarely valid. Often the system designer has no other choice than to collect sufficient
amount of independent data for cross-validation to obtain realistic values for
misclassification rates. In addition, one approach to tolerate misclassification is to
apply partial classification methods, where the option of not classifying a situation
at all is reserved [8]. In motion mode classification the number of classes can
vary a lot, which affects the classification accuracy, but generally the reported mis-
classification error rate is almost always below 10% [16].
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4.4 Areas of Application

Motion mode using sensors in smartphones is already generally available [21] and
applications are growing in number continuously. For example, detailed motion
mode information would be valuable for remote monitoring of elderly people [62].
The modern machine learning tools such as XGBoost seems to be very effective
in this [63]. For navigation applications the detection of Walking-mode allows
using PDR, and many other context-dependent mechanizations or filter profiles
have been proposed [15]. The sequential nature of navigation problem has to be
taken into account in recognition [16, 49]. In principle, motion mode classification
methods can be used in any area where human motion is involved and the subjects
exhibit distinct signatures [3]. The list of available applications is not limited to
human motion mode, as the market for Internet of Things devices is growing in the
industrial side as well and general tendency is to include inertial sensors in all kinds
devices that are experiencing motion, without forgetting the increasing amount of
smartphone applications [68].
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5 Summary

With the development of low-cost MEMS accelerometers and gyroscopes, more and
more motion-aware applications become achievable. Since inertial sensors measure
motion parameters the input is based on physical properties specific to the appli-
cation; emerging applications are usually significantly different from the original
use of inertial sensors, i.e., navigation. Novel applications typically are less strict in
sensor accuracy requirements than traditional inertial navigation systems. However,
imprecision may cause the application to perform poorly in certain situations.
Common methods to improve the performance is to calibrate the inertial sensors
and to filter the sensor data appropriately. Understanding of physical principles of
inertial sensor measurements is essential in designing systems that involve motion
measurement. In this chapter, an introduction to inertial sensor applications was
provided. Such a concise presentation did not permit in-depth treatment of inertial
navigation system algorithms and other applications. More information about these
topics and future trends can be found, e.g., in [13, 16, 22, 48, 58, 60].
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Abstract The aim of this chapter is to describe and optimize the specifications of
signal processing systems, aimed at extracting in real time valuable information out
of large-scale decentralized datasets. A first section will explain the motivations and
stakes and describe key characteristics and challenges of stream mining applica-
tions. We then formalize an analytical framework which will be used to describe
and optimize distributed stream mining knowledge extraction from large scale
streams. In stream mining applications, classifiers are organized into a connected
topology mapped onto a distributed infrastructure. We will study linear chains
and optimise the ordering of the classifiers to increase accuracy of classification
and minimise delay. We then present a decentralized decision framework for joint
topology construction and local classifier configuration. In many cases, accuracy
of classifiers are not known beforehand. In the last section, we look at how to
learn online the classifiers characteristics without increasing computation overhead.
Stream mining is an active field of research, at the crossing of various disciplines,
including multimedia signal processing, distributed systems, machine learning etc.
As such, we will indicate several areas for future research and development.
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Fig. 1 Nine examples of high volume streaming applications

1 Defining Stream Mining

1.1 Motivation

The spread of computing, authoring and capturing devices along with high band-
width connectivity has led to a proliferation of heterogeneous multimedia data
including documents, emails, transactional data, digital audio, video and images,
sensor measurements, medical data, etc. As a consequence, there is a large class
of emerging stream mining applications for knowledge extraction, annotation and
online search and retrieval which require operations such as classification, filtering,
aggregation, and correlation over high-volume and heterogeneous data streams.
As illustrated in Fig. 1, stream mining applications are used in multiple areas,
such as financial analysis, spam and fraud detection, photo and video annotation,
surveillance, medical services, search, etc.

Let us deep-dive into three illustrative applications to provide a more pragmatic
approach to stream mining and identify key characteristics and challenges inherent
to stream mining applications.
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Fig. 2 Semantic concept detection in applications

1.1.1 Application 1: Semantic Concept Detection in Multimedia;
Processing Heterogeneous and Dynamic Data in a
Resource-Constrained Setting

Figure 2 illustrates how stream mining can be used to tag concepts on images
or videos in order to perform a wide set of tasks, from search to ad-targeting.
Based upon this stream mining framework, designers can construct, instrument,
experiment with, and optimize applications that automatically categorize image and
video data captured by various cameras into a list of semantic concepts (e.g., skating,
tennis, etc.) using various chains of classifiers.

Importantly, such stream mining systems need to be highly adaptive to the
dynamic and time-varying multimedia sequence characteristics, since the input
stream is highly volatile. Furthermore, they must often be able to cope with limited
system resources (e.g. CPU, memory, I/O bandwidth), working on devices such
as smartphones with increasing power restrictions. Therefore, applications need
to cope effectively with system overload due to large data volumes and limited
system resources. Commonly used approaches to dealing with this problem in
resource constrained stream mining are based on load-shedding, where algorithms
determine when, where, what, and how much data to discard given the observed
data characteristics, e.g. burst, desired Quality of Service (QoS) requirements, data
value or delay constraints.

1.1.2 Application 2: Online Healthcare Monitoring; Processing Data in
Real Time

Monitoring individual’s health requires handling a large amount of data, coming
from multiple sources such as biometric sensor data or contextual data sources.
As shown in Fig. 3, processing this raw information, filtering and analyzing it are
key challenges in medical services, as it allows real time census and detection
of irregular condition. For example, monitoring pulse check enables to identify if
patient is in critical condition.
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In such application, being able to process data in real time is essential. Indeed,
the information must be extracted and analyzed early enough to either take human
decision or have an automatic control action. As an example, high concentration of
calcium (happening under pain) could lead to either alerting medical staff or even
automatic delivery of pain-killers, and the amount of calcium in the blood would
determine the amount of medicine delivered. This control loop is only possible if
the delay between health measurements (e.g. concentration of calcium in blood)
and adaptation of treatment (e.g. concentration of pain-killer) is minimized.

1.1.3 Application 3: Analysis of Social Graphs; Coping with
Decentralized Information and Setup

Social networks can be seen as a graph where nodes represent people (e.g. bloggers)
and links represent interactions. Each node includes a temporal sequence of data,
such as blog posts, tweets, etc. Numerous applications require to manage this
huge amount of data: (1) selecting relevant content to answer keyword search,
(2) identifying key influencers with page rank algorithms or SNA measures, and
characterizing viral potential using followers’ statistics, (3) recognizing objective
vs. subjective content through lexical and pattern-based models, (4) automatically
classifying data into topics (and creating new topics when needed) by observing
work co-occurrence and using clustering techniques and classifying documents
according to analysis performed on a small part of the document.

These applications are all the more challenging since the information is often
decentralized across a very large set of computers, which is dynamically evolving
over time. Implementing decentralized algorithms is therefore critical, even with
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only partial information about other nodes. The performance of these algorithms can
be greatly increased by using learning techniques, in order to progressively improve
the pertinence of the analysis performed: at start, analysis is only based on limited
data; over time, parameters of the stream mining application can be better estimated
and the model used to process data is more and more precise.

1.2 From Data Mining to Stream Mining
1.2.1 Data Mining

Data mining can be described as the process of applying a query to a set of data,
in order to select a sub-set of this data on which further action or analysis will
be performed. For example, in Semantic Concept Detection, the query could be:
“Select images of skating”.

A data mining application may be viewed as a processing pipeline that analyzes
data from a set of raw data sources to extract valuable information. The pipeline
successively processes data through a set of filters, referred to as classifiers. These
classifiers can perform simple tests, and the query is the resultant of the answer of
these multiple tests. For example, the query “Select images of skating” could be
decomposed in the following tests: “Is it a team sport?”/“Is a Winter sport?”/“Is it a
Ice sport?”/“Is it skating?”

Figure 4a provides an example of data mining application for sports image
classification. Classifiers may be trained to detect different high-level semantic
features, e.g. sports categories. In this example, the “Team Sports” classifier is used
to filter the incoming data into two sets, thereby shedding a significant volume of
data before passing it to the downstream classifiers (negatively identified team sports
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Fig. 4 A hierarchical classifier system that identifies several different sports categories and
subcategories (a) at the same node, (b) across different nodes indicated in the figure as autonomous
processing nodes
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data is forwarded to the “Winter” classifier, while the remaining data is not further
analyzed). Deploying a network of classifiers in this manner enables successive
identification of multiple features in data, and provides significant advantages in
terms of deployment costs. Indeed, decomposing complex jobs into a network of
operators enhances scalability, reliability, and allows cost-performance tradeoffs to
be performed. As a consequence, less computing resources are required because
data is dynamically filtered through the classifier network. For instance, it has been
shown that using classifiers operating in series with the same model (boosting [23])
or classifiers operating in parallel with multiple models (bagging [13]) can result in
improved classification performance.

In this chapter, we will focus on mining applications that are built using a
topology of low-complexity binary classifiers each mapped to a specific concept
of interest. A binary classifier performs feature extraction and classification leading
to a yes/no answer. However, this does not limit the generality of our solutions,
as any M-ary classifiers may be decomposed into a chain of binary classifiers.
Importantly, our focus will not be on the operators’ or classifiers’ design, for which
many solutions already exist; instead, we will focus on configuring! the networks of
distributed processing nodes, while trading off the processing accuracy against the
available processing resources or the incurred processing delays. See Fig. 4b.

1.2.2 Changing Paradigm

Historically, mining applications were mostly used to find facts with data at rest.
They relied on static databases and data warehouses, which were submitted to
queries in order to extract and pull out valuable information out of raw data.

Recently, there has been a paradigm change in knowledge extraction: data is no
longer considered static but rather as an inflowing stream, on which to dynamically
compute queries and analysis in real time. For example, in Healthcare Monitoring,
data (i.e., biometric measurements) is automatically analyzed through a batch of
queries, such as “Verify that the calcium concentration is in the correct interval”,
“Verify that blood pressure is not too high”, etc. Rather than applying a single
query to data, the continuous stream of medical data is by default pushed through
a predefined set of queries. This enables to detect any abnormal situation and react
accordingly. See Fig. 5.

Interestingly, stream mining could lead to performing automatic action in
response to a specific measurement. For example, a higher dose of pain killers could
be administrated when concentration of calcium becomes too high, thus enabling
real-time control. See Fig. 6.

TAs we will discuss later, there are two types of configuration choices we must make: the
topological ordering of classifiers and the local operating points at each classifier.
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Fig. 6 Representation of knowledge extraction process in data mining system

1.3 Problem Formulation
1.3.1 Classifiers

A stream mining system can be seen as a set of binary classifiers. A binary
classifier divides data into two subsets—one containing the object or information of
interest (the “Positive” Set), and one not containing such objects or information (the
“Negative” Set)—by applying a certain classification rule. For instance, the ‘Team
sport’ classifiers separates images into those who represent a team sport and those
who do not represent a team sport. This can be done using various classification
techniques, such as Support Vector Machine (SVM), or K-nearest neighbor.

These algorithms are based on learning techniques, built upon test data and
refined over time: they look for patterns in data, images, etc. and make decisions
based on the resemblance of data to these patterns. As such, they are not fully
accurate. A classifier can introduce two types of errors:
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* Misdetection errors: Missing objects or data of interest by tagging it as belonging
to the Negative Set rather than the Positive Set. We will note p? the probability
of detecting a data unit: 1 — p? is the probability of misdetection.

* False alarm errors: Wrongly tagging objects or data which are not of interest as
belonging to the Positive Set. We will note p’ this probability of false alarm.

Naturally, there is a trade-off between misdetection and false alarm errors: to avoid
misdetections, the classifier could tag all data as positive, which would generate a
high false alarm rate.

We will call operating point the couple (p?, p%). In Fig. 7, the operating points
of various classifiers are plotted and form what is referred as ROC curves. The
accuracy of the classifier depends on the concavity of the ROC curve, the more
concave, the more precise.

The operating points’ choice has two consequences on the performance of
the stream mining system. First, it affects the precision of each classifier (both
misdetection and false alarms) and of the system as a whole. Secondly, it defines the
amount of data which is going to be transmitted through the classifiers and therefore
the delay required for the system to process the data stream.

1.3.2 Acxis for Study

This chapter focuses on developing a new systematic framework for knowledge
extraction from high-volume data streams using a network of classifiers deployed
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over a distributed computing infrastructure. It can be decomposed into four sub-
problems which we will develop in the following sections:

1. Stream Mining System Optimization: In Sect.2, we develop optimization
techniques for tuning the operating points of individual classifiers in order
to improve the stream mining performance, in terms of accuracy and delay.
We formalize the problem of large-scale knowledge extraction by defining
appropriate local and end-to-end objective functions, along with resource and
delay constraints. They will guide the optimization and adaptation algorithms
used to improve the stream mining performance.

2. Stream Mining System Topology Optimization: As shown in Fig. 4, a stream
mining system is a topology of classifiers mapped onto a distributed infrastruc-
ture. These classifiers can be organized in one single chain, or in multiple parallel
chains, thus forming a tree topology. In Sect. 3, we investigate the impact of the
classifiers’ topology on the performance, scalability and dynamic behavior of the
stream mining system. We will focus on the study of linear chains of classifiers
and determine how to jointly choose the order of classifiers in the chain and the
operating point of each classifier in order to maximize accuracy and minimize
delays.

3. Decentralized Solutions Based on Interactive Multi-Agent Learning: For
large scale stream mining systems, where the classifiers are distributed across
multiple nodes, the choice of operating point and topology of the classifiers
would require heavy computational resources. Furthermore, optimizing the
overall performance requires interactive multi-agent solutions to be deployed at
each node in order to determine the effect of each classifiers’ decisions on the
other classifiers and hence, the end to end performance of the stream mining
applications. In the fourth section of this chapter, we develop a decentralized
decision framework for stream mining configuration and propose distributed
algorithms for joint topology construction and local classifier configuration.
This approach will cope with dynamically changing environments and data
characteristics and adapt to the timing requirements and deadlines imposed by
other nodes or applications.

4. Online Learning for Real-Time Stream Mining: In Sect.5, we consider
the stream mining problems in which the classifier accuracies are not known
beforehand and needs to be learned online. Such cases frequently appear in real
applications due to the dynamic behavior of heterogeneous data streams. We
explain how the best classifiers (or classifier configurations) can be learned via
repeated interaction, by driving the classifier selection process using meta-data.
We also model the loss due to not knowing the classifier accuracies beforehand
using the notion of regret, and explain how the regret can be minimized while
ensuring that memory and computation overheads are kept at reasonable levels.
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1.4 Challenges

Several key research challenges drive our analysis and need to be tackled: These are
discussed in the following sections.

1.4.1 Coping with Complex Data: Large-Scale, Heterogeneous and
Time-Varying

First, streaming data supposes that have high volume of timeless information flows
in continuously. Stream mining systems thus need be scalable to massive data source
and be able to simultaneously deal with multiple queries.

Both structured and unstructured data may be mined. In practice, data is
wildly heterogeneous in terms of formats (documents, emails, transactions, digital
video and/or audio data, RSS feeds) as well as data rates (manufacturing: 5—
10 Mbps, astronomy: 1-5 Gbps, healthcare: 10-50 Kbps per patient). Furthermore,
data sources and sensors may eventually be distributed on multiple processing
nodes, with little or no communication in between them.

Stream mining systems need to be adaptive in order to cope with data and
configuration dynamics: (1) heterogeneous data stream characteristics, (2) classifier
dependencies, (3) congestion at shared processing nodes and (4) communication
delays between processing nodes. Additionally, several different queries (requiring
different topological combinations of classifiers) may need to be satisfied by the
system, requiring reconfiguration as queries change dynamically.

1.4.2 Immediacy

Stream mining happens now, in real time. The shift from data mining to stream
mining supposes that data cannot be stored and has to be processed on the fly.

For instance, in healthcare monitoring, minimizing delay between health mea-
surements (e.g. concentration of calcium in blood) and adaptation of treatment
(e.g. concentration of pain-killer) is critical. For some applications such as high-
frequency trading, being real time may even be more important than minimizing
misclassification costs. otherwise historic data would become obsolete and lead to
phrased-out investment decisions.

Delay has seldom been analyzed in existing work on stream mining systems and,
when it has been [1], it has always been analyzed in steady-state, at equilibrium,
after all processing nodes are configured. However, the equilibrium can often not
be reached due to the dynamic arrival and departure of query applications. Hence,
this reconfiguration delay out of equilibrium must be considered when designing
solutions for real-time stream mining systems.

Delay constraints are all the more challenging in a distributed environment,
where the synchronization among nodes may not be possible or may lead to sub-
optimal designs, as various nodes may experience different environmental dynamics
and demands.
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1.4.3 Distributed Information and Knowledge Extraction

To date, a majority of approaches for constructing and adapting stream mining
applications are based on centralized algorithms, which require information about
each classifier’s analytics to be available at one node, and for that node to manage
the entire classifier network. This limits scalability, creates a single point of failure,
and provide limits in terms of adaptivity to dynamics.

Yet, data sources and classifiers are often distributed over a set of processing
nodes and each node of the network may exchange only limited and/or costly
message with other interconnected nodes to. Thus, it may be impractical to develop
centralized solutions [4, 7, 18, 32, 33].

In order to address this naturally distributed setting, as well as the high
computational complexity of the analytics, it is required to formally define local
objectives and metrics and to associate inter-node message exchanges that enable
the decomposition of the application into a set of autonomously operating nodes,
while ensuring global performance. Such distributed mining systems have recently
been developed [5, 19]. However, they do not encompass the accuracy and delay
objectives described earlier.

Depending on the system considered, classifiers can have strong to very limited
communication. Thus, classifiers may not have sufficient information to jointly
configure their operating points. In such distributed scenarios, optimizing the end-
to-end performance requires interactive, multi-agent solutions in order to determine
the effect of each classifier’s decisions on the other classifiers. Nodes need to learn
online the effect of both their experienced dynamics as well as the coupling between
classifiers.

Besides, for classifiers instantiated on separate nodes (possibly over a network),
the communication time between nodes can greatly increase the total time required
to deal with a data stream. Hence, the nodes will not be able to make decisions
synchronously.

1.4.4 Resource Constraints

A key research challenge [1, 12] in distributed stream mining systems arises from
the need to cope effectively with system overload, due to limited system resources
(e.g. CPU, memory, I/O bandwidth etc.) while providing desired application
performance. Specifically, there is a large computational cost incurred by each
classifier (proportional to the data rate) that limits the rate at which the application
can handle input data. This is all the more topical in a technological environment
where low-power devices such as smartphones are becoming more and more used.
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2 Proposed Systematic Framework for Stream Mining
Systems

2.1 Query Process Modeled as Classifier Chain

Stream data analysis applications pose queries on data that require multiple concepts
to be identified. More specifically, a query ¢ is answered as a conjunction of a set of
N classifiers C(q) = {C1, ..., Cn}, each associated with a concept to be identified
(e.g. Fig. 4 shows a stream mining system where the concepts to be identified are
sports categories).

In this chapter, we focus on binary classifiers: each binary classifier C; labels
input data into two classes #; (considered without loss of generality as the class of
interest) and ;. The objective is to extract data belonging to ﬂlNzl H;.

Partitioning the problem into this ensemble of classifiers and filtering data
successively (i.e. discarding data that is not labelled as belonging to the class of
interest), enables to control the amount of resources consumed by each classifier
in the ensemble. Indeed, only data labelled as belonging to #{; is forwarded, while
data labelled as belonging to #; is dropped. Hence, a classifier only has to process
a subset of the data processed by the previous classifier. This justifies using a chain
topology of classifiers, where the output of one classifier C;_; feeds the input of
classifier C;, and so on, as shown in Fig. 8.

2.1.1 A-Priori Selectivity

Let X represent the input data of a classifier C. We call a-priori selectivity ¢ =
P(X € #) the a-priori probability that the data X belongs to the class of interest.
Correspondingly 1 — ¢ = P(X € #). Practically speaking, the a-priori selectivity ¢
is computed on a training and cross-validation data set. For well-trained classifiers,
it is reasonable to expect that the performance on new, unseen test data is similar to
that characterized on training data. In practice, there is potential train-test mismatch
in behavior, but this can be accounted for using periodic reevaluation of the classifier
performance (e.g. feedback on generated results).

4] [o]

o H

Fig. 8 Representation of analytical framework to evaluate classifier chain performance
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For a chain of classifiers C = {C1, ..., Cn}, the a-priori selectivity of a classifier
corresponds to the conditional probability of data belonging to classifier C;’s class
of interest, given that it belongs to the class of interest of the previous i — 1
classifiers: ¢; = P(X € H;|X € ﬂ}c;ll Hy). Similarly, we define the negative
a-priori selectivity as ¢; = P(X € H;|X ¢ ﬂ;;ll Hy). Since a-priori selectivities
depend on classifiers higher in the chain, ¢; # 1 — ;.

2.1.2 Classifier Performance

The output X of a classifier C can be modeled as a probabilistic function of its
input X. The proportion of correctly classified samples in # is captured by the
probability of correct detection p,? = P()A( € Hy|X € Hy), while the proportion of
falsely classified samples in #j is pf = P(X € Hy|X € Hy).

The performance of the classifier C is characterized by its ROC curve that
represents the tradeoff between the probability of detection p? and probability
of false alarm p’. We represent the ROC curve as a function f : pf — pP
that is increasing, concave and lies over the first bisector [11]. As a consequence,
an operating point on this curve is parameterized uniquely by its false alarm rate
x = p¥. The operating point is denoted by (x, f(x)) = (pF, pP).

We model the average time needed for classifier C to process a stream tuple as
a (in seconds). The order of magnitude of o depends on the data characteristics,
as well as the classification algorithm, and can vary from microseconds (screening
text) to multiple seconds (complex image or video classification).

2.1.3 Throughput and Goodput of a Chain of Classifiers

The forwarded output of a classifier C; consists of both correctly labelled data
from class #H; as well as false alarms from class #;. We use g; to represent the
goodput (portion of data correctly labelled) and #; to represent the throughput (total
forwarded data, including mistakes). And we will note # to represent the input rate
of data.

Using Bayes formula, we can derive #; and g; recursively as

F D F
ai = p; +(p;” — p; )i
[“}z[wbq[ﬁl}, where b= (pP — pF)oi — b (D)

. O Ci i1
& ilL& ci = pPoi
T~i71

For a set of independent classifiers, the positive and negative a-priori selectivities

are equal: ¢; = ¢; = P(X € H). As a consequence, the transition matrix is
; D, — &) pF
d@mﬂnlz[nm+a oor; 0 }
0 p; b;
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2.2 Optimization Objective

The global utility function of the stream mining system can be expressed as a
function of misclassification and delay cost, under resource constraints.

2.2.1 Misclassification Cost

The misclassification cost, or error cost, may be computed in terms of the two types
of accuracy errors—a penalty ¢V per unit rate of missed detection, and a penalty
¢’ per unit rate of false alarm. These are specified by the application requirements.
Noting ¢ = ]_[,1:]=1 ¢y, the total misclassification cost is

M F
Corr =C" (P19 —gN)  + ¢ (N — gN) . ()
—— ——
misseddata wronglyclassifieddata

2.2.2 Processing Delay Cost

Delay may be defined as the time required by the chain of classifiers in order to
process a stream tuple. Let a; denote the expected processing time of classifier C;.
The average time required by classifier C; to process a stream tuple is given by
d; = o; P;, where P; denotes the fraction of data which has not been rejected by the
first i — 1 classifiers and still needs to be processed through the remaining classifiers
i—1
. . Tk li—1 .
of the chain. Recursively, P; = l—[ , = o After summation across all
k—1 0
k=1
classifiers, the average end-to-end processing time required by the chain to process
stream data is

N N N
Cdelay = 10 Z d =1ty ZOL;Pi = de—l- 3)
i=1 i=1

i=1

2.2.3 Resource Constraints

Assume that the N classifiers are instantiated on M processing nodes, each of which
has a given available resource r**. We can define a location matrix M € {0, 1}M*V
where M;; = 1if C; is located on node j and 0 otherwise. The resource constraint
at node j can be written as Z,N=1 Mjir; < r'fe*,

The resource r; consumed at node j by classifier C; is proportional to the
throughput #;, i.e. r; o t;.
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2.2.4 Optimization Problem

Stream mining system configuration involves optimizing both accuracy and delay
under resource constraints. The utility function of this optimization problem may
be defined as the negative weighted sum of both the misclassification cost and the
processing delay cost: U = —Cerr — N Cqelay » Where the parameter . controls
the tradeoff between misclassification and delay. This utility is a function of the
throughputs and goodputs of the stream within the chain, and therefore implicitly
depends on the operating point x; = piF € [0, 1] selected by each classifier.

Letx = [xi.....xn] . K = 5y €l0.1]andp = ,* 0 € R*" The
optimization problem can be reformulated under a canonic format as follows:
N
maximize U (x) = g () — Kty (X) = Y piti—1(X)

“

xe[0 11V Py
subjectto 0 <x <1 and Mr < r™®

2.3 Operating Point Selection

Given a topology, the resource-constrained optimization problem defined in Eq. (4)
may be formulated as a network optimization problem (NOP) [16, 20]. This problem
has been well studied in [11, 21, 31] and we refer the interested reader to the
corresponding literature.

The solutions proposed involve using iterative optimization techniques based
on Sequential Quadratic Programming (SQP) [3]. SQP is based on gradient-
descent, and models a nonlinear optimization problem as an approximate quadratic
programming subproblem at each iteration, ultimately converging to a locally
optimal solution.

Selecting the operating point can be done by applying the SQP-algorithm to the
Lagrangian function of the optimization problem in (4):

L(X, v, ) =UX) — vlT(x— 1) ~|—v2Tx.

Because of the gradient-descent nature of the SQP algorithm, it is not possible
to guarantee convergence to the global maximum and the convergence may only
be locally optimal. However, the SQP algorithm can be initialized with multiple
starting configurations in order to find a better local optimum (or even the global
optimum). Since the number and size of local optima depend on the shape of the
various ROC curves of each classifier, a rigorous bound on the probability to find
the global optimum cannot be proven. However, certain start regions are more likely
to converge to better local optimum.?

2For example, since the operating point p¥ = 0 corresponds to a saddle point of the utility
function, it would achieve steepest utility slope. Furthermore, the slope of the ROC curve is
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2.4 Further Research Areas

Further research areas are the following:

¢ Communication delay between classifiers: The model could be further refined
to explicitly consider communication delays, i.e. the time needed to send stream
tuples from one classifier to another. This is all the more true in low-delay settings
where classifiers are instantiated on different nodes.

¢ Queuing delay between classifiers: Due to resource constraints, some classifiers
may get congested, and the stream will hence incur additional delay. Modeling
these queuing delays would further improve the suitability of the framework for
real-time applications.

» Single versus multiple operating points per classifier: Performance gains can
be achieved by allowing classifiers to have different operating points x; and x; for
their positive and negative classes. If the two thresholds overlap, low-confidence
data will be duplicated across both output edges, thereby increasing the end-to-
end detection probability. If they do not overlap, low-confidence data is shed,
thus reducing congestion at downstream classifiers.

e Multi-query optimization: Finally, a major research area would consist in
studying how the proposed optimization and configuration strategies adapt to
multi-query settings, including mechanisms for admission control of queries.

3 Topology Construction

In the previous section, we have determined how to improve performance of a
stream mining system—both in terms of accuracy and delays—by selecting the right
operating point for each classifier of the chain. This optimization was however per-
formed given a specific topology of classifiers: classifiers were supposed arranged
as a chain and the order of the classifiers in the chain was fixed.

In this section, we study the impact of the topology of classifiers on the
performance of the stream mining system. We start by focusing on a chain topology
and study how the order of classifiers on the chain alters performance.

3.1 Linear Topology Optimization: Problem Formulation

Since classifiers have different a-priori selectivities, operating points, and complex-
ities, different topologies of classifiers will lead to different classification and delay
costs.

maximal at p¥ = 0 (due to concavity of the ROC curve), such that high detection probabilities can
be obtained under low false alarm probabilities near the origin.
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Fig. 9 Representation of o-ordered classifier chain

Consider N classifiers in a chain, defined as in the previous section. An order
0 € Perm(N) is a permutation such that input data flows from Cq(1) to Co(y). We
generically use the index i to identify a classifier and % to refer to its depth in the
chain of classifiers. Hence, C; = Cq(j,) will mean that the Ath classifier in the chain
is C;. To illustrate the different notations used, a o-ordered classifier chain is shown
in Fig.9.

Using the recursive relationship defined in Eq. (1), we can derive the end-to-end
throughput #; and goodput g; of classifier C; = Cs(;,) recursively as

|:ti ] _ [pf +o5(p” = pl) (@ — 67 (pP — pf)} oy )
T oD I
8i 0 b p; 8h—1
Tii—l:Thg
The optimization problem can be written as:
N
maximize U(o,x) = g% (x) — Kt%,(x) — pit%  (X)
oePerm(N),xe[0 11V N N Z vl . (6)

i=1
subject to 0<x<1

3.2 Centralized Ordering Algorithms for Fixed Operating
Points

In this section, we consider a set of classifiers with fixed operating points x. Since
transition matrices 7,° are lower triangular, the goodput does not depend on the order
of classifiers.’ As a consequence, the expression of the utility defined in Eq. (4) can
be simplified as:

3Furthermore, when classifiers are independent, the transition matrices 7,7 are diagonal and there-
fore commute. As a consequence the end throughput 7y (x) and goodput gy (x) are independent
of the order. However, intermediate throughputs do depend on the ordering—Ileading to varying
expected delays for the overall processing.
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N
maximize U, = — Z Po(myty_ + Kt ] @)
cefperm(ll,N]) h=1

3.2.1 Optimal Order Search

The topology construction problem involves optimizing the defined utility by
selecting the appropriate order o. In general, there exist N! different topologic
orders, each with a different achieved utility and processing delay. Furthermore,
the relationship between order and utility cannot be captured using monotonic or
convex analytical functions. Hence, any search space for order selection increases
combinatorially with N. This problem is exacerbated in dynamic settings where the
optimal order has to be updated online; in settings with multiple chains, where each
chain has to be matched with a specific optimal order; and, in settings with multiple
data streams corresponding to the queries of multiple users.

3.2.2 Greedy Algorithm

Instead of solving the complex combinatorial problem, we suggest to design simple,
but elegant and powerful, order selection algorithms—or Greedy Algorithms—with
provable bounds on performance [2, 6].

The Greedy Algorithm is based on the notion of ex-post selectivity. For a given
order o, we define the ex-post selectivity as the conditional probability of classifier
Cos(n) labelling a data item as positive given that the previous 4 —1 classifiers labelled

the data as positive,” i.e. V= téh . The throughput at each step can be expressed
h—1

i
h
recursively as a product of ex-post selectivities: 1) = Yoty | =... = (1_[ w;’) to.
i=1

The Greedy Algorithm then involves ordering classifiers in increasing order of
Po(i+1) = L.MicF Agi+1y ifi <N —1
K=, ifi =N
depends on the selected order.

Since this ratio depends implicitly on the order of classifiers in the chain, the
algorithm may be implemented iteratively, selecting the first classifier, then selecting
the second classifier given the fixed first classifier, and so on:

U

M where u? = . Note that this fraction

40bserve that for a perfect classifier ( pé)( n = land p(f( ny = 0), the a-priori conditional probability
o7 and the ex-post conditional probabilities s} are equal.
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Centralized Algorithm 1 Greedy ordering

o Calculate the ratio {{/ug for all N classifiers. Select Cy(1y as the classifier with lowest

o
weighted non-conditional selectivity {§/u{. Determine [;1? i|
o Calculate the ratio {3 /u3 for all remaining N — 1 classifiers. Select Cy(2) as the classifier

. . o . . 5
with lowest weighted conditional selectivity |5 /u3. Determine [ 20 :|
&
e Continue until all classifiers have been selected.

In each iteration we have to update O(N) selectivities and there are O(N)
iterations, making the complexity of the algorithm O(N?) (compared to O(N!)
for the optimal algorithm). Yet, it can be shown that the performance of the Greedy
Algorithm can be bound:

L 5,
pt G opt : _
KUmdSUW <U,, with k = 4.

The value Ug 4 Of the utility obtained with the Greedy Algorithm’s order is at least

1/4th of the value of the optimal order U(ff dt. Furthermore, the approximation factor
k = 4 corresponds to a system with infinite number of classifiers [34]. In practice,
this constant factor is smaller. Specifically, we have k = 2.35,2.61, 2.8 for 20, 100
or 200 classifiers respectively.

The key of the proof of this result is to show that the Greedy Algorithm is
equivalent to a greedy 4-approximation algorithm for pipelined set-cover. We refer
the interested reader to the demonstration made by Munagala and Ali in [2] and
let him show that our problem setting is equivalent to the one formulated in their
problem.

3.3 Joint Order and Operating Point Selection

Further system performance can be achieved by both optimizing the order of the
chain of classifiers and the operating point configuration.

To build a joint order and operating point selection strategy, we propose to
combine the SQP-based solution for operating point selection with the iterative
Greedy order selection. This iterative approach, or SQP-Greedy algorithm, is
summarized as follows:
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Centralized Algorithm 2 SQP-Greedy algorithm for joint ordering and operating
point selection

o Initialize c(©.
e Repeat until greedy algorithm does not modify order.
1. Given order o), compute locally optimal x/) through SQP.
2. Given operating points x/), update order 6U/+1 using (A-)Greedy algorithm.

Each step of the SQP-Greedy algorithm is guaranteed to improve the global
utility of the problem. Given a maximum bounded utility, the algorithm is then
guaranteed to converge. However, it may be difficult to bound the performance gap
between the SQP-Greedy and the optimal algorithm with a constant factor, since
the SQP only achieves local optima. As a whole, identification and optimization of
algorithms used to compute optimal order and operating points represents a major
roadblock to stream mining optimization.

3.3.1 Limits of Centralized Algorithms for Order Selection

We want to underline that updating the ex-post selectivities requires strong coor-
dination between classifiers. A first solution would be for classifiers to send their
choice of operating point (pf, pP) to a central agent (which would also have
knowledge about the a-priori conditional selectivities ¢°, ¢$°) and would compute
the ex-post conditional selectivities. A second solution would be for each classifier
C; to send their rates ¢; and g; to the classifiers C; which have not yet processed the
stream for them to compute w’] In both cases, heavy message exchange is required,
which can lead to system inefficiency (cf. Sect.4.1). We will propose in Sect. 4
a decentralized solution with limited message exchanges, as an alternative to this
centralized approach.

3.4 Multi-Chain Topology

3.4.1 Motivations for Using a Multi-Chain Topology: Delay Tradeoff
Between Feature Extraction and Intra-Classifier Communication

In the previous analysis, we did not take into consideration the time o’ required by
classifiers to communicate with each other. If classifiers are all grouped on a single
node, such communication time a7 = can be neglected compared to the time afeat
required by classifiers to extract data features. However for classifiers instantiated
on separate nodes, this communication time aS%/" can greatly increase the total time

ext
required to deal with a stream tuple.
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As such, we would like to limit the communication between nodes, i.e. (1) avoid
sending the stream back and forth from one node to another and (2) limit message
exchanges between classifiers. To do so, a solution would be to process the stream
in parallel on each node and to intersect the output of each node-chain.

3.4.2 Number of Chains and Tree Configuration

Suppose that instead of considering classifiers in a chain, we process the stream
through R chains, where chain r has N, classifiers with the order o,. The answer
of the query is then obtained by intersecting the output of each chain r (we assume
that this operation incurs zero delay).

We can show that, as a first approximation, the end-to-end processing time can
be written as

R N, R N,—1
(of _ feat o, com o
Cetay = D D L'yt T2 D Wiy el - (®)
r=1 h=1 r=1 h=1
featureextraction intra—classifiercommunication

Intuitively, the feature extraction term increases with the number of chains R,
as each chain needs to process the whole stream, while the intra-classifier com-
munication term decreases with R, since using multiple chains enables classifiers
instantiated on the same node to be grouped together in order to avoid time-costly
communication between nodes (cf. Fig. 4b).

Configuring stream mining systems as tree topologies (i.e. determining the
number of chains to use in order to process the stream in parallel, as well as
the composition and order of each chain) represents a major research theme. The
number of chains R and the choice of classifiers per chain illustrate the tradeoff
between feature extraction and intra-classifier communication and will depend on
the values of a/¢? and a*™.

4 Decentralized Approach

4.1 Limits of Centralized Approaches and Necessity of a
Decentralized Approach

The centralized approach presented in the previous sections has six main limita-
tions:

1. System and Information Bottlenecks: Centralized approaches require a central
agent that collects all information, generates optimal order and operating points
per classifier, and distributes and enforces results on all classifiers. This creates a
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bottleneck, as well as a single point of failure, and is unlikely to scale well as the
number of classifiers, topologic settings, data rates, and computing infrastructure
grow.

2. Topology Specificity: A centralized approach is designed to construct one
topology for each user application of interest. In practice the system may be
shared by multiple such applications—each of which may require the reuse of
different subsets of classifiers. In this case, the centralized algorithm needs to
design multiple orders and configurations that need to be changed dynamically
as application requirements change, and applications come and go.

3. Resource Constraints: Currently designed approaches minimize a combination
of processing delay and misclassification penalty. However, in general we also
need to satisfy the resource constraints of the underlying infrastructure. These
may in general lead to distributed non-convex constraints in the optimization,
thereby further increasing the sub-optimality of the solution, and increasing the
complexity of the approach.

4. Synchronization Requirements: The processing times vary from one classifier
to the other. As a result, transmission from one classifier to another is not
synchronized. Note that this asynchrony is intrinsic to the stream mining system.
Designing one centralized optimization imposes synchronization requirements
among classifiers and as the number of classifiers and the size of the system
increases may reduce the overall efficiency of the system.

5. Limited Sensitivity to Dynamics: As an online process, stream mining opti-
mization must involve algorithms which take into account the system’s dynamics,
both in terms of the evolving stream characteristics and classifiers’ processing
time variations. This time-dependency is all the more true in a multi-query
context, with heterogeneous data streams for which centralized algorithms are
unable to cope with such dynamics.

6. Requirement for Algorithms to Meet Time Delay Constraints: These dynam-
ics require rapid adaptation of the order and operating points, often even at the
granularity of one tuple. Any optimization algorithm thus needs to provide a
solution with a time granularity finer than the system dynamics. Denote by t the
amount of time required by an algorithm to perform one iteration, i.e. to provide
a solution to the order and configuration selection problem. The solution given
by an algorithm will not be obsolete if T < €9 where T%" represents the
characteristic time of significant change in the input data and characteristics of
the stream mining system and € < 1 represents a buffer parameter in case of
bursts.

To address these limitations, we propose a decentralized approach and design
a decentralized stream mining framework based on reinforcement learning tech-
niques.
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Fig. 10 Stochastic decision process: at each node, optimisation of local utilisation of select
operating point and child classifier

4.2 Decentralized Decision Framework

The key idea of the decentralized algorithm is to replace centralized order selection
by local decisions consisting in determining to which classifier to forward the
stream. To describe this, we set up a stochastic decision process framework
{C., S, A, U} [15], illustrated in Fig. 10, where

e C={Cy,...,Cn}represents the set of classifiers
* S = x S; represents the set of states
i<N
* A4 = x A; represents the set of actions
i<N
e U={U,,...,Uy}represents the set of utilities

4.2.1 Users of the Stream Mining System

Consider N classifiers C = {Cq, ..., Cy}. The classifiers are autonomous: unless
otherwise mentioned, they do not communicate with each other and take decisions
independently. We recall that the ith classifier will be referred as C; = Cq (). We
will also refer to the stream source as Co = Cy(0)-

4.2.2 States Observed by Each Classifier

The set of states can be decomposed as S = x S;. The local state set of
i<N
classifier C; = Cgy(;) at the hth position in the classifier chain is defined as

Si = {(Children(C;), 6;)}:

e Children(C;) = {Ck € CICk ¢ {Cs1y, Co(2) ...,Ci}} C C represents the
subset of classifiers through which the stream still needs to be processed after
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it passes classifier C;. This is a required identification information to be included
in the header of each stream tuple such that the local classifier can know which
classifiers still need to process the tuple.

fhi

* The throughput-to-goodput ratio 6; = e € [1,00] is a measure of the
h—1

accuracy of the ordered set of classifiers {Cq(1), Cy(2), - - ., Ci}. Indeed, 6; =1

corresponds to perfect classifiers Cy(1y, Cy(2), - - -, Ci, (With pD = 1and pF =

0), while larger 6; imply that data has been either missed or wrongly classified.

The state 6; can be passed along from one classifier to the next in the stream
tuple header. Since 0; € [1, oo], the set of states S; is of infinite cardinality. For
computational reasons, we would require a finite set of actions. We will therefore
approximate the throughput-to-goodput ratio by partitioning [1, oo] into L bins
S; = [bi—1, by] and approximate 0; € S; by some fixed value s; € S;.

4.2.3 Actions of a Classifier

Each classifier C; has two independent actions: it selects its operating point x; and
it chooses among its children the trusted classifier C;_, to which it will transmit the
stream. Hence 4; = {(x;, Ci_ )}, where

* x; € [0, 1] corresponds to the operating point selected by C;.
* Cj_ € Children(C;) corresponds to the classifier to which C; will forward the
stream. We will refer to C;_, as the trusted child of classifier C;.

Note that the choice of trusted child C;_, is the local equivalent of the global
order . The order is constructed classifier by classifier, each one selecting the child
to which it will forward the stream: Vi € [1, N1, Con) = Co(h—1)—-

4.2.4 Local Utility of a Classifier
We define the local utility of a chain of classifiers by backward induction:

Usty = =pom—1 + Usthary  and  Usny = —ponff—1 + 8% — K13
©))
The end-to-end utility of the chain of classifiers can then be reduced to U = Uy(1).
The key result of this section consists in the fact that the global optimum can be
achieved locally with limited information. Indeed, each classifier C; = Cg(s) will
globally maximize the system’s utility by autonomously maximizing its local utility

. = o o

Ui = [vf wi]

——

=[vi wi]
recursively:

o
=11 where the local utility parameters [ v w? | are defined
h—1
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[v
[v

This proposition can easily be proven recursively.
Therefore, the local utility of classifier C; can now be rewritten as

w ] =—[pow) O] +[-K 1]T}
wj | —[pc(h>0]+[vﬁ+1 wZH]Tf-

sa =aQ

Ui = (_ [0i 0] + [UZH wZ+1] Tia(xi)> |:;§_11i| . (10)

As such, the decision of classifier C; only depends on its operating point x;,
on the state 6; which it observes® and on the local utility parameters [v jw j] of
its children classifiers C; € Children(C;). Once it knows the utility parameters
of all its children, classifier C; can then uniquely determine its best action (i.e. its
operating point x; and its trusted child C;_, ) in order to maximize its local utility.

4.3 Decentralized Algorithms

At this stage, we consider classifiers with fixed operating points. The action of a
classifier C; is therefore limited to selecting the trusted child C;_, € Children(C;)
to which it will forward the stream.

4.3.1 Exhaustive Search Ordering Algorithm

We will say that a classifier C; probes a child classifier C; when it requests its child
utility parameters [v; w; |.

To best determine its trusted child, a classifier only requires knowledge on the
utility parameters of all its children. We can therefore build a recursive algorithm
as follows: all classifiers are probed by the source classifier Cp; to compute their
local utility, each of the probed classifiers then probes its children for their utility
parameters [v w ] To determine these, each of the probed children needs to probe
its own children for their utility parameter, etc. The local utilities are computed in
backwards order, from leaf classifiers to the root classifier Cy. The order yielding
the maximal utility is selected.

Observe that this decentralized ordering algorithm leads to a full exploration
of all N! possible orders at each iteration. Achieving the optimal order only
requires one iteration, but this iteration requires O(N!) operations and may thus

5 Ui

ti_y and g;_; are not required since: argmax U; = argmax =

(= Lo 0]+ [wigr wisa ] 77) [9{} -
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Fig. 12 Global Partial Search Algorithm only probes a selected subset of classifier orders

—E

require substantial time, since heavy message exchange is required (Fig. 11). For
quasi-stationary input data, the ordering could be performed offline and such com-
putational time requirement would not affect the system’s performance. However,
in bursty and heterogeneous settings, we have to ensure that the optimal order
calculated by the algorithm would not arrive too late and thus be completely
obsolete. In particular, the time constraint T < ¢z defined in Sect.4.1 must
not be violated.

We therefore need algorithms capable of quickly determining a good order,
though convergence may require more than one iteration. In this way, it will be
possible to reassess the order of classifiers on a regular basis to adapt to the
environment.

4.3.2 Partial Search Ordering Algorithm

The key insight we want to leverage is to screen only through a selected subset
of the N! orders at each iteration. Instead of probing all its children classifiers
systematically, the hth classifier will only request the utility parameters [v w ] ofa
subset of its N — h children.

From a global point of view, one iteration can be decomposed in three major
steps, as shown on Fig. 12:
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Fig. 13 Time scales for decentralized algorithms

Step 1: Selection of the Children to Probe A partial tree is selected recursively
(light grey on Fig. 12). A subset of the N classifiers are probed as first classifier of
the chain. Then, each of them selects the children it wants to probe, each of these
children select the children which it wants to probe, etc.

Step 2: Determination of the Trusted Children The order to be chosen is
determined backwards: utilities are computed from leaf classifiers to the source
classifier Cy based on feedback utility parameters. At each node of the tree, the
child classifier which provides its parent with the greatest local utility is selected as
the trusted child (dark grey on Fig. 12).

Step 3: Stream Processing The stream is forwarded from one classifier to its
trusted child (black on Fig. 12).

If we want to describe Step 1 more specifically, classifier C; will probe its child
C; with probability p'. As will be shown in Sect. 4.5, adjusting the values of p;
will enable to adapt the number of operations and the time t required per iteration,
as shown on Fig. 13. Indeed, for low values of p?, few of the N! orders will be
explored, and since each classifier only probes a small fraction of its children, one
iteration will be very rapid. However, if the values of p§ are close to 1, each iteration
requires a substantial amount of probing and one iteration will be long.

In the Partial Search Ordering Algorithm, one classifier may appear at multiple
depths and positions in the classifiers’ tree. Each time, it will realize a local
algorithm described in the flowchart in Fig. 14.
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Fig. 14 Flowchart of local algorithm for partial search ordering

Decentralized Algorithm 3 Partial Search Ordering Algorithm—for classifier
Ci = Com
1. Observe state (9;,4Children(C,-))
2. With probability p’j, request utility parameters [vg(hﬂ ) Wo(h+1) ] = [v jwj ] for any of
the N — h classifiers C; € Children(C;)
3. For each child probed, compute corresponding utility
tU
Ui(Cj) = (= [ ooty 0]+ [v; w; ] T;°) g}fx_l
h—1
4. Select the child classifier with the highest U; as trusted child.

5. Compute the corresponding [Ui w; ] and transmit it to a previous classifier who requested
it.
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4.3.3 Decentralized Ordering and Operating Point Selection

In case of unfixed operating points, the local utility of classifier C; = Cs) also
depends on its local operating point x;—but it does not directly depend on the
operating points of other classifiers:

Ui = (=[or 0]+ [ 04 wfy | 77 G0) [ ;’Z-l } :

h—1

As a consequence, we can easily adapt the Partial Search Ordering Algorithm
into a Partial Search Ordering and Operating Point Selection Algorithm by comput-
ing the maximal utility (in terms of x;) for each child:

Ui(Cj) = max (= [ poy 0] + [0 w; ] 77 (xi)) Lﬁf} (11)
1 /

To solve the local optimization problem defined in Eq. (11), each classifier can
either derive the nullity of the gradient if the ROC curve function f; : pf - pP
is known, or search for optimal operating point using a dichotomy method (since
Ui(Cj) is concave).

4.3.4 Robustness of the Partial Search Algorithm and Convergence Speed

It can be shown that under stable conditions the Partial Search Algorithm converges
and the equilibrium point of the stochastic decision process. For fixed operating
point the Partial Search Algorithm converges to the optimal order if pj. >0Vi,j.

In case of joint ordering and operating point selection, there exist multiple
equilibrium points, each corresponding to a local minimum of the utility function.
The selection of the equilibrium point among the set of possible equilibria depends
on the initial condition (i.e. order and operating points) of the algorithm. To select
the best equilibrium, we can perform the Partial Search Algorithm for multiple
initial conditions and keep only the solution which yielded the maximum utility.

In practice, stable stream conditions will not be verified by the stream mining
system, since the system’s characteristics vary at a time scale of t%”. Hence, rather
than achieving convergence, we would like the Partial Search Algorithm to reach
near-equilibrium fast enough for the system to deliver solution to the accuracy and
delay joint optimization on a timely basis.

In analogy to [9], we first discuss how model-free Safe Experimentation, a
heuristic case of Partial Search Algorithm can be used for decentralized stream
mining and leads to a low-complexity algorithm, however with slow convergence

5The utility parameters [v owj ] fed back from classifier C; to classifier C; are independent of
any classifiers’ operating points.
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rate. Fortunately, the convergence speed of the Partial Search Algorithm can be
improved by appropriately selecting the screening probabilities p’J In Sect. 4.5, we
will construct a model-based algorithm which enables to control the convergence
properties of the Partial Search Algorithm, and lead to faster convergence.

4.4 Multi-Agent Learning in Decentralized Algorithm

We aim to construct an algorithm which would maximize as fast as possible
the global utility of the stream mining system expressed in Eq.(4). We want to
determine whether it is worthwhile for a classifier C; to probe a child classifier C;
for its utility parameters and determine search probabilities pi. of the Partial Search
Algorithm accordingly.

4.4.1 Tradeoff Between Efficiency and Computational Time

Define an experiment E;_, ; as classifier C;’s action of probing a child classifier C;
by requesting its utility parameter [vj w;j ] Performing an experiment can lead to
a higher utility, but will induce a cost in terms of computational time:

* Denote by U(Ei_ jlsk) the expected additional utility achieved by the stream
mining system if the experiment E;_, ; is performed under state sy.

e Let % represent the expected amount of time required to perform an experiment.
This computational time will be assumed independent of the classifiers involved
in the experiment performed and the state observed.

Then, the total expected utility per iteration is given by U( p;) =
> p;.(}(Ei_>.,~|sk) and the time required for one iteration is r(pl.j) = ﬁ(pi.)r”,
where ﬁ(p;) represents the expected number of experiments performed in one
iteration of the Partial Search Algorithm and will be defined precisely in the next
paragraph. .

The allocation of the screening probabilities p’j aims to maximize the total
expected utility within a certain time:

maximize U ( pj.)
p;el0.1] . (12)
subject to t(p!) < &rd"

4.4.2 Safe Experimentation

We will benchmark our results on Safe Experimentation algorithms as cited in [9].
This low-complexity, model-free learning approach was first proposed for large-
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scale, distributed, multi-agent systems, where each agent is unable to observe the
actions of all other agents (due to informational or complexity constraints) and
hence cannot build a model of other agents [17]. The agent therefore adheres to a
“trusted” action at most times, but occasionally “explores” a different one in search
of a potentially better action.

Safe Experimentation is a reinforcement learning algorithm where each classifier
learns by observing the payoff with which its past actions were rewarded. As such,
it does not consider the interactions between agents, or in our case, the actions of
other autonomous classifiers. In particular, there is no explicit message exchange
among classifiers required (i.e. no [v w] exchanged), though each classifier needs
to know the reward of its action (and computing this reward might yet require some
form of implicit communication between agents).

The Safe Experimentation algorithm is initialized by selecting an initial order
oo of classifier. Cy,n+1) Will be referred as the “trusted” child of the Ath classifier
Coo(h)- At each time slot, Cq(p) Wwill either forward the stream to its “trusted” child
Cs(h+1) with probability (1 — ) or, with probability &, will explore a classifier C;
chosen randomly among its children. In the case where a higher reward is achieved
through exploration, C; will become the new “trusted” child of Cg(,). Note that
so long as € > 0, all possible orders will ultimately be explored, such that Safe
Experimentation converges to the optimal order [9].

Instead of considering a fixed exploration rate €, we can consider a dimin-
ishing exploration rate €¢. In this way, the algorithm will explore largely for
first iterations and focus on exploited orders near convergence. €¢¢ — 0 and

00 N-1
€
l_[ (1 - (Nt 1)') — 0 are sufficient conditions for convergence, typically
t=1 :
verified for ¢ = (1/4)!/7,

Two majors limits of Safe Experimentation can be identified:

» Slow convergence: One iteration of Safe Experimentation is very rapid (O (N)),
since only one order is experienced. However, the expected number of iterations
required to converge to optimal order is bounded below by N! (corresponding to
uniform search: €, = 1). As a consequence, the time required to reach the optimal
solution might be infinitely long, since the optimal order could be experimented
after an infinitely large number of iterations.

* General approach: This slow convergence can be explained by the fact that
Safe Experimentation, as a model-free approach, does not leverage the structure
of the problem studied. In particular, one major constraint fixed by Safe Exper-
imentation is to try only one classifier among all its children, while the stream
mining optimization problem allows to probe multiple children simultaneously
by requesting their utility parameters [ vw ] and selecting the trusted child based
on these fed back values. This capacity to try multiple orders per iterations will
enable to build a parameterized algorithm to speed-up the convergence to optimal
order by choosing screening probabilities pi. appropriately.
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4.5 Parametric Partial Search Order and Operating Point
Selection Algorithm

As expressed in (12), the screening probabilities p. can be used to tradeoff the
expected utility and the computational cost. In this final section, we frame a general
methodology aiming to determine the optimal tradeoff. In order to be adaptable
to the setting considered, we construct our learning algorithm in three steps, each
step representing a certain granularity level, and each step being controllable
by one “macroscopic” state variable. Doing so, we put forward three tradeoffs
corresponding to three independent questions: (1) how much to search?, (2) how
deep to search?, (3) where to search?

This enables the construction of a parametric learning algorithm, extensively
detailed in [8]. This article shows that the probability pj. (p, &, B) that the hth
classifier Cy(ny = C; probes its children C;, given that it received data with
throughput-to-goodput ratio 6; € Si can be expressed as:

,- C’ ePUi(.k)
. , €, = X X .
D (p.§. 8) p 1+e?h7[ENp] Z oBUILK)
howmuch?

howdeep? CieChildren(C;)

where?

The reader will find a justification of the formalism of pi. in [8].

4.5.1 Controlling the Screening Probability

Using this expression of pj. is meant to be able to control key characteristics of the
screening probability by tuning parameters p.§ and f.
The first parameter p = Av(p)) is used to arbitrate between rapid but inflexible
ij

search and slower but system-compliant search. Its value will impact the time t
required for one iteration and has to be selected small enough in order to ensure that
T < €t thus, coping with environment dynamics.

The second control parameter £ is used to arbitrate between rapid but less secure
search and slower but exhaustive search. It is a refinement parameter, which dictates
how much more extensive search should be performed in the lower classifiers than
in the upper ones.

e £ = 0 corresponds to searching only for last classifiers and violates the
exhaustivity of the search (no optimal convergence ensured).

* 0 < & < oo corresponds to searching more exhaustively for last classifiers than
for first classifiers.

* & = oo corresponds to searching uniformly at any depth with probability p.
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The third parameter 8 balances the options of probing unexplored children versus
exploiting already-visited orders, by weighting the propensity of classifier C; =
Cs(ny to probe one of its children classifier C;, based on past experiments’ reward.
In most learning scenarios where the tradeoff between exploration and exploitation
arises, both exploitation and exploration cannot be performed at the same time: the
algorithm will either exploit well-known tracks or explore new tracks [14]. This is
due to the absence of immediate feedback. In our setting, each classifier requests
the information (i.e. utility parameters) of a subset of its children and is then able to
base its decision on their feedback information.

In practice, the weight associated to a specific child based on its past reward
Pl

efV
is motivated by the analogy of a classifiers utility U to an energy [22]. In this
ePY

ePV
U. As such, the parameter B can be interpreted as the inverse of a temperature, i.e.
it governs the amount of excitation of the system:

could be determined using any increasing function f. Using fg(U) =

case, represents the equilibrium probability of being at an energy level

e B = 0 corresponds to a very excited system with highly time-varying character-
istics. In this case, since characteristics change very quickly, random exploration:
pj. = p' is recommended by the algorithm.

e B = oo corresponds to a non-varying system. Then, full-exploitation of past
rewards is recommended (given that all states were explored at least once) and
weight should be concentrated only on the child which provides the maximum
utility.

* 0 < B < oo is a tradeoff between exploration (8 = 0) and exploitation (8 = c0)
and corresponds to settings where algorithmic search and environment evolution
are performed at the same time scale.

4.5.2 Comparison of Ordering and Operating Point Selection Algorithms

Our preliminary results in Table 1 compare the performance of several joint
ordering and operating point selection algorithms based on important criteria in the
considered stream mining system.

4.5.3 Order Selected by Various Classifiers for Different Ordering
Algorithms

The performance of the different ordering algorithms are shown in Table 2 for seven
classifiers with fixed operating points per classifier. The classifier’s characteristics
(pF, pP) (i.e. the ROC curve), U (i.e. the ex-post selectivities), and « (i.e. the
resource requirements) were generated randomly. The misdetection cost ¢ = 10,
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Table 1 Comparison of ordering and operating point selection algorithms

Ordering and | System Utility Message | Speed of Adaptability | Control
operating compliance |achieved |exchange |convergence
point selection
algorithm
SQP-Greedy Low Bound; Heavy Medium Little %]
local opt.
Safe experi- High Local opt. | & Medium %] (%]
mentation
Partial search | Complete Local opt. | Light Rapid Total Yes

Table 2 Utilities and computational time achieved for different ordering algorithms

Algorithm Order obtained Utility | Comp. time
Centralized Optimal [CeCr Ci C4C3C7C5] | 100 >5min

Greedy [C4 C] C(, C7 C2 C3 C5 ] 95 0.002s
Decentralized | Safe experimentation | [ Cg C» C; C4 C3C7Cs] | 100 2.09

Partial search [CeCr Ci C4C3C7C5] | 100 1.2s

false alarm cost ¢/ = 1, and » = 0.1. The input data rate o = go was selected to
normalize the optimal utility to 100.

As expected, the globally optimal centralized solution requires too much com-
putation time, while the centralized Greedy algorithm does not lead to the optimal
order, but results in very little computational time. The Parametric Partial Search
Algorithm (here with p = 0,1, T = 1 and 8 = 0) converges quicker than
Safe Experimentation (here with ¢ = 0, 1), to the optimal order. Decentralized
algorithms converge to the optimal order, given that they ultimately probe all the
possible orders, but they require longer computational time than the centralized
greedy solutions. However, as shown in [8], convergence to a near-optimal order
requires only a few iterations.

5 Online Learning for Real-Time Stream Mining

Mining dynamic and heterogeneous data streams using optimization tools may not
always be feasible due to the unknown and time-varying distributions of these
streams. Since classification of the streaming data needs to be done immediately, and
invoking a classifier is costly, choosing the right classifier at run time is an important
problem. In this section we review numerous methods that learn which classifiers to
invoke based on the streaming meta-data, which is also called the context. All the
algorithms studied in this section are able to mine big data streams in real-time. To
accomplish this task, they are designed to have the following key properties:
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» After a data instance is classified, the result is used to update the parameters of
the learning algorithms. Then, the data instance is discarded. Therefore, it is not
necessary to keep the past data instances in the memory.

» Usually, a single classifier is selected to classify the current data instance. As a
result, only the accuracy estimate for the selected classifier is updated. While all
the algorithms discussed in this section are capable of simultaneously updating
the accuracies of all of the classifiers, this can lead to significant computational
overhead due to the fact that it requires predictions from all of the classifiers
for each data instance. Nevertheless, the performance bounds discussed in this
section also holds for the case above.

5.1 Centralized Online Learning

This subsection is devoted to the study of centralized online learning algorithms for
stream mining. We introduce several challenges related to real-time stream mining,
various performance measures and the algorithms that address each one of the
introduced challenges.

5.1.1 Problem Formulation

Each classifier takes as input a data instance and outputs a prediction. The data
stream also includes a stream of meta-data, which is also referred to as the context
stream. At time ¢, the data instance s(¢) is observed together with the context x(¢) €
X. The label y(t) € {0, 1} is not observed. The context can be categorical, real-
valued and/or multi-dimensional. For instance, in a medical diagnosis application,
the data instance can be an MRI image of a tissue, while the context can be
resolution, type of the scanner, age of the patient and/or radius of the tumor.
Depending on the particular application, the set of all possible contexts X can be
very large and even infinite. The dimension of the context space is denoted by D.
Each dimension of the context is called a context type. For instance, for the medical
diagnosis example given above “age” is a context type, while the specific value that
this type takes is the context.

No statistical assumptions are made on the context stream. However, the data
and the label is assumed to be drawn from a fixed distribution given the context.
This departs from the majority of the supervised learning literature, which assumes
that the data is i.i.d. over time. Based on this, the accuracy of a classifier C given
context x is defined to be tc(x) € [0, 1]. The classifier accuracies are not known
beforehand and need to be learned online.

It is common to assume that the accuracy of a classifier is similar for similar
contexts [25, 30]. For instance, in a social network users with similar age, income
and geographic location will have a tendency to click on similar ads, which will
result in a similar accuracy for a classifier that tries to predict the ad that the user
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will click to. This assumption, which is also called the similarity assumption, is
mathematically formalized as Holder continuity of the accuracy of classifier ¢ as a
function of the context:

Imc(x) — me(x’)| < L x dist(x, x)* (13)

where L is the Holder constant, o is the Holder exponent and dist(-, -) is a distance
metric for the contexts. For most of the cases o is set to be 1, which makes the
accuracy of classifier f Lipschitz continuous in the context [24].

The standard performance measure for online learning is the regret, which is
defined as

T T
Reg(T) := ) m*(x(t) —E [Z Ta((x (t))} (14)

=1 t=1

where *(x (1)) = maxe, - mc(x(t)) and a(t) denotes the classifier selected at
time ¢. Hence, minimizing the regret is equivalent to selecting the best classifier
as many times as possible. The time-averaged regret is defined as Reg(7T) =
Reg(T)/T. Reg(T) — O implies that the average performance is (asymptotically)
as good as the average performance of the best classifier selection policy given
the complete knowledge of classifier accuracies. In order for the time-averaged
regret to converge to zero, the regret must grow at most sublinearly over time, i.e.,
Reg(T) < KTY for some constants K > O and y € [0, 1) forall T.

5.1.2 Active Stream Mining

Online learning requires knowing the labels, in order to update the accuracy of
the selected classifier. In most of the stream mining applications, such as medical
diagnosis, acquiring the label is costly. Hence, a judicious mechanism that decides
when to acquire the label based on the confidence on the accuracy of the selected
classifier needs to be developed. The performance measure, i.e., the regret, also
needs to be re-defined to capture the cost of label acquisition; hence, it becomes

T T
Reg(T) := Y m*(x(t)) —E [Z Ta (X (1)) — Jr(t):| (15)

=1 t=1

where r(¢) is 1 if label is acquired at time ¢ and O otherwise, and J is a constant that
represents the tradeoff between accuracy and label acquisition cost.

Since the number of possible contexts is usually very large, it is very inefficient
to learn the classifier accuracies for each context separately. Therefore, the learning
algorithms developed for stream mining learn the classifier accuracies for groups
of similar contexts, where the groups are formed by partitioning the context space
based on the similarity assumption given in (13). Then, the estimated accuracy of
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Fig. 15 Evolution of context space partition over time for D = 2. Red dots represent the most
recent contexts and black dots represent the past contexts for which the label was acquired at
the time of decision. Based on the similarity assumption, the type 2 error is proportional to l;‘,
Jj = 1,2,3, where [; denotes the diameter of the group that the most recent context belongs to.
On the other hand, the type 1 error decreases with the number of dots which belong to the group
(square) that the current context belongs to

classifier C for context x(¢) is computed as fic(x(¢)) := fic(p(¢)) where p(¢) is
the group that contains x(¢) in the partition of the context space. Here, ftc(p(t)) is
the sample mean of the correct predictions averaged over all past context arrivals to
p(t) for which the label was acquired. As shown in Fig. 15, this partition is adapted
based on how the contexts arrive in order to balance the two sources of error in
estimating the classifier accuracies: (1) type 1 error that arises from the number of
past labeled data instances belonging to a group; (2) type 2 error that arises from the
dissimilarity of the contexts that belong to the same group.

The label acquisition decision is also made to balance this tradeoff. Specifically,
each label acquisition decreases the type 1 error of the selected classifier for the
group that the current context belongs to. If accuracy of the selected classifier is
known with a high confidence, then label acquisition is not necessary. In order
to achieve this, the learning algorithm indefinitely alternates between two phases:
exploration phase and exploitation phase, which are described below.

« Exploration phase: Select a classifier that the algorithm has a low confidence
on its accuracy. After performing classification by the selected classifier, acquire
the label of the data instance and update the accuracy estimate of the selected
classifier.

« Exploitation phase: Select the classifier with the highest estimated accuracy, i.e.,

a(t) = argmaxc. e (x(1)).

After an exploration phase, the confidence on the accuracy of the selected
classifier increases. Thus, classifier accuracies are learned in exploration phases.
On the other hand, in an exploitation phase the prediction accuracy is maximized
by classifying the data instance based on the empirically best classifier. In [25],
it is shown that sublinear in time regret can be achieved by acquiring labels only
sublinearly many times. While this regret bound holds uniformly over time, its
dependence on T can be captured by using the asymptotic notation, which implies
that Reg(T) = O(T(“+D)/(“,+D)), for some constants k¥ > k > 0. The specific
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implementation keeps a control function D(t), and explores only when the number
of times the label is acquired by time 7 is less than or equal to D(¢). D(¢) increases
both with ¢ and the inverse of the diameter of the group that x () belongs to. For
this algorithm, the number of groups in the partition of the context space is also
a sublinear function of time, which implies that the memory complexity of the
algorithm is also sublinear in time. Moreover, identifying both the group that the
current context belongs to and the empirically best classifier are computationally
simple operations, which makes this algorithm suitable for real-time stream mining.

5.1.3 Learning Under Accuracy Drift

Since the data stream is dynamic, its distribution conditioned on the context can
also change over time. This is called the concept drift [35]. It is straightforward
to observe that the concept drift will also cause a change in the accuracy of the
classifiers. For this setting, the time-varying accuracy of a classifier C for context x
is denoted by mc (¢, x). It is assumed that the accuracy gradually drifts over time,
which can be written as

|t —1']

Ie(t, x) — e (', x")| < L x dist(x, x)* + T
S

where T denotes the szability of the concept. If Ty is large the drift is slow, while if
T; is small the drift is fast. Note that this assumption does not introduce any explicit
restrictions on the data stream distribution. Hence, the accuracy drift is more general
than the concept drift and can also model scenarios in which there is a change in
the classifiers. For instance, in an application with SVM classifiers, some of the
classifiers might be re-trained on-the-fly as more data instances arrive, which will
result in a change in their decision boundaries, and hence their accuracies, even
though the stream distribution remains the same.

An algorithm that learns and tracks the best classifier when there is accuracy
drift is proposed in [26]. This algorithm estimates the classifier accuracies by using
a recent time window of observations from similar contexts as opposed to using
the entire past history of observations. In this work, the optimal window size is
computed to be a sublinear function of 7.

In general, it is not possible to achieve sublinear in time regret when there is
accuracy drift due to the fact that the classifier accuracies are continuously changing.
A constant rate of exploration is required in order to track the best classifier. A
suitable performance measure for this setting is the time-averaged regret Reg(7').
The algorithm proposed in [26] achieves a time-averaged regret of O (T '), where
y € (0,1) is a parameter that depends on a and the dimension of the context
space. This implies that the time-averaged regret decreases as T increases, which is
expected since it is easier to learn the classifier accuracies when the drift is slow.
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Fig. 16 A medical diagnosis example with three dimensional context space. Shaded areas
represent the set of past observations that are used to estimate the classifier accuracies for the
current context x(¢). On the left figure all context types are relevant, while on the right figure only
the context type “weight” is relevant. The shaded areas on the left and right figures have the same
type 2 error. However, the type 1 error for the shaded area on the right figure is much less than the
one on the left figure since it includes many more past observations

5.1.4 Learning the Relevant Contexts

When the dimension D of the context space is large, the methods proposed in
the previous sections which rely on partitioning the context space suffer from the
curse of dimensionality as shown in Fig. 16. As a result, the regret bound given in
Sect. 5.1.2 becomes almost linear in time.

It is possible to avoid the curse of dimensionality when the classifier accuracies
depend only on a small subset of the set of all possible context types. In stream
mining, this implies that there are many irrelevant context types which do not affect
the outcome of the classification.” If the relevant context types were known, online
learning could be easily performed by partitioning the context space restricted to
the relevant context types. However, identifying these relevant context types on-
the-fly without making any statistical assumptions on how the contexts arrive is a
challenging task. Nevertheless, it is possible to identify the relevant context types
through a sophisticated relevance test. This test identifies relevance assumptions that
are consistent with the classifier accuracies estimated so far. The only requirements
for this test are (13) and an upper bound on the number of relevant context types.

Here, we explain the relevance test that identifies one relevant context type for
every classifier. The extension to more than one relevant context type can be found in
[28]. It is important to note that the relevance test is only performed in exploitation
phases as it requires confident accuracy estimates. First, for each context type i, the
variation of the estimated accuracy of classifier C over all pairs of context types
that include context type i is calculated. The resulting vector is called the pairwise
variation vector of context type i. Then, a bound on the variation of the estimated
accuracy of classifier C due to type 2 errors, which is called natural variation, is

TThe definition of irrelevant context types can be relaxed to include all context types which have
an effect that is less than € > 0 on the classifier accuracies.
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calculated. The set of candidate relevant context types are identified as the ones for
which the pairwise variation is less than a linear function of the natural variation.
Finally, a context type i* is selected from the set of candidate relevant types to
be the estimated relevant context type, and the accuracies of the classifiers are re-
calculated by averaging over all past observations whose type i * contexts are similar
to the current type i* context. In [29] it is shown that online learning with relevance
test achieves regret whose time order does not depend on D (but depends on the
number of relevant context types). Hence, learning is fast and efficient, given that
the number of relevant context types is much smaller than D.

5.2 Decentralized Online Learning

In this subsection, we consider how online learning can be performed in distributed
classifier networks. We review two methods: cooperative contextual bandits in
which local learners (LLs) cooperate to learn the best classifier to select within the
network; hedged bandits in which an ensemble learner (EL) fuses the predictions of
the LLs to maximize the chance of correct classification.

5.2.1 Problem Formulation

Most of the definitions and notations are the same as in Sect.5.1.1. There are M
data streams, each of which is processed locally by its LL. Each LL has a set of
classifiers C; that it can use to classify its incoming data stream. The set of all
classifiers is denoted by C = Uf.‘i 1 Ci. The context that is related to the ith data
stream is denoted by x; (¢), where ¢ € {1, 2, ...}.

5.2.2 Cooperative Contextual Bandits

In this part we describe a cooperative online learning framework that enables an
LL to use other LLs’ classifiers to classify its own data stream. For cooperative
contextual bandits, the assumption on the context arrival process is the same as the
assumption in Sect. 5.1.1.

In order to understand the benefit of cooperation, first we consider the case in
which each LL acts individually. In this case, the highest accuracy that LL i can get
for context x is 77 (x) 1= max, C 1t (x). On the other hand, if all LLs cooperate
and share their classifiers with each other, the highest accuracy LL i can get for
context x is g (x) 1= max, .~ 7c (x). Clearly, 7g; (x) > 77 (x). However, it is not
straightforward for LLs to achieve a classification accuracy that is equal to 7 (x)
for all x € X due to the following reasons:
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Fig. 17 Interleaving of the training, exploration and exploitation phases over time for a particular
LL and context arrival process in cooperative contextual bandits

e LL i does not known the accuracies of its classifiers m¢(x), C € Ci, x € X a
priori, and needs to learn these accuracies on-the-fly.

e LL i does not know the classifiers available to the other LLs. Moreover, other
LLs may be reluctant to share such an information due to privacy constraints.

* LL i cannot observe the data streams arriving to other LLs due to both privacy and
communication constraints. However, LL i is able to send selected data instances
to other LLs (possibly by incurring some communication cost) and is able to
receive selected data instances from the other LLs.

The challenging decentralized learning problem stated above is solved by
designing a decentralized learning algorithm that promotes cooperation among the
learners [27]. In this algorithm, each learner alternates between three different
phases over time as given in Fig. 17. The sequencing of these phases is adapted
online based on the context arrival process. In each phase the learning algorithm
takes an action for a different purpose:

e Training phase: LL i selects another LL and sends its context and data instance
to the selected LL. Then, the selected LL is asked to classify the data instance.
After the classification is performed and the true label is received by LL i, this
true label is also send to the selected LL in order for it to update the accuracy
of the classifier that it had selected on behalf of LL i. Hence, the purpose of the
training phase is to train other LLs such that they learn the accuracies of their
own classifiers with a high confidence for contexts that arrive to LL i.

* Exploration phase: LL i selects one of its own classifiers or another LL for the
purpose of learning the accuracy.

« Exploitation phase: LL i selects one of its own classifiers or another LL for the
purpose of maximizing the probability of correct classification.

Due to the heterogeneity of the data streams, usually it is not possible for a single
LL to learn its classifier accuracies well for all possible contexts by just observing
its own data stream. This can happen because a context that is rare for one LL can
be frequent for another LL. While this results in asymmetric learning, it is solved
by the training phase.

Note from Fig. 17 that exploration is performed only when there is no need for
training. This is to ensure that if another LL is selected to make a classification, it
performs classification based on its best classifiers. Otherwise, LL i might learn the
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accuracy of the other LLs incorrectly, which might results in failure to identify an
LL, whose accuracy is higher than the accuracies of the classifiers in C;. Similarly,
exploitation is performed only when there is no need to train any other LL or to
explore any other LL or classifier.

One important question is how much training and exploration is needed. This
can be analytically solved by defining confidence intervals for the sample mean
(empirical) estimates of the classifier accuracies, and adjusting these confidence
intervals over time to achieve a certain performance goal. In cooperative contextual
bandits, the regret of LL i is defined as

T T
Reg;(T) 1= Y mg(xi(t) —E [Z Ty (1) (Xi (r))} (16)

=1 =1

where g, ) (x;(¢)) denotes the accuracy of the classifier selected by LL a;(¢) on
behalf of LL i for a;(¢t) ¢ C;. Again, we seek to achieve sublinear in time regret,
which implies that the learning algorithm’s average number of correct predictions
converges to that of the 7, (x).

Specifically, it is proven in [27] that sublinear regret can be achieved by an
algorithm that uses sublinear number of training and exploration phases. In order
to achieve sublinear regret, the classifier accuracies must also be learned together
for similar contexts by a context space partitioning method such as the one given in
Fig. 15.

5.2.3 Hedged Bandits

Hedged Bandits model decentralized stream mining applications in which all data
streams are related to the same event. Hence, it is assumed that the contexts,
data instances and labels are drawn according to an i.i.d. process. LLs produce
predictions by choosing classifiers according to their own learning algorithms,
classifiers and data streams, and then, send these predictions to an EL, which fuses
the predictions together to produce a final prediction. The learning algorithm used
by the LLs is similar to the learning algorithms discussed in Sect. 5.1. On the other
hand, the EL uses a variant of the Hedge algorithm [10] that does not require the
time horizon to be known in advance. This guarantees that the ELs prediction is as
good as the predictions of the best LL given the context [30].

6 Conclusion

Adapting in real time the topology of classifiers and their configuration (operating
point) enables to significantly improve the performance of stream mining systems,
by optimally trading up accuracy and delay, under limited resources.
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However, the emergence of new stream mining applications, with specific
requirements and characteristics, widens the spectrum of possibilities and leaves
room for further improvements. Today, more and more data is available to be
processed, and more and more classification, filtering, analysis or sorting can be
performed on this data. As such, a major challenge lies in identifying, prioritizing
and planning mining tasks. Until now, the mapping between queries and a set of
corresponding classifiers was considered as given. Yet, this mapping should be
decided jointly with the topology construction and the system configuration for an
optimal stream mining design.

An upstream consideration would be to decide whether streams should be
systematically classified or only identified upon request. Indeed, a stream mining
system must not only be seen as a query-centric processing system aiming to
identify which subset of data answers a given set of queries. Instead of defining
the set of classifiers on the basis of the set of queries (C = quQC (q)), we
could determine what are all the queries which can be answered given a set of
classifiers (Q = {q | C(g) C C}). Since such classifier-centric approach leads to
an explosion of the number of queries which can be processed (/N binary classifiers
can potentially process 211{\7:1 K ]flvik)! 2k different queries) it is critical to be able to
identify or to learn online which classification to perform.

Indeed, classifier design is an expensive process and determining which feature
to extract represents a major topic in the data mining community. Hence, given a
data stream and a query, deciding which classifiers should match which queries has
not yet been analytically studied. Underlying this issue resonates the exploration
versus exploitation tradeoff, where we need to train the stream mining system to
detect the classifiers which are critical to stream identification.
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Deep Neural Networks: A Signal )
Processing Perspective e

Heikki Huttunen

Abstract Deep learning has rapidly become the state of the art in machine learning,
surpassing traditional approaches by a significant margin for many widely studied
benchmark sets. Although the basic structure of a deep neural network is very close
to a traditional 1990s style network, a few novel components enable successful
training of extremely deep networks, thus allowing a completely novel sphere
of applications—often reaching human-level accuracy and beyond. Below, we
familiarize the reader with the brief history of deep learning and discuss the most
significant milestones over the years. We also describe the fundamental components
of a modern deep neural networks and emphasize their close connection to the
basic operations of signal processing, such as the convolution and the Fast Fourier
Transform. We study the importance of pretraining with examples and, finally, we
will discuss the real time deployment of a deep network; a topic often dismissed
in textbooks; but increasingly important in future applications, such as self driving
cars.

1 Introduction

The research area of artificial intelligence (Al) has a long history. The first ideas
of intelligent machines were raised shortly after the first computers were invented,
in the 1950s. The excitement around the novel discipline with great promises led
into one of the first technological hypes in computer science: In particular, military
agencies such as ARPA funded the research generously, which led into a rapid
expansion of the area during the 1960s and early 1970s.

As in most hype cycles, the initial excitement and high hopes were not fully
satisfied. It turned out that intelligent machines able to seamlessly interact with the
natural world are a lot more difficult to build than initially anticipated. This led into a
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period of recession in artificial intelligence often called “The AI Winter”! during the
end of 1970s. In particular, the methodologies built on top of the idea of modeling
the human brain had been the most successful ones, and also the ones that suffered
the most during the Al winter as the funding essentially ceased to exist for topics
such as neural networks. However, the research of learning systems still continued
under different names—machine learning and statistics.

The silent period of Al research was soon over, as the paradigm was refocused
to study less ambitious topics than the complete human brain and seamless human-
machine interaction. In particular, the rise of expert systems and the introduction of
a closely related topic data mining led the community towards new, more focused
topics.

At the beginning of 1990s the research community had already accepted that
there is no silver bullet that would solve all Al problems at least in the near
future. Instead, it seemed that more focused problems could be solved with tailored
approaches. At the time, several successful companies had been founded, and there
were many commercial uses for Al methodologies, such as the neural networks
that were successful at the time. Towards the end of the century, the topic got less
active and researchers directed their interest to new rising domains, such as kernel
machines [35] and big data.

Today, we are in the middle of the hottest AI summer ever. Companies such as
Google, Apple, Microsoft and Baidu are investing billions of dollars to Al research.
Top AI conferences—such as the NIPS?>—are rapidly sold out. The consultancy
company Gartner has machine learning and deep learning at the top of their hype
curve.> And Al even made its way to a perfume commercial.*

The definitive machine learning topic of the decade is deep learning. Most
commonly, the term is used for referring to neural networks having a large number
of layers (up to hundreds; even thousands). Before the current wave, neural networks
were actively studied during the 1990s. Back then, the networks were significantly
smaller and in particular more shallow. Adding more than two or three hidden
layers only degraded the performance. Although the basic structure of a deep neural
network is very close to a traditional 1990s style network, a few novel components
enable successful training of extremely deep networks, thus allowing a completely
novel sphere of applications—often reaching human-level accuracy and beyond.

After a silent period of the 2000s, neural networks returned to the focus of
machine intelligence after Prof. Hinton from University of Toronto experimented
with unconventionally big networks using unsupervised training. He discovered
that training of large and deep networks was indeed possible with an unsupervised
pretraining step that initializes the network weights in a layerwise manner. In the
unsupervised setup, the model first learns to represent and synthesize the data

1 https://en.wikipedia.org/wiki/History_of_artificial_intelligence.
2http://nips.cc/.

3http://www.gartner.com/newsroom/id/3784363.
“http://www.gq.com/story/alexandre-robicquet-ysl-model.


https://en.wikipedia.org/wiki/History_of_artificial_intelligence
http://nips.cc/
http://www.gartner.com/newsroom/id/3784363
http://www.gq.com/story/alexandre-robicquet-ysl-model

Deep Neural Networks 135

without any knowledge on the class labels. The second step then transforms the
unsupervised model into a supervised one, and continues learning with the target
labels. Another key factor to the success was the rapidly increased computational
power brought by recent Graphics Processing Units (GPU’s).

For a few years, different strategies of unsupervised weight initialization were
at the focus of research. However, within a few years from the breakthroughs of
deep learning, the unsupervised pretraining became obsolete, as new discoveries
enabled direct supervised training without the preprocessing step. There is still a
great interest in revisiting the unsupervised approach in order to take advantage
of large masses of inexpensive unlabeled data. Currently, the fully supervised
approach together with large annotated data produces clearly better results than any
unsupervised approach.

The most successful application domain of deep learning is image recognition,
which attempts to categorize images according to their visual content. The milestone
event that started this line of research was the famous Alexnet network winning the
annual Imagenet competition [24]. However, other areas are rising in importance,
including sequence processing, such as natural language processing and machine
translation.

This chapter is a brief introduction to the essential techniques behind deep
learning. We will discuss the standard components of deep neural network, but will
also cover some implementation topics from the signal processing perspective.

The remainder of the chapter is organized as follows. In Sect. 2, we will describe
the building blocks of a modern neural network. Section 3 discusses the training
algorithms and objective functions for the optimization. Finally, Sect.4 discusses
the tools for training and compares popular training platforms. We also present an
example case where we compare two design strategies with examples using one
of the most popular deep learning packages. Finally, Sect.5 considers real time
deployment issues in a framework where deep learning is used as one component of
a system level deployment.

2 Building Blocks of a Deep Neural Network

2.1 Neural Networks

Neural networks are the core of modern artificial intelligence. Although they
originally gained their inspiration from biological systems—such as the human
brain—there is little in common with contemporary neural networks and their
carbon-based counterparts. Nevertheless, for the sake of inspiration, let us take a
brief excursion to the current understanding of the operation of biological neural
networks.
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Fig. 1 A simple biological neuron network. Reprinted with permission from [45]

Figure 1 illustrates a simple biological neural network consisting of two nerve
cells. The information propagates between the cells essentially through two chan-
nels: the axon is the transmitting terminal forwarding the level of activation to
neighboring nerve cells. On the other hand, a dendrite serves as the receiving end,
and the messages are passed through a synaptic layer between the two terminals.

Historically, the field of neural network research started in its simplest form
in the 1950s, when researchers of electronics got excited about recent advances
in neurology, and started to formulate the idea of an electronic brain consisting
of in silico nerve cells that propagate their state of activity through a network of
artificial cells. A landmark event of the time was the invention of Rosenblatt’s
perceptron, which uses exactly the same generalized linear model as any two-class
linear classifier, such as Linear Discriminant Analysis, Logistic Regression, or the
Support Vector Machine:

1, if wl b >0,
Class(x) = wix+b=
0, if wix+b <D0,

where x € RY is the test vector to be classified, w € RY and b € R are the model
parameters (weight vector and the bias) learned from training data. More compactly,
we can write the model as o (w/ x + b) with o () the threshold function at zero.

The only thing differentiating the perceptron from the other generalized linear
models is the training algorithm. Although not the first, nor the most powerful
training algorithm, it emphasizes the idea of iterative learning, which presents the
model training samples one at the time. Namely, the famous linear discriminant
algorithm was proposed by Fisher already in the 1930s [12], but it was not used in
an iterative manner due to existence of a closed form solution. When the perceptron
algorithm was proposed, time was ready for exploitation of recently appeared digital
computing. The training algorithm has many things in common with modern deep
learning training algorithms, as well:
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1. Initialize the weight vector w and the bias b at random.
2. For each sample x; and target y; in the training set:

a. Calculate the model output y; = o (W! x; + b).
b. Update the network weights by

wi=w+ (yi — J)X.

The steps 2a and 2b correspond to the forward pass and backward pass of
contemporary networks, where the samples are first propagated forward through the
model to produce the output, and the error terms are pushed back as weight updates
through the network in the backward pass.

For signal processing researchers, the idea of perceptron training is familiar from
the field of adaptive signal processing and the Least Mean Squares (LMS) filter in
particular. Coincidentally, the idea of the LMS filter was inspired by the famous
Darthmouth AI meeting in 1957 [43], exactly the same year as Rosenblatt first
implemented his perceptron device able to recognize a triangle held in front of its
camera eye.

Fast-forwarding 30 years brings us to the introduction of the backpropagation
algorithm [32], which enabled the training of multilayer perceptrons, i.e., layers of
independent perceptrons stacked into a network. The structure of a 1980s multilayer
perceptron is illustrated in Fig. 2. In the left, the m-dimensional input vector is fed to
the first hidden layer of processing nodes (blue). Each hidden layer output is then fed
to the next layer and eventually to the output layer, whose outputs are considered as
class likelihoods in the classification context. The structure of each processing node
is in turn illustrated in Fig. 3. Indeed, the individual neuron of Fig. 3 is very close to
the 60-year-old perceptron, with a dot product followed by an activation function.
This is still the exact neuron structure today, with the exception that there now exists
a large library of different activations apart from the original hard thresholding, as
later discussed in Sect. 2.4.

y(K)

N

Fig. 2 A multilayer perceptron model



138 H. Huttunen

Wo

Xq

X2

Activation
+ function Y

X3

Xm

YEEvEYY,

Fig. 3 A single neuron of the feedforward network of Fig. 2

2.2 Convolutional Layer

The standard layers of the 80s are today called dense or fully connected layers,
reflecting their structure where each layer output is fed to each next layer node.
Obviously, dense layers require a lot of parameters, which is expensive from both
computational and learning point of view: High number of model coefficients
require a lot of multiplications during training and deployment, but also their
inference in training time is a nontrivial task. Consider, for example, the problem of
image recognition (discussed later in Sect. 4.2), where we feed 64 x 64 RGB images
into a network. If the first hidden layer were a dense layer with, say, 500 neurons,
there would be over six million connections (64 x 64 x 3-dimensional input vector
fed to 500 nodes requiring 500 x 64 x 64 x 4 = 6,144,000 connections). Moreover,
the specific inputs would be very sensitive to geometric distortions (translations,
rotations, scaling) of the input image, because each neuron can only see a single
pixel at the time.

Due to these reasons, the convolutional layer is popular particularly in image
recognition applications. As the name suggests, the convolutional layer applies a
2-dimensional convolution operation to the input. However, there are two minor
differences to the standard convolution of an image processing textbook.

First, the convolution operates on multichannel input; i.e., it can see all channels
of the three-channel (RGB) input image. In other words, denote the input to a
convolutional layer as X € RMXNXC and the convolution window as W €
RY/*K*C Then, the output y,, , at spatial location (m, n) is given as

Ym,n = Z Z Z Wj,k,cXm+j,n+k,c, (D
c j k
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Fig. 4 Four feature maps produced from the input image by different convolution kernels

with the summation indices spanning the local window, i.e.,c = 1,2,...,C; j =
—|_£J, e Lé] and k = —|_12(J, e |_12(J assuming odd J and K. Alternatively,
the convolution of Eq. (1) can also be thought of as a 3D convolution with window
spanning all channels: The window only moves in the spatial dimensions, because
there is no room for sliding in the channel dimension.

Second, the deep learning version of convolution does not reflect the convolution
kernel with respect to the origin. Thus, we have the expression X+ j n+,c in Eq. (1)
instead of X, j n—k,c of a standard image processing textbook. The main reason for
this difference is that the weights are learned from the data, so the kernel can equally
well be defined either way, and the minus is dropped out due to simplicity. Although
this is a minor detail, it may cause confusion when attempting to re-implement a
deep network using traditional signal processing libraries.

The role of the convolutional layer can be understood from the example of Fig. 4,
where we have applied four 3 x 3 x 3 convolutions to the input image. In this case,
the convolution kernels highlight different features: yellow regions, green regions,
diagonal edges and so on. With real convolutional networks, the kernels are learned
from the data, but their role is nevertheless to extract the features essential for the
application. Therefore, the outputs of the convolutions are called feature maps in the
deep learning terminology.

In summary, the convolutional layer receives a stack of C channels (e.g., RGB),
filters them with D convolutional kernels of dimension J x K x C to produce D
feature maps. Above, we considered the example with 64 x 64 RGB images fed to
a dense layer of 500 neurons, and saw that this mapping requires 6,144,500 coeffi-
cients. For comparison, suppose we use a convolutional layer instead, producing 64
feature maps with 5 x 5 spatial window. In this case, each kernel can see all three
channels within the local 5 x 5 spatial window, which requires 5 x 5 x 3 coefficients.
Together, all 64 convolutions are defined by 64 x 5 x 5 x 3 = 4800 parameters—
over 1200 times less than for a dense layer. Moreover, the parameter count of the
convolutional layer does not depend on the image size unlike the dense layer.

The computation of the convolution is today highly optimized using the GPU.
However, the convolution can be implemented in several ways, which we will
briefly discuss next. The trivial option is to compute the convolution directly
using Eq. (1). However, in a close-to-hardware implementation, there are many
special cases that would require specialized optimizations [6], such as small/large
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spatial window, small/large number of channels, or small/large number of images
in batch processing essential in the training time. Although most cases can be
optimized, maintaining a large number of alternative implementations soon becomes
burdensome.

The second alternative is to use the Fast Fourier Transform (FFT) via the
convolution theorem:

w(n, m) * x(n,m) = w.L (W(n,m* © X(n,m)), )

where W(n, m) = F(w(n, m)) and X (n, m) = F(x(n, m)) are the discrete Fourier
transforms of the convolution kernel w(n, m) and one channel of the input x (n, m),
respectively. Moreover, F~! denotes the inverse discrete Fourier transform, and *
the complex conjugation that reflects the kernel about the origin in spatial domain.
The obvious benefit of this approach is that the convolution is transformed to low-
cost elementwise (Hadamard) product in the Fourier domain, and the computation
of the FFT is faster than the convolution (O (N log N) vs. O(N 2)). However, the
use of this approach requires that w(n, m) and x(n, m) are zero-padded to same
size, which consumes a significant amount of temporary memory, when the filter
and image sizes are far from each other. Despite these challenges, the FFT approach
has shown impressive performance improvement with clever engineering [40].

The third widely used approach transforms the convolution into matrix multi-
plication, for which extremely well optimized implementations exist. The approach
resembles the use of the classic im2col function in Matlab. The function rear-
ranges the data by mapping each filter window location into a column in the result
matrix. This operation is illustrated in Fig. 5, where each 3 x 3 block of the input
(left) is vectorized into a 9 x 1 column of the result matrix. After this rearrangement,
the convolution is simply a left multiplication with the vectorized weight matrix,

y= vTC,

«.-
(—J

25 | 27 | 31 | 26 | 28 | 30

27 | 31 | 35| 28 | 30 | 31

e o o
&[] (8) |88 & 31 |35 |34 |30 |31 |36

29| |8 €0 |8 | &8 26 | 28 | 30 | 27 | 30 | 31

ifo L31 i A 28 | 30 | 31 | 30 | 31 | 30 e o o
gl I i Bl ’ 30 | 31 | 36 | 31 | 30 | 29

(9|8 &8 | Y 27 | 30 | 31 | 40 | 41 | 45

30 | 31 | 30 | 41 | 45 | 49

PY 31 |30 |29 | 45 | 49 | 50

Fig. 5 The im2col operation
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with C € R?*MM the result of im2col and v € R?*! the vectorized 3 x 3 weight
matrix. The result y € R'"¥M can then be reshaped into to match the size of
the original image. The drawback of this approach is the memory consumption of
matrix C, as the data is duplicated nine times (or more for larger window size).
However, the idea provides a unified framework between convolutional layers and
dense layers, since both can be implemented as matrix multiplications.

2.3 Pooling Layer

Convolutional layers are economical in terms of the number of coefficients. The
parameter count is also insensitive to the size of the input image. However, the
amount of data still remains high after the convolution, so we need some way to
reduce that. For this purpose, we define the pooling layer, which shrinks the feature
maps by some integer factor. This operation is extremely well studied in the signal
processing domain, but instead of high-end decimation-interpolation process, we
resort to an extremely simple approach: max-pooling.

Max-pooling is illustrated in Fig. 6, where we decimate the large image on the left
by a factor of 2 along both spatial axes. The operation retains the largest value within
each 2 x 2 window. Each 2 x 2 block is distinct (instead of sliding), so the resulting
image will have half the size of the original both horizontally and vertically.

Apart from the max operation, other popular choices include taking the average,
the Ly norm, or a Gaussian-like weighted mean of the rectangular input [14, p.
330]. Moreover, the blocks may not need to be distinct, but may allow some degree
of overlap. For example, [24] uses a 3 x 3 pooling window that strides spatially with
step size 2. This corresponds to the pool window locations of Fig. 6, but the window
would be extended by 1 pixel to size 3 x 3.

MAX

MAX

25 |27 31 | 3535 3637 38|34 © @ @

26 | 28 |30 | 31|36 31 f36 |33 36 YVY
28 35|36 (38 @ @ @
27 |30 |31 |30 |29 |33 |33 |30 | 29 MAX-Pool
41| 49 |51 | 55
40 | 41 45 | 49 | 50 | 51 | 55 | 53 | 50 MAX

43 | 46 | 47 | 55 | 60 | 67 | 70 | 71 | 69

Fig. 6 The maxpooling operation
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Fig. 7 Architecture of convolutional neural network (modified from [26])

The benefit of using max-pooling in particular, is its improved invariance to
small translations. After the convolutions have highlighted the spatial features of
interest, max-pooling will retain the largest value of the block regardless of small
shifts of the input, as long as the maximum value ends up inside the local window.
Translation invariance is usually preferred, because we want the same recognition
result regardless of any geometric transformations.

Convolutional and pooling layers follow each other in a sequence. The convo-
lutional layers learn to extract the essential features for the task at hand, while
the pooling layers shrink the data size, together attempting to distill the essentials
from the data. An example of their co-operation is illustrated in Fig.7. In this
case, the input in the left is an RGB-image (three channels). The pipeline starts
with convolutions producing a number of feature maps. The feature maps are fed
to the pooling layer, which shrinks each channel, but otherwise retains each map
as it is. The same combination is repeated, such that the pooled feature maps are
convolved with next level of convolution kernels. Note that the convolution kernel
is again 3-dimensional, spanning all input channels within a small spatial window.
The usual structure alternates between convolution and pooling until the amount
of data is reasonable in size. At that point, the feature map channels are flattened
(i.e., vectorized) into a vector that passes through a few dense layers. Finally, in a
classification task, the number of output nodes equals the number of categories in the
data; with each output interpreted as a class likelihood. As an example, a common
benchmark for deep learning is the recognition of handwritten MNIST digits [25],
where the inputs are 28 x 28 grayscale handwritten digits. In this case, there are ten
classes, and the network desired output (target) is a 10-dimensional binary indicator
vector—all zeros, except 1 indicating the correct class label.

2.4 Network Activations

If using only linear operations (convolution and dense layers) in a cascade, the end
result could be represented by a single linear operation. Thus, the expression power
will increase by introducing nonlinearities into the processing sequence; called
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activation functions. We have already seen the nonlinear thresholding operation
during the discussion of the perceptron (Sect.2.1), but the use of hard thresholding
as an activation is very limited due to challenges with its gradient: The function is
not differentiable everywhere and the derivative bears no information on how far we
are from the origin, both important aspects for gradient based training.
Traditionally, popular network activations have been the logistic sigmoid,

logsi = , 3
ogsig) = |, 3
and the hyperbolic tangent,
X — X
tanh(x) = . 4
anh() =" @)

However, the challenge with both is that they tend to decrease the magnitude of
the gradient when backpropagation is passing the weight updates through layers.
Namely, the derivative of both activations is always bound to the interval [—1, 1],
and when backpropagation applies the chain rule, we are multiplying by a number
within this range—a process that will eventually converge to zero. Thus, deep
networks will encounter extremely small gradient magnitudes at the lower (close
to input) layers.

While there are other approaches to circumvent this vanishing gradient problem,
the most popular ones simply use an alternative activation function without this
problem. The most widely used function is the rectified linear unit (ReLU) [24],

ReLU(x) = max(0, x). (®)]

In other words, the function clips the input from below at zero. The benefits of the
ReLU are clear: The gradient is always either O or 1, the computation of the function
and its gradient are trivial, and experience has shown its superiority to conventional
activations with many datasets. The three activation functions are illustrated in
Fig. 8.

The arrangement of activation functions usually starts by setting all activations
to ReLU—with the exception of output layer. The ReLU is probably not suitable for
the output layer, unless our targets actually happen to fall in the range of positive
reals. Common choices for output activation are either linear activation (identity
mapping) in regression tasks, or logistic sigmoid in classification tasks. The sigmoid
squashes the output range into the interval [0, 1], where they can be conveniently
interpreted as class likelihoods. However, a more common choice is to set the
ultimate nonlinearity as the softmax function, which additionally scales the sum
of outputs y = (y1, y2, ..., yx) to unity:

exp(¥;)

[softmax ()] iT K expGr)
k=1

, forj=1,2,..., K. (6)
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Fig. 8 Popular network activation functions

In other words, each input to the softmax layer is passed through the exponential
function and normalized by their sum.

3 Network Training

The coefficients of the network layers are learned from the data by presenting
examples and adjusting the weights towards the negative gradient. This process
has several names: Most commonly it is called backpropagation—referring to the
forward-backward flow of data and gradients—but sometimes people use the name
of the optimization algorithm—the rule by which the weights are adjusted, such as
stochastic gradient descent, RMSProp, AdaGrad [11], Adam [23], and so on. In [33],
the good performance of backpropagation approach in several neural networks was
discussed, and its importance got widely known after that. Backpropagation has two
phases: propagation (forward pass) and weights update (backward pass), which we
will briefly discuss next.

Forward Pass When the neural network is fed with an input, it pushes the input
through the whole network until the output layer. Initially, the network weights are
random, so the predictions are as good as a random guess. However, the network
updates should soon push the network towards more accurate predictions.

Backward Pass Based on the prediction, the error between predictions y and
target outputs y from each unit of output layer is computed using a loss function,
L(y, y), which is simply a function of the network output y = (yi,..., yy) and
the corresponding desired targetsy = (y1, ..., yn). We will discuss different loss
functions more in detail in Sect. 3.1, but for now it suffices to note that the loss
should in general be smaller when y and y are close to each other. It is also worth
noting that the network outputs are a function of the weights w. However, in order
to avoid notational clutter, we omit the explicit dependence from our notation.



Deep Neural Networks 145

Based on the loss, we compute the partial derivative of the loss aLa(‘yv’y ) with
respect to the weights in the network. Since the network consists of sequence of
layers, the derivatives of the lower (close-to-input) layers depends on that of the
upper (close-to-output) layers, and the chain rule of differentiation has to be used. A
detailed discussion on how the chain rule is unrolled can be found, e.g., in [15].
Nevertheless, in order to compute the partial derivative of the loss with respect
to the parameters of any of the lower layers, we need to know the derivatives
of the upper layers first. Therefore, the weight update progresses from the output
layer towards the input layer, which coins the name, backpropagation. In essence,
backpropagation simply traverses the search space by updating the weights in the
order admitted by the chain rule. The actual update rule then adjusts each weight
towards the negative gradient with the step size specified by the parameter n € R :

IL(y. )
wy = wy =0 0
)

This equation is indeed exactly the same as that of the least mean square filter,
familiar from adaptive signal processing.

There are various strategies for choosing the detailed weight update algorithm, as
well as various possibilities for choosing the loss function L(y, ¥) to be minimized.
We will discuss these next.

3.1 Loss Functions

Ideally, we would like to minimize the classification error, or maximize the AUROC
(area under the receiver operating characteristics curve) score, or optimize whatever
quantity we believe best describes the performance of our system. However, most of
these interesting performance metrics are not differentiable or otherwise intractable
in closed form (for example, the derivative may not be informative enough to guide
the optimization towards the optimum). Therefore, we have to use a surrogate target
function, whose minimum matches that of our true performance metric.

Examples of commonly used loss functions are tabulated in Table 1 and plotted in
Fig.9 for a binary recognition case. In the table, we assume that the network targets
vj €1{0, 1} for j =1,2,..., N, with the exception of hinge loss, where the targets
are assumed to be y; € {—1,1} for j = 1,2,..., N. This is the common practice
in support vector machine literature where the hinge loss is most commonly used.

If we wish to maximize the classification accuracy, then our objective is to
minimize the number of incorrectly classified samples. In terms of loss functions,
this corresponds to the zero-one loss shown in Fig.9. In this case, each network
output y (a real number, higher values mean higher confidence of class membership)
is rounded to the nearest integer (0 or 1) and compared to the desired target y:
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Table 1 Loss functions

Loss function | Definition Notes

Zero-one loss | § ( ) y) 8(+, -) is the indicator function (see text)
' () denotes rounding to nearest integer

Squared loss ()7 — y)2

Absolute loss |§ — y|

Logistic loss | —In (y log(3) — (1 — y)log(1 — )7))

Hinge loss max (0, 1 — y3) Label encoding y € {—1, 1}

In all cases, we denote the network output by 3 and the corresponding desired targets by y. All

except hinge loss assume labels y; € {0, 1} forall j =1,2,..., N

Loss for samples with y = 0 Loss for samples with y = 1

2.0 2
=== Zero-one Loss === Zero-one Loss
1.5 Squared Loss 1.5 Squared Loss
Logistic Loss Logistic Loss
1.0 - Hinge Loss 1.0 Hinge Loss -

0.5 - - 0.5 - -

Fig. 9 Commonly used loss functions for classification. Note, that all hinge loss implementations
in fact assume labels y; € {—1, 1}, but is scaled here to labels y; € {0, 1} for visualization

. . . 1, if ,
LG,y =6(()y), with 8(p,q) = p7a @®)
0, otherwise,

and (x) denotes x € R rounded to the nearest integer.

Figure 9 plots selected loss functions for the two cases: y = 0Oandy = l as a
function of the network output y. The zero-one loss (black) is clearly a poor target
for optimization: The derivative of the loss function is zero almost everywhere and
therefore conveys no information about the location of the loss minimum. Instead
all of its surrogates plotted in Fig. 9 clearly direct the optimization towards the target
(either O or 1).

In most use cases, the particular choice of loss function is less influential to the
result than the optimizer used. A common choice is to use the logistic loss together
with the sigmoid or softmax nonlinearity at the output.
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3.2 Optimization

At training time, the network is shown labeled examples and the network weights
are adjusted according to the negative gradient of the loss function. However, there
are several alternative strategies on how the gradient descent is implemented.

One possibility would be to push the full training set through the network and
compute the average loss over all samples. The benefit of this batch gradient
approach would be that the averaging would give us a very stable and reliable
gradient, but the obvious drawback is the resulting long waiting time until the
network weights can actually be adjusted.

Similarly to the famous LMS algorithm, we obtain a similar averaging effect by
using the instantaneous gradient after every sample presented to the network. This
approach is called the stochastic gradient,

w < w—nL(y,y), ©)

with n > 0 denoting the step size. Although individual gradient estimates are very
noisy and may direct the optimization to a globally incorrect direction, the negative
gradient will—on the average—point towards the loss minimum.

A common variant of the SGD is the so called minibatch gradient, which is a
compromise between the batch gradient and stochastic gradient. Minibatch gradient
computes the predictions (forward passes) for a minibatch of B € Z4 samples
before propagating the averaged gradient back to the lower layers:

B
1 .
wew—n| > LG ] (10)
j=1

The minibatch approach has the key benefit of speeding up the computation
compared to pure SGD: A minibatch of samples can be moved to the GPU as a
single data transfer operation, and the average gradient for the minibatch can be
computed in a single batch operation (which parallelizes well). This will also avoid
unnecessary data transfer overhead between the CPU and the GPU, which will only
happen after the full minibatch is processed.

On the other hand, there is a limit to the speedup of using the minibatch.
Sooner or later the GPU memory will be consumed, and the minibatch size can
not be increased further. Moreover, large minibatches (up to training set size)
may eventually slow down the training process, because the weight updates are
happening less frequently. Although increasing the step size may compensate for
this, it does not circumvent the fact that path towards the optimum may be nonlinear,
and convergence would require alternating the direction by re-evaluating the local
gradient more often. Thus, the sweet spot is somewhere between the stochastic
gradient (B = 1 in Eq. (10)) and the batch gradient (B = N in Eq. (10)).
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Apart from the basic gradient descent, a number of improved optimization
strategies have been introduced in the recent years. However, since the choice
among them is nontrivial and beyond the scope of this chapter, we recommend the
interested reader to study the 2012 paper by Bengio [4] or Chapter 8 of the book by
Goodfellow et al. [14].

4 Implementation

4.1 Platforms

There exists several competing deep learning platforms. All the popular ones are
open source and support GPU computation. They provide functionality for the basic
steps of using a deep neural network: (1) Define a network model (layer structure,
depth and input and output shapes), (2) train the network (define the loss function,
optimization algorithm and stopping criterion), and (3) deploy the network (predict
the output for test samples). Below, we will briefly discuss some of the most widely
used platforms.

Caffe [21] is a deep learning framework developed and maintained by the
Berkeley University Vision and Learning Center (BVLC). Caffe is written in both
C++ and NVidia CUDA, and provides interfaces to Python and Matlab. The network
is defined using a Google Protocol Buffers (prototxt) file, and trained using a
command-line binary executable. Apart from the traditional manual editing of the
prototxt definition file, current version also allows to define the network in Python or
Matlab, and the prototxt definition will be generated automatically. A fully trained
model can then be deployed either from the command line or from the Python or
Matlab interfaces. Caffe is also known for the famous Caffe Model Zoo, where
many researchers upload their model and trained weights for easy reproduction
of the results in their research papers. Recently, Facebook has actively taken over
the development, and released the next generation caffe2 as open source. Caffe is
licensed under the BSD license.

Tensorflow [1] is a library open sourced in 2015 by Google. Before its release,
it was an internal Google project, initially under the name DistBelief. Tensorflow is
most conveniently used through its native Python interface, although less popular
C++, Java and Go interfaces exist, as well. Tensorflow supports a wide range of
hardware from mobile (Android, iOS) to distributed multi-CPU multi-GPU server
platforms. Easy installation packages exist for Linux, iOS and Windows through
the Python pip package manager. Tensorflow is distributed under the Apache open
source license.

Keras [7] is actually a front end for several deep learning computational engines,
and links with Tensorflow, Theano [2] and Deeplearning4j backends. Microsoft is
also planning to add the CNTK [44] engine into the Keras supported backends.
The library is considered easy to use due to its high-level object-oriented Python
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interface, and it also has a dedicated scikit-learn API for interfacing with the
extremely popular Python machine learning library [29]. The lead developer of
Keras works as an engineer at Google, and it was announced that Keras will be
part of the Tensorflow project since the release of Tensorflow 1.0. Keras is released
under the MIT license. We will use Keras in the examples of Sect. 4.2.

Torch [9] is a library for general machine learning. Probably the most famous
part of Torch is its nn package, which provides services for neural networks.
Torch is extensively used by Facebook Al Research group, who have also released
some of their own extension modules as open source. The peculiarity of Torch is
its interface using Lua scripting language for accessing the underlying C/CUDA
engine. Recently, a Python interface for Torch was released with the name pyTorch,
which has substantially extended the user base. Torch is licensed under the BSD
license.

MXNet [5] is a flexible and lightweight deep learning library. The library
has interfaces for various languages: Python, R, Julia and Go, and supports
distributed and multi-GPU computing. The lightweight implementation also renders
it very interesting for mobile use, and the functionality of a deep network can be
encapsulated into a single file for straightforward deployment into Android or iOS
devices. Amazon has chosen MXNet as its deep learning framework of choice, and
the library is distributed under the Apache license.

MatConvNet [41] is a Matlab toolbox for convolutional networks, particularly
for computer vision applications. Although other libraries wrap their functionality
into a Matlab interface, as well, MatConvNet is the only library developed as a
native Matlab toolbox. On the other hand, the library can only be used from Matlab,
as the GPU support builds on top of Matlab Parallel computing toolbox. Thus, it
is the only one among our collection of platforms, that requires the purchase of
proprietary software. The toolbox itself is licensed under the BSD library.

Comparison of the above platforms is challenging, as they all have their own
goals. However, as all are open source projects, the activity of their user base is
a critical factor predicting their future success. One possibility for estimating the
popularity and the size of the community is to study the activity of their code
repositories. All projects have their version control in Github development platform
(http://github.com/), and one indicator of project activity is the number of issues
raised by the users and contributors. An issue may be a question, comment or bug
report, but includes also all pull requests, i.e., proposals for additions or changes to
the project code committed by the project contributors.

The number of new issues for the above deep learning frameworks are illustrated
in Fig. 10, where the curves show the number of issues per quarter since the
beginning of 2015. If our crude estimate of popularity reflects the real success of
each platform, then the deep learning landscape is dominated by three players:
Tensorflow, Keras and the MXNet, whose combined share of issues in our graph
is over 75% for Q1 of 2017.

It is also noteworthy that the pyTorch is rising its popularity very fast, although
plain Torch is not. Since their key difference is the interface (Lua vs. Python), this
suggests that Python has become the de facto language for machine learning, and
every respectable platform has to provide a Python interface for users to link with
their legacy Python code.
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Fig. 10 Number of Github issues for popular deep learning platforms

4.2 Example: Image Categorization

Image categorization is probably the most studied application example of a deep
learning. There are a few reasons for this. First, the introduction of the Imagenet
dataset [10] in 2009 provided researchers access to a large scale heterogeneous
annotated set of millions of images. Only very recently, other domains have reached
data collections of equal magnitude; a recent example is the Google AudioSet
database of acoustic events [13]. Large image databases were collected first, because
their construction by crowdsourcing is relatively straightforward compared to, for
example, annotation of audio files. The Imagenet database was collected using the
Amazon Mechanical Turk crowdsourcing platform, where each user was presented
an image and asked whether an object of certain category was shown in the picture.
A similar human annotation for other domains is not so straightforward.

The second reason for the success of deep learning in image categorization
are the ILSVRC (Internet Large Scale Visual Recognition Challenge) competitions
organized annually since 2010 [34]. The challenge uses the Imagenet dataset with
over one million images from 1000 categories, and different teams compete with
each other in various tasks: categorization, detection and localization. The com-
petition provides a unified framework for benchmarking different approaches, and
speeds up the development of methodologies, as well. Thirdly, image recognition is
a prime example of a task which is easy for humans but was traditionally difficult for
machines. This raised also academic interest on whether machines can beat humans
on this task.

As an example of designing a deep neural network, let us consider the Oxford
Cats and Dogs dataset [28], where the task is to categorize images of cats and dogs

into two classes. In the original pre-deep-learning era paper, the authors reached
accuracy of 95.4% for this binary classification task. Now, let’s take a look at how to
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# Import the network container and the three types of layers
from keras.models import Sequential
from keras.layers import Conv2D, Dense, DropOut

# Initialize the model
model = Sequential ()

# Add six convolutional layers. Maxpool after every second convolution.

model.add (Conv2D (filters=32, kernel_size=3, padding=" same’, activation="relu’,
input_shape =shape))

model.add (Conv2D (filters=32, kernel_size=3, padding="same’, activation="relu’))

model.add (MaxPooling2D (2, 2)) # Shrink feature maps to 32x32

model.add (Conv2D(filters=48, kernel_size =3, padding =" same’, activation="relu’))
model.add (Conv2D(filters=48, kernel_size =3, padding =" same’, activation="relu’))
model.add (MaxPooling2D (2,2)) # Shrink feature maps to 16x16

model.add (Conv2D( filters=64, kernel_size=3, padding='same’, activation="relu’))
model.add (Conv2D(filters=64, kernel_size=3, padding='same’, activation="relu’))
model.add (MaxPooling2D (2,2)) # Shrink feature maps to 8x8

# Vectorize the 8x8x64 representation to 4096x1 vector
model.add (Flatten())

# Add a dense layer with 128 nodes
model.add (Dense(128, activation="relu’))
model.add (Dropout (0.5))

# Finally, the output layer has 1 output with logistic sigmoid nonlinearity
model.add(Dense(1, activation ='sigmoid’))

Listing 1 Keras code for creating a small convolutional network with randomly initialized
weights.

design a deep network using the Keras interface and how the result would compare
with the above baseline.

We use a subset of 3687 images of the full dataset (1189 cats; 2498 dogs)
for which the ground truth location of the animal’s head is available. We crop a
square shaped bounding box around the head and train the network to categorize
based on this input. The bounding box is resized to fixed size 64 x 64 with three
color channels. We choose the input size as a power of two, since it allows us to
downsample the image up to six times using the maxpooling operator with stride 2.

We consider two approaches to network design:

1. Design a network from scratch,
2. Fine tune the higher layers of a pretrained network for this task.

Since the amount of training data is relatively small, the first option necessarily
limits the network size in order to avoid overlearning. In the second case, the
network size can be larger as it has been trained with a larger number of images
before.

Small Network The structure of the network trained from scratch is shown in
Fig. 11. The network consists of six convolutional layers followed by one dense
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Fig. 11 Structure of the dogs and cats classification network

layer and the output layer. The input of the network is a 96 x 96 x 3 array, and the
output is a scalar: The probability of a dog (we encode dog as target y; = 1 and cat
as target y; = 0). The network is created in Keras using the code on Listing 1, and
the result is illustrated in Fig. 11.

The input at the left of the figure is the image to be categorized, scaled to 64 x 64
pixels with three color channels. The processing starts by convolving the input with
a kernel with spatial size 3 x 3 spanning all three channels. Thus, the convolution
window is in fact a cube of size 3 x 3 x 3: It translates spatially along image axes,
but can see all three channels at each location. This will allow the operation to
highlight, e.g., all red objects by setting the red channel coefficients larger than the
other channels. After the convolution operation, we apply a nonlinearity in a pixel-
wise manner. In our case this is the ReLU operator: ReLU(x) = max(0, x).

Since a single convolution can not extract all the essential features from the input,
we apply several of them, each with a different 3 x 3 x 3 kernel. In the first layer of
our example network, we decide to learn altogether 32 such kernels, each extracting
hopefully relevant image features for the subsequent stages. As a result, the second
layer will consist of equally many feature maps, i.e., grayscale image layers of size
64 x 64. The spatial dimensions are equal to the first layer due to the use of zero
padding at the borders.

After the first convolution operation, the process continues with more convolu-
tions. At the second layer, the 64 x 64 x 32 features are processed using a convolution
kernel of size 3 x 3 x 32. In other words, the window has spatial dimensions 3 x 3,
but can see all 32 channels at each spatial location. Moreover, there are again 32
such kernels, each capturing different image features from the 64 x 64 x 32 image
stack.

The result of the second convolution is passed to a maxpooling block, which
resizes each input layer to 32 x 32—half the original size. As mentioned earlier,
the shrinking is the result of retaining the largest value of each 2 x 2 block of each
channel of the input stack. This results in a stack of 32 grayscale images of size
32 x 32.
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The first three layers described thus far highlight the basic three-layer block that
is repeated for the rest of the convolutional layer sequence. The full convolutional
pipeline consists of three convolution—convolution—-maxpooling blocks; nine layers
in total. In deep convolutional networks, the block structure is very common because
manual composition of a very deep network (e.g., ResNet with 152 layers [16]) or
even a moderately deep network (e.g., VGG net with 16 layers [37]) is not a good
target for manual design. Instead, deep networks are composed of blocks such as the
convolution—convolution—maxpooling as in our case.

The network of Fig. 11 repeats the convolution—convolution—-maxpooling block
three times. After each maxpooling, we immediately increase the number of feature
maps by 16. This is a common approach to avoid decreasing the data size too rapidly
at the cost of reduced expression power. After the three convolution—convolution—
maxpooling blocks, we end up with 64 feature maps of size 8 x 8.

The 64-channel data is next fed to two dense (fully connected) layers. To do this,
we flatten (i.e., vectorize) the data from a 64 x 8 x 8 array into a 4096-dimensional
vector. This is the input to the first fully connected layer that performs the mapping

# Import the network container and the three types of layers
from keras.applications.vgg16 import VGG 16

from keras.models import Model

from keras.layers import Conv2D

# Initialize the VGG 16 network. Omit the dense layers on top.
base_model = VGG16 (include_top = False, weights = ,
input_shape = (64,64,3))

# We use the functional API, and grab the VGG 16 output here:
w = base_model.output

# Now we can perform operations on w. First flatten it to 2048-dim vector:
w = Flatten () (w)

# Add dense layer :
w = Dense (128, activation = ) (w)

# Add output layer:
output = Dense (1, activation = ) (w)

# Prepare the full model from input to output :
model = Model (input=base_model. input, output=output)

# Also set the last Conv block (3 layers) as trainable.

# There are four layers above this block, so our indices
# start at -5 (i.e., last minus five) :

model.layers [-5]. trainable = True

model.layers [-6]. trainable = True

model.layers [-7]. trainable = True

Listing 2 Keras code for instantiating the pretrained VGG16 network with dense layers appended
on top
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R49% 5 RI?8 by multiplying by a 128 x 4096-dimensional matrix followed by an

elementwise ReLU nonlinearity. Finally, the result is mapped to a single probability
(of a dog) by multiplying by a 1 x 128-dimensional matrix followed by the sigmoid
nonlinearity. Note that the output is only a single probability although there are two
classes: We only need one probability Prob(”DOG”) as the probability of the second
class is given by the complement Prob("CAT”) = 1 — Prob("DOG”). Alternatively,
we could have two outputs with the softmax nonlinearity, but we choose the single-
output version due to its relative simplicity.

Pretrained Large Network For comparison, we study another network design
approach, as well. Instead of training from scratch, we use a pretrained network
which we then fine-tune for our purposes. There are several famous pretrained
networks easily available in Keras, including VGG16 [37], Inception-V3 [38]
and the ResNet50 [16]. All three are re-implementations of ILSVRC competition
winners and pretrained weights trained with Imagenet data are available. Since the
Imagenet dataset contains both cats and dogs among the 1000 classes, there is reason
to believe that they should be effective for our case as well (in fact the pretrained net
approach is known to be successful also for cases where the classes are not among
the 1000 classes—even visually very different classes benefit from the Imagenet
pretraining).

We choose the VGG16 network as our template because its 16 layers with
5 maxpoolings allow smaller input sizes than the deeper networks. The network
structure follows the convolution-convolution-maxpooling block composition as in
our own network design earlier, and is as follows.

1. Conv block 1. Two convolutional layers and a maxpooling layer with mapping
64 x 64 x 3 — 32 x 32 x 64.

2. Conv block 2. Two convolutional layers and a maxpooling layer with mapping
32 x 32 x 64 +— 16 x 16 x 128.

3. Conv block 3. Three convolutional layers and a maxpooling layer with mapping
16 x 16 x 128 > 8 x 8 x 256.

4. Conv block 4. Three convolutional layers and a maxpooling layer with mapping
8 x 8x 2564 x4 x512.

5. Conv block 5. Three convolutional layers and a maxpooling layer with mapping
4x4x512+—2x2x512.

Additionally, the original network has three dense layers atop the five convolutional
blocks. We will only use the pretrained convolutional pipeline, because the convo-
lutional part is usually considered to serve as the feature extractor, while the dense
layers do the actual classification. Therefore, the upper dense layers may be very
specialized for the Imagenet problem, and would not work well in our case.

More importantly, the convolutional part is invariant to the image shape. Since
we only apply convolution to the input, we can rather freely choose the input size, as
long as we have large enough data to accommodate the five maxpoolings—at least
32 x 32 spatial size. The input shape only affects the data size at the output: for
32 x 32 x 3 input we would obtain 512 feature maps of size 1 x 1 at the end, with
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128 x 128 x 3 input the convolutional pipeline output would be of size 4 x 4 x 512,
and so on. The original VGG16 network was designed for 224 x 224 x 3 input
size, which becomes 7 x 7 x 512 after five maxpooling operations. In our case the
output size 2 x 2 x 512 becomes 2048-dimensional vector after flattening, which is
incompatible with the pretrained dense layers assuming 25,088-dimensional input.

Instead of the dense layers of the original VGG16 model, we append two layers
on top of the convolutional feature extraction pipeline. These layers are exactly the
same as in the small network case (see Fig. 11): One 128-node dense layer and 1-
dimensional output layer. These additional layers are initialized at random.

In general, the lower layers (close to input) are less specialized to the training
data than the upper layers. Since our data is not exactly similar to the Imagenet data
(fewer classes, smaller spatial size, animals only), the upper convolutional layers
may be less useful for us. On the other hand, the lower layers extract low level
features and may be well in place for our case as well. Since our number of samples
is small compared to the Imagenet data, we do not want to overfit the lower layers,
but will retain them in their original state.

More specifically, we apply the backpropagation step only to the last convolu-
tional block (and the dense layers) and keep the original pretrained coefficients
for the four first convolutional blocks. In deep learning terms, we freeze the first
four convolutional blocks. The fine-tuning should be done with caution, because
the randomly initialized dense layers may feed large random gradients to the lower
layers rendering them meaningless. As a rule of thumb, if in doubt, rather freeze too
many layers than too few layers.

The code for instantiating the pretrained network in Keras is shown in Listing 2.
Note that Keras automatically downloads the pretrained weights from the internet
and keeps a local copy for the future. Listing 2 uses Keras functional API (in
Listing 1 we used Sequential API), where each layer is defined in a functional
manner, mapping the result of the previous layer by the appropriate layer type.

We train both networks with 80% of the Oxford cats and dogs dataset samples
(2949 images), and keep 20% for testing (738 images). We increase the training set
size by augmentation. Augmentation refers to various (geometric) transformations
applied to the data to generate synthetic yet realistic new samples. In our case, we
only use horizontal flipping, i.e., we reflect all training set images left-to-right.
More complicated transformations would include rotation, zoom (crop), vertical
flip, brightness distortion, additive noise, and so on.

The accuracy of the two network architectures is plotted in Fig. 12; on the left is
the accuracy of the small network and on the right is the accuracy of the pretrained
network for 50 epochs. Based on the figures, the accuracy of the pretrained network
is better. Moreover, the accuracy reaches the maximum immediately after the very
first epochs. The main reason for this is that the pretraining has prepared the
network to produce meaningful representation for the data regardless of the input
type. In essence, the pretrained classifier very close to a two layer dense network,
which trains very rapidly compared to the small network with several trainable
convolutional layers.
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Fig. 12 The accuracy of classification for the Oxford cats and dogs dataset. Left: Learning curve
of the small network initialized at random. Right: Learning curve of the fine-tuned VGG network

5 System Level Deployment

Deep learning is rarely deployed as a network only. Instead, the developer has
to integrate the classifier together with surrounding software environment: Data
sources, databases, network components and other external interfaces. Even in the
simplest setting, we are rarely in an ideal position, where we are given perfectly
cropped pictures of cats and dogs.

The TUT Live Age Estimator is an example of a full deep learning demo system
designed to illustrate the human level abilities of a deep learning system.> The live
video at https://youtu.be/KfeShKNwrCU illustrates the functionality of the demo. A
screen shot of the video is also shown in Fig. 13.

The system uses three deep networks in real time:

1. An age estimator network [30, 31]
2. A gender recognizer network [30, 31]
3. An expression recognizer network

All the networks receive the cropped face, which needs to be located first. To this
aim, we use the OpenCV implementation of the famous Viola-Jones object detection
framework [42] with readily available face detection cascades. Moreover, the input
video frames are acquired using the OpenCV VideoCapture interface.

Most of the required components are available in open source. The only thing
trained by ourselves was the expression recognizer network, for which a suitable
pretrained network was not available. However, after the relatively straightforward
training of the one missing component, one question remains: How to put everything
together?

5The full Python implementation is available at https://github.com/mahehu/TUT-live-age-
estimator.
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One of the challenges of the real time implementation is in the concurrency: How
do we control the interplay of blocks that require different amount of computation?
To this aim, we use asynchronous threads that poll for new frames to be processed.
The schematic diagram of the system is shown in Fig. 14. Each stage of processing

is implemented within a thread.

1. Grabber thread accesses the camera and requests video frames. The received
frames are time stamped and pushed to the frame storage through the main

thread.

2. Detection thread polls the frame storage for most recent frame not detected yet.
When a frame is received, the OpenCV cascade classifier is applied to localize
all faces. The location of the face (or None if not found) is added to the frame

object, which also indicates that the frame has been processed.
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3. Age thread polls the frame storage for most recent frame which has passed the
detection stage but not age-recognized yet. When a frame is received, the age
estimation network is applied to the cropped face. The age estimate is added to
the frame object, which also indicates that the frame has been processed.

4. Gender thread polls the frame storage for most recent frame which has passed
the detection stage but not gender-recognized yet. When a frame is received, the
gender recognition network is applied to the cropped face. The gender result is
added to the frame object, which also indicates that the frame has been processed.

5. Expression thread polls the frame storage for most recent frame which has
passed the detection stage but not expression-recognized yet. When a frame is
received, the expression recognition network is applied to the cropped face. The
expression result is added to the frame object, which also indicates that the frame
has been processed.

6. Display thread polls the frame storage for most recent frame not locked by any
other thread for processing. The thread also requests the most recent age, gender
and expression estimates and the most recent face bounding box from the main
thread.

7. Main thread initializes all other threads and sets up the frame storage. The thread
also locally keeps track of the most recent estimates of face location, age, gender
and expression in order to minimize the delay of the display thread.

8. Frame storage is a list of frame objects. When new objects appear from the
grabber thread, the storage adds the new item at the end of the list and checks
whether the list is longer than the maximum allowed size. If this happens, then
the oldest items are removed from the list unless locked by some processing
thread. The storage is protected by mutex object to disallow simultaneous read
and write.

9. Frame objects contain the actual video frame and its metadata, such as the
timestamp, bounding box (if detected), age estimate (if recognized), and so on.

The described structure is common to many processing pipelines, where some
stages are independent and allow parallel processing. In our case, the dependence is
clear: Grabbing and detection are always required (in this order), but after that the
three recognition events and the display thread are independent of each other and can
all execute simultaneously. Moreover, if some of the processing stages needs higher
priority, we can simply duplicate the thread. This will instantiate two (or more)
threads each polling for frames to be processed thus multiplying the processing
power.

6 Further Reading

The above overview focused on supervised training only. However, there are other
important training modalities that an interested reader may study: unsupervised
learning and reinforcement learning.
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The amount of data is crucial to modern artificial intelligence. At the same time,
data is often the most expensive component while training an artificial intelligent
system. In particular, this is the case with annotated data used within supervised
learning. Unsupervised learning attempts to learn from unlabeled samples, and the
potential of unsupervised learning is not fully discovered. There is a great promise
in learning from inexpensive unlabeled data instead of expensive labeled data. Not
only the past of deep learning was coined by unsupervised pretraining [18, 19];
unsupervised learning may be the future of Al, as well. Namely, some of the
pioneers of the field have called unsupervised learning as the future of AL since
the exploitation on unlabeled data would allow exponential growth in data size.

Reinforcement learning studies problems, where the learning target consists of
a sequence of operations—for example, a robot arm performing a complex task.
In such cases, the entire sequence should be taken into account when defining the
loss function. In other words, also the intermediate steps of a successful sequence
should be rewarded in order to learn to solve the task successfully. A landmark paper
in modern reinforcement learning is the 2015 Google DeepMind paper [27], where
the authors introduce a Deep Q-Learning algorithm for reinforcement learning with
deep neural network. Remarkably, the state-of-the-art results of the manuscript have
now been obsoleted by a large margin [17], emphasizing the unprecedented speed
of development in the field.

Another topic in Al with growing importance is recurrent neural network (RNN),
which processes sequences using architectures that remember their past states.
This enables the concept of memory, which allows storage of either temporal
or otherwise sequential events for future decisions. Recurrent networks can have
multiple configurations depending on the problem input/output characteristics, and
Fig. 15 illustrates a few common ones. The particular characteristic of a recurrent
network is that it can process sequences with applications such as image captioning
[22], action recognition [36] or machine translation [3]. The most widely used RNN
structures include the Long Short-Term Memory (LSTM) networks [20] and Gated
Recurrent Unit (GRU) networks [8].

7 Conclusions

Deep learning has become a standard tool in any machine learning practitioner’s
toolbox surprisingly fast. The power of deep learning resides in the layered
structure, where the early layers distill the essential features from the bulk of data,
and the upper layers eventually classify the samples into categories. The research on
the field is extremely open, with all important papers openly publishing their code
along with the submission. Moreover, the researchers are increasingly aware of the

Shttp://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-
lecun-on-deep-learning.
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Fig. 15 Configurations of recurrent neural networks. Top left: A non-recurrent network, with a
single input (e.g., facial image) and single output (e.g., age). Top right: A recurrent network with
sequence input (e.g., video frames) and a single output (e.g., action of the user in the sequence).
Bottom left: A recurrent network with single input (e.g., an image) and a sequence output (e.g., the
image caption text). Bottom right: a recurrent network with a sequence input (e.g. text in Swedish)
and sequence output (e.g., text in English)
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importance of publishing open access; either in gold open access journals or via
preprint servers, such as the ArXiv. The need for this kind of reproducible research
was noted early in the signal processing community [39] and has luckily become
the standard operating principle of machine learning.

The remarkable openness of the community has led to democratization of the
domain: Today everyone can access the implementations, the papers, and other
tools. Moreover, cloud services have brought also the hardware accessible to almost
everyone: Renting a GPU instance from Amazon cloud, for instance, is affordable.
Due to the increased accessibility, standard machine learning and deep learning have
become a bulk commodity: Increased number of researchers and students possess
the basic abilities in machine learning. So what’s left for research, and where the
future will lead us?

Despite the increased supply of experts, also the demand surges due to the
growing business in the area. However, the key factors of tomorrow’s research are
twofold. First, data will be the currency of tomorrow. Although large companies
are increasingly open sourcing their code, they are very sensitive to their business
critical data. However, there are early signs that this may change, as well. Compa-
nies are opening their data as well: One recent surprise was the release of Google
AudioSet—a large-scale dataset of manually annotated audio events [13]—which
completely transformed the field of sound event detection research.

Second, the current wave of deep learning success has concentrated on the virtual
world. Most of the deep learning is done in server farms using data from the cloud.
In other words, the connection to the physical world is currently very slim. This
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is about to change; as an example, deep learning is rapidly steering the design of
self driving cars, where the computers monitor their surroundings via dashboard
mounted cameras. However, most of the current platforms are at a prototype stage,
and we will see more application-specific deep learning hardware in the future. We
have also seen that most of the deep learning computation operations stem from
basic signal processing algorithms, embedded DSP design expertise may be in high
demand in the coming years.

Acknowledgements The author would like to acknowledge CSC - IT Center for Science Ltd. for
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Abstract Methods for the efficient coding of high-dynamic range (HDR) still-
images and video sequences are reviewed. In dual-layer techniques, a base layer of
standard-dynamic range data is enhanced by additional image data in an enhance-
ment layer. The enhancement layer may be additive or multiplicative. If there is
no requirement for backward compatibility, adaptive HDR-to-standard dynamic
range (SDR) mapping schemes in the encoder allow for improved coding efficiency
versus the backward-compatible schemes. In single-layer techniques, a base layer is
complemented by metadata, such as supplementary enhancement information (SEI)
data or color remapping information (CRI) data, which allow a decoder to apply
special “reshaping” or inverse-mapping functions to the base layer to reconstruct
an approximation of the original HDR signal. New standards for exchanging HDR
signals, such as SMPTE 2084 and BT. 2100, define new mapping functions for
translating linear scene light captured by a camera to video and are replacing the
traditional “gamma” mapping. The effect of those transforms to existing coding
standards, such as high efficiency video coding (HEVC) and beyond, are reviewed,
and novel quantization and coding schemes that take these new mapping functions
into consideration are also presented.

1 Introduction

In digital imaging, the term dynamic range refers to the ratio of the highest over
the lowest luminance values in an image or a scene. For example, the human visual
system (HVS) can perceive the brightness of an object from the darkest shadows
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or faint starlight (about 107% cd/m? or nits),! all the way to direct sunlight (about
103 cd/m?). These intensities may be referred to as “scene-referred” intensities.
Thus, the physical word represents approximately 14 orders of dynamic range,
typically referred to as high dynamic range (HDR). In contrast, the dynamic
range that humans may simultaneously perceive is approximately 5-6 orders of
magnitude. While this dynamic range, sometimes referred to as visual dynamic
range or extended dynamic range, is significantly lower than HDR, it may still be
referred to as a high dynamic range.

In display technology, dynamic range (say, 5000:1) refers to the ratio of the
brightest white (e.g., 500 nits) over the darkest black (e.g., 0.1 nits) a display can
render. These intensities are referred to as “display-referred” intensities. Most con-
sumer desktop displays and high definition televisions (HDTVs) currently support
peak luminance of 200-500 nits. Such conventional displays thus typify a lower
dynamic range (LDR), also referred to as a standard dynamic range (SDR). Modern,
HDR-branded, displays support peak luminance of 800—1000 nits; however, studio
HDR monitors are known to support peak luminance values exceeding 4000 nits.

Traditional, 24-bit, digital photography represents a low dynamic range of about
2-3 orders of dynamic range and has dominated both software and hardware
architectures in both the consumer electronics and the broadcast industry. However,
many display manufacturers are now entering the market with HDR displays
and thus there is increased interest and need for the efficient representation,
compression, and transmission of HDR content. This Chapter provides a brief
overview of past efforts in backwards-compatible coding of HDR video and presents
some recent developments using both dual-layer and single-layer architectures.
More specifically, Sect. 2 describes early work for coding still HDR images.
Before covering HDR video coding, in Sect. 3, we review non-linear transfer
functions commonly being used to translate linear light to video signals. Backward-
compatible video coding methods are reviewed in Sect. 4, and non-backward
compatible methods are reviewed in Sect. 5. Both single-layer and multi-layer
coding schemes are examined.

2 Early Work: HDR Coding for Still Images

The image processing community has shown interest in HDR images since the
late 1980s, using a variety of logarithmic-based or floating-point encodings for
intensity, such as the Radiance RGBE format, LogLuv TIFF, and OpenEXR [1].
None of these formats allowed for backward compatibility, typically a necessary
(but not always sufficient) requirement for wider adoption. In 2004, encouraged by
the wide adoption of the JPEG image compression standard, Ward and Simmons

ICandela per square meter (cd/m?), also referred to as nit, is the international standard unit of
luminance.
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[1] introduced JPEG-HDR, a JPEG-backwards-compatible format that includes a
baseline image representing a tone-mapped version of the input HDR image,” and
a ratio image representing pixel by pixel the ratio of luminance values in the input
HDR image over those in the tone-mapped image. The ratio image is log-encoded
and compressed as an 8-bit grayscale image, and it is stored as part of the JPEG
image using a dedicated JPEG application marker. The format allows legacy JPEG
decoders to ignore the ratio image and simply decode the tone-mapped version
of the JPEG image. JPEG-HDR-enabled decoders can reconstuct the HDR image
by a simple multiplication with the ratio image. JPEG-HDR was later enhanced
to include chroma residuals, and the new format was standardized as Profile A in
JPEG XT, which includes also two alternative Profiles (B and C) for coding HDR
still images [1-3]. Following the notation by Richter [3], the three profiles may be
expressed as follows:

Profile A
In this profile, based on JPEG-HDR, the reconstructed HDR image is generated as

HDR = pu(r) (P(SDR) + x) , ey

where SDR is the base JPEG image (typically encoded in a gamma-corrected space),
® denotes an inverse-gamma correction, x denotes a function of chroma (e.g.,
CbCr) residuals, and u(r) = exp (r) denotes an exponential function of the ratio
log-image r (that is, the logarithm of the ratio of luminance in the original HDR
image over luminance in the tone-mapped image).

Profile B
Profile B is similar to Profile A, except that the ratio is expressed for each color
channel (i = 1, 2, 3). Ratios are also coded using a logarithmic representation, thus

HDR; = o exp(log (® (HDR;)) — log (¥ (RES)))), 2)

where & denotes an inverse-gamma correction, W is typically selected to be a
gamma correction derived by the encoder, and o is a scaler.

Profile C

In profile C, the floating-point residuals between the HDR image and the SDR
image, in each color component (RES;, i = 1, 2, 3), are expressed as integers using a
pseudo-log2 representation. Then, in the decoder, one may apply a pseudo-exponent
to recover them. Thus, while the reconstructed image may be represented as

HDR; = ® (SDR;) RES;,

2«Tone mapping” refers to the process of mapping luminance values in a high dynamic range to
luminance values in a lower dynamic range.
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in a decoder, under Profile C,

HDR; = ¢ exp (O (SDR;) + RES; — 0), 3)

where exp represents a pseudo-exponential function, o is an offset that ensures
the residual image is not negative, and ) represents an inverse gamma followed by
an inverse log approximation, typically optimized by the encoder and passed to the
decoder.

Despite the adoption of HDR image capture in many cameras and smart-phones
(typically, by combining three separate exposures), to the best of our knowledge,
by mid-2017, none of the camera manufacturers had adopted any of the JPEG
XT Profiles. All captured HDR images are simply represented and stored as tone-
mapped JPEG images. Before we continue with HDR video coding schemes, it
is worth revisiting another important topic: the role of cathode ray tube (CRT)
technology in traditional SDR coding, especially as it is related to quantizing linear
scene light (e.g., light as captured by a camera sensor) to a non-linear signal for
efficient processing of captured images in a video pipeline.

3 Signal Quantization: Gamma, PQ,’ and HLG*

Due to signal-to-noise constraints in analog and digital video signals and the
characteristics of the traditional CRT display, scene light was never represented in a
linear form in the video processing pipeline. Captured images are quantized using a
non-linear opto-electrical transfer function (OETF) which converts linear scene light
into the camera’s (non-linear) video signal. Then, after encoding and decoding, on
the receiver, the signal would be processed by an electro-optical transfer function
(EOTF), which would translate the input video signal to output screen color values
(e.g., screen luminance) produced by the display. Such non-linear functions include
the traditional “gamma” curve documented in Recommendations ITU-R BT.709,
BT.1886, and BT.2020 [4]. The combination of an OETF, the EOTF, and any artistic
adjustments (either during content creation or content display) is referred to as the
system opto-optical transfer function or OOTF [5].

Currently, most digital interfaces for video delivery, such as the serial digital
interface (SDI) are limited to 12 bits per pixel per color component. Furthermore,
most compression standards, such as H.264 (or AVC) and H.265 (or HEVC), are
limited, at least in practical implementations, to 10-bits per pixel per component.
Therefore, efficient encoding and/or quantization is required to support HDR
content, with dynamic range from approximately 0.001-10,000 cd/m? (or nits),
within existing infrastructures and compression standards.

3PQ stands for “Perceptual Quantizer” EOTF, as defined by Miller et al. [7].
4HLG stands for a non-linear transfer function known as “Hybrid Log-Gamma.”
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Gamma encoding was satisfactory for delivery of SDR (e.g., 810 bits) content,
but has been proven rather inefficient when coding HDR content. The human visual
system responds to increasing light levels in a very non-linear way. A human’s
ability to see a stimulus is affected by the luminance of that stimulus, the size of the
stimulus, the spatial frequencies making up the stimulus, and the luminance level
that the eyes have adapted to at the particular moment one is viewing the stimulus
[6,7].In 2013, Miller et al. [7] proposed an alternative EOTF to the gamma function,
commonly referred to as “PQ” (for perceptual quantizer). PQ maps linear input gray
levels to output gray levels that better match the contrast sensitivity thresholds in the
human visual system. Compared to the traditional gamma curve, which represents
the response curve of a physical CRT device and coincidently may have a very rough
similarity to the way the human visual system responds, the PQ curve imitates the
true visual response of the human visual system using a relatively simple functional
model, shown in Eq. (4) [8].

2
cl 42 % L™\
) , 4

V=EOTF '[L]=
L] (1—i—c3>x<Lm1

where, V represents the result non-linear signal (say, (R’, G, B")) in a range [0,1], L
represents luminance of a displayed linear components in cd/m? (assuming a peak
luminance of 10,000 cd/m2), and the constants are:

ml =2610/16384 = 0.1593017578125,
m2 = 2523/4096 x 128 = 78.84375,
cl =3424/4096 = 0.8359375 = c3 — c2+ 1,
c2 =2413/4096 x 32 = 18.8515625,

¢3 =12392/4096 x 32 = 18.6875.

For comparison, according to Rec. BT. 709 [9], the traditional gamma curve on
an encoder is given by

_ { 1.099L%4 —0.099; 1 > L > 0.018 )

~ | 4.500 L; 0.018>L >0’

where L denotes input luminance in [0,1].
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Fig. 1 BT. 709 (gamma) versus SMPTE 2084 (PQ) encoding for HDR signals
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The PQ mapping functions were adopted in SMPTE ST 2084 and Rec. ITU-R
BT.2100 [8]. Figure 1 provides an example of the gamma and PQ coding for L in
(0, 1].

The PQ EOTF was designed assuming a camera-centric OOTF that applies an
inverse PQ EOTF to generate the signal to be processed (see Fig. 2). In Rec. BT.
2100, an alternative, display-centric nonlinear transfer function is also presented,
commonly referred to as Hybrid Log-Gamma (HLG) (see Fig. 3). HLG was
designed with backward-compatibility in mind, especially as related to ITU-R BT.
2020 color displays. PQ and HLG may co-exist, and Annex 2 of BT. 2100 provides
examples of converting between PQ-coded signals and HLG-coded signals. Given
a video stream, information about its EOTF is typically embedded in the bit stream
as metadata.
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4 Backward-Compatible HDR Coding

By the end of 2016, there was a variety of HDR content available for consumers with
branded HDR displays; however, the majority of consumers around the world have
only SDR displays. Backward compatibility; that is, support for both SDR and HDR
content, is considered by many critical for the wider adoption of HDR displays.
Depending on the operational cost, including content storage, network bandwidth,
and processing time, content providers have two different approaches to support
both formats.

For a system or distribution channel with abundant storage, but limited network
bandwidth, most system providers prefer to use a unicast solution: namely, store
both the SDR and HDR bit streams in the server side, and transmit either the SDR
or the HDR bit stream, depending on the targeted display.

For a system with limited storage, or when the storage cost is high, the system
providers prefer to provide a bitstream which can be viewed on a legacy SDR
display, but also allows users with an HDR display to reconstruct the HDR
content given some additional information. This design is referred to as a backward
compatible codec. A legacy receiver can decode the base layer (BL), and the viewers
can watch the SDR-grade video. With additional metadata and/or an enhancement
layer (EL), the viewers can reconstruct and watch the HDR-grade video. The
additional amount of information is often much smaller than the base layer. In
this section, we will discuss dual-layer and single-layer backward-compatible HDR
video codecs.

The backward compatible HDR codec can be categorized as either a dual-layer
system or single-layer system. Each layer is encoded using a legacy video codec,
such as AVC (H.264) or HEVC (H.265). Single-layer systems include a single
coded bitstream and rely on metadata that define a parametric model to reconstruct
the HDR signal. Dual-layer systems include a coded base layer, metadata for
reconstructing an HDR estimate signal, and an additional layer of coded residual
data which can be added to the HDR signal reconstructed by the base layer, thus,
typically providing a more accurate representation of the HDR signal, but at the
expense of more bandwidth.

4.1 Dual-Layer Coding

Motivated by the work of Ward and Simmons, in 2006, Mantiuk et al. [10]
introduced an MPEG-backwards-compatible coding scheme for HDR video based
on layered predictive coding. An example encoder of their scheme is shown in Fig.
4. As depicted in Fig. 4, the encoder receives an HDR video sequence. An HDR to
SDR transformation block (e.g., a tone-mapper) applies any of the known HDR
to SDR transformation techniques to generate an SDR version, representing the
backward-compatible video to be rendered on an SDR display. The SDR version
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Fig. 4 Block diagram of a dual-layer HDR encoder

is coded with a legacy MPEG encoder. A decoded version, after optional color
transformations to match the color format of the HDR video, is passed to a predictor,
which estimates the input HDR signal based on the SDR input. The output of the
predictor is subtracted from the original HDR input to generate a residual, which
is further compressed by another encoder. The SDR stream, the residual stream,
and information about the predictor (e.g., metadata) are all multiplexed to form an
HDR-coded bitstream. The term “metadata,” as used here, relates to any auxiliary
information that is transmitted as part of a coded bitstream and assists a decoder to
render a decoded image. Such metadata may include, but are not limited to, color
space or gamut information, reference display parameters, and other auxiliary signal
parameters that will be described later on in this chapter.

In a decoder (Fig. 5), a legacy decoder simply decodes the base layer to be
displayed on an SDR display. An HDR decoder, applies the predictor function
received from the encoder to the baseline SDR input to generate a predicted HDR
signal, which is added to the decoded residual signal to reconstructs the output HDR
signal to be displayed on an HDR display. Additional color transformations may be
needed to match the color transformations in the encoder or the capabilities of the
display pipeline.

To improve coding compression of the residual information, Mantiuk et al.
proposed using custom color spaces for both the coded SDR and the HDR streams.
For SDR, the input RGB data is converted to a luma-chroma space where, chroma
is encoded using a format similar to logLuv encoding and luma is encoded by a
special transformation using linear and power function segments [23]. For the HDR
signal, after translating YCbCr or RGB data to XYZ, XYZ-float data are converted
to a luma-chroma space where: chroma is encoded the same way as SDR chroma,
and luma is encoded using a perceptual uniform luminance encoding.

For the prediction function, Mantiuk et al. used a method that combines
“binning” with pixel averaging. For example, for SDR images with an 8-bit bit
depth there will be 256 bins, where each bin represents all the HDR pixels
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mapped to the specific (SDR) bin value. Thus, given N pixels in a frame, bin
Q={i=1,...,N:Lg@() =1}, where ] =0, 1, ..., 255, and I;4,(i) denotes the
tone-mapped SDR luma value for the i-th input (HDR) pixel (Zj,4-(7)). Then, given
an input SDR pixel value /, the corresponding predicted HDR pixel value (Thar { )) is

generated using the arithmetic mean of all HDR pixels that are mapped to the SDR
value [/ in bin €;, or

~ 1
Tar) = 0\ D i, Thar - (©)

where |€2/| denotes the cardinality of the /-th bin.

Looking at the block diagram in Fig. 4, one can identify three key components
that may affect dual-layered coding: (a) the proper color representation of the
signals, (b) the choice of the HDR to SDR transformation, and (c) the choice
of a prediction function. As discussed earlier, input HDR content may now be
represented using both gamma- and PQ-quantization. Regarding the HDR to SDR
transformation block, in many cases, this block may be omitted, since the SDR video
may be provided separately. For example, the SDR video may represent the output
of manual or semi-automatic color grading by a professional colorist who performed
color grading according to a director’s intent on a reference SDR display. Regarding
the HDR predictor, there are multiple alternatives to Eq. (6) and will be discussed
later.

In many applications, the residual signal may not be in a format suitable for
encoding by a legacy encoder. For example, it may be in floating point, or it is
possible that its dynamic range exceeds the dynamic range of the EL Encoder. Then,
as shown in Fig. 4, the residual video signal may also be further processed by an
enhancement layer mapping function (EL Mapping), such as a linear or non-linear
quantizer. If that is the case, as shown in Fig. 5, a decoder needs to apply to the
decoded residual an inverse mapping (Inverse EL Mapping).
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In some encoder designs, information about the compressed EL bitstream can
be fed back to the HDR prediction module as in-loop processing, or it can be
accessed independently, as an open-loop process. In-loop designs can generate the
reconstructed HDR signal by using inter-layer prediction, that is, by combining
the inverse mapped SDR and the residual. This approach can enable temporal
domain prediction to further reduce bit rates; however, the in-loop designs need
to modify legacy encoders and makes the encoder design more complex. The open-
loop approach is a much simpler design, but it loses compression efficiency owing
to the lack of a temporal, inter-layer, prediction path.

Besides the temporal-prediction domain option, the EL Mapping block may also
support re-scaling and/or sub-sampling in the spatial domain, so that the residual can
be down-sampled to a lower resolution to reduce the bit rate. In this case, the EL
inverse mapping block in the decoder should support performing the corresponding
inverse re-scaling to up-sample the received EL signal to the same resolution as the
BL signal. Rescaling may reduce the EL stream bit-rate requirements; however it
may also introduce additional artifacts, such as blurred edges and texture. Applying
spatial re-scaling is a design tradeoff that depends on the system’s bandwidth and
picture quality requirements.

One of the key components of any dual-layer system is the design of the HDR
predictor. Some of the proposed designs are briefly reviewed next.

4.1.1 Piecewise Linear Model Representation

In [10], Mantiuk et al. proposed sending to the decoder a simple one-dimension
look-up Table (1D-LUT) representing the one-to-one SDR to HDR mapping based
on Eq. (6); however, the overhead to transmit an 1D-LUT for each frame or even
a small collection of frames as metadata is big. Furthermore, Eq. (6) does not
guarantee that the SDR to HDR mapping will satisfy certain important properties
to reduce coding artifacts. One such property is that the inverse mapping function
should be monotonically non-decreasing. This property is important for images with
areas with smooth gradient. It has been observed that if the SDR-to-HDR mapping
function has some ranges with decreasing slope at its first derivative, then it often
creates “hole” artifacts for those smooth areas. To address these problems, in [11],
the authors proposed communicating the prediction function to a decoder using a
piecewise linear model.

Let AL() denote the HDR-to-SDR transformation for the luma component (e.g.,
a global tone-mapping function) and let BL() denote the inverse luma mapping (e.g.,
SDR-to-HDR), also referred to as the HDR prediction function. To construct the
piecewise linear model for the HDR to SDR mapping, one needs to define: (a)
the pivot or end points {s;, sp < s; < ... < s} separating/connecting two nearby
pieces (or segments) in the piecewise function, and (b) the parameters of the linear
model for each piece (e.g., for y = m;*x + by, m; and b;). As the number of
possible segments increases, the optimal solution problem becomes intractable very
quickly. To simplify the solution, a fixed interval length in logarithm domain is
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used to eliminate the need to compute the pivot points. The problem can be further
simplified by only computing the slope {m} in each piece. For the SDR to HDR
inverse mapping, the pivot points can remain the same as {s;}, and the slope will be
the inverse value, as {1/m;}, in each piece. The entire system can be formulated as a
mean-square-error (MSE) optimization problem to reduce the end-to-end distortion
between the original HDR picture and the reconstructed HDR picture:

BE (b (vF)) = of

where vl.L denotes the intensity of the i-th HDR pixel (e.g., I14-(i)). Assuming a local
linearity of the mapping function, the problem can be further simplified and solved
with a closed form solution.

2
arg min , (7
{mp}

4.1.2 Multivariate Multiple Regression Predictor

In order to preserve the film-director’s look or intent, content providers may use
a colorist to manually color grade an HDR (or SDR) version of a movie based
on an existing SDR (or HDR) version. In this case, the HDR to SDR mapping
is often a complex function that cannot be represented by existing tone-mapping
curves. Furthermore, this complex HDR to SDR process imposes great difficult for
the inverse mapping. A single-channel (e.g., luma) HDR predictor cannot capture
any chroma-related transformations. For example, chroma saturation and hues may
be different in the SDR and HDR versions.

To address these issues, Su et al. [12] proposed separate schemes for predicting
luma and chroma. For the luminance component, the HDR predictor uses a
piecewise higher order polynomial which allows for more accurate mapping, but
with fewer segments than the linear model. With the same overhead, a higher order
polynomial can produce better accuracy and a smaller residual. The small residual
often leads to smaller energy to encode in the enhancement layer, which yields a
lower bit rate requirement for the coded residual stream.

Although a piecewise higher order polynomial can provide better inverse map-
ping accuracy, the required computation to find the optimal solution is very
expensive. As in the piecewise linear model, the parameters in higher order
polynomial include the pivot point selection and the polynomial coefficients. By
stating the solution as an MSE minimization problem, one can take advantage of
the matrix structures and pre-compute many parameters offline as look-up Tables.
A faster algorithm (by a factor of 60) to achieve the same optimal solution as full
search was proposed in [13].

For the chroma components (say, Cb and Cr in YCbCr), a cross-color channel
inverse mapping, B€(), is adopted to cope with the color space differences,
saturation and hue adjustments, and bit depth requirement [14]. The cross-color
channel inverse mapping takes the three color channels (siL, 50, sicj) for each

SDR pixel, and converts them to HDR chroma values ('ﬁico, ﬁla) with parameter set
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{mggy, mgﬂly ] using a multivariate multiple regression (MMR) prediction model,

which in its most general form can be expressed as
B Y
=22 magy (SF)"- (S70)" (1),

zzmﬁy (S1)° (5€)". (sC1Y7. ®

For example, using a second-order MMR predictor, Eq. (8) for color component
CO0 may be expressed as
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The optimal solution for the MMR prediction coefficients (!maﬂ},, mgﬂly})

can be obtained via multivariate multiple regression which minimizes the mean-
squared-error between the original HDR chroma and the reconstructed HDR chroma
pixel values [14]. MMR-based prediction is used in the Dolby Vision” HDR format
from Dolby Laboratories.

4.1.3 MPEG Color Gamut Scalability

In contrast to using a prediction polynomial for luma and/or chroma inverse
mapping, one could also deploy a 3D-LUT method, which is commonly used in
color science and display management system as a quantization process. This 3D-
LUT method is standardized in MPEG as color gamut scalability [15].

In general, the 3D-LUT solution will partition the 3D space into multiple cubes.
For each cube (x, y, z), one can have eight corresponding vertices with values
denoted as N(x, y, z). Each cube covers a range of code words in three dimensions.
For any given input code word, (siL, 5,0 5;¢1 ), for pixel 7, one can find which cube,
(x, y, 2), contains this triplet. Then, one finds out the eight corners (vertices) of this
cube (for both chroma values) and performs interpolation to get the HDR values. In
tri-linear interpolation, illustrated in Fig. 6, the interpolated value for one particular
color channel can be computed as

1 1 1
=2 Y Y wepy NCxta.y+B.2+y), (10)

a=0p=0y=0

where weg, are weighting factors depended on the distances to the eight vertices.
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Fig. 6 3D LUT for Color-gamut scalability

The cube can be partitioned evenly in each dimension so one may have a regular
cube size. However, the major problem for uniform partition requires a larger
overhead to achieve required color precision. Consider a 17 x 17 x 17 3D LUT,
then we need to store 17° = 4913 node values for each color channel. Another
approach is to adopt an octree-based structure where each parent cube contains
eight smaller cubes via a non-uniform quantization process. The advantage of a
tree based partition is to explore the color sensitivity diversity: give more precision
for interpolation for more sensitive color regions, and assign less prevision for less
sensitive color regions. The overhead for such a cube representation can be smaller.
On the other hand, color artifacts along the cube boundaries should be carefully
handled as they often represent a discrete value selection and might cause sudden
color changes on a flat area.

4.1.4 System-Level Design Issues in Dual-Layer Systems

Dual-layer systems, in general, demand more system resources and higher data
management flow for the entire pipeline. From a processing and computational
point of view, at the encoder side, the encoding process will be longer, owing to
two encoder instances. The overall processing time includes the BL encoding time,
BL inverse mapping time, EL. mapping time, and EL compression time. The decoder
also needs to double its decoding time to handle both layers. It often requires more
memory to handle EL information.

From the transmission’s point of view, a dedicated multiplexing design is needed
to transmit the BL stream, the EL stream, and metadata. To decode one HDR frame,
the bitstreams need to be synchronized so the composing can be done based on the
current frame. Thus, system level transport at the video elementary stream level is
needed to ensure correct synchronization and decoding.
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4.2 Single-Layer Methods

In a single-layer system there is only a base layer and metadata to help transform
the base layer SDR signal into an HDR signal. The base layer bitstream can be
directly decoded and shown on legacy SDR display. To construct the HDR signal,
metadata is used to convert the SDR signal to the HDR signal. A single layer
requires less processing and computation, and less bandwidth. On the other hand,
to recreate a high quality HDR signal, the correlation between the SDR and the
HDR signals should be able to be expressed using a well-defined parametric model.
This approach, in general, limits the ability to match the director’s intent in the
reconstructed HDR signal.

As shown in Fig. 7, in a typical color grading process, it is observed that during
the generation of the SDR color-graded version from the HDR original, the dynamic
range is adjusted by applying: (a) a non-linear tone-mapping curve to each color
channel (say, L, C0O, and C1) to adjust the dynamic range; and (b) a 3 x 3 color
rotation matrix to all three channels to adjust the hue and saturation. If one could
express these operations in a simple parametric model, then, in a decoder, given the
SDR signal, one could recreate the HDR content by doing the reverse, that is, by
applying: (a) an inverse 3 x 3 transformation, followed by (b) inverse non-linear
functions in each of the color channels.

To model this mapping, in [16] Su et al. proposed a non-linear matrix mapping
model. The most common non-linear function in color grading is the slope, offset,
and power (SOP) model [17] (also referred to as the lift, gain, and gamma
(LGG) model), where each pixel is adjusted according to gain, offset, and power
parameters, as

= (S-si + 0)F, (11)

where s; denotes an input SDR value, S denotes the slope (or gain), O denotes the
offset (or lift), and P denotes the power (or gamma). The rotation matrix is a simple
3 x 3 matrix. The order of applying the non-linear function and the 3 x 3 matrix
can be switched depending on the prediction accuracy. The SOP parameters and the
elements of the 3 x 3 matrix may be recorded by the color-grading process or they
could be estimated by the encoder. They can be passed to the decoder as metadata.
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Fig. 8 HEVC model for color remapping information (CRI)

A recent version (v.4 or version 12/2016) of the HEVC (or H.265) standard
[18] allows encoders to communicate more complex parametric models as color
remapping information (CRI), by concatenating the encoder and decoder non-linear
models. As shown in Fig. 8, the mapping process consists of three major stages:
the first stage includes a piecewise-linear function (pre-piecewise linear) for each
individual color channel to model the non-linear function; the second stage contains
a 3 x 3 matrix; and the last stage includes another piecewise linear function (post-
piecewise linear) to model the non-linear function.

The proposed system by Technicolor for single-layer HDR transmission uses
similar principles and is discussed in detail in [19]. The design requires two LUTSs
(one for luma and one for chroma) and two dynamic scaling parameters (a and
b). To accommodate multiple broadcasting scenarios, the authors propose that the
two LUTs may be communicated either explicitly (table-based mode) or using
a simplified set of parameters (parameter-based mode). A table-based mode may
provide better quality, but at the expense of more bandwidth. The parameter-based
mode assumes a fixed default LUT which can be adjusted by a piece-wise linear
table of at most six points. In table-based mode, the two tables are explicitly coded
using CRI data.

4.2.1 Philips HDR Codec

In 2015, in response to a call for evidence for HDR and wide-color-gamut coding,
Philips [20] submitted a parameter-based, single layer, HDR plus SDR solution,
where parameters related to the reconstruction of both the SDR and the HDR
signals are embedded into the bitstream. Under the Philips model, each SDR RGB
color plane (SDR;, i = R, G, or B) is expressed as SDR; = w . HDR;, where the
scaler w is determined via a tone-mapping process of MaxRGBY; an input signal
generated by a weighted combination of the luma (Y) and RGB values of the HDR
input. The MaxRGBY signal is first translated into a perceptual-uniform signal via
the inverse of a Philips-defined EOTF. The perceptual-uniform signal is mapped
back to a linear signal via a multi-step process which includes (a) a black/white
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level adaptation step, (b) a tone-mapping step using a non-linear curve expressed
through parameters defining a “Shadow Gain control,” a “Highlight Gain control,”
and a “Mid-Tones adjustment,” and (c) a perceptual to linear SDR mapping step,
which uses the Philips-defined EOTF. A receiver, given the received SDR signal
and metadata defining w, applies the inverse steps to generate an approximation of
the HDR signal depending on the characteristics of the target display.

As will be discussed later, together with the Dolby Vision dual-layer HDR
format, the Philips HDR format is one of the optional HDR formats in the Blu-
Ray UHD specification. In 2016, Technicolor and Philips combined their formats
into a single unified proposal.

S Non-Backward-Compatible HDR Coding

Backward-compatible methods do not necessarily guarantee commercial success
and they also face multiple challenges. First, a backward-compatible codec typically
uses an advanced inter-layer prediction mechanism that demands a higher computa-
tional complexity. Second, the details in the higher- and lower-intensity regions are
often asymmetric between the SDR and HDR versions, causing undesired clipping
in those regions. Furthermore, they typically require a higher bit rate.

Recently, there has been an increasing interest in optimizing video quality for
target HDR displays using the existing compression architectures, such as 8- or 10-
bit legacy H.26x or VPx encoders, without the restriction of backward compatibility.
In this case, the target application, say streaming using an over-the-top set-top
box, is focused strictly on HDR playback. Codecs developed for such applications
typically require less computational complexity, lower bit rate, and mitigate the
clipping issues caused by the typical backward compatible codecs.

5.1 Multi-Layer Non-Backward-Compatible Systems

Given an HDR signal, multi-layer methods typically use multiple lower-bit depth
encoders to provide an effective higher bit depth required to process HDR content.
A base layer and one or more enhancement layers are used as a mechanism for
coding and distributing the source video signals. A preprocessing step generally
involves a signal splitting method to generate from the source signal multiple lower
bit depth (8- or 10-bit) layers. These layers are then independently encoded to
produce standard-compliant bitstreams so that they can be decoded by the existing
decoding architectures which are in most cases hardware-based. In a decoder, the
decoded layers are then combined to form the output HDR signal that is optimized
for viewing on a HDR display. Note that the decoded SDR signal is never viewed.
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5.1.1 Dolby Non-Backward-Compatible 8-Bit Dual-Layer Codec

In a technique developed by Su. et al. [21], an advanced quantization method is
used to generate a non-backward-compatible BL and EL signals which may consist
of residual values and quantization and mapping parameters that are obtained using
a signal prediction mechanism. The proposed adaptive dynamic range adaptation
techniques consider effects such as fade-in and fade-outs for an improved coding
performance. Figure 9 shows a block diagram of the baseline profile architecture
of this codec. The baseline profile restricts all video processing in the base and
enhancement coding layers in the YCbCr 4:2:0 color space.

As shown in Fig. 9, an input 4:4:4 RGB (Rec. 709 or Rec.2020), 12+ bit,
HDR sequence is first converted to 4:2:0 YCbCr color space. Then, advanced
quantization is applied to generate an 8-bit BL sequence in the 4:2:0 YCbCr space.
Unlike the backward-compatible case, the BL in not intended to be viewed on
SDR displays. Rather the BL signal is optimized in such a way that it contains
necessary information to minimize the overall bit requirement for HDR video data
carried using multiple layers for the purpose of displaying it on HDR displays.
Due to the absence of external color corrections in the BL signal, the clipping
levels in the BL and EL are fully controlled by the codec itself. The Advanced
quantization block supports many linear and non-linear mapping methods, such
as linear quantization, linear stretching, curve-based or non-uniform quantization.
Quantization can be done for each individual color channel or jointly, at the frame
level or at the scene level.

As an example, a scene-adaptive linear stretching quantization method uses
HDR values from each scene to generate corresponding BL values using a simple,
invertible, linear mapping. Let v;;be the k-th pixel value of the i-th scene of an HDR
sequence. Let (vim.n, Va X) denote the minimum and maximum pixel values in the
i-thscene. Let (s’ . . s%,.) be the min and max values of 8-bit YCbCr Rec.709 pixel

max

i

values. Then, the scene adaptive linear stretching method generates base layer s,i as:
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i (s}l;nax - srinin) i i i
S, = round ; ; . (Uk - Umin) + Smin | (12)
(vmax - vmin)

where 0 < v,"m.n < vfnax < (2" — 1), for n-bit HDR signal.

The BL video sequence is encoded with a standard H.26x encoder using a
compliant (such as 4:2:0 YUV) image container. The encoded BL is subsequently
decoded to produce a 4:2:0 reconstructed BL to account for the approximations
introduced by (possibly) the lossy BL encoder. As in the backward design (Fig. 4),
an HDR predictor (e.g., using the inverse of Eq. (12)) may be used to approximate
the input HDR signal and generate a residual which will be further coded as an
enhancement layer. Since the dynamic range of the residuals may exceed the 8-bit
dynamic range of the EL encoder, a non-linear quantizer (NLQ) is subsequently
applied to generate 8-bit residuals. Mapping and NLQ parameters are transmitted as
a part of metadata categories supported by the legacy video compression standard.
For example, H.26x uses the SEI syntax to transmit metadata. For decoding, a
similar decoder with the one shown in Fig. 5 may be used, except, that there is
no need to display the decoded SDR signal.

5.1.2 HEVC Range Extension Proposals

In an effort to standardize extended range coding (e.g., more than 10 bits and
additional color formats) in accordance with the existing HEVC standard, many
proposals had been considered by the standardization bodies [22]. Range extensions
support up to 16-bits per sample. Given the limitations of using 10-bit coding
to encode HDR content, a number of alternative dual-layer systems have been
proposed.

Some proposed methods use signal splitting at the encoder and recombination
at the decoder [23]. The signal is split in additive layers that are encoded using
HEVC 8/10-bit coders. In another method [24], the samples are split into the most
significant bits (MSBs) and the least significant bits (LSBs) to obtain two layers.
Some methods use overlapped bits in the layers [25-27]. The split signals are
typically either packed in 4:4:4, low-bit-depth pictures, or two layers, BL and EL.

Figure 10 [23] shows a dual layer MSB/LSB splitting architecture proposed by
Qualcomm. In this design, the input 16-bit picture is split into MSB and LSB layers
by separating the most and the least significant bits of each sample to form two
layers. In this way, the existing infrastructure in the distribution pipeline can be
used for sending HDR signals.

In another proposal [28, 29], a preprocessing step is used to split the input HDR
signal (P}'i pr)into two limited dynamic range (LDR) signals using a non-linear
mapping function (f), a modulation picture (Pr’;l »4)-and a residual picture (P]i D R).
The modulation picture consists of a low frequency monochromatic version of the
input signal, whereas the LDR residual picture represents the remaining relatively-
high frequency portion of the signal. The function f is conceptually similar to an
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OETF described earlier.
Phior = Paoa* I~ (Piog)- (13)

The LDR picture is designed either to maintain backward compatibility or to
improve the compression performance. In the latter (non-backward compatible)
case, the LDR picture is built in the perceptual color space with the intention
of optimizing the chroma quantization for a superior picture quality. Next, the
split signals undergo a series of color space and signal format conversions before
encoding them to be distributed to the receiver side. At the receiver, the decoder
reconstructs the HDR signal by following the inverse operations. It involves inverse
transforms and recombination of the layer signals. Arguably, this method has also
many similarities with the proposed techniques in coding HDR still-pictures.

HEVC Range extensions (RExt) are now part of the second (or later) edition
of the HEVC specification [18]. Various encoding profiles of HEVC RExt provide
support for up to 12 or 16 bit signals. The high bit depth support is enabled using an
extended precision mode that allows representing the transformed coefficients using
16-bit values [30] and by using a specific set of binarization [31] and entropy coding
methods [32]. An overview of the HEVC RExt standard is described in [22].

5.2 Single-Layer Solutions Using Signal Reshaping

In the backward-compatible case, dual-layer systems typically demand more com-
putational and management resources. Therefore, several single layer solutions have
been proposed. Generally, the base layer signal is accompanied with metadata to
help reconstruction of HDR signal at the decoder. The process of deriving this
metadata based on the HDR signal and the base layer is called “reshaping.” There
have been a number of approaches to design a reshaper which can effectively
provide the mapping function for base layer to HDR conversion. Single layer
solutions require a re-quantization of the HDR signal to form the base (or the only)
layer of the signal that can be encoded and distributed via a standard pipeline.
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Fig. 11 System diagram of HEVC-based coding using non-backward compatible adaptive reshap-
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5.2.1 MPEG Proposals for Reshaping Methods

There has been a considerable interest in the MPEG community to improve the
HEVC Main 10 compression performance for HDR/WCG? video [33]. The HDR
Exploratory Test Model (ETM) is a platform designed for coding Y'CbCr 10-bit
4:2:0 signals [34]. Figure 11 shows a typical system diagram of a non-backward
compatible HDR codec using the HDR-10 framework [20, 35, 36].

One consideration for designing a good “reshaper” for a single layer codec is
the usage of the PQ EOTF [8] and the practical limitations of HDR displays. PQ
is designed to support luminance values of 0 to 10,000 nits, yet a majority of
commercially available HDR displays do not exceed 1000 nits. Also, it is important
to consider the director’s (or the content producer’s) creative intent (or “look™).
Therefore, during coding, a better utilization of code words can be performed if the
display range is known. In a recent study by Lu et al. [36], the impact of baseband
quantization on the HDR coding efficiency was analyzed. The study states that
matching code words to the target display range improves the coding efficiency.
The term “baseband quantization” is defined as the range reduction step that uses
a linear or non-linear mapping to convert a higher bit-depth signal to a lower (e.g.,
8 or 10) bit signal that is encoded using the legacy encoder. The goal here is to
quantify the mapping between the strength of the baseband quantizer and the coding
efficiency measured in terms of peak-signal-to-noise-ratio (PSNR). The authors
propose a method to estimate the error in reconstructed residues to be used later in a
joint analysis of baseband and codec quantizers. The analysis shows that the coding
efficiency is mainly lowered by the baseband quantization, and is less affected by
the codec quantization [37].

There are many ways to design a reshaping function. Designing linear, piecewise
linear, and non-linear, power functions are a few examples among those proposed
by various study groups [20, 35, 36]. More advanced proposals apply adaptive
codeword re-distribution and signal re-quantization of the three color components,
which ultimately changes the bit-rate allocation. For example, in [38] the input

SWCG stands for wide color gamut, referring to any color gamut larger than the color gamut
supported by the original analog television systems and CRTs. For example, Rec. BT. 2020 [51]
defines a WCG container for ultra-high-definition TVs.
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HDR signal is partitioned into various non-overlapping luma intensity bands. Each
band is processed according to its perceptual significance (referred to as “band
importance”), based on the HVS model. A reshaping curve that is non-linear in
nature is constructed using this band importance to achieve a better compression
efficiency.

Another major consideration in designing a reshaping function is that typically
HDR/WCG signals are represented using a much larger color volume than SDR
signals. A set of reshaping functions can be designed for each color space such as
Y’'CbCr, ICtCp [39], Y'CoCg, etc., in which each color channel can be reshaped on
its own based on the input HDR signal. One of the main problems with the Y'CbCr
color space is non-constant luminance (NCL), in which the mapping between the
PQ luminance and ¥’ luma component from Y’CbCr is not linear. To counter this,
a luma adjustment method is proposed in [40] by Strom et al. in Ericsson. This
method uses a set of premises: (a) Y’, the color-transformed luma value, can be
changed independently at each pixel, and (b) Y’ increases monotonically with the
original (linear space) Yy. Therefore, Y’ is matched with the desired Yy, the desired
luma value. To speed up the implementation for practical purposes one may apply
a 3D LUT that maps Cb, Cr and Yy values of a pixel to the desired ¥’ value. More
details of the method, with a summary of experiments and performance comparison
with the MPEG Call for Evidence (CfE) [33], are described in [40].

5.2.2 Encoder Optimization for PQ-Coded HDR Signals

Legacy encoders, such as HEVC, are highly tuned for compressing gamma-coded
SDR signals. As described in Sect. 3, HDR contents are often encoded using the
PQ EOTF. Encoding PQ-coded content by directly using gamma-based encoders,
such as AVC or HEVC, may result into many undesirable artifacts. To address these
issues, several authors have proposed alternative methods to control quantization
within the HEVC codec.

A recent study by Lu et al. [41] shows the variance of the input signal to be
an important statistic for encoder optimization, since it determines the bit rate
allocation and quantization level for each pixel-block in a typical legacy encoder.
For example, in a typical H.26x encoder rate control, a variance-based block
quantization parameter (QP) model is applied in which, for lower block variance,
QP is set to a smaller value. For gamma signal, typically darker areas have less
codewords, leading to less variance and smaller QP values, whereas, for brighter
areas, there are more codewords, hence higher QP values. However, for a PQ
signal, the brighter areas are typically assigned less codewords than the darker areas,
which demonstrates opposite behavior from the gamma domain signal. Therefore,
applying the gamma-based model directly to PQ-domain signal leads to assigning
higher QP values for highlight areas leading to artifacts, while the darker regions
are assigned with smaller QP values, thus wasting bits.

A group within the ITU/ISO Joint Collaborative Team on Video Coding (JCT-
VC) [42] has been working on the study and standardization of the use of
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AVC/HEVC coders for HDR/WCG contents with PQ transfer characteristics.
This effort primarily provides a set of recommended guidelines on processing of
consumer distribution HDR/WCG video. In [42], two different models: the simple
reference model and the enhanced reference model, are described for the pre-
encoding and encoding processes. The simple reference model corresponds to the
reference configuration used in the MPEG CfE on HDR and WCG [33], while the
enhanced reference model corresponds to a new reference configuration that was
developed in MPEG following the CfE.

To improve the coder performance, Liu et al. [41] proposed a method to
adaptively select block QP for PQ-coded HDR signal based on luminance levels.
To further improve the rate-distortion (RD) curve, block signal properties such as
edge, texture, contour map or model fitting can be used along with luminance and
region of interest (ROI). Another method for assigning QP values for a pixel block
based on the luminance range is jointly proposed by Ericsson, Sharp Laboratories
and Apple in [43]. It makes use of a fixed LUT for luma channel and a negative QP
offset for chroma channels to make the encoder adaptive to the PQ content. In [44],
as a pre-processing step to the above compression methods, Norkin proposed a fast
down-sampling method to speed up the conversion of 4:4:4 RGB HDR video to the
Y'CbCr 4:2:0 non-constant luminance format.

5.2.3 Perceptual Quality-Based Quantization Models

Encoding HDR signals often requires understanding of the perceived HDR image
quality. To assess the quality of HDR images with respect to their quantization lev-
els, many model-based approaches are studied. In [45], HDR-VDP-2.2, a calibrated
method for objective quality prediction of high-dynamic range and standard images
is proposed. HDR-VQM [46] is an alternative proposal for measuring an objective
quality of HDR video.

A recent visual study suggests that there exists a relatively strong correlation
between the required bit-depth for representing an HDR signal and the standard
deviation in code values [47]. Based on this study, a dynamic signal quantization
approach called “content-aware quantization” (CAQ) was developed to exploit
signal noise and texture in images for reducing the effective bit-depth of the HDR
signal. CAQ predicts the required quantization per intensity bin for an HDR image
based on a noise/texture estimation model.

As shown in Fig. 12, this model uses a Gaussian high-pass filter to selectively
enhance high-frequency content (such as noise/texture) followed by a spatial
blurring filter. This model is consistent with HVS models such as the ones described
in [48, 49]. To calculate minimum allowed quantization level per pixel, a calibration
LUT is applied. A comparative image-based experimental study of CAQ and HDR-
VDP is reported in [47].
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5.3 The Ultra HD Blu-Ray Disc Format

As described in [50], Ultra HD Blu-ray™ can support video resolutions at up to
3840 x 2160 pixels (4K/UHD), at up to 60 frames per second. It can also support
three different HDR formats: a mandatory Blu-Ray HDR format (also referred to as
HDR10 or BDVM® HDR), and two optional formats, the Dolby Vision dual-layer
format, and the Philips format.

The mandatory BDVM HDR format is a single-layer format that uses 10-bit,
4:2:0, YCbCr signals encoded using the SMPTE 2084 EOTF (PQ), in a BT. 2020
container [51]. The video is encoded using the Main10 Profile of the H.265/HEVC
coding standard.

The Dolby Vision stream is composed of a BDVM HDR base layer and a
Dolby Vision enhancement layer, with embedded Dolby metadata, which allows the
reconstruction of 12-bit HDR video data. Reconstruction of a Dolby Vision HDR
stream using the base layer and the enhancement layer follows the decoding scheme
discussed in Fig. 5.

As described earlier, the Philips HDR format [20] includes a BDVM HDR video
stream and Philips HDR SEI messaging which allows the conversion of the BDVM
video to a format suitable for the target display.

6 Conclusions

The field of image and video coding for HDR signals has seen a tremendous growth
in the last few years. HDR displays are now commercially available and HDR
content is available for streaming. Video coding standards, like HEVC, do support
video images with more than 8 bits per pixel, per color component; however, these
standards were optimized for 8-bit, gamma-coded, YCbCr video signals, which do
not represent the majority of new content, typically coded using either the PQ or

SBDVM stands for Blu-Ray Disc Movie.
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HLG EOTFs. For most of the schemes we discussed in this chapter, the core SDR
video encoder is treated as a “black box” that can be replaced by any video codec of
choice (say, 8-bit AVC, 10-bit HEVC, and the like). For HDR coding, the codec’s
functionality may be enhanced using either preprocessing (say, PQ-coding and/or
reshaping), or additional layers of information. We do not expect this to last for long.
The “gamma” curve is already challenged, and new color formats, like ICtCp are
challenging YCbCr domination as well. As the members of the MPEG committee
start work on the next generation codec (to be completed sometime in 2020), we
expect efficient HDR coding to be an integral part of any of the proposed coding
tools, and not a simple after-thought. The future of HDR video coding is bright

indeed.

Appendix: List of Abbreviations

AVC
BDVM HDR
BL
CAQ
CfE
CRI
CRT
EL
EOTF
HDR
HDR ETM HDR
HDTV
HEVC
HLG
HVS
ITU
JPEG
LDR
LSB
LUT
MMR
MPEG
MSB
MSE
NLQ
OETF
OOTF
PQ
PSNR

Advanced Video coding

Blu-ray Disc Movie HDR

Base Layer

Content Adaptive Quantization
Call for Evidence

Color Remapping Information
Cathode Ray Tube

Enhancement Layer
Electro-Optical Transfer Function
High Dynamic Range
Exploratory Test Model

High Definition Television

High Efficiency Video Coding
Hybrid Log-Gamma

Human Visual System
International Telecommunication Union
Joint Photographic Experts Group
Lower Dynamic Range

Least Significant Bit

Look-up Table

Multivariate Multiple Regression
Moving Picture Experts Group
Most Significant Bit
Mean-Squared Error

Non-Linear Quantizer
Opto-Electrical Transfer Function
Opto-Optical Transfer Function
Perceptual Quantizer

Peak Signal-to-Noise Ratio

K. Konstantinides et al.
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QP Quantization Parameter

RD Rate-Distortion

ROI Region of Interest

SDI Serial Digital Interface

SDR Standard Dynamic Range

SEI Supplementary Enhancement Information
SMPTE Society of Motion Picture and Television Engineers
TIFF Tagged Image File Format

UHD Ultra-high-definition

VDP Visual Difference Predictor

VQM Video Quality Measure

WCG Wide Color Gamut
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Abstract Signal processing and control are closely related. In fact, many con-
trollers can be viewed as a special kind of signal processor that converts an
exogenous input signal and a feedback signal into a control signal. Because the
controller exists inside of a feedback loop, it is subject to constraints and limitations
that do not apply to other signal processors. A well known example is that a stable
controller in series with a stable plant can, because of the feedback, result in an
unstable closed-loop system. Further constraints arise because the control signal
drives a physical actuator that has limited range. The complexity of the signal
processing in a control system is often quite low, as is illustrated by the Proportional
+ Integral + Derivative (PID) controller. Model predictive control is described as
an exemplar of controllers with very demanding signal processing. ABS brakes
are used to illustrate the possibilities for improved controller capability created by
digital signal processing. Finally, suggestions for further reading are included.

1 Introduction

There is a close relationship between signal processing and control. For example, a
large amount of classical feedback control theory was developed by people working
for Bell Laboratories who were trying to solve problems with the amplifiers used for
signal processing in the telephone system. This emphasizes that feedback, which is
a central concept in control, is also a very important technique in signal processing.

Conversely, the Kalman filter, which is now a critical component in many signal
processing systems, was discovered by people working on control systems. In fact,
the state space approach to the analysis and design of linear systems grew out of
research and development related to control problems that arose in the American
space program.
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Fig. 1 A generic system to be controlled, called the plant. d is a vector of exogenous inputs; u is
a vector of control inputs; y is a vector of measured outputs—available for feedback; and z is a
vector of outputs that are not available for feedback

2 Brief Introduction to Control

The starting point for control is a system with inputs and outputs as illustrated
schematically in Fig.1. It is helpful to divide the inputs into those that are
available for control and those that come from some source over which we have
no control. They are conventionally referred to as control inputs and exogenous
inputs. Similarly, it is convenient to divide the outputs into those that we care about,
but are not available for feedback, and those that are measured and available for
feedback. A good example of this is a helicopter. Rotorcraft have four control inputs,
collective pitch, variable pitch, tail rotor pitch, and thrust. The wind is an important
exogenous input. Wind gusts will push the aircraft around and an important role of
the controller is to mitigate this.

Modern rotorcraft include a stability and control augmentation system (SCAS).
This is a controller that, as its name suggests, makes it easier for the pilot to fly
the aircraft. The main interest is in the position and velocity of the aircraft. In three
dimensions, there are three such positions and three velocities. Without the SCAS,
the pilot would control these six signals indirectly by using the four control inputs
to directly control the orientation of the aircraft—these are commonly described as
the roll, pitch, and yaw angles—and the rate of change of this orientation—the three
angular velocities. Thus, there is a six component vector of angular orientations and
angular velocities that are used by the SCAS. These are the feedback signals. There
is also a six component vector of positions and velocities that are of interest but
that are not used by the SCAS. While there are ways to measure these signals in a
rotorcraft, in many situations there are signals of interest that can not be measured
in real time.

The SCAS-controlled system is again a system to be controlled. There are two
different control systems that one might employ for the combined aircraft and
SCAS. One is a human pilot. The other is an autopilot. In both cases, one can
identify inputs for control as well as exogenous inputs. After all, the wind still
pushes the aircraft around. In both cases, there are some outputs that are available
for feedback and others that are important but not fed back.
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It should be clear from the example that once one has a system to be controlled
there is some choice over what output signals are to be used by the controller
directly. That is, one can, to some extent, choose which signals are to be fed back.
One possible choice is to feed back no signals. The resulting controller is referred to
as an open-loop controller. Open loop control has received relatively little attention
in the literature. However, it is an important option in cases where any measurements
of the output signals would be impossible or very inaccurate. A good example of this
until very recently was the control of washing machines. Because it was impossible
to measure how clean the dishes or clothing inside the machine were, the controller
simply washed for a fixed period of time. Now some such machines measure the
turbidity of the waste water as an indirect measurement of how clean the wash is
and use this as feedback to determine when to stop washing.

There is also a possibility of feed forward control. The idea here is to measure
some of the exogenous inputs and use this information to control the system. For
example, one could measure some aspects, say the pH, of the input to a sewage
treatment system. This input is normally uncontrollable, i.e., exogenous. Knowing
the input pH obviously facilitates controlling the output pH. Note that a feed-
forward controller is different from an open-loop controller in that the former is
based on a measurement and the latter is not.

The fact remains that most control systems utilize feedback. This is because
feedback controls have several significant advantages over open-loop controls. First,
the designer and user of the controlled system does not need to know nearly as
much about the system as he or she would need for an open-loop control. Second,
the controlled system is much less sensitive to variability of the plant and other
disturbances.

This is well illustrated by what is probably the oldest, most common, and
simplest feedback control system in the world—the float valve level control in the
toilet tank. Imagine controlling the level of water in the tank by means of an open-
loop control. The user, in order to refill the tank after a flush, would have to open
the valve to allow water to flow into the tank, wait just the right amount of time for
the tank to fill, and then shut off the flow of water. Looking into the tank would be
cheating because that would introduce feedback—the user would, in effect, measure
the water level. Many errors, such as turning off the flow too late, opening the input
valve too much, a large stone in the tank, or too small a prior flush, would cause the
tank to overflow. Automation would not solve this.

Contrast the feedback solution. Once the tank has flushed, the water level is too
low. This lowers the float and opens the input valve. Water flows into the tank,
thereby raising the water level and the float, until the float gets high enough to close
the input valve. None of the open-loop disasters can occur. The closed-loop system
corrects for variations in the size and shape of the tank and in the initial water level.
It will even maintain the desired water level in the presence of a modest leak in the
tank. Furthermore, the closed-loop system does not require any action by the user.
It responds automatically to the water level.

However, feedback, if improperly applied, can introduce problems. It is well
known that the feedback interconnection of a perfectly stable plant with a perfectly
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stable controller can produce an unstable closed-loop system. It is not so well
known, but true, that feedback can increase the sensitivity of the closed-loop system
to disturbances. In order to explain these potential problems it is first necessary to
introduce some fundamentals of feedback controller design.

The first step in designing a feedback control system is to obtain as much
information as possible about the plant, i.e., the system to be controlled. There
are three very different situations that can result from this study of the plant.
First, in many cases very little is known about the plant. This is not uncommon,
especially in the process industry where the plant is often nonlinear, time varying,
very complicated, and where models based on first principles are imprecise and
inaccurate. Good examples of this are the plants that convert crude oil into a variety
of products ranging from gasoline to plastics, those that make paper, those that
process metals from smelting to rolling, those that manufacture semiconductors,
sewage treatment plants, and electric power plants.

Second, in some applications a good non parametric model of the plant is known.
This was the situation in the telephone company in the 1920s and 1930s. Good
frequency responses were known for the linear amplifiers used in transmission lines.
Today, one would say that accurate Bode plots were known. These plots are a precise
and detailed mathematical model of the plant and are sufficient for a good feedback
controller to be designed. They are non parametric because the description consists
of experimental data alone.

Third, it is often possible to obtain a detailed and precise mathematical model of
the plant. For example, good mathematical descriptions of many space satellites can
be derived by means of Newtonian mechanics. Simple measurements then complete
the mathematical description. This is the easiest situation to describe and analyze so
it is discussed in much more detail here. Nonetheless, the constraints and limitations
described below apply to all feedback control systems.

In the general case, where the plant is nonlinear, this description takes the form
of a state-space ordinary differential equation.

X(t) = f(x(0), u(r), d(1)) ey
y(1) = g(x (1), u(r), d(1)) 2
2(t) = h(x(@), u(r),d(1)) 3)

In this description, x(#) is the n-dimensional state vector, u(t) is the m-
dimensional input vector (the control input), d(¢) is the exogenous input, y(¢) is
the p-dimensional measured output (available for feedback), and z(¢) is the vector
of outputs that are not available for feedback. The dimensions of the d(#) and z(¢)
vectors will not be needed in this article.

In the linear time-invariant (LTT) case, this becomes

x(r) = Ax(t) + Bu(r) + Ed(1) “
y(@) = Cx(t) + Du(t) + Fd(1) 5)
z(t) = Hx(t) + Gu(t) + Rd(1) (6)
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Another description is often used in the LTI case because of its many useful
features. It is equivalent to the description above and obtained by simply taking
Laplace transforms of Egs. (4)—(6) and then doing some algebraic manipulation to
eliminate X (s) from the equations.

[Y(S)} _ [Gll(s) G12(S)} [U(S)} )
Z(s) Gai(s)  Gn(s)] LD(s)

The capital letters denote Laplace transforms of the corresponding lower case
letters and s denotes the complex variable argument of the Laplace transform.
Note that setting s = jw makes this description identical to the non parametric
description of case 2 on the previous page when the plant is asymptotically stable
and extends the frequency domain characterization (Bode plot) of the plant to the
unstable case as well.

The issues of closed-loop stability and sensitivity can be easily demonstrated
with a simplified version of Eq. (7) above. All signals will be of interest but it will
not be necessary to display this explicitly so ignore Z(s) and let all other signals be
scalars. For simplicity, let G12(s) = 1.Let G11(s) £ G p(s) and let G (s) denote the
dynamical part of the controller. Finally, suppose that the objective of the controller
is to make Y (s) = R(s) as closely as possible, where R(s) is some exogenous input
to the controller. It is generally impossible to make Y (s) = R(s) Vs. The resulting
closed-loop system will be, in block diagram form (Fig. 2).

Simple algebra then leads to

Y(s) = D)+ TP R ®)
1+ Gp(5)Ge(s) 14 G, (s)G(s)
_ —G.(s) G.(s)

Y= 46,060 T 146,066 Y ®

It is conventional in control theory to define the two transfer functions appearing
in Eq. (8) as follows. The transfer function in Eq. (9) is also defined below.

Gp(5)Ge(s)

T = 4 6,)6.0) (10
D(s)
RE) ) EO) ) oy YO 6,(9) N Y(s)

Fig. 2 Simple feedback connection
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1
T 14 Gp()Ge(s)
_ Ge(s)
T 14+ Gp(9)Ge(s)

S(s) (11

V(s) (12)

Now that a complete description of a simple feedback control situation is
available, it is straightforward to demonstrate some of the unique constraints on
G.(s), the signal processor that is used to make the closed-loop system track R(s).

2.1 Stability

A simple example demonstrating that the feedback interconnection of asymp-
totically stable and thoroughly well-behaved systems can result in an unstable
closed-loop system is shown below. This example also illustrates that the usual
culprit is too high an open-loop gain. Let

3

G = 13

p(s) s2+4s+3 (13)
k

G.(s) = 14

e(s) = ) (14)

The closed-loop system, 7 (s) is, after some elementary calculations,

3k

T(s) 15)

T (s 2)(s2 +ds 4+ 3) + 3k

The denominator of 7T (s) is also the denominator of S(s) and V (s) and it has
roots with positive real parts for all k > 20. Thus, the closed-loop system is unstable
for all k > 20.

2.2 Sensitivity to Disturbance

Notice that
T(s)+Sks)=1 Vs (16)

Since S(s) is the response to a disturbance input (for example, wind gusts acting
on an aircraft) and 7 (s) is the response to the input that Y (s) should match as
closely as possible (for example, the pilot’s commands), this appears to be an ideal
situation. An excellent control design would make 7'(s) ~ 1, Vs and this would
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have the effect of reducing the response to the disturbance to nearly zero. There is,
unfortunately, a problem hidden in Eq. (16). For any real system, G, (s) goes to zero
as |s| — oo. This, together with the fact that too large a gain for G (s) will generally
cause instability, implies that 7 (s) — 0 as |s| — oo and this implies that S(s) — 1
as |s| — oo. Hence, there will be values of s at which the output of the closed-loop
system will consist entirely of the disturbance signal. Remember that letting s = jw
in any of the transfer functions above gives the frequency response of the system.
Thus, the closed-loop system is a perfect reproducer of high-frequency disturbance
signals.

2.3 Sensitivity Conservation

Theorem (Bode Sensitivity Integral) Suppose that G ,(s)G(s) is rational, has
no right half plane poles, and has at least 2 more poles than zeros. Suppose also
that the corresponding closed-loop system T (s) is stable. Then the sensitivity S(s)
satisfies

/ log|S(jw)|ldw =0 (17)
0

This is a simplified version of a theorem that can be found in [14]. The /og in
Eq. (17) is the natural logarithm.

The implications of this theorem and Eq. (16) are: if you make the closed-loop
system follow the input signal R(s) closely over some frequency range, as is the goal
of most control systems, then inevitably there will be a frequency range where the
closed-loop system actually amplifies disturbance signals. One might hope that the
frequency range in which the sensitivity must be greater than one in order to make up
for the region of low sensitivity could be infinite. This could make the magnitude of
the increased sensitivity infinitesimally small. A further result [14] proves that this
is not the case. A frequency range where the sensitivity is low implies a frequency
range where it is high. Thus, a feedback control system that closely tracks exogenous
signals, R(jw) for some range of values of frequency w (typically 0 < o < wp)
will inevitably amplify any disturbance signals, D(jw), over some other frequency
range.

This discussion has been based on the assumption that both the plant and
the controller are continuous-time systems. This is because most real plants are
continuous-time systems. Thus, however one implements the controller, and it is
certainly true that most controllers are now digitally implemented, the controller
must act as a continuous-time controller. It is therefore subject to the limitations
described above.
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Fig. 3 The plant with sensors and actuators indicated

3 Signal Processing in Control

An understanding of the role of signal processing in control begins with a refinement
of the abstract system model in Fig. 1 to that shown in Fig. 3.

Although control theorists usually include the sensors and actuators as part of
the plant, it is important to understand their presence and their role. In almost all
modern control systems excepting the float valve, the sensors convert the physical
signal of interest into an electronic version and the actuator takes an electronic signal
as its input and converts it into a physical signal. Both sensing and actuation involve
specialized signal processing. A common issue for sensors is that there is very little
energy in the signal so amplification and other buffering is needed. Most actuation
requires much greater power levels than are used in signal processing so some form
of power amplification is needed. Generally, the power used in signal processing for
control is a small fraction of the power consumed by the closed-loop system. For
this reason, control designers rarely concern themselves with the power needed by
the controller.

Most modern control systems are implemented digitally. The part of a digital
control system between the sensor output and the actuator input is precisely a digital
signal processor (DSP). The fact that it is a control system impacts the DSP in
at least three ways. First, it is essential that a control signal be produced on time
every time. This is a hard real-time constraint. Second, the fact that the control
signal eventually is input into an actuator also imposes some constraints. Actuators
saturate. That is, there are limits to their output values that physically cannot be
exceeded. For example, the rudder on a ship and the control surfaces on a wing can
only turn so many degrees. A pump has a maximum amount it can move. A motor
has a limit on the torque it can produce. Control systems must either be designed to
avoid saturating the actuator or to avoid the performance degradation that can result
from saturation. A mathematical model of saturation is given in Fig. 4.

Another nonlinearity that is difficult, if not impossible, to avoid is the so-called
dead zone illustrated in Fig. 4. This arises, for example, in the control of movement
because very small motor torques are unable to overcome stiction. Although there
are many other common nonlinearities that appear in control systems, we will only
mention one more, the quantization nonlinearity that appears whenever a continuous
plant is digitally controlled.
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Fig. 4 A saturation nonlinearity is shown at the left and a dead zone nonlinearity at the right

Thirdly, the fact that the DSP is actually inside a feedback loop imposes the
constraints discussed at the end of the previous section, too much gain causes
closed-loop instability and too precise tracking can cause amplified sensitivity to
disturbances.

The main impact of the real time constraint on the DSP is that it must be designed
to guarantee that it produces a control signal at every sampling instant. The main
impact of the nonlinearities is from the saturation. A control signal that is too
large will be truncated. This can actually cause the closed-loop system to become
unstable. More commonly, it will cause the performance of the closed-loop system
to degrade. The most famous example of this is known as integrator windup as
discussed in the following subsection. The dead zone limits the accuracy of the
control. The impact of the sensitivity and stability constraints is straightforward.
The design of DSPs for control must account for these effects as well as the obvious
direct effect of the controller on the plant.

There is one more general issue associated with the digital implementation
of controllers. It is well known that the Nyquist rate upper bounds the interval
between samples when a continuous-time signal is discretized in time without loss
of information. For purposes of control it is also possible to sample too fast. The
intuitive explanation for this is that if the samples are too close together the plant
output changes very little from sample to sample. A feedback controller bases its
actions on these changes. If the changes are small enough, noise dominates the
signal and the controller performs poorly.

3.1 Simple Cases

A generic feedback control situation is illustrated in Fig.5. Fundamentally, the
controller in the figure is a signal processor, taking the signals d. and y as inputs
and producing the signal u as output. The objective of the controller is to make
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Fig. 5 The plant and controller. Notice that the exogenous input of Fig. 5 has been split into two
parts with d.. denoting the exogenous input to the controller and d), that to the plant

y() = d.(t) YVt > 0. This is actually impossible because all physical systems
have some form of inertia. Thus, control systems are only required to come close
to this objective. There are a number of precise definitions of the term “close.” In
the simplest cases, the requirements/specifications are that the closed-loop system
be asymptotically stable and that |y(#) — d.(t)| < € Vt > T > 0, where T is some
specified “settling time” and € is some allowable error. In more demanding
applications there will be specified limits on the duration and size of the transient
response [21]. An interesting additional specification is often applied when the plant
is approximately linear and time-invariant. In this case, an easy application of the
final value theorem for Laplace transforms proves that the error in the steady-state
response of the closed-loop system to a step input (i.e., a signal thatisOup tor = 0
at which time it jumps to a constant value ) goes to zero as ¢t — oo provided the
open-loop system (controller in series with the plant with no feedback) has a pole
at the origin. Note that this leads to the requirement/specification that the open-loop
system have a pole at the origin. This is achievable whereas, because of inaccuracies
in sensors and actuators, zero steady-state error is not.

In many cases the signal processing required for control is straightforward
and undemanding. For example, the most common controller in the world, used
in applications from the toilet tank to aircraft, is the Proportional + Integral +
Derivative (PID) Controller. A simple academic version of the PID Controller is
illustrated in Fig. 6. Notice that this simple PID Controller is a signal processing
system with two inputs, the signal to be tracked d. and the actual measured
plant output y and one output, the control signal . This PID controller has three
parameters that must be chosen so as to achieve satisfactory performance. The
simplest version has k; and k; equal to zero. This is a proportional controller. The
float valve in the toilet tank is an example. For most plants, although not the toilet
tank, choosing k, too large will result in the closed-loop system being unstable. That
is, y () will either oscillate or grow until saturation occurs somewhere in the system.
It is also usually true that, until instability occurs, increasing k, will decrease the
steady-state error. This captures the basic trade off in control design. Higher control
gains tend to improve performance but also tend to make the closed-loop system
unstable.
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Fig. 6 A simple academic PID controller

Changing k; to some non zero value usually improves the steady-state perfor-
mance of the closed-loop system. To see this, first break the feedback loop by
removing the connection carrying y in Fig. 5 and set k; = 0. Then, taking Laplace
transforms, gives

U(s) = (kp +ki/s)Y (s) (18)

Assuming that the plant is linear and denoting its transfer function by G, (s)
gives the open-loop transfer function,

Y(s) ((kps + ki

D.(s) ;6 19)

This open-loop system will have at least one pole at the origin unless G, (s)
has a zero there. As outlined in the previous section, this implies in theory that the
steady-state error in response to a step input should be zero. In reality, dead zone
nonlinearity and both sensor and actuator nonlinearity will result in nonzero steady-
state errors.

It is relatively simple to adjust the gains k, and k; so as to achieve good
performance of the closed-loop system. There are a number of companies that
supply ready-made PID controllers. Once these controllers are connected to the
plant, a technician or engineer “tunes” the gains to get good performance. There are
several tuning rules in the literature, the most famous of which are due to Ziegler
and Nichols. It should be noted that the Ziegler-Nichols tuning rules are now known
to be too aggressive; better tuning rules are available [1].

Choosing a good value of k; is relatively difficult although the tuning rules do
include values for it. Industry surveys have shown that a significant percentage of
PID controllers have incorrect values for k4. When it is properly chosen, the D term
improves the transient response.

There are three common improvements to the simple PID controller of Fig. 6.
First, it is very unwise to include a differentiator in a physical system. Differentiation
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amplifies high frequency noise, which is always present. Thus, the k;s term in the
PID controller should be replaced by ky ,fj: 41~ This simply adds a low pass filter
in series with the differentiator and another parameter, &, to mitigate the problems
with high frequency noise. Second, the most common input signal d.(¢) is a step.
Differentiating such a signal would introduce a signal into the system that is an
impulse (infinite at + = 0 and O everywhere else). Instead, the signal input to the
D-term is chosen to be y(¢), not d.(t) — y(¢). Notice that this change does away
with the impulse and only changes the controller output at t = 7y whenever d.(¢) is
a step at 1.

Lastly, when the PID controller saturates the actuator (u(#) becomes too large for
the actuator it feeds) a phenomenon known as integral windup often occurs. This
causes the transient response of the closed-loop system to be much larger and to last
much longer than would be predicted by a linear analysis. There are several ways to
mitigate the effects of integral windup [1].

Nowadays the simple PID controller is almost always implemented digitally.
The discretization in time and quantization of the signals has very little effect on
the performance of the closed-loop system in the vast majority of cases. This is
because the plant is usually very slow in comparison to the speeds of electronic
signal processors. The place where digital implementation has its largest impact
is on the possibility for improving the controller. The most exciting of these is to
make the PID controller either adaptive or self-tuning. Both automate the tuning
of the controller. The difference is that the self-tuning controller operates in two
distinct modes, tuning and controlling. Often, an operator selects the mode, tuning
when there is reason to believe the controller is not tuned properly and controlling
when it is correctly tuned. The adaptive controller always operates in its adaptive
mode, simultaneously trying to achieve good control and tuning the parameters.
There is a large literature on both self tuning and adaptive control; many different
techniques have been proposed. There are also about a dozen turnkey self-tuning
PID controllers on the market [1].

There are many plants, even LTI single-input single-output (SISO) ones, for
which the PID Controller is ineffective or inappropriate. One example is an LTI
plant with a pair of lightly damped complex conjugate poles. Nonetheless, for many
such plants a more complicated controller can be easily implemented in a DSP.
There are many advantages to doing this. Most are obvious but one requires a small
amount of background.

Most real control systems require a “safety net.” That is, provisions must be made
to deal with failures, faults, and other problems that may arise. For example, the
float valve in the toilet tank will eventually fail to close fully. This is an inevitable
consequence of valve wear and/or small amounts of dirt in the water. An overflow
tube in the tank guarantees that this is a soft failure. If the water level gets too
high, the excess water spills into the overflow tube. From there it goes into the toilet
and eventually into the sewage line. The valve failure does not result in a flood in
the house.

These safety nets are extremely important in the real world, as should be obvious
from this simple example. It is easy to implement them within the controller DSP.
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This is now commonly done. In fact, because many control applications are easily
implemented in a DSP, and because such processors are so cheap, it is now true
that there is often a good deal of unused capacity in the DSPs used for control.
An important area of controls research is to find ways to use this extra capacity to
improve the controller performance. One success story is described in the following
section.

3.2 Demanding Cases

The signal processing necessary for control can be very demanding. One such
control technique that is extensively used is commonly known as Model Predictive
Control (MPC) [3] although it has a number of other names such as Receding
Horizon Control, Dynamic Matrix Control, and numerous variants. The application
of MPC is limited to systems with “slow” dynamics because the computations
involved require too much time to be accomplished in the sampling interval for
“fast” systems. The simplest version of MPC occurs when there is no exogenous
input and the objective of the controller is to drive the system state to zero. This is
the case described below.

The starting point for MPC is a known plant which may have multiple inputs and
multiple outputs (MIMO) and a precise mathematical measure of the performance
of the closed-loop system. It is most convenient to use a state-space description of
the plant

xX(t) = f(x(0), u(®) (20)
y(@) = g(x(2), u(t)) 21

Note that we have assumed that the system is time-invariant and that the noise can
be adequately handled indirectly by designing a robust controller (a controller that
is relatively insensitive to disturbances) rather than by means of a more elaborate
controller whose design accounts explicitly for the noise. It is assumed that the state
x(t) is an n-vector, the control u(¢) is an m-vector, and the output y(¢) is a p-vector.

The performance measure is generically

JU0,00) = fo 1 (), u(t)di 22)

The notation u[p, ) denotes the entire signal {u(¢) : 0 <t < oo}.

The control objective is to design and build a feedback controller that will
minimize the performance measure. It is possible to solve this problem analytically
in a few special cases. When an analytic solution is not possible one can resort
to the approximate solution known as MPC. First, discretize both the plant and
the performance measure with respect to time. Second, further approximate the
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performance measure by a finite sum. Lastly, temporarily simplify the problem by
abandoning the search for a feedback control and ask only for an open-loop control.
The open-loop control will depend on the initial state so assume that x (0) = xo and
this is known.

The approximate problem is then to find the sequence [u(0) u(1)---u(N — 1]
that solves the constrained nonlinear programming problem given below

[1(0) uI(I}i)gu(N)]g::l(x(i)’ u(@)) +In(x(N + 1)) (23)
subject to
x(i+1) = fax@),u@) i=01,---,N (24)
and
x(0) = xo (25)

Notice that the solution to this problem is a discrete-time control signal,

[1”(0) u®(1) -+ - u®(N)] (26)
(where the superscript “o” denotes optimal) that depends only on knowledge of xg.
This will be converted into a closed-loop (and an MPC) controller in two steps.
The first step is to create an idealized MPC controller that is easy to understand
but impossible to build. The second step is to modify this infeasible controller by a
practical, implementable MPC controller.

The idealized MPC controller assumes that y(i) = x(i), Vi. Then, ati = 0,
x(0) = xo is known. Solve the nonlinear programming problem instantaneously.
Apply the control #°(0) on the time interval 0 < ¢t < §, where § is the discretization
interval. Next, at time + = §, equivalently i = 1, obtain the new value of x,
i.e., x(1) = x1. Again, instantaneously solve the nonlinear programming problem,
exactly as before except using x as the initial condition. Again, apply only the first
step of the newly computed optimal control (denote it by u#“(1)) on the interval
<t <26

The idea is to compute, at each time instant, the open-loop optimal control for
the full time horizon of N 4 1 time steps but only implement that control for the
first step. Continue to repeat this forever.

Of course, the full state is not usually available for feedback (i.e., y(i) # x(i))
and it is impossible to solve a nonlinear programming problem in zero time. The
solution to both of these problems is to use an estimate of the state. Let an optimal
(in some sense) estimate of x(k + 1) given all the data up to time k be denoted by
X(i+1]i). For example, assuming noiseless and full state feedback, y (k) = x (k) Vk,
and the dynamics of the system are given by

x(@+1D) = fag(x@),u@) i=0,1,---,N 27
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then
Xk + 11k) = fa(x(k), u(k)) (28)

The implementable version of MPC simply replaces x; in the nonlinear program-
ming problem at time ¢ = {8 by x(i|{ — 1) and solves for [u®(@) u®(i+1)---u’(N+
i)]. This means that the computation of the next control value can start at time t = i§
and can take up to the time (i + 1)8. It can take a long time to solve a complicated
nonlinear programming problem. Because of this the application of MPC to real
problems has been limited to relatively slow systems, i.e., systems for which § is
large enough to insure that the computations will be completed before the next value
of the control signal is needed. As a result, there is a great deal of research at present
on ways to speed up the computations involved in MPC.

The time required to complete the control computations becomes even longer
if it is necessary to account explicitly for noise. Consider the following relatively
simple version of MPC in which the plant is linear and time-invariant except for the
saturation of the actuators. Furthermore, the plant has a white Gaussian noise input
and the output signal contains additive white Gaussian noise as well. The plant is
then modeled by

x(+1) = Ax(@i) + Bu(i) + D§(i) (29)
y(i) = Cx(i) +v(i) (30)

The two noise signals are zero mean white Gaussian noises with covariance
matrices E(&()ET(i)) = E Vi and E(v(i)vT(i)) = I Vi where E(-) denotes
expectation. The two noise signals are independent of each other.

The performance measure is

1 =00
Jaoeo) = EC Y 0T OQy@ +u’ ()Ru(@) 31)

i=0

In the equation above, Q and R are symmetric real matrices of appropriate
dimensions. To avoid technical difficulties R is taken to be positive definite (i.e.,
w'Ru > 0 for all u # 0) and Q positive semidefinite (i.e., yQy > 0 for all
y). In the absence of saturation, i.e., if the linear model is accurate for all inputs,
then the solution to the stochastic control problem of minimizing Eq.(31) subject
to Egs.(29) and (30) is the Linear Quadratic Gaussian (LQG) regulator [15]. It
separates into two independent components. One component is the optimal feedback
control u’(i) = F°x(i), where the superscript “o” denotes optimal. This control
uses the actual state vector which is, of course, unavailable. The other component of
the optimal control is a Kalman filter which produces the optimal estimate of x (i)
given the available data at time i. Denoting the output of the filter by x(i|i), the
control signal becomes

u (i) = FOx(ili) (32)
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This is known as the certainty equivalent control because the optimal state
estimate is used in place of the actual state. For this special case, all of the
parameters can be computed in advance. The only computations needed in real
time are the one step ahead Kalman filter/predictor and the matrix multiplication
in Eq. (32).

If actuator saturation is important, as it is in many applications, then the optimal
control is no longer linear and it is necessary to use MPC. As before, approximate
the performance measure by replacing oo by some finite N. An exact feedback
solution to this new problem would be extremely complicated. Because of the finite
time horizon, it is no longer true that the optimal control is time invariant. Because
of the saturation, it is no longer true that the closed-loop system is linear nor is it
true that the state estimation and control are separate and independent problems.
Even though this separation is not true, it is common to design the MPC controller
by using a Kalman filter to estimate the state vector. Denote this estimate by (i i)
and the one step ahead prediction by x(i|i — 1). The finite time LQ problem with
dynamics given by Eqs. (29) and (30) and performance measure

1S o
o) = EC ) 0T O0y@+u" Ru@)+y" (N+DOy(N+1)  (33)
i=0
is then solved open loop with initial condition x(0) = x(i|i — 1) and with the
constraint
Umax it u(@) > umax
u@) = {u, if  [u@i)| < Umax (34)

—Umax, I u@) < —umax

This is a convex programming problem which can be quickly and reliably solved.
As is usual in MPC, only the first term of the computed control sequence is actually
implemented. The substitution of the one step prediction for the filtered estimate is
done so as to provide time for the computations.

There is much more to MPC than has been discussed here. An introduction to
the very large literature on the subject is given in Sect.5. One issue that is too
important to omit is that of stability. The rationale behind MPC is an heuristic notion
that the performance of such a controller is likely to be very good. While good
performance implicitly requires stability, it certainly does not guarantee it. Thus,
it is comforting to know that stability is theoretically guaranteed under reasonably
weak assumptions for a broad range of MPC controllers [20].
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3.3 Exemplary Case

ABS brakes are a particularly vivid example of the challenges and benefits
associated with the use of DSP in control. The basic problem is simply stated.
Control the automobile’s brakes so as to minimize the distance it takes to stop.
The theoretical solution is also simple. Because the coefficient of sliding friction
is smaller than the coefficient of rolling friction, the vehicle will stop in a shorter
distance if the braking force is the largest it can be without locking the wheels. All
this is well known. The difficulty is the following. The smallest braking force that
locks the wheels depends on how slippery the road surface is. For example, a very
small braking force will lock the wheels if they are rolling on glare ice. A much
larger force can be applied without locking the wheels when they are rolling on dry
pavement. Thus, the key practical problem for ABS brakes is how to determine how
much force can be applied without locking the wheels. In fact, there is as yet no
known way to measure this directly. It must be estimated. The control, based on this
estimate, must perform at least as well as an unassisted human driver under every
possible circumstance.

The key practical idea of ABS brakes is to frequently change the amount of
braking force to probe for the best possible value. Probing works roughly as follows.
Apply a braking force and determine whether the wheels have locked. If they have,
reduce the braking force to a level low enough that the wheels start to rotate again.
If they have not, increase the braking force. This is repeated at a reasonably high
frequency.

Probing cannot stop and must be repeated frequently because the slipperiness
of the road surface can change rapidly. It is important to keep the braking force
close to its optimal value all the time. Balancing the dual objectives of quickly
detecting changes in the slipperiness of the surface and keeping the braking force
close to its optimal value is one of the keys to successful ABS brakes. Note that this
tradeoff is typical of adaptive control problems where the controller has to serve the
dual objectives of providing good control and providing the information needed to
improve the controller.

The details of the algorithm for combining probing and control are complicated
[2]. The point here is that the complicated algorithm is a life saving application of
digital signal processing for control. Two other points are important. In order for
ABS brakes to be possible, it was first necessary to develop a hydraulic braking
system that could be electronically modulated. That is, the improved controller
depends on a new actuator. Second, there is very little control theory available to
assist in the design of the controller upon which ABS braking depends.

There are three reasons why control theory is of little help in designing ABS
brakes. First, the interactions between tires and the road surface are very complex.
The dynamic distortion of the tire under loading plays a fundamental role in traction
(see [8] for a dramatic example). While there has been research on appropriate
mathematical models for the tire/road interaction, realistic models are too complex
for control design and simpler models that might be useful for controller design are
not realistic enough.
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Second, the control theory for systems that have large changes in dynamics as
a result of small changes in the control—exactly what happens when a tire loses
traction—is only now being developed. Such systems are one form of hybrid system.
The control of hybrid systems is a very active current area of research in control
theory.

Third, a crucial component of ABS brakes is the electronically controllable
hydraulic brake cylinder. This device is obviously needed in order to implement the
controller. Control theory has very little to say about the physical devices needed to
implement a controller.

4 Conclusions

Nowadays most control systems are implemented digitally. This is motivated
primarily by cost and convenience. It is abetted by continuing advances in sensing
and actuation. More and more physical signals can be converted to electrical signals
with high accuracy and low noise. More and more physical actuators convert
electrical inputs into physical forces, torques, etc. Sampling and digitization of the
sensor signals is also convenient, very accurate if necessary, and inexpensive. Hence,
the trend is very strongly towards digital controllers.

The combination of cheap sensing and digital controllers has created exciting
opportunities for improved control and automation. Adding capability to a digitally
implemented controller is now often cheap and easy. Nonlinearity, switching, com-
putation, and logical decision making can all be used to improve the performance
of the controller. The question of what capabilities to add is wide open.

S Further Reading

There are many good undergraduate textbooks dealing with the basics of control
theory. Two very popular ones are by Dorf and Bishop [4] and by Franklin et al. [6].
A standard undergraduate textbook for the digital aspects of control is [5]. A very
modern and useful upper level undergraduate or beginning graduate textbook is by
Goodwin et al. [7]. An excellent source for information about PID control is [1].

Graduate programs in control include an introductory course in linear system
theory that is very similar to the ones for signal processing. The book by Kailath
[10] although old is very complete and thorough. Rugh [19] is more control oriented
and newer. The definitive graduate textbook on nonlinear control is [11].

For more advanced and specialized topics in control, The Control Handbook
[13] is an excellent source. It was specifically designed for the purpose of providing
a starting point for further study. It also contains good introductory articles about
undergraduate topics and a variety of applications.
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There is a very large literature on MPC. Besides the previously cited [3], there
are books by Maciejowski [16] and Kwon and Han [12] as well as several others.
There are also many survey papers. The one by Rawlings [18] is easily available and
recommended. Another very useful and often cited survey is by Qin and Badgwell
[17]. This is a particularly good source for information about companies that provide
MPC controllers and other important practical issues,

Lastly, the Handbook of Networked and Embedded Control Systems [9] provides
introductions to most of the issues of importance in both networked and digitally
controlled systems.
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Abstract The current monolithic and lengthy scheme behind the standardization
and the design of new video coding standards is becoming inappropriate to
satisfy the dynamism and changing needs of the video coding community. Such
a scheme and specification formalism do not enable designers to exploit the clear
commonalities between the different codecs, neither at the level of the specification
nor at the level of the implementation. Such a problem is one of the main reasons
for the typical long time interval elapsing between the time a new idea is validated
until it is implemented in consumer products as part of a worldwide standard. The
analysis of this problem originated a new standard initiative within the ISO/IEC
MPEG committee, called Reconfigurable Video Coding (RVC). The main idea
is to develop a video coding standard that overcomes many shortcomings of the
current standardization and specification process by updating and progressively
incrementing a modular library of components. As the name implies, flexibility
and reconfigurability are new attractive features of the RVC standard. The RVC
framework is based on the usage of a new actor/dataflow oriented language called
CAL for the specification of the standard library and the instantiation of the RVC
decoder model. CAL dataflow models expose the intrinsic concurrency of the
algorithms by employing the notions of actor programming and dataflow. This
chapter gives an overview of the concepts and technologies building the standard
RVC framework and the non standard tools supporting the RVC model from the
instantiation and simulation of the CAL model to the software and/or hardware code
synthesis.
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1 Introduction

A large number of successful MPEG (Moving Picture Expert Group) video coding
standards has been developed since the first MPEG-1 standard in 1988 [20]. The
standardization efforts in the field, besides having as first objective to guarantee the
interoperability of compression systems, have also aimed at providing appropriate
forms of specifications for wide and easy deployment. While video standards are
becoming increasingly complex, and they take ever longer to be produced, this
makes it difficult for standards bodies to produce timely specifications that address
the need to the market at any given point in time. The structure of past standards has
been one of a monolithic specification together with a fixed set of profiles that subset
the functionality and capabilities of the complete standard. Similar comments apply
to the reference code, which in more recent standards has become normative itself.
Video devices are typically supporting a single profile of a specific standard, or a
small set of profiles. They have therefore only very limited adaptivity to the video
content, or to environmental factors (bandwidth availability, quality requirements).

Within the ISO/IEC MPEG committee, Reconfigurable Video Coding (RVC) [6,
38] standard is intended to address the two following issues: make standards
faster to produce, and permit video devices based on those standards to exhibit
more flexibility with respect to the coding technology used for the video content.
The key idea is to standardize a library of video coding components, instead of
an entire video decoder. The standard can then evolve flexibly by incrementally
extending that library, and video devices can configure themselves to support a
variety of coding algorithms by composing encoders and decoders from that library
of predefined coding modules. Recently the concepts of standardizing modular
components have been also extended with success to the coding of 3-D graphic
objects, achieving the same objectives initially identified within the video coding
field [7, 8]. For this reason the standard framework is now also referred to as
Reconfigurable Media Framework (RMC) to acknowledge the inclusion of others
media than video.

This chapter gives an overview of the concepts and technologies building
the standard RVC framework shown in Fig.1 and can be complemented by the
chapter of the handbook: “Dataflow modeling for reconfigurable signal processing
systems” [12].

2 Requirements and Rationale of the MPEG RVC
Framework

Started in 2004, the MPEG Reconfigurable Video Coding (RVC) framework [6] is
a new ISO standard (Fig. 1) aiming at providing an alternative form of video codec
specifications by standardizing a library of modular dataflow components instead of
monolithic sequential algorithms. RVC provides the new form of specification by
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Fig. 1 CAL and RVC standard timeline

defining two standard elements: a dataflow language with which video decoders can
be described (ISO/IEC23001-4 or MPEG-B pt. 4 [34]) and a library of video coding
tools employed in MPEG standards (ISO/IEC23002-4 or MPEG-C pt. 4 [35]).
The new concept is to be able to specify a decoder of an existing standard or a
completely new configuration that may better satisfy application-specific constraints
by selecting standard components from a library of standard coding algorithms.
Such possibility also requires extended methodologies and new tools for describing
the new bitstream syntaxes and the instantiation of the parsers of such new codecs.
These extensions has been recently finalized and are currently available in new
amendments of the standard [37]. An additional possibility of RVC is also to
be able to enable at runtime the dynamic reconfiguration of codecs at terminal
side. Such option also requires normative extensions of the system layer for the
transport of the new configurations and the associated signaling and is currently
under study by the MPEG committee, in particular addressing the possibility of
instantiating simplified decoder configurations providing low-power performance
or configurations exposing different levels of parallelism.
The essential concepts of the RVC framework (Fig. 2) are the following:

* RVC-CAL [23], a dataflow language describing the Functional Unit (FU) behav-
ior. The language defines the behavior of dataflow components called actors (or
FUs in MPEG), which is a modular component that encapsulates its own state
such that an actor can neither read nor modify the state of any other actor. The
only interaction between actors is via messages (known in CAL as tokens) which
flow from an output of one actor to an input of another. The behavior of an actor
is defined in terms of a set of atomic actions. The execution inside an actor is
purely sequential: at any point in time, only one action can be active inside an
actor. An action can consume (read) tokens, modify the internal state of the actor,
produce tokens, and interact with the underlying platform on which the actor is
running.
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* FNL (Functional unit Network Language), a language describing the video codec
configurations. FNL is an XML dialect that lists the FUs composing the codec,
the parameterization of these FUs and the connections between the FUs. FNL
allows hierarchical constructions: an FU can be defined as a composition of other
FUs and described by another FND (FU Network Description).

* BSDL (Bitstream Syntax Description Language), a language describing the
structure of the input bitstream. BSDL is a XML dialect that lists the sequence
of the syntax elements with possible conditioning on the presence of the
elements, according to the value of previously decoded elements. BSDL is further
explained in Sect. 4.4.

e A library of video coding tools, also called Functional Units (FU) covering all
MPEG standards (the “MPEG Toolbox™). This library is specified and provided
using RVC-CAL (a subset of the original CAL language that is standardized by
MPEQG) as specification language for each FU.

e An “Abstract Decoder Model” (ADM) constituting a codec configuration
(described using FNL) instantiating FUs of the MPEG Toolbox. Figure 2 depicts
the process of instantiating an “Abstract Decoder Model” in RVC.

* Tools simulating and validating the behavior of the ADM (Open DataFlow
environment [56]).

* Tools automatically generating software and hardware descriptions of the ADM.
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3 Rationale for Changing the Traditional Specification
Paradigm Based on Sequential Model of Computation

As briefly introduced in the previous section, one of the more radical innovations
introduced by the RVC standard is the adoption of a non-traditional model of
computation and a new specification language. The main reasons for this change
in building specifications are discussed here in more depth [9].

For most of the history of silicon-based computing, the steady scaling of silicon
technology has led to ever faster sequential computing machines, with higher clock
rates and more sophisticated internal architectures exploiting the improvements
in silicon manufacturing. Backwards compatible processor designs ensured that
software remained portable to new machines, which in turn implied that legacy
software automatically benefited from any progress in the way processors were built,
and so have complex algorithms, such as video codecs, and the associated reference
SW descriptions, using generic, sequential programming languages.

In recent years, however, this has ceased to be the case. In spite of continued
scaling of silicon technology, individual sequential processors are not becoming
faster any more, but slightly slower while reducing power dissipation [3]. Con-
sequently, rather than building more sophisticated and complex single processors,
manufacturers have used the space gained from scaling the technology by building
more processors onto a single chip, making multi-core machines and heterogeneous
systems a nearly ubiquitous commodity in a wide (and increasing) range of
computing applications. As a result, the performance gains of modern computing
machines are primarily due to an increase in the available parallelism (Fig. 3).

These developments pose qualitatively novel challenges to the portability of
specifications, applications and ultimately the software that is used to implement
them, as well as to software engineering and implementation methodology in
general: while sequential software used to automatically execute faster on a faster
processor, an increase in performance of an application on a new platform that
provides more parallelism is predicated on the ability to effectively exploit that
parallelism, i.e. to parallelize the application and thus match it to the respective
computing substrate.

Traditionally, applications described in the style of mostly sequential algorithms
have taken advantage of multiple execution units using threads and processes,
thereby explicitly structuring an application into a (usually small) set of concur-
rently executing sequential activities that interact with each other using shared
memory or other means of communication (e.g. messages, pipes, semaphores)
often provided either by the operating system or some middleware. However, this
parallel programming approach has some significant drawbacks [48]. First, it poses
considerable engineering challenges—Ilarge collections of communicating threads
are difficult to test since errors often arise due to the timing of activities in ways
that cannot be detected or reproduced easily, and the languages, environments,
and tools usually provide little or no support for managing the complexities of
highly parallel execution. Second, a thread-based approach scales poorly across
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Fig. 3 Representation of a unified SW-HW design space, showing how leaving current sequential
Von Neumann based approaches, portable parallelism and SW/HW unified programming/design
can be achieved in a much larger design space by developing efficient sequentialization and
parallelization techniques. Currently only design spaces labeled in the picture as “HDL” “SW
w/threads” and “parallelising compilers” are covered. Dataflow approach will allow to cover a
much larger space (gray area)

platforms with different degrees of parallelism if the number of execution units is
significantly different from the number of threads. Too few execution units mean
that several threads need to be dynamically scheduled onto each of them, incurring
scheduling overhead. If the number of processors exceeds the number of threads, the
additional processors remain unused. The result is that threaded applications either
need to be overengineered to using as many threads as possible, with the attendant
consequences for engineering cost and performance on less parallel hardware, or
they will underutilize highly parallel platforms. Either way, the requirement to
construct an application with a particular degree of parallelism in mind is a severe
obstacle to the portability of threaded software.

In an effort to implement sequential or threaded applications on platforms
that provide higher degrees of parallelism than the application itself, parallelizing
compilers have been used with some success [53]. However, the effectiveness of
automatic parallelization depends highly on the application and the details of the
algorithm description, and it does not scale well for larger programs.

For algorithm specifications and corresponding software to scale to future
parallel computing platforms as seamlessly as possible, it is necessary to describe
algorithms in a way that:
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. exposes as much parallelism of the application as practical,

. provides simple and natural abstractions that help manage the high degree
of parallelism and permits principled composition of and interaction between
modules,

3. makes minimal assumptions about the physical architecture of the computing

machine it is implemented on,

4. is efficiently implementable on a wide range of computing substrates, including

traditional sequential processors, shared-memory multicores, manycore proces-

sor arrays, and programmable logic devices, as well as combinations thereof.

N —

This is not a trivial proposition, since it implies among other things that the
current body of software will not by itself be implementable efficiently on future
computers but will have to be rewritten if it is supposed to take advantage of the
parallel performance of these machines. In fact, the requirements above suggest a
programming style and a tool support that formulates applications in as parallel a
way as possible, so that implementation frequently involves sequentializing [22]
as well as parallelizing [53] applications. This is effectively the antithesis of the
current approach to mapping software onto parallel platforms, which tends to begin
with sequential code, and parallelization, either manually or automatically, is the
process of adapting the sequential algorithm and code to a parallel implementation
target. Looking at the above criteria, shared-memory threads for instance fulfill the
first requirement, but essentially fail on the other three. By comparison, hardware
description languages such as VHDL and Verilog fulfill the first two criteria, but
as they fail on the third point by assuming a particular model of (clocked) time
and their implementability is essentially limited to hardware and hardware-like
programmable logic (FPGAs). Needless to say CAL dataflow programming is a
good candidate to be able to satisfy the above requirements and for such reasons
has been selected and adopted by the MPEG RVC standards.

3.1 Limits of Previous Monolithic Specifications

MPEG has produced several generations of video coding standards such as MPEG-
1, MPEG-2, MPEG-4 Video, AVC (Advanced Video Coding) and SVC (Scalable
Video Coding) its scalable profile. The last generation of video coding standards,
published in 2013, is called High Efficiency Video Coding (HEVC), yielding
more than a factor 2 gain versus the previous generation standard performance
(AVC) particularly for Ultra High Definition resolution video content. While at
the beginning MPEG-1 and MPEG-2 were only specified by textual descriptions,
with the increasing complexity of algorithms, starting with the MPEG-4 set of
standards, C or C++ specifications, called also reference software, have became
the formal specification of the standards. However, the past monolithic specification
of such standards (usually in the form of C/C++ programs) lacks flexibility and
does not allow to use the combination of coding algorithms from different standards
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enabling to achieve specific design or performance trade-offs and thus fill, case
by case, the requirements of specific applications. Indeed, not all coding tools
defined in a profile@level of a specific standard are required in all application
scenarios. For a given application, codecs are either not exploited at their full
potential or require unnecessarily complex implementations. However, a decoder
conformant to a standard has to support all of them and may results in non-efficient
implementations.

Moreover, such descriptions composed of non-optimized non-modular software
packages have started to show many limits. If we consider that they are in practice
the starting point of any implementation, system designers have to rewrite these
software packages not only to try to optimize performances, but also to transform
these descriptions into appropriate forms adapted to the current system design
methodologies. Such monolithic specifications hide the inherent parallelism and the
dataflow structure of the video coding algorithms, features that are necessary to be
exploited for efficient implementations. In the meanwhile the evolution of video
coding technologies, leads to solutions that are increasingly complex to be designed
and present significant overlap between successive versions of the standards.

Why C etc. Fail? The control over low-level details, which is considered
a merit of C language, typically tends to over-specify programs. Not only the
algorithms themselves are specified, but also how inherently parallel computations
are sequenced, how and when inputs and outputs are passed between the algorithms
and, at a higher level, how computations are mapped to threads, processors and
application specific hardware. In general, it is not possible to recover the original
knowledge about the intrinsic properties of the algorithms by means of analysis
of the software program and the opportunities for restructuring transformations on
imperative sequential code are very limited compared to the parallelization potential
available on multi-core platforms [5]. These in conjunction with the previously
discussed motivations, are the main reasons for which C has been replaced by CAL
in MPEG RVC [43].

3.2 Reconfigurable Video Coding Specification Requirements

Scalable Parallelism In parallel programming, the number of things that are
happening at the same time can scale in two ways: It can increase with the size of
the problem or with the size of the program. Scaling a regular algorithm over larger
amounts of data is a relatively well-understood problem, while building programs
such that their parts execute concurrently without much interference is one of the
key problems in scaling the von Neumann model. The explicit concurrency of the
actor model provides a straightforward parallel composition mechanism that tends
to lead to more parallelism as applications grow in size, and scheduling techniques
permit scaling concurrent descriptions onto platforms with varying degrees of
parallelism.
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Modularity and Reuse The ability to create new abstractions by building reusable
entities is a key element in every programming language. For instance, object-
oriented programming has made huge contributions to the construction of von
Neumann programs, and the strong encapsulation of actors along with their
hierarchical composability offers an analog for parallel programs.

Concurrency In contrast to procedural programming languages, where control
flow is made explicit, the actor model emphasizes explicit specification of con-
currency. Rallying around the pivotal and unifying von Neumann abstraction has
resulted in a long and very successful collaboration between processor architects,
compiler writers, and programmers. Yet, for many highly concurrent programs,
portability has remained an elusive goal, often due to their sensitivity to timing.
The untimedness and asynchrony of stream-based programming offers a solution to
this problem. The portability of stream-based programs is underlined by the fact that
programs of considerable complexity and size can be compiled to competitive hard-
ware [42] as well as software [66], which suggests that stream-based programming
might even be a solution to the old problem of flexibly co-synthesizing different
mixes of hardware/software implementations from a single source.

Encapsulation The success of a stream programming model will in part depend
on its ability to configure dynamically and to virtualize, i.e. to map to collections
of computing resources too small for the entire program at once. Moving parts
of a program on and off a resource requires encapsulation, i.e. a clear distinction
between those pieces that belong to the parts to be moved and those that do not.
The transactional execution of actors generates points of quiescence, the moments
between transactions, when the actor is in a defined and known state that can be
safely transferred across computing resources.

4 Description of the Standard or Normative Components of
the Framework

The fundamental element of the RVC framework, in the normative part, is the
Decoder Description (Fig. 2) that includes two types of data:

The Bitstream Syntax Description (BSD), which describes the structure of the
bitstream. The BSD is written in RVC-BSDL. It is used to generate the appropriate
parser to decode the corresponding input encoded data [33, 64].

The FU Network Description (FND), which describes the connections between
the coding tools (i.e. FUs). It also contains the values of the parameters used for the
instantiation of the different FUs composing the decoder [21, 42, 66]. The FND
is written in the so called FU Network Language (FNL). The syntax parser (built
from the BSD), together with the network of FUs (built from the FND), form a
CAL model called the Abstract Decoder Model (ADM), which is the normative
behavioral model of the decoder.
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Fig. 4 The conceptual view of RVC

4.1 The Toolbox Library

An interesting feature of the RVC standard that distinguishes it from traditional
decoders-rigidly-specified video coding standards is that, a description of the
decoder can be associated to the encoded data in various ways according to each
application scenario. Figure 4 illustrates this conceptual view of RVC [50, 51].
All the three types of decoders are within the RVC framework and constructed
using the MPEG-B standardized languages. Hence, they all conform to the MPEG-
B standard. A Type-1 decoder is constructed using the FUs within the MPEG
Video Tool Library (VTL) only. Hence, this type of decoder conforms to both
the MPEG-B and MPEG-C standards. A Type-2 decoder is constructed using
FUs from the MPEG VTL as well as one or more proprietary libraries (VTL
1-n). This type of decoder conforms to the MPEG-B standard only. Finally, a
Type-3 decoder is constructed using one or more proprietary VIL (VTL 1-n),
without using the MPEG VTL. This type of decoder also conforms to the MPEG-
B standard only. An RVC decoder (i.e. conformant to MPEG-B) is composed of
coding tools described in VTLs according to the decoder description. The MPEG
VTL is described by MPEG-C. Traditional programming paradigms (monolithic
code) are not appropriate for supporting such types of modular framework. A new
dataflow-based programming model is thus specified and introduced by MPEG RVC
as specification formalism.

The MPEG VTL is normatively specified using RVC-CAL. An appropriate level
of granularity for the components of the standard library is important, to enable
an effective possibility of reconfigurations, for codecs, and an efficient reuse of
components in codecs implementations. If the library is composed of too coarse
modules, such modules will be too large/coarse to allow their usage in different
and interesting codec configurations, whereas, if the library component granularity
level is too fine, the number of modules in the library will result to be too large
for an efficient and practical reconfiguration process at the codec implementation
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side, and may obscure the desired high-level description and modeling features of
the RVC codec specifications. Most of the efforts behind the standardization of the
MPEG VTL were devoted to study the best granularity trade-off level of the VTL
components. However, it must be noticed that the choice of the best trade-off in
terms of high-level description and module re-usability, does not really affect the
potential parallelism of the algorithm that can be exploited in multi-core and FPGA
implementations.

4.2 The CAL Actor Language

CAL [23] is a domain-specific language that provides useful abstractions for
dataflow programming with actors. For more information on dataflow methods, the
reader may refer to Part IV (Design Methods), which contains several chapters that
go into detail on various kinds of dataflow techniques for design and implementation
of signal processing systems. CAL has been used in a wide variety of applications
and has been compiled to hardware and software implementations, and work on
mixed HW/SW implementations is under way. The next section provides a brief
introduction to some key elements of the language.

4.2.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add actor (Fig. 5), which has two
input ports A and B, and one output port Out, all of type T. T may be of type int,
or uint for respectively integers and unsigned integers, of type bool for booleans,
or of type £1oat for floating-point integers. Moreover CAL designers may assign
a number of bits to the specific integer type depending on the variable numeric size.
The actor contains one action that consumes one token on each input ports, and
produces one token on the output port. An action may fire if the availability of tokens
on the input ports matches the port patterns, which in this example corresponds to
one token on both ports A and B.

actor Add() T A, T B=T Out
action [a], [b] = [sum]
do
sum = a + b;
end
end

Fig. 5 Basic structure of a CAL actor
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actor Select () S, A, B= Output:

action S: [sel], A: [v] = [v]
guard sel end

action S: [sel], B: [v] = [V]
guard not secl end
end

Fig. 6 Guard structure in a CAL actor

actor PingPongMerge () Inputl, Input2 = Output:

A: action Inputl: [x] = [x] end
B: action Input2: [x] = [x] end

schedule fsm sl:
sl (A) —> s2;
s2 (B) —> sl
end
end

Fig. 7 FSM structure in a CAL actor

An actor may have any number of actions. The untyped Select actor (Fig. 6)
reads and forwards a token from either port A or B, depending on the evaluation of
guard conditions. Note that each of the actions has empty bodies.

4.2.2 Priorities and State Machines

An action may be labeled and it is possible to constrain the legal firing sequence by
expressions over labels. In the PingPongMerge actor, reported in Fig. 7, a finite
state machine schedule is used to force the action sequence to alternate between the
two actions A and B. The schedule statement introduces two states s1 and s2.

The Route actor, in Fig. 8, forwards the token on the input port A to one of the
three output ports. Upon instantiation it takes two parameters, the functions P and Q,
which are used as predicates in the guard conditions. The selection of which action
to fire is in this example not only determined by the availability of tokens and the
guards conditions, by also depends on the priority statement.

4.2.3 CAL Subset Language for RVC

For an in-depth description of the language, the reader is referred to the language
report [23], for the specific subset specified and standardized by ISO in the Annex
C of [34]. This subset only deals with fully typed actors and some restrictions on
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actor Route (P, Q) A=X, Y, Z:

toX: action [v] = X: [V]
guard P(v) end

toY: action [v] = Y: [v]
guard Q(v) end

toZ: action [v] = Z: [v] end

priority
toX > toY > toZ;
end
end

Fig. 8 Priority structure in a CAL actor

actor Select () T1 S, T2 A, T3 B = T3 Output:

action S: [sel], A: [v] = [V]
guard sel end

action S: [sel], B: [v] = [v]
guard not sel end
end

Fig. 9 Guard structure in a RVC-CAL actor

actor PingPongMerge () T Inputl, T Input2 = T Output:

A: action Inputl: [x] = [x] end
B: action Input2: [x] = [x] end

schedule fsm sl:
sl (A) —> s2;
s2 (B) —> sl
end
end

Fig. 10 FSM structure in a RVC-CAL actor

the CAL language constructs from [23] to have efficient hardware and software
code generations without changing the expressivity of the algorithm. For instance,
Figs.6, 7 and 8 are not RVC-CAL compliant and must be changed as Figs.9, 10
and 11 where T1, T2, T are the types and only typed parameters can be passed to
the actors not functions as P, Q.

A large selection of example actors is available at the OpenDF repository [56],
among them can also be found the MPEG-4 decoder discussed below. Many other
actors written in RVC-CAL are available as reference SW of the standard MPEG
RVC tool repository (ISO/IEC 23002-4). Currently beside the MPEG-4 SP, MPEG-
A Part 10 AVCis available as Constrained Baseline Profile, Progressive High Profile
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actor Route () TA=TX, TY, T Z:

funtion P(T v_in)—> T:

\\ body of the function P
P(v_in)

end

funtion Q(T v_in)—> T:

\\ body of the function P
Q(v-in)

end

toX: action [v] = X: [Vv]
guard P(v) end

toY: action [v] = Y: [v]
guard Q(v) end

toZ: action [v] = Z: [v] end

priority
toX > toY > toZ;
end
end

Fig. 11 Priority structure in a RVC-CAL actor

and their scalable profile version, as well as the last generation of HEVC decoder
including different versions of actors that make possible to implement decoders with
different levels of parallelisms including multiple parser decoder versions.

4.2.4 Non-standard Process Language Extension to CAL

The constructs discussed above make CAL a very versatile and general language
for expressing actors that are processing streaming data, permitting the construction
of a wide range of such actors, from highly regular and static ones, to actors with
very data-dependent behavior, to actors sensitive to the timing of token arrivals,
and even nondeterministic actors. However, in practice, many kernels are fairly
simple and often do not require the generality provided by the language. In fact,
in some cases, the requirement to describe the computation of an kernel as a set of
actions whose selection is governed by token availability, guards, and state can lead
to overly complex programs.

Consider the actor in Fig. 12, SumN, which reads a number from one of its input
ports, and then reads that many tokens from its other input port, adds them, and
produces the result. CAL as standardized by RVC requires that the computation be
structured into three actions, whose selection is determined by a state machine as
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actor SumN() X, N = Sum :
n; sum;
start:
action N:[nbr] =
do
sum = 0;
n := nbr;
end
add:
action X:[x] =
guard n > 0
do
sum := sum + X;
n:=n— 1;
end
done:
action = Sum:[sum]
guard n <= 0 end
schedule sO:
sO (start) —> sl;
sl (add) —> sl;
sl (done) —> s0;
end
end

Fig. 12 SumN actor

well as the guards of its last two actions, making an otherwise simple procedure
rather difficult to read and understand, and also error-prone to write.!

Actors such as this have motivated the search for other ways of writing stream
processing kernels. The TYCHO framework (cf. Sect. 5.6) includes an alternative
syntax for stream processing kernels inspired by the process language used by Kahn
in [44]. In it, a kernel is described as a process, i.e. a sequential program, typically
an infinite loop, which explicitly reads tokens from input ports (using the syntax
Port -> Variable) and writes the value of an expression to output ports (with Port
<- Expression).

Figure 13 shows the description of SumN in Fig.12 as such a process. One
interesting aspect of the Tycho implementation of this process language is the fact
that it compiles to the same intermediate representation as the original CAL actor
descriptions. This implies that actor and process descriptions can be mixed freely

A common mistake in a situation such as this is to omit the seemingly redundant inverted guard
of the third action and replace it with a priority between the second and the third action, resulting
in a rather difficult-to-find a subtle error that manifests only in some circumstances.
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process SumN() X, N = Sum :
n; sum; Xx;

repeat
N — n;
sum := 0;
while n > 0 do
X —> x;
sum = sum + X;
n :=n— 1;
end
Sum <— sum;
end
end

Fig. 13 SumN actor in Fig. 12 expressed as a process

Fig. 14 A simple CAL
network Sum

in the same dataflow program, and also that processes are amenable to the same
analyses, optimizations, and code generation techniques as actors. See [15, 16] for
more details on this topic. The described language extension provide a very natural
way of specifying source and sink actors of a network (for instance parsers and
displays for video codecs) which can then be synthesized to efficient SW or HW
implementations.

4.3 FU Network Language for Codec Configurations

A set of CAL actors are instantiated and connected to form a CAL application, i.e.
a CAL network. Figure 14 shows a simple CAL network Sum, which consists of the
previously defined RVC- CAL Add actor and the delay actor shown in Fig. 15.

The source/language that defined the network Sum is found in Fig. 16. Please,
note that the network itself has input and output ports and that the instantiated
entities may be either actors or other networks, which allow for a hierarchical
design.
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actor Z (v) T In = T Out:

A: action = [v] end
B: action [x] = [x] end

schedule fsm s0:
sO (A) —> sl;
sl (B) —> sl
end
end

Fig. 15 RVC-CAL delay actor

network Sum () In = Out:

entities
add = Add();
z = Z(v=0);

structure
In —> add.A;
z.0ut —> add.B;
add.Out —> z.In;
add.Out — > Out;
end

Fig. 16 Textual representation of the Sum network

Formerly, networks have been traditionally described in a textual language,
which can be automatically converted to FNL and vice versa—the XML dialect
standardized by ISO in Annex B of [34]. XML (Extensible Markup Language) is a
flexible way to create common information formats. XML is a formal recommen-
dation from the World Wide Web Consortium (W3C). XML is not a programming
language, it is rather a set of rules that allow you to represent data in a structured
manner. Since the rules are standard, the XML documents can be automatically

generated and processed. Its use can be gauged from its name itself:

e Markup: Is a collection of Tags
e XML Tags: Identify the content of data

» Extensible: User-defined tags

The XML representation of the Sum network is found in Fig. 17. A graphical
editing framework called Graphiti editor [32] is available to create, edit, save and
display a network. The XML and textual format for the network description are

supported by such an editor.
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<?xml version="1.0"” encoding="UTF-8"7>
<XDF name="Sum”™>
<Port kind="Input” name="In"/>
<Port kind="Output” name="Out”/>
<Instance id="add”/>
<Instance id="z">
<Class name="2"/>
<Parameter name="v”>
<Expr kind="Literal”
literal —kind="Integer” value="0"/>
</Parameter>
</Instance>
<Connection dst="add” dst—port="A”
src="" src—port="In"/>
<Connection dst="add” dst—port="B”
src="z" src—port="0ut”/>
<Connection dst="z” dst—port="In"
src="add” src—port="0ut”/>
<Connection dst="" dst—port="Out”
src="add” src—port="0ut”/>
</XDFE>

Fig. 17 XML representation of the Sum network

4.4 Bitstream Syntax Specification Language BSDL

MPEG-B Part 5 is an ISO/IEC international standard that specifies BSDL [33]
(Bitstream Syntax Description Language), an XML dialect describing generic
bitstream syntaxes. In the field of video coding, the bitstream description in BSDL of
MPEG-4 AVC [69] bitstreams represents all the possible structures of the bitstream
which conforms to MPEG-4 AVC. A Binary Syntax Description (BSD) is one
unique instance of the BSDL description. It represents a single MPEG-4 AVC
encoded bitstream: it is no longer a BSDL schema but a XML file showing the
data of the bitstream. Figure 18 shows a BSD associated to its corresponding BSDL
schema.

An encoded video bitstream is described as a sequence of binary elements
of syntax of different lengths: some elements contain a single bit, while others
contain many bits. The Bitstream Schema (in BSDL) indicates the length of these
binary elements in a human- and machine-readable format (hexadecimal, integers,
strings. .. ). For example, hexadecimal values are used for start codes as shown in
Fig. 18. The XML formalism allows organizing the description of the bitstream in a
hierarchical structure. The Bitstream Schema (in BSDL) can be specified at different
levels of granularity. It can be fully customized to the application requirements [67].
BSDL was originally conceived and designed to enable adaptation of scalable
multimedia contents in a format-independent manner [68]. In the RVC framework,
BSDL is used to fully describe video bitstreams. Thus, BSDL schemas must specify
all the elements of syntax, i.e. at a low level of granularity. Before the use of BSDL
in RVC, the existing BSDL descriptions described scalable contents at a high level
of granularity. Figure 18 is an example BSDL description for video in MPEG-4
AVC format.
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<NALUnit>
<startCode >00000001 </startCode >
<forbiddenObit >0</forbiddenObit >
<nalReference >3</nalReference>
<nalUnitType >20</nalUnitType>
<payload >5 100</payload>

</NALUnit>

<NALUnit>

<startCode >00000001 </startCode >
<!—— and so on... —>
</NALUnit>

<element name="NALUnit"
bs2:ifNext="00000001">
<xsd:sequence>
<xsd:element name="startCode"
type="avc:hex4" £ixed="00000001"/>
<xsd:element name="nalUnit"
type="avc:NALUnitType"/>
<xsd:element ref="payload"/>
</xsd:sequence>
<!—— Type of NALUnitType —>
<xsd:complexType name="NALUnitType'™
<xsd:sequence>
<xsd:element name="forbidden zero_bit"
type="bsl:bl" fixed="0"/>
<xsd:element name="nal_ ref idc" type="bsl:b2"/>
<xsd:element name="nal unit_type" type="bsl:b5"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="payload" type="bsl:byteRange"/>

Fig. 18 A Bitstream Syntax Description (BSD) fragment of an MPEG-4 AVC bitstream and its
corresponding BS schema fragment codec in RVC-BSDL

In the RVC framework, BSDL has been chosen because:

* itis stable and already defined by an international standard;

» the XML-based syntax interacts well with the XML-based representation of the
configuration of RVC decoders;

 the parser may be easily generated from the BSDL schema by using standard
tools (e.g. XSLT);

e the XML-based syntax integrates well with the XML infrastructure of the
existing tools.
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4.5 Instantiation of the ADM

In the RVC framework, the decoding platform acquires the Decoder Description
that fully specifies the architecture of the decoder and the structure of the incoming
bitstream. So as to instantiate the corresponding decoder implementation, the
platform uses a library of building blocks specified by MPEG-C. Conceptually, such
a library is a user defined proprietary implementation of the MPEG RVC standard
library, providing the same I/O behavior. Such a library can be expressly developed
to explicitly expose an additional level of concurrency and parallelism appropriate
for implementing a new decoder configuration on user specific multi-core target
platforms. The dataflow form of the standard RVC specification, with the associated
Model of Computation, guarantee that any reconfiguration of the user defined
proprietary library, developed at whatever lower level of granularity, provides an
implementation that is consistent with the (abstract) RVC decoder model that is
originally specified using the standard library. Figures 2 and 4 show how a decoding
solution is built from, not only the standard specification of the codecs in RVC-CAL
by using the normative VTL, and this already provides an explicit, concurrent and
parallel model, but also from any non-normative “multi-core-friendly” proprietary
Video Tool Libraries, that increases if necessary the level of explicit concurrency
and parallelism for specific target platforms. Thus, the standard RVC specification,
which is already an explicit model for concurrent systems, can be further improved
or specialized by proprietary libraries that can be used in the instantiation phase of
an RVC codec implementation.

4.6 Case Study of New and Existing Codec Configurations
4.6.1 Commonalities

All existing MPEG codecs are based on the same structure, the hybrid decoding
structure including a parser that extracts values for texture reconstruction and
motion compensation [19]. Therefore, MPEG-4 SP and MPEG-4 AVC are hybrid
decoders. Figure 19 shows the main functional blocks composing an hybrid decoder
structure.

As said earlier, an RVC decoder is described as a block diagram with FNL [34],
an XML dialect that describes the structural network of interconnected actors from
the Standard MPEG Toolbox. The only 2 case studies performed so far by MPEG
RVC experts [42, 66] are the RVC-CAL specifications of MPEG-4 Simple Profile
decoder and MPEG-4 AVC decoder [27].
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4.6.2 MPEG-4 Simple Profile (SP) Decoder

Figure 20 shows the network representation of the macroblock-based MPEG-4
Simple Profile decoder description. The parser is a hierarchical network of actors
(each of them is described in a separate FNL file). All other blocks are atomic actors
programmed in RVC-CAL. Figure 20 presents the structure of the MPEG-4 Simple
Profile ADM as described within RVC. Essentially it is composed of four main
parts: the parser, a luminance component (Y) processing path, and two chrominance
component (U, V) processing paths. Each of the paths is composed by its texture
decoding engine as well as its motion compensation engine (both are hierarchical
RVC-CAL Functional Units).

The MPEG-4 Simple Profile abstract decoder model that essentially results to
be a dataflow program (Fig. 20, Table 3), is composed of 27 atomic FUs (or actors
in dataflow programming) and 9 sub-networks (actor/network composition); atomic
actors can be instantiated several times, for instance there are 42 actor instantiations
in this dataflow program. Figure 25 shows a top-level view of the decoder. The
main functional blocks include the bitstream parser, the reconstruction block, the
2D inverse cosine transform, the frame buffer and the motion compensation module.
These functional units are themselves hierarchical compositions of actor networks.
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4.6.3 MPEG-4 AVC Decoder

MPEG-4 Advanced Video Coding (AVC), or also know as H.264 [69], is a state-
of-the-art video compression standard. Compared to previous coding standards, it is
able to deliver higher video quality for a given compression ratio, and 30% better
compression ratio compared to MPEG-4 SP for the same video quality. Because of
its complexity, many applications including Blu-ray, iPod video, HDTV broadcasts,
and various computer applications use variations of MPEG-4 AVC codec (also
called profiles). A popular uses of MPEG-4 AVC is the encoding of high definition
video contents. Due to high resolutions processing required, HD video is the
application that requires the highest performance for decoding. Common formats
used for HD include 720p (1280x720) and 1080p (1920x 1080) resolutions, with
frame rates between 24 and 60 frames per second.

The decoder introduced in this section corresponds to the Constrained Baseline
Profile (CBP). This profile is primarily fitted to lowest-cost applications and
corresponds to a subset of features that are in common between the Baseline, Main,
and High Profiles.

The description of this decoder expresses the maximum of parallelism and
mimics the MPEG4 SP. This description is composed of different hierarchical level.
Figure 21 shows a view of the highest hierarchy of the MPEG-4 AVC decoder—note
that for readability, one input represents a group of input for similar information on
each actor. The main functional block includes a parser, one luma and two chroma
decoders.

The parser analyses the syntax of the bitstream with a given formal grammar.
This grammar, written by hand, will later be given to the parser by a BSDL [64]
description. As the execution of a parser strongly depends on the context of the
bitstream, the parser incorporates a Finite State Machine so that it can sequentially
extract the information from the bitstream. This information passes through an
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entropy decoder and is then encapsulated in several kinds of tokens (residual
coefficients, motion vectors...). These tokens are finally sent to the selected input
port of the luma/chroma decoding actor.

Because decoding a luma/chroma component does not need to share infor-
mation with the other luma/chroma component, we choose to encapsulate each
luma/chroma decoding in a single actor. This means that each decoding actor can
run independently and at the same time in a separate thread. The entire decoding
component actor has the same structure.

Luma/chroma decoding actors (Fig.22) decode a picture and store the decoded
picture for later use in inter-prediction process. Each component owns the memory
needed to store pictures, encapsulates into the Decoded Picture Buffer (DPB) actor.
The DPB actor also contains the Deblocking Filter and is a buffering solution
to regulate and reorganize the resulting video flow according to the Memory
Management Control Operations (MMCO) input.

The Decoded Picture Buffer creates each frame by adding prediction data,
provided by the actor prediction, and residual data, provided by the actor Inverse
Transform. The Prediction actor (Fig. 23) encompasses inter/intra prediction modes
and a multiplexer that sends prediction results to the output port. The PRE Dyeject
input port has the role to stoke the right actors contingent on a prediction mode.
The target of this structure is to offer a quasi-static work of the global actor and, by
adding or removing prediction modes, to easily switch between configurations of the
decoder. For instance, adding B inter-prediction mode into this structure switches
the decoder into the main profile configuration.
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5 Tools and Integrated Environments Supporting
Development, Analysis and Synthesis of Implementations

Although some years have already passed since the first components of RVC have
been developed, there is still the room of extending the RVC framework and
for improving the performance and functionality of the non-normative tools and
integrated environments supporting simulation, analysis and direct implementation
synthesis. Indeed, besides the goal of providing a unified and high level specification
formalism, an innovative objective of RVC is to narrow the gap between the
algorithmic specification and the generation of the corresponding implementations.
Such gap not only constitutes a serious impediment for the efficient development
of implementations, but the augmented complexity of the new generation of video
codecs, and the increasing heterogeneity of processing platforms, that may include
many-core, multi-core and GPUs, make the gap wider. The fact that an RVC
specification does not imply a specific processing architecture (the single processor),
but abstracts from it, and results to be portable on any combination of architectures,
is a very attractive feature that opens the path to the usage of different tools and
integrated design flows. All of them attempt to ease the development cycles by
implementing:

* Assisted writing of the dataflow program: by the support of fully integrated
development environments including design exploration capabilities.

* Systematic validation of the dataflow program: by verification of integrated
simulators.

* Develop and optimize once, but run everywhere: by generating hardware and/or
software implementations that can be executed on a large panel of platforms by
means of transcompilation using the appropriate back-ends.

This section briefly describes some of the numerous tools appeared and still
under development to improve performance and functionality, that support the
different stages of design flows of an RVC data-flow specification. More examples
and tutorials for the installation and usage of some of the tools and integrated
environments described below are available in a separate technical report which
constitute a non-normative part of the RVC standard [36].

5.1 OpenDF Framework

CAL is supported by a portable interpreter infrastructure that can simulate a hierar-
chical network of actors. This interpreter was first used in the Moses [54] project.
Moses features a graphical network editor, and allows the user to monitor actors
execution (actor state and token values). The project being no longer maintained, it
has been superseded by an Eclipse environment composed of two tools/plugins—
the Open Dataflow environment for CAL editing (OpenDF [56] for short) and the
Graphiti editor for graphically editing the network.



MPEG Reconfigurable Video Coding 237

One interesting and very attracting implementation methodology of MPEG RVC
decoder descriptions is the direct synthesis of the standard specification. OpenDF is
also a compilation framework. It provides a source of relevant application of realistic
sizes and complexity and also enables meaningful experiments and advances in
dataflow programming. More details on the software and hardware code generators
can be found in [41, 70]. Today there exists a backend for generation of HDL
(VHDL/Verilog) [41, 42]. A second backend targeting ARM11 and embedded C
is under development [57] as part of the EU project ACTORS [2]. It is also possible
to simulate CAL models in the Ptolemy II [59] environment.

5.2 Orcc Framework

Works made on action synthesis and actor synthesis [66, 70] led to the creation of a
compiler framework called Open RVC CAL Compiler (Orcc) [55]. This framework
is designed to support multiple language front-ends, each of which translates
actors written in RVC-CAL and FNL network into an Intermediate Representation
(IR), and to support multiple language back-ends, each of which translates the
Intermediate Representation into the supported languages. IR provides a dataflow
representation that can be easily transformed in low level languages. Currently the
only maintained back-end is a C language backend (Fig. 24).
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Table 1 Hardware synthesis results for a proprietary implementation of a MPEG-4 Simple Profile
decoder

Size Speed Code size Deyv. time

slices, BRAM (kMB/s) (kSLOC) MM
CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4

factor

The numbers are compared with a reference hand written design in VHDL
kMB/s kilo macroblocks per second, kSLOC kilo source lines of code

5.3 CAL2HDL Synthesis

Some of the authors have performed an implementation study [41], in which the
RVC MPEG-4 Simple Profile decoder specified in CAL according to the MPEG
RVC formalism has been implemented on an FPGA using a CAL-to-RTL code
generator called Cal2HDL. The objective of the design was to support 30 frames
of 1080p in the YUV420 format per second, which amounts to a production of
93.3 MB of video output per second. The given target clock rate of 120 MHz implies
1.29 cycles of processing per output sample on average.

The results of the implementation study were encouraging in that the code
generated from the MPEG RVC CAL specification did not only outperform the
handwritten reference in VHDL, both in terms of throughput and silicon area,
but also allowed for a significantly reduced development effort. Table 1 shows the
comparison between CAL specification and the VHDL reference implemented over
a Xilinx Virtex 2 pro FPGA running at 100 MHz.

It should be emphasized that this counter-intuitive result cannot be attributed
to the sophistication of the synthesis tool. On the contrary the tool does not
perform a number of potential optimizations, such as for instance optimizations
involving more than one actor. Instead, the good results appear to be yield by
the implementation and development process itself. The implementation approach
was based generating a proprietary implementation of the standard MPEG RVC
toolbox composed of FUs of lower level of granularity. Thus the implementation
methodology was to substitute the FU of the standard abstract decoder model of the
MPEG-4 SP with an equivalent implementation, in terms of behavior. Essentially
standard toolbox FUs were substituted with networks of FU described as actors of
lower granularity (Fig. 25) [28-30, 46].

The initial design cycle of the proprietary RVC library resulted in an implementa-
tion that was not only inferior to the VHDL reference, but one that also failed to meet
the throughput and area constraints. Subsequent iterations explored several other
points in the design space until arriving at a solution that satisfied the constraints.
At least for the considered implementation study, the benefit of short design cycles
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seem to outweigh the inefficiencies that resulted from high-level synthesis and the
reduced control over implementation details.

In particular, the asynchrony of the programming model and its realization in
hardware allowed for convenient experiments with design ideas. Local changes,
involving only one or a few actors, do not break the rest of the system in spite
of a significantly modified temporal behavior. In contrast, any design methodology
that relies on precise specification of timing—such as RTL, where designers specify
behavior cycle-by-cycle—would have resulted in changes that propagate through
the design.

Table 1 shows the quality of result produced by the RTL synthesis engine of
the MPEG-4 Simple Profile video decoder. Note that the code generated from
the high-level dataflow RVC description and proprietary implementation of the
MPEG toolbox actually outperforms the hand-written VHDL design in terms of
both throughput and silicon area for a FPGA implementation.

5.4 CAL2C Synthesis

Another synthesis tool called Cal2C [66, 70] currently available at [55] validates
another implementation methodology of the MPEG-4 Simple Profile dataflow
program provided by the RVC standard (Fig. 20). The SW code generator presented
in details in [66] uses process network model of computation [44] to implement
the CAL dataflow model. The compiler creates a multi-thread program from
the given dataflow model, where each actor is translated into a thread and the
connectivity between actors is implemented via software FIFOs. Although the
generation provides correct SW implementations, inherent context switches occur
during execution, due to the concurrent execution of threads, which may lead to
inefficient SW execution if the granularity of actor is too fine.
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Table 2 MPEG-4 Simple MPEG4 SP | Speed | Clock speed | Code size

l;rL"glce decoder speed and decoder (kMB/s) |(GHz) (kSLOC)
CAL simulator 0.015 |25 34
Cal2C 8 25 10.4
Cal2HDL 290 0.12 4

Table 3 Code size and MPEG-4 SP decoder | CAL | C actors | C scheduler

number of files automatically

generated for MPEG-4 N umbe.r of files 2 61 !
Simple Profile decoder Code size (kSLOC) 29 |19 2

Major problems with multi-threaded programs are discussed in [48]. A more
appropriate solution that avoids thread management are presented in [49, 58].
Instead of suspending and resuming threads based on the blocking read semantic
of process network [45], actors are, instead, managed by a user-level scheduler
that select the sequence of actor firing. The scheduler checks, before executing
an actor, if it can fire, depending on the availability of tokens on inputs and the
availability of rooms on outputs. If the actor can fire, it is executed (these two
steps refers to the enabling function and the invoking function of [58]). If the actor
cannot fire, the scheduler simply tests the next actor to fire (sorted following an
appropriate given strategy) and so on. This code generator based on this concept [70]
is available at [55]. Such a compiler presents a scheduler that has the two following
characteristics: (1) actor firings are checked at run-time (the dataflow model is
not scheduled statically), (2) the scheduler executes actors following a round-robin
strategy (actors are sorted a priori).

In the case of the standard RVC MPEG-4 SP dataflow model such a generated
mono-thread implementation is about four times faster than the one obtainable
by [66]. Table 2 shows that synthesized C-software is faster than the simulated
CAL dataflow program (80 frames/s instead of 0.15 frames/s), and twice the real-
time decoding for a QCIF format (25 frames/s). However it remains slower than the
automatically synthesized hardware description by Cal2HDL [41].

As described above, the MPEG-4 Simple Profile dataflow program is composed
of 61 actor instantiations in the flattened dataflow program. The flattened network
becomes a C file that currently contains a round robin scheduler for the actor
scheduling and FIFOs connections between actors. Each actor becomes a C file
containing all its action/processing with its overall action scheduling/control. Its
number of SLOC is shown in Table 3. All of the generated files are successfully
compiled by gcc. For instance, the “ParserHeader” actor inside the “Parser” network
is the most complex actor with multiple actions. The translated C-file (with actions
and state variables) includes 2062 SLOC for both actions and action scheduling.
The original CAL file contains 962 lines of codes as a comparison.

A comparison of the CAL description (Table4) shows that the MPEG-4 AVC
CAL decoder is twice more complex in RVC-CAL than the MPEG-4 Simple Profile
CAL description. Some parts of the model have already been redesign in order to
improve pipelining and parallelism between actors. A simulation of the MPEG-4
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Table 4 Code size and. MPEG-4 AVC decoder | CAL | C actors | C scheduler
number of files automatically -
Number of files 43 83 1

generated for MPEG-4 AVC
decoder Code size (kSLOC) 5.8 |44 0.9

AVC CAL model on a Intel Core 2 Duo @ 2.5 GHz is more than 2.5 slower than the
RVC MPEG-4 Simple Profile description.

Comparing to the MPEG-4 Simple Profile CAL model, the MPEG-4 AVC
decoder has been modeled to use more CAL possibility (for instance processing
of several tokens in one firing) while staying fully RVC conformant. Thanks to
this increasing complexity, MPEG-4 AVC CAL model is the most reliable way to
test the accordance and the efficiency of the current RVC tools. The current SW
code generation of MPEG-4 AVC is promising since it can achieve up to 53 fps
and can be further partitioned over more processors for the instantiation of parallel
implementations.

5.5 Integrated Design Flows Including Design Exploration
and Full SW/HW Synthesis Capabilities

Orcc is also available as an Eclipse-based Integrated Development Environment
(IDE) integrated with several other tools providing design exploration capabili-
ties and extended synthesis functionality for SW and HW component, including
the synthesis support of the SW/HW interconnections for some heterogeneous
platforms. The environment is composed of two editors dedicated to handle both
actor programming and network designs. A graphical editor enables the building
of the actor network using visual programming graphical primitives. The editor
also supports hierarchical representations, assigning whole subnetworks to graph
nodes, and enabling hierarchical navigation. When the dataflow network is built,
a full-blown RVC-CAL editor with advanced features, syntax coloring, content
assist and code validation, supports the development of the actors. The development
environment is able to parse the actors and build the intermediate representation
on-the-fly, in a incremental fashion, allowing fast simulation and compilation. In
addition to the editors functionality, Orcc provides a complete Java-based simulator
which enable the test and validation of the dataflow program without taking in
consideration low-level details relative to the target platform, but focusing only the
correctness of the algorithm specification. The simulator does not simply interpret
the intermediate representation of networks and actors, but it also performs all
interactions required to perform a full functional validation, such as displaying
text, images or videos to the screen. Orcc includes back-ends that generates
C/C++ programs supporting many and multi-core processor platforms. The Orcc
compilation framework is also completed by several other tools for performance
analysis, design space exploration and HW generation and optimization constituting
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a complete system design environment for heterogeneous systems. A graphic
representation of the system design flow is provided in Fig.26. In the picture the
functionality of the design flow are labelled with their dependencies and mapped
into the corresponding tool environment. Whereas Orcc provides dataflow program
development functionalities and simulation capabilities (top section of the design
flow) and SW generation (right bottom part of the flow) Turnus provides a design
space environment integrated as Plug-in of the Orcc Eclipse environment and
Xronos an HDL synthesis tool (left bottom part of the design flow). Both Turnus
and Xronos of are available as open source tools at [60, 61].

5.5.1 Turnus Design Exploration Framework

The first step of the design space exploration provided by TURNUS is a functional
high-level and platform-independent profiled simulation [14, 62]. During this stage,
an analysis of the design under study can be performed leading to the identifi-
cation of the processing structure and associated complexity. This initial analysis
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is useful for finding complexity bottlenecks and identify potential parallelism.
Two approaches to profiling are supported by TURNUS. An abstract profiling
of operators is provided by adding profiling information on top of the Orcc
simulator: for each executed action both (a) the computational load and (b) the data-
transfers and storage load are evaluated, thus the computational load is measured
in terms of executed operators and control statements (i.e. comparison, logical,
arithmetic and data movement instructions). The data-transfers and storage load
are evaluated in terms of state variables utilization, input/output port utilization,
buffers utilization and tokens production/consumption. A second profiling approach
is based on extracting the causation trace of a run of the simulation corresponding
to a given input data vector. Then the causation trace is annotated by adding
the profiling information corresponding to each action execution and data token
exchange obtained by a single execution on a specific platform. By analyzing the
annotated causation trace is then possible to efficiently explore the design space
in terms of looking for close-to-optimal partitioning configurations, buffer dimen-
sion specifications and scheduling strategies. More details of the methodologies
supported by TURNUS framework for jointly exploring the partitioning, buffer
dimensioning and scheduling configurations can be found in [17, 52, 71, 72]. In
these work it is shown how important is a joint exploration of the design space for
maximizing the performance of the RVC HEVC decoder. Close-to-optimal results
are systematically obtained by the exploration tools supported by TURNUS for
several different implementation configurations on many-core platforms.

5.5.2 Xronos System Design Synthesis Framework

Xronos although based on the XLIM backend of the Orcc compiler is a complete
new framework for generating RTL descriptions from RVC-CAL dataflow pro-
grams. Xronos is based on two tools: the Orcc compiler used as front-end and the
OpenForge synthesizer which constitute an integral part of Xronos. Orcc parses
the RVC-CAL actors and generates an intermediate representation, then the IR is
serialized to an actor object that contains all the information originally present in the
RVC-CAL file. Then a set of interfaces can generate different LIM objects which
are transformed by the following set of transformation:

¢ Read/Store Once: the number of load and stores is minimized, so that a read and
store operation can be done at best only once in a block of sequential instructions.

¢ Function Inliner: all functions are automatically inlined.

e SSA: a single static assignment is provided to each variable.

* 3AC: each operation is transformed into a 4-tuple of (operator, operandl,
operand2, result).

* Cast Adder: the necessary casting is provided to each operation.

* Repeat Pattern: the transformation supporting the CAL repeat statement is
provided
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e Input/Output port Statement Finder: the creation of the dataflow representa-
tion binding input and outputs of loop and branches statements.

Finally the final design object is generated by allocating the necessary memory and
creating a slave LIM task visiting all actions of the actor, and by generating the
master task, the scheduler of the actors, and all the actions firing rules and the
actors finite state machine if actors have any. Relying on the Orcc intermediate
representation and associated compiler, it is also possible to generate C code, thus
it is possible to simulate and debug the RVC-CAL dataflow program by saving
all tokens that are consumed and produced by each actor. Thus, Xronos for each
synthesized actor generates a RTL testbench that takes as inputs the token traces,
and if a difference is found on a synthesized actor output the framework stops
the behavioural RTL simulation and indicates to the designer where an error has
occurred. More details and functionality of the synthesis framework can be found
in[1, 4, 18, 63, 65].

5.6 The TYCHO Framework

A more recent tool infrastructure supporting CAL and RVC-CAL is the TYCHO
framework [16].> Its distinguishing characteristic is that it is built on actor
machines [39, 40], an abstract machine model for representing and manipulating
actors which serves as the internal representation for actors in TYCHO. As a
consequence, TYCHO can support different input formats (currently CAL, RVC-
CAL and the process extension discussed in Sect. 4.2.4), which can be freely mixed
and matched within a dataflow program. Optimizations, transformations, and code
generation operate exclusively on the internal representation and thus work equally
regardless of the particular input language.

Among the optimizations relevant to software synthesis TYCHO supports a
family of reductions, which transform non-deterministic actor machines into deter-
ministic and sequential ones by scheduling the logical steps required to execute
a single actor at compile time, which can be seen as a first step toward code
generation. It also includes composition, the integration of several (usually con-
nected) actors into a single actor, often involving compile-time scheduling of the
concurrent activities among them based on their data dependencies. Composition
is fully general and makes no assumptions regarding the nature of the composed
actors, although it produces best results when the data dependencies between them
are very regular, in the limit leading to a fully static schedule of the composed
actors. TYCHO’s composition represents a generalization of previous efforts at actor
merging or static scheduling (e.g. in [10-13, 24-26, 31, 47]), which only apply to a
limited class of dataflow actors.

Zhttp://tycho.cs.th.se.
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6 Conclusion

This chapter describes the essential components of the ISO/IEC MPEG Reconfig-
urable Video Coding framework based on the dataflow concept. The RVC MPEG
tool library, that covers in modular form video compression and 3-D graphics
compression algorithms from the different MPEG coding standards, shows that
dataflow programming is an appropriate way to build complex heterogeneous
systems from high level system specifications. The MPEG RVC framework is
also supported by simulators, software and hardware code synthesis tools and
full integrated frameworks including full systems synthesis and design exploration
capabilities. CAL dataflow models used by the MPEG RVC standard result also
particularly efficient for specifying many classes of signal processing systems
in a very synthetic form compared to classical imperative languages. Moreover,
CAL model libraries can be developed in the form of libraries of proprietary
implementations of standard RVC components to describe architectural features of
the desired implementation platform, thus enabling the RVC implementer/designer
to work at level of abstraction comparable to the one of the RVC video coding
algorithms. Hardware and software code generators then provide the low level
system implementation of the actors and associated network of actors for different
and possibly heterogeneous target implementation platforms including multi-core
and many-core processors and programmable hardware (FPGA).
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Markku Renfors, Markku Juntti, and Mikko Valkama

Abstract The data rates as well as quality of service (QoS) requirements for
rich user experience in wireless communication services are continuously growing.
While consuming a major portion of the energy needed by wireless devices, the
wireless transceivers have a key role in guaranteeing the needed data rates with
high bandwidth efficiency. The cost of wireless devices also heavily depends on the
transmitter and receiver technologies. In this chapter, we concentrate on the problem
of transmitting information sequences efficiently through a wireless channel and
performing reception such that it can be implemented with state of the art signal
processing tools. The operations of the wireless devices can be divided to RF
and baseband (BB) processing. Our emphasis is to cover the BB part, including
the coding, modulation, and waveform generation functions, which are mostly
using the tools and techniques from digital signal processing. But we also look
at the overall transceiver from the RF system point of view, covering issues like
frequency translations and channelization filtering, as well as emerging techniques
for mitigating the inevitable imperfections of the analog RF circuitry through
advanced digital signal processing methods.

1 Introduction and System Overview

The data rates as well as quality of service (QoS) requirements for rich user
experience in wireless communication services are continuously growing. More
and more devices will be connected to the global ubiquitous information network.
According to Cisco’s prediction, the volume of mobile data traffic will expand
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seven times over the next 4 years, reaching nearly 12 billion mobile devices
and generating 49 exabytes of mobile traffic by 2021 [39]. The diversity of the
devices and services will increase. While the demand of high data rates to provide
multimedia services, like video transmission, is increasing, the demand of low rate
sensor information to enable location and context awareness of the services is also
increasing. While the 4th generation (4G) LTE network, supporting mainly mobile
broadband communications, has been widely deployed, the on-going 5th generation
(5G) wireless cellular system development aims to create a multi-service network
supporting a wide range of services with different requirements regarding data rate,
latency, and reliability. These services include enhanced mobile broadband (eMBB)
targeting at Gbps peak data rates, massive machine-type communications (mMTC)
closely related to the Internet-of-things (IoT) concept, and ultra reliable low-latency
communications (URLLC) needed, e.g., in the contexts of smart traffic, remote
control of vehicles and industrial processes, and so-called tactile communications
[150].

To enable the cost, energy and bandwidth efficient realization of the vision, the
transceiver and technology need to make major leaps. One of the key concerns
is the overall power and energy consumption of the devices and the whole
network infrastructure. The energy efficiency is major issue from battery and device
operation perspective, but also relates to the sustainable development when the
complete system is concerned. Therefore, in addition to more conventional target
of bandwidth efficiency and increasing the data rates, also the power and energy
efficiency of the evolving wireless systems is of major concern. The goal of this
chapter is to introduce the key aspects of the baseband (BB) and radio frequency
(RF) signal processing chains of wireless transmitters and receivers. Our emphasis
is on cellular type systems, but many of the principles can be applied in various
short range, wireless local area networks and other wireless applications.

The higher layers of the communication protocol stack of the Open System
Interconnect (OSI) model have conventionally been designed separate from the
physical layer. However, the current wireless systems are introducing more and
more crosslayer design and optimization. As an example, the evolving cellular
Third Generation (3G) Long Term Evolution (LTE) systems use so called channel
aware user scheduling and radio resource management (RRM) techniques. The
applied methodology capitalizes on signal processing tools and uses to some extent
similar approach as the physical layer signal processing. However, we do not cover
those either, but they are definitely important currently evolving fields of research
and development. Signal processing tools are applied in wireless devices also in
multimedia and application processing, data compression, etc. However, we do not
cover those aspects, but concentrate on the connectivity related problems on the
physical layer.

The typical transmitter (TX) and receiver (RX) functionalities are summarized
in Fig. 1. Starting with the first block in the TX chain, information is coded using
forward error control (FEC) coding with interleaving. The purpose of this is to
protect the information from errors. Data modulation transforms the information bit
sequence into a complex multi-level symbol sequence with reduced sample rate and
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Fig. 1 Simplified wireless transceiver processing chain: (a) transmitter, (b) receiver

bandwidth. The waveform generation block creates discrete-time baseband signal
with specific spectral and time-domain characteristics suitable for transmission
in the used frequency band and radio propagation environment. The fundamental
classes of waveforms include linear and FSK-type single-carrier transmission,
multicarrier transmission, as well as spread-spectrum techniques. Multiplexing and
multiple-access functionalities are also closely related with waveform generation.
Finally, the generated waveform is upconverted to the used RF channel and
amplified to desired transmission power level. Depending on the used transmitter
architecture, the upconversion can be done in multiple steps, using intermediate
frequency (IF) processing stages along the way. Also, the upconversion process
may be carried out at least partially in the DSP domain. In general, digital-to-
analog (D/A) converter, which acts as the interface between digital and analog
front-ends, is gradually moving towards the antenna. The receiver side processing
in Fig. 1b performs the opposite operations to recover the original information
sequence with as little errors as possible while keeping the processing latency and
energy consumption feasible.

This chapter is organized as follows. Section 2 introduces the concepts for
coding, interleaving and modulation as well as their receiver counterparts. Because
receiver processing in general and equalization in particular is the more demanding
task, the emphasis is on that side of the problem. One of the main capacity boosters
at the physical layer is the use of multiple antennas both/either in a transmitter and/or
in a receiver or so called multiple-input multiple-output (MIMO) communications;
it is considered as a key example in the receiver processing. Section 3 focuses on
the waveform generation and its inverse operations and it has special emphasis
on multicarrier techniques which have been adopted in most of the recent and
emerging broadband wireless system standards. Also the timely topic of spectrum
agility, facilitating effective fragmented spectrum use, is addressed. The generation
of the actual transmitted signal, using both digital signal processing and analog RF
processing, is treated in Sect.4. Because RF parts are usually the most expensive
and power hungry components of a wireless device, it often makes sense to use BB
processing to compensate for RF non-idealities; this is also a major topic in that
section. Finally, conclusions and some further topics are discussed in Sect. 5
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Fig. 2 Symbol rate system for coding, modulation, demodulation, equalization and decoding

2 Equalization and MIMO Processing

This section focuses on the demodulation and decoding block of Fig. 1, which
belongs to the most computation-intensive parts of the receiver baseband processing.
We also consider the channel equalization as part of this problem. The model is
simplified such that all our processing is performed on symbol rate, while the
subsequent blocks of Fig. 1 perform all the higher sampling rate operations needed
in radio transmission and reception. The simplified system model is depicted in
Fig.2. In other words, we focus on coding and modulation in the transmitter side
and their counterpart operations in the receive end. In addition, the channel impulse
response needs to be estimated, and that is considered as well.

2.1 System Model

We consider transmission of a binary information stream or data packet via bit inter-
leaved coded modulation (BICM). The information sequence is first FEC encoded
by some appropriate coding method, like block, convolutional or concatenated
coding [22, 126, 148]. Parallel concatenated convolutional (PCC) or so called turbo
codes [24] are among the most commonly applied codes currently. They have been
adopted to 3G and LTE cellular systems, amongst others. Other popular codes
include low-density parity check (LDPC) codes [61]. As shown in Fig. 2, the coded
information is interleaved and modulated. The purpose of interleaving is to protect
the data from bursty errors due to fading of the wireless channel. It re-organizes
the order in which encoded bits are transmitted so that the consequent bits are
uncorrelated. This maintains the error correction capability of the code [22, 66, 126].
Several interleaver designs exist, but we do not discuss that further. We assume any
interleaving with sufficient length compared to the channel coherence time.
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Multiple-input-multiple-output radio channel, i.e., multiple transmit and receive
antennas [27, 66, 165] is considered. The MIMO technology can be used to boost
both/either the performance (error rate) and/or data rate of a single link as well as
the whole system by applying multiuser MIMO processing. We assume that the
channel is frequency-flat so that no inter-symbol interference (ISI) is generated.
This can be achieved, e.g., by orthogonal frequency division multiplexing (OFDM),
which is commonly used in current wireless systems like in the downlink 3GPP
Long Term Evolution (LTE) and its Advanced version (LTE-A) [45], wireless local
loops (WLAN) 802.11a/g/n, and Worldwide Interoperability for Microwave Access
(WiMAX). If ISI is generated, an equalizer is needed as is discussed later in this
chapter. The channelization and different multiplexing schemes are covered in more
detail in Sect. 3. Perfect time and frequency synchronization is assumed.

A MIMO transmission system with N TX and M RX antennas, where N < M,
is considered. This assumption is used to guarantee unique detectability of the data.
We assume a linear quadrature amplitude modulation (QAM). The received signal
can be described with the equation

y =HPx+7, ey

where x € QY is the vector of transmitted data symbols, 2 C C is a discrete set of
modulation symbols, § € C¥ is a vector containing identically distributed circularly
symmetric complex Gaussian noise samples with variance o2, H € CM*V is the
channel matrix containing complex Gaussian fading coefficients, and P € CV*V is
the pre-coding matrix. In other words, the element at the mth row and nth column of
H is the complex channel coefficient between TX antenna n and RX antenna m. The
pre-coding matrix can be used for beamforming to improve the system performance
in case some degree of channel knowledge is available at the transmitter. That can
be achieved by some feedback mechanism or assuming reciprocal reverse channel,
which may be the case in time-division duplex (TDD) systems, for example.

The modulated symbols, i.e., the entries of x are drawn from a complex QAM
constellation € with size || = 29, where Q is the number of encoded bits
per symbol. For example, the 16-QAM constellation would be 2 = {(£3 %+
73), (£3£7)), (£1£53), (£1=£)}, where j> = —1. The modulation mapping from
consequent encoded and interleaved bits is typically performed by Gray mapping
[126, Sect. 4.3]. We denote the bijective mapping function by v such that the
binary encoded bit vector b, € {—1, +1}€ is mapped to symbol x, = ¥ (b) or
x = ¥ (b), where b = [b], b], ..., bL1T € {—1, +1}9V. The coded bit sequence
b has been obtained from the original information bit sequence via FEC encoding,
whose operation depends on the applied coding scheme.

The model presented herein is a MIMO system in a frequency-flat channel with
no ISI. However, the mathematical formulation can be relatively straightforwardly
generalized to cover also multipath propagation and ISI. The receiver principles
and the solutions proposed below are also applicable to a large extent for such a
model. The equalizer principles developed for ISI channels have been a source of
inspiration also for the MIMO problem and from mathematical perspective they are
equivalent to a large extent.
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The model above covers several MIMO configurations. It can incorporate space-
time coding or transmit diversity schemes, which usually aim at increasing the
diversity gain or robustness to fading [27, 66, 165]. They can similarly include
spatial multiplexing (SM), wherein the key target is to increase the data rate of
the transmission. From receiver signal processing perspective, which is the key
topic of this chapter and best aligned on the scope of this handbook, the SM is
conceptually the simplest yet very challenging. Therefore, we focus on that in most
of the discussion.

SM can apply different so called layering solutions. A layer refers to a coded
data stream which can be multiplexed to transmit antennas using different schemes.
In horizontal layering, each stream is transmitted from different antenna, which
makes the spatial separation of the streams somewhat more straightforward. Vertical
layering multiplexes each stream to all transmit antennas, which enables achieving
spatial diversity amongst encoded bits, but complicates the receiver processing.

In the forthcoming discussion on the receiver design in Sects. 2.2-2.4, we assume
for the simplicity of notation that P = Iy (where Iy is a N x N identity matrix),
i.e., no pre-coding without loss of generality. If pre-coding is applied, we just need
to replace H by HP in the discussion below.

2.2 Optimum Detector and Decoding

The ultimate target of the receiver processing is to reproduce the true transmitted
information bit sequence at the FEC decoder output. This is of course usually
not perfectly possible, because of the random noise, fading, interference and other
sources of distortion in the radio channel and in the communication equipment.
Therefore, a pragmatic optimum receiver would minimize the probability of decod-
ing errors given the received observation y in (1). Such an approach would lead
to jointly optimum decoding, demodulation and equalization, which is practically
too complex to be realized [109]. This is the reason, why practical receivers are
partitioned as shown in Figs. 1b and 2. Therein the equalizer and demodulator
process the received signal y to provide an estimate of the coded bit sequence b
in a form applicable for the FEC decoder, which then provides the final estimate of
the information bit sequence.

If there were no FEC coding, the optimum detector would simply make a hard
decision by finding the most likely transmitted data symbol vector x given the
observed received signal y, or Xmap = argmin, v p(x]y), where p(x|y) denotes
the conditional probability density (or mass) function (PDF) (depending on the
context). We also assume herein that the channel matrix H is perfectly known. In the
receiver context p(x|y) is usually called as the a posteriori probability (APP), and
the optimum detector is the maximum APP (MAP) receiver, which minimizes the
average probability of symbol sequence decision error; the same principle has also
been called maximum likelihood sequence estimation (MLSE) in the ISI channel

context [126]. By Bayes rule p(x|y) = p(x,y)/p(y) = p(y, x)p(x)/p(y). Thus, if
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there is no a priori information or all the possible modulation symbols are equally
likely, the maximization in the MAP sequence detector reduces to the maximum
likelihood (ML) sequence detector Xpmr, = argmin,cov p(y|X). In the Gaussian
channel with known channel realization, p(y|x) is the Gaussian PDF the ML
detection reduces to finding the constellation points with the minimum Euclidean
distance (ED) to the received signal vector y, or

Ry = arg min ||y — Hx]|*. 2)
xeQN

The FEC decoding is assumed to be a soft-input soft-output (SfISfO) decoder
[148], which is the practically pervasive choice in current wireless devices. This
means that the decoder needs probability information about the coded bits to be
able to calculate the corresponding most likely information bit sequence. This is
usually represented as by log-likelihood ratio (LLR) value of the kth element of
b as

. Pr(be = 1Jy)
Lp(bily) = lnpr(bk =0ly) :

= In(p(ylbx = 1)) — In(p(y|bx = 0)).
If the interleaver is sufficiently long, the consequent bits become (approximately)

independent of each other. In that case, the logarithm of the APP above become by
the Bayes rule [77, 90]

Dbl EXP(A (b, by, 1a iy, H))

Lp(bkly) = La(b) +In Syet,, exp(AGh, by, L rly. H))’ )
where
Latb) = h‘:EZZ - 8 5)
is a priori information or LLR,
1 2, Loy
(A (b, bk, 1a,1kly, H)) = g2 lly — Hx||” + zb[k]lA,[k], (6)

by € {—1, ~|—1}QN—l consists of all the elements of b excluding the kth one, 14 [t
is a vector of L for all bits in by, and Ly g = {b € {—1, +1}¢V|b; = B}. The
expression in (6) follows from the fact that (y|b, H) in (1) is Gaussian. Therefore,
the LLR is related to the Euclidean distance metric.

The above expression is in general complex to evaluate, because the number of
elements in the summation (4) is exponential in the number of spatial channels (or
the number of TX antennas N) and the number of bits per symbol Q. This also
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implies a polynomial complexity in terms of the size of the modulation alphabet.
In other words, the search of the maximum APP performed by the MAP receiver
is exponentially complex. Therefore, approximations are usually needed, and those
will be discussed in more detail below in Sect.2.3. Equivalent problem has been
classically considered in the context of equalizers for ISI channels [59, 126]. The
idea in those is to limit the search space, while still achieving reasonably good
performance.

In practical receivers, also the LLR computation is usually approximated in
addition to reducing the search space. A typical approximation is to use a small
look-up table and the Jacobian logarithm

jacln(ay, a) == In(e™ + ¢™) = max(ay, az) + In(1 4+ e~ 141721y, (7

The Jacobian logarithm in (7) can be computed without the logarithm or exponential
functions by storing r(|a; — a2|) in a look-up table, where r (-) is a refinement of the
approximation max(ay, az) [77].

2.3 Suboptimal Equalization

The suboptimal detector or equalizer principles are similar to those applied earlier in
ISI channels [126] or in multiuser detection to mitigate multiple-access interference
(MAI) [83, 177]. Among the simplest approaches is to process the received
signal (1) linearly, i.e., apply linear equalizer. It can be represented as multiplying y
by an equalizer represented as a matrix W so that the equalizer output is

YEg = Wy = WHx + Wy. (8)

The simplest choice for the equalizer would be the complex conjugate transpose of
the channel realization, i.e., W = H", where (-)H denotes the complex conjugate
transpose. This corresponds to the channel matched filter (MF) maximizing the
signal-to-noise ratio (SNR) of each of the spatial channels with no consideration
on the spatial multiplexing interference (SMI) often present in MIMO systems; in
spread spectrum or code-division multiple access (CDMA), this would be called
the rake receiver or conventional MF detector. The equalizer perfectly removing all
the SMI is the zero-forcing (ZF) one or W = (HHH)_IHH, which is the pseudo-
inverse of the channel realization yielding the linear least squares estimate of the
transmitted symbol vector x. It completely removes all the SMI, but it has the
commonly known drawback of noise enhancement. In other words, it can be seen as
maximizing signal-to-interference ratio (SIR) with no consideration on the noise; in
the CDMA context this is often called as decorrelator. Finally, the linear minimum
mean square error (LMMSE) equalizer

W = BH"H + o°1,) " 'H" )
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makes a controlled compromise by jointly minimizing the impact of both noise
and SMI or ISI. For the Wiener filter or the actual LMMSE equalizer B = I, but
its output is in general biased, because its expected output is a scaled version of
x, not x itself. The bias can be removed by the choice B = diag[diag((H"H +
o021 M)’lHH)’l]. In that case, the mth diagonal element of B becomes [40] B,,;,,n =
(pm + 1)/ pm, where the signal-to-interference-plus-noise ratio (SINR) per stream is

1
= ~ 1. 10
Pm = G2 (MY + 02L) 1o

This scaled version of the LMMSE equalizer maximizes the SINR with some
penalty in mean square error (MSE) [73, 165].

Calculating the soft output for the FEC decoder from the linear equalizer output
requires some further attention. Because linear processing maintains sufficient
statistics, the optimum MAP detection would remain equally complex as above.
However, there are reasonably good simplified approximations of the LLR for
BICM. One efficient method has been presented in [40]. It reduces complexity
and latency with only a minor impact on performance. Instead of calculating the
Euclidean distance between the LMMSE equalizer output and all the possible trans-
mitted symbols, Gray labeling of the signal points is exploited therein. The LLR
bit-metric L (b% lyeg, W) for bit b% (where £ is an integer) can be approximated as
,okE(bg, YEQ), Where

E(b*,ypg) = min |ypox — %[> — min |ypox — Fl%, (11)
ikexgvé ikex}cf

where k = [£/Q] + 1, X = {x; : b5 = i} is the subset of hypersymbols {x} for
which the £th bit of label b is i. & (b%,y E@) can be simplified by considering yg g «
in only one quadrature dimension given by & [40].

Decision-feedback equalization (DFE) is a classic alternative to linear processing
to improve the performance both under ISI or MAI One version is based on
successive interference cancellation (SIC) and linear MMSE equalization. It was
proposed in the early MIMO communication proposals known as Bell Labs layered
space-time (BLAST) scheme [182]. It is best applicable for horizontally layered
spatial multiplexing, because then the layers align on physical channels transmitted
from a transmit antenna. The received layers are ordered with respect to their SNR
or received power level. The strongest signal is detected and decoded first so that
the SMI it suffers from the weaker ones is suppressed by a linear equalizer, which
is typically based on MMSE or maximum SINR (9) criterion. The interference it
causes to the other streams is estimated based on the decoded data and subtracted
from them. Then the second strongest signal is similarly detected, decoded and
canceled from the remaining signals and so on. This also is called successive nulling
and interference cancellation. The decoding requires deinterleaving, which imposes
latency to the processing.
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The weight matrix is calculated with the LMMSE rule as in (9). The layer for
detection is chosen according to the post-detection SINR and the corresponding
nulling vector is chosen from the weight matrix W [182]. All the weight matrices
in an OFDM symbol are calculated and the layer to be detected is chosen according
to the average over all the subcarriers. After the first iteration, the canceled symbol
expectation is used to update the weight matrix. The weight matrix for the second
layer to be canceled is calculated as

W = (E{x}E{x}*h¢h! + Hy (1 — (E{(x}E{x})HY + 6°13)) " 'hll, (12)

where hy is the kth vector from matrix H, k is the layer to be detected, Hy is matrix
H with the vectors from previously detected layers removed and E{x} is the symbol
expectation.

The detected layer is decoded and symbol expectations from the soft decoder
outputs can be calculated as [167]

0
1
Efx} = (,)? 3 [T+ bistanh(La0i)/2), (13)

x e i=l1

where L4(b;) are the LLRs of coded bits corresponding to x and b;; are bits
corresponding to constellation point x;. The expectation calculation in (13) can be
simplified to the form

E{x}re = sgn(La(bi))S|tanh(L A (bi42))I. (14)

The constellation point S is chosen from {1,3,5,7} depending on the signs of
La(biy1) and La(b;y2).

In addition to the linear and decision-feedback based equalization, there are also
several other suboptimal equalizers, e.g., based on various tree-search approaches.
One of the most popular ones is the concept of sphere detector (SD). Another closely
related one is a selective spanning with fast enumeration (SSFE) [98]. In the case of
transmission with no FEC coding, a SD calculates the ML solution by taking into
account only the lattice points that are inside a sphere of a given radius [46, 58].
The SDs take into account only the constellation points that are inside a sphere of a
given radius, or

lly — Hx||* < Cy. (15)

After QR decomposition (QRD) of the channel matrix H in (15), it can be
rewritten as

lly’ — Rx||* < ¢y, (16)
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where C}, = Co — ||(Q)Hy|%, y' = Q"'y, R € CV*¥ is an upper triangular matrix
with positive diagonal elements, Q € CY*N and Q' € CM*M=N) are orthogonal
matrices.

The squared partial Euclidean distance (PED) of va , 1.e., the square of the
distance between the partial candidate symbol vector and the partial received vector,
can be calculated as

2

N N
Ay =" |y; =Y rjl (17)
j=i I=j
wherei = N...,1and xﬁv denotes the last N — i 4+ 1 components of vector x [46].

In the presence of FEC coding, the SD must be modified to provide an
appropriate soft output to approximate the MAP detector. A list sphere detector
(LSD) [77] is capable of doing that by providing a list L of candidates and their
APP or LLR values of the coded bits in b to the FEC decoder. There are different
strategies to perform the search of the potential candidates. Most of them have
been originally proposed for the conventional sphere detector and then subsequently
generalized for the LSD version. The breadth-first tree search based K-best LSD
algorithm [67, 148, 183] is a variant of the well known M algorithm [9, 81]. It keeps
the K nodes which have the smallest accumulated Euclidean distances at each level.
If the PED is larger than the squared sphere radius Cy, the corresponding node will
not be expanded. We assume no sphere constraint or Coy = oo, but set the value for K
instead, as is common with the K -best algorithms. The depth-first [154] and metric-
first [119] sphere detectors have a closer to optimal search strategy and achieve a
lower bit error rate than the breadth-first detector. However, the K-best LSD has
received significant attention, because it can be easily pipelined and parallelized
and provides a fixed detection rate. The breadth-first K-best LSD can also be more
easily implemented and provide the high and constant detection rates required in
the LTE.

In the discussion above, we have assumed mostly one-pass type receiver process-
ing. In other words, equalization/detection and channel estimation are performed
first. The detector soft output is then forwarded to the FEC decoder where the final
data decisions are made. However, the performance can be enhanced by iterative
information processing based on so called turbo principle [1, 2, 69], originating from
the concept of parallel (or serial) concatenated convolutional codes often known
as turbo codes [24, 25, 148]. This means that the feedback from FEC decoder to
the equalizer as shown in Fig.2 is applied. Therein, the decoder output extrinsic
LLR value is used as a priori LLR value in the second equalization iteration
[188]. This typically improves the performance at the cost of increased latency
and complexity [90]. Because the decoder is also usually iterative, the arrangement
results in multiple iterations, i.e., local iterations within the (turbo type) decoder
and global iterations between the equalizer and decoder. The useful number of
iterations is usually determined by computer simulations or semianalytical study
of the iteration performance.
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2.4 Channel Estimation

The discussion above assumes that the channel realization or the matrix H is
perfectly known, which is the basic assumption in coherent receivers. Therefore,
channel estimation needs to be performed. This is usually based on transmitting
reference or pilot symbols known by the receiver [34]. By removing their impact, the
received signal reduces to the unknown channel realization and additive Gaussian
noise. Classical or Bayesian estimation framework [86, 147] can be then applied
to estimate the channel realization. The channel time and frequency selectivity and
other propagation phenomena need to be appropriately modeled to create a real-
istic channel model and corresponding estimation framework [123]. If orthogonal
frequency-division multiplexing (OFDM) [70] is assumed, the frequency-selectivity
of the channel can be handled very efficiently. This is a benefit from the equalizer
complexity perspective.

It should be noted here that the assumption of no pre-coding makes channel
estimation different to the case with pre-coding. Pre-coding optimization is typically
based on the channel state, and in that sense to the channel estimate. Therefore, there
are two options to deal with this case. The channel estimate is usually based on pilot
or reference signals, which may either be similarly precoded as the data symbols or
not precoded.

The system model for the channel estimation for an OFDM based MIMO
transmission system is defined below. The received signal vector y(n) on the m gth
receive antenna at discrete time index n after the discrete Fourier transform (DFT)
can be described as

Yy, ) = X()Fhy o (1) + Wi (), (18)

where X = [X1,...,Xy] € CP*PN is the transmitted signal over P subcarriers,
Wn, € CP I contains identically distributed complex white Gaussian noise, F
isa NP x NL matrix from the DFT matrix with [F],; = 1Pe’127””/P, u =

0,...,P—1,5s =0,...,L — 1, L is the length of the channel impulse response
and h,, , is the time domain channel vector. X,,,, € C*¥ is a diagonal matrix with
entries from a complex quadrature amplitude modulation (QAM) constellation €2
and |Q2| = 22 where Q is the number of bits per symbol and mr =1, ..., N and
mpr = 1, P M.

The reference signal or pilot symbol positions in 3GPP Long Term Evolution
(LTE) resource blocks are illustrated in Fig.3. [62]. A downlink slot consist of 7
OFDM symbols and reference signals are transmitted in the first, second and fifth
OFDM symbols of every slot. The reference signal positions for each antenna port
are indicated in the figure, while nothing is transmitted on the other antenna ports
when a reference signal is transmitted on one antenna port. The pilot overhead, in
terms of the portion of data symbols in time or frequency used for training, is in the
2 x 2 MIMO roughly 9.5% and in the 4 x 4 MIMO about 14%. With 8§ x 8 MIMO
the pilot overhead could be close to 30% [15].



Signal Processing for Wireless Transceivers 263

113 0 112 0 IE‘ Antenna port 0
Antenna port 1
0]2 1 0]3 1 Antenna port 2

113 0 112 0
012 1 03 1
Even slots 0Odd slots

Fig. 3 Pilot symbol spacing in LTE standard for 4 x 4 MIMO channel [91]. The figure shows two
resource blocks, each consisting of seven QAM symbols (horizontal dimension) in 12 subcarriers
(vertical dimension)

The least-squares (LS) channel estimator based on training symbols is probably
the simplest one to calculate the channel estimates from pilot symbols. The received
symbol vector is often transformed into frequency domain before the LS channel
estimation. The result of the LS estimator, on the other hand, is in time domain in
the formulation below and it has to be transformed into frequency domain for the
detector. The LS estimate of the channel can be calculated as

b () = FIXH )X )F) T FIX )y, ), (19)

where X contains the pilot symbols, which are known by the receiver. Because
of that, the matrix inverse can be pre-computed and stored in a memory. Usually
orthogonal (in time or frequency) training sequences or a diagonal matrix X are
used such that there is no SMI in the channel estimate. The performance of the LS
estimator can be improved by applying the Bayesian philosophy, i.e., by using the
channel statistics to optimize the channel estimation filtering in frequency, spatial
or temporal domain [110].

The reference signals or pilot symbols used in channel estimation are placed
in the OFDM time-frequency grid at certain intervals. The interval may not be
sufficiently short when the user velocity is high and the channel is fast fading.
Furthermore, the pilot overhead increases with the number of MIMO streams. It
becomes problematic already in the 4 x 4 antenna system and is significant (almost
30%) with an 8 x 8 system [15]. Decision directed (DD) channel estimation can be
used to improve the performance or to reduce the pilot overhead. This can also be
based on the same principle as the pilot based LS estimate (19), such that matrix X
now includes the data decisions. However, this increases the complexity, because the
matrix inverse must be computed now in real-time [189]. Typically this is realized
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Fig. 4 Decision-directed channel estimation in MIMO receiver [91]

in the form of iterative receivers. The principle therein is similar to the one in
Sect. 2.3 with the iterative detection—decoding, while now we have in general three
blocks for the global iterations, namely, detection—decoding—channel estimation.
This framework has been analyzed in detail, e.g., in [79, 94, 186, 188]. Several
approaches are based on expectation-maximization (EM) algorithm [48, 108] or
space-alternating generalized EM (SAGE) algorithm [56]. A the resulting receiver
structure is illustrated in Fig. 4.

2.5 Implementations

The MIMO detection and channel estimation algorithms have found practical
deployment in cellular and Wi-Fi WLAN standards, for example. Therefore, several
works on practical receiver implementations and transceiver designs have been
made. The computationally most demanding part of the filter matrix computation
is the matrix inverse or some equivalent operation such as QR decomposition calcu-
lation. Designs for the MIMO detector context can be found, e.g., in [16, 32, 184].
In the sphere detector and other similar tree search algorithms, the search indexing
and sorting are usually the most complex functionalities [31, 117].

Recent implementations include [17, 90, 117, 118, 155-157, 162]. The recent
work by Suikkanen [156, 157] illustrates the trade-off between the receiver energy
efficiency and useful data rate or goodput, which is defined as the minimum of
the detection rate enabled by the receiver hardware and useful throughput of the
communications system [90]. The latter depends on the error rate performance and
the nominal data rate such that the value gives the error free or reliable transmission
rate, practically achieved via hybrid automatic repeat request (HARQ) protocol
with price of introduced latency. The throughput analysis assumed 4G cellular
system or LTE-A standard system assumptions. The detection rate and receiver
power consumption results were based on 28 nm CMOS technology based receiver
baseband designs and the real time detection requirements of 4G cellular systems.
High performance sphere detectors become necessary to achieve highest reliable
throughput, but their energy efficiency in terms of processing energy per transmitted
bit is often not as good as that of the simple linear detectors, which suffer data rate
penalty.



Signal Processing for Wireless Transceivers 265
3 Multicarrier Waveforms

Referring to Fig. 1, this section addresses the waveform generation function on the
transmitter side, as well as the corresponding block on the receiver side.

3.1 Waveform Processing in OFDM Systems

The coding and modulation block produces a sequence of typically QAM modulated
symbols, and the purpose of the waveform generation block is to produce a digital
sample sequence which corresponds to the discrete-time baseband version of the
final RF signal to be transmitted. Likewise, on the receiver side the waveform
processing block receives the corresponding digital sample sequence, but affected
by additive noise and interferences as well as various distortion effects, and produces
a sample sequence corresponding to the QAM modulated symbol sequence at the
coding and modulation block output.

In today’s wireless communication system, various waveforms are utilized
including linear single carrier modulation, i.e., QAM-type symbol sequence with
Nyquist pulse shaping, Gaussian minimum shift keying (GMSK), and various types
of spread-spectrum techniques, including direct sequence (DS) spread-spectrum
with code-division multiple access (CDMA) [22, 165]. However, we focus here
on the celebrated multicarrier transmission technique called orthogonal frequency-
division multiplexing (OFDM) [26, 45, 95, 121, 127, 164, 180], which is the
basis for most of the recent broadband wireless systems, including 802.11 WLAN
family, DVB-T terrestrial TV broadcasting standards, WiMAX, 3GPP-LTE and
LTE-Advanced.

3.1.1 OFDM Principle

A fundamental issue in wireless communications with increasing data rates is
the complexity of the channel equalization. Channel equalization is needed in
practically all wireless communication systems for compensating the effects of the
multipath propagation channel, which appears as frequency dependency (frequency-
selectivity) of the channel response experienced by the transmitted waveform. More
importantly, this effect introduces dispersion to the symbol pulses which appears as
inter-symbol interference (ISI), and eventually as errors in detecting the transmitted
symbol values [22]. Traditional time-domain techniques for channel equalization,
based on adaptive filtering or maximum likelihood sequence detection, would have
prohibitive complexity at the signal bandwidths adopted in many of the recent
communication standards.

As illustrated in Fig. 5, OFDM solves the problem by splitting the high-rate sym-
bol sequence into a high number (N) of lower-rate sequences which are transmitted
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Fig. 5 (a) Basic OFDM transmission chain. (b) Effect of channel frequency selectivity. (c) Effect
of multipath delays not exceeding the channel delay spread in CP-OFDM

in parallel, over a spectrally compact multiplex of orthogonal subchannels. Due to
the increased symbol interval in the subchannels, the effects of channel dispersion
are reduced, and the channel frequency response within each subchannel is, at most,
mildly frequency selective. Furthermore, a cyclic prefix (CP) is commonly inserted
in front of each OFDM symbol. The idea of CP is that it will absorb the variations
in the delays of different multipath components of the channel, preventing ISI if the
length of the CP is at least equal to the maximum delay spread of the channel. In this
case, the effect of the channel can be modeled as a cyclic convolution. Consequently,
the channel effect can be precisely modeled as flat fading at subcarrier level, and can
be compensated by a single complex multiplication for each data symbol modulated
to a subcarrier [45, 127].

In existing specifications, the FFT size of OFDM systems ranges from 64 in
IEEE 802.11a/g WLAN to 32k in DVB-T2 [175]. The subcarrier spacings range,
correspondingly, from 325kHz to 279 Hz. As an important example, 3GPP-LTE
uses 15kHz subcarrier spacing and up to 20 MHz bandwidth, the maximum FFT-
size being 2048 [45].

The practical implementation of OFDM utilizes inverse fast Fourier transform
(IFFT) for multiplexing each block of parallel data symbols. Correspondingly, FFT
is used for demultiplexing the block of complex sample values corresponding to the
data symbols. Orthogonality of the subchannels follows directly from the properties
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of discrete Fourier transform (DFT). In the channel, each data symbols appears as a
square-windowed sinusoid, the frequency of which is determined by the subcarrier
index and amplitude and phase are determined by the transmitted complex symbol
value. Using continuous-time model, the transmitter and receiver OFDM waveform
processing can be formulated as follows.

An OFDM symbol with IFFT size of N and duration of Ty is given by

N—1
x(1) = Z X (k)el7 1 0, T (20)

k=0

where X (k),k =0,..., N — 1, are complex data symbols, typically from a QAM
alphabet,

fe=fo+k-Af 1)
are the subcarrier frequencies and

Af = (22)

is the frequency separation between subcarriers. With this choice, the subcarriers
are orthogonal, i.e.,

T; —
! / ejzﬂflte—jQJTfktdt — 8kl — 1’ k=1 (23)
Ts Jo 0, otherwise

Therefore in the absence of noise and other imperfections, the kth symbol is
demodulated as

1 T X . 1 T N-1 . . . .
/ x(n)e I g = / Z X (/> it =27l gt = X (k). (24)
Ty Jo I Jo 1=

In practical systems, guard-bands are introduced in the OFDM signal spectrum
by modulating zero-valued symbols to the subcarriers close to the band edges.
The requirements of the digital/analog anti-imaging filter, needed at the digital-to-
analog interface, depend essentially on the width of the guard-band. Similarly, the
guard-band width affects also the specifications of the channelization filtering on
the receiver side.

The signal path of an OFDM transmission link, as illustrated in Fig. 5a, includes
on the transmitter side the IFFT for a block of data symbols and copying a number
of IFFT output samples in front of the produced OFDM symbol as a cyclic prefix,
along with the needed buffering and serial-parallel and parallel-serial operations. On
the receiver side, the core functions include extracting a block of N ISI-free samples
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from the baseband sample sequence, FFT, and 1-tap subcarrier-wise equalizers.
Additionally, a channel estimation function, usually based on known subcarrier
symbols (scattered pilots and/or preambles) is needed, as described in Sect.2.4.
Also time and frequency synchronization functionalities are necessary in OFDM,
as in any communication link [127].

3.1.2 Synchronization, Adaptive Modulation and Coding, and Multiple
Access

The coarse time synchronization, i.e., determination of the optimum FFT window
location, is commonly based on the correlation introduced to the signal by the cyclic
prefixes. Residual timing offsets can be estimated using the pilot sequences and
compensated by adjusting the channel equalizer coefficients accordingly. Various
techniques are available in the literature for estimating the coarse frequency offsets,
due to imprecise local oscillators in the transmission link. Fine frequency estimation
can again be carried out using the pilots [45, 127].

Due to the narrow spacing of subcarriers (e.g., 1 kHz in DVB-T and 15kHz in
3GPP-LTE), OFDM systems are quite sensitive to carrier frequency offset, the target
values being at the order of +1% of the subcarrier spacing, or less. This makes
OFDM systems rather sensitive to fast-fading channels, and even to phase noise
of the local oscillators. In general, these effects introduce inter-carrier interference
ICD.

Since OFDM is meant to be used with frequency/time-selective channels,
some of the subcarrier symbols are bound to experience severe attenuation in the
transmission channel, and the corresponding information bits would be lost in
symbol-wise detection. In general, the channel gain for each subcarrier symbol
depends on the instantaneous channel frequency response during the transmission.
On the other hand, the whole OFDM multiplex has usually wide bandwidth
compared to the channel coherence bandwidth, i.e., the channel appears as heavily
frequency selective. While some of the subcarrier symbols are lost, a majority of
them is received with good quality. Using FEC, the average bit-error rate (BER)
or frame error rate (FER) achieves a targeted low value, in spite of some of the
symbols being lost. Thus FEC is an essential element on OFDM systems, helping to
exploit the inherent frequency diversity of the wideband transmission channel, and
sometimes the scheme is referred to as coded OFDM (COFDM) [95].

The different subcarrier symbols in OFDM are transmitted independently of
each other, through orthogonal subchannels. Then it is obvious that a single
OFDM symbol is able to carry multiple users’ data, using so-called orthogonal
frequency division multiple access (OFDMA) [45]. In the downlink direction (from
base-station, BS, to mobile stations, MS) this is quite straightforward. In the
uplink direction, a BS receives a multiplex of subcarriers composed of subcarriers
originating from different transmitters. In order to maintain orthogonality, so-called
quasi-synchronous operation must be established. This means that the MS’s must be
precisely synchronized in frequency (say +1% of subcarrier spacing), and different
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mobiles’ OFDM symbols, as seen at the BS receiver, must be time-aligned in such
a way that the cyclic prefix is able to absorb both the channel delay spread and
relative timing offsets between different MS’s, as illustrated in Fig. 5c. Additionally,
effective power control is needed to avoid excessive differences in the power levels
of the received signals, thus avoiding serious problems due to RF impairments.

The practical OFDMA schemes are dynamic in the sense that variable data rates
can be supported for each user. To achieve this, the BS must send side information to
each MS about the set of subcarrier symbols allocated to each user, both for uplink
and downlink. To keep the amount of side information reasonable, the allocation is
commonly done using a resource block as the basic unit. For example in 3GPP-LTE,
the resource block consists of 12 subcarriers and 7 consecutive symbols (this for the
most commonly used transmission mode; there are also others) [45].

The basic form of OFDM systems uses the same modulation scheme (e.g.,
QPSK, 16QAM, or 64QAM) and code rate for all subcarriers and all OFDM
symbols. The specifications are usually flexible, and allow the configuration of
the system for different tradeoffs between data rate and robustness through the
choice of modulation level and code rate. In broadcast systems, this is the scheme
that has to be followed as it is not possible to tailor the transmission parameters
separately for different users. However, in two-way communication, like cellular
mobile systems and wireless local area networks (WLANS), it is possible to
provide feedback information to the transmitter end about the channel quality and
characteristics. If the transmitter has knowledge of the signal-to-interference-plus-
noise (SINR) of each subcarrier, then the water-filling principle can be used for
determining the optimal modulation level for each subcarrier. In OFDMA, the
feedback information can also be used for allocating resource blocks optimally for
the users based on the instantaneous channel response and quality (including various
interferences) experienced by each user at each specific frequency slot. Furthermore,
the modulation level and code rate can be tuned independently for each user to
optimize the usage of transmission resources. This scheme is generally known as
adaptive modulation and coding (AMC) [45].

3.2 Enhanced Multicarrier Waveforms

OFDM solves in an elegant and robust way the fundamental channel equalization
problem in wideband wireless communications, and it provides efficient means
for channel aware scheduling of the transmission resources in an optimal way to
different users. Due to the flat-fading channel characteristics at subcarrier level, CP-
OFDM is also an excellent basis for different multi-antenna (MIMO) techniques
which are able to enhance the performance at link and system levels [45]. However,
OFDM has also a number of limitations, which have motivated research on various
enhancements as well as on alternative waveforms.
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3.2.1 Peak-to-Average Power Ratio Issues and SC-FDMA

OFDM, and multicarrier waveforms in general, have the problem of high crest factor
or peak-to-average power ratio (PAPR). This means that the peak envelope value of
the modulated waveform is much higher than the RMS value, which introduces
great challenges to the transmitter power amplifier implementation because high
linearity is needed in order to avoid serious distortion effects [127]. Why the PAPR
becomes high can be easily seen when we consider the OFDM signal as a sum of
sinusoids with amplitudes and phases determined by the modulating symbol values.
In the worst case, the amplitudes add up at some point within the OFDM symbol
interval, and the PAPR is proportional to the number of active subcarriers. However,
the probability of such a worst-case situation is in practice very small, and the
PAPR characteristics of a waveform are better characterized by the complementary
cumulative distribution function (see Fig. 7 for an example). Various techniques for
reducing the PAPR of OFDM-modulated signals can be found from the literature
[82, 127]. This problem is common with CDMA waveforms, and also various
generic methods for reducing PAPR have also been developed, e.g., based on
envelope peak clipping with smooth widowing [168].

Mainly due to the critical PAPR problem in hand-held devices, the single-carrier
waveform has re-appeared in the OFDM context, in the form of so-called single-
carrier frequency division multiple access (SC-FDMA) [45, 120, 164] . As shown,
in Fig. 6, using DFT transform as precoding, a SC-FDMA block can be included
in an OFDMA transmission frame while maintaining all the flexibility in allocation
the resources to each user. The cascade of DFT and IFFT transforms (also referred
to as DFT-spread-OFDM) in the transmitter side effectively provides frequency
shift of the single carrier symbol block to the frequency slot corresponding to the
allocated subcarriers, as well as time-domain interpolation and rudimentary pulse
shaping for the symbol pulses. With this model in mind, it is clear that accumulation
of high PAPR does not take place in this process. However, while the pulse shaping
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Fig. 6 SC-FDMA transmission link

The terminology reflects the fact that the transform length in the core OFDM system is typically
a power of two, whereas also other lengths need to be considered for the SC symbol block in order
to reach sufficient flexibility.
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Fig. 7 Complementary cumulative distribution functions for the PAPR of OFDM, SC-FDMA, and
single-carrier waveforms with different excess bandwidths. QPSK modulation, 160 subcarriers in
OFDM and SC-FDMA. The roll-off parameter « controls the signal bandwidth as (1 + «)/T,
where T is the symbol interval in traditional SC-transmission

provided by the DFT-spread-OFDM processing satisfies the Nyquist criteria for zero
ISI, the pulse shaping is sub-optimal and has small excess bandwidth. This leads to
relatively high PAPR for SC-modulation, yet significantly smaller than in OFDM,
as illustrated in Fig.7. On the other hand, good spectral efficiency is achieved as
different SC-FDMA blocks can be allocated next to each other without any guard-
band in-between, as long as the conditions for quasi-synchronicity are maintained.
Since the high PAPR of OFDM is mainly a problem on the mobile transmitter side,
the SC-FDMA scheme is mainly considered for uplink transmission. An alternative
implementation structure has been developed in [178], with additional flexibility for
the DFT block size.

What was described above is the so-called contiguous subcarrier allocation
case of SC-FDMA. Also a uniformly interleaved subcarrier allocation is possible,
without any effects on the PAPR,? but has not been adopted in practice due to
increased sensitivity to time selectivity, frequency offsets, and phase noise.

From the channel equalization point of view, the channel estimation and equalizer
structure is the same as in the core OFDM system, except that scattered pilots cannot
be utilized in SC-FDMA. From the SC-modulation point of view, the single-tap
subcarrier equalizers correspond to a frequency-domain implementation of a linear
equalizer [52, 145]. The MSE criterion is preferred over zero-forcing solution to

2This follows from the fact that uniform subcarrier interleaving corresponds to pulse repetition in
time domain.
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reduce the noise enhancement effects. The linear equalizer can be complemented
with a decision-feedback structure. The noise prediction based DFE principle
is particularly suitable for this configuration [23, 199], and including the FEC
decoding in the DFE feedback loop leads to an effective iterative receiver structure
with significantly improved performance over the linear equalizer solution.

Since SC-FDMA is based on a core OFDM system, various multiantenna
schemes can be combined with it, including space-time and space-frequency block
coding and spatial multiplexing [45, 164].

3.2.2 Enhancing Spectral Containment of OFDM

OFDM systems maintain orthogonality between spectral components which are
synchronized in time and frequency to satisfy the quasi-synchronicity conditions.
However, the spectral containment of the OFDM waveform is far from ideal (see
Fig. 8), and the attenuation of a basic OFDM receiver for non-synchronized spectral
components (interferences, adjacent channels) is limited.

Spectrum agile waveform processing is needed in case of various co-existence
scenarios, where the idea is to use effectively frequency slots between channels
occupied by legacy radio communication systems, as illustrated in Fig. 9. This is one
central theme in the cognitive radio context [7] but also considered in various other
developments of broadband wireless communications under concepts like carrier
aggregation [37] and broadband-narrowband coexistence [131]. A very flexible
way of approaching these goals can be named as non-contiguous multicarrier
modulation, as a generalization of non-contiguous OFDM [194]. Here the idea is
that the spectrum of the transmitted waveform can be controlled by activating only
those subcarriers which are available and have been allocated for transmission,
and modulating zero-symbols on the others. The approach is the same as the
basic idea of OFDMA, but now the target is to be able to tolerate asynchronous
waveforms in the unused frequency slots. Using basic OFDM in this way, the
spectrum leakage would necessitate considerable guardbands between the active
subcarriers and occupied frequency channels, and would thus lead to low spectrum
efficiency.

The on-going 5th generation (5G) wireless cellular system development under
3GPP aims to create a multi-service network supporting a wide range of services
with different requirements regarding data rate, latency, and reliability. These
services include enhanced mobile broadband (eMBB) targeting at Gbps peak
data rates, massive machine-type communications (mMTC) closely related to the
Internet-of-things (IoT) concept, and ultra reliable low-latency communications
(URLLC) needed, e.g., in the contexts of smart traffic, distant control of vehicles
and industrial processes, and so-called tactile communications [150]. The 5G Phase
1 physical layer development in 3GPP, the so-called 5G New Radio, is also ba