
Shuvra S. Bhattacharyya
Ed F. Deprettere · Rainer Leupers
Jarmo Takala Editors

Handbook
of Signal
Processing
Systems
Third Edition

Handbook of Signal Processing Systems

Shuvra S. Bhattacharyya • Ed F. Deprettere
Rainer Leupers • Jarmo Takala
Editors

Handbook of Signal
Processing Systems

Third Edition

Foreword by S.Y. Kung

123

Editors
Shuvra S. Bhattacharyya
Department of ECE and UMIACS
University of Maryland
College Park, MD, USA

Laboratory for Pervasive Computing
Tampere University of Technology
Tampere, Finland

Rainer Leupers
RWTH Aachen University Software
for Systems on Silicon
Aachen, Germany

Ed F. Deprettere
Leiden Embedded Research Center
Leiden University Leiden Institute Advanced
Computer Science
Leiden, The Netherlands

Jarmo Takala
Department of Pervasive Computing
Tampere University of Technology
Tampere, Finland

ISBN 978-3-319-91733-7 ISBN 978-3-319-91734-4 (eBook)
https://doi.org/10.1007/978-3-319-91734-4

Library of Congress Control Number: 2018953763

© Springer International Publishing AG, part of Springer Nature 2019
1st edition: © Springer Science+Business Media, LLC 2010
2nd edition: © Springer Science+Business Media, LLC 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-91734-4

To Milu
Shuvra Bhattacharyya

To Deirdre
Ed Deprettere

To Bettina
Rainer Leupers

To Auli
Jarmo Takala

Foreword

It gives me immense pleasure to reintroduce this handbook to the research/develop-
ment communities in the field of signal processing systems (SPS). The handbook
represents the first of its kind to provide a comprehensive coverage on state of the
arts of this field. The fact that it is already now the third edition is a clear attestation
of the high demand from all the related professional communities. It is truly an
influential and timely contribution to the field of SPS.

The driving force behind information technologies (IT) hinges critically upon the
major advances in both component integration and system integration. The major
breakthrough for the former is undoubtedly the invention of IC in the 1950s by Jack
S. Kilby, the Nobel Prize Laureate in Physics in 2000. In an integrated circuit, all
components were made of the same semiconductor material. Beginning with the
pocket calculator in 1964, there have been many increasingly complex applications
followed. In fact, processing gates and memory storage on a chip have since then
grown at an exponential rate, following Moore’s Law. (Moore himself admitted
that Moore’s Law had turned out to be more accurate, longer lasting, and deeper
in impact than he ever imagined.) With greater device integration, various signal
processing systems have been realized for many killer IT applications. Further
breakthroughs in computer sciences and Internet technologies have also catalyzed
large-scale system integration. All these have led to today’s IT revolution which has
profound impacts on our lifestyle and overall prospect of humanity. (It is hard to
imagine life today without mobiles or the Internet!)

The success of SPS requires a well-concerted integrated approach from multiple
disciplines, such as device, design, and application. It is important to recognize that
system integration means much more than simply squeezing components onto a
chip and, more specifically, there is a symbiotic relationship between applications
and technologies. Emerging applications, e.g., 5G communication, big data analysis,
machine learning, and the trendy AI, will prompt modern system requirements on
performance and power consumption, thus inspiring new intellectual challenges.
Therefore, the new paradigm of SPS architectures must be amenable to various
design facets such as overall system performance, flexibility, and scalability, pow-
er/thermal management, hardware-software partition, and algorithm developments.

vii

viii Foreword

With greater integration, system designs become more complex and there exists a
huge gap between what can be theoretically designed and what can be practically
implemented. It is critical to consider, for instance, how to deploy in concert an
ever increasing number of transistors with acceptable power consumption and how
to make hardware effective for applications and yet friendly to the users (easy to
program). Therefore, major advances in SPS must arise from close collaboration
between application, hardware/architecture, algorithm, CAD, and system design.

It is only fitting for Springer/Nature to produce this timely handbook. Springer/-
Nature has long played a major role in academic publication on SPS, many of
them have been in close cooperation with IEEE’s signal processing, circuits and
systems, and computer societies. For nearly 30 years, I have been the editor-in-chief
of Springer’s Journal of Signal Processing Systems, considered by many as a major
forum for the SPS researchers. Nevertheless, the idea has been around for years
that a single-volume reference book would very effectively complement the journal
in serving this technical community. Then, during the 2008 IEEE Workshop on
Signal Processing Systems, Washington D.C., Jennifer Evans from Springer and the
editorial team led by Prof. Shuvra Bhattacharyya met to brainstorm implementation
of such idea. The result was this series of right-on-time handbooks. Especially,
this edition has collected a vast pool of leaders/pioneers to cover architectures;
compilers, programming and simulation tools; and design tools and methodologies.

Indeed, the handbook offers a comprehensive and up-to-date treatment of the
driving forces behind SPS, current architectures, and new design trends. It provides
a solid foundation for several imminent technical areas, for instance, scalable,
reusable, and reliable system architectures, energy-efficient high-performance archi-
tectures, IP deployment and integration, system-on-chip, memory hierarchies, and
future cloud computing. Moreover, it covers a wide spectrum of applications,
including wireless/radio signal processing, image/video/multimedia processing,
control and communication, video coding, stereo vision, computer vision, data
mining, and machine learning.

Looking into the (near) future, we note that modern AI tools have become heavily
data-driven and data-intensive. As of now, on the daily basis, as many as 1 billion
photos and 10 billion messages are being handled by a single Internet company
and, moreover, such dazzling numbers are rapidly growing on par with Moore’s
law. In order to unravel useful information hidden in big data, it will require novel
(and possibly parallel processing) algorithmic designs which in turn will call for
special hardware/software technologies advocated here. In this sense, the handbook
is actually well positioned to support the increasingly data-driven AI technologies.

With the utmost enthusiasm, my sincere congratulations go to the authors and
editors for putting together such an outstanding contribution.

Department of Electrical Engineering S. Y. Kung
Princeton University
Princeton, NJ, USA

Preface

In this new edition of the Handbook of Signal Processing Systems, many of the
chapters from the previous editions have been updated, and several new chapters
have been added. The new contributions include chapters on signal processing meth-
ods for light field displays, throughput analysis of dataflow graphs, modeling for
reconfigurable signal processing systems, fast Fourier transform architectures, deep
neural networks, programmable architectures for histogram of oriented gradients
processing, high dynamic range video coding, system-on-chip architectures for data
analytics, analysis of finite word-length effects in fixed-point systems, and models
of architecture.

We hope that this updated edition of the handbook will continue to serve as
a useful reference to engineering practitioners, graduate students, and researchers
working in the broad area of signal processing systems. Selected chapters from the
book can be used as core readings for seminar- or project-oriented graduate courses
in signal processing systems. Given the wide range of topics covered in the book,
instructors have significant flexibility to orient such a course towards particular
themes or levels of abstraction that they would like to emphasize.

This new edition of the handbook is organized in three parts. Part I motivates
representative applications that drive and apply state-of-the-art methods for design
and implementation of signal processing systems; Part II discusses architectures
for implementing these applications; and Part III focuses on compilers, as well as
models of computation and their associated design tools and methodologies. The
chapters are ordered alphabetically by the first author’s last name in Parts I and
III, while they are ordered in Part II starting with chapters that cover more general
topics, and followed by chapters that are more application-specific.

We are very grateful to all of the authors for their valuable contributions, and for
the time and effort they have devoted to preparing the chapters. We would also like

ix

x Preface

to thank Courtney Clark, Caroline Flanagan, and Jennifer Evans for their support
and patience throughout the entire development process of the handbook.

College Park, MD, USA Shuvra S. Bhattacharyya
Leiden, The Netherlands Ed F. Deprettere
Aachen, Germany Rainer Leupers
Tampere, Finland Jarmo Takala
13 January 2018

Contents

Volume I

Part I Applications

Signal Processing Methods for Light Field Displays . 3
Robert Bregovic, Erdem Sahin, Suren Vagharshakyan, and Atanas Gotchev

Inertial Sensors and Their Applications . 51
Jussi Collin, Pavel Davidson, Martti Kirkko-Jaakkola,
and Helena Leppäkoski

Finding It Now: Networked Classifiers in Real-Time Stream Mining
Systems . 87
Raphael Ducasse, Cem Tekin, and Mihaela van der Schaar

Deep Neural Networks: A Signal Processing Perspective. 133
Heikki Huttunen

High Dynamic Range Video Coding . 165
Konstantinos Konstantinides, Guan-Ming Su, and Neeraj Gadgil

Signal Processing for Control . 193
William S. Levine

MPEG Reconfigurable Video Coding . 213
Marco Mattavelli, Jorn W. Janneck, and Mickaël Raulet

Signal Processing for Wireless Transceivers . 251
Markku Renfors, Markku Juntti, and Mikko Valkama

Signal Processing for Radio Astronomy . 311
Alle-Jan van der Veen, Stefan J. Wijnholds, and Ahmad Mouri Sardarabadi

Distributed Smart Cameras and Distributed Computer Vision 361
Marilyn Wolf and Jason Schlessman

xi

xii Contents

Volume II

Part II Architectures

Arithmetic . 381
Oscar Gustafsson and Lars Wanhammar

Coarse-Grained Reconfigurable Array Architectures . 427
Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts

High Performance Stream Processing on FPGA . 473
John McAllister

Application-Specific Accelerators for Communications 503
Chance Tarver, Yang Sun, Kiarash Amiri, Michael Brogioli,
and Joseph R. Cavallaro

System-on-Chip Architectures for Data Analytics . 543
Gwo Giun (Chris) Lee, Chun-Fu Chen, and Tai-Ping Wang

Architectures for Stereo Vision . 577
Christian Banz, Nicolai Behmann, Holger Blume, and Peter Pirsch

Hardware Architectures for the Fast Fourier Transform 613
Mario Garrido, Fahad Qureshi, Jarmo Takala, and Oscar Gustafsson

Programmable Architectures for Histogram of Oriented Gradients
Processing . 649
Colm Kelly, Roger Woods, Moslem Amiri, Fahad Siddiqui,
and Karen Rafferty

Part III Design Methods and Tools

Methods and Tools for Mapping Process Networks onto
Multi-Processor Systems-On-Chip . 685
Iuliana Bacivarov, Wolfgang Haid, Kai Huang, and Lothar Thiele

Intermediate Representations for Simulation and Implementation 721
Jerker Bengtsson

Throughput Analysis of Dataflow Graphs . 751
Robert de Groote

Dataflow Modeling for Reconfigurable Signal Processing Systems 787
Karol Desnos and Francesca Palumbo

Integrated Modeling Using Finite State Machines and Dataflow
Graphs . 825
Joachim Falk, Kai Neubauer, Christian Haubelt, Christian Zebelein,
and Jürgen Teich

Contents xiii

Kahn Process Networks and a Reactive Extension . 865
Marc Geilen and Twan Basten

Decidable Signal Processing Dataflow Graphs . 907
Soonhoi Ha and Hyunok Oh

Systolic Arrays . 939
Yu Hen Hu and Sun-Yuan Kung

Compiling for VLIW DSPs . 979
Christoph W. Kessler

Software Compilation Techniques for Heterogeneous Embedded
Multi-Core Systems . 1021
Rainer Leupers, Miguel Angel Aguilar, Jeronimo Castrillon,
and Weihua Sheng

Analysis of Finite Word-Length Effects in Fixed-Point Systems. 1063
D. Menard, G. Caffarena, J. A. Lopez, D. Novo, and O. Sentieys

Models of Architecture for DSP Systems . 1103
Maxime Pelcat

Optimization of Number Representations . 1141
Wonyong Sung

Dynamic Dataflow Graphs . 1173
Bart D. Theelen, Ed F. Deprettere, and Shuvra S. Bhattacharyya

Part I
Applications

Signal Processing Methods for Light
Field Displays

Robert Bregovic, Erdem Sahin, Suren Vagharshakyan, and Atanas Gotchev

Abstract This chapter discusses the topic of emerging light field displays from
a signal processing perspective. Light field displays are defined as devices which
deliver continuous parallax along with the focus and binocular visual cues acting
together in rivalry-free manner. In order to ensure such functionality, one has to
deal with the light field, conceptualized by the plenoptic function and its adequate
parametrization, sampling and reconstruction. The light field basics and the corre-
sponding display technologies are overviewed in order to address the fundamental
problems of analyzing light field displays as signal processing channels, and of
capturing and representing light field visual content for driving such displays.
Spectral analysis of multidimensional sampling operators is utilized to profile the
displays in question, and modern sparsification approaches are employed to develop
methods for high-quality light field reconstruction and rendering.

1 Introduction

The unequivocal aim of visual media is to provide high realism of the scene
being visualized and to provide tools for interacting with visual content. Visual
information about real-world objects is carried by the light field, i.e., light of any
wavelength travelling in every direction through every point in space. Subsequently,
the light field data is rich in providing high spatial, angular, and spectral resolution
of the visual content. In order to utilize this richness and to convert it into highly
realistic and interactive visual experience, extensive research efforts have been made
to study the principles of light field formation, propagation, sensing and perception
along with the computational methods for extracting, processing and rendering the
visual information. In this list of methods, the light field display has a special place

R. Bregovic · E. Sahin · S. Vagharshakyan · A. Gotchev (�)
Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
e-mail: robert.bregovic@tut.fi; erdem.sahin@tut.fi; suren.vagharshakyan@tut.fi;
atanas.gotchev@tut.fi

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_1&domain=pdf
mailto:robert.bregovic@tut.fi
mailto:erdem.sahin@tut.fi
mailto:suren.vagharshakyan@tut.fi
atanas.gotchev@tut.fi
https://doi.org/10.1007/978-3-319-91734-4_1

4 R. Bregovic et al.

as the ultimate light field reconstruction stage and device, where optics and signal
processing meet.

Attempting high-quality light field reconstruction from a large, yet limited,
collection of sensors, has demanded research on new sensing concepts and novel
sparse light field representations.

In this chapter, we review the light field basics in Sect. 2 and overview the light
field display technologies in Sect. 3, in order to prepare the ground for discussing
two fundamental signal processing challenges related with such displays. Departing
from the light field representation and propagation formalism, in Sect. 4 we present
our approach in profiling light field displays in terms of their throughput, which is
analyzed in spectral domain and quantified through the notion of display bandwidth.
In Sect. 5, we address the fundamental issue of preparing light field content for any
type of display. Our main representation is the so-called densely sampled light field
and our main tool is its sparse representation in directional transform domain.

2 Light Field Basics

2.1 Plenoptic Function

The light field (LF) was first conceptualized by Gershun as the amount of light
traveling in every direction through every point in space using light vectors [1].
That is, considering rays as the fundamental light carrier, any region of space is
interpreted as a collection of light rays. The plenoptic function [2] describes the
intensity distribution of these rays. In the most general case, it is a 7-dimensional
function parametrizing the crossing points (x, y, z), propagation directions (θ ,φ), and
wavelengths (colors) (λ) of the light rays at a given time (t). The measurement of the
plenoptic function can be characterized by considering a space filled with idealized
pinhole apertures at every location recording the intensity of the light at every angle
passing through it for each possible value of wavelength and time. When three-
dimensional (3D) objects (scenes) are viewed by an observer, the human visual
system samples the pattern of light rays filling the space around the objects. As
such, even though the plenoptic function is often considered as an idealized concept
due to difficulties specifying it completely for natural scenes, it can be regarded as
a communication link between (the objects in) the scene and the perceived retinal
images [2].

2.2 Light Field Parametrization

The plenoptic function can be reduced into a five-dimensional function of spa-
tial (3D) and angular (2D) coordinates for a static scene under monochromatic

Signal Processing Methods for Light Field Displays 5

illumination. In case there is a transparent medium for the light to propagate in
and the analysis is limited to the subset of rays leaving a bounded object, i.e.,
including only the regions outside the convex hull of the object, the plenoptic
function contains redundant information [3, 4]. That is, the radiance along a ray
from one point to another remains constant (assuming no participating media). Thus,
the dimensionality of the function can be further reduced to 4D. Examples of such
LF representations include the 4D LF presented in [3], the Lumigraph [4] and the
photic field [5]. The 4D LF information can be parametrized in various ways, e.g.,
by considering points on a surface and directions for each point, pairs of points on
the surface of a 3D shape (cube, sphere) or pairs of points on two planes. The two-
plane parametrization of LF is often preferred, since it is well suited for modelling
widely studied LF capture and display techniques, such as integral imaging and
multiview capture/display, with one plane corresponding to the viewpoints and the
other one corresponding to the image/display plane of the camera/display device.
Let us consider the notation L(s, t, u, v) for the two-plane parametrization. That is,
each ray captured by the LF crosses the two planes at positions (s, t) and (u, v),
respectively. Alternatively, the LF can be parametrized as the rays on a single
plane (s, t) and two angles (θ , ϕ) representing the direction of each ray, resulting in
notation L(s, t, θ , ϕ) for the 4D LF. These parametrizations are visualized in Fig. 1.

2.3 Light Ray Propagation

The analysis of LFs usually includes different parametrizations at different depths.
In order to link the LF representations at such different depths, it is necessary to
formulate the light propagation based on the LF paradigm. For simplicity, let us
assume 2D light fields, L(t, v) for fixed s and u, and L(t, θ) for fixed s and φ.
Let us also assume that v represents the relative position with respect to crossing
point of the ray on t-coordinate (cf. Fig. 2). The relation between these two LF

Fig. 1 Two different 4D LF parametrizations. (a) Space-angle parametrization. (b) Two-plane
parametrization

6 R. Bregovic et al.

Fig. 2 Light ray propagation
in space, represented by two
LF parametrizations

representations is given by v = dl tan θ , where dl is the distance between the two
planes in the former parametrization and s is same in both representations. The
propagation of a light ray in space is illustrated in Fig. 2, where the two t-planes
are separated by d and the separation between t and v planes is assumed to be unit
distance, i.e., dl = 1. Considering such LF parametrizations on both planes, the light
ray propagation can be expressed as [6, 7]

L2

([
t2

v2

])
= L1

([
t1

v1

])
= L1

([
1 −d
0 1

] [
t2

v2

])
(1)

L2

([
t2

θ2

])
= L1

([
t1

θ1

])
= L1

([
t2 − d tan θ2

θ2

])
, (2)

where L1 and L2 refer to the two LFs at the first and second plane positions,
respectively. Thus, (1) and (2) actually link the two LFs defined at different
depths. In the case of two-plane parametrization, the position on the v-axis changes
according to a linear transformation of ray direction and distance. That is, a shifting
operation (shearing) is performed along the v-axis [8]. However, as can be seen
from (2), the relation between the LF parameters is not strictly linear in the plane
and angle parametrization.

Signal Processing Methods for Light Field Displays 7

2.4 Epipolar Plane Images

As discussed in the previous sections, in its simplified form, LF can be described
by a 4D function, with the two-plane parameterization being the most common
representation (see Fig. 1b) of that function. However, even in this simplified
form, due to the complex nature of light, it is still difficult to analyze LF data in
a systematic way. Therefore one needs another simplification step—the Epipolar
plane images (EPIs) being one of the choices.

EPIs, originally introduced by Bolles et al. [9], are based on the concept that a
point in space at a distance z from the camera plane will follow certain geometrical
relation, to be described later, when mapped to different camera images at different
positions. Forming of an EPI in the case of a horizontal parallax only (HPO) LF is
illustrated in Fig. 3. A camera moving along t axis, also referred to as the camera
plane, Fig. 3a, captures images at equidistant intervals, Fig. 3b. Those images are
then put into a 3D structure, Fig. 3c, referred to as the epipolar cube. An EPI, Fig.
3d, is then obtained by slicing the epipolar cube along the u axis. In other words, an
EPI consists of the same row from each image stacked together and as such it can
be considered to be a 2D image of size ncol (horizontal camera resolution) by nim
(number of images or cameras). This maps a complex scene into regular structures
that have a higher predictability and are easier to analyze.

Denoting the camera-to-camera distance �t = t2 − t1 and the change of the
position of the point in the images �v= v2 − v1, it follows that the relation between
points in space in terms of camera pixels and camera position are given as

Fig. 3 Forming of EPIs from a 3D scene. (a) 3D scene with denoted five camera positions tA . . . tE.
(b) Captured images on camera positions tA . . . tE. (c) Epipolar cube constructed from captured
images. (d) One EPI for a large number of captured images with an EPI line marked in red

8 R. Bregovic et al.

Fig. 4 EPIs formed over different parts (image lines) of the same scene

v = v2 − v1

t2 − t1
(t − t1)+ v1 = f

z
(t − t1)+ v1. (3)

Here f is the distance between the camera and image plane and �v = f
z
�t .

The main benefits of EPI representation for processing LFs lies in the fact that
scene points appear as lines in an EPI, see Fig. 3d. The slope of a line is determined
by distance of the point from the camera, camera resolution and distance between
adjacent cameras. The points closer to the camera make a steeper slope (more
vertical) and also occlude points further away that have a more horizontal slope.
This will be utilized later on when discussing efficient LF interpolation techniques.

Four comments related to EPIs. First, although EPIs are structured, for the
same scene, the structure can differ considerably from EPI to EPI (different
lines in the images relate to different parts of the scene) as illustrated in Fig. 4.
Second, in comparison with the two-plane parameterization, see Fig. 1b, when
forming/denoting the EPIs the t-axis goes in the opposite direction and v axis is
sheared such to become relative with the point on the t-axis under consideration
(there is no common zero for the v-axis), see Fig. 3a for illustration. Third, there is
a one-to-one correspondence between EPI and ray-space notation—only v-axis has
to be replaced by ray angles. For small field of view (FoV) it can be assumed that
�v = z tan �θ with z being the distance to the object and �α angular sampling
density [6]. Fourth, in the case of full parallax, in addition to EPIs in horizontal
direction, one can also form EPIs in vertical direction by slicing the 4D EPI cube
along the us-plane.

Signal Processing Methods for Light Field Displays 9

Fig. 5 EPI—from scene to representation in continuous Fourier domain. (a) Scene setup. (b) EPI
in spatial domain. (c) EPI in continuous Fourier domain

2.5 Fourier Domain Representation

The regularities in the structure of an EPI can be further exploited by analyzing
the EPI in the Fourier domain [10, 11]. Assuming a scene with limited depth, as
illustrated in Fig. 5a, captured by a dense set of cameras, the spectrum of an EPI,
Fig. 5b, will be limited to a bow-tie shaped area with size (edges) depending on
zmin and zmax, blue area in Fig. 5c. As one can see the spectrum of an EPI is very
well localized, particularly for scenes with shallow depth. Moreover, all points at the
same distance (layer) map into a line in spectral domain with the slope proportional
to the distance of the layer. Points in infinity map to the vertical axis (in spectral
domain) and objects at the camera plane, map to the horizontal axis.

As pointed out earlier, the frequency support of a depth layer is limited to a
line in the Fourier domain. In most general case a scene consists of objects at all
depths and therefore the spectrum is as the one indicated by the blue bow-tie in
Fig. 5c. However, in practice, the objects are typically grouped—each object can be
associated (approximated) with one or more depth layers. This is illustrated in Fig.
6. For objects with a single (shallow) layer/depth, as in Fig. 6a, the whole spectrum
is localized in the vicinity of one line. For a scene with objects at considerably
different depths, we have several layers that are reflected in the spectrum as several
lines. As seen for an example in Fig. 6b, there are three dominant layers and those
are clearly visible in the spectra. The fact that many scenes can be split into layers
has been used in several algorithms that work with LFs, e.g., [12].

In theory, the above discussion applies only to scenes without occlusion. In the
case of occlusions the spectra will be more spread out, as illustrated in Fig. 7 for
various levels of occlusions [11] with the most right image illustrating the case
of so called ‘dominant’ occlusions, that is, when a number of very close objects
occludes one or more far objects. However, as we can see in Fig. 6b, in practical
scenarios, even if there are occlusions, the aforementioned analysis can still be

10 R. Bregovic et al.

Fig. 6 Scenes of different complexity—Image of the scene, one EPI, and its Fourier domain
representation. (a) Scene with a ‘single’ (shallow) layer. (b) Scene with several dominant layers

Fig. 7 Fourier domain representation for scenes with different level of occlusions present in the
scene

applied. Therefore, in the rest of this chapter we will assume that the spectrum of a
scene behaves as in the case of non-occluded scenes.

2.6 Plenoptic Sampling

The continuous Fourier domain representation of an EPI, considered in the previous
section, is the natural domain for analyzing EPIs since LF of a scene is a band-
unlimited signal [13]. However, in practice one works with discrete systems which
means discretization. There are two types of discretization of LF that occur. First
one is due to capturing the scene with a limited (finite) number of cameras (angular
sampling) and second is due to the fact that each captured image has a finite
resolution (spatial sampling). Both of those either require bandlimited signals as
input, or proper antialiasing filters before sampling. Otherwise, the sampled LF will
be contaminated with spatial and/or interperspective aliasing.

Discretization in the spatial domain is illustrated in Fig. 8a. For a dense-enough
sampling (using high resolution cameras), v1, with respect to the scene there is
no overlap between the baseband (blue) and replicas (green). In such case the
continuous signal can be easily reconstructed, e.g., by a separable reconstruction

Signal Processing Methods for Light Field Displays 11

v

t

v

t

v

t v

t

v

t

v

t

Fig. 8 Discretization of the plenoptic function with different sampling rates. (a) Different camera
resolution �v with �v1 < �v2 < �v3. (b) Different camera to camera distance �t with
�t1 < �t2 < �t3

filter marked in purple. For lower sampling densities, v2, v3, the spectrum replicas
close in on the baseband requiring a tighter 2D reconstruction filter, marked in
brown. If the camera resolution is further reduced, �v > �v3, then the baseband
and replicas start to overlap and reconstruction using standard multidimensional
sampling theory is no more possible. Similarly, the discretization in the angular
domain is illustrated in Fig. 8b. In this case, when the cameras are too far apart,
�t > �t3, replicas start to overlap and direct reconstruction is not anymore possible.

In practice, the discretization happens simultaneously in spatial and angular
domain. It is obvious that smaller scene features need a higher camera resolution
and closer objects need a denser set of cameras. However, neither of those can
be infinitely increased. The questions that arise here are: How to sample a scene
properly (to avoid or minimize aliasing)? What is the optimal sampling that would
enable the reconstruction of the scene’s continuous plenoptic function?

The answers to these questions, particularly to the second one, depends heavily
on the way how one wants to perform the reconstruction of the continuous plenoptic
function, that is, in addition to sampled visual data (images) is there any other
knowledge about the scene available (in the form of another modality) or are
there assumptions that can be made regarding the scene that could assist in the
reconstruction.

As discussed earlier, if only images of a scene are available, then, theoretically
for every scene one would need proper antialiasing filters in spatial and angular
domain in order to sample the scene without aliasing. Spatial antialiasing is typically
handled by the camera itself, however, it is not straightforward to implement an
antialiasing filter in the angular domain. Therefore, one needs to sample the scene
with a dense set of cameras (small�v). An attempt to define what means dense
enough is proposed in [13] that introduces the concept of essential bandwidth that is
defined as: “A compact region in the frequency domain that is symmetrical around

12 R. Bregovic et al.

Fig. 9 Optimal sampling for
alias-free
reconstruction—compromise
between the number of layers
and number of images

the origin and that contains at least 81% of the plenoptic spectrum’s energy.” The
required sampling is estimated based on the knowledge of the highest frequency in
the scene and the depth range—for more about that estimation please see [13].

When in addition to images also depth information is available as an additional
modality, it has been shown in [10] that there is a compromise between the required
number of images and the amount of depth information expressed in terms of layers
(number of depths the scene is quantized) that will result in a similar reconstruction
quality. This compromise is illustrated in Fig. 9 and can be summarized as follows:
The more one knows about the geometry of the scene, the fewer images are needed
and vice versa.

This is as far as one can go using standard sampling theory. Going beyond that,
we will show in Sect. 5 that by making few assumptions about the scene (e.g.,
scene has no reflective surfaces) one can utilize the properties of EPIs, in spatial
and Fourier domain and go far beyond the classical sampling theory and reconstruct
the continuous function from a sparse (under-sampled) set of images without any
knowledge about the depth of objects in the scene.

2.7 Densely Sampled Light Field

As discussed in the previous section, when reconstructing the plenoptic function
out of an under-sampled (captured) LF, one needs to use advance reconstruction
techniques in order to avoid aliasing. However, in many cases (e.g., when speed is
essential) it is beneficial to achieve a good (satisfactory) reconstruction results by
using a simple interpolation technique, e.g., bilinear (or quadrilinear) interpolation
over the available LF samples. This is possible only if the LF is sampled densely
enough. A sampled LF from which the continuous plenoptic function can be
reconstructed by simple quadrilinear interpolation is referred to as densely sampled
light field (DSLF). Its characteristic is that the maximum disparity of any point in
the scene between adjacent views is less than or equal to one pixel. Such sampling
ensures that lines in EPI are unambiguous. This is illustrated in Fig. 10 for cases
where the disparity is three pixels, Fig. 10a, and one pixel, Fig. 10b, between
adjacent views. When interpolating views in between, in the first case one cannot use

Signal Processing Methods for Light Field Displays 13

Fig. 10 Difference between
differently sampled LFs
emphasizing the known
samples with the
corresponding epipolar line
(blue) and the interpolated
sample (red). (a) Under
sampled LF,
Lx = f (L11, L12, L21, L22).
(b) Densely sampled LF, ′x =
f
(
L′11, L

′
12, L

′
21, L

′
22

)

a b

a simple bilinear interpolation since it will use (adjacent) pixels that are not part of
the EPI line, whereas in the second case the correct pixels will be utilized. Although
the reconstruction still might not be perfect, the effect of aliasing will be almost
negligible—no major errors due to aliasing will be introduced in the reconstructed
plenoptic function. One can claim that such sampling allows treating the disparity
space as a continuous space.

The required sampling density on the t and v plane to achieve DSLF depends on
the (minimal) depth and (smallest) details in the scene. Scenes with objects closer
to the camera and more details will require a denser set of cameras and images of
higher resolution. As a side benefit, once the DSLF is available, one can properly
apply multidimensional filtering (removing/blurring objects in the scene) and then
downsample the LF to resolution that can be used, for example on a display, without
introducing aliasing at lower sampling rates.

3 Light Field Displays

3.1 Visual Cues

The human visual system (HVS) creates 3D perception based on 3D information
acquired via a number of depth cues. These visual cues can be coarsely classified
into physiological and psychological cues [14, 15]. Physiological cues such as
binocular disparity, convergence and accommodation produce information based on
physical reaction of the HVS. On the other hand, psychological cues such as linear
perspective and texture gradients are more related to learned experiences. The visual
cues can be also divided into four categories by a finer classification [15–17]:

• Oculomotor cues—Vergence and accommodation constitute the two oculomotor
functions that give rise to corresponding cues. Vergence is the rotation of
the two eyes in the opposite direction to fixate on the object and obtain a
single fused image. It is mainly driven by the binocular disparity stimulus [18].

14 R. Bregovic et al.

Accommodation is the adjustment of the focal length of the crystalline lens in
the human eye to focus (accommodate) on a given object and perceive sharp
image. The primary stimulus that drives accommodation is the retinal blur [18].
The strength of corresponding contraction or relaxation in the eye muscles
that control the focal length of the lens produce the depth information. The
oculomotor cues are effective at short distances (typically up to 2 m).

• Binocular disparity—The positional difference (disparity) in the image locations
of an object in the left and right retinal projections depends on the depth of the
object. Thus, depth information is extracted based on the disparity of matched
object points in those projections. Binocular disparity is a primary cue, which is
utilized in a wide depth range (typically, from around 10 cm up to 100 m).

• Pictorial cues—Shadows, perspective, occlusion, texture scaling, gradient, etc.
constitute pictorial monocular depth cues. HVS relies more on these cues
especially at long distances, where other cues (e.g., binocular depth cues and/or
motion parallax) cannot provide necessary information.

• Motion parallax (head parallax)—Closer objects appear to move faster than
further objects. Motion parallax is a physiological monocular cue that is created
by this relative motion of the objects at different depths, when the head is moved.
It is especially effective at long distances, e.g., where the accommodation cue is
not reliable.

In binocular viewing (stereopsis), the so-called Panum’s area and depth of focus
define 3D zones, with respect to the limits of binocular vision and accommodation
function, respectively, within which the viewing is considered to be comfortable
(i.e., with reduced visual fatigue or discomfort) [15, 17]. For a given position
of the eyes, there exists a surface in 3D space called as horopter, for which the
corresponding images in the left and right eyes produce zero retinal disparity [15].
Panum’s area defines a 3D zone around the horopter that puts a limit for the
allowable retinal disparity. The objects within the Panum’s area can be fused to a
single clear image (without double vision). On the other hand, the depth of focus is
related to accommodation function and it defines a 3D zone around the focused
depth within which the object points can be perceived sharp enough (in focus)
without requiring reaccommodation. The comfort zone can be considered as the
intersection of Panum’s area and depth of focus [15].

The two oculomotor functions accommodation and vergence usually work in
harmony [18]. Thus, the accommodation and vergence functions are actually
coupled, i.e., one response evokes the other and vice versa. Such a coupling
accelerates both accommodation and vergence, i.e., accommodation is faster in
binocular viewing compared to monocular viewing and vergence is faster when also
a blur signal (consistent with the disparity signal) is available and utilized [19].

Signal Processing Methods for Light Field Displays 15

3.2 From Ideal to Real Light Field Display

3D displays aim at reproducing a real 3D scene in a visually indistinguishable
way. Thus, an ideal 3D display is expected to recreate all visual cues accurately
so that the viewer perceives the 3D image of a scene as close as possible to its
reality. An LF display is aimed at providing all the necessary cues (mainly vergence,
binocular disparity, motion parallax, and accommodation) with sufficient accuracy
by actually reconstructing the LF that includes a complete description of the scene.
In other words, an LF display is mainly intended to address the continuous (smooth)
motion parallax and accommodation-vergence conflict problem, which constitute
the two main deficiencies of the conventional 3D displays such as stereoscopic and
multiview displays.

While the stereoscopic displays do not provide motion parallax at all, the
motion parallax provided by the multiview displays is usually discontinuous. On
the other hand, since such conventional 3D displays mainly rely only on the
binocular disparity, they cannot provide (correct) accommodation cue. The eyes
of the viewer focus on the display surface, which is the location of the source of
the light, while they converge at the depth addressed by the (simulated) disparity
cue. The coupling between the vergence and accommodation cue is, thus, broken
and the so-called accommodation-vergence conflict occurs [18]. This conflict has
been reported to cause potentially serious visual discomfort in prolonged use of
such displays [20, 21]. The Percival’s zone of comfort defines a set of vergence
and accommodation responses, which can be achieved without discomfort [19]. Its
width is about one-third of the width the zone of clear single binocular vision, where
the accommodation and vergence are possible without excessive error in either [19].
Figure 11 illustrates these zones in relation with Panum’s area and depth of focus.

The design of an LF display is, thus, based on the motivations of providing
smooth motion parallax and avoiding (or reducing) the accommodation-vergence
conflict [15, 22]. Both are actually dictated by the characteristics of the HVS. The
two main system parameters of an LF display are the spatial and angular resolutions
of the emitted LF, which are characterized by the corresponding sampling steps �x
and �θ , respectively, as illustrated in Fig. 12. The reference plane represents the
spatial sampling plane of the LF which can be either right on the display surface
(e.g., in the case of super-multiview display) or separated from it (e.g., in the case
of integral imaging). The angular resolution of LF determines the resolution of
viewpoints at the observation distance dv as �v = dv�θ [22]. The relation between
the eye pupil size We and �v then dictates the motion parallax and accommodation
cues. If We ≥�v, then the motion parallax is continuously perceived. Regardless of
this requirement, motion parallax will be also smooth when the reconstructed image
is within one pixel disparity range, with respect to reference plane, for adjacent
viewpoints, i.e., �x ≥ |zi|Δθ with zi being the distance of the image from the
reference plane [22].

On the other hand, if the so-called super-multiview (SMV) condition is satisfied,
i.e., there are two or more rays incident in the eye pupil, the accommodation cue

16 R. Bregovic et al.

Fig. 11 Illustration of different comfort zones for the HVS with respect to simulated distance-
vergence and accommodated distances (adapted from [19]). The points on the dashed diagonal
line in (a) correspond to real objects at different depths. The points on the dashed diagonal line in
(b) correspond to real world stimuli

Fig. 12 The relation between the parametrization of a LF display and HVS

is invoked [23, 24], and the eye focuses on the reconstructed image even when
it is separated from the reference plane. Therefore, the accommodation-vergence
conflict is avoided (or reduced). Please note, however, that creation of the correct
accommodation cue depends on several other factors, such as the distance of
the reconstructed image from the reference plane [25, 26]. This issue is further
addressed in the following sections.

Signal Processing Methods for Light Field Displays 17

In the following section, integral imaging, super-multiview displays, projection-
based displays, tensor displays, and holographic stereograms are discussed as
different examples of LF display techniques.

3.3 Overview of Current Light Field (Type) Displays

3.3.1 Integral Imaging

Integral imaging constitutes the oldest LF display technique, as it goes back to 1908,
when Lipmann [27] invented it with the original name of integral photography. The
idea was to capture and then reconstruct the LF by utilizing a two-dimensional lens
array. Figure 13 illustrates the capture and reconstruction stages of integral imaging
technique.

In the capture stage, the LF incident on the microlens array plane is spatially
sampled by the microlenses. Then, the so-called elemental images behind each
microlens record the local angular distribution of the LF. Thus, assuming that there
is no cross-talk between the elemental images (this can be satisfied e.g., by putting
physical barriers between the elemental images), the space-angle distribution of
the LF incident on the microlens array is recorded by the sensor pixels. In the
reconstruction stage, the 3D scene can be reconstructed by simply writing the
recorded sensor image onto a display. In case the same microlens array is to be used,
the pixel pitches of the sensor and display should be same. Otherwise, the system
can be scaled. As seen in Fig. 13b, integral imaging actually reconstructs focused
points in space by integrating several beams focused by different microlenses.
Thus, such sets of beams create continuous angular intensity distributions from
the focused points in space. When the viewer moves his/her head within such an
LF, he/she will perceive continuous motion parallax. The accommodation cue of
integral imaging has been addressed in several studies [24, 25, 28, 29]. As a result
of a subjective test presented in [25], 73% of the viewers are reported to actually
focus on the reconstructed image. Moreover, the conflict between the vergence and
accommodation is relieved in the super-multiview region [28].

One critical problem with direct reconstruction technique shown in Fig. 13 is
that the reconstructed images are pseudoscopic, i.e., reversed in depth. In order to
provide orthoscopic images with correct depths, one should digitally recalculate
the elemental images knowing the capture and display parameters [30]. Another
approach is to use virtual image presentation technique proposed by [31], which is
illustrated in Fig. 14.

In this technique, the captured elemental images are simply rotated around their
centers by 180

◦
and the distance between the microlens array and the display plane

is chosen as lr = lc − 2f2(dc − f). By this way, a virtual image is obtained at
dr = dc − f from the microlens array plane, where dc and dr are the image planes
of sensor and display planes during capture and reconstruction, respectively, and f
is the focal length of the microlenses [32].

18 R. Bregovic et al.

Fig. 13 Capture (a) and reconstruction (b) of a scene by integral imaging

In both the direct display technique, lc = lr > f, and the virtual image presentation
technique, lc > f > lr , the scene regions inside the depth of field of the microlenses
are sharply reconstructed, however blurred reconstructions are inevitable outside
this region. An alternative approach to these “resolution-priority” cases is the
“depth-priority” technique, where lc = lr = f so that the resolution of the recon-
structed images are now dependent on the microlens pitch, i.e., sharp reconstruction
as in the resolution-priority case is not possible, but the resolution can be kept in a
much larger depth range around the focal plane [22, 33, 34].

For more detailed analysis, advances and recent issues in integral imaging, we
refer the reader to [32, 35].

Signal Processing Methods for Light Field Displays 19

Fig. 14 Virtual image reconstruction technique by integral imaging

3.3.2 Super-Multiview Displays

Multiview displays (MVDs) usually employ a pair of flat-panel display (e.g., LCD)
and a horizontal array of optical elements or openings on a surface that refract or
direct the light in the horizontal direction, e.g., lenticular sheet [36, 37] or parallax
barrier [38, 39]. Thus, unlike integral imaging, they provide only horizontal parallax.
The red, green and blue sub-pixels of the flat-panel display create the full color
range by emitting light in the corresponding color. The light emitted from each sub-
pixel forms a vertical stripe of beam after being directed by the horizontal array of
optical elements. An RGB beam triplet (corresponding to an RGB sub-pixel triplet)
forms one color component to be perceived at the corresponding viewpoint. The
set of such triplets (from different lenticules or slits) forms a parallax image when
viewed at a given viewpoint at the intended viewing plane. The set of all those
parallax images at different viewpoints constitutes the so-called multiview images.
The vertical resolution of the perceived image is the same as the vertical resolution
of the display panel, whereas the horizontal resolution is reduced by a factor of
number of views, which is the (rounded) total horizontal number of pixels under a
single optical element. Thus, there is an uneven resolution loss in the vertical and
horizontal dimensions. The slanted lenticular approach proposed in [36] makes this
loss more even via sub-pixel multiplexing technique. For instance, for an 18-view
display the resolution loss can be chosen to be by a factor 3 in the vertical and 6 in
the horizontal direction.

Super-multiview displays (SMVDs) can be seen as advanced types of MVDs that
provide a very dense set of views (typically more than 50). In particular, the SMV
condition, which requires that there should be at least two rays incident in the eye
pupil of the viewer, is what separates a SMVD from MVDs. As shown in Fig. 15,
when this constraint is satisfied, the viewer is able to focus on the reconstructed

20 R. Bregovic et al.

Fig. 15 Reconstruction of
focused scene point by
SMVD

image separated from the display surface and hence, the accommodation-vergence
conflict may be avoided [23, 40]. Furthermore, the viewer experiences smooth
motion parallax.

The condition for smooth motion parallax is actually less strict. Even when
the distance between viewpoints is larger than the pupil size, smooth motion
parallax can be perceived due to cross-talk between views. Both the smoothness
of the motion parallax and the accuracy of the accommodation response depend
not only on the SMV condition, but also on the crosstalk between the views, the
depth range of the scene, etc. For instance, for scene points that are not close
enough to the display surface, the accommodation response may not be accurate
or the motion parallax may not be smooth, even if the SMV condition is satisfied.
The corresponding depth range (around the display) is related to the capacity
(bandwidth) of the 3D display device. This issue is analyzed in more detail in
Sect. 4. A detailed analysis of motion parallax and accommodation aspects for the
lenticular based SMVD is presented in [26, 41] for several application scenarios.

The typical flat-panel display technique used in MVDs has been also demon-
strated to be effective for designing SMVD [37, 41]. However, the current available
resolutions of flat panel displays are not good enough to deliver both the required
number of views and high resolution 3D images. The number of views can be
considerably reduced, and thus the resolution can be increased, by utilizing eye
tracking algorithms and providing views only around the two eyes of the viewer
[37]. Besides this, several other SMVD design techniques have been proposed
such as focused light array, multi-projection, time-multiplexing and hybrid systems
consisting of both flat-panel and multi-projection systems [42]. The focused light
array technique was actually used in the first SMVD design, where a set of
laser diodes are focused at the same viewpoint and then they are scanned in two
dimensions to cover different viewpoints [42, 43]. The scanning requirement of this
technique is removed in multi-projection type of systems [44–46], where an array of

Signal Processing Methods for Light Field Displays 21

a b

Fig. 16 Principle of operation of a projection-based LF display. (a) Forming a point in space (O)
by light rays originating at different ray-generators. (b) The diffusing property of the holographic
screen with a wide spread in vertical and a narrow spread in horizontal direction

projectors are used, in the expense of large space requirement. Time-multiplexing
technique has been used to reduce the number of projectors in such multi-projection
systems [47]. In the hybrid design, the images of all flat-panel displays are super-
imposed on the common screen using the projection lens array [42]. The total
number of viewpoints is the product of the number of flat-panel systems and the
number of viewpoints generated by the flat-panel displays. By using 16 flat-panel
displays having 16 views, a SMVD having as high as 256 views has been created
[48]. For more detailed information on different SMVD design techniques, the
reader is referred to [44].

3.3.3 Projection-Based Displays

A projection-based display that recreates an approximation of the continuous
plenoptic function out of a discrete set of rays consists, see Fig. 16a for illustration,
of the following two parts [49]: First, a set of projection engines that act as ray
generators (discrete sources of light), and second, a holographic screen that is a
special optical element that performs the discrete to continuous conversion of light
rays. The holographic screen, in its simplified form, for an HPO system can be
interpreted as an anisotropic diffusor that converts (diffuses) each ray into an angular
beam around the main direction of the ray, having a narrow horizontal angle δx and
wide vertical angle δy, as illustrated in Fig. 16b. This ensures the visibility of a ray
from all vertical positions (in the front of the display) but only a narrow horizontal
range of positions. The display recreates an object in space by recombining rays
from different projection engines depending on the position of the observer and the
object itself. This is illustrated for three objects and two observers in Fig. 16a.

22 R. Bregovic et al.

The display has no pixel structure since rays originate from different sources and
hit the surface of the display on a non-regular grid. The number of rays determines
the overall throughput of the display in terms of angular and spatial resolution. For
the same number of rays, trade off can be made between spatial and angular details
by the mechanical design of the display – as it will be discussed in more detail in
Sect. 4.

Having a dense set of rays such displays are capable of maintaining continuous
parallax thereby providing (e.g., by dynamic rendering) the correct perspective in
e.g., free viewpoint video. This makes them one of the front-runners, among existing
LF displays of today, for visualizing immersive 3D content. The drawback is the
high hardware complexity of the system and the huge amount of data that the system
has to process. This makes it challenging for large setups as well as makes the
extension to full parallax very difficult, if not impossible.

3.3.4 Holographic Stereograms

The LF displays discussed above are based on ray reconstruction that is modelled via
the ray-based LF paradigm. Holographic stereogram (HS), on the other hand, can
be seen as a hybrid approach. It relies on holographic recording and reconstruction
principles, nevertheless, it utilizes a set of 2D images as the information source
[50–52]. The possibility of using real scene images recorded under white light
illumination is essentially what make HSs attractive compared to other (coherent)
holographic techniques. Nevertheless, their computational simplicity compared to
other coherent techniques is also critical in computer-generated holography (CGH),
especially for dynamic displays [53]. Display technologies utilizing HS technique
consist of static displays such as holographic prints [54, 55] and dynamic displays
which can be implemented e.g., via spatial light modulators (SLMs) [53] or
rewritable holographic materials [56, 57].

For optically recorded HSs, a set of 2D (multiview) images are projected one-
by-one on the hologram surface and the interference pattern of the projected
images and a reference beam is recorded hogel-by-hogel, where hogel refers
to a spatial holographic element on the hologram surface [58]. In the case of
computer-generated HSs, the corresponding fringe patterns to be written in a hogel
is calculated via physically simulating the interference process [50, 58]. More
specifically, a hogel on the hologram surface contains the information about the
2D image that would be seen from a very narrow window (as of the same size of
the hogel) at the location of the hogel [59]. This information is coded in the form of
a holographic fringe pattern, which has varying spatial frequency components. The
amplitudes of those components control the intensities and the spatial frequencies
control the directions of the rays to be sent to a particular direction. Each such ray
corresponds to one of the pixels of the corresponding 2D image that was utilized
during recording or computation at the given hogel location. The collection of all
those 2D images corresponds to a discrete LF representation (multiview images)
defined on the hologram surface. The necessary data for obtaining this LF can be

Signal Processing Methods for Light Field Displays 23

Fig. 17 The relation between the captured LF and HS parameters (adapted from [60])

collected by a scanning camera rig (or via computer graphics rendering for synthetic
scenes) either on the hologram plane or on some other plane further away from the
hologram surface. As the scene is usually confined in a region around the hologram
surface, separation of capture plane from the hologram surface is usually preferred
for practical reasons. In this case, a remapping from captured images is necessary
to acquire the set of ray intensities to be utilized for a given hogel. The setup
shown in Fig. 17 illustrates this case (for 2D space), where different directional
ray components for a given hogel correspond to pixels from different view images
captured on the camera plane.

The wavefield (amplitude) expression for the HS shown in Fig. 17 is given as
[59, 60]

OHS(x) =
∑

m
rect

(
x −m�x

�x

)∑
i

√
L1 [m, i] exp

(
j2πfmi

x x
)
, (4)

where f mi
x is the spatial frequency component on the x-axis, for hogel m and ray

i. The spatial frequency is related to the direction of the corresponding ray via the
grating equation [61]

fmi
x = sin

(
θmi
x

)− sin (θref)

λ
(5)

where λ is the wavelength (color) of the light and θ ref is the incidence angle of the
planar reference beam R(x) to be used in calculating the interference pattern, i.e.,
|OHS(x) + R(x)|2 = |OHS(x)|2 + |R(x)|2 + 2 Re {OHS(x)R(x)∗}. Please note that the
relevant holographic information is contained in the third term, which is called as
the bipolar intensity [58]. Thus, in CGH, this intensity pattern is usually treated to
be the actual HS. When illuminated with the same reference beam, the hogels of
the HS reconstruct the recorded content as planar wavefront segments, propagating
towards various directions with their intensities defined by the corresponding LF

24 R. Bregovic et al.

samples. As seen in (4), the fringe pattern in each hogel can be obtained by
inverse Fourier transform of the image segments [59]. When utilizing fast Fourier
transform implementations, care need to be taken for accurate calculation. As the
set of discretized spatial frequency values (fmi

x , i = 1, . . . , N) is fixed, the
corresponding discrete LF samples L1[m, i] are to be appropriately calculated from
the captured LF samples, e.g., via resampling from the captured LF L2[i, j] [60].

Assuming properly chosen hologram parameters, the HS is able to provide
continuous motion parallax, and maximized perceived resolution with respect to
the HVS [58]. In their original form described above, HSs can provide limited
accommodation response in a shallow depth range around the hologram. This is
one of their main drawbacks compared to (coherent) holographic display methods.
However, correct accommodation cues can be provided in a much larger depth range
via techniques that modulate the planar wavefront segments based on the depth
information of the captured ray (i.e., the information of the corresponding point
source in the scene) [62, 63].

3.3.5 Tensor Displays

The underlying idea of tensor displays is that the LF ray directionality can be
manipulated through a (ratter small) number of layers of light modulators with
varying transmittances. The joint multiplicative effect is a modulated light field with
desired characteristics. The idea can be traced back to the first proposal to create
directional views through parallax barriers [64]. In that early work, the directionality
is maintained by a mask of pinholes installed in front of a 2D display, which blocks
some rays and allows other rays coming from the 2D image source to go through and
to be seen from a specific perspective. Thus, different groups of pixels are visible
from different perspectives. This is somehow dual to using lenselets to direct the
light, as in the case of auto-stereoscopic displays [36, 38, 39]. Parallax barriers have
the apparent disadvantage of blocking some of the light rays thus reducing the image
brightness. Furthermore, the mask reduces the spatial resolution per view as the light
source behind it multiplexes all perspective views. The approach has been further
extended toward content-adaptive parallax barriers, where a few layers of barriers
have been multiplied in order to increase the degrees of freedom in manipulating
different directions and the pinholes have been replaced by varying-transmittance
elements (e.g. pixels of an LCD display), as illustrated in Fig. 18a, [65]. Very
fast panels can be used to additionally introduce time multiplexing. That is, layer
patterns are changed with a high rate above the rate at which the eye perceives
temporal flickering, and the time-multiplexed images are perceptually averaged to
perceive an LF with adapted directionality of rays (Fig. 18c). Eventually, directional
backlighting has been proposed to further extend the light field generation fidelity
[66] (Fig. 18d).

The elegancy of the approach comes from the fact that stacking panels with
varying-transmittance pixels can be mathematically modelled by the multi-linear

Signal Processing Methods for Light Field Displays 25

Fig. 18 Tensor displays. (a) n layers (masks); (b) LF parameterization; (c) combining layers and
time multiplexing; (d) adding directional backlight. Adapted from [66]

algebra tools, which leads to effective solutions using tensors, thus giving the name
of this class of LF displays: tensor displays [66].

Let’s consider the general case of combining N stacked layers visualizing M
temporal frames each, as given in Fig. 18c. The n-th layer is at distance dn from the
light field generating plane and the light field is parameterized with respect to some
reference plane at unit distance (Fig. 18b, see also Fig. 2 for reference). Each layer
has a corresponding transmittance f(n). Thus, the generated light field is formed by
multiplying the layer images and averaging the temporal frames

∼
L (t, v) = 1

M

∑M

m=1

∏N

n=1
f (n)
m (t + dnv) (6)

Dropping the time multiplexing will model the simpler case of layered LF
displays [67]. The case of directional backlight can be achieved by adding lenticular
optics at the light source place (Fig. 18d) and modelled by adding the corresponding
terms bm(t, v) [66]

∼
L (t, v) = 1

M

∑M

m=1
bm (t, v)

∏N

n=1
f (n)
m (t + dnv) (7)

Given a desired LF L(t, v), one has to find the display transmittances f
(n)
m and

possibly the directed backlights bm(t, v). This can be solved by a least square
optimization procedure, constrained by the requirement for non-negativity of all
pixel values being optimized. For solving it, the representation of the layered

26 R. Bregovic et al.

planes in the form of tensors comes into play. Taking into account the discrete
form of pixel layers, the corresponding transmittances can be organized in vectors
f(1), f(2), . . . f(N) , then the temporal frames are organized in matrices F(n) =[
f(n)1 , f(n)2 , . . . f(n)M

]
, and the combination of all transmittances takes the form of an

N-th order, rank-M tensor �F(1), F(2), . . .F(N)�. The generated light field in (6) can
be expressed in the explicit tensor form as

∼
L =W�

{
1

M

M∑
m=1

f(1)m ◦ f(2)m ◦ . . . f(N)
m

}
=W�

�
F(1),F(2), . . .F(N)

�
(8)

where ◦ denotes the vector outer product,W is a binary weight tensor picking up the
valid rays only through element-wise multiplication denoted by � [66]. In practice,
one has to represent the desired LF L(t, v) in a tensor form L by parametrizing all
rays by their intersections with all layers and then to solve the minimization problem

∼
L =W� arg min{F(n)}

∥∥∥∥L−
∼
L
∥∥∥∥ , for F(n) ∈ [0, 1] (9)

The solution makes use of non-negative tensor factorization. For more details the
reader is referred to [66].

As discussed in [18], the tensor approach to LF displays is a form of compressive
display as it manages to factorize the LF into temporal and multiplicative light-
modulating layers. A frequency analysis has revealed that the multiplicative,
essentially non-linear manner of combining layers yields extended depth of field
and field of view. Brightness can be also gracefully maintained. These benefits come
for the price of increased computational complexity for solving the optimization
problem (9) through non-negative tensor optimization. Aligning multiple display
modules requires precise calibration and using multiple temporal frames requires
high frame rate hardware. Artifacts, such as Moiré, color crosstalk, and interreflec-
tions can be expected though optical engineering solutions for those do exist [66].
The tensor concept has been investigated also for the case of near-eye displays
[68] and projection based displays [69]. Tensor displays are potentially capable
of supporting focus cues. High angular resolution (i.e., dense viewing zones) can
be achieved either by increasing the pixel resolution of the display panels or by
increasing the distance between layers [18]. However, in these cases the diffraction
limit starts to play a significant role and has to be taken into account.

4 Display Specific Light Field Analysis

An LF display is a visualization system that strives to reproduce (approximate),
from a dense (though finite) set of light rays (samples), the underlying continuous
plenoptic function describing the scene that is visualized. This makes the display, in

Signal Processing Methods for Light Field Displays 27

Fig. 19 Ray propagation in a
light field display

its essence, a multidimensional sampling system with various means of generating
rays (e.g., projectors, display panel) and possible implementations of the discrete-to-
continuous (D/C) converter (e.g., directional diffusor, lenticular sheet) [36, 37, 49].

Based on the LF analysis presented so far, in this section it will be shown how
the discrete nature of a typical LF display influences the LF reconstruction and more
importantly how the multidimensional sampling theory can be applied to optimize
the display setup (maximize the visual performance given a limited number of
rays) and how to capture/prepare/pre-process content for a given display that will
maximally utilize its capabilities. This will be done by using projection-based LF
displays [49, 70], where the ray generators act as discrete sources of light rays and
the holographic screen is the D/C converter that converts the set of samples (rays)
into its continuous representation that is observed by a viewer (see Fig. 16). The
presented analysis can be extended / to other types of LF displays as well.

4.1 Display-related Ray Propagation

A model of a typical LF display under consideration is presented in Fig. 19. Each
of the Np projection engines, uniformly distributed on the ray generators plane (p—
plane) with the distance between two adjacent engines being xp, generates Nx rays
over its field of view FOVp for a total of NpNx rays generated by the display. Those
rays propagate along the z direction and at a certain distance hit the screen plane (s—
plane) parallel to the ray generators plane. The screen of the display is where rays
recombine to reconstruct the desired continuous LF function. Although not true for
large angles, we assume here that rays from one ray generator hit the screen plane at

28 R. Bregovic et al.

equidistant points and that the angular distribution of the rays is also uniform, that
is, αp = FOVp/Nx. Rays are parameterized by their spatial position and direction
(x, ϕ) and thus represented as samples in the corresponding ray space with position
typically expressed in mm and angle in degree. At the screen plane, those can be
recalculated in the terms of equivalent spatial resolution (e.g., number of pixels per
mm or per screen size) and its angular resolution (e.g., number of rays per degree or
FOV of the display FOVdisp).

Following the discussion of Sect. 2.3, the propagation (position) of a ray r,
originating at one of the ray generators at distance z from its origin, is given as

[
x
(r)
z

ϕ
(r)
z

]
=
[
x
(r)
0 + z tan

(
ϕ(r)
)

ϕ(r)

]
. (10)

Here, x(r)
0 is the position of the ray on the ray generators plane and ϕ(r) is the

direction of the ray. As seen from the equation, as well as Fig. 19, the direction
of the ray does not change with distance z. However, depending on the distance of
the screen (several cases shown with black lines in the figure) the ray crosses the
screen at different horizontal positions. This means that for different distances z,
a different set of rays will contribute to forming of an equivalent multiview pixel
originating at a given point on the screen. As it will be seen later, as a consequence,
on the screen plane the uniform distribution of rays from the ray generators plane is
lost.

For a fixed z, each ray is considered as a sample in the 2D (x, ϕ) space. The
sampling pattern formed by those samples changes with the distance z and is
illustrated by means of an example in Fig. 20. Two things can be observed. First,
the propagation of rays is equivalent to shearing the ray space in x direction (on the
figure, samples of one ray generator are marked with blue), and second, at every
distance the sampling pattern might not be uniform, but it always will be regular.

Fig. 20 Ray space spatial sampling patterns at different distances from the ray generators plane
with 0 < zp1 < zp2 < zp3

Signal Processing Methods for Light Field Displays 29

This regularity will ensure a uniform performance of the display over the overall
screen and simplify the follow-up analysis.

4.2 Display Bandwidth

As a user of an LF display, one is interested in its visualization capabilities, that is,
what level of details one can visualize (see) on a given display? In order to answer
this question, one has to convert the display’s sampling pattern, which is determined
by the design configuration of the display, into a more meaningful (user friendly)
representation. One such representation is based around the concept of the display
bandwidth.

For analyzing a regular sampling pattern, one can utilize the multi-dimensional
sampling theory [71, 72] that can be summarized for the case under consideration
as follows [6, 8]:

1. Any regular 2D pattern can be described through a sampling lattice � with the
elements of the lattice being �(V) = {n1v1 + n2v2 | n1, n2 ∈ Z}. Here, vk =[
v
(x)
k v

(ϕ)
k

]T
for k = 1, 2 are two linearly independent vectors typically referred

to as basis vectors and T is the transpose operator.

2. The associated sampling matrix V (v1, v2) = [v1 v2] =
[
v
(x)
1 v

(x)
2

v
(ϕ)
1 v

(ϕ)
2

]
is not

unique. There are different vectors that can be associated with the same sampling
pattern as shown in Fig. 21a, that is, �(V) = �(EV) for E being any integer
matrix with |detE| = 1

3. In practice, the sampling matrix
∼
V with shortest basis vectors is preferred, that

is,
∥∥∥∼v1

∥∥∥ +
∥∥∥∼v2

∥∥∥ = min (‖v1‖ + ‖v2‖). Finding the smallest basis vectors for a

given lattice is known as the lattice basis reduction problem and can be done as
discussed in [73].

4. A unit cell P, defined for a lattice �, is a set in R
2 such that the union of all

cells centred on each lattice sample covers the whole sampling space without
overlapping or leaving empty space. Similar to the basis vectors, the unit cell is
not unique, as illustrated in Fig. 21b.

5. The most compact unit cell (where all points in the cell are closer, based on the
Euclidian distance, to the cell’s sample than any other sample), is the Voronoi
cell (also known as Wigner-Seitz cell) [74, 75].

6. Thinking in terms of reconstruction of the underlying bandlimited continuous
function described by the lattice �, the periodicity and the baseband frequency
support are defined through the reciprocal lattice �∗(V) = �((VT)−1) as
discussed in [6, 71].

7. There are many different unit cells for a given lattice �∗ . Consequently,
each of them describes a bandlimited function that can be represented with

30 R. Bregovic et al.

Fig. 21 (a) Sampling pattern and two possible sets of basis vectors. (b) Some possible unit cells
P (shaded area) for a given lattice � (points)

(reconstructed from) the lattice samples. Out of all possible ones, in practice,
the most interesting one is again the Voronoi cell, denoted in this chapter as P*,
since it treats equally the spatial and angular direction in ray space representation
(this is beneficial from the HVS viewpoint) and represents, bandwidth-wise, the
‘most low-pass’ characteristic (support) provided by the pattern (this typically
matches the possible physically implementable D/C converters [49]).

8. This Voronoi cell in the frequency domain is also referred to as the display
passband since it specifies which spatio-angular frequencies the display is
capable of reconstructing.

In summary, by performing a frequency domain analysis of a typical LF display
it is possible to determine the throughput of the display in terms of its spatial and
angular resolution, which in turn is determined by (from) the Voronoi cell of the
sampling pattern in the Frequency domain. For this, one needs to know display
setup, that is, enumerated rays at the ray generators in terms of position and angle
and the distance between the ray generators and the screen. Alternatively, if one
does not have access to display specifications, for estimating the display passband,
one can also use the measurement based techniques as described in [76, 77]. The
throughput of the display can be then expressed in terms of its spatio-angular
bandwidth, also referred to as the display bandwidth. The display bandwidth enables
one to calculate the optimal amount of data that has to be captured and sent to the
display to maximally utilize its visual capability. Moreover, it gives the user a good
idea on what to expect from the display in terms of visual quality.

Signal Processing Methods for Light Field Displays 31

4.3 Display-Camera Setup and Optimization

Based on the discussion presented in the previous two sections, one can estimate,
from the display configuration, the display bandwidth and the corresponding
optimal camera configuration for capturing the content or designing optimal filters
for adapting any content to the display. One can also, based on given (desired)
display bandwidth estimate the optimal display parameters (configuration) that
would result with such bandwidth. The corresponding display-camera setup, with
all adjustable parameters, covering those two cases, is illustrated in Fig. 22 and will
be discussed in the following two sections.

Notation-wise, tilde (∼), hat (∧) and bar (¯), are used for denoting the parameters
after the lattice basis reduction operation, estimated parameters, and optimized
parameters, respectively.

4.3.1 Light Field Display Setup Optimization

In the ray space representation, the optimal sampling pattern on the screen plane can
be defined by the following sampling matrix:

V (xs, αs) =
[
xs 0
0 αs

]
. (11)

Fig. 22 Light field display–camera setup together with notations for expected sampling patterns.
Subscripts p, s, and c are used to denote the parameters related to the ray generator, screen, and
camera/viewer plane, respectively

32 R. Bregovic et al.

The reason for this being optimal is two-fold. First, from the perspective of
human visual system, the spatial and angular direction should be treated in a
similar manner. Second, a diffusor (D/C converter) is much easier to implement for
such configuration—this effectively is a separable rectangular (in practice typically
gauss-shaped) low-pass reconstruction element.

For such desired sampling grid on the screen plane defined by (xs, αs), the
LF display optimization problem is to determine optimal parameters of the ray
generators (xp,αp) and the distance between the ray generator plane and the screen
plane zp for which the sampling pattern generated by ray generators V(xp, αp)
mapped to the screen plane

V
(
xp, αp, zp

) =
[
xp zp tan αp

0 αp

]
(12)

will match the desired one V(xs, αs), that is, to minimize δp given as

δp =
∥∥∥∥
∼
V
(
xp, αp, zp

)− V
(
xs, αs

)∥∥∥∥ . (13)

Here,
∼
V
(
xp, αp, zp

)
is the lattice basis reduced sampling matrix of V(xp,αp, zp).

The obtained solution will ensure that the difference between unit cells generated
by the ray generators and the desired one ‖P(V(xp, αp, zp))− P(V(xs, αs))‖ is small,
and consequently, the grids described by sampling lattices �(V(xp,αp, zp)) and
�(V(xs, αs)) match.

Although there are only three unknowns, the optimisation problem is highly non-
linear with a lot of local optima. Following the analysis in [8], it can be shown that a
good initial solution can be obtained by fixing one of the unknowns and estimating
the other two using the following expressions:

ẑp = xs

tanαp

⇐⇒ α̂p = tan−1 xs

zp
(14)

x̂p = xs
αs

αp

⇐⇒ α̂p = αs
xs

xp
. (15)

Moreover, a good selection for αp is

α̂p ≈ αs/L for L ∈ N. (16)

The optimal set of parameters
(
xp, αp, zp

)
can be found by refining the result

using iterative search/general purpose optimization in range x̂p ± xs/2.

Example: For illustration purpose the optimization will be demonstrated for a
display with desired spatial and angular resolution at the screen plane with,
xs = 1 mm and αs = 1◦. Following (16), the angular resolution is selected as

Signal Processing Methods for Light Field Displays 33

Fig. 23 Display optimization example: optimization error in the case of xs = 1 mm, αs = 1◦, and
αp = 0.0391◦. (b) is zoomed in version of (a) around the global minima

αp = 0.03125
◦ = 60

◦
/1920px. For those parameters, the matching error δp on

the screen plane is calculated for various values of xp (20 mm ≤ xp ≤ 40 mm)
and zp (1000 mm ≤ zp ≤ 2500 mm) and shown in Fig. 23. As seen on the
figure, due to the non-convexity of the optimization problem, direct optimization
will not find the minimum, that can be read from the curves as

(
xp, zp

) =
(32.00 mm, 1832.51 mm). By applying the two-step optimization proposed above,
one gets an estimate in the first step

(̂
xp, ẑp

) = (31.98 mm, 1833.00 mm) (see
(14) and (15)) and after performing single gradient-based optimization from this
estimate, ends up with the aforementioned values

(
xp, zp

)
corresponding to the

minimum. The values can be found in a fraction of a second instead of 10–15 min
needed for the grid search approach. For comparison, the estimated, optimized, and
desired Voronoi cells at the screen plane are shown in Fig. 24. As it can be seen,
the match with the desired P(V(xs,αs)) is almost perfect for the estimated and the
optimized solution.

The importance of a proper selection for αp is illustrated in Fig. 25. As seen in the
figure, for a good match in the example under consideration, αp has to be selected
small enough,≤0.01.

4.3.2 Camera Setup Optimization

In comparison to the display that is a band-limited device, a 3D scene (except a very
simple one) is not [13]. This makes the data capture (processing) for visualization
of a 3D scene on a display a two-fold problem. First, the scene must be recorded
without (noticeable) aliasing, and second, the captured data has to be ‘limited’ to
the reproduction capability of the display, that is, as discussed earlier, defined by its
bandwidth.

34 R. Bregovic et al.

(a) (B)

Fig. 24 Unit cells at screen plane for the optimized display setup solution for xs = 1 mm, αs = 1◦,
and αp = 0.0391◦. P

(
V
(
xp, αp, zp

))
dashed/blue, P(V(xs, αs)) solid/red, and P

(
V
(̂
xp, α̂p, ẑp

))
green/dot. (b) is a zoomed in version of part of (a)

Fig. 25 Normalized
ray-generator unit cells at the
screen plane,
P
(
V
(
xp, αp, zp

))
for

various values of αp

Similar to the discussion in the previous section, the optimal solution for
matching the bandwidths of a capture system and the display is obtained by
matching the sampling patterns of the display and cameras at the screen plane. This
can be formulated as the following optimization problem (see also Fig. 22): For
given display specifications described by (xp,αp, zp) find (xc, αc, zc) that minimizes

δc =
∥∥∥∥
∼
V
(
xp, αp, zp

)− ∼
V (xc, αc,−zc)

∥∥∥∥ , (17)

where
∼
V
(
xp, αp, zp

)
and

∼
V (xc, αc,−zc) are the lattice basis reduced sampling

matrices of the ray generators and cameras mapped to the screen plane, respectively.
The matching is done on the screen plane since this is the place where the
D/C conversion happens. The problem can be solved by iterative optimization
as described in Sect. 4.3.1. The optimized camera parameters are denoted as
(xc, αc, zc).

Signal Processing Methods for Light Field Displays 35

Fig. 26 Camera optimization example based on grid search for optimal P
(
V
(
xp, αp

))
optimized

for xs = 1 mm, αs = 1
◦

and αp = 0.0391
◦

with zc = 2500. (b) is zoomed in version of (a) around
the global minima

An important thing to point out is that this camera setup is optimal from the point
of view of the display, that is, the scene can be captured with this setup only if it has
the same or smaller bandwidth than the display. Otherwise, proper anti-aliasing has
to be applied during the capture stage or the scene has to be captured with a higher
density of cameras, pre-filtered and then decimated to the desired setup.

Example: Continuing the example from the previous section, for the obtained
optimized display setup defined by P

(
V
(
xp, αp, zp

))
that is an approximation of

the desired one P(V(xs,αs)), one can evaluate the optimal camera/viewer setup, that
is, the optimal parameters (αc, xc, zc) that would support the display bandwidth in
the best possible way. After fixing the screen to viewer distance zc = 2500 mm
and performing a grid search, the result of the optimization is shown in Fig. 26
with the dominant minimum being at (xc, αc) =

(
43.80 mm, 0.0544

◦)
. As seen in

Fig. 27, the obtained passband matches well with the one obtainable by the opti-
mized ray-generator setup. Similar to the ray generator optimization, the algorithm
can be made more efficient by performing the grid search only in the vicinity of a
good initial estimation that can be obtained by assuming ideal unit cell at the screen
plane, that is (xs, αs) and then performing the estimation using expressions similar
to (14), (15), and (16) with assumption that ẑp, x̂p, α̂p corresponds to ẑc, x̂c, α̂c .

The sampling pattern in the spatial domain can be converted to the frequency
domain, see Sect. 4.2. By shearing the frequency domain unit cell belonging to the
optimized display pattern from the screen plane to the camera plane, we obtain the
bandwidth of the display—shown in blue in Fig. 28. As discussed before, one should
sample the scene with wide enough bandwidth to avoid aliasing, then pre-filter and
then downsample.

36 R. Bregovic et al.

Fig. 27 Unit cells at screen
plane for the optimized
display and camera setup
solution for xs = 1 mm,
αs = 1

◦
, αp = 0.0391

◦
and

zc = 2500.
P
(
V
(
xp, αp, zp

))
dashed/blue and
P (V (xc, αc,−zc)) solid/red

5 Reconstruction of Densely Sampled Light Field

This section discusses how one can capture and generate content, which is suitable
for a wide range of light field displays. Our conceptual LF representation is the
DSLF, as defined in Sect. 2.7. In DSLF, we require that the disparity between
corresponding points in neighboring views is 1 pixel at most. Having such repre-
sentation at hand, one can interpolate rays at arbitrary positions by simple (quadri)
linear interpolation and the synthesized novel views are free of ghosting artifacts
[78]. Thus, DSLF is instrumental in many applications, where an arbitrary set of
rays is required. Beside LF displays creating continuous parallax, the list of such
applications includes refocused image generation [79], dense depth estimation [80],
object segmentation [81], novel view generation for FVT [82], and holographic
stereography [83].

5.1 Plenoptic Modelling, Depth Layering and Rendering

A DSLF is captured by imposing the required distance between neighboring camera
positions based on the minimal scene depth (zmin) and the camera resolution [10].
The latter should be high enough to capture the desired spatial details. With
reference to Fig. 3, consider cameras with focal distance f, having a horizontal
sampling rate �v satisfying the Nyquist sampling criterion for scene’s highest
texture frequency. The required sampling rate �t along the camera axis t is

�t ≤ zmin

f
�v. (18)

Signal Processing Methods for Light Field Displays 37

Fig. 28 Unit cells
(bandwidths) at the camera
(viewer) plane.
P ∗
(
V
(
xBIG
c , αBIG

c

))
red

and sheared
P ∗
(
V
(
xp, αp, zp

))
to the

camera plane blue (see [8] for
description of shearing)

This rate imposes a quite high number of cameras, which is not feasible in
practice. Therefore, the task is to synthesize the required number of intermediate
views based on input multiview images taken by a sparse set of cameras. Methods
of this type have been referred to as image-based rendering (IBR) [84]. Here, we
use the term ‘reconstruction’, in order to emphasize the links between sampling
and reconstruction of the underlying light field function in spatial (EPI) and Fourier
domains.

The EPIs of a DSLF are transformed in Fourier domain into spectra, whose
support is limited by the minimum and maximum depth and by the two sampling
rates, �v and �t, as shown in Fig. 29a. The yellow line in the figure represents a
particular scene depth layer. Sparse cameras capture an aliased version of the light
field, as illustrated in Fig. 29b. Therefore, a direct bandlimited reconstruction of
DSLF is not possible. One has to resort to methods using more insights about the
geometry of the scene.

Unstructured Lumigraph Rendering [86] can be given as an example of a generic
IBR technique, which utilizes a few perspective images augmented with an accurate
geometric model. Then, a ray must intersect some point on a geometric proxy of
a scene in order to estimate its radiance. There is a trade-off between the number
of input camera views and accuracy of the geometric proxy: the less the number
of input camera views, the more the rendering quality depends on the accuracy of
the available geometry. An accurate and globally consistent estimation of the scene
geometry can be sought in terms of depth maps, point clouds, oriented planes, using
the given camera images and making use of methods for structure from motion
and depth estimation from two or multiple images [87–91]. Having depth maps as
a scene geometry model, one can render the required views also by perspective
reprojections using a technique referred to as depth-image based rendering [92].

Depth layering has also been employed to effectively extend the plenoptic
sampling model and improve the quality of rendered views [93]. Recall, that
depth layers appear as directed lines in the Fourier representation of EPIs. Then,
layering in a finite number of depth layers is equivalent to sectioning the Fourier
spectrum in narrow sectors and a minimum number of equidistant layers can be

38 R. Bregovic et al.

specified for a given camera sampling rate �t, using (18). It has been shown in
[93] that a non-uniform layer sectioning, i.e., selecting densely-spaced layers around
intensive depth changes and coarsely-spaced layers in areas with no depth changes,
substantially improves the rendering quality. Depth layering has been implemented
through segmentation of spatial objects and estimating their evolution through the
given perspective views, thus separating depth layer volumes. Intermediate images
are then synthesized ‘layer-by-layer’ from the background to the foreground [93].
Depth layering is also in the core of our attempt to find and utilize a sparse LF
representation instrumental in DSLF reconstruction.

5.2 Reconstruction of DSLF in Directional Transform Domain

In general, natural scenes are composed by clustered objects forming a finite, rather
small number of depth layers. These depth layers appear as directional stripes in the
EPIs of the continuous LF and as ‘broken’ stripes in the EPIs of the coarsely sampled
LF. In frequency domain, directional filters should be able to analyze dominant
directions and provide guidance to the DSLF reconstruction. This is equivalent to
employing a proper frequency plane tiling. The case is illustrated in Fig. 29c where
the Fourier plane is tiled by four depth layers, with 1 pixel disparity range in each
layer. Given these layers, intermediate view interpolation is possible with no aliasing
artifacts. One can additionally simplify the search of depth layers, by combining it
with multiresolution analysis, as shown in Fig. 29d. The region L1 in the figure is
free from aliasing and therefore can be reconstructed by low-pass filtering. Noting,
that the procedure of low-pass filtering followed by decimation can be interpreted
as increasing the pixel size and thus decreasing the disparity between the given
rows, one can reduce the sought depth layering directions, depending on the scale
number. This gives rise to a frequency plane tiling with corresponding directional
filters which are also scale dependent. Construction of such tilling for the DSLF
reconstruction is discussed further in the section.

5.2.1 Directional Transforms

The interest in directional transforms comes from the observation that natural
images are composed by objects delineated by edges. In their seminal work [94],
Olshausen and Field have shown that natural images can be sparsely coded by
oriented and localized multi-scale primitives (atoms). Such basis elements can be
learned from training image datasets but can also be constructed in fixed dictionaries
with certain properties, notably targeting directionality and anisotropy [95]. To
formalize the problem, let’s consider a class of piecewise-smooth functions ε2(R2)
(also referred to as cartoon-like images), as discussed in [96–98]. A function
f ∈ ε2(R2) consists of two components and has a form f = f0 + f1ℵB, where
f0 and f1 are C2-smooth with support in [0, 1]2 and ℵB is characteristic function

Signal Processing Methods for Light Field Displays 39

of a set B ⊂ [0, 1]2 with bound δB being a closed C2-curve with bounded
curvature. The problem of reconstructing a function from ε2(R2) space using its
given incomplete measurements can be addressed through sparse approximation in
a basis or frame. The quality of the representation in a given frame is described by
the asymptotic decay speed of the L2 error of the approximation obtained using only
N largest coefficients of the frame decomposition. Consider the wavelet-domain
decomposition of functions in ε2(R2). For it, the approximation error rate is O(N−1),
where N is the number of best wavelet coefficients. In comparison, adaptive triangle-
based approximation of the cartoon-like images provides O(N−2) approximation
rate [95], where N is the number of triangles used for image representation. In order
to provide better approximation than the wavelet transform, the desirable transform
should provide a good directional sensitivity due to approximation of singularities
distributed over the C2-smooth curve δB which is the border between smooth image
pieces. Several frames and corresponding transforms have been constructed for
sparse representations, among them, tight curvelet frames by Candes and Donoho
[97] and countourlets by Do and Vetterli [99]. For the case of representing the light
field, one can observe that the anisotropic property of the EPI is caused by a shear
transform. This naturally leads to the idea of using a transform constructed with the
same property, namely the shearlet transform.

The optimal sparse approximation property of the tight shearlet frame has been
studied in [100]. Similar results for compactly supported shearlet frame have
been reported in [101]. Both types of shearlet frames provide an optimal sparse
approximation of f ∈ ε2(R2), in the sense that the N-term approximation fN
constructed by keeping N largest coefficients of the frame decomposition satisfies
‖f − fN‖2

2 = O
(
N−2(logN)3).

5.2.2 Shearlet Transform

Our goal is to construct a frame with directed multi-scale elements, tiling the Fourier
plane in the manner shown in Fig. 30a. This can be done by the so-called cone-
adapted shearlet system [98]. Let partition the plane into two cone-like regions
Cψ,C∼

ψ
complemented by a low-pass region Cφ as drawn in Fig. 30b. For the

effective tiling of the cones, one needs shearlet atoms generated by a scaling

function φ ∈ L2(R2) and two shearlets ψ,
∼
ψ ∈ L2

(
R

2
)
. The shearlet system is

generated by the translation of the scaling function, and translation, shearing and
scaling of the shearlet transform

S :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φm = φ (· − c1m) , m ∈ Z
2,

ψj,k,m = 2
j+�j/2�

2 jψ
(
SkA2j · −Mcm

)
,

∼
ψj,k,m = 2

j+�j/2�
2 j

∼
ψ(ST

k

∼
A2j · −

∼
Mcm),

(19)

40 R. Bregovic et al.

Fig. 29 DSLF in Fourier domain. (a) Baseband (in green) and its replicas. (b) Aliased replicas
due to undersampling (sparser set of cameras, e.g., �t = 4 px). (c) Discrete depth layers with 1
pixel disparity range. (d) Multiresolution analysis at three scales. © 2018 IEEE Reprinted with
permission from [85]

where Sk =
(

1 k

0 1

)
is a shear matrix, Mc =

(
c1 0
0 c2

)
and

∼
Mc =

(
c2 0
0 c1

)

are sampling densities of the translation grid and A2j =
(

2j 0
0 2−1

)
and

∼
A2j =(

2−1 0
0 2j

)
are scaling matrices, specifically tailored for the case of EPI, so to handle

singularities over straight lines [85].
Few design and implementation remarks follow. First, it is desirable that the

shearlet frames are compactly supported in both frequency and EPI domains.

Signal Processing Methods for Light Field Displays 41

The design of compactly-supported shearlets goes through the design of two 1D
half-band filters and a directional non-separable filter [85]. Second, while the
construction is in continuous domain, the input data comes from digital sensors in
the form of discrete pixels f d

J (n), n ∈ Z
2. This is handled by assuming that these

are samples of a continuous function at some sufficiently large scale J ∈ N

f (x) =
∑
n∈Z2

f d
J (n)2

J φ
(

2J x − n
)
. (20)

The particular choice of J depends on the maximum disparity between input
views and for dyadic scales it can be set as [85]

J = ⌈log2dmax
⌉
. (21)

Third, for an efficient implementation, the transform has to be discretized, that
is to find the digital filters ψd

j,k,m corresponding to ψ j, k, m . This should be done by

refining the regular grid Z2 in order to make it invariant under the shear transforms
[85]. The corresponding frames are not orthogonal and the dual shearlet filters have
to be obtained as well. Furthermore, the shear operation is enforced to be with
positive sign, i.e., 0 ≤ k ≤ 2j + 1 in order to apply it on EPIs (c.f. Fig. 30c).

Eventually, one gets analysis and synthesis frame elements represented through
pairs of digital filters enabling the direct and inverse shearlet transforms [85]. Figure
30d represents the frequency-domain support of the elements obtained following the
above design remarks for J = 2.

5.2.3 DSLF Reconstruction in Shearlet Domain

We consider the case of horizontal parallax first and make remarks about how to
generalize the method for full parallax later in the section. Consider a setting of
rectified cameras on a horizontal rig. The key starting point is to regard the given
set of camera views as a downsampled version of the unknown DSLF. For the sake
of simplicity, assume that the cameras are uniformly distributed over each �dmax�-
th view of DSLF, where dmax is the maximum disparity presented. An example is
shown in Fig. 31a, where EPI representation of four views with 16 pixels maximum
disparity is given. In Fig. 31b, the targeted densely sampled EPI is to be constructed
in such a way that the available data appears in rows with 16 px distance. Figure 31c
shows the same rows with respect to the fully reconstructed EPI, where the disparity
less than or equal to 1 pixel is maintained. The task is to inpaint the empty areas by
continuining the directional strips which only start to form in Fig. 31b.

Assume that the densely-sampled EPI is a square image reordered in a vector
y∗ ∈ R

N2
, where N = (K − 1)dmax + 1 and K is the number of input views. The

samples y ∈ R
N2

of y∗ are obtained by

y = Hy∗, (22)

42 R. Bregovic et al.

Fig. 30 Construction of shearlet frame. (a) Desired frequency plane tiling. (b) Low-pass region
and two adjacent cones. (c) Frame elements corresponding to admissible disparity directions (in
grey). (d) Frequency response of frame elements constructed by the use of particular filters. © 2018
IEEE Reprinted with permission from [85]

where H ∈ R
N2×N2

is a diagonal sampling matrix, such that H(kdmax, kdmax) = 1,
k = 0, . . . , K and 0 elsewhere. The measurements y form an incomplete EPI
where only rows from the available images are presented, while everywhere else
the EPI values are 0. The shearlet analysis and synthesis transforms are defined as
S : RN2 → R

N2×η, S∗ : RN2×η → R
N2

where η is the number of all translation-
invariant transform elements. The solution for y∗ given the sampling matrix H
and the measurements y is constrained by the sparsity requirement in the shearlet
transform domain, i.e.,

Signal Processing Methods for Light Field Displays 43

d1 d2 d3

d1

49

33

17
1

49

V

V

V

t
0≤di≤16a

b

c

t

t

1

d2 d3

Fig. 31 Four given views of an undersampled LF. (a) All views stacked together. (b) Input views
distributes with respect to dmax = 16 and views to be synthesized in between. (c) The targeted
DSLF. © 2018 IEEE Reprinted with permission from [85]

x∗ = argmin
x∈RN2

‖S(x)‖1, subject to y = Hx, (23)

The problem (23) can be solved e.g., by making use of the iterative procedure
within the morphological component analysis approach [102, 103]. More specifi-
cally, the EPI y∗ is obtained by performing shearlet-domain regularization through
iterative thresholding

xn+1 = S∗
(
Tλn (S (xn + αn (y −Hxn)))

)
, (24)

where (Tλx) (n) =
{
x(n), |x(n)| ≥ λ

0, |x(n)| < λ
, is a hard thresholding operator and αn is an

adaptive acceleration parameter, which controls the convergence [85].
Note the influence of the parameter dmax. It determines the number of scales J as

in (21). For dyadic scales j = 0, . . . , J − 1, one gets 2j + 1 + 1 shears (disparities)
in each scale sk = k

2j+1 , k = 0, . . . , 2j+1.

Full-parallax imagery can be handled in a separable manner: The horizontal
views of targeted DSLF are reconstructed first followed by the same procedure in
vertical direction. This is illustrated in Fig. 32 and referred to as direct method. A
computationally more efficient method, referred to as hierarchical reconstruction
is presented in Fig. 32b. There, the reconstruction is performed in a specific

44 R. Bregovic et al.

a b

Fig. 32 Full-parallax DSLF reconstruction. (a) Direct reconstruction: input views in black, blue
views reconstructed first, green views reconstructed second. (b) Hierarchical reconstruction:
by alternating reconstructions in horizontal and vertical directions, one reduces the maximum
disparity between views. © 2018 IEEE Reprinted with permission from [85]

order aimed at reducing the maximum disparity and thus reducing the number of
directional shearlet frame elements [85].

DSLF reconstruction employing shearlet transform has shown superior results
compared with state of the art depth-based methods [85]. This is to be attributed
to the way the transform handles spatial and directional LF details. If attempting
to estimate (a globally-consistent) depth and use it as a geometry guidance in view
synthesis, one has always to associate a depth value to a pixel, thus compromising in
cases of semi-transparent scenes when such association is not possible. In contrast,
the reconstruction based on directional transform employs atoms which are natural
for the LF imagery. Regularization is implemented in a linear space of functions,
which yields a good reconstruction quality also for scenes where the depth layers
are being fused in the captured views, as in the case of semi-transparent materials.

5.2.4 Other Sparsifying Transforms

While the shearlet transform is a suitable methodological example of directional
transform being good for DSLF reconstruction, other sparsifying approaches should
be mentioned as well.

In the work [104], the LF sparsity in the angular domain has been acknowledged
and the corresponding sparse representation has been sought through continuous
Fourier transform. The work takes 1D viewpoint trajectories as input and applies
the Fourier projection slice theorem [79] to get a sparse representation. Both
the magnitudes and positions of the continuous Fourier atoms are estimated. The
algorithm demonstrates its power on non-Lambertian full-parallax scenes.

Instead of employing a fixed transform, a sparse LF decomposition can be
obtained by learning a dictionary of atoms from LF data. A number of works have
pursued this approach. In the work [105], 4D spatio-angular LF patches have been

Signal Processing Methods for Light Field Displays 45

used to learn a dictionary to be used for the reconstruction of LF captured by a
single-sensor coded-mask optical system. In the work [106], LF patches have been
used to form dictionaries to be used for joint denoising and spatial/angular super-
resolution, which is essentially LF reconstruction. The problem of upsampling
camera arrays has been cast as a directional super-resolution in 4D space in the work
[107], where the generation of the desired perspective views has been performed
through patch matching. In the work [108], the directionality in EPI domain has been
employed to increase the dimensionality of image patches to 4D LF patches, which
can learn then a dictionary with atoms preserving the orientation-depth relationship.
The so-learned dictionaries have been used for depth estimation in light fields.
In the work [109], a view synthesis technique has been developed by a learning-
based approach using two convolutional neural networks for disparity and color
estimation correspondingly. Four corner views from the light fields have been used
to synthesize an intermediate view in attempt to increase the angular resolution of
the light field captured by commercial plenoptic camera.

6 Conclusions

The ultimate goal of a 3D visualization system is to perfectly recreate a desired
3D scene. To achieve this, such system must be able to generate all rays radiating
from the scene, that is, it must recreate the underlying continuous plenoptic function
describing the scene. Since in practice one deals with discrete data, the scene to
be visualized must be captured with a level of detail that is sufficient to avoid
artefacts due to sampling (e.g., aliasing), processed if needed (e.g., filtered to
display bandwidth) and finally reproduced by some means (converted back to its
continuous form at a resolution better than the resolution of the human eye). The
underlying concept for determining the requirements of visualization systems as
well as analyzing scenes in a systematic manner is based on the notion of LF.

This chapter presented the state of the art in the area of LF processing and
visualization. In the first half of the chapter, the basic LF concepts have been
introduced, emphasizing the concept of continuous plenoptic function and its
sampling for subsequent reconstruction. This has been followed by an overview of
the existing 3D display technologies summarizing their pros and cons with respect
to their ability to reproduce realistic 3D scenes, in terms of visual cues. In the second
part of the chapter, signal processing methods have been described for analyzing LF
displays and pre-processing data to be shown on such displays. These addressed
the two main problems related with today’s LF display, namely the display design
(how rays recreate an LF) and data manipulation (how to represent sampled LF and
process it for visualization).

It has been shown that the introduced concept of display bandwidth can be used
to either evaluate the quality of an LF display and optimize (pre-process) data
to be shown on the display or, if constructing the display, optimize the display
configuration such that the display specifications match the desired requirements.

46 R. Bregovic et al.

Equipped with this methodology, and with a good understanding of existing display
technology, one can identify and quantify the technology limitations, which in turn,
have to be addressed by proper data capture and processing. This part has been
addressed in the last section which overviewed the challenge of reconstructing
DSLF from a sparse set of captured images. The emphasis has been put on methods
based on directional transforms (and more specifically the shearlet transform), since
those are methodologically very elegant and result in the best LF reconstruction.

In conclusion, as illustrated in this chapter, although big leaps in the LF
technology have been made during recent years, further advancements are needed to
address e.g., the issues of display miniaturization (today’s systems are bulky), real
time processing of data to be visualized (today’s algorithms are computationally
demanding), and handling the storage and transmission of the large amount of data
associated with the high-quality LF visualization.

References

1. A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51-
151, 1939.

2. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,”
Computational Models of Visual Processing. MIT Press, pp. 3-20, 1991.

3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. ACM SIGGRAPH, 1996, pp.
31-42.

4. S.J.Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph”, in Proc. ACM
SIGGRAPH, 1996, pp. 43-54.

5. P. Moon and D.E. Spencer, The Photic Field. MIT Press, 1981.
6. R. Bregović, P. T. Kovács, T. Balogh, and A. Gotchev, “Display-specific light-field analysis,”

in Proc. SPIE 9117, 911710, 2014.
7. C. K. Liang, Y. C. Shih, and H. H. Chen, “Light field analysis for modeling image formation,”

IEEE Trans. Image Process. Vol. 20, no. 2, 446–460, 2011.
8. R. Bregović, P. T. Kovács, and A. Gotchev, “Optimization of light field display-camera

configuration based on display properties in spectral domain,” Optics Express, vol. 24, no.
3, pp. 3067-3088, Feb. 2016.

9. R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image analysis: An approach to
determine structure from motion,” Int. J. Comput. Vis., vol. 1, no. 1, pp. 7-55, 1987.

10. J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proc. ACM
SIGGRAPH 2000, pp. 307-318.

11. C. Zhang and T. Chen, “Spectral analysis for sampling image-based rendering data,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp 1038-1050, Nov. 2003.

12. J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic layer-based modeling for image based
rendering,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3405–3419, Sep. 2013.

13. C. Gilliam, P.L. Dragotti, and M. Brookes, “On the spectrum of the plenoptic function,” IEEE
Trans. Image Proc., vol. 23, no. 2, pp. 502-516, Feb. 2014.

14. D. R. Proffitt and C. Caudek, “Depth perception and the perception of events,” in Handbook
of Psychology. New York, NY, 2002.

15. A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable Light Fields: Matching the Requirements
Between the Human Visual System and Autostereoscopic 3-D Displays,” Proc IEEE vol. 102,
no. 10, pp. 1571-1587, 2014.

16. L. Goldmann and T. Ebrahimi, “Towards reliable and reproducible 3-D video quality
assessment,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 8043, 2011.

Signal Processing Methods for Light Field Displays 47

17. A. Boev, R. Bregović, and A. Gotchev, “Signal processing for stereoscopic and multi-view
3D displays,” in Handbook of Signal Processing Systems, 2nd edition, S. Bhattacharyya, E.
Deprettere, R. Leupers, and J. Takala, eds., Springer, 2013.

18. M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, “3D Displays,” Annual Review of
Vision Science, vol. 2, pp. 397-435, 2016.

19. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation
conflicts hinder visual performance and cause visual fatigue,” Journal of Vision, vol. 8, no.
33, 2008.

20. F. L. Kooi and M, Lucassen, “Visual comfort of binocular and 3D displays,” in Proc. SPIE
4299, Human Vision and Electronic Imaging VI, 586, 2001.

21. P. A. Howarth, “Potential hazards of viewing 3-D stereoscopic television, cinema and
computer games: a review,” Ophthalmic and Physiological Optics, vol. 31, pp 111–122,
2011.

22. M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt.
Soc. Am. A, vol. 33, no. 12, 2348-2364, 2016.

23. Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view
stereogram and 45-view stereoscopic display,” in Proc. of Third International Display
Workshops (IDW), 1996.

24. H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for
integral 3D image,” in Proc. SPIE 9011, 90111H, 2014.

25. Y. Kim, et al., “Accommodative response of integral imaging in near distance,” J. Disp.
Technol. Vol. 8, no. 2, pp. 70–78, 2012.

26. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view
windshield display for long-distance image information presentation,” Opt. Express vol. 19,
no. 2, pp. 704–716, 2011.

27. G. Lippmann, “Epreuves reversibles Photographies integrals,” Comptes Rendus Academie des
Sciences, vol. 146, pp. 446–451, 1908.

28. J.-H. Jung, K. Hong and B. Lee, “Effect of viewing region satisfying super multi-view
Condition in Integral Imaging,” SID Symposium Digest of Technical Papers, vol. 43, pp. 883–
886, 2012.

29. H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in
integral imaging 3D display,” J. SID, vol. 22, no. 3, pp. 158–162, 2014.

30. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D
integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt.
Express, vol. 18, no. 25, pp. 25573–25583, 2010.

31. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-
dimensional image based on integral photography,” Appl. Opt. vol. 36, pp. 1598–1603, 1997.

32. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral
imaging: sensing, display, and applications [Invited],” Appl. Opt. vol. 52, no. 4, pp. 546-560,
2013.

33. J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus
by use of real and virtual image fields,” Opt. Lett. Vol. 28, no. 16, pp. 1421–1423, 2003.

34. S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by
use of double display devices,” Appl. Opt. vol. 42, no. 20, pp. 4186–4195, 2003.

35. S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral
imaging and its applications” J. Inf. Disp., vol. 15, no. 1, pp. 37–46, 2014.

36. C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module
design”, in Proc. SPIE, 3012, pp.179-186, 1997.

37. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution
flat-panel display”, Opt. Express, vol. 19, no. 5, pp. 4129–4139, 2011.

38. B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, Display. New
York, NY, USA: Springer-Verlag, 2009.

39. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon., vol. 5, no. 4, pp. 456–
535, 2013.

48 R. Bregovic et al.

40. T. Honda, Y. Kajiki, S. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display
system for natural viewing of 3-D images,” in Three-Dimensional Television, Video and
Display Technologies. Berlin, Germany: Springer-Verlag, pp. 461–487, 2002.

41. Y. Takaki, Y. Urano, and H. Nishio, “Motion-parallax smoothness of short-, medium-, and
long-distance 3D image presentation using multi-view displays,” Opt. Express, vol. 20, no.
24, pp. 27180-27197, 2012.

42. Y. Takaki, “Development of super multi-view displays,” ITE Transactions on Media Technol-
ogy and Applications, vol. 2, no. 1, pp. 8–14, 2014.

43. Y. Kajiki, H. Yoshikawa and T. Honda: “Hologram-like video images by 45-view stereoscopic
display”, in Proc. SPIE, 3012, pp.154-166, 1997.

44. T. Honda, D. Nagai and M. Shimomatsu: “Development of 3-D display system by a fan-like
array of projection optics”, in Proc. SPIE, 4660, pp.191-199, 2001.

45. H. Nakanuma, H. Kamei, and Y. Takaki: “Natural 3D display with 128 directional images
used for human-engineering evaluation”, in Proc. SPIE, 5664, pp.28-35, 2005.

46. K. Kikuta and Y. Takaki: “Development of SVGA resolution 128-directional display”, in
Proc. SPIE, 6490, pp.64900U-1-8, 2007.

47. T. Kanebako and Y. Takaki: “Time-multiplexing display module for high-density directional
display”, in Proc. SPIE, 6803, pp.68030P-1-8, 2008.

48. Y. Takaki and N. Nago: “Multi-projection of lenticular displays to construct a 256-view super
multi-view display”, Opt. Express, vol. 18, no. 8, pp.8824-8835, 2010.

49. T. Balogh, “The HoloVizio system,” in Proc. SPIE 6055, 12 pages, 2006.
50. J. T. McCrickerd and N. George, “Holographic stereogram from sequential component

photographs,” Applied Physics Letters, vol. 12, no. 1, pp. 10-12, 1968.
51. D. J. DeBitetto, “Holographic Panoramic Stereograms Synthesized from White Light Record-

ings,” Applied Optics, vol. 8, no. 8, pp. 1740-1741, 1969.
52. M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Proc. SPIE, vol.

2176, pp. 73-84, 1994.
53. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display

system using LED illumination,” Applied Optics, vol. 48, no. 34, pp. H48-H53, 2009.
54. D. Brotherton-Ratcliffe, F. Vergnes, A. Rodin, and M. Grichine Holographic Printer. U.S.

Patent 1999b; No. US7800803B2.
55. Zebra Imaging Inc. Company (2012) http://www.zebraimaging.com/.
56. X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su,

“Video-rate holographic display using azo-dyedoped liquid crystal,” J. Display Technol., vol.
10, pp. 438–443, 2014.

57. S. Tay, M. Yamamoto, and N. Peyghambarian, “An updateable holographic 3-D display based
on photorefractive polymers,” SID Symp. Dig. Tech. Pap. 39, pp. 356–357, 2008.

58. M. Lucente, Diffraction-specific fringe computation for electro-holography, Ph.D. disserta-
tion, Cambridge, MA, USA, 1994.

59. T. Yatagai, “Three-dimensional displays using computer-generated holograms,” Optics Com-
munications, vol. 12, no. 1, pp. 43-45, 1974.

60. J. Mäkinen, From light fields to wavefields: Hologram generation from multiperspective
images, Master’s thesis, Tampere University of Technology, Finland, 2017.

61. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. Hoboken, N.J: John
Wiley & Sons, 2007.

62. Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic
Stereograms with Accommodation Cues,” in Proc. SPIE Practical Holography XXIV:
Materials and Applications, 7619, 761903, 2010.

63. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based
algorithm for computer-generated holograms with accurate depth cues,” Opt. Express vol.
23, no. 4, 3901-3913, 2015.

64. Ives FE. 1903. Parallax stereogram and process of making same. US Patent No. 725,567.
65. D. Lanman, M. Hirsch, Y. Kim Y, R. Raskar, “Content-adaptive parallax barriers: optimizing

dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. vol. 29,

http://www.zebraimaging.com

Signal Processing Methods for Light Field Displays 49

no. 6, 163: 10 pages, 2010.
66. G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, “Tensor displays: compressive fight field

synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. vol.
31, 80: 11 pages, 2012.

67. G. Wetzstein, D. Lanman, W. Heidrich, R. Raskar, ”Layered 3D: tomographic image synthesis
for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. vol.
30, 95: 11 pages, 2011.

68. F-C. Huang, K. Chen, G. Wetzstein, “The light field stereoscope: immersive computer
graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph., vol.
34, 60: 12 pages, 2015.

69. M. Hirsch, G. Wetzstein, R. Raskar, ”A Compressive Light Field Projection System,” ACM
Trans. Graph., vol. 33, 4: 12 pages, 2014.

70. J.H. Lee, J. Park, D. Nam, S.Y. Choi, D.S. Park, and C.Y. Kim, “Optimal projector
configuration design for 300-Mpixels multi-projection 3D display,” Opt. Express vol. 21, no.
22, 26820–26835, 2013.

71. E. Dubois, “The sampling and reconstruction of time-varying imagery with application in
video systems,” in Proc. IEEE 73, 502–522, 1985.

72. E. Dubois, “Video sampling and interpolation,” in The Essential Guide to Video Processing,
J. Bovik, ed., Academic Press, 2009.

73. P.Q. Nguyen and D. Stehlé, “Low-dimensional lattice basis reduction revisited,” ACM Trans.
Algorithms, vol. 5, no. 4, 46 pages, 2009.

74. F. Aurenhammer, “Voronoi diagrams – A survey of a fundamental geometric data structure,”
ACM Computing Surveys vol. 23, pp. 245-405, 1991.

75. E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale
Techniques, Cambridge University, 2011.

76. P. T. Kovács, K. Lackner, A. Barsi, A. Balázs, A. Boev, R. Bregović, and A. Gotchev,
“Measurement of perceived spatial resolution in 3D light-field displays,” in Proc. IEEE Int.
Conf. Image Processing, Paris, France, pp. 768–772, Oct. 2014.

77. P. T. Kovács, R. Bregović, A. Boev, A. Barsi, and A. Gotchev, “Quantifying spatial and
angular resolution of 3D light-field displays,” IEEE Journal of Selected Topics in Signal
Processing, vol. 11, no. 7, pp. 1213-1222, Oct. 2017.

78. Z. Lin and H.-Y. Shum, “A geometric analysis of light field rendering,” Int’l J. of Computer
Vision, vol. 58, no. 2, pp. 121–138, 2004.

79. R. Ng, “Fourier Slice Photography,” in Proc. ACM SIGGRAPH, pp. 735–744, July 2005.
80. I. Tosic and K. Berkner, “Light Field Scale-Depth Space Transform for Dense Depth

Estimation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 441–448, June 2014.

81. K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung, “Efficient 3D Object
Segmentation from Densely Sampled Light Fields with Applications to 3D Reconstruction,”
ACM Trans. on Graphics, vol. 35, no. 3, 2016.

82. M. Tanimoto, “Overview of FTV (free-viewpoint television),” in Proc. IEEE Conf. Multime-
dia and Expo (ICME 2009), pp. 1552–1553, June 2009.

83. J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-Corrected Light Field Rendering
for Creating a Holographic Stereogram,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 9–13, 2012.

84. H. Shum, S. Chan, and S. Kang, Image-Based Rendering. Springer- Verlag, 2007.
85. S. Vagharshakyan, R. Bregovic, and A. Gotchev, “Light Field Reconstruction Using Shearlet

Transform,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no.1,
pp. 133-147, Jan. 2018.

86. C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured lumigraph
rendering,” in Proc. 28th Conf. on Computer Graphics and Interactive Techniques, pp. 425-
432, 2001.

87. S. Fuhrmann, F. Langguth and M. Goesele “MVE – A Multi-View Reconstruction Environ-
ment,” in Proc EUROGRAPHICS Workshops on Graphics and Cultural Heritage, 2014.

50 R. Bregovic et al.

88. S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski “A Comparison and Evaluation
of Multi-View Stereo Reconstruction Algorithms,” in Proc. Conference on Computer Vision
and Pattern Recognition (CVPR), 2006.

89. H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Information,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, Feb. 2008.

90. S. N. Sinha, D. Scharstein and R. Szeliski, “Efficient High- Resolution Stereo Matching Using
Local Plane Sweeps,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.
1582–1589, June 2014.

91. G. Zhang, J. Jia, T. Wong, and H. Bao, “Consistent Depth Maps Recovery from a Video
Sequence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 974–
988, June 2009.

92. C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new
approach on 3D-TV,” in Proc. Stereoscopic Displays Appl, pp. 93-104, 2002.

93. J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic Layer- Based Modeling for Image Based
Rendering,” IEEE Trans. Image Processing, vol. 22, no. 9, pp. 3405–3419, Sept. 2013.

94. B. Olshausen and D. Field “Emergence of simple-cell receptive field properties by learning a
sparse code for natural images”, Nature vol. 381, pp. 607-609, 1996.

95. D. Donoho, “Sparse Components Analysis and Optimal Atomic Decomposition”, Technical
Report, Statistics, Stanford, 1998.

96. E. J. Candes, D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation
for objects with edges. Stanford University, 1999.

97. E. J. Candes and D. L. Donoho, “New tight frames of curvelets and optimal representations of
objects with piecewise c2 singularities,” Comm. Pure Appl. Math., vol. 57, no. 2, pp. 219–266,
2004.

98. G. Kutyniok, Shearlets: Multiscale analysis for multivariate data. Springer Science &
Business Media, 2012.

99. M. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution
image representation,” IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091–2106, Dec
2005.

100. G.Easley, D.Labate, and W.-Q.Lim, “Optimally sparse image representations using shearlets,”
in Proc. Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC ’06), pp. 974–978,
Oct 2006.

101. G. Kutyniok and W.-Q. Lim, “Compactly supported shearlets are optimally sparse,” J. of
Approximation Theory, vol. 163, no. 11, pp. 1564 – 1589, 2011.

102. J.-L. Starck, Y. Moudden, J. Bobin, M. Elad, and D. L. Donoho, “Morphological Component
Analysis,” in Proc. SPIE 5914 Wavelets XI, 59140Q, May 2005.

103. J. Fadili, J.-L. Starck, M. Elad, and D. Donoho, “Mcalab: Reproducible Research in Signal
and Image Decomposition and Inpainting,” IEEE Computing in Science & Engineering, vol.
12, no. 1, pp. 44–63, 2010.

104. L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light Field Reconstruction Using
Sparsity in the Continuous Fourier Domain,” ACM Trans. on Graphics, vol. 34, no. 1, 2014.

105. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography
using overcomplete dictionaries and optimized projections,” ACM Transactions on Graphics,
vol. 32, no. 4, pp. 1-11, 2013.

106. Z. Li, Image patch modeling in a light field. PhD thesis, EECS Department, University of
California, Berkeley, May 2014.

107. D. C. Schedl, C. Birklbauer, and O. Bimber, “Directional Super-Resolution by Means of
Coded Sampling and Guided Upsampling,” in Proc. IEEE Conf. Computational Photography
(ICCP), pp. 1–10, 2015.

108. O. Johannsen, A. Sulc, and B. Goldluecke, “What Sparse Light Field Coding Reveals
about Scene Structure,” in Proc. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, pp. 3262-3270, 2016.

109. N.K. Kalantari, T.-C. Wangand and R. Ramamoorthi, “Learning-Based View Synthesis for
Light Field Cameras,” ACM Trans. on Graphics, vol. 35, no. 6, 2016.

Inertial Sensors and Their Applications

Jussi Collin, Pavel Davidson, Martti Kirkko-Jaakkola,
and Helena Leppäkoski

Abstract Due to the universal presence of motion, vibration, and shock, inertial
motion sensors can be applied in various contexts. Development of the microelec-
tromechanical (MEMS) technology opens up many new consumer and industrial
applications for accelerometers and gyroscopes. The multiformity of applications
creates different requirements to inertial sensors in terms of accuracy, size, power
consumption and cost. This makes it challenging to choose sensors that are suited
best for the particular application. In addition, development of signal processing
algorithms for inertial sensor data require understanding on the physical principles
of both motion generated and sensor operation principles. This chapter aims to aid
the system designer to understand and manage these challenges. The principles
of operation of accelerometers and gyroscopes are explained with examples of
different applications using inertial sensors data as input. Especially, detailed
examples of signal processing algorithms for pedestrian navigation and motion
classification are given.

1 Introduction to Inertial Sensors

Inertial sensors measure motion parameters with respect to the inertial space.
They generally fall into two categories: (a) instruments sensing linear inertial
displacement, also known as accelerometers, (b) rotational inertial rate sensors, also
called angular rate sensors or gyroscopes.

J. Collin (�)
Laboratory of Pervasive Computing, Tampere University of Technology, Tampere, Finland
e-mail: jussi.collin@tut.fi

P. Davidson · H. Leppäkoski
Laboratory of Automation and Hydraulics, Tampere University of Technology, Tampere, Finland
e-mail: pavel.davidson@tut.fi; helena.leppakoski@tut.fi

M. Kirkko-Jaakkola
Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
e-mail: martti.kirkko-jaakkola@nls.fi

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_2

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_2&domain=pdf
mailto:jussi.collin@tut.fi
mailto:pavel.davidson@tut.fi
mailto:helena.leppakoski@tut.fi
mailto:martti.kirkko-jaakkola@nls.fi
https://doi.org/10.1007/978-3-319-91734-4_2

52 J. Collin et al.

1.1 Accelerometers

An accelerometer is a device that measures translational acceleration resulting
from the forces acting on it. This acceleration is associated with the phenomenon
of weight experienced by a mass that resides in the frame of reference inside
accelerometer and can be described by Newton’s second law of motion: “A force F
acting on a body of mass m causes the body to accelerate with respect to inertial
space.” A typical accelerometer consists of a small mass, also known as a proof or
seismic mass, connected via a spring to the case of the instrument as shown in Fig. 1.

When the instrument experiences acceleration along its sensitive axis, the proof
mass is displaced with respect to the case of instrument; this is the scenario in
Fig. 1b. Under steady state conditions, the force acting on the mass will be balanced
by the tension in the spring. The extension (or contraction) of the spring creates
a force which is proportional to the displacement. When there is no drag force to
resist the movement of the proof mass, its displacement is directly proportional to
the acceleration. This way the applied acceleration can be measured by measuring
the displacement of the proof mass.

There are many different designs for accelerometer but most of them operate
in a manner similar to the simple spring and mass system described above. In
many applications, including navigation, the three dimensional vector of acceler-
ation is required. Normally, three single-axis accelerometers are used. In recent
years, tri-axis instruments have become very popular in the segment of low-cost
accelerometers. It is a common practice to mount the three accelerometers with
their sensitive axes mutually orthogonal, although any non-coplanar configuration
is acceptable as long as the angles between the sensitive axes are known.

Accelerometers are insensitive to the gravitational acceleration and unable to
separate the total acceleration from that caused by the presence of a gravitational
field [18]. These sensors instead provide measurements of the difference between
the true acceleration and the acceleration due to gravity. This quantity is the non-
gravitational force per unit mass exerted on the instrument, and often called a

a b c

Fig. 1 A mass-and-spring accelerometer under different conditions: (a) at rest or in uniform
motion; (b) accelerating; (c) at rest

Inertial Sensors and Their Applications 53

specific force. For example, if we consider an accelerometer in free fall, the case
and the proof mass will fall together. Therefore, there will be no displacement of the
proof mass with respect to the case and the output of the instrument will remain at
zero. In other words, the acceleration a of the instrument with respect to an inertially
fixed set of axes equals the gravitational acceleration g and the specific force is zero.
If the accelerometer is held stationary, i.e. a = 0, it will measure the force which
is counteracting to stop it from falling, f = −mg, as visualized in Fig. 1c. This
specific force is required to offset the effect of gravitational attraction. Therefore, the
measurements provided by the accelerometer must be combined with knowledge of
the gravitational field in order to determine the acceleration of the sensor unit with
respect to the inertial space.

The various accelerometer technologies include [60]: mechanical, surface acous-
tic waves, piezoelectric, fiber optic, vibrating beam and solid-state microelectrome-
chanical (MEMS) accelerometers. Historically, mechanical accelerometers were the
first type of accelerometers in mass production. All mechanical accelerometers
are mass–spring type sensors. They can be implemented in open loop when a
displacement of a proof mass with respect to its ‘null’ position is proportional
to the specific force applied along its input axis. They can be also implemented
as closed loop or force feedback pendulous accelerometer in which the spring
is replaced by an electromagnetic device that produces force on the proof mass
to maintain it at its ‘null’ position. The most precise mechanical force-feedback
pendulous accelerometers are capable of measuring specific force with resolutions
of micro-g or better. This class of mechanical accelerometers is used in very
accurate (navigation grade) inertial navigation systems (INS).

Most of accelerometers nowadays are manufactured using MEMS technology
that was developed for the military and aerospace markets in the 1970s. In 2016, the
production volume of MEMS inertial sensors was about 7.5 billion units, dominated
by consumer electronics and automotive applications. MEMS accelerometers can
be fabricated in many different ways. The basic process modules include bulk
micromachining, surface micromachining, wafer bonding, and deep reactive-ion
etching (DRIE). In most cases, the fabrication involves a combination of two
modules or more. The majority of the commercial accelerometers are surface
micromachined. One advantage of surface micromachining is its potential of
Complementary Metal-Oxide-Semiconductor (CMOS) integration. However, due
to some technical challenges, two-chip solutions are still dominant in commercial
products. Bulk micromachining is often combined with wafer bonding (glass–
silicon or silicon–silicon) to produce high-performance accelerometers. A recent
development in which single crystal silicon (SCS) sensing elements are created
in CMOS substrate by using DRIE shows some promising results. In terms of
materials, almost all MEMS accelerometers are made of silicon including silicon
on insulator (SOI). More about MEMS accelerometers can be found in [20, Chapter
2.05].

54 J. Collin et al.

1.2 Gyroscopes

Gyroscope (or gyro for short) is a device for measuring or maintaining angular
orientation. It can measure turn rates caused by changes in attitude with respect
to inertial space. Historically the first sensors of this kind were mechanical gyros.
They exploit the inertial properties of a wheel spinning at high speed, which tends
to keep the direction of its spin axis due to the principles of conservation of
angular momentum. Although the axle orientation does not remain fixed, it changes
in response to an external torque much less and in a different direction than it
would without the large angular momentum associated with the disc’s high rate
of spin and moment of inertia. Since external torque is minimized by mounting the
device in gimbals, its orientation remains nearly fixed, regardless of any motion
of the platform on which it is mounted. There are several designs for mechanical
gyros including: dynamically tuned gyroscope (DTG), flex gyro, and dual-axis rate
transducer (DART) which is suitable only for low accuracy applications [60].

Following the development of spinning mass gyros, other kinds of angular rate
sensors, such as optical and vibrating gyros, were developed [4]. These sensors are
based on different physical principles than the conservation of angular momentum.
Optical gyros are based on the Sagnac effect which causes a phase shift between
two waves counter-propagating in a ring interferometer that is rotating; the shift is
proportional to the rate of rotation. Vibrating gyros are based on Coriolis effect that
induces a coupling between two resonant modes of a mechanical resonator. Optical
gyros can be effectively implemented using different integrated optics technologies
that generally fall into two categories: (a) ring laser gyroscopes (RLG) and (b)
fiber optics gyroscopes (FOG). RLGs can be made very accurate to meet the
requirements for navigation grade, but on the other hand, they are expensive, their
size increases with performance, and they are high-voltage devices. FOGs are less
accurate compared to RLGs, but they meet the requirements of medium accuracy
(tactical grade), medium cost gyroscopes.

Vibrating gyros are usually manufactured using MEMS technology [20, Chapter
2.06]. From the accuracy point of view, MEMS gyros are of low to medium accuracy
with their performance approaching FOG. They have low manufacturing costs,
small physical size, and low power consumption; moreover, they can survive severe
shocks and temperature changes. Therefore, MEMS technology is ideally suited for
mass production.

1.3 Areas of Application

Due to the universal presence of motion, vibration, and shocks, inertial sensors can
be applied almost everywhere, from aircraft and space navigation to underground
drilling, from hard disk fall protection to airbags in vehicles, and from video
games to performance improvement of athletes. The large variety of applications

Inertial Sensors and Their Applications 55

creates different requirements to inertial sensors in terms of accuracy, size, power
consumption, and cost. For example, the principal driving force for high-accuracy
inertial sensors development has been inertial navigation for aircraft and sub-
marines, precise aiming of telescopes, imaging systems, and antennas. For some
applications, improved accuracy is not necessarily the most important issue, but
meeting performance at reduced cost and size is. The major requirements to inertial
sensors in automotive industry are low cost, high reliability, and possibility of mass
production. In the following sections some examples of applications are given.

1.3.1 Navigation

An INS normally consists of three gyros and three accelerometers. The data from
inertial sensors is processed to calculate the position, velocity, and attitude of
the vehicle. Given the ability to measure the acceleration it would be possible to
calculate the change in velocity and position by performing successive mathematical
integrations of the acceleration with respect to time. In order to navigate with respect
to the desired reference frame, it is necessary to keep track of the direction in which
the accelerometers are pointing. Rotational motion of an INS with respect to the
inertial reference frame may be sensed by gyroscopes that are used to determine the
orientation of the accelerometers at all times. Given this information it is possible
to resolve the accelerations into the reference frame before the integration process
takes place.

High performance INSs require accurate sensors. Such systems are expensive,
weigh several kilos, and have significant power consumption. However, not in every
navigation application has a high-performance INS to be used. For example, land
vehicle navigation systems can significantly reduce INS error growth by applying
non-holonomic constraints1 and using odometer measurements. Therefore, in many
land vehicle applications a lower cost tactical grade INS can be used instead of a
more expensive navigation grade INS. Pedestrian navigation systems take advantage
of biomechanics of walking. Recognizing that people move one step at a time, the
pedestrian mechanization restricts error growth by propagating position estimates in
a stride-wise fashion, rather than on a fixed time interval. Inertial sensors are used
to detect the occurrence of steps, and provide a means of estimating the distance
and direction in which the step was taken. For step detection, accelerometers do not
have to be of high accuracy. Pedestrian navigation is addressed more profoundly in
Sect. 3.

1In short, non-holonomic constraints limit the lateral and vertical speeds of the vehicle and this
knowledge is translated into a measurement [53].

56 J. Collin et al.

1.3.2 Automotive

In modern cars, MEMS accelerometers are used in airbag deployment systems
to detect a rapid negative acceleration of the vehicle, determine if a collision
occurred, and estimate the severity of the collision. Another common automotive
use of MEMS gyros and accelerometers is in electronic stability control systems.
It compares the driver’s intended direction which can be determined through the
measured steering wheel angle to the vehicle’s actual direction determined through
measured lateral acceleration, vehicle yaw rotation, and individual wheel speeds.

Other automotive applications of MEMS accelerometers include monitoring of
noise, vibration, harshness, and conditions that cause discomfort for drivers and
passengers and may also be indicators of mechanical faults. Once the data has been
collected during road tests it can be analyzed and compared to previous captures
or against donor vehicles. Comparing data may highlight a problem within the
vehicle allowing the technician to proceed to a repair with confidence supported
by measurements taken.

1.3.3 Industrial

In industrial applications accelerometers are widely used to monitor machinery
vibrations. Analysis of accelerometer based vibration data allows the user to
detect conditions such as wear and tear of bearings, shaft misalignment, rotor
imbalance, gear failure, or bearing fault in rotating equipment such as turbines,
pumps, fans, rollers, compressors, and cooling towers. The early diagnosis of these
faults can prevent costly repairs, reduce downtime, and improve safety of plants
in such industries as automotive manufacturing, power generation, pulp and paper,
sugar mills, food and beverage production, water and wastewater, hydropower,
petrochemistry, and steel production.

1.3.4 Consumer Products

The availability of small size tri-axis accelerometers and gyroscopes with prices less
than $2 has opened up new markets for inertial sensors in video game controllers,
mobile phones, cameras, and other personal electronic devices. The applications of
inertial sensors in consumer devices can be divided into the following categories:
(a) orientation sensing, (b) gesture recognition, (c) motion input, (d) image stabi-
lization, (e) fall detection, and (f) sport and healthy lifestyle applications.

The most common application of orientation sensing by accelerometers is
converting the display to a horizontal or vertical format based on the way the device
is being held. For example STMicroelectronics LSM6DSL inertial module provide
configurable interrupts for change in orientation [59]. Third-party developers have
created thousands of motion-sensitive games and other fanciful applications with
orientation sensing features. With the use of the Global Positioning System (GPS)
and a magnetic compass, location-based services are enabled, making it possible to
identify special sales or lunch menus by just pointing a cell phone at a building.

Inertial Sensors and Their Applications 57

Computer or video games can exploit gesture recognition techniques and make
it possible to play the games or do virtual activities such as swinging a tennis racket
or drive a vehicle by moving a hand-held controller. Nintendo’s Wii video game
console uses a controller called a Wii Remote that contains a tri-axis accelerometer
and was designed primarily for motion input. The Sony PlayStation 4 uses the
DualShock 4 remote with embedded inertial module that can be used, for example,
to make steering more realistic in racing games.

Commonly used example of motion input application is darkening the dis-
play when not needed by detecting the motionless state. Some smartphones use
accelerometers for user interface control, for example, make selections by scrolling
down a list by tilting. The accelerometer-enabled wireless mouse makes it possible
to move an object in space and have a corresponding object or cursor follow in a
computer-generated visual model.

Cameras use inertial sensors for image stabilization to reduced blurring asso-
ciated with the motion of a camera during exposure [24]. It compensates for
angular yaw and pitch movement of the camera. There are two ways for images
stabilization in cameras: (1) make adjustments to the image sensor or the lenses
to ensure that the image remains as motionless as possible, (2) digital image
stabilization in which the physical image is allowed to track the scene on the sensor
by software to produce a stable image. The digital technique requires the pixel
count to be increased to allow the image to move on the sensor while keeping
reference points within the boundaries of the capture chip. Different companies
have different names for their image stabilization technology: Image Stabilizer
(Canon), Vibration Reduction (Nikon), Optical SteadyShot (Sony Cyber-Shot),
Super SteadyShot (Sony), MEGA Optical Image Stabilizer (Panasonic and Leica),
Optical Stabilizer (Sigma), Vibration Compensation (Tamron) and Shake Reduction
(Pentax).

Fall detection is an important safety feature to protect hard disk drives in laptops
and some other portable, “always on” devices like MP3 players [1]. Many of these
devices feature an accelerometer which is used to detect drops. If a drop is detected,
the heads of the hard disk are parked to avoid data loss and possible head or disk
damage caused by the shock.

1.3.5 Sport

The advent of small low-cost inertial sensors caused the boom in sensor-laden
sport equipment. Examples of MEMS inertial sensor application in sports include
running, golf, tennis, basketball, baseball, soccer, boxing. Wearable electronics
for running may include accelerometers, gyroscopes, magnetometer and pressure
sensor located in waistband, running shorts or footpod. It can measure different
running metrics, such as cadence, step length, braking, foot contact time, pelvic
rotation, tilt, etc.

58 J. Collin et al.

In ball games such as soccer and basketball inertial sensors are integrated in
the ball. In soccer the equipment estimates how hard the ball has been struck,
its speed, spin, and flight path [41]. In basketball the system detects shots made
and missed as well as throw distance, speed, spiral efficiency, and whether a ball
has been caught or dropped. In bat-and-ball games (baseball, softball, cricket) the
equipment is embedded in the bat and computes different swing metrics, including
power, speed, efficiency, and distance the bat travels in the hitting zone. In tennis
the inertial sensors are usually embedded in racket’s handle and they can detect the
type of shot (forehand, backhand, serve, and smash), ball spin (topspin, slice), swing
speed and ball impact spot. In golf the sensors are attached to the shaft of a club and
track the position, speed, and angle of the club as it moves through a swing.

Concussion detection is important in contact sports of all kinds, especially
in boxing, football and hockey [47]. MEMS accelerometers that are able to
measure more than 100 g are usually embedded in helmets, headbands or mouth
guards to measure the severity of an impact. In boxing a small device containing
accelerometer can be attached to the boxer hand wraps or gloves to measure punch
types and rate, power, hit/miss ratio.

Other examples of inertial sensors in sport include motion analysis such as figure
skating jumps, and trajectory analysis in ski jumping and javelin. Xsens MVN
Motion Capture [51, 67] is an interesting example of how inertial sensors can
be used to record human movement. The motion capture suit includes 17 inertial
trackers strapped to the different parts of the body. The data can be used in medical
and sports applications to analyze human movement and gait. It can be also used to
animate digital characters in movies, games, and virtual environments.

2 Performance of Inertial Sensors

Selection of the most suitable inertial sensors for a particular application is a
difficult task. Among the parameters that have to be considered are resolution,
dynamic range, accuracy, cost, power consumption, reliability, weight, volume,
thermal stability, and immunity to external disturbances. Usually when sensors are
examined for compliance, accuracy is the first parameter to start with; however,
accuracy cannot be expressed as a single quantity because several factors contribute
to it.

All accelerometers and gyros are subject to errors which limit their accuracy
in the measurement of the applied acceleration or angular rate. The measurement
error is defined as the difference between the measured and the true value of the
physical quantity. Generally, inertial sensor errors fall into two broad categories: (a)
systematic errors and (b) random errors. When measurement errors are analyzed,
the same methodology can be applied to gyros and accelerometers.

Systematic errors are measurable and sensor type specific. They are caused by
inaccuracy of system parameters and parasitic effects, streaming from the sensor
design, its fabrication processes, and the readout electronics. In the context of

Inertial Sensors and Their Applications 59

MEMS sensors, systematic errors apply to whole batches of sensors of a certain
type produced by the same process.

Random errors are caused by interference, noise, instability etc. They can be
divided into two groups: (a) wideband or uncorrelated noise and (b) colored
or correlated noise. Examples of uncorrelated noise are thermal noise [39] and
quantization errors in the analog-to-digital conversion of the output signal. These
errors can be modeled as additive Gaussian white noise process. The effect of zero-
mean white noise can be mitigated by averaging the signal over longer periods of
time; since the output rate of inertial sensors is typically very high (e.g., 1000 Hz),
the signals are usually down-sampled to a slower update rate by averaging.

Correlated noise is a more complicated and much more diverse phenomenon.
Some examples of correlated noise are random walk, Markov processes, and flicker
noise. Flicker or 1/f noise is a nonstationary, long-memory process (i.e., its
autocorrelation decays slower than exponentially) [34]. The name stems from the
fact that the power spectral density of 1/f noise is inversely proportional to the
frequency; this implies that a major part of the power of the noise is located at low
frequencies. In the context of inertial sensors, this noise process is also referred to
as bias instability [28], but in this chapter, we will use the term 1/f noise to refer to
this process and reserve the term “bias instability” for characterizing sensor quality
(see Sect. 2.1).

1/f noise has been observed in a wide range of different contexts, such as
semiconductors, time standards, and highway traffic; even the ancient records of
river Nile’s flood levels have a 1/f power spectral density [64]. However, the origin
of the phenomenon is not known, but it seems that there is no common physical
mechanism to cause it in all these contexts [34]. Therefore, in order to model inertial
sensor errors accurately, the contribution of 1/f noise must be handled carefully. A
common tool for characterizing the contributions of the different noise types is the
Allan variance which is described in Sect. 2.1.2. Other characterization methods do
exist [37], but using Allan variance is recommended in [29].

2.1 Effect of Different Sources of Error

When analyzing the measurement errors of inertial sensors, it is a common
practice to split the measurement error into several components that are mutually
independent and specific to different modes of operation. For instance, even if the
applied input signal is absent, the sensor output is not zero; this error source is called
an offset or bias. Therefore, the bias is defined as the average of sensor output over
a specified time interval that has no correlation with the input signal. Accelerometer
bias is measured in m/s2 or fractions of g whereas gyro bias is measured in ◦/h
or ◦/s. In many cases the bias is not exactly constant but changes slowly in time.
This phenomenon is also called bias instability and can be quantified as the peak-
to-peak amplitude of the long-term bias drift.

60 J. Collin et al.

The next important error component is the scale factor error which is defined
as the error in the ratio relating the change in the output signal to a change in the
applied input signal. Scale factor error is commonly expressed as a ratio of output
error to input rate in parts per million (ppm), or, especially in the lower performance
class, as a percentage figure.

Cross-axis sensitivity errors result from the sensor’s sensitivity to signals applied
about axes that are perpendicular to the sensitive axis. Such errors can be due to
physical misalignments of the sensors’ sensitive axes or, particularly in the case
of MEMS sensors, electromagnetic interference between the channels. The cross-
axis sensitivity is also expressed in ppm or a percentage of the applied acceleration
or angular rate. Linearity (non-linearity) error is defined as the closeness of the
calibration curve to a specified straight line. The acceleration-dependent bias
(g-dependent bias) is an error which occurs in Coriolis vibratory gyros; it is
proportional to the translational acceleration of the sensor. Sudden impacts and
shocks may cause significant errors in the output of both accelerometers and
gyroscopes in other ways as well, e.g., as a hysteresis effect.

All the error sources mentioned above consist of both systematic and random
errors.

2.1.1 Calibration of Inertial Sensors

Calibration refers to correcting a measuring device by adjusting it to match
reference values. Calibration of inertial sensors can significantly improve their
performance. Long-term errors, i.e., those which remain constant for at least
3–5 years, can be corrected for in the factory. The factory calibration usually
includes temperature compensation to guarantee good performance over the entire
operational temperature range. This calibration eliminates a significant part of the
measurement errors. The residual errors are much smaller than the initial errors
and can be explained by the fact that the bias and scale factor errors can slightly
change when the system is turned on next time—the so-called day-to-day error.
Furthermore, the temperature compensation does not eliminate all errors caused by
temperature variations.

Despite the fact that the residual errors are much smaller than the errors before
the factory calibration, the sensors’ performance can be improved even further if
these residual errors are calibrated out. The approach for calibration of these errors
depends on the application, the measurement scenario, and the type of error. From
the system’s perspective, one can approach the errors and their correction based
on the sensor transfer characteristic (static and dynamic). With the emergence of
digital signal processing and its use with sensors, this approach is becoming the
standard. Keeping in mind that all sources of measurement error cumulatively affect
the accuracy and resolution of a sensing system in a negative manner, the systems
obey the principle of “a chain only being as strong as its weakest link”. Errors
such as interference, noise, and instability could be eliminated through chopping
or dynamic amplification and division applied to individual sensors.

Inertial Sensors and Their Applications 61

2.1.2 Allan Variance

Named after Dr. David W. Allan, the Allan variance [2] is a quantity to characterize
the stability of oscillator systems. Although originally developed for frequency
standards, the Allan variance is widely used to characterize the performance of
inertial sensors; it reveals the contributions of uncorrelated and random walk type
error processes on the measurement noise. The Allan variance σ 2

A is a function of
the averaging time τ , computed as

σ 2
A(τ) =

1

2(N − 1)

N−1∑
i=1

(ȳτ (i + 1)− ȳτ (i))
2 (1)

where the data y have been partitioned into N disjoint bins of length τ , and ȳτ (i) is
the average value of the ith such bin. The square root of Allan variance is known as
the Allan deviation, which is in accordance with common statistical terminology.

Usually, the Allan variance function is visualized as a log–log graph; an example
is shown in Fig. 2. Generally, the Allan variance curve is U-shaped. At short
averaging times, quantization and uncorrelated noise dominate the output. The
variance of independent and identically distributed data is inversely proportional
to the averaging time, which causes a negative slope to the Allan variance at short
averaging times. As the averaging time increases, after some point, 1/f noise starts
to dominate over uncorrelated noise and the curve levels off—the Allan variance
of 1/f noise is constant [64]. Eventually, the curve starts to increase due to rate
random walk. There are also other phenomena that can be identified using Allan
variance [29], but the three effects discussed above are usually the most significant.

Based on the Allan variance plot, it is possible to quantify certain characteristics
of the sensor noise. The spectral density of white noise can be estimated as the

Fig. 2 An example Allan
variance plot

62 J. Collin et al.

value of the descending white noise slope at τ = 1 s. The minimum value of the
Allan variance between the white noise and rate random walk slopes corresponds
to the square of the bias instability of the sensor; this value is directly related to the
power of 1/f noise [64].

2.1.3 Modeling the Measurement Errors

A key to estimating and compensating for inertial sensor measurement errors is an
accurate model of the evolution of the different error components with time. Some
of the most commonly encountered models of sensor error time series x(t) are

• random constant

x(t) = x(t − 1); (2)

• first-order Gauss–Markov (GM) models of the form [9]

x(t) = e−Δt/γ x(t − 1)+ η(t) (3)

where Δt is the time interval between steps, γ is the correlation time of the
process, and η(i) are independent zero-mean Gaussian random variables; and

• random walk

x(t) = x(t − 1)+ η(t) (4)

where the random increments η(i) are independent and zero-mean (but not
necessarily Gaussian).

These three models are closely related. It can be seen that when the correlation
time γ tends to infinity, GM approaches the random walk process. On the other
hand, with γ → 0, GM tends to white noise. Random walk and GM processes are
examples of autoregressive (AR) models which are more generally expressed as

x(t) =
t−1∑
i=0

a(i)x(i)+ η(t) (5)

where a(i) are known coefficients and η(i) are independent zero-mean random
variables. Sometimes the noise process η is called the driving noise. Figure 3 shows
an example realization of white noise along with the random walk and GM processes
(γ = 300 samples) generated using the same noise. It can be seen that the correlated
processes have significantly higher values than their driving noise.

Inertial Sensors and Their Applications 63

Fig. 3 Example realizations
of white noise, random walk,
and a first-order
Gauss–Markov process

Usually, scale factor errors are quite stable over time and can be modeled as
random constants.2 In contrast, the bias of an inertial sensor can vary significantly
during operation, particularly in the case of MEMS sensors. Therefore, sensor biases
are often modeled as GM or random walk processes. It should be noted that they are
Markovian processes, i.e., the value of the process at time t only depends on the
state of the process at t − 1, not on other past or future states.3 Thus, they are
suboptimal for modeling the 1/f bias instability process which is known to have a
long memory.

It is possible to model 1/f processes as AR processes [35]. However, optimal
modeling of a long-memory process requires an infinite number of states to be
memorized [56]; for this reason, many authors have fitted finite-order AR models on
sequences of data in order to predict the future behavior of, e.g., a gyroscope’s bias.

2.2 Sensor Quality Grade

Inertial sensors are used for various purposes and not all use cases demand similar
performance. For instance, the requirements for the gyroscope of an automotive
stability control system are significantly different from the requirements for full
six-degrees-of-freedom inertial navigation. Traditionally, inertial sensors have been
categorized into several grades based on their performance.

2Scale factors are not exactly constant: for instance, the scale factors of MEMS sensors depend
strongly on the temperature.
3There exist higher-order Gauss–Markov process where the difference equation (3) contains older
values of the process.

64 J. Collin et al.

Navigation grade sensors are targeted for long-term autonomous navigation
whereas tactical grade systems are manufactured for shorter intervals of navigation,
usually a few minutes. Typically, the required performance for a navigation-grade
system can be that the position error must not increase by more than one nautical
mile (1.85 km) after 1 h of autonomous inertial navigation. For instance, navigation
grade sensors can be needed for navigation systems in aircraft while a tactical grade
unit can be sufficient for a missile. For examples of navigation grade IMUs, see,
e.g., [27, 31]; examples of tactical grade IMUs include [26, 46].

Consumer or automotive grade sensors are not capable of autonomous nav-
igation, but can be used for positioning temporarily, e.g., when satellite based
positioning is not available, such as when driving through an underpass. Consumer
grade sensors, e.g., [17, 59], are primarily installed for other purposes than naviga-
tion; examples of applications are given in Sect. 1.3.

Table 1 shows example specifications of different grades of inertial measurement
units (IMUs); the values should be regarded as indicative orders of magnitude
corresponding to the example devices referenced above, and should not be used as
a definition of the different quality levels. Anyway, it is clear that the gap between
consumer and navigation grades is large—the differences are in the order of many
decades. Misalignment errors have not been specified for consumer-grade units
because it is difficult, if not impossible, to separate their misalignment errors from
other cross-coupling effects such as inter-channel electromagnetic interference;
hence, the total cross-axis sensitivity is given for these IMUs instead. The consumer-
grade performance figures represent low-cost bulk-manufactured MEMS sensors
that are not individually calibrated by the manufacturer. When considering the size
and power consumption of such a MEMS IMU, one needs to account for other

Table 1 Indicative specifications for IMUs of different quality grades

Component Parameter Unit Navigation Tactical Consumer

Accelerometer Pre-calibration bias mg 0.03 1 30

Noise density μg/
√

Hz 10 50 100

Scale factor error % 0.01 0.03 1

Misalignment mrad 0.05 0.5 –

Cross-axis sensitivity % – – 1

Gyroscope Pre-calibration bias ◦/h 0.005 1 1000

Bias instability ◦/h 0.003 0.1 20

Angular random walk ◦/
√

h 0.002 0.1 0.5

Scale factor error % 0.0005 0.01 1

Misalignment mrad 0.01 0.5 –

Cross-axis sensitivity % – – 1

IMU assemblya Weight kg 5 1 0.01

Volume cm3 1500 500 0.01

Power consumption W 10 5 0.01
aThe figures given for MEMS IMUs correspond to the sensor chip only

Inertial Sensors and Their Applications 65

necessary components such as the circuit board and readout electronics in addition
to the sensor chip itself; these are not included in the example figures given for
a consumer-grade IMU in Table 1. Nevertheless, it is not challenging to build a
MEMS IMU into a package with size in the order of a few cubic centimeters.

When considering the performance parameters and requirements of sensors, it is
important to distinguish between errors before calibration and residual errors [55].
For instance, the large bias of a consumer gyroscope can be mostly compensated for
by frequent calibration (e.g., whenever the IMU is stationary), but the bias instability
ultimately determines the attainable performance. On the other hand, with high-
quality IMUs it may be possible to calibrate out misalignment errors to an accuracy
better than the physically achievable sensor alignment precision.

3 Pedestrian Dead Reckoning

The term dead reckoning (DR) refers to the method where a new position estimate
is computed by adding measured or estimated displacements to the coordinates of
a known starting point. Inertial sensors are well known devices for providing the
information on the direction and the distance traveled.

In inertial navigation, the data from three accelerometers and three gyroscopes
are used to update position estimates. As described in Sect. 1.3.1, position estimation
with INS involves the integration of gyroscope measurements to keep track of
the attitude of the sensor unit, followed by double integration of acceleration
measurements to obtain the velocity and position. The process of maintaining
the attitude estimate and integrating the accelerations is called the strapdown INS
mechanization. In this section, we will shortly discuss about the INS mechanisation
and its challenges. This is followed by the detailed description of Pedestrian Dead
Reckoning (PDR) and its accuracy analysis.

3.1 INS Mechanization

The traditional Inertial Navigation System (INS) mechanization includes the fol-
lowing tasks [60]:

1. Integration of the outputs of gyros to obtain the attitude of the system in the
desired coordinate reference frame

2. Using the obtained attitude of the system, transformation of the specific force
measurements to the chosen reference frame

3. Computing the local gravity in the chosen reference frame and adding it to the
specific force to obtain the device acceleration in space

4. If required by the chosen reference frame, the Coriolis correction is applied
5. Double-integration of the acceleration to obtain the velocity and the position of

the device

66 J. Collin et al.

For the first task, parameterization for rotations in three-dimensional space is
required. The ones selected in here are direction cosine matrix CA1

A2
and rotation

vector p with notation from [54]. Many other attitude parameterizations can be
used [45]. For example, identical presentation would be possible by switching
direction cosine matrices to quaternions. A 3×3 direction cosine matrix transforms
a 3× 1 vector from reference frame A2 to frame A1

CA1
A2

vA2 = vA1 (6)

The rotation vector p defines an axis of rotation and its magnitude defines an angle to
be rotated. Similarly as direction cosine matrix, rotation vector can be used to define
attitude between frames A2 and A1. If frame A1 is rotated about the rotation vector
p through the angle p = √pT p the new attitude can be uniquely used to define
frame A2. Conversely, for arbitrary frames A2 and A1 we can find rotation vector
that defines the relative attitude, although not uniquely. The relationship between
direction cosine matrix and rotation vector is [5]

CA1
A2

(p) =
{

I+ sin(p)
p

(p×)+ 1−cos(p)
p2 (p×)(p×) if p �= 0

I otherwise
(7)

and this can be used to transform any rotation vector to uniquely defined direction
cosine matrix. In Eq. (7) (p×) denotes 3×3 skew symmetric form of 3×1 vector p.

In inertial navigation the orientation estimation beings with finding an initial
orientation At=0 of the sensor unit with respect to some locally level frame L. Then
gyro triad measurements ω

At
IAt

which satisfy

ĊA0
At
= CA0

At
(ω

At
IAt
×) (8)

can be used to update the orientation. In Eq. (8) I refers to inertial (non-accelerating,
non-rotating) reference frame. With sufficiently short time update interval dt an
approximation pt ≈ ω

At
IAt

dt can be used and then Task 1 is completed by updating

CL
At

at each computer cycle:

CL
At
← CL

At−1
CAt−1

At
(pt) (9)

In Task 2 the accelerometer triad measurement

aAt
SF = r̈At − gAt, (10)

is transformed to L frame using Eq. (9), which leads to differential equation for
position to be solved

r̈L = CL
At

aAt
SF + gL, (11)

Inertial Sensors and Their Applications 67

where gL is result from Task 3. Solving Eq. (11) completes Task 5. In this compact
introduction the Task 4 was neglected in Eq. (9). In the double-integration of
accelerations even a small error in acceleration measurement yields a large position
error drift in the output. Because the accelerometers measure the specific force
instead of the true acceleration of the sensor unit, as explained in Sect. 1.1, the
gravitational acceleration is added to the vertical acceleration component; this is
straightforward when the accelerations are first transformed to a local level frame
(Eq. (11)). However, because the gravity compensation of accelerations require
the coordinate transformation, any error in gyroscope output causes errors in
the transformed accelerations, which in turn introduces increasing errors to the
computed accelerations through the errors in the gravity compensation. As the gyro
outputs are integrated to form the coordinate transformation and the transformed
accelerations are double-integrated for position estimate, the gyro errors produce a
position error which increases with time cubed. Therefore the gyro performance is
very critical in INS implementations. Effect of gyro errors can be reduced with
GNSS integration but this is quite difficult with consumer-grade sensors due to
linearization problems [42].

As the requirements for sensor accuracies are very strict for the strapdown
INS mechanization, requiring very high-quality and expensive sensor units, the
developers of mass-market applications are looking for solutions where multiple
integrations of sensor errors can be avoided. In pedestrian applications, the cyclic
nature of the human gait can be utilized to enable navigation with low-cost inertial
sensors. Two approaches have become popular in the literature: mounting the
sensors to the user’s shoe and evaluating the INS mechanization equations in
a stepwise manner; and Pedestrian Dead Reckoning (PDR) where the position
estimate is propagated by detecting steps and estimating their length, and keeping
track of the heading using body-mounted sensors.

The concept of foot-mounted inertial navigation hinges on the idea that when
the sensor unit is known to be stationary, the velocity errors can be observed [19];
this condition holds regularly for a pedestrian’s foot when walking. In addition
to resetting velocity this allows to estimate and compensate for other errors that
are correlated with the velocity errors, e.g. position and attitude offsets and sensor
biases. The most important benefit of foot-mounted inertial navigation is the fact
that it is insensitive to the direction of the step and gait characteristics as long as the
foot stance periods can be properly detected. However, detecting the stance phase
is not trivial especially when the user is running or moving in stairs [50, 57]. In
addition, the foot is subject to higher dynamics than the rest of the body; the sensors
are subject to a significant shock whenever the foot hits the ground, which can lead
to temporary measurement errors.

In PDR, instead of double-integration of the accelerations, the speed of the walk
is estimated from the periodical acceleration waveform produced by pedestrian
movements. The speed can be estimated either from the main frequency of the
periodic signal or by detecting individual steps and estimating their lengths and

68 J. Collin et al.

durations from the acceleration waveform. This information along with estimated
heading is used to propagate the estimate of user position. It can be shown that PDR
mechanization is superior to the traditional INS mechanization for a person on foot
when the sensors are mounted on the user’s torso [44]. The main drawback of PDR
is the limitation to one motion mode; the mechanization works only when walking
while the general strapdown INS mechanization works without any assumptions
about the user motion. In addition, while foot-mounted inertial navigation is 3-
dimensional by nature, PDR is 2-dimensional and requires height information from
other sources such as map [66] or barometric altimeter.

3.2 Step Detection with Accelerometers

In this section step detection with torso mounted sensors are considered in detail.
With step we mean the displacement of one foot during walking movement, i.e.
the distance between two consecutive foot prints. The occurrence of a step can be
easily detected from the signal pattern of the vertical acceleration component [40].
However, this approach is sensitive to orientation errors of the sensor unit, as it
is assumed that one axis is aligned with vertical or that the transformation to the
vertical is known. Other possibility it to compute the magnitude of the measured
acceleration vector, i.e. the norm of acceleration [33]. Most commonly the step
detection is based on accelerometers but also gyroscopes can be used [14]. The
signal pattern varies according to where the user attaches the sensor unit [38].
Typical choices to wear the sensor unit are on the belt, e.g. on the side of the user
or on lower back, or onto upper parts of the torso, e.g. attach it to the shoulder
strap of a backpack or wear it in a chest pocket. Step detection is often based on
the detection of signal peaks [38] or crossings of the signal with its average [33] or
some other reference level [43]. Often the detection algorithm combines both peak
detection and detection of reference level crossings. For example, step detection
from acceleration norm may consists of the following steps:

1. Low pass filtering and resampling the signal; sampling frequency in the range
20–25 Hz is high enough.

2. Computation of the norm of current acceleration sample, i.e.,

an (t) =
√
a2
x (t)+ a2

y (t)+ a2
z (t), (12)

where an (t) is the acceleration norm and ax (t), ay (t), and az (t) are the filtered
components of the measured acceleration.

3. Instances of step starts ts (k) are detected by observing the g-crossings of the
acceleration norm that are followed by a rise rate and a peak height that exceed
the preset limits, and requiring that the time between the current and previous
g-crossings is long enough.

Inertial Sensors and Their Applications 69

Fig. 4 Detection of steps
from acceleration norm

4. The step end te (k) is considered to be found when the next step starts or when
a predefined time, considered as the maximum duration of one step, has passed
after the start of the current step.

An example with acceleration norm and the detected step starts is shown in Fig. 4.
The data for the figure were recorded using a sensor unit that was attached to the
belt and positioned to the back of the test walker. Other methods that can be used
to detect individual steps include the correlating of sensor signal with predefined
stride template [7]. The template is formed offline, e.g., by recording it from sample
walk [25]. The correlation method can be improved by using dynamic time warping
(DTW) which allows non-linear mapping between the template and the online
signal [52].

There are applications and devices, such as mobile phones, where the orientation
of the sensor unit cannot be assumed to be predetermined and constant. If the meth-
ods for step detection and step length estimation require e.g. vertical acceleration
component, the phone orientation need to be tracked or the motion classification
can be used to allow adapting different algorithms for different motion modes [13].

3.3 Step Length Estimation

There are two main categories for methods to estimate step length. The first category
includes models that are based on the biomechanical principles whereas the models
in the second category are based on empirical relationships between acceleration
signal pattern and step length. With biomechanical models, certain user-related
parameters, such as leg length, are needed in addition to the empirically determined
scaling parameters [32]. In empirical models, the acceleration norm an(t) or the

70 J. Collin et al.

vertical acceleration component av(t) are typically used for step length estimation.
The signal patterns that have been found to correlate well with step length include
the following:

Main frequency p1 (k) = 1/ (te (k)− ts (k)) (13)

Variance, an p2 (k) = var (an (t)) , ts (k) ≤ t < te (k) (14)

Variance, av p3 (k) = var (av (t)) , ts (k) ≤ t < te (k) (15)

Area integral p4 (k) =
∫ te(k)

ts (k)

|an (t)− g| dt (16)

Maximum difference, an p5 (k) = max an (t)−min an (t) , (17)

ts (k) ≤ t < te (k)

Maximum difference, av p6 (k) = max av (t)−min av (t) , (18)

ts (k) ≤ t < te (k)

Instead of (13), the main frequency of the periodical signal can be obtained
using Fast Fourier Transformation (FFT) [38, 40]. In (14)–(15) the variance of the
acceleration signal (e.g., norm or vertical component) is computed over a time
window comparable to some step durations [38], e.g. over one step. The area
integral (16) is obtained by integrating over one step duration the absolute value
of the acceleration norm where the local gravity has been subtracted [33]. In (17)–
(18) the difference between the maximum and minimum acceleration (e.g., norm or
vertical component) of a detected step is used [32].

Also the use of combinations of these signal patterns has been proposed [32,
38], as well as slightly different patterns from these [43]. The empirical step length
model often includes at least one empirically determined parameter. In many cases
a non-linear function, such as raising to a power or extraction of root, has to be
applied to the signal pattern. It is also common to add constant offsets to the pattern
or the function [23, 38]. A generic form of the step length model can be written as

Δsk = Kj,q pj (k)
q + b (19)

where Δsk is the distance traveled and pj (k) is the signal pattern, both computed
for the kth step. Kj,q is the scaling factor, b is the offset, and q is the exponent that
defines the function to be applied on pj . The performance of step length estimation
with different functions applied on different signal patterns were demonstrated with
real pedestrian data in [11]. With the best combinations, the relative error in the
estimated distance traveled was 2–3%.

The step length models discussed here are applicable in flat floor or terrain.
In stairs, the step length is forced to be shorter. A method based on analysis of
accelerometer and gyro signal patterns can be used to detect forward direction and
going up or down in stairs [36].

Inertial Sensors and Their Applications 71

Fig. 5 Block diagram of the
PDR algorithm

3.4 PDR Mechanization

In PDR mechanization, the dead reckoning process involves step detection and step
length estimation, as shown in the diagram of Fig. 5. The PDR position estimate is
computed by starting from initial coordinates, x0, y0, and initial heading angle ψ0.
As the DR method is not able to determine absolute positions, these initial estimates
have to determined using alternative positioning methods, such as radio navigation
or satellite based positioning.

While the position in PDR algorithm is updated only when step ends are detected,
the heading is updated everyΔtg seconds, i.e., at the sampling frequency of the gyro:

ψλ = ψλ−1 + ωλΔtg, (20)

where ωλ is the angular rate measurement by the gyro at the sampling instance λΔtg .
In position estimation, a heading estimate representative of the whole step duration
is needed. Therefore the heading is averaged over the step duration:

ψ̄k = 1

nk

∑
λ∈�k

ψλ, �k =
{
λ : λ is an integer,

ts (k)

Δtg
≤ λ <

te (k)

Δtg

}
, (21)

where nk is the number of samples in �k . The heading and horizontal coordinates
are propagated by

xk =
yk =

xk−1 +Δsk cos ψ̄k

yk−1 +Δsk sin ψ̄k,
(22)

where Δsk is the estimated step length, i.e., the distance traveled during the step
with index k (Fig. 6). Position estimates that are based on step detection and step
length estimation are available at step intervals Δtk , which vary according to the
walking style and the speed of the pedestrian.

72 J. Collin et al.

Fig. 6 Dead reckoning in
two dimensions

The orientation of the sensor unit with respect to the direction of pedestrian
travel is not fixed in smart phones and many other mobile devices. To determine
the step direction, the knowledge about the orientation of the device with respect
to the environment is required but it is not enough [13, 36]. Methods to estimate
the unknown alignment between the mobile device and the pedestrian (and the step
direction) are compared in [12].

3.5 Effect of Sensor Quality Grade to the Accuracy of PDR

Although PDR mechanization is not as sensitive to sensor errors as the traditional
INS mechanization, the grade of sensors still has an effect to the performance of the
PDR. In this section, the accumulation of errors in PDR is studied based on simple
test cases.

From (13)–(18) it can be seen that the step length estimate is not sensitive to
accelerometer bias: in p2, p3, p5, and p6 the bias is totally canceled out and in p1
and p4 its effect is small. Contrary to the bias error, the effect of the scale factor
error on all other signal patterns except p1 is directly proportional to the sensor
error. However, taking square root, cube root or the fourth root of the signal pattern
decreases the effect of accelerometer scale factor error on the step length estimate,
as can be seen in Table 2.

If the scale factor error of the accelerometer is constant, its effect can be taken
into account in the scaling factor of the step length model (19). In practice the
scale factor error of a consumer grade accelerometer based on MEMS technology is
slowly changing as a function of internal conditions of the sensing element, such as

Inertial Sensors and Their Applications 73

Table 2 Effect of 1% scale factor error in accelerometer to functions of signal patterns for step
length estimation

Raw Square root Cube root Fourth root

Function pj (k) pj (k)
1/2 pj (k)

1/3 pj (k)
1/4

Step length error (%) 1.00 0.50 0.33 0.25

0 2 4 6 8 10

Time (min)

0

1

2

3

4

Heading error (degrees)
a b

c

0 200 400 600 800

x-coordinate (m)

0

10

20

30

y-coordinate (m)

True
Est

0 2 4 6 8 10

Time (min)

0

1

2

3

4

Relative position error
(% of distance traveled)

Fig. 7 Effect of 25◦/h gyro bias when the pedestrian is walking with constant speed along the
positive x-axis: (a) heading error; (b) true and estimated coordinates; (c) relative position error

the temperature. If the temperature effect on the sensor scale factor at its maximum
is 1%, then the effect on the estimated distance traveled is the same as the relative
error of the evaluated function (Table 2) at the most. These values are small when
compared with step length modeling errors reported in literature [11, 32].

The effect of the gyro quality to PDR estimates can be analyzed by the simulation
of a PDR system defined by (20)–(22). The effect of the gyro bias is simulated by
using a scenario where the pedestrian walks with constant step length of 0.75 m and

74 J. Collin et al.

Table 3 Comparison of gyro grade with respect to the effect of uncompensated bias to the PDR
error build-up

Navigation Tactical Consumer

Bias instability (◦/h) 0.0035 1 25

Time to 2% relative position error 27 days 2.3 h 5.5 min

Time to 3% relative position error 41 days 3.4 h 8.3 min

Time to 3◦ heading error 35 days 3.0 h 7.2 min

constant frequency of 2 steps/s along the positive x-axis. The gyro bias is assumed
to be 25◦/h, which is a typical bias instability of consumer grade gyros (Table 1).
The development of heading error, error in estimated position and the position error
relative to the distance traveled is shown in Fig. 7. The heading error grows linearly
(Fig. 7a), the error in the y-coordinate grows quadratically4 with respect to the x-
coordinate and time (Fig. 7b), and the relative position error with respect to the
distance traveled grows almost linearly (Fig. 7c). With the best step length models,
the long term average in the relative positioning error is about 2–3% [11]. With the
given simulation parameters, the relative positioning error introduced by the gyro
bias is smaller in the beginning, but exceeds 2% in less than 6 min and 3% in less
than 9 min.

To compare the gyro grades described in Table 1, the simulations were also run
with gyro instabilities typical to navigation and tactical grade gyros. The results are
shown in Table 3.

The effect of the gyro scale factor error is simulated by using a scenario where
the pedestrian first makes a 180◦ turn and then walks with a constant step length of
0.75 m and a constant frequency of 2 steps/s along the positive x-axis. The gyro scale
factor error is assumed to be 1%, which corresponds to the scale factor uncertainty
due to the temperature sensitivity over 50 K in a consumer grade gyro [6]. The
heading error, the error in the estimated position, and the position error relative
to the distance traveled are shown in Fig. 8. In this simulation, the heading error
grows in the turn to 1.8◦ and then stays constant, as the scale factor error has
an effect only when the gyro senses a non-zero anular rate (Fig. 8a). Due to the
constant heading error, the position error grows linearly with respect of time and
x-coordinate (Fig. 8b). In the initial turn, the position error relative to the distance
traveled jumps directly to more than 3% (Fig. 8c). That is, with the parameters used
in this simulation and after a 180◦ turn, the error due to the gyro scale factor error is
larger than the error introduced by the best step length models in [11].

To compare the gyro grades described in Table 1, the simulations were also run
with gyro scale factor errors typical to navigation and tactical grade gyros. The
results are shown in Table 4.

4The growth is almost quadratic with small heading errors; however, with larger heading errors,
the sine and cosine functions in (22) bound the error growth.

Inertial Sensors and Their Applications 75

0 2 4 6 8 10

Time (min)

0

0.5

1

1.5

Heading error (degrees)

a b

c

0 200 400 600 800

x-coordinate (m)

0

10

20

30
y-coordinate (m)

True
Est

0 2 4 6 8 10

Time (min)

0

1

2

3

Relative position error
(% of distance traveled)

Fig. 8 Effect of 1% gyro scale factor error when the pedestrian has made a 180◦ turn from −180◦
and then walks with constant speed along positive x-axis: (a) heading error; (b) true and estimated
coordinates; (c) relative position error

Table 4 Comparison of gyro grade with respect to the effect of uncompensated scale factor error
to the PDR error build-up

Navigation Tactical Consumer

Scale factor error (%) 0.001 0.015 1

Constant heading error (degrees) 0.0018 0.027 1.8

Constant relative position error (%) 0.00314 0.047 3.14

It should be noted that the simulation results given in this section apply only on
PDR mechanization of inertial sensors. The growth of position error is much faster
with traditional INS mechanization, partly due to the low speed of the pedestrian
and partly due to the algorithm simplifications allowed by the characteristics of
pedestrian movements. Another important remark considers the effect of the tilt

76 J. Collin et al.

error of the heading gyro: the simulations assume that the sensitive axis of the gyro
is aligned with vertical. However, in practice the sensor unit easily gets tilted by a
couple of degrees, which introduces a scaling error to the gyro output.

4 Infering Context with Inertial Sensors

In addition to providing data for navigation purposes, inertial sensors can be used
to increase the context awareness of a device. One widely used application is
motion mode classification. In Fig. 9 the waveform of the norm of accelerometer
measurements, as defined in Eq. (12), is shown. The different characteristics in
waveform depending on motion mode is clearly seen. When walking, foot impacts
clearly increase the variability of the signal. When driving a car, engine vibrations,
vehicle accelerations, and road imperfections cause variations which are smaller
than those occurring during walking. Yet, these variations are distinguishable from
the case of a stationary device where the only source of variation is measurement
noise.

a b

c

Fig. 9 Norm of accelerometer output in different motion modes: (a) walking, σ = 0.24 g; (b)
driving, σ = 0.071 g; (c) stationary, σ = 0.0084 g

Inertial Sensors and Their Applications 77

Fig. 10 Standard deviation
and peak frequency as
features

0 5 10 15 20
0

0.1

0.2

0.3

Peak frequency (Hz)

σ (g)

Walk
Drive
Static

In order to have a computer to identify these motion modes, features such as
sample variance or peak frequency need to be extracted from the acceleration data.
Figure 10 shows two such features: the sample standard deviation σ and the peak
frequency from non-overlapping 5-s windows. In this example, the classification
is relatively easy, as the characteristics are clearly distinguishable and there is
only one label to learn. In practice, the classification problems are more complex,
with overlapping features and multiple labels [69]. Thus, proper algorithms and
statistical tools are needed to obtain useful classification results. In this section a
brief introduction to such tools is given.

4.1 Pattern Recognition

As a simplified statistical example, pattern recognition problem can be considered
as discrimination between r multivariate normal populations. The Bayes theorem
is applied to obtain the probability of the originating population class (e.g. motion
mode) given the statistics (e.g. features) obtained from the sensor data. A training
data set with labeled motion modes is needed to obtain the class means μj

and covariances Σj for each class j . Then, according to the model, the future
observations collated to a q-dimensional feature vector z are distributed as

zj ∼ N(μj ,Σj). (23)

It should be stressed that due to limited size of the training data set the mean
vector μj ∈ R

q and the covariance matrix Σj ∈ R
q×q are actually estimates of

the true model parameters. Further simplification is made by assuming that the prior
probability P(C = j), where C = j denotes an event that the correct class is j is
known. Under these assumptions, Bayes’ theorem can be applied to obtain

P(C = j |z) = pzj P (C = j)

pz
, (24)

78 J. Collin et al.

where

pz =
r∑

i=1

pzi P (C = i). (25)

The actual classification result is obtained by finding the class that maximizes the
posterior probability P(C = j |z). Adding inference for sequential data can be
done, for example, using Markov model for state transition probabilities P(Ct =
h)|P(Ct−1 = k) for all possible states h, k = 1, . . . , r . In practice, the assumption
that distributions and correlations between features are known is often invalid as
the feature set may include binary features, multimodally distributed features and
Wishart distributed features (due to sampling in training phase). Thus, in modern
machine learning more generalizable and scalable methods, such as gradient tree
boosting are popular [10]. Even though the new methods in machine learning require
less assumptions for the inputs, there is still a need to understand what kind of data
and features should be included. When inertial sensors are used for classification
there are many options for feature engineering if the basic principles of inertial
sensors are understood well. Features can be extracted from raw data (angular
rates, specific force) or from integrated data (position, velocity, orientation). When
characteristics of sensor noise are identified the effectiveness of high frequency
versus low frequency features may become apparent. Such examples of advanced
features are given in the following section.

4.2 Feature Extraction

Two very important features for classification of motion modes shown in Fig. 10
were examples of statistical (variance) and frequency domain (peak frequency)
features. Using windowed raw sensor data there are many other features easily
obtainable such as [16]:

• Skewness
• Mean absolute deviation
• Zero-crossing rate
• Sub band energies and their ratios
• Change in the peak frequency over 4 sub-frames
• Frequency domain entropy

To make the classification more efficient, there exist efficient algorithms that
can be used reduce the dimensionality of feature space by utilizing the correlation
between features [65].

To show how knowledge of inertial navigation theory may help in classification
the effect known as coning is introduced. The relation between gyroscope measure-
ments and device orientation with fast processing rate was shown in Eqs. (7) and (9).
However, the exact relation between rotation vector and gyroscope measurements
is [5]

Inertial Sensors and Their Applications 79

ṗ = ω
At
IAt
+ 1

2
p× ω

At
IAt
+ 1

p2 (1−
p sin(p)

2(1− cos(p))
)p× (p× ω

At
IAt

) (26)

and the last two terms, describing non-commutativity rate, begin to play a role if the
attitude update rate is too slow. Important feature in this equation is that the cross
product terms remain zero if gyro signal vector (ωAt

IAt
) keeps its direction. If the

gyro signal is constant or the object can rotate only about one fixed axis, then there
is no problem of non-commutativity. The problem arises if gyro data is averaged,
assuming

ṗ ≈ ω
At
IAt

(27)

and the true rotation is lost due to non-commutativity of rotations. Typically in
inertial sensor processing this is avoided by performing the direction cosine update
with fast rate with respect to motion (or applying coning correction terms). In this
context we loosely define the error due to approximation in Eq. (27) as coning
motion. To see why this is important in motion classification, consider following
scenarios for time period n→ m

• Unit is in smartwatch attached to wrist of a pedestrian
• Unit is fixed to a vehicle that is cornering
• Unit is stationary on table, gyros have constant bias

Gyroscope data samples at 20 Hz from these scenarios is shown in Fig. 11. To
see the effect of coning errors, this data is resampled by averaging to 1 Hz and
maximum angle error with respect to 20 Hz reference is plotted in Fig. 12. By
combining amount of coning error in each case we will see that first example
has quite large non-commutativity rate, vehicular motion clearly less and the in
the static case the coning error is negligible. The coning effect computed this
way is a direct measure of complexity of angular motion experienced, and thus
an useful, acceleration independent feature for motion mode classification. It may
also help obtaining more insight on how the user experiences the motion [61]. It
should be noted that orientation with fast rate is already computed by the inertial
processing algorithm, so the only extra work for deriving this feature is to take
direct average of gyro data, multiply it by time interval and apply it in Eq. (7) (p ←
n−m
N

∑
ω). Extension this method to specific coning correction algorithms [30] and

accelerometer processing (velocity rotation compensation) is also straightforward.
This illustrates the importance of feature engineering in machine learning, to build
effective feature it is important to know what the sensors actually measure.

Combination of bias and moderate non-coning motion (such as in vehicle mode)
may also result in large coning error. This is because direction of apparent rotation
vector is changing when another component changes its magnitude. Thus the motion
mode recognition and orientation estimation are not necessarily independent tasks.
The quality of sensors affects input features, but on the other hand, known motion
mode can be used to infer gyroscope biased, for example.

80 J. Collin et al.

0 5 10 15 20
t (s)

-400

-200

0

200

400a b

c

R
at

e
(d

eg
/s

)

x y z

0 5 10 15 20
t (s)

-20

-15

-10

-5

0

5

R
at

e
(d

eg
/s

)

0 5 10 15 20
t (s)

-3

-2

-1

0

1

R
at

e
(d

eg
/s

)

Fig. 11 Gyro data in different cases: (a) Smartwatch; (b) Driving; (c) Biased, stationary. Note the
y-axis scales

4.3 Classification Accuracy

In practice it is impossible to implement a classifier that makes no mistakes; mis-
classifications will occur from time to time. From the viewpoint of the application
designer, the classification accuracy can be evaluated for two different cases: (a)
the expected misclassification rate prior to observing the features, and (b) the
probability of misclassification given the observed feature vector. For the former,
the overlap in the training data is a good indicator. For the latter, (24) directly
gives such probability, but as mentioned the multinormal model for features is
rarely valid. Often the system designer has no other choice than to collect sufficient
amount of independent data for cross-validation to obtain realistic values for
misclassification rates. In addition, one approach to tolerate misclassification is to
apply partial classification methods, where the option of not classifying a situation
at all is reserved [8]. In motion mode classification the number of classes can
vary a lot, which affects the classification accuracy, but generally the reported mis-
classification error rate is almost always below 10% [16].

Inertial Sensors and Their Applications 81

0 5 10 15 20

t (s)

0

10

20

30
a b

c

C
on

in
g

E
rr

or
 (

de
g)

0 5 10 15 20

t (s)

0

0.1

0.2

0.3

C
on

in
g

E
rr

or
 (

de
g)

0 5 10 15 20
t (s)

0

0.01

0.02

0.03

C
on

in
g

E
rr

or
 (

de
g)

Fig. 12 Coning error in degrees in the three cases: (a) Smartwatch; (b) Driving; (c) Biased,
stationary. Note the y-axis scales

4.4 Areas of Application

Motion mode using sensors in smartphones is already generally available [21] and
applications are growing in number continuously. For example, detailed motion
mode information would be valuable for remote monitoring of elderly people [62].
The modern machine learning tools such as XGBoost seems to be very effective
in this [63]. For navigation applications the detection of Walking-mode allows
using PDR, and many other context-dependent mechanizations or filter profiles
have been proposed [15]. The sequential nature of navigation problem has to be
taken into account in recognition [16, 49]. In principle, motion mode classification
methods can be used in any area where human motion is involved and the subjects
exhibit distinct signatures [3]. The list of available applications is not limited to
human motion mode, as the market for Internet of Things devices is growing in the
industrial side as well and general tendency is to include inertial sensors in all kinds
devices that are experiencing motion, without forgetting the increasing amount of
smartphone applications [68].

82 J. Collin et al.

5 Summary

With the development of low-cost MEMS accelerometers and gyroscopes, more and
more motion-aware applications become achievable. Since inertial sensors measure
motion parameters the input is based on physical properties specific to the appli-
cation; emerging applications are usually significantly different from the original
use of inertial sensors, i.e., navigation. Novel applications typically are less strict in
sensor accuracy requirements than traditional inertial navigation systems. However,
imprecision may cause the application to perform poorly in certain situations.
Common methods to improve the performance is to calibrate the inertial sensors
and to filter the sensor data appropriately. Understanding of physical principles of
inertial sensor measurements is essential in designing systems that involve motion
measurement. In this chapter, an introduction to inertial sensor applications was
provided. Such a concise presentation did not permit in-depth treatment of inertial
navigation system algorithms and other applications. More information about these
topics and future trends can be found, e.g., in [13, 16, 22, 48, 58, 60].

References

1. Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones.
In: Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium
on, pp. 1–6. IEEE (2014)

2. Allan, D.W.: Statistics of atomic frequency standards. Proc. IEEE 54(2), 221–230 (1966)
3. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with

miniature inertial and magnetic sensors. Pattern Recogn. 43, 3605–3620 (2010)
4. Armenise, M.N., Ciminelli, C., Dell’Olio, F., Passaro, V.: Advances in Gyroscope Technolo-

gies. Springer Verlag (2010)
5. Bortz, J.E.: A new mathematical formulation for strapdown inertial navigation. IEEE

Transactions on Aerospace and Electronic Systems AES-7(1), 61–66 (1971). https://doi.org/
10.1109/TAES.1971.310252

6. Bosch Sensortec: BMI160 small, low power inertial measurement unit. rev. 08. Doc.Nr. BST-
BMI160-DS000-07, Data sheet (2015)

7. Brajdic, A., Harle, R.: Walk detection and step counting on unconstrained smartphones. In:
Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’13, pp. 225–234. ACM, New York, NY, USA (2013)

8. Broffit, J.D.: Nonparametric classification. In: P.R. Krishnaiah, L.N. Kanal (eds.) Handbook
of Statistics 2. North-Holland (1990)

9. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering,
3rd edn. John Wiley & Sons (1997)

10. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794. ACM, New York, NY, USA (2016). http://doi.acm.org/10.1145/2939672.
2939785

11. Collin, J., Davidson, P., Kirkko-Jaakkola, M., Leppäkoski, H.: Inertial sensors and their
applications. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of
Signal Processing Systems. Springer New York (2013)

https://doi.org/10.1109/TAES.1971.310252
https://doi.org/10.1109/TAES.1971.310252
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785

Inertial Sensors and Their Applications 83

12. Combettes, C., Renaudin, V.: Comparison of misalignment estimation techniques between
handheld device and walking directions. In: 2015 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pp. 1–8 (2015). https://doi.org/10.1109/IPIN.2015.
7346766

13. Davidson, P., Piche, R.: A survey of selected indoor positioning methods for smartphones.
IEEE Communications Surveys Tutorials 19(2), 1347–1370 (2017). https://doi.org/10.1109/
COMST.2016.2637663

14. Diaz, E.M., Gonzalez, A.L.M.: Step detector and step length estimator for an inertial pocket
navigation system. In: 2014 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), pp. 105–110 (2014)

15. Dixon, R., Bobeye, M.: Performance differentiation in a tightly coupled gnss/ins solution. In:
Proc. ION GNSS+ 2016 (2016)

16. Elhoushi, M., Georgy, J., Noureldin, A., Korenberg, M.J.: A survey on approaches of motion
mode recognition using sensors. IEEE Transactions on Intelligent Transportation Systems
(2016). https://doi.org/10.1109/TITS.2016.2617200

17. Fairchild Semiconductor Corporation: FIS1100 6D Inertial Measurement Unit with Motion
Co-Processor and Sensor Fusion Library (2016). Data sheet rev. 1.2

18. Farrell, J.: Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc. (2008)
19. Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics

and Applications 25(6), 38–46 (2005). https://doi.org/10.1109/MCG.2005.140
20. Gianchandani, Y.B., Tabata, O., Zappe, H.P.: Comprehensive microsystems. Elsevier (2008)
21. Google: DetectedActivity API for Android. https://developers.google.com/android/reference/

com/google/android/gms/location/DetectedActivity (2017). [Online; accessed 29-March-
2017]

22. Groves, P.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems,
Second Edition:. GNSS/GPS. Artech House (2013). https://books.google.fi/books?id=
t94fAgAAQBAJ

23. Gusenbauer, D., Isert, C., Krösche, J.: Self-contained indoor positioning on off-the-shelf
mobile devices. In: 2010 International Conference on Indoor Positioning and Indoor
Navigation, pp. 1–9 (2010)

24. Hanning, G., Forslöw, N., Forssén, P.E., Ringaby, E., Törnqvist, D., Callmer, J.: Stabilizing
cell phone video using inertial measurement sensors. In: Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, pp. 1–8. IEEE (2011)

25. Harle, R.: A survey of indoor inertial positioning systems for pedestrians. IEEE Communica-
tions Surveys Tutorials 15(3), 1281–1293 (2013)

26. Honeywell Aerospace, Phoenix, AZ, USA: HG1700 Inertial Measurement Unit (2016). Data
sheet N61-1619-000-000 I 09/16

27. Honeywell Aerospace, Phoenix, AZ, USA: HG9900 Inertial Measurement Unit (2016). Data
sheet N61-1638-000-000 I 10/16

28. IEEE standard for inertial sensor terminology. IEEE Std 528-2001 (2001)
29. IEEE standard specification format guide and test procedure for single-axis laser gyros. IEEE

Std 647-1995 (1996)
30. Ignagni, M.: Optimal strapdown attitude integration algorithms. Journal of Guidance, Control,

and Dynamics 13(2), 363–369 (1990)
31. iMAR Navigation GmbH, St. Ingbert, Germany: iNAT-RQH400x (2017). Data sheet rev. 1.13
32. Jahn, J., Batzer, U., Seitz, J., Patino-Studencka, L., Gutiérrez Boronat, J.: Comparison and

evaluation of acceleration based step length estimators for handheld devices. In: Proc. Int.
Conf. on Indoor Positioning and Indoor Navigation, pp. 1–6. Zurich, Switzerland (2010)

33. Käppi, J., Syrjärinne, J., Saarinen, J.: MEMS-IMU based pedestrian navigator for handheld
devices. In: Proc. ION GPS, pp. 1369–1373. Salt Lake City, UT (2001)

34. Keshner, M.S.: 1/f noise. Proc. IEEE 70(3), 212–218 (1982)
35. Kirkko-Jaakkola, M., Collin, J., Takala, J.: Bias prediction for MEMS gyroscopes. IEEE

Sensors J. (2012). https://doi.org/10.1109/JSEN.2012.2185692

https://doi.org/10.1109/IPIN.2015.7346766
https://doi.org/10.1109/IPIN.2015.7346766
https://doi.org/10.1109/COMST.2016.2637663
https://doi.org/10.1109/COMST.2016.2637663
https://doi.org/10.1109/TITS.2016.2617200
https://doi.org/10.1109/MCG.2005.140
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://books.google.fi/books?id=t94fAgAAQBAJ
https://books.google.fi/books?id=t94fAgAAQBAJ
https://doi.org/10.1109/JSEN.2012.2185692

84 J. Collin et al.

36. Kourogi, M., Kurata, T.: Personal positioning based on walking locomotion analysis with self-
contained sensors and a wearable camera. In: The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2003. Proceedings., pp. 103–112 (2003).
https://doi.org/10.1109/ISMAR.2003.1240693

37. Krobka, N.I.: Differential methods of identifying gyro noise structure. Gyroscopy and
Navigation 2, 126–137 (2011)

38. Ladetto, Q.: On foot navigation: continuous step calibration using both complementary
recursive prediction and adaptive Kalman filtering. In: Proc. ION GPS, pp. 1735–1740. Salt
Lake City, UT (2000)

39. Leland, R.P.: Mechanical-thermal noise in MEMS gyroscopes. IEEE Sensors J. 5(3), 493–500
(2005)

40. Levi, R.W., Judd, T.: Dead reckoning navigational system using accelerometer to measure foot
impacts. U.S. Patent 5,583,776 (1996)

41. Lightman, K.: Silicon gets sporty. IEEE Spectrum 53(3), 48–56 (2016)
42. Martin, H., Groves, P., Newman, M.: The limits of in-run calibration of mems inertial sensors

and sensor arrays. Navigation 63(2), 127–143 (2016). http://dx.doi.org/10.1002/navi.135.
Navi.135

43. Meriheinä, U.: Method and device for measuring the progress of a moving person. U.S. Patent
7,962,309 (2007)

44. Mezentsev, O., Collin, J., Lachapelle, G.: Pedestrian Dead Reckoning – A Solution to
Navigation in GPS Signal Degraded Areas. Geomatica 59(2), 175–182 (2005)

45. Nitschke, M., Knickmeyer, E.H.: Rotation parameters-a survey of techniques. Journal of
surveying engineering 126(3), 83–105 (2000)

46. Northrop Grumman LITEF GmbH, Freiburg, Germany: LCI-100C Inertial Measurement Unit
(2013). Data sheet

47. Pellman, E.J., Viano, D.C., Withnall, C., Shewchenko, N., Bir, C.A., Halstead, P.D.:
Concussion in professional football: helmet testing to assess impact performance–part 11.
Neurosurgery 58(1), 78–95 (2006)

48. Prikhodko, I.P., Zotov, S.A., Trusov, A.A., Shkel, A.M.: What is mems gyrocompassing?
comparative analysis of maytagging and carouseling. Journal of Microelectromechanical
Systems 22(6), 1257–1266 (2013). https://doi.org/10.1109/JMEMS.2013.2282936

49. Read, J., Martino, L., Hollmén, J.: Multi-label methods for prediction with sequential data.
Pattern Recognition 63, 45–55 (2017). http://dx.doi.org/10.1016/j.patcog.2016.09.015. http://
www.sciencedirect.com/science/article/pii/S0031320316302758

50. Ren, M., Pan, K., Liu, Y., Guo, H., Zhang, X., Wang, P.: A novel pedestrian navigation
algorithm for a foot-mounted inertial-sensor-based system. Sensors 16(1) (2016). https://
doi.org/10.3390/s16010139

51. Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: Full 6DOF human motion tracking using
miniature inertial sensors. Tech. rep., Xsens Motion Technologies BV (2009)

52. Rong, L., Zhiguo, D., Jianzhong, Z., Ming, L.: Identification of individual walking patterns
using gait acceleration. In: 2007 1st International Conference on Bioinformatics and
Biomedical Engineering, pp. 543–546 (2007)

53. Rothman, Y., Klein, I., Filin, S.: Analytical observability analysis of ins with vehicle
constraints. Navigation 61(3), 227–236 (2014). http://dx.doi.org/10.1002/navi.63. NAVI-
2014-006.R1

54. Savage, P.: Strapdown inertial navigation integration algorithm design. Journal of Guidance,
Control and Dynamics 21(1-2) (1998)

55. Savage, P.G.: Laser gyros in strapdown inertial navigation systems. In: Proc. IEEE Position,
Location, and Navigation Symp. San Diego, CA (1976)

56. Sierociuk, D., Tejado, I., Vinagre, B.M.: Improved fractional Kalman filter and its application
to estimation over lossy networks. Signal Process. 91(3), 542–552 (2011)

57. Skog, I., Händel, P., Nilsson, J.O., Rantakokko, J.: Zero-velocity detection—an algorithm
evaluation. IEEE Transactions on Biomedical Engineering 57(11), 2657–2666 (2010). https://
doi.org/10.1109/TBME.2010.2060723

https://doi.org/10.1109/ISMAR.2003.1240693
http://dx.doi.org/10.1002/navi.135
https://doi.org/10.1109/JMEMS.2013.2282936
http://dx.doi.org/10.1016/j.patcog.2016.09.015
http://www.sciencedirect.com/science/article/pii/S0031320316302758
http://www.sciencedirect.com/science/article/pii/S0031320316302758
https://doi.org/10.3390/s16010139
https://doi.org/10.3390/s16010139
http://dx.doi.org/10.1002/navi.63
https://doi.org/10.1109/TBME.2010.2060723
https://doi.org/10.1109/TBME.2010.2060723

Inertial Sensors and Their Applications 85

58. Skog, I., Nilsson, J.O., Händel, P., Nehorai, A.: Inertial sensor arrays, maximum likelihood,
and Cramer-Rao bound. IEEE Transactions on Signal Processing 64(16), 4218–4227 (2016).
https://doi.org/10.1109/TSP.2016.2560136

59. STMicroelectronics: LSM6DSL iNEMO inertial module: always-on 3D accelerometer and 3D
gyroscope (2017). Data sheet rev. 7

60. Titterton, D.H., Weston, J.L.: Strapdown Inertial Navigation Technology, 2nd edn. American
Institute of Aeronautics and Astronautics, Reston, VA (2004)

61. Tweed, D.B., Haslwanter, T.P., Happe, V., Fetter, M.: Non-commutativity in the brain. Nature
399(6733), 261–263 (1999)

62. Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., Fafoutis, X., Zhu,
N., Woznowski, P., Flach, P., Craddock, I.: The SPHERE challenge: Activity recognition with
multimodal sensor data. arXiv preprint arXiv:1603.00797 (2016)

63. Voisin, M., Dreyfus-Schmidt, L., Gutierrez, P., Ronsin, S., Beillevaire, M.: Dataiku’s solution
to sphere’s activity recognition challenge (2016)

64. Voss, R.F.: 1/f (flicker) noise: A brief review. In: Proc. 33rd Ann. Symp. Frequency Control,
pp. 40–46 (1979)

65. Webb, A.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons, LTD (2002)
66. Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: Proceedings

of the 10th International Conference on Ubiquitous Computing, UbiComp ’08, pp. 114–123.
ACM, New York, NY, USA (2008). http://doi.acm.org/10.1145/1409635.1409651

67. Xsens MVN – inertial motion capture. http://www.xsens.com/en/general/mvn
68. Yu, J., Chen, Z., Zhu, Y., Chen, Y., Kong, L., Li, M.: Fine-grained abnormal driving behaviors

detection and identification with smartphones. IEEE Transactions on Mobile Computing
(2016). https://doi.org/10.1109/TMC.2016.2618873

69. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering 26(8), 1819–1837 (2014). https://doi.org/10.1109/TKDE.
2013.39

https://doi.org/10.1109/TSP.2016.2560136
http://doi.acm.org/10.1145/1409635.1409651
http://www.xsens.com/en/general/mvn
https://doi.org/10.1109/TMC.2016.2618873
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39

Finding It Now: Networked Classifiers in
Real-Time Stream Mining Systems

Raphael Ducasse, Cem Tekin, and Mihaela van der Schaar

Abstract The aim of this chapter is to describe and optimize the specifications of
signal processing systems, aimed at extracting in real time valuable information out
of large-scale decentralized datasets. A first section will explain the motivations and
stakes and describe key characteristics and challenges of stream mining applica-
tions. We then formalize an analytical framework which will be used to describe
and optimize distributed stream mining knowledge extraction from large scale
streams. In stream mining applications, classifiers are organized into a connected
topology mapped onto a distributed infrastructure. We will study linear chains
and optimise the ordering of the classifiers to increase accuracy of classification
and minimise delay. We then present a decentralized decision framework for joint
topology construction and local classifier configuration. In many cases, accuracy
of classifiers are not known beforehand. In the last section, we look at how to
learn online the classifiers characteristics without increasing computation overhead.
Stream mining is an active field of research, at the crossing of various disciplines,
including multimedia signal processing, distributed systems, machine learning etc.
As such, we will indicate several areas for future research and development.

R. Ducasse (�)
The Boston Consulting Group, Boston, MA, USA
e-mail: ducasse.raphael@bcg.com

C. Tekin
Bilkent University, Ankara, Turkey
e-mail: cemtekin@ee.bilkent.edu.tr

M. van der Schaar
Oxford-Man Institute, Oxford, UK
University of California, Los Angeles, Los Angeles, CA, USA
e-mail: mihaela.vanderschaar@oxford-man.ox.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_3

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_3&domain=pdf
mailto:ducasse.raphael@bcg.com
mailto:cemtekin@ee.bilkent.edu.tr
mailto:mihaela.vanderschaar@oxford-man.ox.ac.uk
https://doi.org/10.1007/978-3-319-91734-4_3

88 R. Ducasse et al.

Fig. 1 Nine examples of high volume streaming applications

1 Defining Stream Mining

1.1 Motivation

The spread of computing, authoring and capturing devices along with high band-
width connectivity has led to a proliferation of heterogeneous multimedia data
including documents, emails, transactional data, digital audio, video and images,
sensor measurements, medical data, etc. As a consequence, there is a large class
of emerging stream mining applications for knowledge extraction, annotation and
online search and retrieval which require operations such as classification, filtering,
aggregation, and correlation over high-volume and heterogeneous data streams.
As illustrated in Fig. 1, stream mining applications are used in multiple areas,
such as financial analysis, spam and fraud detection, photo and video annotation,
surveillance, medical services, search, etc.

Let us deep-dive into three illustrative applications to provide a more pragmatic
approach to stream mining and identify key characteristics and challenges inherent
to stream mining applications.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 89

Fig. 2 Semantic concept detection in applications

1.1.1 Application 1: Semantic Concept Detection in Multimedia;
Processing Heterogeneous and Dynamic Data in a
Resource-Constrained Setting

Figure 2 illustrates how stream mining can be used to tag concepts on images
or videos in order to perform a wide set of tasks, from search to ad-targeting.
Based upon this stream mining framework, designers can construct, instrument,
experiment with, and optimize applications that automatically categorize image and
video data captured by various cameras into a list of semantic concepts (e.g., skating,
tennis, etc.) using various chains of classifiers.

Importantly, such stream mining systems need to be highly adaptive to the
dynamic and time-varying multimedia sequence characteristics, since the input
stream is highly volatile. Furthermore, they must often be able to cope with limited
system resources (e.g. CPU, memory, I/O bandwidth), working on devices such
as smartphones with increasing power restrictions. Therefore, applications need
to cope effectively with system overload due to large data volumes and limited
system resources. Commonly used approaches to dealing with this problem in
resource constrained stream mining are based on load-shedding, where algorithms
determine when, where, what, and how much data to discard given the observed
data characteristics, e.g. burst, desired Quality of Service (QoS) requirements, data
value or delay constraints.

1.1.2 Application 2: Online Healthcare Monitoring; Processing Data in
Real Time

Monitoring individual’s health requires handling a large amount of data, coming
from multiple sources such as biometric sensor data or contextual data sources.
As shown in Fig. 3, processing this raw information, filtering and analyzing it are
key challenges in medical services, as it allows real time census and detection
of irregular condition. For example, monitoring pulse check enables to identify if
patient is in critical condition.

90 R. Ducasse et al.

Fig. 3 Online healthcare monitoring workflow

In such application, being able to process data in real time is essential. Indeed,
the information must be extracted and analyzed early enough to either take human
decision or have an automatic control action. As an example, high concentration of
calcium (happening under pain) could lead to either alerting medical staff or even
automatic delivery of pain-killers, and the amount of calcium in the blood would
determine the amount of medicine delivered. This control loop is only possible if
the delay between health measurements (e.g. concentration of calcium in blood)
and adaptation of treatment (e.g. concentration of pain-killer) is minimized.

1.1.3 Application 3: Analysis of Social Graphs; Coping with
Decentralized Information and Setup

Social networks can be seen as a graph where nodes represent people (e.g. bloggers)
and links represent interactions. Each node includes a temporal sequence of data,
such as blog posts, tweets, etc. Numerous applications require to manage this
huge amount of data: (1) selecting relevant content to answer keyword search,
(2) identifying key influencers with page rank algorithms or SNA measures, and
characterizing viral potential using followers’ statistics, (3) recognizing objective
vs. subjective content through lexical and pattern-based models, (4) automatically
classifying data into topics (and creating new topics when needed) by observing
work co-occurrence and using clustering techniques and classifying documents
according to analysis performed on a small part of the document.

These applications are all the more challenging since the information is often
decentralized across a very large set of computers, which is dynamically evolving
over time. Implementing decentralized algorithms is therefore critical, even with

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 91

only partial information about other nodes. The performance of these algorithms can
be greatly increased by using learning techniques, in order to progressively improve
the pertinence of the analysis performed: at start, analysis is only based on limited
data; over time, parameters of the stream mining application can be better estimated
and the model used to process data is more and more precise.

1.2 From Data Mining to Stream Mining

1.2.1 Data Mining

Data mining can be described as the process of applying a query to a set of data,
in order to select a sub-set of this data on which further action or analysis will
be performed. For example, in Semantic Concept Detection, the query could be:
“Select images of skating”.

A data mining application may be viewed as a processing pipeline that analyzes
data from a set of raw data sources to extract valuable information. The pipeline
successively processes data through a set of filters, referred to as classifiers. These
classifiers can perform simple tests, and the query is the resultant of the answer of
these multiple tests. For example, the query “Select images of skating” could be
decomposed in the following tests: “Is it a team sport?”/“Is a Winter sport?”/“Is it a
Ice sport?”/“Is it skating?”

Figure 4a provides an example of data mining application for sports image
classification. Classifiers may be trained to detect different high-level semantic
features, e.g. sports categories. In this example, the “Team Sports” classifier is used
to filter the incoming data into two sets, thereby shedding a significant volume of
data before passing it to the downstream classifiers (negatively identified team sports

Fig. 4 A hierarchical classifier system that identifies several different sports categories and
subcategories (a) at the same node, (b) across different nodes indicated in the figure as autonomous
processing nodes

92 R. Ducasse et al.

data is forwarded to the “Winter” classifier, while the remaining data is not further
analyzed). Deploying a network of classifiers in this manner enables successive
identification of multiple features in data, and provides significant advantages in
terms of deployment costs. Indeed, decomposing complex jobs into a network of
operators enhances scalability, reliability, and allows cost-performance tradeoffs to
be performed. As a consequence, less computing resources are required because
data is dynamically filtered through the classifier network. For instance, it has been
shown that using classifiers operating in series with the same model (boosting [23])
or classifiers operating in parallel with multiple models (bagging [13]) can result in
improved classification performance.

In this chapter, we will focus on mining applications that are built using a
topology of low-complexity binary classifiers each mapped to a specific concept
of interest. A binary classifier performs feature extraction and classification leading
to a yes/no answer. However, this does not limit the generality of our solutions,
as any M-ary classifiers may be decomposed into a chain of binary classifiers.
Importantly, our focus will not be on the operators’ or classifiers’ design, for which
many solutions already exist; instead, we will focus on configuring1 the networks of
distributed processing nodes, while trading off the processing accuracy against the
available processing resources or the incurred processing delays. See Fig. 4b.

1.2.2 Changing Paradigm

Historically, mining applications were mostly used to find facts with data at rest.
They relied on static databases and data warehouses, which were submitted to
queries in order to extract and pull out valuable information out of raw data.

Recently, there has been a paradigm change in knowledge extraction: data is no
longer considered static but rather as an inflowing stream, on which to dynamically
compute queries and analysis in real time. For example, in Healthcare Monitoring,
data (i.e., biometric measurements) is automatically analyzed through a batch of
queries, such as “Verify that the calcium concentration is in the correct interval”,
“Verify that blood pressure is not too high”, etc. Rather than applying a single
query to data, the continuous stream of medical data is by default pushed through
a predefined set of queries. This enables to detect any abnormal situation and react
accordingly. See Fig. 5.

Interestingly, stream mining could lead to performing automatic action in
response to a specific measurement. For example, a higher dose of pain killers could
be administrated when concentration of calcium becomes too high, thus enabling
real-time control. See Fig. 6.

1As we will discuss later, there are two types of configuration choices we must make: the
topological ordering of classifiers and the local operating points at each classifier.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 93

Fig. 5 A change of paradigm: continuous flow of information requires real-time extraction of
insights

Distributed Large-scale
Performed by
machines and humans

Real-time
Distributed

Data
Gathering

Decision
Making

Stream
Mining

Knowledge
Discovery

Fig. 6 Representation of knowledge extraction process in data mining system

1.3 Problem Formulation

1.3.1 Classifiers

A stream mining system can be seen as a set of binary classifiers. A binary
classifier divides data into two subsets—one containing the object or information of
interest (the “Positive” Set), and one not containing such objects or information (the
“Negative” Set)—by applying a certain classification rule. For instance, the ‘Team
sport’ classifiers separates images into those who represent a team sport and those
who do not represent a team sport. This can be done using various classification
techniques, such as Support Vector Machine (SVM), or K-nearest neighbor.

These algorithms are based on learning techniques, built upon test data and
refined over time: they look for patterns in data, images, etc. and make decisions
based on the resemblance of data to these patterns. As such, they are not fully
accurate. A classifier can introduce two types of errors:

94 R. Ducasse et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7 ROC curves: pF = f (pD). X axis is probability of misdetection error. Y axis is probably
of false alarm error. We call sensitivity the factor that slides the operating point along the ROC
curve

• Misdetection errors: Missing objects or data of interest by tagging it as belonging
to the Negative Set rather than the Positive Set. We will note pD the probability
of detecting a data unit: 1− pD is the probability of misdetection.

• False alarm errors: Wrongly tagging objects or data which are not of interest as
belonging to the Positive Set. We will note pF this probability of false alarm.

Naturally, there is a trade-off between misdetection and false alarm errors: to avoid
misdetections, the classifier could tag all data as positive, which would generate a
high false alarm rate.

We will call operating point the couple (pD, pF). In Fig. 7, the operating points
of various classifiers are plotted and form what is referred as ROC curves. The
accuracy of the classifier depends on the concavity of the ROC curve, the more
concave, the more precise.

The operating points’ choice has two consequences on the performance of
the stream mining system. First, it affects the precision of each classifier (both
misdetection and false alarms) and of the system as a whole. Secondly, it defines the
amount of data which is going to be transmitted through the classifiers and therefore
the delay required for the system to process the data stream.

1.3.2 Axis for Study

This chapter focuses on developing a new systematic framework for knowledge
extraction from high-volume data streams using a network of classifiers deployed

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 95

over a distributed computing infrastructure. It can be decomposed into four sub-
problems which we will develop in the following sections:

1. Stream Mining System Optimization: In Sect. 2, we develop optimization
techniques for tuning the operating points of individual classifiers in order
to improve the stream mining performance, in terms of accuracy and delay.
We formalize the problem of large-scale knowledge extraction by defining
appropriate local and end-to-end objective functions, along with resource and
delay constraints. They will guide the optimization and adaptation algorithms
used to improve the stream mining performance.

2. Stream Mining System Topology Optimization: As shown in Fig. 4, a stream
mining system is a topology of classifiers mapped onto a distributed infrastruc-
ture. These classifiers can be organized in one single chain, or in multiple parallel
chains, thus forming a tree topology. In Sect. 3, we investigate the impact of the
classifiers’ topology on the performance, scalability and dynamic behavior of the
stream mining system. We will focus on the study of linear chains of classifiers
and determine how to jointly choose the order of classifiers in the chain and the
operating point of each classifier in order to maximize accuracy and minimize
delays.

3. Decentralized Solutions Based on Interactive Multi-Agent Learning: For
large scale stream mining systems, where the classifiers are distributed across
multiple nodes, the choice of operating point and topology of the classifiers
would require heavy computational resources. Furthermore, optimizing the
overall performance requires interactive multi-agent solutions to be deployed at
each node in order to determine the effect of each classifiers’ decisions on the
other classifiers and hence, the end to end performance of the stream mining
applications. In the fourth section of this chapter, we develop a decentralized
decision framework for stream mining configuration and propose distributed
algorithms for joint topology construction and local classifier configuration.
This approach will cope with dynamically changing environments and data
characteristics and adapt to the timing requirements and deadlines imposed by
other nodes or applications.

4. Online Learning for Real-Time Stream Mining: In Sect. 5, we consider
the stream mining problems in which the classifier accuracies are not known
beforehand and needs to be learned online. Such cases frequently appear in real
applications due to the dynamic behavior of heterogeneous data streams. We
explain how the best classifiers (or classifier configurations) can be learned via
repeated interaction, by driving the classifier selection process using meta-data.
We also model the loss due to not knowing the classifier accuracies beforehand
using the notion of regret, and explain how the regret can be minimized while
ensuring that memory and computation overheads are kept at reasonable levels.

96 R. Ducasse et al.

1.4 Challenges

Several key research challenges drive our analysis and need to be tackled: These are
discussed in the following sections.

1.4.1 Coping with Complex Data: Large-Scale, Heterogeneous and
Time-Varying

First, streaming data supposes that have high volume of timeless information flows
in continuously. Stream mining systems thus need be scalable to massive data source
and be able to simultaneously deal with multiple queries.

Both structured and unstructured data may be mined. In practice, data is
wildly heterogeneous in terms of formats (documents, emails, transactions, digital
video and/or audio data, RSS feeds) as well as data rates (manufacturing: 5–
10 Mbps, astronomy: 1–5 Gbps, healthcare: 10–50 Kbps per patient). Furthermore,
data sources and sensors may eventually be distributed on multiple processing
nodes, with little or no communication in between them.

Stream mining systems need to be adaptive in order to cope with data and
configuration dynamics: (1) heterogeneous data stream characteristics, (2) classifier
dependencies, (3) congestion at shared processing nodes and (4) communication
delays between processing nodes. Additionally, several different queries (requiring
different topological combinations of classifiers) may need to be satisfied by the
system, requiring reconfiguration as queries change dynamically.

1.4.2 Immediacy

Stream mining happens now, in real time. The shift from data mining to stream
mining supposes that data cannot be stored and has to be processed on the fly.

For instance, in healthcare monitoring, minimizing delay between health mea-
surements (e.g. concentration of calcium in blood) and adaptation of treatment
(e.g. concentration of pain-killer) is critical. For some applications such as high-
frequency trading, being real time may even be more important than minimizing
misclassification costs. otherwise historic data would become obsolete and lead to
phrased-out investment decisions.

Delay has seldom been analyzed in existing work on stream mining systems and,
when it has been [1], it has always been analyzed in steady-state, at equilibrium,
after all processing nodes are configured. However, the equilibrium can often not
be reached due to the dynamic arrival and departure of query applications. Hence,
this reconfiguration delay out of equilibrium must be considered when designing
solutions for real-time stream mining systems.

Delay constraints are all the more challenging in a distributed environment,
where the synchronization among nodes may not be possible or may lead to sub-
optimal designs, as various nodes may experience different environmental dynamics
and demands.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 97

1.4.3 Distributed Information and Knowledge Extraction

To date, a majority of approaches for constructing and adapting stream mining
applications are based on centralized algorithms, which require information about
each classifier’s analytics to be available at one node, and for that node to manage
the entire classifier network. This limits scalability, creates a single point of failure,
and provide limits in terms of adaptivity to dynamics.

Yet, data sources and classifiers are often distributed over a set of processing
nodes and each node of the network may exchange only limited and/or costly
message with other interconnected nodes to. Thus, it may be impractical to develop
centralized solutions [4, 7, 18, 32, 33].

In order to address this naturally distributed setting, as well as the high
computational complexity of the analytics, it is required to formally define local
objectives and metrics and to associate inter-node message exchanges that enable
the decomposition of the application into a set of autonomously operating nodes,
while ensuring global performance. Such distributed mining systems have recently
been developed [5, 19]. However, they do not encompass the accuracy and delay
objectives described earlier.

Depending on the system considered, classifiers can have strong to very limited
communication. Thus, classifiers may not have sufficient information to jointly
configure their operating points. In such distributed scenarios, optimizing the end-
to-end performance requires interactive, multi-agent solutions in order to determine
the effect of each classifier’s decisions on the other classifiers. Nodes need to learn
online the effect of both their experienced dynamics as well as the coupling between
classifiers.

Besides, for classifiers instantiated on separate nodes (possibly over a network),
the communication time between nodes can greatly increase the total time required
to deal with a data stream. Hence, the nodes will not be able to make decisions
synchronously.

1.4.4 Resource Constraints

A key research challenge [1, 12] in distributed stream mining systems arises from
the need to cope effectively with system overload, due to limited system resources
(e.g. CPU, memory, I/O bandwidth etc.) while providing desired application
performance. Specifically, there is a large computational cost incurred by each
classifier (proportional to the data rate) that limits the rate at which the application
can handle input data. This is all the more topical in a technological environment
where low-power devices such as smartphones are becoming more and more used.

98 R. Ducasse et al.

2 Proposed Systematic Framework for Stream Mining
Systems

2.1 Query Process Modeled as Classifier Chain

Stream data analysis applications pose queries on data that require multiple concepts
to be identified. More specifically, a query q is answered as a conjunction of a set of
N classifiers C(q) = {C1, . . . , CN }, each associated with a concept to be identified
(e.g. Fig. 4 shows a stream mining system where the concepts to be identified are
sports categories).

In this chapter, we focus on binary classifiers: each binary classifier Ci labels
input data into two classes H i (considered without loss of generality as the class of
interest) and H i . The objective is to extract data belonging to

⋂N
i=1 H i .

Partitioning the problem into this ensemble of classifiers and filtering data
successively (i.e. discarding data that is not labelled as belonging to the class of
interest), enables to control the amount of resources consumed by each classifier
in the ensemble. Indeed, only data labelled as belonging to H i is forwarded, while
data labelled as belonging to H i is dropped. Hence, a classifier only has to process
a subset of the data processed by the previous classifier. This justifies using a chain
topology of classifiers, where the output of one classifier Ci−1 feeds the input of
classifier Ci , and so on, as shown in Fig. 8.

2.1.1 A-Priori Selectivity

Let X represent the input data of a classifier C. We call a-priori selectivity φ =
P(X ∈ H) the a-priori probability that the data X belongs to the class of interest.
Correspondingly 1−φ = P(X ∈ H). Practically speaking, the a-priori selectivity φ

is computed on a training and cross-validation data set. For well-trained classifiers,
it is reasonable to expect that the performance on new, unseen test data is similar to
that characterized on training data. In practice, there is potential train-test mismatch
in behavior, but this can be accounted for using periodic reevaluation of the classifier
performance (e.g. feedback on generated results).

t0
g0

p1

C1 Ci CN
D pi

D

p1

f1 fi

F pi
F

fN

pN
F

pN
D

t1
g1

titi–1
gi–1

tN–1
gN–1gi

tN
gN

a1 ai aN

Fig. 8 Representation of analytical framework to evaluate classifier chain performance

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 99

For a chain of classifiers C = {C1, . . . , CN }, the a-priori selectivity of a classifier
corresponds to the conditional probability of data belonging to classifier Ci’s class
of interest, given that it belongs to the class of interest of the previous i − 1
classifiers: φi = P(X ∈ H i |X ∈ ⋂i−1

k=1 Hk). Similarly, we define the negative
a-priori selectivity as φi = P(X ∈ H i |X /∈ ⋂i−1

k=1 Hk). Since a-priori selectivities
depend on classifiers higher in the chain, φi �= 1− φi .

2.1.2 Classifier Performance

The output X̂ of a classifier C can be modeled as a probabilistic function of its
input X. The proportion of correctly classified samples in Hk is captured by the
probability of correct detection pD

k = P(X̂ ∈ Hk|X ∈ Hk), while the proportion of

falsely classified samples in Hk is pF
k = P(X̂ ∈ Hk|X ∈ Hk).

The performance of the classifier C is characterized by its ROC curve that
represents the tradeoff between the probability of detection pD and probability
of false alarm pF . We represent the ROC curve as a function f : pF �→ pD

that is increasing, concave and lies over the first bisector [11]. As a consequence,
an operating point on this curve is parameterized uniquely by its false alarm rate
x = pF . The operating point is denoted by (x, f (x)) = (pF , pD).

We model the average time needed for classifier C to process a stream tuple as
α (in seconds). The order of magnitude of α depends on the data characteristics,
as well as the classification algorithm, and can vary from microseconds (screening
text) to multiple seconds (complex image or video classification).

2.1.3 Throughput and Goodput of a Chain of Classifiers

The forwarded output of a classifier Ci consists of both correctly labelled data
from class H i as well as false alarms from class H i . We use gi to represent the
goodput (portion of data correctly labelled) and ti to represent the throughput (total
forwarded data, including mistakes). And we will note t0 to represent the input rate
of data.

Using Bayes formula, we can derive ti and gi recursively as

[
ti

gi

]
=
[
ai bi

0 ci

]
︸ ︷︷ ︸

T i−1
i

[
ti−1

gi−1

]
, where

⎧⎨
⎩

ai = pF
i + (pD

i − pF
i)φi

bi = (pD
i − pF

i)(φi − φi)

ci = pD
i φi

(1)

For a set of independent classifiers, the positive and negative a-priori selectivities
are equal: φi = φi = P(X ∈ H). As a consequence, the transition matrix is

diagonal: T i−1
i =

[
pD
i φi + (1− φi)p

F
i 0

0 pD
i φi

]
.

100 R. Ducasse et al.

2.2 Optimization Objective

The global utility function of the stream mining system can be expressed as a
function of misclassification and delay cost, under resource constraints.

2.2.1 Misclassification Cost

The misclassification cost, or error cost, may be computed in terms of the two types
of accuracy errors—a penalty cM per unit rate of missed detection, and a penalty
cF per unit rate of false alarm. These are specified by the application requirements.
Noting � =∏N

h=1 φh, the total misclassification cost is

cerr = cM (�t0 − gN)︸ ︷︷ ︸
misseddata

+ cF (tN − gN)︸ ︷︷ ︸
wronglyclassifieddata

. (2)

2.2.2 Processing Delay Cost

Delay may be defined as the time required by the chain of classifiers in order to
process a stream tuple. Let αi denote the expected processing time of classifier Ci .
The average time required by classifier Ci to process a stream tuple is given by
δi = αiPi , where Pi denotes the fraction of data which has not been rejected by the
first i−1 classifiers and still needs to be processed through the remaining classifiers

of the chain. Recursively, Pi =
i−1∏
k=1

tk

tk−1
= ti−1

t0
. After summation across all

classifiers, the average end-to-end processing time required by the chain to process
stream data is

cdelay = t0

N∑
i=1

δi = t0

N∑
i=1

αiPi =
N∑
i=1

αi ti−1. (3)

2.2.3 Resource Constraints

Assume that the N classifiers are instantiated on M processing nodes, each of which
has a given available resource rmax

j . We can define a location matrix M ∈ {0, 1}M×N
where Mji = 1 if Ci is located on node j and 0 otherwise. The resource constraint
at node j can be written as

∑N
i=1 Mjiri ≤ rmax

j .
The resource ri consumed at node j by classifier Ci is proportional to the

throughput ti , i.e. ri ∝ ti .

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 101

2.2.4 Optimization Problem

Stream mining system configuration involves optimizing both accuracy and delay
under resource constraints. The utility function of this optimization problem may
be defined as the negative weighted sum of both the misclassification cost and the
processing delay cost: U = −cerr − λ cdelay , where the parameter λ controls
the tradeoff between misclassification and delay. This utility is a function of the
throughputs and goodputs of the stream within the chain, and therefore implicitly
depends on the operating point xi = pF

i ∈ [0, 1] selected by each classifier.

Let x = [x1, . . . , xN
]T

, K = cF

cF+cM ∈ [0, 1] and ρ = λ
cF+cM α ∈ R+N . The

optimization problem can be reformulated under a canonic format as follows:
⎧⎪⎨
⎪⎩

maximize
x∈[0 1]N

U(x) = gN(x)−KtN(x)−
N∑
i=1

ρi ti−1(x)

subject to 0 ≤ x ≤ 1 and Mr ≤ rmax

. (4)

2.3 Operating Point Selection

Given a topology, the resource-constrained optimization problem defined in Eq. (4)
may be formulated as a network optimization problem (NOP) [16, 20]. This problem
has been well studied in [11, 21, 31] and we refer the interested reader to the
corresponding literature.

The solutions proposed involve using iterative optimization techniques based
on Sequential Quadratic Programming (SQP) [3]. SQP is based on gradient-
descent, and models a nonlinear optimization problem as an approximate quadratic
programming subproblem at each iteration, ultimately converging to a locally
optimal solution.

Selecting the operating point can be done by applying the SQP-algorithm to the
Lagrangian function of the optimization problem in (4):

L(x, ν1, ν2) = U(x)− νT1 (x− 1)+ νT2 x.

Because of the gradient-descent nature of the SQP algorithm, it is not possible
to guarantee convergence to the global maximum and the convergence may only
be locally optimal. However, the SQP algorithm can be initialized with multiple
starting configurations in order to find a better local optimum (or even the global
optimum). Since the number and size of local optima depend on the shape of the
various ROC curves of each classifier, a rigorous bound on the probability to find
the global optimum cannot be proven. However, certain start regions are more likely
to converge to better local optimum.2

2For example, since the operating point pF = 0 corresponds to a saddle point of the utility
function, it would achieve steepest utility slope. Furthermore, the slope of the ROC curve is

102 R. Ducasse et al.

2.4 Further Research Areas

Further research areas are the following:

• Communication delay between classifiers: The model could be further refined
to explicitly consider communication delays, i.e. the time needed to send stream
tuples from one classifier to another. This is all the more true in low-delay settings
where classifiers are instantiated on different nodes.

• Queuing delay between classifiers: Due to resource constraints, some classifiers
may get congested, and the stream will hence incur additional delay. Modeling
these queuing delays would further improve the suitability of the framework for
real-time applications.

• Single versus multiple operating points per classifier: Performance gains can
be achieved by allowing classifiers to have different operating points xi and xi for
their positive and negative classes. If the two thresholds overlap, low-confidence
data will be duplicated across both output edges, thereby increasing the end-to-
end detection probability. If they do not overlap, low-confidence data is shed,
thus reducing congestion at downstream classifiers.

• Multi-query optimization: Finally, a major research area would consist in
studying how the proposed optimization and configuration strategies adapt to
multi-query settings, including mechanisms for admission control of queries.

3 Topology Construction

In the previous section, we have determined how to improve performance of a
stream mining system—both in terms of accuracy and delays—by selecting the right
operating point for each classifier of the chain. This optimization was however per-
formed given a specific topology of classifiers: classifiers were supposed arranged
as a chain and the order of the classifiers in the chain was fixed.

In this section, we study the impact of the topology of classifiers on the
performance of the stream mining system. We start by focusing on a chain topology
and study how the order of classifiers on the chain alters performance.

3.1 Linear Topology Optimization: Problem Formulation

Since classifiers have different a-priori selectivities, operating points, and complex-
ities, different topologies of classifiers will lead to different classification and delay
costs.

maximal at pF = 0 (due to concavity of the ROC curve), such that high detection probabilities can
be obtained under low false alarm probabilities near the origin.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 103

t0
g0

t1
g1

ps (1) s

s
th–1

gh–1

s

s
tN–1

gN–1

s

s
tN
gN

s

s
th
gh

s

s

Cs (1)
D

ps (1)
F

as (1)

ps (N)
D

ps (N)
F

as (N)

Cs (N)Cs (h) = Ci

pi
D

pi
F

ai

Fig. 9 Representation of σ-ordered classifier chain

Consider N classifiers in a chain, defined as in the previous section. An order
σ ∈ Perm(N) is a permutation such that input data flows from Cσ(1) to Cσ(N). We
generically use the index i to identify a classifier and h to refer to its depth in the
chain of classifiers. Hence, Ci = Cσ(h) will mean that the hth classifier in the chain
is Ci . To illustrate the different notations used, a σ-ordered classifier chain is shown
in Fig. 9.

Using the recursive relationship defined in Eq. (1), we can derive the end-to-end
throughput ti and goodput gi of classifier Ci = Cσ(h) recursively as

[
ti

gi

]
=
[
pF
i + φσ

h(p
D
i − pF

i) (φ
σ
h − φσ

h)(p
D
i − pF

i)

0 φσ
hp

D
i

]
︸ ︷︷ ︸

T i−1
i =T σ

h

[
tσh−1
gσ
h−1

]
. (5)

The optimization problem can be written as:

⎧⎪⎨
⎪⎩

maximize
σ∈Perm(N),x∈[0 1]N

U(σ, x) = gσ
N(x)−KtσN(x)−

N∑
i=1

ρi t
σ
i−1(x)

subject to 0 ≤ x ≤ 1

. (6)

3.2 Centralized Ordering Algorithms for Fixed Operating
Points

In this section, we consider a set of classifiers with fixed operating points x. Since
transition matrices T σ

i
are lower triangular, the goodput does not depend on the order

of classifiers.3 As a consequence, the expression of the utility defined in Eq. (4) can
be simplified as:

3Furthermore, when classifiers are independent, the transition matrices T σ
i are diagonal and there-

fore commute. As a consequence the end throughput tN (x) and goodput gN (x) are independent
of the order. However, intermediate throughputs do depend on the ordering—leading to varying
expected delays for the overall processing.

104 R. Ducasse et al.

maximize
σ∈P erm([1,N])

Uord = −
(

N∑
h=1

ρσ(h)t
σ
h−1 +KtσN

)
. (7)

3.2.1 Optimal Order Search

The topology construction problem involves optimizing the defined utility by
selecting the appropriate order σ. In general, there exist N ! different topologic
orders, each with a different achieved utility and processing delay. Furthermore,
the relationship between order and utility cannot be captured using monotonic or
convex analytical functions. Hence, any search space for order selection increases
combinatorially with N . This problem is exacerbated in dynamic settings where the
optimal order has to be updated online; in settings with multiple chains, where each
chain has to be matched with a specific optimal order; and, in settings with multiple
data streams corresponding to the queries of multiple users.

3.2.2 Greedy Algorithm

Instead of solving the complex combinatorial problem, we suggest to design simple,
but elegant and powerful, order selection algorithms—or Greedy Algorithms—with
provable bounds on performance [2, 6].

The Greedy Algorithm is based on the notion of ex-post selectivity. For a given
order σ, we define the ex-post selectivity as the conditional probability of classifier
Cσ(h) labelling a data item as positive given that the previoush−1 classifiers labelled

the data as positive,4 i.e. ψσ
h = tσh

tσh−1
. The throughput at each step can be expressed

recursively as a product of ex-post selectivities: tσh = ψσ
ht

σ
h−1 = . . . =

(
h∏

i=1

ψσ
i

)
t0.

The Greedy Algorithm then involves ordering classifiers in increasing order of

ψ
μ

where μσ
i =

{
ρσ(i+1) = λ

cM+cF ασ(i+1) if i ≤ N − 1

K = cF

cF+cM if i = N
. Note that this fraction

depends on the selected order.
Since this ratio depends implicitly on the order of classifiers in the chain, the

algorithm may be implemented iteratively, selecting the first classifier, then selecting
the second classifier given the fixed first classifier, and so on:

4Observe that for a perfect classifier (pD
σ(h) = 1 and pF

σ(h) = 0), the a-priori conditional probability
φσ
h and the ex-post conditional probabilities ψσ

h are equal.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 105

Centralized Algorithm 1 Greedy ordering

• Calculate the ratio ψσ
1/μ

σ
1 for all N classifiers. Select Cσ(1) as the classifier with lowest

weighted non-conditional selectivity ψσ
1/μ

σ
1. Determine

[
tσ1
gσ

1

]
.

• Calculate the ratio ψσ
2/μ

σ
2 for all remaining N − 1 classifiers. Select Cσ(2) as the classifier

with lowest weighted conditional selectivity ψσ
2/μ

σ
2. Determine

[
tσ2
gσ

2

]
.

• Continue until all classifiers have been selected.

In each iteration we have to update O(N) selectivities and there are O(N)

iterations, making the complexity of the algorithm O(N2) (compared to O(N !)
for the optimal algorithm). Yet, it can be shown that the performance of the Greedy
Algorithm can be bound:

1

κ
U

opt
ord ≤ UG

ord ≤ U
opt
ord with κ = 4.

The value UG
ord of the utility obtained with the Greedy Algorithm’s order is at least

1/4th of the value of the optimal order Uopt
ord . Furthermore, the approximation factor

κ = 4 corresponds to a system with infinite number of classifiers [34]. In practice,
this constant factor is smaller. Specifically, we have κ = 2.35, 2.61, 2.8 for 20, 100
or 200 classifiers respectively.

The key of the proof of this result is to show that the Greedy Algorithm is
equivalent to a greedy 4-approximation algorithm for pipelined set-cover. We refer
the interested reader to the demonstration made by Munagala and Ali in [2] and
let him show that our problem setting is equivalent to the one formulated in their
problem.

3.3 Joint Order and Operating Point Selection

Further system performance can be achieved by both optimizing the order of the
chain of classifiers and the operating point configuration.

To build a joint order and operating point selection strategy, we propose to
combine the SQP-based solution for operating point selection with the iterative
Greedy order selection. This iterative approach, or SQP-Greedy algorithm, is
summarized as follows:

106 R. Ducasse et al.

Centralized Algorithm 2 SQP-Greedy algorithm for joint ordering and operating
point selection

• Initialize σ(0).
• Repeat until greedy algorithm does not modify order.

1. Given order σ(j), compute locally optimal x(j) through SQP.
2. Given operating points x(j), update order σ(j+1) using (A-)Greedy algorithm.

Each step of the SQP-Greedy algorithm is guaranteed to improve the global
utility of the problem. Given a maximum bounded utility, the algorithm is then
guaranteed to converge. However, it may be difficult to bound the performance gap
between the SQP-Greedy and the optimal algorithm with a constant factor, since
the SQP only achieves local optima. As a whole, identification and optimization of
algorithms used to compute optimal order and operating points represents a major
roadblock to stream mining optimization.

3.3.1 Limits of Centralized Algorithms for Order Selection

We want to underline that updating the ex-post selectivities requires strong coor-
dination between classifiers. A first solution would be for classifiers to send their
choice of operating point (pF , pD) to a central agent (which would also have
knowledge about the a-priori conditional selectivities φσ, φσ) and would compute
the ex-post conditional selectivities. A second solution would be for each classifier
Ci to send their rates ti and gi to the classifiers Cj which have not yet processed the
stream for them to compute ψi

j . In both cases, heavy message exchange is required,
which can lead to system inefficiency (cf. Sect. 4.1). We will propose in Sect. 4
a decentralized solution with limited message exchanges, as an alternative to this
centralized approach.

3.4 Multi-Chain Topology

3.4.1 Motivations for Using a Multi-Chain Topology: Delay Tradeoff
Between Feature Extraction and Intra-Classifier Communication

In the previous analysis, we did not take into consideration the time αcom required by
classifiers to communicate with each other. If classifiers are all grouped on a single
node, such communication time αcom

inter can be neglected compared to the time αf eat

required by classifiers to extract data features. However for classifiers instantiated
on separate nodes, this communication time αcom

ext can greatly increase the total time
required to deal with a stream tuple.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 107

As such, we would like to limit the communication between nodes, i.e. (1) avoid
sending the stream back and forth from one node to another and (2) limit message
exchanges between classifiers. To do so, a solution would be to process the stream
in parallel on each node and to intersect the output of each node-chain.

3.4.2 Number of Chains and Tree Configuration

Suppose that instead of considering classifiers in a chain, we process the stream
through R chains, where chain r has Nr classifiers with the order σr . The answer
of the query is then obtained by intersecting the output of each chain r (we assume
that this operation incurs zero delay).

We can show that, as a first approximation, the end-to-end processing time can
be written as

cσ
delay =

R∑
r=1

Nr∑
h=1

α
f eat

σr (h)
t
σr
h−1

︸ ︷︷ ︸
featureextraction

+
R∑

r=1

Nr−1∑
h=1

αcom
σr (h),σr (h+1)t

σr
h

︸ ︷︷ ︸
intra−classifiercommunication

. (8)

Intuitively, the feature extraction term increases with the number of chains R,
as each chain needs to process the whole stream, while the intra-classifier com-
munication term decreases with R, since using multiple chains enables classifiers
instantiated on the same node to be grouped together in order to avoid time-costly
communication between nodes (cf. Fig. 4b).

Configuring stream mining systems as tree topologies (i.e. determining the
number of chains to use in order to process the stream in parallel, as well as
the composition and order of each chain) represents a major research theme. The
number of chains R and the choice of classifiers per chain illustrate the tradeoff
between feature extraction and intra-classifier communication and will depend on
the values of αf eat and αcom.

4 Decentralized Approach

4.1 Limits of Centralized Approaches and Necessity of a
Decentralized Approach

The centralized approach presented in the previous sections has six main limita-
tions:

1. System and Information Bottlenecks: Centralized approaches require a central
agent that collects all information, generates optimal order and operating points
per classifier, and distributes and enforces results on all classifiers. This creates a

108 R. Ducasse et al.

bottleneck, as well as a single point of failure, and is unlikely to scale well as the
number of classifiers, topologic settings, data rates, and computing infrastructure
grow.

2. Topology Specificity: A centralized approach is designed to construct one
topology for each user application of interest. In practice the system may be
shared by multiple such applications—each of which may require the reuse of
different subsets of classifiers. In this case, the centralized algorithm needs to
design multiple orders and configurations that need to be changed dynamically
as application requirements change, and applications come and go.

3. Resource Constraints: Currently designed approaches minimize a combination
of processing delay and misclassification penalty. However, in general we also
need to satisfy the resource constraints of the underlying infrastructure. These
may in general lead to distributed non-convex constraints in the optimization,
thereby further increasing the sub-optimality of the solution, and increasing the
complexity of the approach.

4. Synchronization Requirements: The processing times vary from one classifier
to the other. As a result, transmission from one classifier to another is not
synchronized. Note that this asynchrony is intrinsic to the stream mining system.
Designing one centralized optimization imposes synchronization requirements
among classifiers and as the number of classifiers and the size of the system
increases may reduce the overall efficiency of the system.

5. Limited Sensitivity to Dynamics: As an online process, stream mining opti-
mization must involve algorithms which take into account the system’s dynamics,
both in terms of the evolving stream characteristics and classifiers’ processing
time variations. This time-dependency is all the more true in a multi-query
context, with heterogeneous data streams for which centralized algorithms are
unable to cope with such dynamics.

6. Requirement for Algorithms to Meet Time Delay Constraints: These dynam-
ics require rapid adaptation of the order and operating points, often even at the
granularity of one tuple. Any optimization algorithm thus needs to provide a
solution with a time granularity finer than the system dynamics. Denote by τ the
amount of time required by an algorithm to perform one iteration, i.e. to provide
a solution to the order and configuration selection problem. The solution given
by an algorithm will not be obsolete if τ ≤ Cτdyn where τdyn represents the
characteristic time of significant change in the input data and characteristics of
the stream mining system and C ≤ 1 represents a buffer parameter in case of
bursts.

To address these limitations, we propose a decentralized approach and design
a decentralized stream mining framework based on reinforcement learning tech-
niques.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 109

Cs (h) = Ci

Cs (1) Cs (2) Cs (h–1) th–1

pi

pi

Ui qi
vj wj Ti(xi) 1

(xi, Ci) = = –argmax
xi [0;1]

Cj Children(Ci)

xi =

= fi(xi)
D

pi
F

s

gh–1

qi = s

gh–1
s

Ci Children(Ci)∈

∈
∈

∼
∼

Fig. 10 Stochastic decision process: at each node, optimisation of local utilisation of select
operating point and child classifier

4.2 Decentralized Decision Framework

The key idea of the decentralized algorithm is to replace centralized order selection
by local decisions consisting in determining to which classifier to forward the
stream. To describe this, we set up a stochastic decision process framework
{C, S ,A,U} [15], illustrated in Fig. 10, where

• C = {C1, . . . , CN } represents the set of classifiers
• S = ×

i≤N
S i represents the set of states

• A = ×
i≤N

A i represents the set of actions

• U = {U1, . . . , UN } represents the set of utilities

4.2.1 Users of the Stream Mining System

Consider N classifiers C = {C1, . . . , CN }. The classifiers are autonomous: unless
otherwise mentioned, they do not communicate with each other and take decisions
independently. We recall that the hth classifier will be referred as Ci = Cσ(h). We
will also refer to the stream source as C0 = Cσ(0).

4.2.2 States Observed by Each Classifier

The set of states can be decomposed as S = ×
i≤N

S i . The local state set of

classifier Ci = Cσ(h) at the hth position in the classifier chain is defined as
S i = {(Children(Ci), θi)}:
• Children(Ci) =

{
Ck ∈ C |Ck /∈ {Cσ(1), Cσ(2) . . . , Ci}

} ⊂ C represents the
subset of classifiers through which the stream still needs to be processed after

110 R. Ducasse et al.

it passes classifier Ci . This is a required identification information to be included
in the header of each stream tuple such that the local classifier can know which
classifiers still need to process the tuple.

• The throughput-to-goodput ratio θi = tσh−1
gσ
h−1

∈ [1,∞] is a measure of the

accuracy of the ordered set of classifiers {Cσ(1), Cσ(2), . . . , Ci}. Indeed, θi = 1
corresponds to perfect classifiers Cσ(1), Cσ(2), . . . , Ci , (with pD = 1 and pF =
0), while larger θi imply that data has been either missed or wrongly classified.

The state θi can be passed along from one classifier to the next in the stream
tuple header. Since θi ∈ [1,∞], the set of states S i is of infinite cardinality. For
computational reasons, we would require a finite set of actions. We will therefore
approximate the throughput-to-goodput ratio by partitioning [1,∞] into L bins
Sl = [bl−1, bl] and approximate θi ∈ Sl by some fixed value sl ∈ Sl .

4.2.3 Actions of a Classifier

Each classifier Ci has two independent actions: it selects its operating point xi and
it chooses among its children the trusted classifier Ci→ to which it will transmit the
stream. Hence A i = {(xi, Ci→)}, where

• xi ∈ [0, 1] corresponds to the operating point selected by Ci .
• Ci→ ∈ Children(Ci) corresponds to the classifier to which Ci will forward the

stream. We will refer to Ci→ as the trusted child of classifier Ci .

Note that the choice of trusted child Ci→ is the local equivalent of the global
order σ. The order is constructed classifier by classifier, each one selecting the child
to which it will forward the stream: ∀h ∈ [1, N], Cσ(h) = Cσ(h−1)→.

4.2.4 Local Utility of a Classifier

We define the local utility of a chain of classifiers by backward induction:

Uσ(h) = −ρσ(h)t
σ
h−1 + Uσ(h+1) and Uσ(N) = −ρσ(N)t

σ
N−1 + gσ

N −KtσN .

(9)
The end-to-end utility of the chain of classifiers can then be reduced to U = Uσ(1).

The key result of this section consists in the fact that the global optimum can be
achieved locally with limited information. Indeed, each classifier Ci = Cσ(h) will
globally maximize the system’s utility by autonomously maximizing its local utility

Ui =
[
vσ
h wσ

h

]
︸ ︷︷ ︸
=[vi wi]

[
tσh−1
gσ
h−1

]
where the local utility parameters

[
vσ
h wσ

h

]
are defined

recursively:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 111

[
vσ
N wσ

N

] = − [ρσ(N) 0
]+ [−K 1

]
T σ
N[

vσ
h wσ

h

] = − [ρσ(h) 0
]+ [vσ

h+1 wσ
h+1

]
T σ
h .

This proposition can easily be proven recursively.
Therefore, the local utility of classifier Ci can now be rewritten as

Ui =
(
− [ρi 0

]+ [vσ
h+1 wσ

h+1

]
T σ
i (xi)

)[
tσh−1
gσ
h−1

]
. (10)

As such, the decision of classifier Ci only depends on its operating point xi ,
on the state θi which it observes5 and on the local utility parameters

[
vj wj

]
of

its children classifiers Cj ∈ Children(Ci). Once it knows the utility parameters
of all its children, classifier Ci can then uniquely determine its best action (i.e. its
operating point xi and its trusted child Ci→) in order to maximize its local utility.

4.3 Decentralized Algorithms

At this stage, we consider classifiers with fixed operating points. The action of a
classifier Ci is therefore limited to selecting the trusted child Ci→ ∈ Children(Ci)

to which it will forward the stream.

4.3.1 Exhaustive Search Ordering Algorithm

We will say that a classifier Ci probes a child classifier Cj when it requests its child
utility parameters

[
vj wj

]
.

To best determine its trusted child, a classifier only requires knowledge on the
utility parameters of all its children. We can therefore build a recursive algorithm
as follows: all classifiers are probed by the source classifier C0; to compute their
local utility, each of the probed classifiers then probes its children for their utility
parameters

[
v w
]
. To determine these, each of the probed children needs to probe

its own children for their utility parameter, etc. The local utilities are computed in
backwards order, from leaf classifiers to the root classifier C0. The order yielding
the maximal utility is selected.

Observe that this decentralized ordering algorithm leads to a full exploration
of all N ! possible orders at each iteration. Achieving the optimal order only
requires one iteration, but this iteration requires O(N !) operations and may thus

5ti−1 and gi−1 are not required since: argmax Ui = argmax Ui

gi−1
=

(− [ρi 0
]+ [vi+1 wi+1

]
T σ
i

) [θi

1

]
.

112 R. Ducasse et al.

Cs (h) = Ci

Transmission of
utility parameter

to parent classifier Feedbacked
utility parameters

from children

Children(Ci)

Cs (h–1) vj wj

vj wj

Fig. 11 Feedback information for decentralized algorithms

Fig. 12 Global Partial Search Algorithm only probes a selected subset of classifier orders

require substantial time, since heavy message exchange is required (Fig. 11). For
quasi-stationary input data, the ordering could be performed offline and such com-
putational time requirement would not affect the system’s performance. However,
in bursty and heterogeneous settings, we have to ensure that the optimal order
calculated by the algorithm would not arrive too late and thus be completely
obsolete. In particular, the time constraint τ ≤ Cτdyn, defined in Sect. 4.1 must
not be violated.

We therefore need algorithms capable of quickly determining a good order,
though convergence may require more than one iteration. In this way, it will be
possible to reassess the order of classifiers on a regular basis to adapt to the
environment.

4.3.2 Partial Search Ordering Algorithm

The key insight we want to leverage is to screen only through a selected subset
of the N ! orders at each iteration. Instead of probing all its children classifiers
systematically, the hth classifier will only request the utility parameters

[
v w
]

of a
subset of its N − h children.

From a global point of view, one iteration can be decomposed in three major
steps, as shown on Fig. 12:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 113

Fig. 13 Time scales for decentralized algorithms

Step 1: Selection of the Children to Probe A partial tree is selected recursively
(light grey on Fig. 12). A subset of the N classifiers are probed as first classifier of
the chain. Then, each of them selects the children it wants to probe, each of these
children select the children which it wants to probe, etc.

Step 2: Determination of the Trusted Children The order to be chosen is
determined backwards: utilities are computed from leaf classifiers to the source
classifier C0 based on feedback utility parameters. At each node of the tree, the
child classifier which provides its parent with the greatest local utility is selected as
the trusted child (dark grey on Fig. 12).

Step 3: Stream Processing The stream is forwarded from one classifier to its
trusted child (black on Fig. 12).

If we want to describe Step 1 more specifically, classifier Ci will probe its child
Cj with probability pi

j . As will be shown in Sect. 4.5, adjusting the values of pi
j

will enable to adapt the number of operations and the time τ required per iteration,
as shown on Fig. 13. Indeed, for low values of pi

j , few of the N ! orders will be
explored, and since each classifier only probes a small fraction of its children, one
iteration will be very rapid. However, if the values of pi

j are close to 1, each iteration
requires a substantial amount of probing and one iteration will be long.

In the Partial Search Ordering Algorithm, one classifier may appear at multiple
depths and positions in the classifiers’ tree. Each time, it will realize a local
algorithm described in the flowchart in Fig. 14.

114 R. Ducasse et al.

Cs (h) = Ci

1

2a

2b

3

4

5

to probed
children

classifiers

from probed
children

classifiers

Compute utility

Select
trusted child

Request
[vj wj]

Acknowledge
[vj wj]

Transmit
[vj wj]

Observe state

to Cs (h–1)

Fig. 14 Flowchart of local algorithm for partial search ordering

Decentralized Algorithm 3 Partial Search Ordering Algorithm—for classifier
Ci = Cσ(h)

1. Observe state (θi , Children(Ci))
2. With probability pi

j , request utility parameters
[
vσ(h+1) wσ(h+1)

] = [vj wj

]
for any of

the N − h classifiers Cj ∈ Children(Ci)

3. For each child probed, compute corresponding utility

Ui(Cj) =
(− [ρσ(i) 0

]+ [vj wj

]
T .0
i

) [tσh−1
gσ
h−1

]

4. Select the child classifier with the highest Ui as trusted child.
5. Compute the corresponding

[
vi wi

]
and transmit it to a previous classifier who requested

it.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 115

4.3.3 Decentralized Ordering and Operating Point Selection

In case of unfixed operating points, the local utility of classifier Ci = Cσ(h) also
depends on its local operating point xi—but it does not directly depend on the
operating points of other classifiers6:

Ui =
(
− [ρi 0

]+ [vσ
h+1 wσ

h+1

]
T σ
i (xi)

)[
tσh−1
gσ
h−1

]
.

As a consequence, we can easily adapt the Partial Search Ordering Algorithm
into a Partial Search Ordering and Operating Point Selection Algorithm by comput-
ing the maximal utility (in terms of xi) for each child:

Ui(Cj) = max
xi

(− [ρσ(i) 0
]+ [vj wj

]
T σ
i (xi)

) [tj
gj

]
. (11)

To solve the local optimization problem defined in Eq. (11), each classifier can
either derive the nullity of the gradient if the ROC curve function fi : pF �→ pD

is known, or search for optimal operating point using a dichotomy method (since
Ui(Cj) is concave).

4.3.4 Robustness of the Partial Search Algorithm and Convergence Speed

It can be shown that under stable conditions the Partial Search Algorithm converges
and the equilibrium point of the stochastic decision process. For fixed operating
point the Partial Search Algorithm converges to the optimal order if pi

j > 0 ∀ i, j .
In case of joint ordering and operating point selection, there exist multiple

equilibrium points, each corresponding to a local minimum of the utility function.
The selection of the equilibrium point among the set of possible equilibria depends
on the initial condition (i.e. order and operating points) of the algorithm. To select
the best equilibrium, we can perform the Partial Search Algorithm for multiple
initial conditions and keep only the solution which yielded the maximum utility.

In practice, stable stream conditions will not be verified by the stream mining
system, since the system’s characteristics vary at a time scale of τdyn. Hence, rather
than achieving convergence, we would like the Partial Search Algorithm to reach
near-equilibrium fast enough for the system to deliver solution to the accuracy and
delay joint optimization on a timely basis.

In analogy to [9], we first discuss how model-free Safe Experimentation, a
heuristic case of Partial Search Algorithm can be used for decentralized stream
mining and leads to a low-complexity algorithm, however with slow convergence

6The utility parameters
[
vj wj

]
fed back from classifier Cj to classifier Ci are independent of

any classifiers’ operating points.

116 R. Ducasse et al.

rate. Fortunately, the convergence speed of the Partial Search Algorithm can be
improved by appropriately selecting the screening probabilities pi

j . In Sect. 4.5, we
will construct a model-based algorithm which enables to control the convergence
properties of the Partial Search Algorithm, and lead to faster convergence.

4.4 Multi-Agent Learning in Decentralized Algorithm

We aim to construct an algorithm which would maximize as fast as possible
the global utility of the stream mining system expressed in Eq. (4). We want to
determine whether it is worthwhile for a classifier Ci to probe a child classifier Cj

for its utility parameters and determine search probabilities pi
j of the Partial Search

Algorithm accordingly.

4.4.1 Tradeoff Between Efficiency and Computational Time

Define an experiment Ei→j as classifier Ci’s action of probing a child classifier Cj

by requesting its utility parameter
[
vj wj

]
. Performing an experiment can lead to

a higher utility, but will induce a cost in terms of computational time:

• Denote by Û(Ei→j |sk) the expected additional utility achieved by the stream
mining system if the experiment Ei→j is performed under state sk .

• Let τ ex represent the expected amount of time required to perform an experiment.
This computational time will be assumed independent of the classifiers involved
in the experiment performed and the state observed.

Then, the total expected utility per iteration is given by Û(pi
j) =∑

pi
j Û(Ei→j |sk) and the time required for one iteration is τ (p

j
i) = n̂(pi

j)τ
ex ,

where n̂(pi
j) represents the expected number of experiments performed in one

iteration of the Partial Search Algorithm and will be defined precisely in the next
paragraph.

The allocation of the screening probabilities pi
j aims to maximize the total

expected utility within a certain time:

⎧⎨
⎩

maximize
pi
j∈[0,1]

Û(pi
j)

subject to τ (p
j
i) ≤ Cτdyn

. (12)

4.4.2 Safe Experimentation

We will benchmark our results on Safe Experimentation algorithms as cited in [9].
This low-complexity, model-free learning approach was first proposed for large-

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 117

scale, distributed, multi-agent systems, where each agent is unable to observe the
actions of all other agents (due to informational or complexity constraints) and
hence cannot build a model of other agents [17]. The agent therefore adheres to a
“trusted” action at most times, but occasionally “explores” a different one in search
of a potentially better action.

Safe Experimentation is a reinforcement learning algorithm where each classifier
learns by observing the payoff with which its past actions were rewarded. As such,
it does not consider the interactions between agents, or in our case, the actions of
other autonomous classifiers. In particular, there is no explicit message exchange
among classifiers required (i.e. no

[
v w
]

exchanged), though each classifier needs
to know the reward of its action (and computing this reward might yet require some
form of implicit communication between agents).

The Safe Experimentation algorithm is initialized by selecting an initial order
σ0 of classifier. Cσ0(h+1) will be referred as the “trusted” child of the hth classifier
Cσ0(h). At each time slot, Cσ(h) will either forward the stream to its “trusted” child
Cσ(h+1) with probability (1 − ε) or, with probability ε, will explore a classifier Cj

chosen randomly among its children. In the case where a higher reward is achieved
through exploration, Cj will become the new “trusted” child of Cσ(h). Note that
so long as ε > 0, all possible orders will ultimately be explored, such that Safe
Experimentation converges to the optimal order [9].

Instead of considering a fixed exploration rate ε, we can consider a dimin-
ishing exploration rate εt. In this way, the algorithm will explore largely for
first iterations and focus on exploited orders near convergence. εt → 0 and
∞∏
t=1

(
1− εt

N−1

(N − 1)!
)
→ 0 are sufficient conditions for convergence, typically

verified for εt = (1/t)1/n.
Two majors limits of Safe Experimentation can be identified:

• Slow convergence: One iteration of Safe Experimentation is very rapid (O(N)),
since only one order is experienced. However, the expected number of iterations
required to converge to optimal order is bounded below by N ! (corresponding to
uniform search: εt = 1). As a consequence, the time required to reach the optimal
solution might be infinitely long, since the optimal order could be experimented
after an infinitely large number of iterations.

• General approach: This slow convergence can be explained by the fact that
Safe Experimentation, as a model-free approach, does not leverage the structure
of the problem studied. In particular, one major constraint fixed by Safe Exper-
imentation is to try only one classifier among all its children, while the stream
mining optimization problem allows to probe multiple children simultaneously
by requesting their utility parameters

[
v w
]

and selecting the trusted child based
on these fed back values. This capacity to try multiple orders per iterations will
enable to build a parameterized algorithm to speed-up the convergence to optimal
order by choosing screening probabilities pi

j appropriately.

118 R. Ducasse et al.

4.5 Parametric Partial Search Order and Operating Point
Selection Algorithm

As expressed in (12), the screening probabilities pi
j can be used to tradeoff the

expected utility and the computational cost. In this final section, we frame a general
methodology aiming to determine the optimal tradeoff. In order to be adaptable
to the setting considered, we construct our learning algorithm in three steps, each
step representing a certain granularity level, and each step being controllable
by one “macroscopic” state variable. Doing so, we put forward three tradeoffs
corresponding to three independent questions: (1) how much to search?, (2) how
deep to search?, (3) where to search?

This enables the construction of a parametric learning algorithm, extensively
detailed in [8]. This article shows that the probability pi

j (p, ξ, β) that the hth
classifier Cσ(h) = Ci probes its children Cj , given that it received data with
throughput-to-goodput ratio θi ∈ Sk can be expressed as:

pi
j (p, ξ, β) = p︸︷︷︸

howmuch?

× C′

1+ e
− h−[Np]

ξ︸ ︷︷ ︸
howdeep?

× eβUi(j,k)∑
Cl∈Children(Ci)

eβUi(l,k)

︸ ︷︷ ︸
where?

.

The reader will find a justification of the formalism of pi
j in [8].

4.5.1 Controlling the Screening Probability

Using this expression of pi
j is meant to be able to control key characteristics of the

screening probability by tuning parameters p,ξ and β.
The first parameter p = Av

i,j
(pi

j) is used to arbitrate between rapid but inflexible

search and slower but system-compliant search. Its value will impact the time τ

required for one iteration and has to be selected small enough in order to ensure that
τ ≤ Cτdyn, thus, coping with environment dynamics.

The second control parameter ξ is used to arbitrate between rapid but less secure
search and slower but exhaustive search. It is a refinement parameter, which dictates
how much more extensive search should be performed in the lower classifiers than
in the upper ones.

• ξ = 0 corresponds to searching only for last classifiers and violates the
exhaustivity of the search (no optimal convergence ensured).

• 0 < ξ < ∞ corresponds to searching more exhaustively for last classifiers than
for first classifiers.

• ξ = ∞ corresponds to searching uniformly at any depth with probability p.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 119

The third parameter β balances the options of probing unexplored children versus
exploiting already-visited orders, by weighting the propensity of classifier Ci =
Cσ(h) to probe one of its children classifier Cj , based on past experiments’ reward.
In most learning scenarios where the tradeoff between exploration and exploitation
arises, both exploitation and exploration cannot be performed at the same time: the
algorithm will either exploit well-known tracks or explore new tracks [14]. This is
due to the absence of immediate feedback. In our setting, each classifier requests
the information (i.e. utility parameters) of a subset of its children and is then able to
base its decision on their feedback information.

In practice, the weight associated to a specific child based on its past reward

could be determined using any increasing function f . Using fβ(U) = eβU∑
V eβV

is motivated by the analogy of a classifiers utility U to an energy [22]. In this

case,
eβU∑
V eβV

represents the equilibrium probability of being at an energy level

U . As such, the parameter β can be interpreted as the inverse of a temperature, i.e.
it governs the amount of excitation of the system:

• β = 0 corresponds to a very excited system with highly time-varying character-
istics. In this case, since characteristics change very quickly, random exploration:
pi
j = pi is recommended by the algorithm.

• β = ∞ corresponds to a non-varying system. Then, full-exploitation of past
rewards is recommended (given that all states were explored at least once) and
weight should be concentrated only on the child which provides the maximum
utility.

• 0 < β <∞ is a tradeoff between exploration (β = 0) and exploitation (β = ∞)
and corresponds to settings where algorithmic search and environment evolution
are performed at the same time scale.

4.5.2 Comparison of Ordering and Operating Point Selection Algorithms

Our preliminary results in Table 1 compare the performance of several joint
ordering and operating point selection algorithms based on important criteria in the
considered stream mining system.

4.5.3 Order Selected by Various Classifiers for Different Ordering
Algorithms

The performance of the different ordering algorithms are shown in Table 2 for seven
classifiers with fixed operating points per classifier. The classifier’s characteristics
(pF , pD) (i.e. the ROC curve), ψ (i.e. the ex-post selectivities), and α (i.e. the
resource requirements) were generated randomly. The misdetection cost cM = 10,

120 R. Ducasse et al.

Table 1 Comparison of ordering and operating point selection algorithms

Ordering and
operating
point selection
algorithm

System
compliance

Utility
achieved

Message
exchange

Speed of
convergence

Adaptability Control

SQP-Greedy Low Bound;
local opt.

Heavy Medium Little ∅

Safe experi-
mentation

High Local opt. ∅ Medium ∅ ∅

Partial search Complete Local opt. Light Rapid Total Yes

Table 2 Utilities and computational time achieved for different ordering algorithms

Algorithm Order obtained Utility Comp. time

Centralized Optimal [C6 C2 C1 C4 C3 C7 C5] 100 >5 min

Greedy [C4 C1 C6 C7 C2 C3 C5] 95 0.002 s

Decentralized Safe experimentation [C6 C2 C1 C4 C3 C7 C5] 100 2.09

Partial search [C6 C2 C1 C4 C3 C7 C5] 100 1.2 s

false alarm cost cF = 1, and λ = 0.1. The input data rate t0 = g0 was selected to
normalize the optimal utility to 100.

As expected, the globally optimal centralized solution requires too much com-
putation time, while the centralized Greedy algorithm does not lead to the optimal
order, but results in very little computational time. The Parametric Partial Search
Algorithm (here with p = 0, 1, T = 1 and β = 0) converges quicker than
Safe Experimentation (here with ε = 0, 1), to the optimal order. Decentralized
algorithms converge to the optimal order, given that they ultimately probe all the
possible orders, but they require longer computational time than the centralized
greedy solutions. However, as shown in [8], convergence to a near-optimal order
requires only a few iterations.

5 Online Learning for Real-Time Stream Mining

Mining dynamic and heterogeneous data streams using optimization tools may not
always be feasible due to the unknown and time-varying distributions of these
streams. Since classification of the streaming data needs to be done immediately, and
invoking a classifier is costly, choosing the right classifier at run time is an important
problem. In this section we review numerous methods that learn which classifiers to
invoke based on the streaming meta-data, which is also called the context. All the
algorithms studied in this section are able to mine big data streams in real-time. To
accomplish this task, they are designed to have the following key properties:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 121

• After a data instance is classified, the result is used to update the parameters of
the learning algorithms. Then, the data instance is discarded. Therefore, it is not
necessary to keep the past data instances in the memory.

• Usually, a single classifier is selected to classify the current data instance. As a
result, only the accuracy estimate for the selected classifier is updated. While all
the algorithms discussed in this section are capable of simultaneously updating
the accuracies of all of the classifiers, this can lead to significant computational
overhead due to the fact that it requires predictions from all of the classifiers
for each data instance. Nevertheless, the performance bounds discussed in this
section also holds for the case above.

5.1 Centralized Online Learning

This subsection is devoted to the study of centralized online learning algorithms for
stream mining. We introduce several challenges related to real-time stream mining,
various performance measures and the algorithms that address each one of the
introduced challenges.

5.1.1 Problem Formulation

Each classifier takes as input a data instance and outputs a prediction. The data
stream also includes a stream of meta-data, which is also referred to as the context
stream. At time t , the data instance s(t) is observed together with the context x(t) ∈
X . The label y(t) ∈ {0, 1} is not observed. The context can be categorical, real-
valued and/or multi-dimensional. For instance, in a medical diagnosis application,
the data instance can be an MRI image of a tissue, while the context can be
resolution, type of the scanner, age of the patient and/or radius of the tumor.
Depending on the particular application, the set of all possible contexts X can be
very large and even infinite. The dimension of the context space is denoted by D.
Each dimension of the context is called a context type. For instance, for the medical
diagnosis example given above “age” is a context type, while the specific value that
this type takes is the context.

No statistical assumptions are made on the context stream. However, the data
and the label is assumed to be drawn from a fixed distribution given the context.
This departs from the majority of the supervised learning literature, which assumes
that the data is i.i.d. over time. Based on this, the accuracy of a classifier C given
context x is defined to be πC(x) ∈ [0, 1]. The classifier accuracies are not known
beforehand and need to be learned online.

It is common to assume that the accuracy of a classifier is similar for similar
contexts [25, 30]. For instance, in a social network users with similar age, income
and geographic location will have a tendency to click on similar ads, which will
result in a similar accuracy for a classifier that tries to predict the ad that the user

122 R. Ducasse et al.

will click to. This assumption, which is also called the similarity assumption, is
mathematically formalized as Hölder continuity of the accuracy of classifier c as a
function of the context:

|πC(x)− πC(x
′)| ≤ L× dist(x, x ′)α (13)

where L is the Hölder constant, α is the Hölder exponent and dist(·, ·) is a distance
metric for the contexts. For most of the cases α is set to be 1, which makes the
accuracy of classifier f Lipschitz continuous in the context [24].

The standard performance measure for online learning is the regret, which is
defined as

Reg(T) :=
T∑
t=1

π∗(x(t))− E

[
T∑
t=1

πa(t)(x(t))

]
(14)

where π∗(x(t)) := maxC∈C πC(x(t)) and a(t) denotes the classifier selected at
time t . Hence, minimizing the regret is equivalent to selecting the best classifier
as many times as possible. The time-averaged regret is defined as Reg(T) =
Reg(T)/T . Reg(T) → 0 implies that the average performance is (asymptotically)
as good as the average performance of the best classifier selection policy given
the complete knowledge of classifier accuracies. In order for the time-averaged
regret to converge to zero, the regret must grow at most sublinearly over time, i.e.,
Reg(T) ≤ KT γ for some constants K > 0 and γ ∈ [0, 1) for all T .

5.1.2 Active Stream Mining

Online learning requires knowing the labels, in order to update the accuracy of
the selected classifier. In most of the stream mining applications, such as medical
diagnosis, acquiring the label is costly. Hence, a judicious mechanism that decides
when to acquire the label based on the confidence on the accuracy of the selected
classifier needs to be developed. The performance measure, i.e., the regret, also
needs to be re-defined to capture the cost of label acquisition; hence, it becomes

Reg(T) :=
T∑
t=1

π∗(x(t))− E

[
T∑
t=1

πa(t)(x(t))− J r(t)

]
(15)

where r(t) is 1 if label is acquired at time t and 0 otherwise, and J is a constant that
represents the tradeoff between accuracy and label acquisition cost.

Since the number of possible contexts is usually very large, it is very inefficient
to learn the classifier accuracies for each context separately. Therefore, the learning
algorithms developed for stream mining learn the classifier accuracies for groups
of similar contexts, where the groups are formed by partitioning the context space
based on the similarity assumption given in (13). Then, the estimated accuracy of

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 123

Context space X

l1 l2

l3

time t

Fig. 15 Evolution of context space partition over time for D = 2. Red dots represent the most
recent contexts and black dots represent the past contexts for which the label was acquired at
the time of decision. Based on the similarity assumption, the type 2 error is proportional to lαj ,
j = 1, 2, 3, where lj denotes the diameter of the group that the most recent context belongs to.
On the other hand, the type 1 error decreases with the number of dots which belong to the group
(square) that the current context belongs to

classifier C for context x(t) is computed as π̂C(x(t)) := π̂C(p(t)) where p(t) is
the group that contains x(t) in the partition of the context space. Here, π̂C(p(t)) is
the sample mean of the correct predictions averaged over all past context arrivals to
p(t) for which the label was acquired. As shown in Fig. 15, this partition is adapted
based on how the contexts arrive in order to balance the two sources of error in
estimating the classifier accuracies: (1) type 1 error that arises from the number of
past labeled data instances belonging to a group; (2) type 2 error that arises from the
dissimilarity of the contexts that belong to the same group.

The label acquisition decision is also made to balance this tradeoff. Specifically,
each label acquisition decreases the type 1 error of the selected classifier for the
group that the current context belongs to. If accuracy of the selected classifier is
known with a high confidence, then label acquisition is not necessary. In order
to achieve this, the learning algorithm indefinitely alternates between two phases:
exploration phase and exploitation phase, which are described below.

• Exploration phase: Select a classifier that the algorithm has a low confidence
on its accuracy. After performing classification by the selected classifier, acquire
the label of the data instance and update the accuracy estimate of the selected
classifier.

• Exploitation phase: Select the classifier with the highest estimated accuracy, i.e.,
a(t) = arg maxC∈C π̂C(x(t)).

After an exploration phase, the confidence on the accuracy of the selected
classifier increases. Thus, classifier accuracies are learned in exploration phases.
On the other hand, in an exploitation phase the prediction accuracy is maximized
by classifying the data instance based on the empirically best classifier. In [25],
it is shown that sublinear in time regret can be achieved by acquiring labels only
sublinearly many times. While this regret bound holds uniformly over time, its
dependence on T can be captured by using the asymptotic notation, which implies
that Reg(T) = Õ(T (κ+D)/(κ′+D)), for some constants κ′ > κ > 0. The specific

124 R. Ducasse et al.

implementation keeps a control function D(t), and explores only when the number
of times the label is acquired by time t is less than or equal to D(t). D(t) increases
both with t and the inverse of the diameter of the group that x(t) belongs to. For
this algorithm, the number of groups in the partition of the context space is also
a sublinear function of time, which implies that the memory complexity of the
algorithm is also sublinear in time. Moreover, identifying both the group that the
current context belongs to and the empirically best classifier are computationally
simple operations, which makes this algorithm suitable for real-time stream mining.

5.1.3 Learning Under Accuracy Drift

Since the data stream is dynamic, its distribution conditioned on the context can
also change over time. This is called the concept drift [35]. It is straightforward
to observe that the concept drift will also cause a change in the accuracy of the
classifiers. For this setting, the time-varying accuracy of a classifier C for context x
is denoted by πC(t, x). It is assumed that the accuracy gradually drifts over time,
which can be written as

|πC(t, x)− πC(t
′, x ′)| ≤ L× dist(x, x ′)α + |t − t ′|

Ts

where Ts denotes the stability of the concept. If Ts is large the drift is slow, while if
Ts is small the drift is fast. Note that this assumption does not introduce any explicit
restrictions on the data stream distribution. Hence, the accuracy drift is more general
than the concept drift and can also model scenarios in which there is a change in
the classifiers. For instance, in an application with SVM classifiers, some of the
classifiers might be re-trained on-the-fly as more data instances arrive, which will
result in a change in their decision boundaries, and hence their accuracies, even
though the stream distribution remains the same.

An algorithm that learns and tracks the best classifier when there is accuracy
drift is proposed in [26]. This algorithm estimates the classifier accuracies by using
a recent time window of observations from similar contexts as opposed to using
the entire past history of observations. In this work, the optimal window size is
computed to be a sublinear function of Ts .

In general, it is not possible to achieve sublinear in time regret when there is
accuracy drift due to the fact that the classifier accuracies are continuously changing.
A constant rate of exploration is required in order to track the best classifier. A
suitable performance measure for this setting is the time-averaged regret Reg(T).
The algorithm proposed in [26] achieves a time-averaged regret of Õ(T

−γ
s), where

γ ∈ (0, 1) is a parameter that depends on α and the dimension of the context
space. This implies that the time-averaged regret decreases as Ts increases, which is
expected since it is easier to learn the classifier accuracies when the drift is slow.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 125

Age

Weight

Sugar

Weight

x(t) x(t)

l
l

Fig. 16 A medical diagnosis example with three dimensional context space. Shaded areas
represent the set of past observations that are used to estimate the classifier accuracies for the
current context x(t). On the left figure all context types are relevant, while on the right figure only
the context type “weight” is relevant. The shaded areas on the left and right figures have the same
type 2 error. However, the type 1 error for the shaded area on the right figure is much less than the
one on the left figure since it includes many more past observations

5.1.4 Learning the Relevant Contexts

When the dimension D of the context space is large, the methods proposed in
the previous sections which rely on partitioning the context space suffer from the
curse of dimensionality as shown in Fig. 16. As a result, the regret bound given in
Sect. 5.1.2 becomes almost linear in time.

It is possible to avoid the curse of dimensionality when the classifier accuracies
depend only on a small subset of the set of all possible context types. In stream
mining, this implies that there are many irrelevant context types which do not affect
the outcome of the classification.7 If the relevant context types were known, online
learning could be easily performed by partitioning the context space restricted to
the relevant context types. However, identifying these relevant context types on-
the-fly without making any statistical assumptions on how the contexts arrive is a
challenging task. Nevertheless, it is possible to identify the relevant context types
through a sophisticated relevance test. This test identifies relevance assumptions that
are consistent with the classifier accuracies estimated so far. The only requirements
for this test are (13) and an upper bound on the number of relevant context types.

Here, we explain the relevance test that identifies one relevant context type for
every classifier. The extension to more than one relevant context type can be found in
[28]. It is important to note that the relevance test is only performed in exploitation
phases as it requires confident accuracy estimates. First, for each context type i, the
variation of the estimated accuracy of classifier C over all pairs of context types
that include context type i is calculated. The resulting vector is called the pairwise
variation vector of context type i. Then, a bound on the variation of the estimated
accuracy of classifier C due to type 2 errors, which is called natural variation, is

7The definition of irrelevant context types can be relaxed to include all context types which have
an effect that is less than ε > 0 on the classifier accuracies.

126 R. Ducasse et al.

calculated. The set of candidate relevant context types are identified as the ones for
which the pairwise variation is less than a linear function of the natural variation.
Finally, a context type i∗ is selected from the set of candidate relevant types to
be the estimated relevant context type, and the accuracies of the classifiers are re-
calculated by averaging over all past observations whose type i∗ contexts are similar
to the current type i∗ context. In [29] it is shown that online learning with relevance
test achieves regret whose time order does not depend on D (but depends on the
number of relevant context types). Hence, learning is fast and efficient, given that
the number of relevant context types is much smaller than D.

5.2 Decentralized Online Learning

In this subsection, we consider how online learning can be performed in distributed
classifier networks. We review two methods: cooperative contextual bandits in
which local learners (LLs) cooperate to learn the best classifier to select within the
network; hedged bandits in which an ensemble learner (EL) fuses the predictions of
the LLs to maximize the chance of correct classification.

5.2.1 Problem Formulation

Most of the definitions and notations are the same as in Sect. 5.1.1. There are M

data streams, each of which is processed locally by its LL. Each LL has a set of
classifiers C i that it can use to classify its incoming data stream. The set of all
classifiers is denoted by C = ∪M

i=1C i . The context that is related to the ith data
stream is denoted by xi(t), where t ∈ {1, 2, . . .}.

5.2.2 Cooperative Contextual Bandits

In this part we describe a cooperative online learning framework that enables an
LL to use other LLs’ classifiers to classify its own data stream. For cooperative
contextual bandits, the assumption on the context arrival process is the same as the
assumption in Sect. 5.1.1.

In order to understand the benefit of cooperation, first we consider the case in
which each LL acts individually. In this case, the highest accuracy that LL i can get
for context x is π∗i (x) := maxC∈C i

πC(x). On the other hand, if all LLs cooperate
and share their classifiers with each other, the highest accuracy LL i can get for
context x is π∗G(x) := maxC∈C πC(x). Clearly, π∗G(x) ≥ π∗i (x). However, it is not
straightforward for LLs to achieve a classification accuracy that is equal to π∗G(x)
for all x ∈ X due to the following reasons:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 127

1 2 3 4 5 6 7 8

Train Explore Exploit

time

Fig. 17 Interleaving of the training, exploration and exploitation phases over time for a particular
LL and context arrival process in cooperative contextual bandits

• LL i does not known the accuracies of its classifiers πC(x), C ∈ C i , x ∈ X a
priori, and needs to learn these accuracies on-the-fly.

• LL i does not know the classifiers available to the other LLs. Moreover, other
LLs may be reluctant to share such an information due to privacy constraints.

• LL i cannot observe the data streams arriving to other LLs due to both privacy and
communication constraints. However, LL i is able to send selected data instances
to other LLs (possibly by incurring some communication cost) and is able to
receive selected data instances from the other LLs.

The challenging decentralized learning problem stated above is solved by
designing a decentralized learning algorithm that promotes cooperation among the
learners [27]. In this algorithm, each learner alternates between three different
phases over time as given in Fig. 17. The sequencing of these phases is adapted
online based on the context arrival process. In each phase the learning algorithm
takes an action for a different purpose:

• Training phase: LL i selects another LL and sends its context and data instance
to the selected LL. Then, the selected LL is asked to classify the data instance.
After the classification is performed and the true label is received by LL i, this
true label is also send to the selected LL in order for it to update the accuracy
of the classifier that it had selected on behalf of LL i. Hence, the purpose of the
training phase is to train other LLs such that they learn the accuracies of their
own classifiers with a high confidence for contexts that arrive to LL i.

• Exploration phase: LL i selects one of its own classifiers or another LL for the
purpose of learning the accuracy.

• Exploitation phase: LL i selects one of its own classifiers or another LL for the
purpose of maximizing the probability of correct classification.

Due to the heterogeneity of the data streams, usually it is not possible for a single
LL to learn its classifier accuracies well for all possible contexts by just observing
its own data stream. This can happen because a context that is rare for one LL can
be frequent for another LL. While this results in asymmetric learning, it is solved
by the training phase.

Note from Fig. 17 that exploration is performed only when there is no need for
training. This is to ensure that if another LL is selected to make a classification, it
performs classification based on its best classifiers. Otherwise, LL i might learn the

128 R. Ducasse et al.

accuracy of the other LLs incorrectly, which might results in failure to identify an
LL, whose accuracy is higher than the accuracies of the classifiers in C i . Similarly,
exploitation is performed only when there is no need to train any other LL or to
explore any other LL or classifier.

One important question is how much training and exploration is needed. This
can be analytically solved by defining confidence intervals for the sample mean
(empirical) estimates of the classifier accuracies, and adjusting these confidence
intervals over time to achieve a certain performance goal. In cooperative contextual
bandits, the regret of LL i is defined as

Regi (T) :=
T∑
t=1

π∗G(xi(t))− E

[
T∑
t=1

πai(t)(xi(t))

]
(16)

where πai(t)(xi(t)) denotes the accuracy of the classifier selected by LL ai(t) on
behalf of LL i for ai(t) /∈ C i . Again, we seek to achieve sublinear in time regret,
which implies that the learning algorithm’s average number of correct predictions
converges to that of the π∗G(x).

Specifically, it is proven in [27] that sublinear regret can be achieved by an
algorithm that uses sublinear number of training and exploration phases. In order
to achieve sublinear regret, the classifier accuracies must also be learned together
for similar contexts by a context space partitioning method such as the one given in
Fig. 15.

5.2.3 Hedged Bandits

Hedged Bandits model decentralized stream mining applications in which all data
streams are related to the same event. Hence, it is assumed that the contexts,
data instances and labels are drawn according to an i.i.d. process. LLs produce
predictions by choosing classifiers according to their own learning algorithms,
classifiers and data streams, and then, send these predictions to an EL, which fuses
the predictions together to produce a final prediction. The learning algorithm used
by the LLs is similar to the learning algorithms discussed in Sect. 5.1. On the other
hand, the EL uses a variant of the Hedge algorithm [10] that does not require the
time horizon to be known in advance. This guarantees that the ELs prediction is as
good as the predictions of the best LL given the context [30].

6 Conclusion

Adapting in real time the topology of classifiers and their configuration (operating
point) enables to significantly improve the performance of stream mining systems,
by optimally trading up accuracy and delay, under limited resources.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 129

However, the emergence of new stream mining applications, with specific
requirements and characteristics, widens the spectrum of possibilities and leaves
room for further improvements. Today, more and more data is available to be
processed, and more and more classification, filtering, analysis or sorting can be
performed on this data. As such, a major challenge lies in identifying, prioritizing
and planning mining tasks. Until now, the mapping between queries and a set of
corresponding classifiers was considered as given. Yet, this mapping should be
decided jointly with the topology construction and the system configuration for an
optimal stream mining design.

An upstream consideration would be to decide whether streams should be
systematically classified or only identified upon request. Indeed, a stream mining
system must not only be seen as a query-centric processing system aiming to
identify which subset of data answers a given set of queries. Instead of defining
the set of classifiers on the basis of the set of queries (C = ⋃q∈Q C(q)), we
could determine what are all the queries which can be answered given a set of
classifiers (Q = {q | C(q) ⊂ C}). Since such classifier-centric approach leads to
an explosion of the number of queries which can be processed (N binary classifiers
can potentially process

∑N
k=1

N !
k!(N−k)!2

k different queries) it is critical to be able to
identify or to learn online which classification to perform.

Indeed, classifier design is an expensive process and determining which feature
to extract represents a major topic in the data mining community. Hence, given a
data stream and a query, deciding which classifiers should match which queries has
not yet been analytically studied. Underlying this issue resonates the exploration
versus exploitation tradeoff, where we need to train the stream mining system to
detect the classifiers which are critical to stream identification.

Acknowledgements This work is based upon work supported by the National Science Foundation
under Grant No. 1016081. We would like to thank Dr. Deepak Turaga (IBM Research) for
introducing us to the topic of stream mining and for many productive conversation associated
with the material of this chapter as well as providing us with Figs. 1 and 3 of this chapter. We also
would like to thank Dr. Fangwen Fu and Dr. Brian Foo, who have been PhD students in Prof. van
der Schaar group and have made contributions to the area of stream mining from which this chapter
benefited. Finally, we thank Mr. Siming Song for kindly helping us with formatting and polishing
the final version of the chapter.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain: Operator scheduling for memory
minimization in data stream systems. In: Proc. ACM International Conference on Management
of Data (SIGMOD), pp. 253–264 (2003)

2. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive ordering of pipelined
stream filters. In: ACM SIGMOD International Conference on Management of Data (2004)

3. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (1994)
4. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y., Zdonik,

S.: Scalable distributed stream processing. In: Proc. of Conference on Innovative Data Systems
Research, Asilomar (2003)

130 R. Ducasse et al.

5. Cherniack, M., Balakrishnan, H., Carney, D., Cetintemel, U., Xing, Y., Zdonik, S.: Scalable
distributed stream processing. In: Proc. CIDR (2003)

6. Condon, A., Deshpande, A., Hellerstein, L., Wu, N.: Flow algorithm for two pipelined filter
ordering problems. In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (2006)

7. Douglis, F., Branson, M., Hildrum, K., Rong, B., Ye, F.: Multi-site cooperative data stream
analysis. ACM SIGOPS 40(3) (2006)

8. Ducasse, R., Turaga, D.S., van der Schaar, M.: Adaptive topologic optimization for large-scale
stream mining. IEEE Journal on Selected Topics in Signal Processing 4(3), 620–636 (2010)

9. Foo, B., van der Schaar, M.: Distributed classifier chain optimization for real-time multimedia
stream-mining systems. In: Proc. IS&T / SPIE Multimedia Content Access, Algorithms and
Systems II (2008)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. In: Proc. European Conference on Computational Learning Theory,
pp. 23–37 (1995)

11. Fu, F., Turaga, D.S., Verscheure, O., van der Schaar, M., Amini, L.: Configuring competing
classifier chains in distributed stream mining systems. IEEE Journal on Selected Topics in
Signal Processing (2007)

12. Gaber, M., Zaslavsky, A., Krishnaswamy, S.: Resource-aware knowledge discovery in data
streams. In: Proc. First Intl. Workshop on Knowledge Discovery in Data Streams (2004)

13. Garg, A., Pavlovic, V.: Bayesian networks as ensemble of classifiers. In: Proc. 16th
International Conference on Pattern Recognition (ICPR), pp. 779–784 (2002)

14. Gupta, A., Smith, K., Shalley, C.: The interplay between exploration and exploitation.
Academy of Management Journal (2006)

15. Hu, J., Wellman, M.: Multiagent reinforcement learning: Theoretical framework and an
algorithm. In: Proceedings of the Fifteenth International Conference on Machine Learning
(1998)

16. Low, S., Lapsley, D.E.: Optimization flow control I: Basic algorithm and convergence.
IEEE/ACM Trans. Networking 7(6), 861–874 (1999)

17. Marden, J., Young, H., Arslan, G., Shamma, J.: Payoff based dynamics for multi-player weakly
acyclic games. SIAM Journal on Control and Optimization, special issue on Control and
Optimization in Cooperative Networks (2007)

18. Merugu, S., Ghosh, J.: Privacy-preserving distributed clustering using generative models. In:
Proc. of 3rd International Conference on Management of Data, pp. 211–218 (2003)

19. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data
streams. In: Proc. ACM SIGMOD Intl. Conf. Management of Data, pp. 563–574 (2003)

20. Palomar, D., Chiang, M.: On alternative decompositions and distributed algorithms for network
utility problems. In: Proc. IEEE Globecom (2005)

21. Park, H., Turaga, D.S., Verscheure, O., van der Schaar, M.: Foresighted tree configuring games
in resource constrained distributed stream mining systems. In: Proc. IEEE Int. Conf. Acoustics
Speech and Signal Process. (2009)

22. Saul, L., Jordan, M.I.: Learning in Boltzmann trees. Neural Computation (1994)
23. Schapire, Y.: A brief introduction to boosting. In: Proc. International Conference on

Algorithmic Learning Theory (1999)
24. Slivkins, A.: Contextual bandits with similarity information. Journal of Machine Learning

Research 15(1), 2533–2568 (2014)
25. Tekin, C., van der Schaar, M.: Active learning in context-driven stream mining with an

application to image mining. IEEE Transactions on Image Processing 24(11), 3666–3679
(2015)

26. Tekin, C., van der Schaar, M.: Contextual online learning for multimedia content aggregation.
IEEE Transactions on Multimedia 17(4), 549–561 (2015)

27. Tekin, C., van der Schaar, M.: Distributed online learning via cooperative contextual bandits.
IEEE Transactions Signal Processing 63(14), 3700–3714 (2015)

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 131

28. Tekin, C., van der Schaar, M.: RELEAF: An algorithm for learning and exploiting relevance.
IEEE Journal of Selected Topics in Signal Processing 9(4), 716–727 (2015)

29. Tekin, C., Van Der Schaar, M.: Discovering, learning and exploiting relevance. In: Advances
in Neural Information Processing Systems, pp. 1233–1241 (2014)

30. Tekin, C., Yoon, J., van der Schaar, M.: Adaptive ensemble learning with confidence bounds.
IEEE Transactions on Signal Processing 65(4), 888–903 (2017)

31. Turaga, D., Verscheure, O., Chaudhari, U., Amini, L.: Resource management for networked
classifiers in distributed stream mining systems. In: Proc. IEEE ICDM (2006)

32. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data.
In: Proc. of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 206–215 (2003)

33. Varshney, P.: Distributed Detection and Data Fusion. Springer (1997). ISBN: 978-0-387-
94712-9

34. Vazirani, V.: Approximation Algorithms. Springer Verlag, Inc., New York, NY, USA (2001)
35. Žliobaitė, I.: Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784 (2010)

Deep Neural Networks: A Signal
Processing Perspective

Heikki Huttunen

Abstract Deep learning has rapidly become the state of the art in machine learning,
surpassing traditional approaches by a significant margin for many widely studied
benchmark sets. Although the basic structure of a deep neural network is very close
to a traditional 1990s style network, a few novel components enable successful
training of extremely deep networks, thus allowing a completely novel sphere
of applications—often reaching human-level accuracy and beyond. Below, we
familiarize the reader with the brief history of deep learning and discuss the most
significant milestones over the years. We also describe the fundamental components
of a modern deep neural networks and emphasize their close connection to the
basic operations of signal processing, such as the convolution and the Fast Fourier
Transform. We study the importance of pretraining with examples and, finally, we
will discuss the real time deployment of a deep network; a topic often dismissed
in textbooks; but increasingly important in future applications, such as self driving
cars.

1 Introduction

The research area of artificial intelligence (AI) has a long history. The first ideas
of intelligent machines were raised shortly after the first computers were invented,
in the 1950s. The excitement around the novel discipline with great promises led
into one of the first technological hypes in computer science: In particular, military
agencies such as ARPA funded the research generously, which led into a rapid
expansion of the area during the 1960s and early 1970s.

As in most hype cycles, the initial excitement and high hopes were not fully
satisfied. It turned out that intelligent machines able to seamlessly interact with the
natural world are a lot more difficult to build than initially anticipated. This led into a

H. Huttunen (�)
Tampere University of Technology, Tampere, Finland
e-mail: heikki.huttunen@tut.fi

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_4

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_4&domain=pdf
mailto:heikki.huttunen@tut.fi
https://doi.org/10.1007/978-3-319-91734-4_4

134 H. Huttunen

period of recession in artificial intelligence often called “The AI Winter”1 during the
end of 1970s. In particular, the methodologies built on top of the idea of modeling
the human brain had been the most successful ones, and also the ones that suffered
the most during the AI winter as the funding essentially ceased to exist for topics
such as neural networks. However, the research of learning systems still continued
under different names—machine learning and statistics.

The silent period of AI research was soon over, as the paradigm was refocused
to study less ambitious topics than the complete human brain and seamless human-
machine interaction. In particular, the rise of expert systems and the introduction of
a closely related topic data mining led the community towards new, more focused
topics.

At the beginning of 1990s the research community had already accepted that
there is no silver bullet that would solve all AI problems at least in the near
future. Instead, it seemed that more focused problems could be solved with tailored
approaches. At the time, several successful companies had been founded, and there
were many commercial uses for AI methodologies, such as the neural networks
that were successful at the time. Towards the end of the century, the topic got less
active and researchers directed their interest to new rising domains, such as kernel
machines [35] and big data.

Today, we are in the middle of the hottest AI summer ever. Companies such as
Google, Apple, Microsoft and Baidu are investing billions of dollars to AI research.
Top AI conferences—such as the NIPS2—are rapidly sold out. The consultancy
company Gartner has machine learning and deep learning at the top of their hype
curve.3 And AI even made its way to a perfume commercial.4

The definitive machine learning topic of the decade is deep learning. Most
commonly, the term is used for referring to neural networks having a large number
of layers (up to hundreds; even thousands). Before the current wave, neural networks
were actively studied during the 1990s. Back then, the networks were significantly
smaller and in particular more shallow. Adding more than two or three hidden
layers only degraded the performance. Although the basic structure of a deep neural
network is very close to a traditional 1990s style network, a few novel components
enable successful training of extremely deep networks, thus allowing a completely
novel sphere of applications—often reaching human-level accuracy and beyond.

After a silent period of the 2000s, neural networks returned to the focus of
machine intelligence after Prof. Hinton from University of Toronto experimented
with unconventionally big networks using unsupervised training. He discovered
that training of large and deep networks was indeed possible with an unsupervised
pretraining step that initializes the network weights in a layerwise manner. In the
unsupervised setup, the model first learns to represent and synthesize the data

1https://en.wikipedia.org/wiki/History_of_artificial_intelligence.
2http://nips.cc/.
3http://www.gartner.com/newsroom/id/3784363.
4http://www.gq.com/story/alexandre-robicquet-ysl-model.

https://en.wikipedia.org/wiki/History_of_artificial_intelligence
http://nips.cc/
http://www.gartner.com/newsroom/id/3784363
http://www.gq.com/story/alexandre-robicquet-ysl-model

Deep Neural Networks 135

without any knowledge on the class labels. The second step then transforms the
unsupervised model into a supervised one, and continues learning with the target
labels. Another key factor to the success was the rapidly increased computational
power brought by recent Graphics Processing Units (GPU’s).

For a few years, different strategies of unsupervised weight initialization were
at the focus of research. However, within a few years from the breakthroughs of
deep learning, the unsupervised pretraining became obsolete, as new discoveries
enabled direct supervised training without the preprocessing step. There is still a
great interest in revisiting the unsupervised approach in order to take advantage
of large masses of inexpensive unlabeled data. Currently, the fully supervised
approach together with large annotated data produces clearly better results than any
unsupervised approach.

The most successful application domain of deep learning is image recognition,
which attempts to categorize images according to their visual content. The milestone
event that started this line of research was the famous Alexnet network winning the
annual Imagenet competition [24]. However, other areas are rising in importance,
including sequence processing, such as natural language processing and machine
translation.

This chapter is a brief introduction to the essential techniques behind deep
learning. We will discuss the standard components of deep neural network, but will
also cover some implementation topics from the signal processing perspective.

The remainder of the chapter is organized as follows. In Sect. 2, we will describe
the building blocks of a modern neural network. Section 3 discusses the training
algorithms and objective functions for the optimization. Finally, Sect. 4 discusses
the tools for training and compares popular training platforms. We also present an
example case where we compare two design strategies with examples using one
of the most popular deep learning packages. Finally, Sect. 5 considers real time
deployment issues in a framework where deep learning is used as one component of
a system level deployment.

2 Building Blocks of a Deep Neural Network

2.1 Neural Networks

Neural networks are the core of modern artificial intelligence. Although they
originally gained their inspiration from biological systems—such as the human
brain—there is little in common with contemporary neural networks and their
carbon-based counterparts. Nevertheless, for the sake of inspiration, let us take a
brief excursion to the current understanding of the operation of biological neural
networks.

136 H. Huttunen

Fig. 1 A simple biological neuron network. Reprinted with permission from [45]

Figure 1 illustrates a simple biological neural network consisting of two nerve
cells. The information propagates between the cells essentially through two chan-
nels: the axon is the transmitting terminal forwarding the level of activation to
neighboring nerve cells. On the other hand, a dendrite serves as the receiving end,
and the messages are passed through a synaptic layer between the two terminals.

Historically, the field of neural network research started in its simplest form
in the 1950s, when researchers of electronics got excited about recent advances
in neurology, and started to formulate the idea of an electronic brain consisting
of in silico nerve cells that propagate their state of activity through a network of
artificial cells. A landmark event of the time was the invention of Rosenblatt’s
perceptron, which uses exactly the same generalized linear model as any two-class
linear classifier, such as Linear Discriminant Analysis, Logistic Regression, or the
Support Vector Machine:

Class(x) =
{

1, if wT x+ b ≥ 0,

0, if wT x+ b < 0,

where x ∈ R
N is the test vector to be classified, w ∈ R

N and b ∈ R are the model
parameters (weight vector and the bias) learned from training data. More compactly,
we can write the model as σ(wT x+ b) with σ() the threshold function at zero.

The only thing differentiating the perceptron from the other generalized linear
models is the training algorithm. Although not the first, nor the most powerful
training algorithm, it emphasizes the idea of iterative learning, which presents the
model training samples one at the time. Namely, the famous linear discriminant
algorithm was proposed by Fisher already in the 1930s [12], but it was not used in
an iterative manner due to existence of a closed form solution. When the perceptron
algorithm was proposed, time was ready for exploitation of recently appeared digital
computing. The training algorithm has many things in common with modern deep
learning training algorithms, as well:

Deep Neural Networks 137

1. Initialize the weight vector w and the bias b at random.
2. For each sample xi and target yi in the training set:

a. Calculate the model output ŷi = σ(wT xi + b).
b. Update the network weights by

w := w+ (yi − ŷi)xi .

The steps 2a and 2b correspond to the forward pass and backward pass of
contemporary networks, where the samples are first propagated forward through the
model to produce the output, and the error terms are pushed back as weight updates
through the network in the backward pass.

For signal processing researchers, the idea of perceptron training is familiar from
the field of adaptive signal processing and the Least Mean Squares (LMS) filter in
particular. Coincidentally, the idea of the LMS filter was inspired by the famous
Darthmouth AI meeting in 1957 [43], exactly the same year as Rosenblatt first
implemented his perceptron device able to recognize a triangle held in front of its
camera eye.

Fast-forwarding 30 years brings us to the introduction of the backpropagation
algorithm [32], which enabled the training of multilayer perceptrons, i.e., layers of
independent perceptrons stacked into a network. The structure of a 1980s multilayer
perceptron is illustrated in Fig. 2. In the left, the m-dimensional input vector is fed to
the first hidden layer of processing nodes (blue). Each hidden layer output is then fed
to the next layer and eventually to the output layer, whose outputs are considered as
class likelihoods in the classification context. The structure of each processing node
is in turn illustrated in Fig. 3. Indeed, the individual neuron of Fig. 3 is very close to
the 60-year-old perceptron, with a dot product followed by an activation function.
This is still the exact neuron structure today, with the exception that there now exists
a large library of different activations apart from the original hard thresholding, as
later discussed in Sect. 2.4.

x (1)

x (M)

x (3)

x (2)

y (1)

y (2)

y (K)

Fig. 2 A multilayer perceptron model

138 H. Huttunen

Fig. 3 A single neuron of the feedforward network of Fig. 2

2.2 Convolutional Layer

The standard layers of the 80s are today called dense or fully connected layers,
reflecting their structure where each layer output is fed to each next layer node.
Obviously, dense layers require a lot of parameters, which is expensive from both
computational and learning point of view: High number of model coefficients
require a lot of multiplications during training and deployment, but also their
inference in training time is a nontrivial task. Consider, for example, the problem of
image recognition (discussed later in Sect. 4.2), where we feed 64×64 RGB images
into a network. If the first hidden layer were a dense layer with, say, 500 neurons,
there would be over six million connections (64× 64× 3-dimensional input vector
fed to 500 nodes requiring 500×64×64×4 = 6,144,000 connections). Moreover,
the specific inputs would be very sensitive to geometric distortions (translations,
rotations, scaling) of the input image, because each neuron can only see a single
pixel at the time.

Due to these reasons, the convolutional layer is popular particularly in image
recognition applications. As the name suggests, the convolutional layer applies a
2-dimensional convolution operation to the input. However, there are two minor
differences to the standard convolution of an image processing textbook.

First, the convolution operates on multichannel input; i.e., it can see all channels
of the three-channel (RGB) input image. In other words, denote the input to a
convolutional layer as X ∈ R

M×N×C and the convolution window as W ∈
R

J×K×C . Then, the output ym,n at spatial location (m, n) is given as

ym,n =
∑
c

∑
j

∑
k

Wj,k,cXm+j,n+k,c, (1)

Deep Neural Networks 139

Fig. 4 Four feature maps produced from the input image by different convolution kernels

with the summation indices spanning the local window, i.e., c = 1, 2, . . . , C; j =
−� J2 �, . . . , � J2 � and k = −�K2 �, . . . , �K2 � assuming odd J and K . Alternatively,
the convolution of Eq. (1) can also be thought of as a 3D convolution with window
spanning all channels: The window only moves in the spatial dimensions, because
there is no room for sliding in the channel dimension.

Second, the deep learning version of convolution does not reflect the convolution
kernel with respect to the origin. Thus, we have the expression Xm+j,n+k,c in Eq. (1)
instead of Xm−j,n−k,c of a standard image processing textbook. The main reason for
this difference is that the weights are learned from the data, so the kernel can equally
well be defined either way, and the minus is dropped out due to simplicity. Although
this is a minor detail, it may cause confusion when attempting to re-implement a
deep network using traditional signal processing libraries.

The role of the convolutional layer can be understood from the example of Fig. 4,
where we have applied four 3× 3× 3 convolutions to the input image. In this case,
the convolution kernels highlight different features: yellow regions, green regions,
diagonal edges and so on. With real convolutional networks, the kernels are learned
from the data, but their role is nevertheless to extract the features essential for the
application. Therefore, the outputs of the convolutions are called feature maps in the
deep learning terminology.

In summary, the convolutional layer receives a stack of C channels (e.g., RGB),
filters them with D convolutional kernels of dimension J × K × C to produce D

feature maps. Above, we considered the example with 64× 64 RGB images fed to
a dense layer of 500 neurons, and saw that this mapping requires 6,144,500 coeffi-
cients. For comparison, suppose we use a convolutional layer instead, producing 64
feature maps with 5 × 5 spatial window. In this case, each kernel can see all three
channels within the local 5×5 spatial window, which requires 5×5×3 coefficients.
Together, all 64 convolutions are defined by 64× 5× 5× 3 = 4800 parameters—
over 1200 times less than for a dense layer. Moreover, the parameter count of the
convolutional layer does not depend on the image size unlike the dense layer.

The computation of the convolution is today highly optimized using the GPU.
However, the convolution can be implemented in several ways, which we will
briefly discuss next. The trivial option is to compute the convolution directly
using Eq. (1). However, in a close-to-hardware implementation, there are many
special cases that would require specialized optimizations [6], such as small/large

140 H. Huttunen

spatial window, small/large number of channels, or small/large number of images
in batch processing essential in the training time. Although most cases can be
optimized, maintaining a large number of alternative implementations soon becomes
burdensome.

The second alternative is to use the Fast Fourier Transform (FFT) via the
convolution theorem:

w(n,m) ∗ x(n,m) = w.f−1 (W(n,m)∗ X(n,m)
)
, (2)

where W(n,m) = F(w(n,m)) and X(n,m) = F(x(n,m)) are the discrete Fourier
transforms of the convolution kernel w(n,m) and one channel of the input x(n,m),
respectively. Moreover, F−1 denotes the inverse discrete Fourier transform, and ∗
the complex conjugation that reflects the kernel about the origin in spatial domain.
The obvious benefit of this approach is that the convolution is transformed to low-
cost elementwise (Hadamard) product in the Fourier domain, and the computation
of the FFT is faster than the convolution (O(N logN) vs. O(N2)). However, the
use of this approach requires that w(n,m) and x(n,m) are zero-padded to same
size, which consumes a significant amount of temporary memory, when the filter
and image sizes are far from each other. Despite these challenges, the FFT approach
has shown impressive performance improvement with clever engineering [40].

The third widely used approach transforms the convolution into matrix multi-
plication, for which extremely well optimized implementations exist. The approach
resembles the use of the classic im2col function in Matlab. The function rear-
ranges the data by mapping each filter window location into a column in the result
matrix. This operation is illustrated in Fig. 5, where each 3 × 3 block of the input
(left) is vectorized into a 9×1 column of the result matrix. After this rearrangement,
the convolution is simply a left multiplication with the vectorized weight matrix,

y = vT C,

Fig. 5 The im2col operation

Deep Neural Networks 141

with C ∈ R
9×NM the result of im2col and v ∈ R

9×1 the vectorized 3× 3 weight
matrix. The result y ∈ R

1×NM can then be reshaped into to match the size of
the original image. The drawback of this approach is the memory consumption of
matrix C, as the data is duplicated nine times (or more for larger window size).
However, the idea provides a unified framework between convolutional layers and
dense layers, since both can be implemented as matrix multiplications.

2.3 Pooling Layer

Convolutional layers are economical in terms of the number of coefficients. The
parameter count is also insensitive to the size of the input image. However, the
amount of data still remains high after the convolution, so we need some way to
reduce that. For this purpose, we define the pooling layer, which shrinks the feature
maps by some integer factor. This operation is extremely well studied in the signal
processing domain, but instead of high-end decimation-interpolation process, we
resort to an extremely simple approach: max-pooling.

Max-pooling is illustrated in Fig. 6, where we decimate the large image on the left
by a factor of 2 along both spatial axes. The operation retains the largest value within
each 2× 2 window. Each 2× 2 block is distinct (instead of sliding), so the resulting
image will have half the size of the original both horizontally and vertically.

Apart from the max operation, other popular choices include taking the average,
the L2 norm, or a Gaussian-like weighted mean of the rectangular input [14, p.
330]. Moreover, the blocks may not need to be distinct, but may allow some degree
of overlap. For example, [24] uses a 3×3 pooling window that strides spatially with
step size 2. This corresponds to the pool window locations of Fig. 6, but the window
would be extended by 1 pixel to size 3× 3.

Fig. 6 The maxpooling operation

142 H. Huttunen

Fig. 7 Architecture of convolutional neural network (modified from [26])

The benefit of using max-pooling in particular, is its improved invariance to
small translations. After the convolutions have highlighted the spatial features of
interest, max-pooling will retain the largest value of the block regardless of small
shifts of the input, as long as the maximum value ends up inside the local window.
Translation invariance is usually preferred, because we want the same recognition
result regardless of any geometric transformations.

Convolutional and pooling layers follow each other in a sequence. The convo-
lutional layers learn to extract the essential features for the task at hand, while
the pooling layers shrink the data size, together attempting to distill the essentials
from the data. An example of their co-operation is illustrated in Fig. 7. In this
case, the input in the left is an RGB-image (three channels). The pipeline starts
with convolutions producing a number of feature maps. The feature maps are fed
to the pooling layer, which shrinks each channel, but otherwise retains each map
as it is. The same combination is repeated, such that the pooled feature maps are
convolved with next level of convolution kernels. Note that the convolution kernel
is again 3-dimensional, spanning all input channels within a small spatial window.
The usual structure alternates between convolution and pooling until the amount
of data is reasonable in size. At that point, the feature map channels are flattened
(i.e., vectorized) into a vector that passes through a few dense layers. Finally, in a
classification task, the number of output nodes equals the number of categories in the
data; with each output interpreted as a class likelihood. As an example, a common
benchmark for deep learning is the recognition of handwritten MNIST digits [25],
where the inputs are 28× 28 grayscale handwritten digits. In this case, there are ten
classes, and the network desired output (target) is a 10-dimensional binary indicator
vector—all zeros, except 1 indicating the correct class label.

2.4 Network Activations

If using only linear operations (convolution and dense layers) in a cascade, the end
result could be represented by a single linear operation. Thus, the expression power
will increase by introducing nonlinearities into the processing sequence; called

Deep Neural Networks 143

activation functions. We have already seen the nonlinear thresholding operation
during the discussion of the perceptron (Sect. 2.1), but the use of hard thresholding
as an activation is very limited due to challenges with its gradient: The function is
not differentiable everywhere and the derivative bears no information on how far we
are from the origin, both important aspects for gradient based training.

Traditionally, popular network activations have been the logistic sigmoid,

logsig(x) = 1

1+ e−x
, (3)

and the hyperbolic tangent,

tanh(x) = ex − e−x

ex + e−x
. (4)

However, the challenge with both is that they tend to decrease the magnitude of
the gradient when backpropagation is passing the weight updates through layers.
Namely, the derivative of both activations is always bound to the interval [−1, 1],
and when backpropagation applies the chain rule, we are multiplying by a number
within this range—a process that will eventually converge to zero. Thus, deep
networks will encounter extremely small gradient magnitudes at the lower (close
to input) layers.

While there are other approaches to circumvent this vanishing gradient problem,
the most popular ones simply use an alternative activation function without this
problem. The most widely used function is the rectified linear unit (ReLU) [24],

ReLU(x) = max(0, x). (5)

In other words, the function clips the input from below at zero. The benefits of the
ReLU are clear: The gradient is always either 0 or 1, the computation of the function
and its gradient are trivial, and experience has shown its superiority to conventional
activations with many datasets. The three activation functions are illustrated in
Fig. 8.

The arrangement of activation functions usually starts by setting all activations
to ReLU—with the exception of output layer. The ReLU is probably not suitable for
the output layer, unless our targets actually happen to fall in the range of positive
reals. Common choices for output activation are either linear activation (identity
mapping) in regression tasks, or logistic sigmoid in classification tasks. The sigmoid
squashes the output range into the interval [0, 1], where they can be conveniently
interpreted as class likelihoods. However, a more common choice is to set the
ultimate nonlinearity as the softmax function, which additionally scales the sum
of outputs ŷ = (ŷ1, ŷ2, . . . , ŷK) to unity:

[
softmax(ŷ)

]
j
= exp(ŷj)∑K

k=1 exp(ŷk)
, for j = 1, 2, . . . ,K. (6)

144 H. Huttunen

−4 −2 0 2 4
−1

0

1

2

3

4

5 LogSig
Tanh
ReLU

Fig. 8 Popular network activation functions

In other words, each input to the softmax layer is passed through the exponential
function and normalized by their sum.

3 Network Training

The coefficients of the network layers are learned from the data by presenting
examples and adjusting the weights towards the negative gradient. This process
has several names: Most commonly it is called backpropagation—referring to the
forward-backward flow of data and gradients—but sometimes people use the name
of the optimization algorithm—the rule by which the weights are adjusted, such as
stochastic gradient descent, RMSProp, AdaGrad [11], Adam [23], and so on. In [33],
the good performance of backpropagation approach in several neural networks was
discussed, and its importance got widely known after that. Backpropagation has two
phases: propagation (forward pass) and weights update (backward pass), which we
will briefly discuss next.

Forward Pass When the neural network is fed with an input, it pushes the input
through the whole network until the output layer. Initially, the network weights are
random, so the predictions are as good as a random guess. However, the network
updates should soon push the network towards more accurate predictions.

Backward Pass Based on the prediction, the error between predictions ŷ and
target outputs y from each unit of output layer is computed using a loss function,
L(y, ŷ), which is simply a function of the network output ŷ = (ŷ1, . . . , ˆyN) and
the corresponding desired targets y = (y1, . . . , yN). We will discuss different loss
functions more in detail in Sect. 3.1, but for now it suffices to note that the loss
should in general be smaller when y and ŷ are close to each other. It is also worth
noting that the network outputs are a function of the weights w. However, in order
to avoid notational clutter, we omit the explicit dependence from our notation.

Deep Neural Networks 145

Based on the loss, we compute the partial derivative of the loss ∂L(y,ŷ)
∂w with

respect to the weights in the network. Since the network consists of sequence of
layers, the derivatives of the lower (close-to-input) layers depends on that of the
upper (close-to-output) layers, and the chain rule of differentiation has to be used. A
detailed discussion on how the chain rule is unrolled can be found, e.g., in [15].
Nevertheless, in order to compute the partial derivative of the loss with respect
to the parameters of any of the lower layers, we need to know the derivatives
of the upper layers first. Therefore, the weight update progresses from the output
layer towards the input layer, which coins the name, backpropagation. In essence,
backpropagation simply traverses the search space by updating the weights in the
order admitted by the chain rule. The actual update rule then adjusts each weight
towards the negative gradient with the step size specified by the parameter η ∈ R+:

wij := wij − η
∂L(y, ŷ)
∂wij

(7)

This equation is indeed exactly the same as that of the least mean square filter,
familiar from adaptive signal processing.

There are various strategies for choosing the detailed weight update algorithm, as
well as various possibilities for choosing the loss function L(y, ŷ) to be minimized.
We will discuss these next.

3.1 Loss Functions

Ideally, we would like to minimize the classification error, or maximize the AUROC
(area under the receiver operating characteristics curve) score, or optimize whatever
quantity we believe best describes the performance of our system. However, most of
these interesting performance metrics are not differentiable or otherwise intractable
in closed form (for example, the derivative may not be informative enough to guide
the optimization towards the optimum). Therefore, we have to use a surrogate target
function, whose minimum matches that of our true performance metric.

Examples of commonly used loss functions are tabulated in Table 1 and plotted in
Fig. 9 for a binary recognition case. In the table, we assume that the network targets
yj ∈ {0, 1} for j = 1, 2, . . . , N , with the exception of hinge loss, where the targets
are assumed to be yj ∈ {−1, 1} for j = 1, 2, . . . , N . This is the common practice
in support vector machine literature where the hinge loss is most commonly used.

If we wish to maximize the classification accuracy, then our objective is to
minimize the number of incorrectly classified samples. In terms of loss functions,
this corresponds to the zero-one loss shown in Fig. 9. In this case, each network
output ŷ (a real number, higher values mean higher confidence of class membership)
is rounded to the nearest integer (0 or 1) and compared to the desired target y:

146 H. Huttunen

Table 1 Loss functions

Loss function Definition Notes

Zero-one loss δ
(〈ŷ〉, y) δ(·, ·) is the indicator function (see text)

〈·〉 denotes rounding to nearest integer

Squared loss
(
ŷ − y

)2
Absolute loss

∣∣ŷ − y
∣∣

Logistic loss − ln
(
y log(ŷ)− (1− y) log(1− ŷ)

)
Hinge loss max

(
0, 1− yŷ

)
Label encoding y ∈ {−1, 1}

In all cases, we denote the network output by ŷ and the corresponding desired targets by y. All
except hinge loss assume labels yj ∈ {0, 1} for all j = 1, 2, . . . , N

Fig. 9 Commonly used loss functions for classification. Note, that all hinge loss implementations
in fact assume labels yj ∈ {−1, 1}, but is scaled here to labels yj ∈ {0, 1} for visualization

L(ŷ, y) = δ
(〈ŷ〉, y) , with δ(p, q) =

{
1, if p �= q,

0, otherwise,
(8)

and 〈x〉 denotes x ∈ R rounded to the nearest integer.
Figure 9 plots selected loss functions for the two cases: y = 0 and y = 1 as a

function of the network output ŷ. The zero-one loss (black) is clearly a poor target
for optimization: The derivative of the loss function is zero almost everywhere and
therefore conveys no information about the location of the loss minimum. Instead
all of its surrogates plotted in Fig. 9 clearly direct the optimization towards the target
(either 0 or 1).

In most use cases, the particular choice of loss function is less influential to the
result than the optimizer used. A common choice is to use the logistic loss together
with the sigmoid or softmax nonlinearity at the output.

Deep Neural Networks 147

3.2 Optimization

At training time, the network is shown labeled examples and the network weights
are adjusted according to the negative gradient of the loss function. However, there
are several alternative strategies on how the gradient descent is implemented.

One possibility would be to push the full training set through the network and
compute the average loss over all samples. The benefit of this batch gradient
approach would be that the averaging would give us a very stable and reliable
gradient, but the obvious drawback is the resulting long waiting time until the
network weights can actually be adjusted.

Similarly to the famous LMS algorithm, we obtain a similar averaging effect by
using the instantaneous gradient after every sample presented to the network. This
approach is called the stochastic gradient,

w ← w− ηL(ŷ, y), (9)

with η > 0 denoting the step size. Although individual gradient estimates are very
noisy and may direct the optimization to a globally incorrect direction, the negative
gradient will—on the average—point towards the loss minimum.

A common variant of the SGD is the so called minibatch gradient, which is a
compromise between the batch gradient and stochastic gradient. Minibatch gradient
computes the predictions (forward passes) for a minibatch of B ∈ Z+ samples
before propagating the averaged gradient back to the lower layers:

w ← w− η

⎛
⎝ 1

B

B∑
j=1

L(ŷj , yj)

⎞
⎠ . (10)

The minibatch approach has the key benefit of speeding up the computation
compared to pure SGD: A minibatch of samples can be moved to the GPU as a
single data transfer operation, and the average gradient for the minibatch can be
computed in a single batch operation (which parallelizes well). This will also avoid
unnecessary data transfer overhead between the CPU and the GPU, which will only
happen after the full minibatch is processed.

On the other hand, there is a limit to the speedup of using the minibatch.
Sooner or later the GPU memory will be consumed, and the minibatch size can
not be increased further. Moreover, large minibatches (up to training set size)
may eventually slow down the training process, because the weight updates are
happening less frequently. Although increasing the step size may compensate for
this, it does not circumvent the fact that path towards the optimum may be nonlinear,
and convergence would require alternating the direction by re-evaluating the local
gradient more often. Thus, the sweet spot is somewhere between the stochastic
gradient (B = 1 in Eq. (10)) and the batch gradient (B = N in Eq. (10)).

148 H. Huttunen

Apart from the basic gradient descent, a number of improved optimization
strategies have been introduced in the recent years. However, since the choice
among them is nontrivial and beyond the scope of this chapter, we recommend the
interested reader to study the 2012 paper by Bengio [4] or Chapter 8 of the book by
Goodfellow et al. [14].

4 Implementation

4.1 Platforms

There exists several competing deep learning platforms. All the popular ones are
open source and support GPU computation. They provide functionality for the basic
steps of using a deep neural network: (1) Define a network model (layer structure,
depth and input and output shapes), (2) train the network (define the loss function,
optimization algorithm and stopping criterion), and (3) deploy the network (predict
the output for test samples). Below, we will briefly discuss some of the most widely
used platforms.

Caffe [21] is a deep learning framework developed and maintained by the
Berkeley University Vision and Learning Center (BVLC). Caffe is written in both
C++ and NVidia CUDA, and provides interfaces to Python and Matlab. The network
is defined using a Google Protocol Buffers (prototxt) file, and trained using a
command-line binary executable. Apart from the traditional manual editing of the
prototxt definition file, current version also allows to define the network in Python or
Matlab, and the prototxt definition will be generated automatically. A fully trained
model can then be deployed either from the command line or from the Python or
Matlab interfaces. Caffe is also known for the famous Caffe Model Zoo, where
many researchers upload their model and trained weights for easy reproduction
of the results in their research papers. Recently, Facebook has actively taken over
the development, and released the next generation caffe2 as open source. Caffe is
licensed under the BSD license.

Tensorflow [1] is a library open sourced in 2015 by Google. Before its release,
it was an internal Google project, initially under the name DistBelief. Tensorflow is
most conveniently used through its native Python interface, although less popular
C++, Java and Go interfaces exist, as well. Tensorflow supports a wide range of
hardware from mobile (Android, iOS) to distributed multi-CPU multi-GPU server
platforms. Easy installation packages exist for Linux, iOS and Windows through
the Python pip package manager. Tensorflow is distributed under the Apache open
source license.

Keras [7] is actually a front end for several deep learning computational engines,
and links with Tensorflow, Theano [2] and Deeplearning4j backends. Microsoft is
also planning to add the CNTK [44] engine into the Keras supported backends.
The library is considered easy to use due to its high-level object-oriented Python

Deep Neural Networks 149

interface, and it also has a dedicated scikit-learn API for interfacing with the
extremely popular Python machine learning library [29]. The lead developer of
Keras works as an engineer at Google, and it was announced that Keras will be
part of the Tensorflow project since the release of Tensorflow 1.0. Keras is released
under the MIT license. We will use Keras in the examples of Sect. 4.2.

Torch [9] is a library for general machine learning. Probably the most famous
part of Torch is its nn package, which provides services for neural networks.
Torch is extensively used by Facebook AI Research group, who have also released
some of their own extension modules as open source. The peculiarity of Torch is
its interface using Lua scripting language for accessing the underlying C/CUDA
engine. Recently, a Python interface for Torch was released with the name pyTorch,
which has substantially extended the user base. Torch is licensed under the BSD
license.

MXNet [5] is a flexible and lightweight deep learning library. The library
has interfaces for various languages: Python, R, Julia and Go, and supports
distributed and multi-GPU computing. The lightweight implementation also renders
it very interesting for mobile use, and the functionality of a deep network can be
encapsulated into a single file for straightforward deployment into Android or iOS
devices. Amazon has chosen MXNet as its deep learning framework of choice, and
the library is distributed under the Apache license.

MatConvNet [41] is a Matlab toolbox for convolutional networks, particularly
for computer vision applications. Although other libraries wrap their functionality
into a Matlab interface, as well, MatConvNet is the only library developed as a
native Matlab toolbox. On the other hand, the library can only be used from Matlab,
as the GPU support builds on top of Matlab Parallel computing toolbox. Thus, it
is the only one among our collection of platforms, that requires the purchase of
proprietary software. The toolbox itself is licensed under the BSD library.

Comparison of the above platforms is challenging, as they all have their own
goals. However, as all are open source projects, the activity of their user base is
a critical factor predicting their future success. One possibility for estimating the
popularity and the size of the community is to study the activity of their code
repositories. All projects have their version control in Github development platform
(http://github.com/), and one indicator of project activity is the number of issues
raised by the users and contributors. An issue may be a question, comment or bug
report, but includes also all pull requests, i.e., proposals for additions or changes to
the project code committed by the project contributors.

The number of new issues for the above deep learning frameworks are illustrated
in Fig. 10, where the curves show the number of issues per quarter since the
beginning of 2015. If our crude estimate of popularity reflects the real success of
each platform, then the deep learning landscape is dominated by three players:
Tensorflow, Keras and the MXNet, whose combined share of issues in our graph
is over 75% for Q1 of 2017.

It is also noteworthy that the pyTorch is rising its popularity very fast, although
plain Torch is not. Since their key difference is the interface (Lua vs. Python), this
suggests that Python has become the de facto language for machine learning, and
every respectable platform has to provide a Python interface for users to link with
their legacy Python code.

http://github.com/

150 H. Huttunen

Fig. 10 Number of Github issues for popular deep learning platforms

4.2 Example: Image Categorization

Image categorization is probably the most studied application example of a deep
learning. There are a few reasons for this. First, the introduction of the Imagenet
dataset [10] in 2009 provided researchers access to a large scale heterogeneous
annotated set of millions of images. Only very recently, other domains have reached
data collections of equal magnitude; a recent example is the Google AudioSet
database of acoustic events [13]. Large image databases were collected first, because
their construction by crowdsourcing is relatively straightforward compared to, for
example, annotation of audio files. The Imagenet database was collected using the
Amazon Mechanical Turk crowdsourcing platform, where each user was presented
an image and asked whether an object of certain category was shown in the picture.
A similar human annotation for other domains is not so straightforward.

The second reason for the success of deep learning in image categorization
are the ILSVRC (Internet Large Scale Visual Recognition Challenge) competitions
organized annually since 2010 [34]. The challenge uses the Imagenet dataset with
over one million images from 1000 categories, and different teams compete with
each other in various tasks: categorization, detection and localization. The com-
petition provides a unified framework for benchmarking different approaches, and
speeds up the development of methodologies, as well. Thirdly, image recognition is
a prime example of a task which is easy for humans but was traditionally difficult for
machines. This raised also academic interest on whether machines can beat humans
on this task.

As an example of designing a deep neural network, let us consider the Oxford
Cats and Dogs dataset [28], where the task is to categorize images of cats and dogs
into two classes. In the original pre-deep-learning era paper, the authors reached

accuracy of 95.4% for this binary classification task. Now, let’s take a look at how to

Deep Neural Networks 151

Import the network container and the three types of layers
from keras.models import Sequential
from keras.layers import Conv2D, Dense, DropOut

Initialize the model
model = Sequential ()

Add six convolutional layers. Maxpool after every second convolution.

input_shape =shape))
model.add (Conv2D (filters=32, kernel_size=3, padding=’ same’ , activation=’ relu’))

model.add (Conv2D (filters=32, kernel_size=3, padding=’ same’ , activation=’ relu’ ,

model.add (MaxPooling2D (2, 2)) # Shrink feature maps to 32x32

model.add (Conv2D(filters=48, kernel_size =3, padding =’ same’ , activation=’ relu’))
model.add (Conv2D(filters=48, kernel_size =3, padding =’ same’ , activation=’ relu’))

model.add (MaxPooling2D (2,2)) # Shrink feature maps to 16x16

model.add (Conv2D(filters=64, kernel_size=3, padding=’same’, activation=’relu’))
model.add (Conv2D(filters=64, kernel_size=3, padding=’same’, activation=’ relu’))
model.add (MaxPooling2D (2,2)) # Shrink feature maps to 8x8

Vectorize the 8x8x64 representation to 4096x1 vector
model.add (Flatten())

Add a dense layer with 128 nodes
model.add (Dense(128, activation=’relu’))
model.add (Dropout (0.5))

Finally, the output layer has 1 output with logistic sigmoid nonlinearity
model.add(Dense(1, activation =’sigmoid’))

Listing 1 Keras code for creating a small convolutional network with randomly initialized
weights.

design a deep network using the Keras interface and how the result would compare
with the above baseline.

We use a subset of 3687 images of the full dataset (1189 cats; 2498 dogs)
for which the ground truth location of the animal’s head is available. We crop a
square shaped bounding box around the head and train the network to categorize
based on this input. The bounding box is resized to fixed size 64 × 64 with three
color channels. We choose the input size as a power of two, since it allows us to
downsample the image up to six times using the maxpooling operator with stride 2.

We consider two approaches to network design:

1. Design a network from scratch,
2. Fine tune the higher layers of a pretrained network for this task.

Since the amount of training data is relatively small, the first option necessarily
limits the network size in order to avoid overlearning. In the second case, the
network size can be larger as it has been trained with a larger number of images
before.

Small Network The structure of the network trained from scratch is shown in
Fig. 11. The network consists of six convolutional layers followed by one dense

152 H. Huttunen

Fig. 11 Structure of the dogs and cats classification network

layer and the output layer. The input of the network is a 96× 96× 3 array, and the
output is a scalar: The probability of a dog (we encode dog as target yi = 1 and cat
as target yi = 0). The network is created in Keras using the code on Listing 1, and
the result is illustrated in Fig. 11.

The input at the left of the figure is the image to be categorized, scaled to 64×64
pixels with three color channels. The processing starts by convolving the input with
a kernel with spatial size 3 × 3 spanning all three channels. Thus, the convolution
window is in fact a cube of size 3× 3× 3: It translates spatially along image axes,
but can see all three channels at each location. This will allow the operation to
highlight, e.g., all red objects by setting the red channel coefficients larger than the
other channels. After the convolution operation, we apply a nonlinearity in a pixel-
wise manner. In our case this is the ReLU operator: ReLU(x) = max(0, x).

Since a single convolution can not extract all the essential features from the input,
we apply several of them, each with a different 3× 3× 3 kernel. In the first layer of
our example network, we decide to learn altogether 32 such kernels, each extracting
hopefully relevant image features for the subsequent stages. As a result, the second
layer will consist of equally many feature maps, i.e., grayscale image layers of size
64 × 64. The spatial dimensions are equal to the first layer due to the use of zero
padding at the borders.

After the first convolution operation, the process continues with more convolu-
tions. At the second layer, the 64×64×32 features are processed using a convolution
kernel of size 3× 3× 32. In other words, the window has spatial dimensions 3× 3,
but can see all 32 channels at each spatial location. Moreover, there are again 32
such kernels, each capturing different image features from the 64× 64× 32 image
stack.

The result of the second convolution is passed to a maxpooling block, which
resizes each input layer to 32 × 32—half the original size. As mentioned earlier,
the shrinking is the result of retaining the largest value of each 2× 2 block of each
channel of the input stack. This results in a stack of 32 grayscale images of size
32× 32.

Deep Neural Networks 153

The first three layers described thus far highlight the basic three-layer block that
is repeated for the rest of the convolutional layer sequence. The full convolutional
pipeline consists of three convolution–convolution–maxpooling blocks; nine layers
in total. In deep convolutional networks, the block structure is very common because
manual composition of a very deep network (e.g., ResNet with 152 layers [16]) or
even a moderately deep network (e.g., VGG net with 16 layers [37]) is not a good
target for manual design. Instead, deep networks are composed of blocks such as the
convolution–convolution–maxpooling as in our case.

The network of Fig. 11 repeats the convolution–convolution–maxpooling block
three times. After each maxpooling, we immediately increase the number of feature
maps by 16. This is a common approach to avoid decreasing the data size too rapidly
at the cost of reduced expression power. After the three convolution–convolution–
maxpooling blocks, we end up with 64 feature maps of size 8× 8.

The 64-channel data is next fed to two dense (fully connected) layers. To do this,
we flatten (i.e., vectorize) the data from a 64× 8× 8 array into a 4096-dimensional
vector. This is the input to the first fully connected layer that performs the mapping

Import the network container and the three types of layers
from keras.applications.vgg16 import VGG16
from keras.models import Model
from keras.layers import Conv2D

Initialize the VGG16 network. Omit the dense layers on top.
base_model = VGG16 (include_top = False, weights = ’imagenet’ ,

input_shape = (64,64,3))

We use the functional API, and grab the VGG16 output here:
w = base_model.output

Now we can perform operations on w. First flatten it to 2048-dim vector:
w = Flatten () (w)

Add dense layer :
w = Dense (128, activation = ’relu’) (w)

Add output layer:
output = Dense (1, activation = ’sigmoid’) (w)

Prepare the full model from input to output :
model = Model (input=base_model. input, output=output)

Also set the last Conv block (3 layers) as trainable.
There are four layers above this block, so our indices
start at -5 (i.e., last minus five) :

model.layers [-7]. trainable = True
model.layers [-6]. trainable = True
model.layers [-5]. trainable = True

Listing 2 Keras code for instantiating the pretrained VGG16 network with dense layers appended
on top

154 H. Huttunen

R
4096 �→ R

128 by multiplying by a 128× 4096-dimensional matrix followed by an
elementwise ReLU nonlinearity. Finally, the result is mapped to a single probability
(of a dog) by multiplying by a 1× 128-dimensional matrix followed by the sigmoid
nonlinearity. Note that the output is only a single probability although there are two
classes: We only need one probability Prob(′′DOG′′) as the probability of the second
class is given by the complement Prob(′′CAT′′) = 1−Prob(′′DOG′′). Alternatively,
we could have two outputs with the softmax nonlinearity, but we choose the single-
output version due to its relative simplicity.

Pretrained Large Network For comparison, we study another network design
approach, as well. Instead of training from scratch, we use a pretrained network
which we then fine-tune for our purposes. There are several famous pretrained
networks easily available in Keras, including VGG16 [37], Inception-V3 [38]
and the ResNet50 [16]. All three are re-implementations of ILSVRC competition
winners and pretrained weights trained with Imagenet data are available. Since the
Imagenet dataset contains both cats and dogs among the 1000 classes, there is reason
to believe that they should be effective for our case as well (in fact the pretrained net
approach is known to be successful also for cases where the classes are not among
the 1000 classes—even visually very different classes benefit from the Imagenet
pretraining).

We choose the VGG16 network as our template because its 16 layers with
5 maxpoolings allow smaller input sizes than the deeper networks. The network
structure follows the convolution-convolution-maxpooling block composition as in
our own network design earlier, and is as follows.

1. Conv block 1. Two convolutional layers and a maxpooling layer with mapping
64× 64× 3 �→ 32× 32× 64.

2. Conv block 2. Two convolutional layers and a maxpooling layer with mapping
32× 32× 64 �→ 16× 16× 128.

3. Conv block 3. Three convolutional layers and a maxpooling layer with mapping
16× 16× 128 �→ 8× 8× 256.

4. Conv block 4. Three convolutional layers and a maxpooling layer with mapping
8× 8× 256 �→ 4× 4× 512.

5. Conv block 5. Three convolutional layers and a maxpooling layer with mapping
4× 4× 512 �→ 2× 2× 512.

Additionally, the original network has three dense layers atop the five convolutional
blocks. We will only use the pretrained convolutional pipeline, because the convo-
lutional part is usually considered to serve as the feature extractor, while the dense
layers do the actual classification. Therefore, the upper dense layers may be very
specialized for the Imagenet problem, and would not work well in our case.

More importantly, the convolutional part is invariant to the image shape. Since
we only apply convolution to the input, we can rather freely choose the input size, as
long as we have large enough data to accommodate the five maxpoolings—at least
32 × 32 spatial size. The input shape only affects the data size at the output: for
32× 32× 3 input we would obtain 512 feature maps of size 1× 1 at the end, with

Deep Neural Networks 155

128× 128× 3 input the convolutional pipeline output would be of size 4× 4× 512,
and so on. The original VGG16 network was designed for 224 × 224 × 3 input
size, which becomes 7× 7× 512 after five maxpooling operations. In our case the
output size 2× 2× 512 becomes 2048-dimensional vector after flattening, which is
incompatible with the pretrained dense layers assuming 25,088-dimensional input.

Instead of the dense layers of the original VGG16 model, we append two layers
on top of the convolutional feature extraction pipeline. These layers are exactly the
same as in the small network case (see Fig. 11): One 128-node dense layer and 1-
dimensional output layer. These additional layers are initialized at random.

In general, the lower layers (close to input) are less specialized to the training
data than the upper layers. Since our data is not exactly similar to the Imagenet data
(fewer classes, smaller spatial size, animals only), the upper convolutional layers
may be less useful for us. On the other hand, the lower layers extract low level
features and may be well in place for our case as well. Since our number of samples
is small compared to the Imagenet data, we do not want to overfit the lower layers,
but will retain them in their original state.

More specifically, we apply the backpropagation step only to the last convolu-
tional block (and the dense layers) and keep the original pretrained coefficients
for the four first convolutional blocks. In deep learning terms, we freeze the first
four convolutional blocks. The fine-tuning should be done with caution, because
the randomly initialized dense layers may feed large random gradients to the lower
layers rendering them meaningless. As a rule of thumb, if in doubt, rather freeze too
many layers than too few layers.

The code for instantiating the pretrained network in Keras is shown in Listing 2.
Note that Keras automatically downloads the pretrained weights from the internet
and keeps a local copy for the future. Listing 2 uses Keras functional API (in
Listing 1 we used Sequential API), where each layer is defined in a functional
manner, mapping the result of the previous layer by the appropriate layer type.

We train both networks with 80% of the Oxford cats and dogs dataset samples
(2949 images), and keep 20% for testing (738 images). We increase the training set
size by augmentation. Augmentation refers to various (geometric) transformations
applied to the data to generate synthetic yet realistic new samples. In our case, we
only use horizontal flipping, i.e., we reflect all training set images left-to-right.
More complicated transformations would include rotation, zoom (crop), vertical
flip, brightness distortion, additive noise, and so on.

The accuracy of the two network architectures is plotted in Fig. 12; on the left is
the accuracy of the small network and on the right is the accuracy of the pretrained
network for 50 epochs. Based on the figures, the accuracy of the pretrained network
is better. Moreover, the accuracy reaches the maximum immediately after the very
first epochs. The main reason for this is that the pretraining has prepared the
network to produce meaningful representation for the data regardless of the input
type. In essence, the pretrained classifier very close to a two layer dense network,
which trains very rapidly compared to the small network with several trainable
convolutional layers.

156 H. Huttunen

Fig. 12 The accuracy of classification for the Oxford cats and dogs dataset. Left: Learning curve
of the small network initialized at random. Right: Learning curve of the fine-tuned VGG network

5 System Level Deployment

Deep learning is rarely deployed as a network only. Instead, the developer has
to integrate the classifier together with surrounding software environment: Data
sources, databases, network components and other external interfaces. Even in the
simplest setting, we are rarely in an ideal position, where we are given perfectly
cropped pictures of cats and dogs.

The TUT Live Age Estimator is an example of a full deep learning demo system
designed to illustrate the human level abilities of a deep learning system.5 The live
video at https://youtu.be/Kfe5hKNwrCU illustrates the functionality of the demo. A
screen shot of the video is also shown in Fig. 13.

The system uses three deep networks in real time:

1. An age estimator network [30, 31]
2. A gender recognizer network [30, 31]
3. An expression recognizer network

All the networks receive the cropped face, which needs to be located first. To this
aim, we use the OpenCV implementation of the famous Viola-Jones object detection
framework [42] with readily available face detection cascades. Moreover, the input
video frames are acquired using the OpenCV VideoCapture interface.

Most of the required components are available in open source. The only thing
trained by ourselves was the expression recognizer network, for which a suitable
pretrained network was not available. However, after the relatively straightforward
training of the one missing component, one question remains: How to put everything
together?

5The full Python implementation is available at https://github.com/mahehu/TUT-live-age-
estimator.

https://youtu.be/Kfe5hKNwrCU
https://github.com/mahehu/TUT-live-age-estimator
https://github.com/mahehu/TUT-live-age-estimator

Deep Neural Networks 157

Fig. 13 Screen shot of the TUT live age estimation demo

Fig. 14 Schematic diagram of the TUT age estimator

One of the challenges of the real time implementation is in the concurrency: How
do we control the interplay of blocks that require different amount of computation?
To this aim, we use asynchronous threads that poll for new frames to be processed.
The schematic diagram of the system is shown in Fig. 14. Each stage of processing
is implemented within a thread.

1. Grabber thread accesses the camera and requests video frames. The received
frames are time stamped and pushed to the frame storage through the main
thread.

2. Detection thread polls the frame storage for most recent frame not detected yet.
When a frame is received, the OpenCV cascade classifier is applied to localize
all faces. The location of the face (or None if not found) is added to the frame
object, which also indicates that the frame has been processed.

158 H. Huttunen

3. Age thread polls the frame storage for most recent frame which has passed the
detection stage but not age-recognized yet. When a frame is received, the age
estimation network is applied to the cropped face. The age estimate is added to
the frame object, which also indicates that the frame has been processed.

4. Gender thread polls the frame storage for most recent frame which has passed
the detection stage but not gender-recognized yet. When a frame is received, the
gender recognition network is applied to the cropped face. The gender result is
added to the frame object, which also indicates that the frame has been processed.

5. Expression thread polls the frame storage for most recent frame which has
passed the detection stage but not expression-recognized yet. When a frame is
received, the expression recognition network is applied to the cropped face. The
expression result is added to the frame object, which also indicates that the frame
has been processed.

6. Display thread polls the frame storage for most recent frame not locked by any
other thread for processing. The thread also requests the most recent age, gender
and expression estimates and the most recent face bounding box from the main
thread.

7. Main thread initializes all other threads and sets up the frame storage. The thread
also locally keeps track of the most recent estimates of face location, age, gender
and expression in order to minimize the delay of the display thread.

8. Frame storage is a list of frame objects. When new objects appear from the
grabber thread, the storage adds the new item at the end of the list and checks
whether the list is longer than the maximum allowed size. If this happens, then
the oldest items are removed from the list unless locked by some processing
thread. The storage is protected by mutex object to disallow simultaneous read
and write.

9. Frame objects contain the actual video frame and its metadata, such as the
timestamp, bounding box (if detected), age estimate (if recognized), and so on.

The described structure is common to many processing pipelines, where some
stages are independent and allow parallel processing. In our case, the dependence is
clear: Grabbing and detection are always required (in this order), but after that the
three recognition events and the display thread are independent of each other and can
all execute simultaneously. Moreover, if some of the processing stages needs higher
priority, we can simply duplicate the thread. This will instantiate two (or more)
threads each polling for frames to be processed thus multiplying the processing
power.

6 Further Reading

The above overview focused on supervised training only. However, there are other
important training modalities that an interested reader may study: unsupervised
learning and reinforcement learning.

Deep Neural Networks 159

The amount of data is crucial to modern artificial intelligence. At the same time,
data is often the most expensive component while training an artificial intelligent
system. In particular, this is the case with annotated data used within supervised
learning. Unsupervised learning attempts to learn from unlabeled samples, and the
potential of unsupervised learning is not fully discovered. There is a great promise
in learning from inexpensive unlabeled data instead of expensive labeled data. Not
only the past of deep learning was coined by unsupervised pretraining [18, 19];
unsupervised learning may be the future of AI, as well. Namely, some of the
pioneers of the field have called unsupervised learning as the future of AI,6 since
the exploitation on unlabeled data would allow exponential growth in data size.

Reinforcement learning studies problems, where the learning target consists of
a sequence of operations—for example, a robot arm performing a complex task.
In such cases, the entire sequence should be taken into account when defining the
loss function. In other words, also the intermediate steps of a successful sequence
should be rewarded in order to learn to solve the task successfully. A landmark paper
in modern reinforcement learning is the 2015 Google DeepMind paper [27], where
the authors introduce a Deep Q-Learning algorithm for reinforcement learning with
deep neural network. Remarkably, the state-of-the-art results of the manuscript have
now been obsoleted by a large margin [17], emphasizing the unprecedented speed
of development in the field.

Another topic in AI with growing importance is recurrent neural network (RNN),
which processes sequences using architectures that remember their past states.
This enables the concept of memory, which allows storage of either temporal
or otherwise sequential events for future decisions. Recurrent networks can have
multiple configurations depending on the problem input/output characteristics, and
Fig. 15 illustrates a few common ones. The particular characteristic of a recurrent
network is that it can process sequences with applications such as image captioning
[22], action recognition [36] or machine translation [3]. The most widely used RNN
structures include the Long Short-Term Memory (LSTM) networks [20] and Gated
Recurrent Unit (GRU) networks [8].

7 Conclusions

Deep learning has become a standard tool in any machine learning practitioner’s
toolbox surprisingly fast. The power of deep learning resides in the layered
structure, where the early layers distill the essential features from the bulk of data,
and the upper layers eventually classify the samples into categories. The research on
the field is extremely open, with all important papers openly publishing their code
along with the submission. Moreover, the researchers are increasingly aware of the

6http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-
lecun-on-deep-learning.

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning

160 H. Huttunen

Fig. 15 Configurations of recurrent neural networks. Top left: A non-recurrent network, with a
single input (e.g., facial image) and single output (e.g., age). Top right: A recurrent network with
sequence input (e.g., video frames) and a single output (e.g., action of the user in the sequence).
Bottom left: A recurrent network with single input (e.g., an image) and a sequence output (e.g., the
image caption text). Bottom right: a recurrent network with a sequence input (e.g. text in Swedish)
and sequence output (e.g., text in English)

importance of publishing open access; either in gold open access journals or via
preprint servers, such as the ArXiv. The need for this kind of reproducible research
was noted early in the signal processing community [39] and has luckily become
the standard operating principle of machine learning.

The remarkable openness of the community has led to democratization of the
domain: Today everyone can access the implementations, the papers, and other
tools. Moreover, cloud services have brought also the hardware accessible to almost
everyone: Renting a GPU instance from Amazon cloud, for instance, is affordable.
Due to the increased accessibility, standard machine learning and deep learning have
become a bulk commodity: Increased number of researchers and students possess
the basic abilities in machine learning. So what’s left for research, and where the
future will lead us?

Despite the increased supply of experts, also the demand surges due to the
growing business in the area. However, the key factors of tomorrow’s research are
twofold. First, data will be the currency of tomorrow. Although large companies
are increasingly open sourcing their code, they are very sensitive to their business
critical data. However, there are early signs that this may change, as well. Compa-
nies are opening their data as well: One recent surprise was the release of Google
AudioSet—a large-scale dataset of manually annotated audio events [13]—which
completely transformed the field of sound event detection research.

Second, the current wave of deep learning success has concentrated on the virtual
world. Most of the deep learning is done in server farms using data from the cloud.
In other words, the connection to the physical world is currently very slim. This

Deep Neural Networks 161

is about to change; as an example, deep learning is rapidly steering the design of
self driving cars, where the computers monitor their surroundings via dashboard
mounted cameras. However, most of the current platforms are at a prototype stage,
and we will see more application-specific deep learning hardware in the future. We
have also seen that most of the deep learning computation operations stem from
basic signal processing algorithms, embedded DSP design expertise may be in high
demand in the coming years.

Acknowledgements The author would like to acknowledge CSC - IT Center for Science Ltd. for
computational resources.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F.,
Bayer, J., Belikov, A., Belopolsky, A., et al.: Theano: A python framework for fast computation
of mathematical expressions. arXiv preprint arXiv:1605.02688 (2016)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and
translate. Proceedings of ICLR2015 (2015)

4. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In:
Neural networks: Tricks of the trade, pp. 437–478. Springer (2012)

5. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang, Z.:
Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems.
arXiv preprint arXiv:1512.01274 (2015)

6. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.:
cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)

7. Chollet, F.: Keras. https://github.com/fchollet/keras (2015)
8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling. Proceedings of NIPS conference (2014)
9. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for machine

learning. In: BigLearn, NIPS Workshop (2011)
10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale

Hierarchical Image Database. In: CVPR09 (2009)
11. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research 12(Jul), 2121–2159 (2011)
12. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of eugenics

7(2), 179–188 (1936)
13. Gemmeke, J.F., Ellis, D.P.W., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C., Plakal,

M., Ritter, M.: Audio set: An ontology and human-labeled dataset for audio events. In: Proc.
IEEE ICASSP 2017. New Orleans, LA (2017)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.
deeplearningbook.org

15. Haykin, S., Network, N.: A comprehensive foundation. Neural Networks 2(2004), 41 (2004)
16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016).
https://doi.org/10.1109/CVPR.2016.90

https://github.com/fchollet/keras
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.90

162 H. Huttunen

17. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D.,
Piot, B., Azar, M., Silver, D.: Rainbow: Combining Improvements in Deep Reinforcement
Learning. ArXiv e-prints (2017). Submitted to AAAI2018

18. Hinton, G.E.: Learning multiple layers of representation. Trends in Cognitive Sciences 11(10),
428–434 (2007)

19. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Computation 18(7), 1527–1554 (2006)

20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–
1780 (1997)

21. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell,
T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the ACM
International Conference on Multimedia, pp. 675–678. ACM (2014)

22. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3128–3137 (2015)

23. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International Conference on
Learning Representations (2015)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (eds.) Advances in
Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

25. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.:
Backpropagation applied to handwritten zip code recognition. Neural computation 1(4), 541–
551 (1989)

26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE pp. 2278–2324 (1998)

27. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

28. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: IEEE Conference
on Computer Vision and Pattern Recognition (2012)

29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

30. Rothe, R., Timofte, R., Gool, L.V.: Dex: Deep expectation of apparent age from a single image.
In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2015)

31. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single
image without facial landmarks. International Journal of Computer Vision (IJCV) (2016)

32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323(6088), 533–538 (1986)

33. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Cognitive modeling 5(3), 1 (1988)

34. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV) 115(3), 211–252 (2015). https://
doi.org/10.1007/s11263-015-0816-y

35. Schölkopf, B., Smola, A.J.: Learning with kernels. The MIT Press (2001)
36. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in

videos. In: Advances in neural information processing systems, pp. 568–576 (2014)
37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556 (2014)
38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception

architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2818–2826 (2016)

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Deep Neural Networks 163

39. Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal processing. IEEE
Signal Processing Magazine 26(3) (2009)

40. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast convolu-
tional nets with fbfft: A gpu performance evaluation. arXiv preprint arXiv:1412.7580 (2014)

41. Vedaldi, A., Lenc, K.: Matconvnet – convolutional neural networks for matlab. In: Proceeding
of the ACM Int. Conf. on Multimedia (2015)

42. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, vol. 1, pp. I–I. IEEE (2001)

43. Widrow, B.: Thinking about thinking: the discovery of the lms algorithm. IEEE Signal
Processing Magazine 22(1), 100–106 (2005). https://doi.org/10.1109/MSP.2005.1407720

44. Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., Kuchaiev, O., Zhang, Y.,
Seide, F., Wang, H., et al.: An introduction to computational networks and the computational
network toolkit. Microsoft Technical Report MSR-TR-2014–112 (2014)

45. Zhu, L.: Gene expression prediction with deep learning. M.Sc. Thesis, Tampere University of
Technology (2017)

https://doi.org/10.1109/MSP.2005.1407720

High Dynamic Range Video Coding

Konstantinos Konstantinides, Guan-Ming Su, and Neeraj Gadgil

Abstract Methods for the efficient coding of high-dynamic range (HDR) still-
images and video sequences are reviewed. In dual-layer techniques, a base layer of
standard-dynamic range data is enhanced by additional image data in an enhance-
ment layer. The enhancement layer may be additive or multiplicative. If there is
no requirement for backward compatibility, adaptive HDR-to-standard dynamic
range (SDR) mapping schemes in the encoder allow for improved coding efficiency
versus the backward-compatible schemes. In single-layer techniques, a base layer is
complemented by metadata, such as supplementary enhancement information (SEI)
data or color remapping information (CRI) data, which allow a decoder to apply
special “reshaping” or inverse-mapping functions to the base layer to reconstruct
an approximation of the original HDR signal. New standards for exchanging HDR
signals, such as SMPTE 2084 and BT. 2100, define new mapping functions for
translating linear scene light captured by a camera to video and are replacing the
traditional “gamma” mapping. The effect of those transforms to existing coding
standards, such as high efficiency video coding (HEVC) and beyond, are reviewed,
and novel quantization and coding schemes that take these new mapping functions
into consideration are also presented.

1 Introduction

In digital imaging, the term dynamic range refers to the ratio of the highest over
the lowest luminance values in an image or a scene. For example, the human visual
system (HVS) can perceive the brightness of an object from the darkest shadows

K. Konstantinides (�) · G.-M. Su · N. Gadgil
Dolby Laboratories, San Francisco, CA, USA
e-mail: k.konstantinides@ieee.org; guanmingsu@ieee.org; njgadg@dolby.com

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_5

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_5&domain=pdf
mailto:k.konstantinides@ieee.org
mailto:guanmingsu@ieee.org
mailto:njgadg@dolby.com
https://doi.org/10.1007/978-3-319-91734-4_5

166 K. Konstantinides et al.

or faint starlight (about 10−6 cd/m2 or nits),1 all the way to direct sunlight (about
108 cd/m2). These intensities may be referred to as “scene-referred” intensities.
Thus, the physical word represents approximately 14 orders of dynamic range,
typically referred to as high dynamic range (HDR). In contrast, the dynamic
range that humans may simultaneously perceive is approximately 5–6 orders of
magnitude. While this dynamic range, sometimes referred to as visual dynamic
range or extended dynamic range, is significantly lower than HDR, it may still be
referred to as a high dynamic range.

In display technology, dynamic range (say, 5000:1) refers to the ratio of the
brightest white (e.g., 500 nits) over the darkest black (e.g., 0.1 nits) a display can
render. These intensities are referred to as “display-referred” intensities. Most con-
sumer desktop displays and high definition televisions (HDTVs) currently support
peak luminance of 200–500 nits. Such conventional displays thus typify a lower
dynamic range (LDR), also referred to as a standard dynamic range (SDR). Modern,
HDR-branded, displays support peak luminance of 800–1000 nits; however, studio
HDR monitors are known to support peak luminance values exceeding 4000 nits.

Traditional, 24-bit, digital photography represents a low dynamic range of about
2–3 orders of dynamic range and has dominated both software and hardware
architectures in both the consumer electronics and the broadcast industry. However,
many display manufacturers are now entering the market with HDR displays
and thus there is increased interest and need for the efficient representation,
compression, and transmission of HDR content. This Chapter provides a brief
overview of past efforts in backwards-compatible coding of HDR video and presents
some recent developments using both dual-layer and single-layer architectures.
More specifically, Sect. 2 describes early work for coding still HDR images.
Before covering HDR video coding, in Sect. 3, we review non-linear transfer
functions commonly being used to translate linear light to video signals. Backward-
compatible video coding methods are reviewed in Sect. 4, and non-backward
compatible methods are reviewed in Sect. 5. Both single-layer and multi-layer
coding schemes are examined.

2 Early Work: HDR Coding for Still Images

The image processing community has shown interest in HDR images since the
late 1980s, using a variety of logarithmic-based or floating-point encodings for
intensity, such as the Radiance RGBE format, LogLuv TIFF, and OpenEXR [1].
None of these formats allowed for backward compatibility, typically a necessary
(but not always sufficient) requirement for wider adoption. In 2004, encouraged by
the wide adoption of the JPEG image compression standard, Ward and Simmons

1Candela per square meter (cd/m2), also referred to as nit, is the international standard unit of
luminance.

High Dynamic Range Video Coding 167

[1] introduced JPEG-HDR, a JPEG-backwards-compatible format that includes a
baseline image representing a tone-mapped version of the input HDR image,2 and
a ratio image representing pixel by pixel the ratio of luminance values in the input
HDR image over those in the tone-mapped image. The ratio image is log-encoded
and compressed as an 8-bit grayscale image, and it is stored as part of the JPEG
image using a dedicated JPEG application marker. The format allows legacy JPEG
decoders to ignore the ratio image and simply decode the tone-mapped version
of the JPEG image. JPEG-HDR-enabled decoders can reconstuct the HDR image
by a simple multiplication with the ratio image. JPEG-HDR was later enhanced
to include chroma residuals, and the new format was standardized as Profile A in
JPEG XT, which includes also two alternative Profiles (B and C) for coding HDR
still images [1–3]. Following the notation by Richter [3], the three profiles may be
expressed as follows:

Profile A
In this profile, based on JPEG-HDR, the reconstructed HDR image is generated as

HDR = μ(r) (�(SDR) + χ) , (1)

where SDR is the base JPEG image (typically encoded in a gamma-corrected space),
� denotes an inverse-gamma correction, χ denotes a function of chroma (e.g.,
CbCr) residuals, and μ(r) = exp (r) denotes an exponential function of the ratio
log-image r (that is, the logarithm of the ratio of luminance in the original HDR
image over luminance in the tone-mapped image).

Profile B
Profile B is similar to Profile A, except that the ratio is expressed for each color
channel (i = 1, 2, 3). Ratios are also coded using a logarithmic representation, thus

HDRi = σ exp (log (� (HDRi))− log (� (RESi))) , (2)

where � denotes an inverse-gamma correction, � is typically selected to be a
gamma correction derived by the encoder, and σ is a scaler.

Profile C
In profile C, the floating-point residuals between the HDR image and the SDR
image, in each color component (RESi, i= 1, 2, 3), are expressed as integers using a
pseudo-log2 representation. Then, in the decoder, one may apply a pseudo-exponent
to recover them. Thus, while the reconstructed image may be represented as

HDRi = �(SDRi) RESi,

2“Tone mapping” refers to the process of mapping luminance values in a high dynamic range to
luminance values in a lower dynamic range.

168 K. Konstantinides et al.

in a decoder, under Profile C,

HDRi = ψ exp
(
�̂ (SDRi)+ RESi − o

)
, (3)

where ψexp represents a pseudo-exponential function, o is an offset that ensures
the residual image is not negative, and �̂ represents an inverse gamma followed by
an inverse log approximation, typically optimized by the encoder and passed to the
decoder.

Despite the adoption of HDR image capture in many cameras and smart-phones
(typically, by combining three separate exposures), to the best of our knowledge,
by mid-2017, none of the camera manufacturers had adopted any of the JPEG
XT Profiles. All captured HDR images are simply represented and stored as tone-
mapped JPEG images. Before we continue with HDR video coding schemes, it
is worth revisiting another important topic: the role of cathode ray tube (CRT)
technology in traditional SDR coding, especially as it is related to quantizing linear
scene light (e.g., light as captured by a camera sensor) to a non-linear signal for
efficient processing of captured images in a video pipeline.

3 Signal Quantization: Gamma, PQ,3 and HLG4

Due to signal-to-noise constraints in analog and digital video signals and the
characteristics of the traditional CRT display, scene light was never represented in a
linear form in the video processing pipeline. Captured images are quantized using a
non-linear opto-electrical transfer function (OETF) which converts linear scene light
into the camera’s (non-linear) video signal. Then, after encoding and decoding, on
the receiver, the signal would be processed by an electro-optical transfer function
(EOTF), which would translate the input video signal to output screen color values
(e.g., screen luminance) produced by the display. Such non-linear functions include
the traditional “gamma” curve documented in Recommendations ITU-R BT.709,
BT.1886, and BT.2020 [4]. The combination of an OETF, the EOTF, and any artistic
adjustments (either during content creation or content display) is referred to as the
system opto-optical transfer function or OOTF [5].

Currently, most digital interfaces for video delivery, such as the serial digital
interface (SDI) are limited to 12 bits per pixel per color component. Furthermore,
most compression standards, such as H.264 (or AVC) and H.265 (or HEVC), are
limited, at least in practical implementations, to 10-bits per pixel per component.
Therefore, efficient encoding and/or quantization is required to support HDR
content, with dynamic range from approximately 0.001–10,000 cd/m2 (or nits),
within existing infrastructures and compression standards.

3PQ stands for “Perceptual Quantizer” EOTF, as defined by Miller et al. [7].
4HLG stands for a non-linear transfer function known as “Hybrid Log-Gamma.”

High Dynamic Range Video Coding 169

Gamma encoding was satisfactory for delivery of SDR (e.g., 8–10 bits) content,
but has been proven rather inefficient when coding HDR content. The human visual
system responds to increasing light levels in a very non-linear way. A human’s
ability to see a stimulus is affected by the luminance of that stimulus, the size of the
stimulus, the spatial frequencies making up the stimulus, and the luminance level
that the eyes have adapted to at the particular moment one is viewing the stimulus
[6, 7]. In 2013, Miller et al. [7] proposed an alternative EOTF to the gamma function,
commonly referred to as “PQ” (for perceptual quantizer). PQ maps linear input gray
levels to output gray levels that better match the contrast sensitivity thresholds in the
human visual system. Compared to the traditional gamma curve, which represents
the response curve of a physical CRT device and coincidently may have a very rough
similarity to the way the human visual system responds, the PQ curve imitates the
true visual response of the human visual system using a relatively simple functional
model, shown in Eq. (4) [8].

V = EOT F−1 [L] =
(
c1+ c2 ∗ Lm1

1+ c3 ∗ Lm1

)m2

, (4)

where, V represents the result non-linear signal (say, (R′, G′, B′)) in a range [0,1], L
represents luminance of a displayed linear components in cd/m2 (assuming a peak
luminance of 10,000 cd/m2), and the constants are:

m1 = 2610/16384 = 0.1593017578125,

m2 = 2523/4096× 128 = 78.84375,

c1 = 3424/4096 = 0.8359375 = c3− c2+ 1,

c2 = 2413/4096× 32 = 18.8515625,

c3 = 2392/4096× 32 = 18.6875.

For comparison, according to Rec. BT. 709 [9], the traditional gamma curve on
an encoder is given by

V =
{

1.099L0.45 − 0.099; 1 ≥ L ≥ 0.018
4.500 L; 0.018 > L > 0

, (5)

where L denotes input luminance in [0,1].

170 K. Konstantinides et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

V

L

Linear light to non-linear conversion

Gamma
PQ

Fig. 1 BT. 709 (gamma) versus SMPTE 2084 (PQ) encoding for HDR signals

OOTF Inverse
EOTF

OETF

Scene
Light

EOTF

Display
Light

Camera Display

Fig. 2 PQ-oriented system, OOTF is in the camera

Scene
Light

OOTF
Inverse
OETF

EOTF

OETF

Display
Light

Camera Display

Fig. 3 HLG-oriented system, OOTF is in the display

The PQ mapping functions were adopted in SMPTE ST 2084 and Rec. ITU-R
BT.2100 [8]. Figure 1 provides an example of the gamma and PQ coding for L in
(0, 1].

The PQ EOTF was designed assuming a camera-centric OOTF that applies an
inverse PQ EOTF to generate the signal to be processed (see Fig. 2). In Rec. BT.
2100, an alternative, display-centric nonlinear transfer function is also presented,
commonly referred to as Hybrid Log-Gamma (HLG) (see Fig. 3). HLG was
designed with backward-compatibility in mind, especially as related to ITU-R BT.
2020 color displays. PQ and HLG may co-exist, and Annex 2 of BT. 2100 provides
examples of converting between PQ-coded signals and HLG-coded signals. Given
a video stream, information about its EOTF is typically embedded in the bit stream
as metadata.

High Dynamic Range Video Coding 171

4 Backward-Compatible HDR Coding

By the end of 2016, there was a variety of HDR content available for consumers with
branded HDR displays; however, the majority of consumers around the world have
only SDR displays. Backward compatibility; that is, support for both SDR and HDR
content, is considered by many critical for the wider adoption of HDR displays.
Depending on the operational cost, including content storage, network bandwidth,
and processing time, content providers have two different approaches to support
both formats.

For a system or distribution channel with abundant storage, but limited network
bandwidth, most system providers prefer to use a unicast solution: namely, store
both the SDR and HDR bit streams in the server side, and transmit either the SDR
or the HDR bit stream, depending on the targeted display.

For a system with limited storage, or when the storage cost is high, the system
providers prefer to provide a bitstream which can be viewed on a legacy SDR
display, but also allows users with an HDR display to reconstruct the HDR
content given some additional information. This design is referred to as a backward
compatible codec. A legacy receiver can decode the base layer (BL), and the viewers
can watch the SDR-grade video. With additional metadata and/or an enhancement
layer (EL), the viewers can reconstruct and watch the HDR-grade video. The
additional amount of information is often much smaller than the base layer. In
this section, we will discuss dual-layer and single-layer backward-compatible HDR
video codecs.

The backward compatible HDR codec can be categorized as either a dual-layer
system or single-layer system. Each layer is encoded using a legacy video codec,
such as AVC (H.264) or HEVC (H.265). Single-layer systems include a single
coded bitstream and rely on metadata that define a parametric model to reconstruct
the HDR signal. Dual-layer systems include a coded base layer, metadata for
reconstructing an HDR estimate signal, and an additional layer of coded residual
data which can be added to the HDR signal reconstructed by the base layer, thus,
typically providing a more accurate representation of the HDR signal, but at the
expense of more bandwidth.

4.1 Dual-Layer Coding

Motivated by the work of Ward and Simmons, in 2006, Mantiuk et al. [10]
introduced an MPEG-backwards-compatible coding scheme for HDR video based
on layered predictive coding. An example encoder of their scheme is shown in Fig.
4. As depicted in Fig. 4, the encoder receives an HDR video sequence. An HDR to
SDR transformation block (e.g., a tone-mapper) applies any of the known HDR
to SDR transformation techniques to generate an SDR version, representing the
backward-compatible video to be rendered on an SDR display. The SDR version

172 K. Konstantinides et al.

HDR to SDR
Transformation

HDR Color
Transformations

BL
Encoder

BL
Decoder

SDR Color
Transformations

HDR
Predictor

EL
Encoder

+

-

HDR video

SDR video

Residual
stream

Metadata
stream

SDR
stream

+ EL
Mapping

Fig. 4 Block diagram of a dual-layer HDR encoder

is coded with a legacy MPEG encoder. A decoded version, after optional color
transformations to match the color format of the HDR video, is passed to a predictor,
which estimates the input HDR signal based on the SDR input. The output of the
predictor is subtracted from the original HDR input to generate a residual, which
is further compressed by another encoder. The SDR stream, the residual stream,
and information about the predictor (e.g., metadata) are all multiplexed to form an
HDR-coded bitstream. The term “metadata,” as used here, relates to any auxiliary
information that is transmitted as part of a coded bitstream and assists a decoder to
render a decoded image. Such metadata may include, but are not limited to, color
space or gamut information, reference display parameters, and other auxiliary signal
parameters that will be described later on in this chapter.

In a decoder (Fig. 5), a legacy decoder simply decodes the base layer to be
displayed on an SDR display. An HDR decoder, applies the predictor function
received from the encoder to the baseline SDR input to generate a predicted HDR
signal, which is added to the decoded residual signal to reconstructs the output HDR
signal to be displayed on an HDR display. Additional color transformations may be
needed to match the color transformations in the encoder or the capabilities of the
display pipeline.

To improve coding compression of the residual information, Mantiuk et al.
proposed using custom color spaces for both the coded SDR and the HDR streams.
For SDR, the input RGB data is converted to a luma-chroma space where, chroma
is encoded using a format similar to logLuv encoding and luma is encoded by a
special transformation using linear and power function segments [23]. For the HDR
signal, after translating YCbCr or RGB data to XYZ, XYZ-float data are converted
to a luma-chroma space where: chroma is encoded the same way as SDR chroma,
and luma is encoded using a perceptual uniform luminance encoding.

For the prediction function, Mantiuk et al. used a method that combines
“binning” with pixel averaging. For example, for SDR images with an 8-bit bit
depth there will be 256 bins, where each bin represents all the HDR pixels

High Dynamic Range Video Coding 173

EL
Decoder

BL
Decoder

SDR Color
Transformations

HDR
Predictor

+

SDR
stream

Metadata
stream

Residual
stream

SDR
video

HDR
videoInverse

EL Mapping

Fig. 5 Block diagram of dual-layer decoder

mapped to the specific (SDR) bin value. Thus, given N pixels in a frame, bin
�l = {i = 1, . . . , N : Isdr(i) = l}, where l = 0, 1, . . . , 255, and Isdr(i) denotes the
tone-mapped SDR luma value for the i-th input (HDR) pixel (Ihdr(i)). Then, given

an input SDR pixel value l, the corresponding predicted HDR pixel value (Îhdr(l)
)

is

generated using the arithmetic mean of all HDR pixels that are mapped to the SDR
value l in bin �l, or

Îhdr(l) = 1

|�l |
∑

i∈�l

Ihdr (i), (6)

where |�l| denotes the cardinality of the l-th bin.
Looking at the block diagram in Fig. 4, one can identify three key components

that may affect dual-layered coding: (a) the proper color representation of the
signals, (b) the choice of the HDR to SDR transformation, and (c) the choice
of a prediction function. As discussed earlier, input HDR content may now be
represented using both gamma- and PQ-quantization. Regarding the HDR to SDR
transformation block, in many cases, this block may be omitted, since the SDR video
may be provided separately. For example, the SDR video may represent the output
of manual or semi-automatic color grading by a professional colorist who performed
color grading according to a director’s intent on a reference SDR display. Regarding
the HDR predictor, there are multiple alternatives to Eq. (6) and will be discussed
later.

In many applications, the residual signal may not be in a format suitable for
encoding by a legacy encoder. For example, it may be in floating point, or it is
possible that its dynamic range exceeds the dynamic range of the EL Encoder. Then,
as shown in Fig. 4, the residual video signal may also be further processed by an
enhancement layer mapping function (EL Mapping), such as a linear or non-linear
quantizer. If that is the case, as shown in Fig. 5, a decoder needs to apply to the
decoded residual an inverse mapping (Inverse EL Mapping).

174 K. Konstantinides et al.

In some encoder designs, information about the compressed EL bitstream can
be fed back to the HDR prediction module as in-loop processing, or it can be
accessed independently, as an open-loop process. In-loop designs can generate the
reconstructed HDR signal by using inter-layer prediction, that is, by combining
the inverse mapped SDR and the residual. This approach can enable temporal
domain prediction to further reduce bit rates; however, the in-loop designs need
to modify legacy encoders and makes the encoder design more complex. The open-
loop approach is a much simpler design, but it loses compression efficiency owing
to the lack of a temporal, inter-layer, prediction path.

Besides the temporal-prediction domain option, the EL Mapping block may also
support re-scaling and/or sub-sampling in the spatial domain, so that the residual can
be down-sampled to a lower resolution to reduce the bit rate. In this case, the EL
inverse mapping block in the decoder should support performing the corresponding
inverse re-scaling to up-sample the received EL signal to the same resolution as the
BL signal. Rescaling may reduce the EL stream bit-rate requirements; however it
may also introduce additional artifacts, such as blurred edges and texture. Applying
spatial re-scaling is a design tradeoff that depends on the system’s bandwidth and
picture quality requirements.

One of the key components of any dual-layer system is the design of the HDR
predictor. Some of the proposed designs are briefly reviewed next.

4.1.1 Piecewise Linear Model Representation

In [10], Mantiuk et al. proposed sending to the decoder a simple one-dimension
look-up Table (1D-LUT) representing the one-to-one SDR to HDR mapping based
on Eq. (6); however, the overhead to transmit an 1D-LUT for each frame or even
a small collection of frames as metadata is big. Furthermore, Eq. (6) does not
guarantee that the SDR to HDR mapping will satisfy certain important properties
to reduce coding artifacts. One such property is that the inverse mapping function
should be monotonically non-decreasing. This property is important for images with
areas with smooth gradient. It has been observed that if the SDR-to-HDR mapping
function has some ranges with decreasing slope at its first derivative, then it often
creates “hole” artifacts for those smooth areas. To address these problems, in [11],
the authors proposed communicating the prediction function to a decoder using a
piecewise linear model.

Let AL() denote the HDR-to-SDR transformation for the luma component (e.g.,
a global tone-mapping function) and let BL() denote the inverse luma mapping (e.g.,
SDR-to-HDR), also referred to as the HDR prediction function. To construct the
piecewise linear model for the HDR to SDR mapping, one needs to define: (a)
the pivot or end points {sl, s0 < s1 < . . . < sL} separating/connecting two nearby
pieces (or segments) in the piecewise function, and (b) the parameters of the linear
model for each piece (e.g., for y = ml*x + bl, ml and bl). As the number of
possible segments increases, the optimal solution problem becomes intractable very
quickly. To simplify the solution, a fixed interval length in logarithm domain is

High Dynamic Range Video Coding 175

used to eliminate the need to compute the pivot points. The problem can be further
simplified by only computing the slope {ml} in each piece. For the SDR to HDR
inverse mapping, the pivot points can remain the same as {sl}, and the slope will be
the inverse value, as {1/ml}, in each piece. The entire system can be formulated as a
mean-square-error (MSE) optimization problem to reduce the end-to-end distortion
between the original HDR picture and the reconstructed HDR picture:

arg min{mL}

∥∥∥BL
(
AL
(
vLi

))
− vLi

∥∥∥2
, (7)

where vLi denotes the intensity of the i-th HDR pixel (e.g., Ihdr(i)). Assuming a local
linearity of the mapping function, the problem can be further simplified and solved
with a closed form solution.

4.1.2 Multivariate Multiple Regression Predictor

In order to preserve the film-director’s look or intent, content providers may use
a colorist to manually color grade an HDR (or SDR) version of a movie based
on an existing SDR (or HDR) version. In this case, the HDR to SDR mapping
is often a complex function that cannot be represented by existing tone-mapping
curves. Furthermore, this complex HDR to SDR process imposes great difficult for
the inverse mapping. A single-channel (e.g., luma) HDR predictor cannot capture
any chroma-related transformations. For example, chroma saturation and hues may
be different in the SDR and HDR versions.

To address these issues, Su et al. [12] proposed separate schemes for predicting
luma and chroma. For the luminance component, the HDR predictor uses a
piecewise higher order polynomial which allows for more accurate mapping, but
with fewer segments than the linear model. With the same overhead, a higher order
polynomial can produce better accuracy and a smaller residual. The small residual
often leads to smaller energy to encode in the enhancement layer, which yields a
lower bit rate requirement for the coded residual stream.

Although a piecewise higher order polynomial can provide better inverse map-
ping accuracy, the required computation to find the optimal solution is very
expensive. As in the piecewise linear model, the parameters in higher order
polynomial include the pivot point selection and the polynomial coefficients. By
stating the solution as an MSE minimization problem, one can take advantage of
the matrix structures and pre-compute many parameters offline as look-up Tables.
A faster algorithm (by a factor of 60) to achieve the same optimal solution as full
search was proposed in [13].

For the chroma components (say, Cb and Cr in YCbCr), a cross-color channel
inverse mapping, BC(), is adopted to cope with the color space differences,
saturation and hue adjustments, and bit depth requirement [14]. The cross-color
channel inverse mapping takes the three color channels (si

L, si
C0, si

C1) for each
SDR pixel, and converts them to HDR chroma values

(̂
vC0
i , v̂C1

i

)
with parameter set

176 K. Konstantinides et al.

{
mC0

αβγ ,m
C1
αβγ

}
using a multivariate multiple regression (MMR) prediction model,

which in its most general form can be expressed as

v̂C0
i =∑

α

∑
β

∑
γ

mC0
αβγ ·

(
SL
i

)α · (SC0
i

)β · (SC1
i

)γ
,

v̂C1
i =∑

α

∑
β

∑
γ

mC1
αβγ ·

(
SL
i

)α · (SC0
i

)β · (SC1
i

)γ
.

(8)

For example, using a second-order MMR predictor, Eq. (8) for color component
C0 may be expressed as

v̂C0
i = m0 +m1s

L
i +m2s

C0
i +m3s

C1
i

+m4s
L
i s

C0
i +m5s

L
i s

C1
i +m6s

C0
i sC1

i +m7s
L
i s

C0
i sC1

i

+m8

(
sLi

)2 +m9

(
sC0
i

)2 +m10

(
sC1
i

)2

+m11

(
sLi s

C0
i

)2 +m12

(
sLi s

C1
i

)2 +m13

(
sC0
i sC1

i

)2 +m14

(
sLi s

C0
i sC1

i

)2
.

(9)

The optimal solution for the MMR prediction coefficients
({

mC0
αβγ ,m

C1
αβγ

})
can be obtained via multivariate multiple regression which minimizes the mean-
squared-error between the original HDR chroma and the reconstructed HDR chroma
pixel values [14]. MMR-based prediction is used in the Dolby Vision

®
HDR format

from Dolby Laboratories.

4.1.3 MPEG Color Gamut Scalability

In contrast to using a prediction polynomial for luma and/or chroma inverse
mapping, one could also deploy a 3D-LUT method, which is commonly used in
color science and display management system as a quantization process. This 3D-
LUT method is standardized in MPEG as color gamut scalability [15].

In general, the 3D-LUT solution will partition the 3D space into multiple cubes.
For each cube (x, y, z), one can have eight corresponding vertices with values
denoted as N(x, y, z). Each cube covers a range of code words in three dimensions.
For any given input code word, (si

L, si
C0, si

C1), for pixel i, one can find which cube,
(x, y, z), contains this triplet. Then, one finds out the eight corners (vertices) of this
cube (for both chroma values) and performs interpolation to get the HDR values. In
tri-linear interpolation, illustrated in Fig. 6, the interpolated value for one particular
color channel can be computed as

v̂C0
i =

1∑
α=0

1∑
β=0

1∑
γ=0

wαβγN
C0 (x + α, y + β, z+ γ) , (10)

where wαβγ are weighting factors depended on the distances to the eight vertices.

High Dynamic Range Video Coding 177

N(x,y,z) N(x+1,y,z)

N(x,y+1,z)

N(x+1,y+1,z)N(x,y+1,z)

y0

y1

x0 x1

z0

z1

N(x,y+1,z+1) N(x+1,y+1,z+1)

Fig. 6 3D LUT for Color-gamut scalability

The cube can be partitioned evenly in each dimension so one may have a regular
cube size. However, the major problem for uniform partition requires a larger
overhead to achieve required color precision. Consider a 17 × 17 × 17 3D LUT,
then we need to store 173 = 4913 node values for each color channel. Another
approach is to adopt an octree-based structure where each parent cube contains
eight smaller cubes via a non-uniform quantization process. The advantage of a
tree based partition is to explore the color sensitivity diversity: give more precision
for interpolation for more sensitive color regions, and assign less prevision for less
sensitive color regions. The overhead for such a cube representation can be smaller.
On the other hand, color artifacts along the cube boundaries should be carefully
handled as they often represent a discrete value selection and might cause sudden
color changes on a flat area.

4.1.4 System-Level Design Issues in Dual-Layer Systems

Dual-layer systems, in general, demand more system resources and higher data
management flow for the entire pipeline. From a processing and computational
point of view, at the encoder side, the encoding process will be longer, owing to
two encoder instances. The overall processing time includes the BL encoding time,
BL inverse mapping time, EL mapping time, and EL compression time. The decoder
also needs to double its decoding time to handle both layers. It often requires more
memory to handle EL information.

From the transmission’s point of view, a dedicated multiplexing design is needed
to transmit the BL stream, the EL stream, and metadata. To decode one HDR frame,
the bitstreams need to be synchronized so the composing can be done based on the
current frame. Thus, system level transport at the video elementary stream level is
needed to ensure correct synchronization and decoding.

178 K. Konstantinides et al.

Fig. 7 Parametric model of
HDR to SDR transformation Non-linear function

for L

3x3 Matrix
Transformation

Non-linear function
for C0

Non-linear function
for C1

4.2 Single-Layer Methods

In a single-layer system there is only a base layer and metadata to help transform
the base layer SDR signal into an HDR signal. The base layer bitstream can be
directly decoded and shown on legacy SDR display. To construct the HDR signal,
metadata is used to convert the SDR signal to the HDR signal. A single layer
requires less processing and computation, and less bandwidth. On the other hand,
to recreate a high quality HDR signal, the correlation between the SDR and the
HDR signals should be able to be expressed using a well-defined parametric model.
This approach, in general, limits the ability to match the director’s intent in the
reconstructed HDR signal.

As shown in Fig. 7, in a typical color grading process, it is observed that during
the generation of the SDR color-graded version from the HDR original, the dynamic
range is adjusted by applying: (a) a non-linear tone-mapping curve to each color
channel (say, L, C0, and C1) to adjust the dynamic range; and (b) a 3 × 3 color
rotation matrix to all three channels to adjust the hue and saturation. If one could
express these operations in a simple parametric model, then, in a decoder, given the
SDR signal, one could recreate the HDR content by doing the reverse, that is, by
applying: (a) an inverse 3 × 3 transformation, followed by (b) inverse non-linear
functions in each of the color channels.

To model this mapping, in [16] Su et al. proposed a non-linear matrix mapping
model. The most common non-linear function in color grading is the slope, offset,
and power (SOP) model [17] (also referred to as the lift, gain, and gamma
(LGG) model), where each pixel is adjusted according to gain, offset, and power
parameters, as

v̂i = (S· si +O)P , (11)

where si denotes an input SDR value, S denotes the slope (or gain), O denotes the
offset (or lift), and P denotes the power (or gamma). The rotation matrix is a simple
3 × 3 matrix. The order of applying the non-linear function and the 3 × 3 matrix
can be switched depending on the prediction accuracy. The SOP parameters and the
elements of the 3 × 3 matrix may be recorded by the color-grading process or they
could be estimated by the encoder. They can be passed to the decoder as metadata.

High Dynamic Range Video Coding 179

3x3 Matrix
Transformation

Pre-piecewise linear
for C1

Pre-piecewise linear
for C0

Pre-piecewise linear
for L

Post-piecewise
linear for L

Post-piecewise
linear for C0

Post-piecewise
linear for C1

Fig. 8 HEVC model for color remapping information (CRI)

A recent version (v.4 or version 12/2016) of the HEVC (or H.265) standard
[18] allows encoders to communicate more complex parametric models as color
remapping information (CRI), by concatenating the encoder and decoder non-linear
models. As shown in Fig. 8, the mapping process consists of three major stages:
the first stage includes a piecewise-linear function (pre-piecewise linear) for each
individual color channel to model the non-linear function; the second stage contains
a 3 × 3 matrix; and the last stage includes another piecewise linear function (post-
piecewise linear) to model the non-linear function.

The proposed system by Technicolor for single-layer HDR transmission uses
similar principles and is discussed in detail in [19]. The design requires two LUTs
(one for luma and one for chroma) and two dynamic scaling parameters (a and
b). To accommodate multiple broadcasting scenarios, the authors propose that the
two LUTs may be communicated either explicitly (table-based mode) or using
a simplified set of parameters (parameter-based mode). A table-based mode may
provide better quality, but at the expense of more bandwidth. The parameter-based
mode assumes a fixed default LUT which can be adjusted by a piece-wise linear
table of at most six points. In table-based mode, the two tables are explicitly coded
using CRI data.

4.2.1 Philips HDR Codec

In 2015, in response to a call for evidence for HDR and wide-color-gamut coding,
Philips [20] submitted a parameter-based, single layer, HDR plus SDR solution,
where parameters related to the reconstruction of both the SDR and the HDR
signals are embedded into the bitstream. Under the Philips model, each SDR RGB
color plane (SDRi, i = R, G, or B) is expressed as SDRi = ω ∗ HDRi, where the
scaler ω is determined via a tone-mapping process of MaxRGBY; an input signal
generated by a weighted combination of the luma (Y) and RGB values of the HDR
input. The MaxRGBY signal is first translated into a perceptual-uniform signal via
the inverse of a Philips-defined EOTF. The perceptual-uniform signal is mapped
back to a linear signal via a multi-step process which includes (a) a black/white

180 K. Konstantinides et al.

level adaptation step, (b) a tone-mapping step using a non-linear curve expressed
through parameters defining a “Shadow Gain control,” a “Highlight Gain control,”
and a “Mid-Tones adjustment,” and (c) a perceptual to linear SDR mapping step,
which uses the Philips-defined EOTF. A receiver, given the received SDR signal
and metadata defining ω, applies the inverse steps to generate an approximation of
the HDR signal depending on the characteristics of the target display.

As will be discussed later, together with the Dolby Vision dual-layer HDR
format, the Philips HDR format is one of the optional HDR formats in the Blu-
Ray UHD specification. In 2016, Technicolor and Philips combined their formats
into a single unified proposal.

5 Non-Backward-Compatible HDR Coding

Backward-compatible methods do not necessarily guarantee commercial success
and they also face multiple challenges. First, a backward-compatible codec typically
uses an advanced inter-layer prediction mechanism that demands a higher computa-
tional complexity. Second, the details in the higher- and lower-intensity regions are
often asymmetric between the SDR and HDR versions, causing undesired clipping
in those regions. Furthermore, they typically require a higher bit rate.

Recently, there has been an increasing interest in optimizing video quality for
target HDR displays using the existing compression architectures, such as 8- or 10-
bit legacy H.26x or VPx encoders, without the restriction of backward compatibility.
In this case, the target application, say streaming using an over-the-top set-top
box, is focused strictly on HDR playback. Codecs developed for such applications
typically require less computational complexity, lower bit rate, and mitigate the
clipping issues caused by the typical backward compatible codecs.

5.1 Multi-Layer Non-Backward-Compatible Systems

Given an HDR signal, multi-layer methods typically use multiple lower-bit depth
encoders to provide an effective higher bit depth required to process HDR content.
A base layer and one or more enhancement layers are used as a mechanism for
coding and distributing the source video signals. A preprocessing step generally
involves a signal splitting method to generate from the source signal multiple lower
bit depth (8- or 10-bit) layers. These layers are then independently encoded to
produce standard-compliant bitstreams so that they can be decoded by the existing
decoding architectures which are in most cases hardware-based. In a decoder, the
decoded layers are then combined to form the output HDR signal that is optimized
for viewing on a HDR display. Note that the decoded SDR signal is never viewed.

High Dynamic Range Video Coding 181

Advanced
Quantization

(12+ bit to 8 bit)

Color/Format
Transform

BL
Encoder

BL
Decoder

HDR
Predictor

Encoder
+

-

HDR
Video

BL

Residual
stream

NLQ
Parameters

+ NLQ

12+ bits

Mapping
Parameters

Fig. 9 Dual-layer, non-backward compatible, 8-bit Codec Architecture

5.1.1 Dolby Non-Backward-Compatible 8-Bit Dual-Layer Codec

In a technique developed by Su. et al. [21], an advanced quantization method is
used to generate a non-backward-compatible BL and EL signals which may consist
of residual values and quantization and mapping parameters that are obtained using
a signal prediction mechanism. The proposed adaptive dynamic range adaptation
techniques consider effects such as fade-in and fade-outs for an improved coding
performance. Figure 9 shows a block diagram of the baseline profile architecture
of this codec. The baseline profile restricts all video processing in the base and
enhancement coding layers in the YCbCr 4:2:0 color space.

As shown in Fig. 9, an input 4:4:4 RGB (Rec. 709 or Rec.2020), 12+ bit,
HDR sequence is first converted to 4:2:0 YCbCr color space. Then, advanced
quantization is applied to generate an 8-bit BL sequence in the 4:2:0 YCbCr space.
Unlike the backward-compatible case, the BL in not intended to be viewed on
SDR displays. Rather the BL signal is optimized in such a way that it contains
necessary information to minimize the overall bit requirement for HDR video data
carried using multiple layers for the purpose of displaying it on HDR displays.
Due to the absence of external color corrections in the BL signal, the clipping
levels in the BL and EL are fully controlled by the codec itself. The Advanced
quantization block supports many linear and non-linear mapping methods, such
as linear quantization, linear stretching, curve-based or non-uniform quantization.
Quantization can be done for each individual color channel or jointly, at the frame
level or at the scene level.

As an example, a scene-adaptive linear stretching quantization method uses
HDR values from each scene to generate corresponding BL values using a simple,
invertible, linear mapping. Let vikbe the k-th pixel value of the i-th scene of an HDR
sequence. Let

(
vimin, v

i
max

)
denote the minimum and maximum pixel values in the

i-th scene. Let
(
simin, s

i
max

)
be the min and max values of 8-bit YCbCr Rec.709 pixel

values. Then, the scene adaptive linear stretching method generates base layer sikas:

182 K. Konstantinides et al.

sik = round

((
simax − simin

)
(
vimax − vimin

) . (vik − vimin

)
+ simin

)
, (12)

where 0 ≤ vimin ≤ vimax ≤ (2n − 1), for n-bit HDR signal.
The BL video sequence is encoded with a standard H.26x encoder using a

compliant (such as 4:2:0 YUV) image container. The encoded BL is subsequently
decoded to produce a 4:2:0 reconstructed BL to account for the approximations
introduced by (possibly) the lossy BL encoder. As in the backward design (Fig. 4),
an HDR predictor (e.g., using the inverse of Eq. (12)) may be used to approximate
the input HDR signal and generate a residual which will be further coded as an
enhancement layer. Since the dynamic range of the residuals may exceed the 8-bit
dynamic range of the EL encoder, a non-linear quantizer (NLQ) is subsequently
applied to generate 8-bit residuals. Mapping and NLQ parameters are transmitted as
a part of metadata categories supported by the legacy video compression standard.
For example, H.26x uses the SEI syntax to transmit metadata. For decoding, a
similar decoder with the one shown in Fig. 5 may be used, except, that there is
no need to display the decoded SDR signal.

5.1.2 HEVC Range Extension Proposals

In an effort to standardize extended range coding (e.g., more than 10 bits and
additional color formats) in accordance with the existing HEVC standard, many
proposals had been considered by the standardization bodies [22]. Range extensions
support up to 16-bits per sample. Given the limitations of using 10-bit coding
to encode HDR content, a number of alternative dual-layer systems have been
proposed.

Some proposed methods use signal splitting at the encoder and recombination
at the decoder [23]. The signal is split in additive layers that are encoded using
HEVC 8/10-bit coders. In another method [24], the samples are split into the most
significant bits (MSBs) and the least significant bits (LSBs) to obtain two layers.
Some methods use overlapped bits in the layers [25–27]. The split signals are
typically either packed in 4:4:4, low-bit-depth pictures, or two layers, BL and EL.

Figure 10 [23] shows a dual layer MSB/LSB splitting architecture proposed by
Qualcomm. In this design, the input 16-bit picture is split into MSB and LSB layers
by separating the most and the least significant bits of each sample to form two
layers. In this way, the existing infrastructure in the distribution pipeline can be
used for sending HDR signals.

In another proposal [28, 29], a preprocessing step is used to split the input HDR
signal (P i

HDR)into two limited dynamic range (LDR) signals using a non-linear
mapping function (f), a modulation picture (P i

mod),and a residual picture
(
P i
LDR

)
.

The modulation picture consists of a low frequency monochromatic version of the
input signal, whereas the LDR residual picture represents the remaining relatively-
high frequency portion of the signal. The function f is conceptually similar to an

High Dynamic Range Video Coding 183

Subsampler

LSB

HDR Video
(12+ bits)

HEVC
Encoder

8/10
bits

8/10
bits

HEVC
Decoder

Rearrange
Samples

8/10
bits

8/10
bits

Reconstructed
HDR Video
(12+ bits)MSB

Fig. 10 Dual Layer MSB/LSB splitting architecture

OETF described earlier.

P i
HDR = P i

mod ∗ f−1
(
P i
LDR

)
. (13)

The LDR picture is designed either to maintain backward compatibility or to
improve the compression performance. In the latter (non-backward compatible)
case, the LDR picture is built in the perceptual color space with the intention
of optimizing the chroma quantization for a superior picture quality. Next, the
split signals undergo a series of color space and signal format conversions before
encoding them to be distributed to the receiver side. At the receiver, the decoder
reconstructs the HDR signal by following the inverse operations. It involves inverse
transforms and recombination of the layer signals. Arguably, this method has also
many similarities with the proposed techniques in coding HDR still-pictures.

HEVC Range extensions (RExt) are now part of the second (or later) edition
of the HEVC specification [18]. Various encoding profiles of HEVC RExt provide
support for up to 12 or 16 bit signals. The high bit depth support is enabled using an
extended precision mode that allows representing the transformed coefficients using
16-bit values [30] and by using a specific set of binarization [31] and entropy coding
methods [32]. An overview of the HEVC RExt standard is described in [22].

5.2 Single-Layer Solutions Using Signal Reshaping

In the backward-compatible case, dual-layer systems typically demand more com-
putational and management resources. Therefore, several single layer solutions have
been proposed. Generally, the base layer signal is accompanied with metadata to
help reconstruction of HDR signal at the decoder. The process of deriving this
metadata based on the HDR signal and the base layer is called “reshaping.” There
have been a number of approaches to design a reshaper which can effectively
provide the mapping function for base layer to HDR conversion. Single layer
solutions require a re-quantization of the HDR signal to form the base (or the only)
layer of the signal that can be encoded and distributed via a standard pipeline.

184 K. Konstantinides et al.

HDR Content
Analysis

HEVC Main 10
Encoder

Encoder Compressed
Bitstream

HEVC Main 10
Decoder HDR Reconstruction

Decoder
Reconstructed

HDR Video

Metadata Metadata

Fig. 11 System diagram of HEVC-based coding using non-backward compatible adaptive reshap-
ing

5.2.1 MPEG Proposals for Reshaping Methods

There has been a considerable interest in the MPEG community to improve the
HEVC Main 10 compression performance for HDR/WCG5 video [33]. The HDR
Exploratory Test Model (ETM) is a platform designed for coding Y′CbCr 10-bit
4:2:0 signals [34]. Figure 11 shows a typical system diagram of a non-backward
compatible HDR codec using the HDR-10 framework [20, 35, 36].

One consideration for designing a good “reshaper” for a single layer codec is
the usage of the PQ EOTF [8] and the practical limitations of HDR displays. PQ
is designed to support luminance values of 0 to 10,000 nits, yet a majority of
commercially available HDR displays do not exceed 1000 nits. Also, it is important
to consider the director’s (or the content producer’s) creative intent (or “look”).
Therefore, during coding, a better utilization of code words can be performed if the
display range is known. In a recent study by Lu et al. [36], the impact of baseband
quantization on the HDR coding efficiency was analyzed. The study states that
matching code words to the target display range improves the coding efficiency.
The term “baseband quantization” is defined as the range reduction step that uses
a linear or non-linear mapping to convert a higher bit-depth signal to a lower (e.g.,
8 or 10) bit signal that is encoded using the legacy encoder. The goal here is to
quantify the mapping between the strength of the baseband quantizer and the coding
efficiency measured in terms of peak-signal-to-noise-ratio (PSNR). The authors
propose a method to estimate the error in reconstructed residues to be used later in a
joint analysis of baseband and codec quantizers. The analysis shows that the coding
efficiency is mainly lowered by the baseband quantization, and is less affected by
the codec quantization [37].

There are many ways to design a reshaping function. Designing linear, piecewise
linear, and non-linear, power functions are a few examples among those proposed
by various study groups [20, 35, 36]. More advanced proposals apply adaptive
codeword re-distribution and signal re-quantization of the three color components,
which ultimately changes the bit-rate allocation. For example, in [38] the input

5WCG stands for wide color gamut, referring to any color gamut larger than the color gamut
supported by the original analog television systems and CRTs. For example, Rec. BT. 2020 [51]
defines a WCG container for ultra-high-definition TVs.

High Dynamic Range Video Coding 185

HDR signal is partitioned into various non-overlapping luma intensity bands. Each
band is processed according to its perceptual significance (referred to as “band
importance”), based on the HVS model. A reshaping curve that is non-linear in
nature is constructed using this band importance to achieve a better compression
efficiency.

Another major consideration in designing a reshaping function is that typically
HDR/WCG signals are represented using a much larger color volume than SDR
signals. A set of reshaping functions can be designed for each color space such as
Y′CbCr, ICtCp [39], Y′CoCg, etc., in which each color channel can be reshaped on
its own based on the input HDR signal. One of the main problems with the Y′CbCr
color space is non-constant luminance (NCL), in which the mapping between the
PQ luminance and Y ′ luma component from Y′CbCr is not linear. To counter this,
a luma adjustment method is proposed in [40] by Ström et al. in Ericsson. This
method uses a set of premises: (a) Y ′, the color-transformed luma value, can be
changed independently at each pixel, and (b) Y ′ increases monotonically with the
original (linear space) Y0. Therefore, Y ′ is matched with the desired Y0, the desired
luma value. To speed up the implementation for practical purposes one may apply
a 3D LUT that maps Cb, Cr and Y0 values of a pixel to the desired Y ′ value. More
details of the method, with a summary of experiments and performance comparison
with the MPEG Call for Evidence (CfE) [33], are described in [40].

5.2.2 Encoder Optimization for PQ-Coded HDR Signals

Legacy encoders, such as HEVC, are highly tuned for compressing gamma-coded
SDR signals. As described in Sect. 3, HDR contents are often encoded using the
PQ EOTF. Encoding PQ-coded content by directly using gamma-based encoders,
such as AVC or HEVC, may result into many undesirable artifacts. To address these
issues, several authors have proposed alternative methods to control quantization
within the HEVC codec.

A recent study by Lu et al. [41] shows the variance of the input signal to be
an important statistic for encoder optimization, since it determines the bit rate
allocation and quantization level for each pixel-block in a typical legacy encoder.
For example, in a typical H.26x encoder rate control, a variance-based block
quantization parameter (QP) model is applied in which, for lower block variance,
QP is set to a smaller value. For gamma signal, typically darker areas have less
codewords, leading to less variance and smaller QP values, whereas, for brighter
areas, there are more codewords, hence higher QP values. However, for a PQ
signal, the brighter areas are typically assigned less codewords than the darker areas,
which demonstrates opposite behavior from the gamma domain signal. Therefore,
applying the gamma-based model directly to PQ-domain signal leads to assigning
higher QP values for highlight areas leading to artifacts, while the darker regions
are assigned with smaller QP values, thus wasting bits.

A group within the ITU/ISO Joint Collaborative Team on Video Coding (JCT-
VC) [42] has been working on the study and standardization of the use of

186 K. Konstantinides et al.

AVC/HEVC coders for HDR/WCG contents with PQ transfer characteristics.
This effort primarily provides a set of recommended guidelines on processing of
consumer distribution HDR/WCG video. In [42], two different models: the simple
reference model and the enhanced reference model, are described for the pre-
encoding and encoding processes. The simple reference model corresponds to the
reference configuration used in the MPEG CfE on HDR and WCG [33], while the
enhanced reference model corresponds to a new reference configuration that was
developed in MPEG following the CfE.

To improve the coder performance, Liu et al. [41] proposed a method to
adaptively select block QP for PQ-coded HDR signal based on luminance levels.
To further improve the rate-distortion (RD) curve, block signal properties such as
edge, texture, contour map or model fitting can be used along with luminance and
region of interest (ROI). Another method for assigning QP values for a pixel block
based on the luminance range is jointly proposed by Ericsson, Sharp Laboratories
and Apple in [43]. It makes use of a fixed LUT for luma channel and a negative QP
offset for chroma channels to make the encoder adaptive to the PQ content. In [44],
as a pre-processing step to the above compression methods, Norkin proposed a fast
down-sampling method to speed up the conversion of 4:4:4 RGB HDR video to the
Y′CbCr 4:2:0 non-constant luminance format.

5.2.3 Perceptual Quality-Based Quantization Models

Encoding HDR signals often requires understanding of the perceived HDR image
quality. To assess the quality of HDR images with respect to their quantization lev-
els, many model-based approaches are studied. In [45], HDR-VDP-2.2, a calibrated
method for objective quality prediction of high-dynamic range and standard images
is proposed. HDR-VQM [46] is an alternative proposal for measuring an objective
quality of HDR video.

A recent visual study suggests that there exists a relatively strong correlation
between the required bit-depth for representing an HDR signal and the standard
deviation in code values [47]. Based on this study, a dynamic signal quantization
approach called “content-aware quantization” (CAQ) was developed to exploit
signal noise and texture in images for reducing the effective bit-depth of the HDR
signal. CAQ predicts the required quantization per intensity bin for an HDR image
based on a noise/texture estimation model.

As shown in Fig. 12, this model uses a Gaussian high-pass filter to selectively
enhance high-frequency content (such as noise/texture) followed by a spatial
blurring filter. This model is consistent with HVS models such as the ones described
in [48, 49]. To calculate minimum allowed quantization level per pixel, a calibration
LUT is applied. A comparative image-based experimental study of CAQ and HDR-
VDP is reported in [47].

High Dynamic Range Video Coding 187

HVS-Motivated
Smoothening Filter

Gaussian High-
pass Filter

Calibration
LUT

HDR
Signal

Histogram
Requantization

LUT

Fig. 12 Content-Aware Quantization (CAQ) for Single Layer Reshaping

5.3 The Ultra HD Blu-Ray Disc Format

As described in [50], Ultra HD Blu-ray™ can support video resolutions at up to
3840 × 2160 pixels (4K/UHD), at up to 60 frames per second. It can also support
three different HDR formats: a mandatory Blu-Ray HDR format (also referred to as
HDR10 or BDVM6 HDR), and two optional formats, the Dolby Vision dual-layer
format, and the Philips format.

The mandatory BDVM HDR format is a single-layer format that uses 10-bit,
4:2:0, YCbCr signals encoded using the SMPTE 2084 EOTF (PQ), in a BT. 2020
container [51]. The video is encoded using the Main10 Profile of the H.265/HEVC
coding standard.

The Dolby Vision stream is composed of a BDVM HDR base layer and a
Dolby Vision enhancement layer, with embedded Dolby metadata, which allows the
reconstruction of 12-bit HDR video data. Reconstruction of a Dolby Vision HDR
stream using the base layer and the enhancement layer follows the decoding scheme
discussed in Fig. 5.

As described earlier, the Philips HDR format [20] includes a BDVM HDR video
stream and Philips HDR SEI messaging which allows the conversion of the BDVM
video to a format suitable for the target display.

6 Conclusions

The field of image and video coding for HDR signals has seen a tremendous growth
in the last few years. HDR displays are now commercially available and HDR
content is available for streaming. Video coding standards, like HEVC, do support
video images with more than 8 bits per pixel, per color component; however, these
standards were optimized for 8-bit, gamma-coded, YCbCr video signals, which do
not represent the majority of new content, typically coded using either the PQ or

6BDVM stands for Blu-Ray Disc Movie.

188 K. Konstantinides et al.

HLG EOTFs. For most of the schemes we discussed in this chapter, the core SDR
video encoder is treated as a “black box” that can be replaced by any video codec of
choice (say, 8-bit AVC, 10-bit HEVC, and the like). For HDR coding, the codec’s
functionality may be enhanced using either preprocessing (say, PQ-coding and/or
reshaping), or additional layers of information. We do not expect this to last for long.
The “gamma” curve is already challenged, and new color formats, like ICtCp are
challenging YCbCr domination as well. As the members of the MPEG committee
start work on the next generation codec (to be completed sometime in 2020), we
expect efficient HDR coding to be an integral part of any of the proposed coding
tools, and not a simple after-thought. The future of HDR video coding is bright
indeed.

Appendix: List of Abbreviations

AVC Advanced Video coding
BDVM HDR Blu-ray Disc Movie HDR
BL Base Layer
CAQ Content Adaptive Quantization
CfE Call for Evidence
CRI Color Remapping Information
CRT Cathode Ray Tube
EL Enhancement Layer
EOTF Electro-Optical Transfer Function
HDR High Dynamic Range
HDR ETM HDR Exploratory Test Model
HDTV High Definition Television
HEVC High Efficiency Video Coding
HLG Hybrid Log-Gamma
HVS Human Visual System
ITU International Telecommunication Union
JPEG Joint Photographic Experts Group
LDR Lower Dynamic Range
LSB Least Significant Bit
LUT Look-up Table
MMR Multivariate Multiple Regression
MPEG Moving Picture Experts Group
MSB Most Significant Bit
MSE Mean-Squared Error
NLQ Non-Linear Quantizer
OETF Opto-Electrical Transfer Function
OOTF Opto-Optical Transfer Function
PQ Perceptual Quantizer
PSNR Peak Signal-to-Noise Ratio

High Dynamic Range Video Coding 189

QP Quantization Parameter
RD Rate-Distortion
ROI Region of Interest
SDI Serial Digital Interface
SDR Standard Dynamic Range
SEI Supplementary Enhancement Information
SMPTE Society of Motion Picture and Television Engineers
TIFF Tagged Image File Format
UHD Ultra-high-definition
VDP Visual Difference Predictor
VQM Video Quality Measure
WCG Wide Color Gamut

References

1. G. Ward and M. Simmons, “JPEG-HDR: A Backwards-Compatible, High Dynamic Range
Extension to JPEG,” ACM SIGGRAPH 2006.

2. A. Artusi et al. “JPEG XT: A compression standard for HDR and WCG images,” IEEE Signal
Processing Magazine, pp. 118-124, March 2016.

3. T. Richter, T. Bruylants, P. Schelkens, and T. Ebrahimi, “The JPEG XT Suite of standards:
Status and Future Plans,” SPIE Optical Engineering+ Applications, International Society for
Optics and Photonics, Sept. 2015.

4. Report ITU-R BT. 2390-0, “High dynamic range television for production and international
programme exchange,” ITU, 2016.

5. W. Gish and S. Miller, “Unambiguous video pipeline description motivated by HDR.” In Proc.
IEEE Intern. Conf. on Image Processing (ICIP 2016), pp. 909-912. IEEE, 2016.

6. P.G.J. Barten, “Contrast sensitivity of the human eye and its effects on image quality,” SPIE
Optical Engineering Press: Bellingham, WA, 1999.

7. S. Miller et al., “Perceptual Signal Coding for More Efficient Usage of Bit Codes,” SMPTE
Motion Imaging Journal, vol. 122:(4), pp. 52-59, May-June 2013.

8. Rec. ITU-R BT. 2100, “Image parameter values for high dynamic range television for use in
production and international programme exchange,” ITU, July 2016.

9. Rec. ITU-R BT. 1866, “Reference electro-optical transfer function for flat panel displays used
in HDTV studio production,” ITU, 03/2011.

10. R. Mantiuk, A. Efremov, K. Myszkowski, and H.-P. Seidel, “Backward Compatible High
Dynamic Range MPEG Video Compression,” ACM Trans. on Graphics 25(3):713-723, July
2006.

11. Z. Mai, H. Mansour, R. Mantiuk, P. Nasiopoulos, R. K. Ward and W. Heidrich, “Optimizing
a Tone Curve for Backward-Compatible High Dynamic Range Image/Video Compression,”
IEEE Trans. on Image Processing, Vol. 20, No. 6, pp. 1558 – 1571, June 2011.

12. G-M. Su, R. Atkins, and Q. Chen, “Backward-Compatible Coding for Ultra High Definition
Video Signals with Enhanced Dynamic Range,” US 9,549,207, January 17, 2017.

13. Q. Chen, G-M. Su, and P. Yin, “Near Constant-Time Optimal Piecewise LDR to HDR Inverse
Tone Mapping,” IS&T/SPIE Electronic Imaging, 2015.

14. G-M. Su, S. Qu, H. Koepfer, Y. Yuan, and S. Hulyalkar, “Multiple Color Channel Multiple
Regression Predictor,“ US 8,811,490 B2, 2014.

15. P. Bordes, P. Andrivon, X. Li, Y. Ye, and Y. He, ”Overview of Color Gamut Scalability,“ IEEE
Trans. on Circuits and Systems for Video Technology, March 2016.

190 K. Konstantinides et al.

16. G-M. Su, S. Qu, W. Gish, H. Koepfer, Y. Yuan, and S. Hulyalkar, “Image Prediction based on
Primary Color Grading Model,” US 8,731,287 B2, 2014.

17. “ASC Color Decision List (ASC CDL) Transfer Functions and Interchange Syntax,” ASC
Technology Committee Digital Intermediate Subcommittee, 2008

18. ITU Rec. H.265, “High efficiency video coding,“ Series H: Audiovisual and Multimedia
Systems, Infrastructure of audiovisual services – Coding of Moving Video, ITU, Dec 2016.

19. S. Lasserre, E. François, F. Le Léannec, and D. Touzé, “Single-layer HDR video coding with
SDR backward compatibility,” SPIE Optical Engineering+ Applications (pp. 997108-997108),
September, 2016.

20. R. Goris, R. Brondijk, R. van der Vleuten, “Philips response to CfE for HDR and WCG,”
m36266, ISO/IEC JTC1/SC29/WG11, Warsaw, Poland, July 2015.

21. G-M. Su, S. Qu, S. Hulyalkar, T. Chen, W. Gish, and H. Koepfer, “Layered Decomposition in
Hierarchical VDR Coding,” US 9,497,456 B2, November 15, 2016.

22. D. Flynn, D. Marpe, M. Naccari, T. Nguyen, C. Rosewarne, K. Sharman, J., and J. Xu
“Overview of the range extensions for the HEVC standard: Tools, profiles, and performance,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 26, no. 1, pp 4-19, January,
2016.

23. F. Dufaux, P. Le Callet, R. Mantiuk, and M. Mrak, eds. “High Dynamic Range Video: From
Acquisition, to Display and Applications, “Academic Press, 2016.

24. E. Francois, C. Gisquet, G. Laroche, P. Onno, “AHG18: On 16-bits Support for Range
Extensions, Document,” JCTVC-N0142, 14th JCT-VC Meeting Vienna, Austria, Jul-Aug.
2013.

25. W. S. Kim, W. Pu, J. Chen, Y. K. Wang, J. Sole, M. Karczewicz, “AHG 5 and 18: High Bit-
Depth Coding Using Auxiliary Picture, Document,” JCTVC-O0090, 15th JCT-VC Meeting,
Geneva, Switzerland, Oct.-Nov. 2013.

26. A. Aminlou, K. Ugar, “On 16 Bit coding,” Document JCTVC-P0162, 16th JCT-VC Meeting,
San Jose, CA, Jan. 2014.

27. C. Auyeung, J. Xu, “AHG 5 and 18, Coding of High Bit-Depth Source with Lower Bit-Depth
Encoders and a Continuity Mapping,” Document JCTVC-P0173, 16th JCT-VC Meeting, San
Jose, CA, Jan. 2014.

28. S. Lasserre, F. Le Leannec, P. Lopez, Y. Olivier, D. Touze, E. Francois, “High Dynamic Range
Video Coding,” JCTVC-P0159 (m32076), 16th JCT-VC Meeting, San Jose, CA, Jan. 2014.

29. F. Le Leannec, S. Lasserre, E. Francois, D. Touze, P. Andrivon, P. Bordes, Y. Olivier,
“Modulation Channel Information SEI Message,” Document JCTVC-R0139 (m33776), 18th

JCT-VC Meeting, Sapporo, Japan, Jun.-Jul. 2014.
30. K. Sharman, N. Saunders, and J. Gamei, “AHG5 and 18:Internal Precision for High Bit

Depths,” document JCTVC-N0188, 14th Meeting, JCT-VC, Vienna, Austria, Jul. 2013.
31. M. Karczewicz and R. Joshi, “AHG18: Limiting the Worst-Case Length for

Coeff_Abs_Level_Remaining Syntax Element to 32 Bits,” document JCTVC-Q0131,
17th Meeting, JCT-VC, Valencia, Spain, Apr. 2014.

32. K. Sharman, N. Saunders, and J. Gamei, “AHG5 and AHG18: Entropy Coding Throughput
for High Bit Depths,” document JCTVC-O0046, 15th Meeting, JCT-VC, Geneva, Switzerland,
Oct. 2013.

33. A. Luthra, E. Francois, W. Husak, “Call for Evidence (CfE) for HDR and WCG Video Coding”,
MPEG2014/N15083, 110th MPEG Meeting, Geneva, 2015.

34. K. Minoo, T. Lu, P. Yin, L. Kerofsky, D. Rusanovskyy, E. Francois, “Description of the
Exploratory Test Model (ETM) for HDR/WCG extension of HEVC”, JCT-VC Doc. W0092,
San Diego, CA, Feb. 2016.

35. L. Kerofsky, Y. Ye, and Y. He. “Recent developments from MPEG in HDR video compression,”
IEEE Intern. Conf. on Image Processing (ICIP), pp. 879-883. IEEE, 2016.

36. T. Lu, F. Pu, P. Yin, Y. He, L. Kerofsky, Y. Ye, Z. Gu, D. Baylon, “Compression Efficiency
Improvement over HEVC Main 10 Profile for HDR and WCG Content,” Proc. of the IEEE
Data Compression Conference (DCC), Snowbird, March 2016.

High Dynamic Range Video Coding 191

37. C. Wong, G-M. Su, M. Wu, “Joint Baseband Signal Quantization and Transform Coding for
High Dynamic Range Video,” IEEE Signal Processing Letters, 2016.

38. T. Lu, F. Pu, P. Yin, J. Pytlarz, T. Chen, and W. Husak. “Adaptive reshaper for high dynamic
range and wide color gamut video compression,” SPIE Optical Engineering+ Applications,
pp. 99710B-99710B, International Society for Optics and Photonics, 2016.

39. T. Lu, F. Pu, P. Yin, T. Chen, W. Husak, J. Pytlarz, R. Atkins, J. Fröhlich, G-M. Su, “ITP
Colour Space and its Compression Performance for High Dynamic Range and Wide Colour
Gamut Video Distribution,” ZTE Communications, Feb. 2016.

40. J. Ström, J. Samuelsson, and K. Dovstam, “Luma Adjustment for High Dynamic Range
Video,” Proc. of the IEEE Data Compression Conference (DCC), Snowbird, March 2016.

41. T. Lu, P. Yin, T. Chen, and G-M. Su, “Rate Control Adaptation for High-Dynamic Range
Images,” U.S. Patent Application Publication US 2016/0134870, 2016.

42. J. Samuelsson et al., “Conversion and coding practices for HDR/WCG YCbCr 4:2:0 video with
PQ transfer characteristics,” Draft new Supplement 15 to the H-Series of Recommendations,
JCTVC-Z1017, 26-th meeting, Geneva, CH, Jan. 2017.

43. J. Ström, K. Andersson, M. Pettersson, P. Hermansson, J. Samuelsson, A. Segall, J. Zhao, S-H.
Kim, K. Misra, A. M. Tourapis, Y. Su, and D. Singer, “High Quality HDR Video Compression
using HEVC Main 10 Profile,” in Proc. of the IEEE Picture Coding Symposium (PCS),
Nuremberg, 2016.

44. A. Norkin, “Fast algorithm for HDR video pre-processing,” in Proc. of the IEEE Picture
Coding Symposium (PCS), Nuremberg, 2016.

45. R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich. “HDR-VDP-2: a calibrated visual
metric for visibility and quality predictions in all luminance conditions,” ACM Trans. on
Graphics (TOG), vol. 30, no. 4, p. 40. ACM, 2011.

46. M. Narwaria, M. P. Da Silva, and P. Le Callet. “HDR-VQM: An objective quality measure
for high dynamic range video,” Signal Processing: Image Communication, Vol. 35, pp. 46-60,
2015.

47. J. Froehlich, G-M. Su, S. Daly, A. Schilling, and B. Eberhardt. “Content aware quantization:
Requantization of high dynamic range baseband signals based on visual masking by noise and
texture,” IEEE International Conf. on Image Processing (ICIP), pp. 884-888. IEEE, 2016.

48. S. Daly, “A visual model for optimizing the design of image processing algorithms,” Proc.
Intern. Conf. on Image Processing, (ICIP-94), vol. 2, pp. 16-20, 1994.

49. A. Lukin, “Improved visible differences predictor using a complex cortex transform,” Interna-
tional Conf. on Computer Graphics and Vision, 2009.

50. Blu-Ray Disc Read-only Format, “Audio Visual Application Format Specifications for BD-
ROM Version 3.1,” White Paper, August 2016, Blu-Ray Disc Association.

51. Rec. ITU-R BT. 2020-1, “Parameter values for ultra-high definition television systems for
production and international programme exchange,” ITU, June 2014.

Signal Processing for Control

William S. Levine

Abstract Signal processing and control are closely related. In fact, many con-
trollers can be viewed as a special kind of signal processor that converts an
exogenous input signal and a feedback signal into a control signal. Because the
controller exists inside of a feedback loop, it is subject to constraints and limitations
that do not apply to other signal processors. A well known example is that a stable
controller in series with a stable plant can, because of the feedback, result in an
unstable closed-loop system. Further constraints arise because the control signal
drives a physical actuator that has limited range. The complexity of the signal
processing in a control system is often quite low, as is illustrated by the Proportional
+ Integral + Derivative (PID) controller. Model predictive control is described as
an exemplar of controllers with very demanding signal processing. ABS brakes
are used to illustrate the possibilities for improved controller capability created by
digital signal processing. Finally, suggestions for further reading are included.

1 Introduction

There is a close relationship between signal processing and control. For example, a
large amount of classical feedback control theory was developed by people working
for Bell Laboratories who were trying to solve problems with the amplifiers used for
signal processing in the telephone system. This emphasizes that feedback, which is
a central concept in control, is also a very important technique in signal processing.

Conversely, the Kalman filter, which is now a critical component in many signal
processing systems, was discovered by people working on control systems. In fact,
the state space approach to the analysis and design of linear systems grew out of
research and development related to control problems that arose in the American
space program.

W. S. Levine (�)
Department of ECE, University of Maryland, College Park, MD, USA
e-mail: wsl@ece.umd.edu

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_6

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_6&domain=pdf
mailto:wsl@ece.umd.edu
https://doi.org/10.1007/978-3-319-91734-4_6

194 W. S. Levine

Plant
d z

u y

Fig. 1 A generic system to be controlled, called the plant. d is a vector of exogenous inputs; u is
a vector of control inputs; y is a vector of measured outputs—available for feedback; and z is a
vector of outputs that are not available for feedback

2 Brief Introduction to Control

The starting point for control is a system with inputs and outputs as illustrated
schematically in Fig. 1. It is helpful to divide the inputs into those that are
available for control and those that come from some source over which we have
no control. They are conventionally referred to as control inputs and exogenous
inputs. Similarly, it is convenient to divide the outputs into those that we care about,
but are not available for feedback, and those that are measured and available for
feedback. A good example of this is a helicopter. Rotorcraft have four control inputs,
collective pitch, variable pitch, tail rotor pitch, and thrust. The wind is an important
exogenous input. Wind gusts will push the aircraft around and an important role of
the controller is to mitigate this.

Modern rotorcraft include a stability and control augmentation system (SCAS).
This is a controller that, as its name suggests, makes it easier for the pilot to fly
the aircraft. The main interest is in the position and velocity of the aircraft. In three
dimensions, there are three such positions and three velocities. Without the SCAS,
the pilot would control these six signals indirectly by using the four control inputs
to directly control the orientation of the aircraft—these are commonly described as
the roll, pitch, and yaw angles—and the rate of change of this orientation—the three
angular velocities. Thus, there is a six component vector of angular orientations and
angular velocities that are used by the SCAS. These are the feedback signals. There
is also a six component vector of positions and velocities that are of interest but
that are not used by the SCAS. While there are ways to measure these signals in a
rotorcraft, in many situations there are signals of interest that can not be measured
in real time.

The SCAS-controlled system is again a system to be controlled. There are two
different control systems that one might employ for the combined aircraft and
SCAS. One is a human pilot. The other is an autopilot. In both cases, one can
identify inputs for control as well as exogenous inputs. After all, the wind still
pushes the aircraft around. In both cases, there are some outputs that are available
for feedback and others that are important but not fed back.

Signal Processing for Control 195

It should be clear from the example that once one has a system to be controlled
there is some choice over what output signals are to be used by the controller
directly. That is, one can, to some extent, choose which signals are to be fed back.
One possible choice is to feed back no signals. The resulting controller is referred to
as an open-loop controller. Open loop control has received relatively little attention
in the literature. However, it is an important option in cases where any measurements
of the output signals would be impossible or very inaccurate. A good example of this
until very recently was the control of washing machines. Because it was impossible
to measure how clean the dishes or clothing inside the machine were, the controller
simply washed for a fixed period of time. Now some such machines measure the
turbidity of the waste water as an indirect measurement of how clean the wash is
and use this as feedback to determine when to stop washing.

There is also a possibility of feed forward control. The idea here is to measure
some of the exogenous inputs and use this information to control the system. For
example, one could measure some aspects, say the pH, of the input to a sewage
treatment system. This input is normally uncontrollable, i.e., exogenous. Knowing
the input pH obviously facilitates controlling the output pH. Note that a feed-
forward controller is different from an open-loop controller in that the former is
based on a measurement and the latter is not.

The fact remains that most control systems utilize feedback. This is because
feedback controls have several significant advantages over open-loop controls. First,
the designer and user of the controlled system does not need to know nearly as
much about the system as he or she would need for an open-loop control. Second,
the controlled system is much less sensitive to variability of the plant and other
disturbances.

This is well illustrated by what is probably the oldest, most common, and
simplest feedback control system in the world—the float valve level control in the
toilet tank. Imagine controlling the level of water in the tank by means of an open-
loop control. The user, in order to refill the tank after a flush, would have to open
the valve to allow water to flow into the tank, wait just the right amount of time for
the tank to fill, and then shut off the flow of water. Looking into the tank would be
cheating because that would introduce feedback—the user would, in effect, measure
the water level. Many errors, such as turning off the flow too late, opening the input
valve too much, a large stone in the tank, or too small a prior flush, would cause the
tank to overflow. Automation would not solve this.

Contrast the feedback solution. Once the tank has flushed, the water level is too
low. This lowers the float and opens the input valve. Water flows into the tank,
thereby raising the water level and the float, until the float gets high enough to close
the input valve. None of the open-loop disasters can occur. The closed-loop system
corrects for variations in the size and shape of the tank and in the initial water level.
It will even maintain the desired water level in the presence of a modest leak in the
tank. Furthermore, the closed-loop system does not require any action by the user.
It responds automatically to the water level.

However, feedback, if improperly applied, can introduce problems. It is well
known that the feedback interconnection of a perfectly stable plant with a perfectly

196 W. S. Levine

stable controller can produce an unstable closed-loop system. It is not so well
known, but true, that feedback can increase the sensitivity of the closed-loop system
to disturbances. In order to explain these potential problems it is first necessary to
introduce some fundamentals of feedback controller design.

The first step in designing a feedback control system is to obtain as much
information as possible about the plant, i.e., the system to be controlled. There
are three very different situations that can result from this study of the plant.
First, in many cases very little is known about the plant. This is not uncommon,
especially in the process industry where the plant is often nonlinear, time varying,
very complicated, and where models based on first principles are imprecise and
inaccurate. Good examples of this are the plants that convert crude oil into a variety
of products ranging from gasoline to plastics, those that make paper, those that
process metals from smelting to rolling, those that manufacture semiconductors,
sewage treatment plants, and electric power plants.

Second, in some applications a good non parametric model of the plant is known.
This was the situation in the telephone company in the 1920s and 1930s. Good
frequency responses were known for the linear amplifiers used in transmission lines.
Today, one would say that accurate Bode plots were known. These plots are a precise
and detailed mathematical model of the plant and are sufficient for a good feedback
controller to be designed. They are non parametric because the description consists
of experimental data alone.

Third, it is often possible to obtain a detailed and precise mathematical model of
the plant. For example, good mathematical descriptions of many space satellites can
be derived by means of Newtonian mechanics. Simple measurements then complete
the mathematical description. This is the easiest situation to describe and analyze so
it is discussed in much more detail here. Nonetheless, the constraints and limitations
described below apply to all feedback control systems.

In the general case, where the plant is nonlinear, this description takes the form
of a state-space ordinary differential equation.

ẋ(t) = f (x(t), u(t), d(t)) (1)

y(t) = g(x(t), u(t), d(t)) (2)

z(t) = h(x(t), u(t), d(t)) (3)

In this description, x(t) is the n-dimensional state vector, u(t) is the m-
dimensional input vector (the control input), d(t) is the exogenous input, y(t) is
the p-dimensional measured output (available for feedback), and z(t) is the vector
of outputs that are not available for feedback. The dimensions of the d(t) and z(t)

vectors will not be needed in this article.
In the linear time-invariant (LTI) case, this becomes

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t) (4)

y(t) = Cx(t)+Du(t) + Fd(t) (5)

z(t) = Hx(t)+Gu(t)+ Rd(t) (6)

Signal Processing for Control 197

Another description is often used in the LTI case because of its many useful
features. It is equivalent to the description above and obtained by simply taking
Laplace transforms of Eqs. (4)–(6) and then doing some algebraic manipulation to
eliminate X(s) from the equations.

[
Y (s)

Z(s)

]
=
[
G11(s) G12(s)

G21(s) G22(s)

] [
U(s)

D(s)

]
(7)

The capital letters denote Laplace transforms of the corresponding lower case
letters and s denotes the complex variable argument of the Laplace transform.
Note that setting s = jω makes this description identical to the non parametric
description of case 2 on the previous page when the plant is asymptotically stable
and extends the frequency domain characterization (Bode plot) of the plant to the
unstable case as well.

The issues of closed-loop stability and sensitivity can be easily demonstrated
with a simplified version of Eq. (7) above. All signals will be of interest but it will
not be necessary to display this explicitly so ignore Z(s) and let all other signals be
scalars. For simplicity, let G12(s) = 1. Let G11(s) � Gp(s) and let Gc(s) denote the
dynamical part of the controller. Finally, suppose that the objective of the controller
is to make Y (s) ≈ R(s) as closely as possible, where R(s) is some exogenous input
to the controller. It is generally impossible to make Y (s) = R(s) ∀s. The resulting
closed-loop system will be, in block diagram form (Fig. 2).

Simple algebra then leads to

Y (s) = 1

1+Gp(s)Gc(s)
D(s) + Gp(s)Gc(s)

1+Gp(s)Gc(s)
R(s) (8)

U(s) = −Gc(s)

1+Gp(s)Gc(s)
D(s) + Gc(s)

1+Gp(s)Gc(s)
R(s) (9)

It is conventional in control theory to define the two transfer functions appearing
in Eq. (8) as follows. The transfer function in Eq. (9) is also defined below.

T (s) = Gp(s)Gc(s)

1+Gp(s)Gc(s)
(10)

R(s) Gc(s))s(Y)s(U

D(s)

E(s) Gp(s)

Fig. 2 Simple feedback connection

198 W. S. Levine

S(s) = 1

1+Gp(s)Gc(s)
(11)

V (s) = Gc(s)

1+Gp(s)Gc(s)
(12)

Now that a complete description of a simple feedback control situation is
available, it is straightforward to demonstrate some of the unique constraints on
Gc(s), the signal processor that is used to make the closed-loop system track R(s).

2.1 Stability

A simple example demonstrating that the feedback interconnection of asymp-
totically stable and thoroughly well-behaved systems can result in an unstable
closed-loop system is shown below. This example also illustrates that the usual
culprit is too high an open-loop gain. Let

Gp(s) = 3

s2 + 4s + 3
(13)

Gc(s) = k

s + 2
(14)

The closed-loop system, T (s) is, after some elementary calculations,

T (s) = 3k

(s + 2)(s2 + 4s + 3)+ 3k
(15)

The denominator of T (s) is also the denominator of S(s) and V (s) and it has
roots with positive real parts for all k > 20. Thus, the closed-loop system is unstable
for all k > 20.

2.2 Sensitivity to Disturbance

Notice that

T (s)+ S(s) = 1 ∀s (16)

Since S(s) is the response to a disturbance input (for example, wind gusts acting
on an aircraft) and T (s) is the response to the input that Y (s) should match as
closely as possible (for example, the pilot’s commands), this appears to be an ideal
situation. An excellent control design would make T (s) ≈ 1, ∀s and this would

Signal Processing for Control 199

have the effect of reducing the response to the disturbance to nearly zero. There is,
unfortunately, a problem hidden in Eq. (16). For any real system, Gp(s) goes to zero
as |s| → ∞. This, together with the fact that too large a gain for Gc(s) will generally
cause instability, implies that T (s)→ 0 as |s| → ∞ and this implies that S(s)→ 1
as |s| → ∞. Hence, there will be values of s at which the output of the closed-loop
system will consist entirely of the disturbance signal. Remember that letting s = jω

in any of the transfer functions above gives the frequency response of the system.
Thus, the closed-loop system is a perfect reproducer of high-frequency disturbance
signals.

2.3 Sensitivity Conservation

Theorem (Bode Sensitivity Integral) Suppose that Gp(s)Gc(s) is rational, has
no right half plane poles, and has at least 2 more poles than zeros. Suppose also
that the corresponding closed-loop system T (s) is stable. Then the sensitivity S(s)

satisfies

∫ ∞
0

log|S(jω)|dω = 0 (17)

This is a simplified version of a theorem that can be found in [14]. The log in
Eq. (17) is the natural logarithm.

The implications of this theorem and Eq. (16) are: if you make the closed-loop
system follow the input signal R(s) closely over some frequency range, as is the goal
of most control systems, then inevitably there will be a frequency range where the
closed-loop system actually amplifies disturbance signals. One might hope that the
frequency range in which the sensitivity must be greater than one in order to make up
for the region of low sensitivity could be infinite. This could make the magnitude of
the increased sensitivity infinitesimally small. A further result [14] proves that this
is not the case. A frequency range where the sensitivity is low implies a frequency
range where it is high. Thus, a feedback control system that closely tracks exogenous
signals, R(jω) for some range of values of frequency ω (typically 0 ≤ ω < ωb)
will inevitably amplify any disturbance signals, D(jω), over some other frequency
range.

This discussion has been based on the assumption that both the plant and
the controller are continuous-time systems. This is because most real plants are
continuous-time systems. Thus, however one implements the controller, and it is
certainly true that most controllers are now digitally implemented, the controller
must act as a continuous-time controller. It is therefore subject to the limitations
described above.

200 W. S. Levine

Plant
d z

u y

actuators sensors

Fig. 3 The plant with sensors and actuators indicated

3 Signal Processing in Control

An understanding of the role of signal processing in control begins with a refinement
of the abstract system model in Fig. 1 to that shown in Fig. 3.

Although control theorists usually include the sensors and actuators as part of
the plant, it is important to understand their presence and their role. In almost all
modern control systems excepting the float valve, the sensors convert the physical
signal of interest into an electronic version and the actuator takes an electronic signal
as its input and converts it into a physical signal. Both sensing and actuation involve
specialized signal processing. A common issue for sensors is that there is very little
energy in the signal so amplification and other buffering is needed. Most actuation
requires much greater power levels than are used in signal processing so some form
of power amplification is needed. Generally, the power used in signal processing for
control is a small fraction of the power consumed by the closed-loop system. For
this reason, control designers rarely concern themselves with the power needed by
the controller.

Most modern control systems are implemented digitally. The part of a digital
control system between the sensor output and the actuator input is precisely a digital
signal processor (DSP). The fact that it is a control system impacts the DSP in
at least three ways. First, it is essential that a control signal be produced on time
every time. This is a hard real-time constraint. Second, the fact that the control
signal eventually is input into an actuator also imposes some constraints. Actuators
saturate. That is, there are limits to their output values that physically cannot be
exceeded. For example, the rudder on a ship and the control surfaces on a wing can
only turn so many degrees. A pump has a maximum amount it can move. A motor
has a limit on the torque it can produce. Control systems must either be designed to
avoid saturating the actuator or to avoid the performance degradation that can result
from saturation. A mathematical model of saturation is given in Fig. 4.

Another nonlinearity that is difficult, if not impossible, to avoid is the so-called
dead zone illustrated in Fig. 4. This arises, for example, in the control of movement
because very small motor torques are unable to overcome stiction. Although there
are many other common nonlinearities that appear in control systems, we will only
mention one more, the quantization nonlinearity that appears whenever a continuous
plant is digitally controlled.

Signal Processing for Control 201

Input

Output

Input

Output

Fig. 4 A saturation nonlinearity is shown at the left and a dead zone nonlinearity at the right

Thirdly, the fact that the DSP is actually inside a feedback loop imposes the
constraints discussed at the end of the previous section, too much gain causes
closed-loop instability and too precise tracking can cause amplified sensitivity to
disturbances.

The main impact of the real time constraint on the DSP is that it must be designed
to guarantee that it produces a control signal at every sampling instant. The main
impact of the nonlinearities is from the saturation. A control signal that is too
large will be truncated. This can actually cause the closed-loop system to become
unstable. More commonly, it will cause the performance of the closed-loop system
to degrade. The most famous example of this is known as integrator windup as
discussed in the following subsection. The dead zone limits the accuracy of the
control. The impact of the sensitivity and stability constraints is straightforward.
The design of DSPs for control must account for these effects as well as the obvious
direct effect of the controller on the plant.

There is one more general issue associated with the digital implementation
of controllers. It is well known that the Nyquist rate upper bounds the interval
between samples when a continuous-time signal is discretized in time without loss
of information. For purposes of control it is also possible to sample too fast. The
intuitive explanation for this is that if the samples are too close together the plant
output changes very little from sample to sample. A feedback controller bases its
actions on these changes. If the changes are small enough, noise dominates the
signal and the controller performs poorly.

3.1 Simple Cases

A generic feedback control situation is illustrated in Fig. 5. Fundamentally, the
controller in the figure is a signal processor, taking the signals dc and y as inputs
and producing the signal u as output. The objective of the controller is to make

202 W. S. Levine

Plant
z

Controller
dc

dp

yu

Fig. 5 The plant and controller. Notice that the exogenous input of Fig. 5 has been split into two
parts with dc denoting the exogenous input to the controller and dp that to the plant

y(t) = dc(t) ∀t ≥ 0. This is actually impossible because all physical systems
have some form of inertia. Thus, control systems are only required to come close
to this objective. There are a number of precise definitions of the term “close.” In
the simplest cases, the requirements/specifications are that the closed-loop system
be asymptotically stable and that |y(t)− dc(t)| < ε ∀t ≥ T ≥ 0, where T is some
specified “settling time” and ε is some allowable error. In more demanding
applications there will be specified limits on the duration and size of the transient
response [21]. An interesting additional specification is often applied when the plant
is approximately linear and time-invariant. In this case, an easy application of the
final value theorem for Laplace transforms proves that the error in the steady-state
response of the closed-loop system to a step input (i.e., a signal that is 0 up to t = 0
at which time it jumps to a constant value α) goes to zero as t → ∞ provided the
open-loop system (controller in series with the plant with no feedback) has a pole
at the origin. Note that this leads to the requirement/specification that the open-loop
system have a pole at the origin. This is achievable whereas, because of inaccuracies
in sensors and actuators, zero steady-state error is not.

In many cases the signal processing required for control is straightforward
and undemanding. For example, the most common controller in the world, used
in applications from the toilet tank to aircraft, is the Proportional + Integral +
Derivative (PID) Controller. A simple academic version of the PID Controller is
illustrated in Fig. 6. Notice that this simple PID Controller is a signal processing
system with two inputs, the signal to be tracked dc and the actual measured
plant output y and one output, the control signal u. This PID controller has three
parameters that must be chosen so as to achieve satisfactory performance. The
simplest version has kd and ki equal to zero. This is a proportional controller. The
float valve in the toilet tank is an example. For most plants, although not the toilet
tank, choosing kp too large will result in the closed-loop system being unstable. That
is, y(t) will either oscillate or grow until saturation occurs somewhere in the system.
It is also usually true that, until instability occurs, increasing kp will decrease the
steady-state error. This captures the basic trade off in control design. Higher control
gains tend to improve performance but also tend to make the closed-loop system
unstable.

Signal Processing for Control 203

u

1
s

Integral Gain

ki

Derivative
Gain

kd

Proportional
Gain

kp

s

y

dc

Fig. 6 A simple academic PID controller

Changing ki to some non zero value usually improves the steady-state perfor-
mance of the closed-loop system. To see this, first break the feedback loop by
removing the connection carrying y in Fig. 5 and set kd = 0. Then, taking Laplace
transforms, gives

U(s) = (kp + ki/s)Y (s) (18)

Assuming that the plant is linear and denoting its transfer function by Gp(s)

gives the open-loop transfer function,

Y (s)

Dc(s)
= (

(kps + ki

s
)Gp(s) (19)

This open-loop system will have at least one pole at the origin unless Gp(s)

has a zero there. As outlined in the previous section, this implies in theory that the
steady-state error in response to a step input should be zero. In reality, dead zone
nonlinearity and both sensor and actuator nonlinearity will result in nonzero steady-
state errors.

It is relatively simple to adjust the gains kp and ki so as to achieve good
performance of the closed-loop system. There are a number of companies that
supply ready-made PID controllers. Once these controllers are connected to the
plant, a technician or engineer “tunes” the gains to get good performance. There are
several tuning rules in the literature, the most famous of which are due to Ziegler
and Nichols. It should be noted that the Ziegler-Nichols tuning rules are now known
to be too aggressive; better tuning rules are available [1].

Choosing a good value of kd is relatively difficult although the tuning rules do
include values for it. Industry surveys have shown that a significant percentage of
PID controllers have incorrect values for kd . When it is properly chosen, the D term
improves the transient response.

There are three common improvements to the simple PID controller of Fig. 6.
First, it is very unwise to include a differentiator in a physical system. Differentiation

204 W. S. Levine

amplifies high frequency noise, which is always present. Thus, the kds term in the
PID controller should be replaced by kd s

kdkns+1 . This simply adds a low pass filter
in series with the differentiator and another parameter, kn to mitigate the problems
with high frequency noise. Second, the most common input signal dc(t) is a step.
Differentiating such a signal would introduce a signal into the system that is an
impulse (infinite at t = 0 and 0 everywhere else). Instead, the signal input to the
D-term is chosen to be y(t), not dc(t) − y(t). Notice that this change does away
with the impulse and only changes the controller output at t = t0 whenever dc(t) is
a step at t0.

Lastly, when the PID controller saturates the actuator (u(t) becomes too large for
the actuator it feeds) a phenomenon known as integral windup often occurs. This
causes the transient response of the closed-loop system to be much larger and to last
much longer than would be predicted by a linear analysis. There are several ways to
mitigate the effects of integral windup [1].

Nowadays the simple PID controller is almost always implemented digitally.
The discretization in time and quantization of the signals has very little effect on
the performance of the closed-loop system in the vast majority of cases. This is
because the plant is usually very slow in comparison to the speeds of electronic
signal processors. The place where digital implementation has its largest impact
is on the possibility for improving the controller. The most exciting of these is to
make the PID controller either adaptive or self-tuning. Both automate the tuning
of the controller. The difference is that the self-tuning controller operates in two
distinct modes, tuning and controlling. Often, an operator selects the mode, tuning
when there is reason to believe the controller is not tuned properly and controlling
when it is correctly tuned. The adaptive controller always operates in its adaptive
mode, simultaneously trying to achieve good control and tuning the parameters.
There is a large literature on both self tuning and adaptive control; many different
techniques have been proposed. There are also about a dozen turnkey self-tuning
PID controllers on the market [1].

There are many plants, even LTI single-input single-output (SISO) ones, for
which the PID Controller is ineffective or inappropriate. One example is an LTI
plant with a pair of lightly damped complex conjugate poles. Nonetheless, for many
such plants a more complicated controller can be easily implemented in a DSP.
There are many advantages to doing this. Most are obvious but one requires a small
amount of background.

Most real control systems require a “safety net.” That is, provisions must be made
to deal with failures, faults, and other problems that may arise. For example, the
float valve in the toilet tank will eventually fail to close fully. This is an inevitable
consequence of valve wear and/or small amounts of dirt in the water. An overflow
tube in the tank guarantees that this is a soft failure. If the water level gets too
high, the excess water spills into the overflow tube. From there it goes into the toilet
and eventually into the sewage line. The valve failure does not result in a flood in
the house.

These safety nets are extremely important in the real world, as should be obvious
from this simple example. It is easy to implement them within the controller DSP.

Signal Processing for Control 205

This is now commonly done. In fact, because many control applications are easily
implemented in a DSP, and because such processors are so cheap, it is now true
that there is often a good deal of unused capacity in the DSPs used for control.
An important area of controls research is to find ways to use this extra capacity to
improve the controller performance. One success story is described in the following
section.

3.2 Demanding Cases

The signal processing necessary for control can be very demanding. One such
control technique that is extensively used is commonly known as Model Predictive
Control (MPC) [3] although it has a number of other names such as Receding
Horizon Control, Dynamic Matrix Control, and numerous variants. The application
of MPC is limited to systems with “slow” dynamics because the computations
involved require too much time to be accomplished in the sampling interval for
“fast” systems. The simplest version of MPC occurs when there is no exogenous
input and the objective of the controller is to drive the system state to zero. This is
the case described below.

The starting point for MPC is a known plant which may have multiple inputs and
multiple outputs (MIMO) and a precise mathematical measure of the performance
of the closed-loop system. It is most convenient to use a state-space description of
the plant

ẋ(t) = f (x(t), u(t)) (20)

y(t) = g(x(t), u(t)) (21)

Note that we have assumed that the system is time-invariant and that the noise can
be adequately handled indirectly by designing a robust controller (a controller that
is relatively insensitive to disturbances) rather than by means of a more elaborate
controller whose design accounts explicitly for the noise. It is assumed that the state
x(t) is an n-vector, the control u(t) is an m-vector, and the output y(t) is a p-vector.

The performance measure is generically

J (u[0,∞)) =
∫ ∞

0
l(x(t), u(t))dt (22)

The notation u[0,∞) denotes the entire signal {u(t) : 0 ≤ t <∞}.
The control objective is to design and build a feedback controller that will

minimize the performance measure. It is possible to solve this problem analytically
in a few special cases. When an analytic solution is not possible one can resort
to the approximate solution known as MPC. First, discretize both the plant and
the performance measure with respect to time. Second, further approximate the

206 W. S. Levine

performance measure by a finite sum. Lastly, temporarily simplify the problem by
abandoning the search for a feedback control and ask only for an open-loop control.
The open-loop control will depend on the initial state so assume that x(0) = x0 and
this is known.

The approximate problem is then to find the sequence [u(0) u(1) · · ·u(N − 1]
that solves the constrained nonlinear programming problem given below

min[u(0) u(1)···u(N)]

i=N∑
i=0

l(x(i), u(i))+ lN (x(N + 1)) (23)

subject to

x(i + 1) = fd(x(i), u(i)) i = 0, 1, · · · , N (24)

and

x(0) = x0 (25)

Notice that the solution to this problem is a discrete-time control signal,

[uo(0) uo(1) · · ·uo(N)] (26)

(where the superscript “o” denotes optimal) that depends only on knowledge of x0.
This will be converted into a closed-loop (and an MPC) controller in two steps.

The first step is to create an idealized MPC controller that is easy to understand
but impossible to build. The second step is to modify this infeasible controller by a
practical, implementable MPC controller.

The idealized MPC controller assumes that y(i) = x(i), ∀i. Then, at i = 0,
x(0) = x0 is known. Solve the nonlinear programming problem instantaneously.
Apply the control uo(0) on the time interval 0 ≤ t < δ, where δ is the discretization
interval. Next, at time t = δ, equivalently i = 1, obtain the new value of x,
i.e., x(1) = x1. Again, instantaneously solve the nonlinear programming problem,
exactly as before except using x1 as the initial condition. Again, apply only the first
step of the newly computed optimal control (denote it by uo(1)) on the interval
δ ≤ t < 2δ.

The idea is to compute, at each time instant, the open-loop optimal control for
the full time horizon of N + 1 time steps but only implement that control for the
first step. Continue to repeat this forever.

Of course, the full state is not usually available for feedback (i.e., y(i) �= x(i))
and it is impossible to solve a nonlinear programming problem in zero time. The
solution to both of these problems is to use an estimate of the state. Let an optimal
(in some sense) estimate of x(k + 1) given all the data up to time k be denoted by
x̂(i+1|i). For example, assuming noiseless and full state feedback, y(k) = x(k) ∀k,
and the dynamics of the system are given by

x(i + 1) = fd(x(i), u(i)) i = 0, 1, · · · , N (27)

Signal Processing for Control 207

then

x̂(k + 1|k) = fd(x(k), u(k)) (28)

The implementable version of MPC simply replaces xi in the nonlinear program-
ming problem at time t = iδ by x̂(i|i−1) and solves for [uo(i) uo(i+1) · · ·uo(N+
i)]. This means that the computation of the next control value can start at time t = iδ

and can take up to the time (i + 1)δ. It can take a long time to solve a complicated
nonlinear programming problem. Because of this the application of MPC to real
problems has been limited to relatively slow systems, i.e., systems for which δ is
large enough to insure that the computations will be completed before the next value
of the control signal is needed. As a result, there is a great deal of research at present
on ways to speed up the computations involved in MPC.

The time required to complete the control computations becomes even longer
if it is necessary to account explicitly for noise. Consider the following relatively
simple version of MPC in which the plant is linear and time-invariant except for the
saturation of the actuators. Furthermore, the plant has a white Gaussian noise input
and the output signal contains additive white Gaussian noise as well. The plant is
then modeled by

x(i + 1) = Ax(i)+ Bu(i)+Dξ(i) (29)

y(i) = Cx(i)+ ν(i) (30)

The two noise signals are zero mean white Gaussian noises with covariance
matrices E(ξ(i)ξT (i)) = � ∀i and E(ν(i)νT (i)) = I ∀i where E(·) denotes
expectation. The two noise signals are independent of each other.

The performance measure is

J (u(0,∞]) = E(
1

2

i=∞∑
i=0

(yT (i)Qy(i)+ uT (i)Ru(i)) (31)

In the equation above, Q and R are symmetric real matrices of appropriate
dimensions. To avoid technical difficulties R is taken to be positive definite (i.e.,
u′Ru > 0 for all u �= 0) and Q positive semidefinite (i.e., y ′Qy ≥ 0 for all
y). In the absence of saturation, i.e., if the linear model is accurate for all inputs,
then the solution to the stochastic control problem of minimizing Eq. (31) subject
to Eqs. (29) and (30) is the Linear Quadratic Gaussian (LQG) regulator [15]. It
separates into two independent components. One component is the optimal feedback
control uo(i) = Fox(i), where the superscript “o” denotes optimal. This control
uses the actual state vector which is, of course, unavailable. The other component of
the optimal control is a Kalman filter which produces the optimal estimate of x(i)
given the available data at time i. Denoting the output of the filter by x̂(i|i), the
control signal becomes

uo(i) = Fox̂(i|i) (32)

208 W. S. Levine

This is known as the certainty equivalent control because the optimal state
estimate is used in place of the actual state. For this special case, all of the
parameters can be computed in advance. The only computations needed in real
time are the one step ahead Kalman filter/predictor and the matrix multiplication
in Eq. (32).

If actuator saturation is important, as it is in many applications, then the optimal
control is no longer linear and it is necessary to use MPC. As before, approximate
the performance measure by replacing ∞ by some finite N . An exact feedback
solution to this new problem would be extremely complicated. Because of the finite
time horizon, it is no longer true that the optimal control is time invariant. Because
of the saturation, it is no longer true that the closed-loop system is linear nor is it
true that the state estimation and control are separate and independent problems.
Even though this separation is not true, it is common to design the MPC controller
by using a Kalman filter to estimate the state vector. Denote this estimate by x̂(i|i)
and the one step ahead prediction by x̂(i|i − 1). The finite time LQ problem with
dynamics given by Eqs. (29) and (30) and performance measure

J (u(0,N]) = E(
1

2

i=N∑
i=0

(yT (i)Qy(i)+uT (i)Ru(i))+yT (N+1)Qy(N+1)) (33)

is then solved open loop with initial condition x(0) = x̂(i|i − 1) and with the
constraint

u(i) =

⎧⎪⎪⎨
⎪⎪⎩
umax, if u(i) ≥ umax

u(i), if |u(i)| < umax

−umax, if u(i) ≤ −umax

(34)

This is a convex programming problem which can be quickly and reliably solved.
As is usual in MPC, only the first term of the computed control sequence is actually
implemented. The substitution of the one step prediction for the filtered estimate is
done so as to provide time for the computations.

There is much more to MPC than has been discussed here. An introduction to
the very large literature on the subject is given in Sect. 5. One issue that is too
important to omit is that of stability. The rationale behind MPC is an heuristic notion
that the performance of such a controller is likely to be very good. While good
performance implicitly requires stability, it certainly does not guarantee it. Thus,
it is comforting to know that stability is theoretically guaranteed under reasonably
weak assumptions for a broad range of MPC controllers [20].

Signal Processing for Control 209

3.3 Exemplary Case

ABS brakes are a particularly vivid example of the challenges and benefits
associated with the use of DSP in control. The basic problem is simply stated.
Control the automobile’s brakes so as to minimize the distance it takes to stop.
The theoretical solution is also simple. Because the coefficient of sliding friction
is smaller than the coefficient of rolling friction, the vehicle will stop in a shorter
distance if the braking force is the largest it can be without locking the wheels. All
this is well known. The difficulty is the following. The smallest braking force that
locks the wheels depends on how slippery the road surface is. For example, a very
small braking force will lock the wheels if they are rolling on glare ice. A much
larger force can be applied without locking the wheels when they are rolling on dry
pavement. Thus, the key practical problem for ABS brakes is how to determine how
much force can be applied without locking the wheels. In fact, there is as yet no
known way to measure this directly. It must be estimated. The control, based on this
estimate, must perform at least as well as an unassisted human driver under every
possible circumstance.

The key practical idea of ABS brakes is to frequently change the amount of
braking force to probe for the best possible value. Probing works roughly as follows.
Apply a braking force and determine whether the wheels have locked. If they have,
reduce the braking force to a level low enough that the wheels start to rotate again.
If they have not, increase the braking force. This is repeated at a reasonably high
frequency.

Probing cannot stop and must be repeated frequently because the slipperiness
of the road surface can change rapidly. It is important to keep the braking force
close to its optimal value all the time. Balancing the dual objectives of quickly
detecting changes in the slipperiness of the surface and keeping the braking force
close to its optimal value is one of the keys to successful ABS brakes. Note that this
tradeoff is typical of adaptive control problems where the controller has to serve the
dual objectives of providing good control and providing the information needed to
improve the controller.

The details of the algorithm for combining probing and control are complicated
[2]. The point here is that the complicated algorithm is a life saving application of
digital signal processing for control. Two other points are important. In order for
ABS brakes to be possible, it was first necessary to develop a hydraulic braking
system that could be electronically modulated. That is, the improved controller
depends on a new actuator. Second, there is very little control theory available to
assist in the design of the controller upon which ABS braking depends.

There are three reasons why control theory is of little help in designing ABS
brakes. First, the interactions between tires and the road surface are very complex.
The dynamic distortion of the tire under loading plays a fundamental role in traction
(see [8] for a dramatic example). While there has been research on appropriate
mathematical models for the tire/road interaction, realistic models are too complex
for control design and simpler models that might be useful for controller design are
not realistic enough.

210 W. S. Levine

Second, the control theory for systems that have large changes in dynamics as
a result of small changes in the control—exactly what happens when a tire loses
traction—is only now being developed. Such systems are one form of hybrid system.
The control of hybrid systems is a very active current area of research in control
theory.

Third, a crucial component of ABS brakes is the electronically controllable
hydraulic brake cylinder. This device is obviously needed in order to implement the
controller. Control theory has very little to say about the physical devices needed to
implement a controller.

4 Conclusions

Nowadays most control systems are implemented digitally. This is motivated
primarily by cost and convenience. It is abetted by continuing advances in sensing
and actuation. More and more physical signals can be converted to electrical signals
with high accuracy and low noise. More and more physical actuators convert
electrical inputs into physical forces, torques, etc. Sampling and digitization of the
sensor signals is also convenient, very accurate if necessary, and inexpensive. Hence,
the trend is very strongly towards digital controllers.

The combination of cheap sensing and digital controllers has created exciting
opportunities for improved control and automation. Adding capability to a digitally
implemented controller is now often cheap and easy. Nonlinearity, switching, com-
putation, and logical decision making can all be used to improve the performance
of the controller. The question of what capabilities to add is wide open.

5 Further Reading

There are many good undergraduate textbooks dealing with the basics of control
theory. Two very popular ones are by Dorf and Bishop [4] and by Franklin et al. [6].
A standard undergraduate textbook for the digital aspects of control is [5]. A very
modern and useful upper level undergraduate or beginning graduate textbook is by
Goodwin et al. [7]. An excellent source for information about PID control is [1].

Graduate programs in control include an introductory course in linear system
theory that is very similar to the ones for signal processing. The book by Kailath
[10] although old is very complete and thorough. Rugh [19] is more control oriented
and newer. The definitive graduate textbook on nonlinear control is [11].

For more advanced and specialized topics in control, The Control Handbook
[13] is an excellent source. It was specifically designed for the purpose of providing
a starting point for further study. It also contains good introductory articles about
undergraduate topics and a variety of applications.

Signal Processing for Control 211

There is a very large literature on MPC. Besides the previously cited [3], there
are books by Maciejowski [16] and Kwon and Han [12] as well as several others.
There are also many survey papers. The one by Rawlings [18] is easily available and
recommended. Another very useful and often cited survey is by Qin and Badgwell
[17]. This is a particularly good source for information about companies that provide
MPC controllers and other important practical issues,

Lastly, the Handbook of Networked and Embedded Control Systems [9] provides
introductions to most of the issues of importance in both networked and digitally
controlled systems.

References

1. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning (2nd edtion),
International Society for Measurement and Control, Seattle, (1995)

2. Bosch: Driving Safety Systems (2nd edition), SAE International, Warrenton, (1999)
3. Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd Edition, Springer, London, (2004)
4. Dorf, R.C., Bishop, R. H.: Modern Control Systems, (11th edition), Pearson Prentice-Hall,

Upper Saddle River, (2008)
5. Franklin, G.F., Powell, J.D., Workman, M.: Digital Control of Dynamic Systems (3rd edition),

Addison-Wesley, Menlo Park (1998)
6. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems (5th

edition), Prentice-Hall, Upper Saddle River, (2005)
7. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design, Prentice-Hall, Upper

Saddle River, (2001)
8. Hallum, C.: The magic of the drag tire. SAE Paper 942484, Presented at SAE MSEC (1994)
9. Hristu-Varsakelis, D., Levine, W.S.: Handbook of Networked and Embedded Control Systems,

Birkhauser, Boston, (2005)
10. Kailath, T. Linear Systems, Prentice-Hall, Englewood Cliffs, (1980)
11. Khalil, H.K. Nonlinear Systems (3rd edition), Prentice-Hall, Upper Saddle River, (2001)
12. Kwon, W. H.,Han, S.: Receding Horizon Control: Model Predictive Control for State Models.

Springer, London (2005)
13. Levine, W.S. (Editor): The Control Handbook (2nd edition), CRC Press, Boca Raton (2011)
14. Looze, D. P., Freudenberg, J. S.: Tradeoffs and limitations in feedback systems. The Control

Handbook, pp 537–550, CRC Press, Boca Raton(1995)
15. Lublin, L., Athans, M.: Linear quadratic regulator control. The Control Handbook, pp 635–

650, CRC Press, Boca Raton (1995)
16. Maciejowski, J. M.: Predictive control with constraints. Prentice Hall, Englewood Cliffs (2002)
17. Qin, S. J., Badgwell, T. A.: A survey of model predictive control technology. Control

Engineering Practice,11, pp 733–764 (2003)
18. Rawlings, J. B.: Tutorial overview of model predictive control. IEEE Control Systems

Magazine, 20(3) pp 38–52, (2000)
19. Rugh, W.J.: Linear System Theory (2nd edition), Prentice-Hall, Upper Saddle River, (1996)
20. Scokaert, P. O. M, Mayne, D. Q., Rawlings, J. B.: Suboptimal model predictive control

(feasibility implies stability). IEEE Transactions on Automatic Control, 44(3) pp 648–654
(1999)

21. Yang, J. S., Levine, W. S.: Specification of control systems. The Control Handbook, pp 158–
169, CRC Press, Boca Raton (1995)

MPEG Reconfigurable Video Coding

Marco Mattavelli, Jorn W. Janneck, and Mickaël Raulet

Abstract The current monolithic and lengthy scheme behind the standardization
and the design of new video coding standards is becoming inappropriate to
satisfy the dynamism and changing needs of the video coding community. Such
a scheme and specification formalism do not enable designers to exploit the clear
commonalities between the different codecs, neither at the level of the specification
nor at the level of the implementation. Such a problem is one of the main reasons
for the typical long time interval elapsing between the time a new idea is validated
until it is implemented in consumer products as part of a worldwide standard. The
analysis of this problem originated a new standard initiative within the ISO/IEC
MPEG committee, called Reconfigurable Video Coding (RVC). The main idea
is to develop a video coding standard that overcomes many shortcomings of the
current standardization and specification process by updating and progressively
incrementing a modular library of components. As the name implies, flexibility
and reconfigurability are new attractive features of the RVC standard. The RVC
framework is based on the usage of a new actor/dataflow oriented language called
CAL for the specification of the standard library and the instantiation of the RVC
decoder model. CAL dataflow models expose the intrinsic concurrency of the
algorithms by employing the notions of actor programming and dataflow. This
chapter gives an overview of the concepts and technologies building the standard
RVC framework and the non standard tools supporting the RVC model from the
instantiation and simulation of the CAL model to the software and/or hardware code
synthesis.

M. Mattavelli (�)
SCI-STI-MM, EPFL, Lausanne, Switzerland
e-mail: marco.mattavelli@epfl.ch

J. W. Janneck
Department of Computer Science, Lund University, Lund, Sweden
e-mail: jwj@cs.lth.se

M. Raulet
ATEME, Rennes, France
e-mail: m.raulet@ateme.com

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_7

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_7&domain=pdf
mailto:marco.mattavelli@epfl.ch
mailto:jwj@cs.lth.se
mailto:m.raulet@ateme.com
https://doi.org/10.1007/978-3-319-91734-4_7

214 M. Mattavelli et al.

1 Introduction

A large number of successful MPEG (Moving Picture Expert Group) video coding
standards has been developed since the first MPEG-1 standard in 1988 [20]. The
standardization efforts in the field, besides having as first objective to guarantee the
interoperability of compression systems, have also aimed at providing appropriate
forms of specifications for wide and easy deployment. While video standards are
becoming increasingly complex, and they take ever longer to be produced, this
makes it difficult for standards bodies to produce timely specifications that address
the need to the market at any given point in time. The structure of past standards has
been one of a monolithic specification together with a fixed set of profiles that subset
the functionality and capabilities of the complete standard. Similar comments apply
to the reference code, which in more recent standards has become normative itself.
Video devices are typically supporting a single profile of a specific standard, or a
small set of profiles. They have therefore only very limited adaptivity to the video
content, or to environmental factors (bandwidth availability, quality requirements).

Within the ISO/IEC MPEG committee, Reconfigurable Video Coding (RVC) [6,
38] standard is intended to address the two following issues: make standards
faster to produce, and permit video devices based on those standards to exhibit
more flexibility with respect to the coding technology used for the video content.
The key idea is to standardize a library of video coding components, instead of
an entire video decoder. The standard can then evolve flexibly by incrementally
extending that library, and video devices can configure themselves to support a
variety of coding algorithms by composing encoders and decoders from that library
of predefined coding modules. Recently the concepts of standardizing modular
components have been also extended with success to the coding of 3-D graphic
objects, achieving the same objectives initially identified within the video coding
field [7, 8]. For this reason the standard framework is now also referred to as
Reconfigurable Media Framework (RMC) to acknowledge the inclusion of others
media than video.

This chapter gives an overview of the concepts and technologies building
the standard RVC framework shown in Fig. 1 and can be complemented by the
chapter of the handbook: “Dataflow modeling for reconfigurable signal processing
systems” [12].

2 Requirements and Rationale of the MPEG RVC
Framework

Started in 2004, the MPEG Reconfigurable Video Coding (RVC) framework [6] is
a new ISO standard (Fig. 1) aiming at providing an alternative form of video codec
specifications by standardizing a library of modular dataflow components instead of
monolithic sequential algorithms. RVC provides the new form of specification by

MPEG Reconfigurable Video Coding 215

Fig. 1 CAL and RVC standard timeline

defining two standard elements: a dataflow language with which video decoders can
be described (ISO/IEC23001-4 or MPEG-B pt. 4 [34]) and a library of video coding
tools employed in MPEG standards (ISO/IEC23002-4 or MPEG-C pt. 4 [35]).
The new concept is to be able to specify a decoder of an existing standard or a
completely new configuration that may better satisfy application-specific constraints
by selecting standard components from a library of standard coding algorithms.
Such possibility also requires extended methodologies and new tools for describing
the new bitstream syntaxes and the instantiation of the parsers of such new codecs.
These extensions has been recently finalized and are currently available in new
amendments of the standard [37]. An additional possibility of RVC is also to
be able to enable at runtime the dynamic reconfiguration of codecs at terminal
side. Such option also requires normative extensions of the system layer for the
transport of the new configurations and the associated signaling and is currently
under study by the MPEG committee, in particular addressing the possibility of
instantiating simplified decoder configurations providing low-power performance
or configurations exposing different levels of parallelism.

The essential concepts of the RVC framework (Fig. 2) are the following:

• RVC-CAL [23], a dataflow language describing the Functional Unit (FU) behav-
ior. The language defines the behavior of dataflow components called actors (or
FUs in MPEG), which is a modular component that encapsulates its own state
such that an actor can neither read nor modify the state of any other actor. The
only interaction between actors is via messages (known in CAL as tokens) which
flow from an output of one actor to an input of another. The behavior of an actor
is defined in terms of a set of atomic actions. The execution inside an actor is
purely sequential: at any point in time, only one action can be active inside an
actor. An action can consume (read) tokens, modify the internal state of the actor,
produce tokens, and interact with the underlying platform on which the actor is
running.

216 M. Mattavelli et al.

MPEG-B ISO/IEC 2300-1

RVC Decoder Implementation

MPEG-C (ISO/IEC 23002-4)

Encoded Video Data Decoded Video Data

Decoder
Implementation

Decoding Solution

MPEG
Tool Library

Implementation

Model Instantiation:
Selection of FUs and

Parameter Assignment

Abstract Decoder Model
(FNL + RVC-CAL)

MPEG
Tool Library

(RVC-CAL FUs)

Decoder
Description

FU Network
Description

(FNL)

Bitstream Syntax
Description

(RVC-BSDL)

Fig. 2 RVC standard

• FNL (Functional unit Network Language), a language describing the video codec
configurations. FNL is an XML dialect that lists the FUs composing the codec,
the parameterization of these FUs and the connections between the FUs. FNL
allows hierarchical constructions: an FU can be defined as a composition of other
FUs and described by another FND (FU Network Description).

• BSDL (Bitstream Syntax Description Language), a language describing the
structure of the input bitstream. BSDL is a XML dialect that lists the sequence
of the syntax elements with possible conditioning on the presence of the
elements, according to the value of previously decoded elements. BSDL is further
explained in Sect. 4.4.

• A library of video coding tools, also called Functional Units (FU) covering all
MPEG standards (the “MPEG Toolbox”). This library is specified and provided
using RVC-CAL (a subset of the original CAL language that is standardized by
MPEG) as specification language for each FU.

• An “Abstract Decoder Model” (ADM) constituting a codec configuration
(described using FNL) instantiating FUs of the MPEG Toolbox. Figure 2 depicts
the process of instantiating an “Abstract Decoder Model” in RVC.

• Tools simulating and validating the behavior of the ADM (Open DataFlow
environment [56]).

• Tools automatically generating software and hardware descriptions of the ADM.

MPEG Reconfigurable Video Coding 217

3 Rationale for Changing the Traditional Specification
Paradigm Based on Sequential Model of Computation

As briefly introduced in the previous section, one of the more radical innovations
introduced by the RVC standard is the adoption of a non-traditional model of
computation and a new specification language. The main reasons for this change
in building specifications are discussed here in more depth [9].

For most of the history of silicon-based computing, the steady scaling of silicon
technology has led to ever faster sequential computing machines, with higher clock
rates and more sophisticated internal architectures exploiting the improvements
in silicon manufacturing. Backwards compatible processor designs ensured that
software remained portable to new machines, which in turn implied that legacy
software automatically benefited from any progress in the way processors were built,
and so have complex algorithms, such as video codecs, and the associated reference
SW descriptions, using generic, sequential programming languages.

In recent years, however, this has ceased to be the case. In spite of continued
scaling of silicon technology, individual sequential processors are not becoming
faster any more, but slightly slower while reducing power dissipation [3]. Con-
sequently, rather than building more sophisticated and complex single processors,
manufacturers have used the space gained from scaling the technology by building
more processors onto a single chip, making multi-core machines and heterogeneous
systems a nearly ubiquitous commodity in a wide (and increasing) range of
computing applications. As a result, the performance gains of modern computing
machines are primarily due to an increase in the available parallelism (Fig. 3).

These developments pose qualitatively novel challenges to the portability of
specifications, applications and ultimately the software that is used to implement
them, as well as to software engineering and implementation methodology in
general: while sequential software used to automatically execute faster on a faster
processor, an increase in performance of an application on a new platform that
provides more parallelism is predicated on the ability to effectively exploit that
parallelism, i.e. to parallelize the application and thus match it to the respective
computing substrate.

Traditionally, applications described in the style of mostly sequential algorithms
have taken advantage of multiple execution units using threads and processes,
thereby explicitly structuring an application into a (usually small) set of concur-
rently executing sequential activities that interact with each other using shared
memory or other means of communication (e.g. messages, pipes, semaphores)
often provided either by the operating system or some middleware. However, this
parallel programming approach has some significant drawbacks [48]. First, it poses
considerable engineering challenges—large collections of communicating threads
are difficult to test since errors often arise due to the timing of activities in ways
that cannot be detected or reproduced easily, and the languages, environments,
and tools usually provide little or no support for managing the complexities of
highly parallel execution. Second, a thread-based approach scales poorly across

218 M. Mattavelli et al.

platform
(physical parallelism)

1 10 100 1000

1

10

100

1000

ap
pl

ic
at

io
n

(e
xp

lic
it

pa
ra

lle
lis

m
)

parallelizing compilers

Parallelization

Sequentialization

Portable concurrency

Fig. 3 Representation of a unified SW-HW design space, showing how leaving current sequential
Von Neumann based approaches, portable parallelism and SW/HW unified programming/design
can be achieved in a much larger design space by developing efficient sequentialization and
parallelization techniques. Currently only design spaces labeled in the picture as “HDL” “SW
w/threads” and “parallelising compilers” are covered. Dataflow approach will allow to cover a
much larger space (gray area)

platforms with different degrees of parallelism if the number of execution units is
significantly different from the number of threads. Too few execution units mean
that several threads need to be dynamically scheduled onto each of them, incurring
scheduling overhead. If the number of processors exceeds the number of threads, the
additional processors remain unused. The result is that threaded applications either
need to be overengineered to using as many threads as possible, with the attendant
consequences for engineering cost and performance on less parallel hardware, or
they will underutilize highly parallel platforms. Either way, the requirement to
construct an application with a particular degree of parallelism in mind is a severe
obstacle to the portability of threaded software.

In an effort to implement sequential or threaded applications on platforms
that provide higher degrees of parallelism than the application itself, parallelizing
compilers have been used with some success [53]. However, the effectiveness of
automatic parallelization depends highly on the application and the details of the
algorithm description, and it does not scale well for larger programs.

For algorithm specifications and corresponding software to scale to future
parallel computing platforms as seamlessly as possible, it is necessary to describe
algorithms in a way that:

MPEG Reconfigurable Video Coding 219

1. exposes as much parallelism of the application as practical,
2. provides simple and natural abstractions that help manage the high degree

of parallelism and permits principled composition of and interaction between
modules,

3. makes minimal assumptions about the physical architecture of the computing
machine it is implemented on,

4. is efficiently implementable on a wide range of computing substrates, including
traditional sequential processors, shared-memory multicores, manycore proces-
sor arrays, and programmable logic devices, as well as combinations thereof.

This is not a trivial proposition, since it implies among other things that the
current body of software will not by itself be implementable efficiently on future
computers but will have to be rewritten if it is supposed to take advantage of the
parallel performance of these machines. In fact, the requirements above suggest a
programming style and a tool support that formulates applications in as parallel a
way as possible, so that implementation frequently involves sequentializing [22]
as well as parallelizing [53] applications. This is effectively the antithesis of the
current approach to mapping software onto parallel platforms, which tends to begin
with sequential code, and parallelization, either manually or automatically, is the
process of adapting the sequential algorithm and code to a parallel implementation
target. Looking at the above criteria, shared-memory threads for instance fulfill the
first requirement, but essentially fail on the other three. By comparison, hardware
description languages such as VHDL and Verilog fulfill the first two criteria, but
as they fail on the third point by assuming a particular model of (clocked) time
and their implementability is essentially limited to hardware and hardware-like
programmable logic (FPGAs). Needless to say CAL dataflow programming is a
good candidate to be able to satisfy the above requirements and for such reasons
has been selected and adopted by the MPEG RVC standards.

3.1 Limits of Previous Monolithic Specifications

MPEG has produced several generations of video coding standards such as MPEG-
1, MPEG-2, MPEG-4 Video, AVC (Advanced Video Coding) and SVC (Scalable
Video Coding) its scalable profile. The last generation of video coding standards,
published in 2013, is called High Efficiency Video Coding (HEVC), yielding
more than a factor 2 gain versus the previous generation standard performance
(AVC) particularly for Ultra High Definition resolution video content. While at
the beginning MPEG-1 and MPEG-2 were only specified by textual descriptions,
with the increasing complexity of algorithms, starting with the MPEG-4 set of
standards, C or C++ specifications, called also reference software, have became
the formal specification of the standards. However, the past monolithic specification
of such standards (usually in the form of C/C++ programs) lacks flexibility and
does not allow to use the combination of coding algorithms from different standards

220 M. Mattavelli et al.

enabling to achieve specific design or performance trade-offs and thus fill, case
by case, the requirements of specific applications. Indeed, not all coding tools
defined in a profile@level of a specific standard are required in all application
scenarios. For a given application, codecs are either not exploited at their full
potential or require unnecessarily complex implementations. However, a decoder
conformant to a standard has to support all of them and may results in non-efficient
implementations.

Moreover, such descriptions composed of non-optimized non-modular software
packages have started to show many limits. If we consider that they are in practice
the starting point of any implementation, system designers have to rewrite these
software packages not only to try to optimize performances, but also to transform
these descriptions into appropriate forms adapted to the current system design
methodologies. Such monolithic specifications hide the inherent parallelism and the
dataflow structure of the video coding algorithms, features that are necessary to be
exploited for efficient implementations. In the meanwhile the evolution of video
coding technologies, leads to solutions that are increasingly complex to be designed
and present significant overlap between successive versions of the standards.

Why C etc. Fail? The control over low-level details, which is considered
a merit of C language, typically tends to over-specify programs. Not only the
algorithms themselves are specified, but also how inherently parallel computations
are sequenced, how and when inputs and outputs are passed between the algorithms
and, at a higher level, how computations are mapped to threads, processors and
application specific hardware. In general, it is not possible to recover the original
knowledge about the intrinsic properties of the algorithms by means of analysis
of the software program and the opportunities for restructuring transformations on
imperative sequential code are very limited compared to the parallelization potential
available on multi-core platforms [5]. These in conjunction with the previously
discussed motivations, are the main reasons for which C has been replaced by CAL

in MPEG RVC [43].

3.2 Reconfigurable Video Coding Specification Requirements

Scalable Parallelism In parallel programming, the number of things that are
happening at the same time can scale in two ways: It can increase with the size of
the problem or with the size of the program. Scaling a regular algorithm over larger
amounts of data is a relatively well-understood problem, while building programs
such that their parts execute concurrently without much interference is one of the
key problems in scaling the von Neumann model. The explicit concurrency of the
actor model provides a straightforward parallel composition mechanism that tends
to lead to more parallelism as applications grow in size, and scheduling techniques
permit scaling concurrent descriptions onto platforms with varying degrees of
parallelism.

MPEG Reconfigurable Video Coding 221

Modularity and Reuse The ability to create new abstractions by building reusable
entities is a key element in every programming language. For instance, object-
oriented programming has made huge contributions to the construction of von
Neumann programs, and the strong encapsulation of actors along with their
hierarchical composability offers an analog for parallel programs.

Concurrency In contrast to procedural programming languages, where control
flow is made explicit, the actor model emphasizes explicit specification of con-
currency. Rallying around the pivotal and unifying von Neumann abstraction has
resulted in a long and very successful collaboration between processor architects,
compiler writers, and programmers. Yet, for many highly concurrent programs,
portability has remained an elusive goal, often due to their sensitivity to timing.
The untimedness and asynchrony of stream-based programming offers a solution to
this problem. The portability of stream-based programs is underlined by the fact that
programs of considerable complexity and size can be compiled to competitive hard-
ware [42] as well as software [66], which suggests that stream-based programming
might even be a solution to the old problem of flexibly co-synthesizing different
mixes of hardware/software implementations from a single source.

Encapsulation The success of a stream programming model will in part depend
on its ability to configure dynamically and to virtualize, i.e. to map to collections
of computing resources too small for the entire program at once. Moving parts
of a program on and off a resource requires encapsulation, i.e. a clear distinction
between those pieces that belong to the parts to be moved and those that do not.
The transactional execution of actors generates points of quiescence, the moments
between transactions, when the actor is in a defined and known state that can be
safely transferred across computing resources.

4 Description of the Standard or Normative Components of
the Framework

The fundamental element of the RVC framework, in the normative part, is the
Decoder Description (Fig. 2) that includes two types of data:

The Bitstream Syntax Description (BSD), which describes the structure of the
bitstream. The BSD is written in RVC-BSDL. It is used to generate the appropriate
parser to decode the corresponding input encoded data [33, 64].

The FU Network Description (FND), which describes the connections between
the coding tools (i.e. FUs). It also contains the values of the parameters used for the
instantiation of the different FUs composing the decoder [21, 42, 66]. The FND
is written in the so called FU Network Language (FNL). The syntax parser (built
from the BSD), together with the network of FUs (built from the FND), form a
CAL model called the Abstract Decoder Model (ADM), which is the normative
behavioral model of the decoder.

222 M. Mattavelli et al.

Fig. 4 The conceptual view of RVC

4.1 The Toolbox Library

An interesting feature of the RVC standard that distinguishes it from traditional
decoders-rigidly-specified video coding standards is that, a description of the
decoder can be associated to the encoded data in various ways according to each
application scenario. Figure 4 illustrates this conceptual view of RVC [50, 51].
All the three types of decoders are within the RVC framework and constructed
using the MPEG-B standardized languages. Hence, they all conform to the MPEG-
B standard. A Type-1 decoder is constructed using the FUs within the MPEG
Video Tool Library (VTL) only. Hence, this type of decoder conforms to both
the MPEG-B and MPEG-C standards. A Type-2 decoder is constructed using
FUs from the MPEG VTL as well as one or more proprietary libraries (VTL
1-n). This type of decoder conforms to the MPEG-B standard only. Finally, a
Type-3 decoder is constructed using one or more proprietary VTL (VTL 1-n),
without using the MPEG VTL. This type of decoder also conforms to the MPEG-
B standard only. An RVC decoder (i.e. conformant to MPEG-B) is composed of
coding tools described in VTLs according to the decoder description. The MPEG
VTL is described by MPEG-C. Traditional programming paradigms (monolithic
code) are not appropriate for supporting such types of modular framework. A new
dataflow-based programming model is thus specified and introduced by MPEG RVC
as specification formalism.

The MPEG VTL is normatively specified using RVC-CAL. An appropriate level
of granularity for the components of the standard library is important, to enable
an effective possibility of reconfigurations, for codecs, and an efficient reuse of
components in codecs implementations. If the library is composed of too coarse
modules, such modules will be too large/coarse to allow their usage in different
and interesting codec configurations, whereas, if the library component granularity
level is too fine, the number of modules in the library will result to be too large
for an efficient and practical reconfiguration process at the codec implementation

MPEG Reconfigurable Video Coding 223

side, and may obscure the desired high-level description and modeling features of
the RVC codec specifications. Most of the efforts behind the standardization of the
MPEG VTL were devoted to study the best granularity trade-off level of the VTL
components. However, it must be noticed that the choice of the best trade-off in
terms of high-level description and module re-usability, does not really affect the
potential parallelism of the algorithm that can be exploited in multi-core and FPGA
implementations.

4.2 The CAL Actor Language

CAL [23] is a domain-specific language that provides useful abstractions for
dataflow programming with actors. For more information on dataflow methods, the
reader may refer to Part IV (Design Methods), which contains several chapters that
go into detail on various kinds of dataflow techniques for design and implementation
of signal processing systems. CAL has been used in a wide variety of applications
and has been compiled to hardware and software implementations, and work on
mixed HW/SW implementations is under way. The next section provides a brief
introduction to some key elements of the language.

4.2.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add actor (Fig. 5), which has two
input ports A and B, and one output port Out, all of type T. T may be of type int,
or uint for respectively integers and unsigned integers, of type bool for booleans,
or of type float for floating-point integers. Moreover CAL designers may assign
a number of bits to the specific integer type depending on the variable numeric size.
The actor contains one action that consumes one token on each input ports, and
produces one token on the output port. An action may fire if the availability of tokens
on the input ports matches the port patterns, which in this example corresponds to
one token on both ports A and B.

a c t o r Add () T A, T B ⇒ T Out :
a c t i o n [a] , [b] ⇒ [sum]
do

sum := a + b ;
end

end

Fig. 5 Basic structure of a CAL actor

224 M. Mattavelli et al.

a c t o r S e l e c t () S , A, B ⇒ Outpu t :

a c t i o n S : [s e l] , A: [v] ⇒ [v]
guard s e l end

a c t i o n S : [s e l] , B : [v] ⇒ [v]
guard not s e l end

end

Fig. 6 Guard structure in a CAL actor

a c t o r PingPongMerge () Inpu t1 , I n p u t 2 ⇒ Outpu t :

A: a c t i o n I n p u t 1 : [x] ⇒ [x] end
B : a c t i o n I n p u t 2 : [x] ⇒ [x] end

s c h e d u l e fsm s1 :
s1 (A) −−> s2 ;
s2 (B) −−> s1 ;

end
end

Fig. 7 FSM structure in a CAL actor

An actor may have any number of actions. The untyped Select actor (Fig. 6)
reads and forwards a token from either port A or B, depending on the evaluation of
guard conditions. Note that each of the actions has empty bodies.

4.2.2 Priorities and State Machines

An action may be labeled and it is possible to constrain the legal firing sequence by
expressions over labels. In the PingPongMerge actor, reported in Fig. 7, a finite
state machine schedule is used to force the action sequence to alternate between the
two actions A and B. The schedule statement introduces two states s1 and s2.

The Route actor, in Fig. 8, forwards the token on the input port A to one of the
three output ports. Upon instantiation it takes two parameters, the functionsP and Q,
which are used as predicates in the guard conditions. The selection of which action
to fire is in this example not only determined by the availability of tokens and the
guards conditions, by also depends on the priority statement.

4.2.3 CAL Subset Language for RVC

For an in-depth description of the language, the reader is referred to the language
report [23], for the specific subset specified and standardized by ISO in the Annex
C of [34]. This subset only deals with fully typed actors and some restrictions on

MPEG Reconfigurable Video Coding 225

a c t o r Route (P, Q) A ⇒ X, Y, Z :

toX : a c t i o n [v] ⇒ X: [v]
guard P (v) end

toY : a c t i o n [v] ⇒ Y: [v]
guard Q(v) end

toZ : a c t i o n [v] ⇒ Z : [v] end

p r i o r i t y
toX > toY > toZ ;

end
end

Fig. 8 Priority structure in a CAL actor

a c t o r S e l e c t () T1 S , T2 A, T3 B ⇒ T3 Outpu t :

a c t i o n S : [s e l] , A: [v] ⇒ [v]
guard s e l end

a c t i o n S : [s e l] , B : [v] ⇒ [v]
guard not s e l end

end

Fig. 9 Guard structure in a RVC-CAL actor

a c t o r PingPongMerge () T Inpu t1 , T I n p u t 2 ⇒ T Outpu t :

A: a c t i o n I n p u t 1 : [x] ⇒ [x] end
B : a c t i o n I n p u t 2 : [x] ⇒ [x] end

s c h e d u l e fsm s1 :
s1 (A) −−> s2 ;
s2 (B) −−> s1 ;

end
end

Fig. 10 FSM structure in a RVC-CAL actor

the CAL language constructs from [23] to have efficient hardware and software
code generations without changing the expressivity of the algorithm. For instance,
Figs. 6, 7 and 8 are not RVC-CAL compliant and must be changed as Figs. 9, 10
and 11 where T1, T2, T are the types and only typed parameters can be passed to
the actors not functions as P, Q.

A large selection of example actors is available at the OpenDF repository [56],
among them can also be found the MPEG-4 decoder discussed below. Many other
actors written in RVC-CAL are available as reference SW of the standard MPEG
RVC tool repository (ISO/IEC 23002-4). Currently beside the MPEG-4 SP, MPEG-
A Part 10 AVC is available as Constrained Baseline Profile, Progressive High Profile

226 M. Mattavelli et al.

a c t o r Route () T A ⇒ T X, T Y, T Z :
f u n t i o n P (T v i n)−−> T:
\\ body of t h e f u n c t i o n P

P (v i n)
end
f u n t i o n Q(T v i n)−−> T:
\\ body of t h e f u n c t i o n P

Q(v i n)
end

toX : a c t i o n [v] ⇒ X: [v]
guard P (v) end

toY : a c t i o n [v] ⇒ Y: [v]
guard Q(v) end

toZ : a c t i o n [v] ⇒ Z : [v] end

p r i o r i t y
toX > toY > toZ ;

end
end

Fig. 11 Priority structure in a RVC-CAL actor

and their scalable profile version, as well as the last generation of HEVC decoder
including different versions of actors that make possible to implement decoders with
different levels of parallelisms including multiple parser decoder versions.

4.2.4 Non-standard Process Language Extension to CAL

The constructs discussed above make CAL a very versatile and general language
for expressing actors that are processing streaming data, permitting the construction
of a wide range of such actors, from highly regular and static ones, to actors with
very data-dependent behavior, to actors sensitive to the timing of token arrivals,
and even nondeterministic actors. However, in practice, many kernels are fairly
simple and often do not require the generality provided by the language. In fact,
in some cases, the requirement to describe the computation of an kernel as a set of
actions whose selection is governed by token availability, guards, and state can lead
to overly complex programs.

Consider the actor in Fig. 12, SumN, which reads a number from one of its input
ports, and then reads that many tokens from its other input port, adds them, and
produces the result. CAL as standardized by RVC requires that the computation be
structured into three actions, whose selection is determined by a state machine as

MPEG Reconfigurable Video Coding 227

a c t o r SumN () X, N ⇒ Sum :
n ; sum ;

s t a r t :
a c t i o n N : [nbr] ⇒
do

sum := 0 ;
n := nbr ;

end

add :
a c t i o n X : [x] ⇒
guard n > 0
do

sum := sum + x ;
n := n − 1 ;

end

done :
a c t i o n ⇒ Sum : [sum]
guard n <= 0 end

s c h e d u l e s0 :
s0 (s t a r t) −−> s1 ;
s1 (add) −−> s1 ;
s1 (done) −−> s0 ;

end
end

Fig. 12 SumN actor

well as the guards of its last two actions, making an otherwise simple procedure
rather difficult to read and understand, and also error-prone to write.1

Actors such as this have motivated the search for other ways of writing stream
processing kernels. The TŸCHO framework (cf. Sect. 5.6) includes an alternative
syntax for stream processing kernels inspired by the process language used by Kahn
in [44]. In it, a kernel is described as a process, i.e. a sequential program, typically
an infinite loop, which explicitly reads tokens from input ports (using the syntax
Port -> Variable) and writes the value of an expression to output ports (with Port
<- Expression).

Figure 13 shows the description of SumN in Fig. 12 as such a process. One
interesting aspect of the Tÿcho implementation of this process language is the fact
that it compiles to the same intermediate representation as the original CAL actor
descriptions. This implies that actor and process descriptions can be mixed freely

1A common mistake in a situation such as this is to omit the seemingly redundant inverted guard
of the third action and replace it with a priority between the second and the third action, resulting
in a rather difficult-to-find a subtle error that manifests only in some circumstances.

228 M. Mattavelli et al.

p ro c e s s SumN () X, N ⇒ Sum :
n ; sum ; x ;

rep ea t
N −−> n ;
sum := 0 ;
whi le n > 0 do

X −−> x ;
sum := sum + x ;
n := n − 1 ;

end
Sum <−− sum ;

end
end

Fig. 13 SumN actor in Fig. 12 expressed as a process

Fig. 14 A simple CAL

network

Z(v= 0)

Add

Sum

Out

Out

In

In

B

A

Out

in the same dataflow program, and also that processes are amenable to the same
analyses, optimizations, and code generation techniques as actors. See [15, 16] for
more details on this topic. The described language extension provide a very natural
way of specifying source and sink actors of a network (for instance parsers and
displays for video codecs) which can then be synthesized to efficient SW or HW
implementations.

4.3 FU Network Language for Codec Configurations

A set of CAL actors are instantiated and connected to form a CAL application, i.e.
a CAL network. Figure 14 shows a simple CAL network Sum, which consists of the
previously defined RVC- CAL Add actor and the delay actor shown in Fig. 15.

The source/language that defined the network Sum is found in Fig. 16. Please,
note that the network itself has input and output ports and that the instantiated
entities may be either actors or other networks, which allow for a hierarchical
design.

MPEG Reconfigurable Video Coding 229

a c t o r Z (v) T In ⇒ T Out :

A: a c t i o n ⇒ [v] end
B : a c t i o n [x] ⇒ [x] end

s c h e d u l e fsm s0 :
s0 (A) −−> s1 ;
s1 (B) −−> s1 ;

end
end

Fig. 15 RVC-CAL delay actor

network Sum () In ⇒ Out :

e n t i t i e s
add = Add () ;
z = Z (v = 0) ;

s t r u c t u r e
In −−> add .A;
z . Out −−> add . B ;
add . Out −−> z . In ;
add . Out −− > Out ;

end

Fig. 16 Textual representation of the Sum network

Formerly, networks have been traditionally described in a textual language,
which can be automatically converted to FNL and vice versa—the XML dialect
standardized by ISO in Annex B of [34]. XML (Extensible Markup Language) is a
flexible way to create common information formats. XML is a formal recommen-
dation from the World Wide Web Consortium (W3C). XML is not a programming
language, it is rather a set of rules that allow you to represent data in a structured
manner. Since the rules are standard, the XML documents can be automatically
generated and processed. Its use can be gauged from its name itself:

• Markup: Is a collection of Tags
• XML Tags: Identify the content of data
• Extensible: User-defined tags

The XML representation of the Sum network is found in Fig. 17. A graphical
editing framework called Graphiti editor [32] is available to create, edit, save and
display a network. The XML and textual format for the network description are
supported by such an editor.

230 M. Mattavelli et al.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<XDF name=”Sum”>

<P o r t k ind =” I n p u t ” name=” In ” />
<P o r t k ind =” Outpu t ” name=” Out ” />
<I n s t a n c e i d =” add ” />
<I n s t a n c e i d =” z ”>

<C l a s s name=”Z” />
<P a r a m e t e r name=” v ”>

<Expr k ind =” L i t e r a l ”
l i t e r a l −k ind =” I n t e g e r ” v a l u e =”0” />

</ P a r a m e t e r>
</ I n s t a n c e>
<C o n n e c t i o n d s t =” add ” d s t −p o r t =”A”

s r c =” ” s r c −p o r t =” In ” />
<C o n n e c t i o n d s t =” add ” d s t −p o r t =”B”

s r c =” z ” s r c −p o r t =” Out ” />
<C o n n e c t i o n d s t =” z ” d s t −p o r t =” In ”

s r c =” add ” s r c −p o r t =” Out ” />
<C o n n e c t i o n d s t =” ” d s t −p o r t =” Out ”

s r c =” add ” s r c −p o r t =” Out ” />
</XDF>

Fig. 17 XML representation of the Sum network

4.4 Bitstream Syntax Specification Language BSDL

MPEG-B Part 5 is an ISO/IEC international standard that specifies BSDL [33]
(Bitstream Syntax Description Language), an XML dialect describing generic
bitstream syntaxes. In the field of video coding, the bitstream description in BSDL of
MPEG-4 AVC [69] bitstreams represents all the possible structures of the bitstream
which conforms to MPEG-4 AVC. A Binary Syntax Description (BSD) is one
unique instance of the BSDL description. It represents a single MPEG-4 AVC
encoded bitstream: it is no longer a BSDL schema but a XML file showing the
data of the bitstream. Figure 18 shows a BSD associated to its corresponding BSDL
schema.

An encoded video bitstream is described as a sequence of binary elements
of syntax of different lengths: some elements contain a single bit, while others
contain many bits. The Bitstream Schema (in BSDL) indicates the length of these
binary elements in a human- and machine-readable format (hexadecimal, integers,
strings. . .). For example, hexadecimal values are used for start codes as shown in
Fig. 18. The XML formalism allows organizing the description of the bitstream in a
hierarchical structure. The Bitstream Schema (in BSDL) can be specified at different
levels of granularity. It can be fully customized to the application requirements [67].
BSDL was originally conceived and designed to enable adaptation of scalable
multimedia contents in a format-independent manner [68]. In the RVC framework,
BSDL is used to fully describe video bitstreams. Thus, BSDL schemas must specify
all the elements of syntax, i.e. at a low level of granularity. Before the use of BSDL
in RVC, the existing BSDL descriptions described scalable contents at a high level
of granularity. Figure 18 is an example BSDL description for video in MPEG-4
AVC format.

MPEG Reconfigurable Video Coding 231

<NALUnit>
<s t a r tCod e >00000001</ s t a r tCod e>
<f o r b i d d e n 0 b i t >0</ f o r b i d d e n 0 b i t>
<na lRe f e r e n c e>3</n a lRe f e r e n c e>
<na lUni tType>20</na lUni tType>
<payload>5 100</ pay load>

</NALUnit>
<NALUnit>
<s t a r tCod e >00000001</ s t a r tCod e>
<!−− and so on . . . −−>
</NALUnit>

<e l emen t name="NALUnit"
bs2:ifNext="00000001">

<xsd : sequence>
<xsd : e l emen t name="startCode"

type="avc:hex4" fixed="00000001"/>
<xsd : e l emen t name="nalUnit"

type="avc:NALUnitType"/>
<xsd : e l emen t ref="payload"/>

</xsd : sequence>
<!−− Type of NALUnitType −−>
<xsd : complexType name="NALUnitType">

<xsd : sequence>
<xsd : e l emen t name="forbidden_zero_bit"

type="bs1:b1" fixed="0"/>
<xsd : e l emen t name="nal_ref_idc" type="bs1:b2"/>
<xsd : e l emen t name="nal_unit_type" type="bs1:b5"/>

</xsd : sequence>
</xsd : complexType>

<xsd : e l emen t name="payload" type="bs1:byteRange"/>

Fig. 18 A Bitstream Syntax Description (BSD) fragment of an MPEG-4 AVC bitstream and its
corresponding BS schema fragment codec in RVC-BSDL

In the RVC framework, BSDL has been chosen because:

• it is stable and already defined by an international standard;
• the XML-based syntax interacts well with the XML-based representation of the

configuration of RVC decoders;
• the parser may be easily generated from the BSDL schema by using standard

tools (e.g. XSLT);
• the XML-based syntax integrates well with the XML infrastructure of the

existing tools.

232 M. Mattavelli et al.

4.5 Instantiation of the ADM

In the RVC framework, the decoding platform acquires the Decoder Description
that fully specifies the architecture of the decoder and the structure of the incoming
bitstream. So as to instantiate the corresponding decoder implementation, the
platform uses a library of building blocks specified by MPEG-C. Conceptually, such
a library is a user defined proprietary implementation of the MPEG RVC standard
library, providing the same I/O behavior. Such a library can be expressly developed
to explicitly expose an additional level of concurrency and parallelism appropriate
for implementing a new decoder configuration on user specific multi-core target
platforms. The dataflow form of the standard RVC specification, with the associated
Model of Computation, guarantee that any reconfiguration of the user defined
proprietary library, developed at whatever lower level of granularity, provides an
implementation that is consistent with the (abstract) RVC decoder model that is
originally specified using the standard library. Figures 2 and 4 show how a decoding
solution is built from, not only the standard specification of the codecs in RVC-CAL

by using the normative VTL, and this already provides an explicit, concurrent and
parallel model, but also from any non-normative “multi-core-friendly” proprietary
Video Tool Libraries, that increases if necessary the level of explicit concurrency
and parallelism for specific target platforms. Thus, the standard RVC specification,
which is already an explicit model for concurrent systems, can be further improved
or specialized by proprietary libraries that can be used in the instantiation phase of
an RVC codec implementation.

4.6 Case Study of New and Existing Codec Configurations

4.6.1 Commonalities

All existing MPEG codecs are based on the same structure, the hybrid decoding
structure including a parser that extracts values for texture reconstruction and
motion compensation [19]. Therefore, MPEG-4 SP and MPEG-4 AVC are hybrid
decoders. Figure 19 shows the main functional blocks composing an hybrid decoder
structure.

As said earlier, an RVC decoder is described as a block diagram with FNL [34],
an XML dialect that describes the structural network of interconnected actors from
the Standard MPEG Toolbox. The only 2 case studies performed so far by MPEG
RVC experts [42, 66] are the RVC-CAL specifications of MPEG-4 Simple Profile
decoder and MPEG-4 AVC decoder [27].

MPEG Reconfigurable Video Coding 233

Encoded
Bitstream

+

+
Decoded
Video

Parser
BSDL

Residu
RVC-CAL

Picture Buffering
RVC-CAL

Motion Compensation
RVC-CAL

Fig. 19 Hybrid decoder structure

PA
R

SE
R

M
E R

G
E

TEXTURE DECODING (Y)

[01111001...]

BITSTREAM DECODED DATA

MOTION COMPENSATION (Y)

TEXTURE DECODING (U)

TEXTURE DECODING (V)

MOTION COMPENSATION (U)

MOTION COMPENSATION (V)

Fig. 20 MPEG-4 Simple Profile decoder description

4.6.2 MPEG-4 Simple Profile (SP) Decoder

Figure 20 shows the network representation of the macroblock-based MPEG-4
Simple Profile decoder description. The parser is a hierarchical network of actors
(each of them is described in a separate FNL file). All other blocks are atomic actors
programmed in RVC-CAL. Figure 20 presents the structure of the MPEG-4 Simple
Profile ADM as described within RVC. Essentially it is composed of four main
parts: the parser, a luminance component (Y) processing path, and two chrominance
component (U, V) processing paths. Each of the paths is composed by its texture
decoding engine as well as its motion compensation engine (both are hierarchical
RVC-CAL Functional Units).

The MPEG-4 Simple Profile abstract decoder model that essentially results to
be a dataflow program (Fig. 20, Table 3), is composed of 27 atomic FUs (or actors
in dataflow programming) and 9 sub-networks (actor/network composition); atomic
actors can be instantiated several times, for instance there are 42 actor instantiations
in this dataflow program. Figure 25 shows a top-level view of the decoder. The
main functional blocks include the bitstream parser, the reconstruction block, the
2D inverse cosine transform, the frame buffer and the motion compensation module.
These functional units are themselves hierarchical compositions of actor networks.

234 M. Mattavelli et al.

4.6.3 MPEG-4 AVC Decoder

MPEG-4 Advanced Video Coding (AVC), or also know as H.264 [69], is a state-
of-the-art video compression standard. Compared to previous coding standards, it is
able to deliver higher video quality for a given compression ratio, and 30% better
compression ratio compared to MPEG-4 SP for the same video quality. Because of
its complexity, many applications including Blu-ray, iPod video, HDTV broadcasts,
and various computer applications use variations of MPEG-4 AVC codec (also
called profiles). A popular uses of MPEG-4 AVC is the encoding of high definition
video contents. Due to high resolutions processing required, HD video is the
application that requires the highest performance for decoding. Common formats
used for HD include 720p (1280×720) and 1080p (1920×1080) resolutions, with
frame rates between 24 and 60 frames per second.

The decoder introduced in this section corresponds to the Constrained Baseline
Profile (CBP). This profile is primarily fitted to lowest-cost applications and
corresponds to a subset of features that are in common between the Baseline, Main,
and High Profiles.

The description of this decoder expresses the maximum of parallelism and
mimics the MPEG4 SP. This description is composed of different hierarchical level.
Figure 21 shows a view of the highest hierarchy of the MPEG-4 AVC decoder—note
that for readability, one input represents a group of input for similar information on
each actor. The main functional block includes a parser, one luma and two chroma
decoders.

The parser analyses the syntax of the bitstream with a given formal grammar.
This grammar, written by hand, will later be given to the parser by a BSDL [64]
description. As the execution of a parser strongly depends on the context of the
bitstream, the parser incorporates a Finite State Machine so that it can sequentially
extract the information from the bitstream. This information passes through an

Fig. 21 Top view of MPEG-4 Advanced Video Coding decoder description

MPEG Reconfigurable Video Coding 235

Fig. 22 Structure of decoding actors

Fig. 23 Structure of prediction actor

entropy decoder and is then encapsulated in several kinds of tokens (residual
coefficients, motion vectors. . .). These tokens are finally sent to the selected input
port of the luma/chroma decoding actor.

Because decoding a luma/chroma component does not need to share infor-
mation with the other luma/chroma component, we choose to encapsulate each
luma/chroma decoding in a single actor. This means that each decoding actor can
run independently and at the same time in a separate thread. The entire decoding
component actor has the same structure.

Luma/chroma decoding actors (Fig. 22) decode a picture and store the decoded
picture for later use in inter-prediction process. Each component owns the memory
needed to store pictures, encapsulates into the Decoded Picture Buffer (DPB) actor.
The DPB actor also contains the Deblocking Filter and is a buffering solution
to regulate and reorganize the resulting video flow according to the Memory
Management Control Operations (MMCO) input.

The Decoded Picture Buffer creates each frame by adding prediction data,
provided by the actor prediction, and residual data, provided by the actor Inverse
Transform. The Prediction actor (Fig. 23) encompasses inter/intra prediction modes
and a multiplexer that sends prediction results to the output port. The PREDselect

input port has the role to stoke the right actors contingent on a prediction mode.
The target of this structure is to offer a quasi-static work of the global actor and, by
adding or removing prediction modes, to easily switch between configurations of the
decoder. For instance, adding B inter-prediction mode into this structure switches
the decoder into the main profile configuration.

236 M. Mattavelli et al.

5 Tools and Integrated Environments Supporting
Development, Analysis and Synthesis of Implementations

Although some years have already passed since the first components of RVC have
been developed, there is still the room of extending the RVC framework and
for improving the performance and functionality of the non-normative tools and
integrated environments supporting simulation, analysis and direct implementation
synthesis. Indeed, besides the goal of providing a unified and high level specification
formalism, an innovative objective of RVC is to narrow the gap between the
algorithmic specification and the generation of the corresponding implementations.
Such gap not only constitutes a serious impediment for the efficient development
of implementations, but the augmented complexity of the new generation of video
codecs, and the increasing heterogeneity of processing platforms, that may include
many-core, multi-core and GPUs, make the gap wider. The fact that an RVC
specification does not imply a specific processing architecture (the single processor),
but abstracts from it, and results to be portable on any combination of architectures,
is a very attractive feature that opens the path to the usage of different tools and
integrated design flows. All of them attempt to ease the development cycles by
implementing:

• Assisted writing of the dataflow program: by the support of fully integrated
development environments including design exploration capabilities.

• Systematic validation of the dataflow program: by verification of integrated
simulators.

• Develop and optimize once, but run everywhere: by generating hardware and/or
software implementations that can be executed on a large panel of platforms by
means of transcompilation using the appropriate back-ends.

This section briefly describes some of the numerous tools appeared and still
under development to improve performance and functionality, that support the
different stages of design flows of an RVC data-flow specification. More examples
and tutorials for the installation and usage of some of the tools and integrated
environments described below are available in a separate technical report which
constitute a non-normative part of the RVC standard [36].

5.1 OpenDF Framework

CAL is supported by a portable interpreter infrastructure that can simulate a hierar-
chical network of actors. This interpreter was first used in the Moses [54] project.
Moses features a graphical network editor, and allows the user to monitor actors
execution (actor state and token values). The project being no longer maintained, it
has been superseded by an Eclipse environment composed of two tools/plugins—
the Open Dataflow environment for CAL editing (OpenDF [56] for short) and the
Graphiti editor for graphically editing the network.

MPEG Reconfigurable Video Coding 237

One interesting and very attracting implementation methodology of MPEG RVC
decoder descriptions is the direct synthesis of the standard specification. OpenDF is
also a compilation framework. It provides a source of relevant application of realistic
sizes and complexity and also enables meaningful experiments and advances in
dataflow programming. More details on the software and hardware code generators
can be found in [41, 70]. Today there exists a backend for generation of HDL
(VHDL/Verilog) [41, 42]. A second backend targeting ARM11 and embedded C
is under development [57] as part of the EU project ACTORS [2]. It is also possible
to simulate CAL models in the Ptolemy II [59] environment.

5.2 Orcc Framework

Works made on action synthesis and actor synthesis [66, 70] led to the creation of a
compiler framework called Open RVC CAL Compiler (Orcc) [55]. This framework
is designed to support multiple language front-ends, each of which translates
actors written in RVC-CAL and FNL network into an Intermediate Representation
(IR), and to support multiple language back-ends, each of which translates the
Intermediate Representation into the supported languages. IR provides a dataflow
representation that can be easily transformed in low level languages. Currently the
only maintained back-end is a C language backend (Fig. 24).

Abstract
Decoder
Model

FNL BSDL

Simulator

Ptolemy
II MosesOpenDF

Scheduling
Analysis

SDF,
CSDF,
BDF,
DDF

SW code
generator

HW code
generator

ARMC VHDL
Verilog

RVC Abstract Decoder Model

Non-normative tools and simulators for RVC

CAL

Fig. 24 OpenDF: tools

238 M. Mattavelli et al.

Table 1 Hardware synthesis results for a proprietary implementation of a MPEG-4 Simple Profile
decoder

Size Speed Code size Dev. time

slices, BRAM (kMB/s) (kSLOC) MM

CAL 3872, 22 290 4 3

VHDL 4637, 26 180 15 12

Improv. 1.2 1.6 3.75 4

factor

The numbers are compared with a reference hand written design in VHDL
kMB/s kilo macroblocks per second, kSLOC kilo source lines of code

5.3 CAL2HDL Synthesis

Some of the authors have performed an implementation study [41], in which the
RVC MPEG-4 Simple Profile decoder specified in CAL according to the MPEG
RVC formalism has been implemented on an FPGA using a CAL-to-RTL code
generator called Cal2HDL. The objective of the design was to support 30 frames
of 1080p in the YUV420 format per second, which amounts to a production of
93.3 MB of video output per second. The given target clock rate of 120 MHz implies
1.29 cycles of processing per output sample on average.

The results of the implementation study were encouraging in that the code
generated from the MPEG RVC CAL specification did not only outperform the
handwritten reference in VHDL, both in terms of throughput and silicon area,
but also allowed for a significantly reduced development effort. Table 1 shows the
comparison between CAL specification and the VHDL reference implemented over
a Xilinx Virtex 2 pro FPGA running at 100 MHz.

It should be emphasized that this counter-intuitive result cannot be attributed
to the sophistication of the synthesis tool. On the contrary the tool does not
perform a number of potential optimizations, such as for instance optimizations
involving more than one actor. Instead, the good results appear to be yield by
the implementation and development process itself. The implementation approach
was based generating a proprietary implementation of the standard MPEG RVC
toolbox composed of FUs of lower level of granularity. Thus the implementation
methodology was to substitute the FU of the standard abstract decoder model of the
MPEG-4 SP with an equivalent implementation, in terms of behavior. Essentially
standard toolbox FUs were substituted with networks of FU described as actors of
lower granularity (Fig. 25) [28–30, 46].

The initial design cycle of the proprietary RVC library resulted in an implementa-
tion that was not only inferior to the VHDL reference, but one that also failed to meet
the throughput and area constraints. Subsequent iterations explored several other
points in the design space until arriving at a solution that satisfied the constraints.
At least for the considered implementation study, the benefit of short design cycles

MPEG Reconfigurable Video Coding 239

Bitstream

idct2d

motion
Video

ddr

serialize parser acdc

Fig. 25 Top-level dataflow graph of the proprietary implementation of the RVC MPEG-4 decoder

seem to outweigh the inefficiencies that resulted from high-level synthesis and the
reduced control over implementation details.

In particular, the asynchrony of the programming model and its realization in
hardware allowed for convenient experiments with design ideas. Local changes,
involving only one or a few actors, do not break the rest of the system in spite
of a significantly modified temporal behavior. In contrast, any design methodology
that relies on precise specification of timing—such as RTL, where designers specify
behavior cycle-by-cycle—would have resulted in changes that propagate through
the design.

Table 1 shows the quality of result produced by the RTL synthesis engine of
the MPEG-4 Simple Profile video decoder. Note that the code generated from
the high-level dataflow RVC description and proprietary implementation of the
MPEG toolbox actually outperforms the hand-written VHDL design in terms of
both throughput and silicon area for a FPGA implementation.

5.4 CAL2C Synthesis

Another synthesis tool called Cal2C [66, 70] currently available at [55] validates
another implementation methodology of the MPEG-4 Simple Profile dataflow
program provided by the RVC standard (Fig. 20). The SW code generator presented
in details in [66] uses process network model of computation [44] to implement
the CAL dataflow model. The compiler creates a multi-thread program from
the given dataflow model, where each actor is translated into a thread and the
connectivity between actors is implemented via software FIFOs. Although the
generation provides correct SW implementations, inherent context switches occur
during execution, due to the concurrent execution of threads, which may lead to
inefficient SW execution if the granularity of actor is too fine.

240 M. Mattavelli et al.

Table 2 MPEG-4 Simple
Profile decoder speed and
SLOC

MPEG4 SP Speed Clock speed Code size

decoder (kMB/s) (GHz) (kSLOC)

CAL simulator 0.015 2.5 3.4

Cal2C 8 2.5 10.4

Cal2HDL 290 0.12 4

Table 3 Code size and
number of files automatically
generated for MPEG-4
Simple Profile decoder

MPEG-4 SP decoder CAL C actors C scheduler

Number of files 27 61 1

Code size (kSLOC) 2.9 19 2

Major problems with multi-threaded programs are discussed in [48]. A more
appropriate solution that avoids thread management are presented in [49, 58].
Instead of suspending and resuming threads based on the blocking read semantic
of process network [45], actors are, instead, managed by a user-level scheduler
that select the sequence of actor firing. The scheduler checks, before executing
an actor, if it can fire, depending on the availability of tokens on inputs and the
availability of rooms on outputs. If the actor can fire, it is executed (these two
steps refers to the enabling function and the invoking function of [58]). If the actor
cannot fire, the scheduler simply tests the next actor to fire (sorted following an
appropriate given strategy) and so on. This code generator based on this concept [70]
is available at [55]. Such a compiler presents a scheduler that has the two following
characteristics: (1) actor firings are checked at run-time (the dataflow model is
not scheduled statically), (2) the scheduler executes actors following a round-robin
strategy (actors are sorted a priori).

In the case of the standard RVC MPEG-4 SP dataflow model such a generated
mono-thread implementation is about four times faster than the one obtainable
by [66]. Table 2 shows that synthesized C-software is faster than the simulated
CAL dataflow program (80 frames/s instead of 0.15 frames/s), and twice the real-
time decoding for a QCIF format (25 frames/s). However it remains slower than the
automatically synthesized hardware description by Cal2HDL [41].

As described above, the MPEG-4 Simple Profile dataflow program is composed
of 61 actor instantiations in the flattened dataflow program. The flattened network
becomes a C file that currently contains a round robin scheduler for the actor
scheduling and FIFOs connections between actors. Each actor becomes a C file
containing all its action/processing with its overall action scheduling/control. Its
number of SLOC is shown in Table 3. All of the generated files are successfully
compiled by gcc. For instance, the “ParserHeader” actor inside the “Parser” network
is the most complex actor with multiple actions. The translated C-file (with actions
and state variables) includes 2062 SLOC for both actions and action scheduling.
The original CAL file contains 962 lines of codes as a comparison.

A comparison of the CAL description (Table 4) shows that the MPEG-4 AVC
CAL decoder is twice more complex in RVC-CAL than the MPEG-4 Simple Profile
CAL description. Some parts of the model have already been redesign in order to
improve pipelining and parallelism between actors. A simulation of the MPEG-4

MPEG Reconfigurable Video Coding 241

Table 4 Code size and
number of files automatically
generated for MPEG-4 AVC
decoder

MPEG-4 AVC decoder CAL C actors C scheduler

Number of files 43 83 1

Code size (kSLOC) 5.8 44 0.9

AVC CAL model on a Intel Core 2 Duo @ 2.5 GHz is more than 2.5 slower than the
RVC MPEG-4 Simple Profile description.

Comparing to the MPEG-4 Simple Profile CAL model, the MPEG-4 AVC
decoder has been modeled to use more CAL possibility (for instance processing
of several tokens in one firing) while staying fully RVC conformant. Thanks to
this increasing complexity, MPEG-4 AVC CAL model is the most reliable way to
test the accordance and the efficiency of the current RVC tools. The current SW
code generation of MPEG-4 AVC is promising since it can achieve up to 53 fps
and can be further partitioned over more processors for the instantiation of parallel
implementations.

5.5 Integrated Design Flows Including Design Exploration
and Full SW/HW Synthesis Capabilities

Orcc is also available as an Eclipse-based Integrated Development Environment
(IDE) integrated with several other tools providing design exploration capabili-
ties and extended synthesis functionality for SW and HW component, including
the synthesis support of the SW/HW interconnections for some heterogeneous
platforms. The environment is composed of two editors dedicated to handle both
actor programming and network designs. A graphical editor enables the building
of the actor network using visual programming graphical primitives. The editor
also supports hierarchical representations, assigning whole subnetworks to graph
nodes, and enabling hierarchical navigation. When the dataflow network is built,
a full-blown RVC-CAL editor with advanced features, syntax coloring, content
assist and code validation, supports the development of the actors. The development
environment is able to parse the actors and build the intermediate representation
on-the-fly, in a incremental fashion, allowing fast simulation and compilation. In
addition to the editors functionality, Orcc provides a complete Java-based simulator
which enable the test and validation of the dataflow program without taking in
consideration low-level details relative to the target platform, but focusing only the
correctness of the algorithm specification. The simulator does not simply interpret
the intermediate representation of networks and actors, but it also performs all
interactions required to perform a full functional validation, such as displaying
text, images or videos to the screen. Orcc includes back-ends that generates
C/C++ programs supporting many and multi-core processor platforms. The Orcc
compilation framework is also completed by several other tools for performance
analysis, design space exploration and HW generation and optimization constituting

242 M. Mattavelli et al.

CAL DATAFLOW
PROGRAMMING
(ORCC)

DESIGN SPACE
EXPLORATION
(TURNUS)

HDL SYNTHESIS
(XRONOS)

SW SYNTHESIS
(ORCC backends)

CAL
Program

Functional
Verification

CAL
Profiling

Design
Space

Exploration

Mapping
partitioning,
scheduling,
buffer size

Refactored
CAL Program

Hardware
Code

Generation

RTL
Synthesis

RTL
implementation

SW
executable

SW
Compilation

SW
Code

Generation

Interfaces
Synthesis

Constraints

Architecture
Model

Runtime
Performance

Data

Performance
Estimation,
Analysis and
Refactoring
Directions

Refactoring

CAL library

HDL library

Fig. 26 Illustration of the design flow supporting, development, design exploration and synthesis
of system implementations on heterogeneous platforms of RVC specifications, including the
supporting tools and the associated dependencies

a complete system design environment for heterogeneous systems. A graphic
representation of the system design flow is provided in Fig. 26. In the picture the
functionality of the design flow are labelled with their dependencies and mapped
into the corresponding tool environment. Whereas Orcc provides dataflow program
development functionalities and simulation capabilities (top section of the design
flow) and SW generation (right bottom part of the flow) Turnus provides a design
space environment integrated as Plug-in of the Orcc Eclipse environment and
Xronos an HDL synthesis tool (left bottom part of the design flow). Both Turnus
and Xronos of are available as open source tools at [60, 61].

5.5.1 Turnus Design Exploration Framework

The first step of the design space exploration provided by TURNUS is a functional
high-level and platform-independent profiled simulation [14, 62]. During this stage,
an analysis of the design under study can be performed leading to the identifi-
cation of the processing structure and associated complexity. This initial analysis

MPEG Reconfigurable Video Coding 243

is useful for finding complexity bottlenecks and identify potential parallelism.
Two approaches to profiling are supported by TURNUS. An abstract profiling
of operators is provided by adding profiling information on top of the Orcc
simulator: for each executed action both (a) the computational load and (b) the data-
transfers and storage load are evaluated, thus the computational load is measured
in terms of executed operators and control statements (i.e. comparison, logical,
arithmetic and data movement instructions). The data-transfers and storage load
are evaluated in terms of state variables utilization, input/output port utilization,
buffers utilization and tokens production/consumption. A second profiling approach
is based on extracting the causation trace of a run of the simulation corresponding
to a given input data vector. Then the causation trace is annotated by adding
the profiling information corresponding to each action execution and data token
exchange obtained by a single execution on a specific platform. By analyzing the
annotated causation trace is then possible to efficiently explore the design space
in terms of looking for close-to-optimal partitioning configurations, buffer dimen-
sion specifications and scheduling strategies. More details of the methodologies
supported by TURNUS framework for jointly exploring the partitioning, buffer
dimensioning and scheduling configurations can be found in [17, 52, 71, 72]. In
these work it is shown how important is a joint exploration of the design space for
maximizing the performance of the RVC HEVC decoder. Close-to-optimal results
are systematically obtained by the exploration tools supported by TURNUS for
several different implementation configurations on many-core platforms.

5.5.2 Xronos System Design Synthesis Framework

Xronos although based on the XLIM backend of the Orcc compiler is a complete
new framework for generating RTL descriptions from RVC-CAL dataflow pro-
grams. Xronos is based on two tools: the Orcc compiler used as front-end and the
OpenForge synthesizer which constitute an integral part of Xronos. Orcc parses
the RVC-CAL actors and generates an intermediate representation, then the IR is
serialized to an actor object that contains all the information originally present in the
RVC-CAL file. Then a set of interfaces can generate different LIM objects which
are transformed by the following set of transformation:

• Read/Store Once: the number of load and stores is minimized, so that a read and
store operation can be done at best only once in a block of sequential instructions.

• Function Inliner: all functions are automatically inlined.
• SSA: a single static assignment is provided to each variable.
• 3AC: each operation is transformed into a 4-tuple of (operator, operand1,

operand2, result).
• Cast Adder: the necessary casting is provided to each operation.
• Repeat Pattern: the transformation supporting the CAL repeat statement is

provided

244 M. Mattavelli et al.

• Input/Output port Statement Finder: the creation of the dataflow representa-
tion binding input and outputs of loop and branches statements.

Finally the final design object is generated by allocating the necessary memory and
creating a slave LIM task visiting all actions of the actor, and by generating the
master task, the scheduler of the actors, and all the actions firing rules and the
actors finite state machine if actors have any. Relying on the Orcc intermediate
representation and associated compiler, it is also possible to generate C code, thus
it is possible to simulate and debug the RVC-CAL dataflow program by saving
all tokens that are consumed and produced by each actor. Thus, Xronos for each
synthesized actor generates a RTL testbench that takes as inputs the token traces,
and if a difference is found on a synthesized actor output the framework stops
the behavioural RTL simulation and indicates to the designer where an error has
occurred. More details and functionality of the synthesis framework can be found
in [1, 4, 18, 63, 65].

5.6 The TŸCHO Framework

A more recent tool infrastructure supporting CAL and RVC-CAL is the TŸCHO

framework [16].2 Its distinguishing characteristic is that it is built on actor
machines [39, 40], an abstract machine model for representing and manipulating
actors which serves as the internal representation for actors in TŸCHO. As a
consequence, TŸCHO can support different input formats (currently CAL, RVC-
CAL and the process extension discussed in Sect. 4.2.4), which can be freely mixed
and matched within a dataflow program. Optimizations, transformations, and code
generation operate exclusively on the internal representation and thus work equally
regardless of the particular input language.

Among the optimizations relevant to software synthesis TŸCHO supports a
family of reductions, which transform non-deterministic actor machines into deter-
ministic and sequential ones by scheduling the logical steps required to execute
a single actor at compile time, which can be seen as a first step toward code
generation. It also includes composition, the integration of several (usually con-
nected) actors into a single actor, often involving compile-time scheduling of the
concurrent activities among them based on their data dependencies. Composition
is fully general and makes no assumptions regarding the nature of the composed
actors, although it produces best results when the data dependencies between them
are very regular, in the limit leading to a fully static schedule of the composed
actors. TŸCHO’s composition represents a generalization of previous efforts at actor
merging or static scheduling (e.g. in [10–13, 24–26, 31, 47]), which only apply to a
limited class of dataflow actors.

2http://tycho.cs.lth.se.

http://tycho.cs.lth.se

MPEG Reconfigurable Video Coding 245

6 Conclusion

This chapter describes the essential components of the ISO/IEC MPEG Reconfig-
urable Video Coding framework based on the dataflow concept. The RVC MPEG
tool library, that covers in modular form video compression and 3-D graphics
compression algorithms from the different MPEG coding standards, shows that
dataflow programming is an appropriate way to build complex heterogeneous
systems from high level system specifications. The MPEG RVC framework is
also supported by simulators, software and hardware code synthesis tools and
full integrated frameworks including full systems synthesis and design exploration
capabilities. CAL dataflow models used by the MPEG RVC standard result also
particularly efficient for specifying many classes of signal processing systems
in a very synthetic form compared to classical imperative languages. Moreover,
CAL model libraries can be developed in the form of libraries of proprietary
implementations of standard RVC components to describe architectural features of
the desired implementation platform, thus enabling the RVC implementer/designer
to work at level of abstraction comparable to the one of the RVC video coding
algorithms. Hardware and software code generators then provide the low level
system implementation of the actors and associated network of actors for different
and possibly heterogeneous target implementation platforms including multi-core
and many-core processors and programmable hardware (FPGA).

References

1. A. Ab Rahman, A. Prihozhy, M. Mattavelli: Pipeline Synthesis and Optimization of FPGA-
based Video Processing Applications with CAL, Eurasip Journal on Image and Video
Processing, 2011, 2011:19, http://jivp.eurasipjournals.com/content/2011/1/19.

2. Actors FP7 project: http://www.actors-project.eu
3. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. 2000. Clock rate versus IPC: the

end of the road for conventional microarchitectures. SIGARCH Comput. Archit. News 28, 2
(May 2000), 248–259.

4. E. Bezati, R. Thavot, G. Roquier, M. Mattavelli: High-Level Data Flow Design of Signal
Processing Systems for reconfigurable and multi-core heterogeneous platforms, Journal of
Real Time Image Processing, 2012.

5. S.S. Bhattacharyya, G. Brebner, J.W. Janneck, J. Eker, C. von Platen, M. Mattavelli, and
M. Raulet: OpenDF: a dataflow toolset for reconfigurable hardware and multicore systems.
SIGARCH Comput. Archit. News 36(5), 29–35 (2008). https://doi.org/10.1145/1556444.
1556449

6. S.S. Bhattacharyya, J. Eker, J.W. Janneck, C. Lucarz, M. Mattavelli, and M. Raulet: Overview
of the MPEG reconfigurable video coding framework. Journal of Signal Processing Systems
(2011). https://doi.org/10.1007/s11265-009-0399-3

7. C. Tulvan and M. Preda: 3D Graphics Coding in a Reconfigurable Environment. Image
Communications (2013). https://doi.org/10.1016/j.image.2013.08.010

http://jivp.eurasipjournals.com/content/2011/1/19
http://www.actors-project.eu
https://doi.org/10.1145/1556444.1556449
https://doi.org/10.1145/1556444.1556449
https://doi.org/10.1007/s11265-009-0399-3
https://doi.org/10.1016/j.image.2013.08.010

246 M. Mattavelli et al.

8. J.S. Euee, M. Mattavelli, M. Preda, M. Raulet and H. Sun: Overview of the MPEG recon-
figurable video coding framework. Image Communications (2013). https://doi.org/10.1016/j.
image.2013.08.008

9. B. Bhattacharya and S.S. Bhattacharyya, “Parameterized Dataflow Modeling for DSP
Systems,” IEEE Transactions on Signal Processing, vol. 49, pp. 2408–2421, 2001.

10. G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static dataflow,” IEEE
Transactions on signal processing, vol. 44, no. 2, pp. 397–408, 1996.

11. J. Boutellier, C. Lucarz, S. Lafond, V.M. Gomez, and M. Mattavelli, “Quasi-static scheduling
of CAL actor networks for reconfigurable video coding,” Journal of Signal Processing Systems,
pp. 1–12, 2009.

12. J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O. Silven, “Actor merging
for dataflow process networks,” IEEE Transactions on Signal Processing, vol. 63, no. 10, pp.
2496–2508, 2015.

13. J. Boutellier, O. Silvén, and M. Raulet: “Automatic synthesis of TTA processor networks from
RVC-CAL dataflow programs.,” Signal Processing Systems (SiPS), 2011 IEEE Workshop on,
pp.25–30, 4–7 Oct. 2011. https://doi.org/10.1109/SiPS.2011.6088944

14. S. Casale Brunet, E. Bezati, R. Thavot, G. Roquier, M. Mattavelli, J. W. Janneck, Methods
to Explore Design Space for MPEG RVC Codec Specifications, in Signal Processing Image
Communication, Special Issue on Reconfigurable Media Coding, 2013.

15. G. Cedersjö and J. W. Janneck. Processes and actors: Translating Kahn processes to dataflow
with firing, in 2016 International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS), pp. 21–30, IEEE, 2016.

16. G. Cedersjö, Efficient Software Implementation of Stream Programs, dissertation, LU-CS-
DISS 2017–3, Department of Computer Science, Lund University, 2017

17. Simon Casale Brunet, Analysis and optimization of dynamic dataflow programs, Thèse École
polytechnique fédérale de Lausanne EPFL, no. 6663 (2015). http://infoscience.epfl.ch/record/
208775

18. Endri Bezati, High-level synthesis of dataflow programs for heterogeneous platforms: design
flow tools and design space exploration, Thèse École polytechnique fédérale de Lausanne
EPFL, no. 6653 (2015). http://infoscience.epfl.ch/record/207992

19. Y. Chen and L. Chen. Video Compression. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers,
and J. Takala, editors, Handbook of Signal Processing Systems. Springer, second edition, 2012.

20. L. Chiariglione Editor: The MPEG Representation of Digital Media. Springer Ed. 2011. http://
dx.doi.org/10.1007/978-1-4419-6184-6_12

21. D. Ding, L. Yu, C. Lucarz, and M. Mattavelli: Video decoder reconfigurations and AVS
extensions in the new MPEG reconfigurable video coding framework. In: Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on, pp. 164–169 (2008). https://doi.org/10.1109/
SIPS.2008.4671756

22. S. A. Edwards. 2003, Tutorial: Compiling concurrent languages for sequential processors,
ACM Trans. Des. Autom. Electron. Syst. 8, 2 (April 2003), 141–187.

23. J. Eker and J.W. Janneck: CAL Language Report Specification of the CAL Actor Language.
Tech. Rep. UCB/ERL M03/48, EECS Department, University of California, Berkeley (2003)

24. J. Ersfolk, G. Roquier, J. Lilius, M. Mattavelli Scheduling of dynamic data flow programs based
on state space analysis, 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2012, pp. 1661–1664. https://doi.org/10.1109/ICASSP.2012.6288215.

25. J. Ersfolk, G. Roquier, F. Jokhio, J. Lilius, M. Mattavelli, Scheduling of dynamic data flow
programs with model checking„ 2011 IEEE Workshop on Signal Processing Systems (SiPS),
2011, pp. 37–42. https://doi.org/10.1109/SiPS.2011.6088946.

26. O. Esko, P. Jääskeläinen, P. Huerta, C. S. de La Lama, J. Takala, and J. I. Martinez :
“Customized exposed datapath soft-core design flow with compiler support,” IEEE conference
on Field Programmable Logic and Applications (FPL), 2010, pp. 217–222.

https://doi.org/10.1016/j.image.2013.08.008
https://doi.org/10.1016/j.image.2013.08.008
https://doi.org/10.1109/SiPS.2011.6088944
http://infoscience.epfl.ch/record/208775
http://infoscience.epfl.ch/record/208775
http://infoscience.epfl.ch/record/207992
http://dx.doi.org/10.1007/978-1-4419-6184-6{_}12
http://dx.doi.org/10.1007/978-1-4419-6184-6{_}12
https://doi.org/10.1109/SIPS.2008.4671756
https://doi.org/10.1109/SIPS.2008.4671756
https://doi.org/10.1109/ICASSP.2012.6288215
https://doi.org/10.1109/SiPS.2011.6088946

MPEG Reconfigurable Video Coding 247

27. J. Gorin, M. Raulet, Y.L. Cheng, H.Y. Lin, N. Siret, K. Sugimoto, and G. Lee: An RVC
dataflow description of the AVC Constrained Baseline Profile decoder. In: IEEE International
Conference on Image Processing, Special Session on Reconfigurable Video Coding. Cairo,
Egypt (2009)

28. J. Gorin, M. Wipliez, J. Piat, M. Raulet, and F. Preteux. A portable Video Tools Library for
MPEG Reconfigurable Video Coding using LLVM representation. In Design and Architectures
for Signal and Image Processing (DASIP 2010), pages 281–286, 2008.

29. J. Gorin, M. Wipliez, F. Preteux, and M. Raulet. LLVM-based and scalable MPEG-RVC
decoder. Journal of Real-Time Image Processing, pages 1–12.

30. J. Gorin, M. Wipliez, M. Raulet, and F. Preteux. An LLVM-based decoder for MPEG
Reconfigurable Video Coding. In IEEE Workshop on Signal Processing Systems (SiPS 2010),
Washington, D.C., USA, pages 281–286, 2008.

31. R. Gu, J.W. Janneck, S.S. Bhattacharyya, M. Raulet, M. Wipliez, and W. Plishker, “Exploring
the concurrency of an MPEG RVC decoder based on dataflow program analysis,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 19, no. 11, 2009.

32. Graphiti Editor sourceforge: http://graphiti-editor.sf.net
33. International Standard ISO/IEC FDIS 23001-5: MPEG systems technologies - Part 5: Bit-

stream Syntax Description Language (BSDL)
34. ISO/IEC International Standard 23001-4: MPEG systems technologies – Part 4: Codec

Configuration Representation (2011)
35. ISO/IEC International Standard 23002-4: MPEG video technologies – Part 4: Video tool library

(2010)
36. ISO/IEC International Standard 23002-6: MPEG systems technologies – Part 6: Tools for

reconfigurable media coding implementations (2017)
37. ISO/IEC International Standard 23001-4: MPEG systems technologies – Part 4: Codec

Configuration Representation (2017)
38. E.S. Jang, J. Ohm, and M. Mattavelli: Whitepaper on Reconfigurable Video Coding (RVC).

In: ISO/IEC JTC1/SC29/WG11 document N9586. Antalya, Turkey (2008). http://www.
chiariglione.org/mpeg/technologies/mpb-rvc/index.h%tm

39. J. W. Janneck: Actor machines - a machine model for dataflow actors and its applications,
Department of Computer Science, Lund University, Tech. Rep. LTH 96-2011, LU-CS-TR
201–247, (2011).

40. J. W. Janneck: A Machine Model for Dataflow Actors and its Applications 45th Annual
Asilomar Conference on Signals, Systems, and Computers November 6–9, 2011.

41. J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier, M. Wipliez, and M. Raulet: Synthesizing
hardware from dataflow programs. Journal of Signal Processing Systems (2011). http://dx.doi.
org/10.1007/s11265-009-0397-5

42. J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier, M. Wipliez, and M. Raulet: Synthesizing
hardware from dataflow programs: An MPEG-4 simple profile decoder case study. In: Signal
Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pp. 287–292 (2008). https://doi.
org/10.1109/SIPS.2008.4671777

43. J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez: Reconfigurable video coding: a
stream programming approach to the specification of new video coding standards. in MMSys
’10: Proceedings of the first annual ACM SIGMM conference on Multimedia systems. USA:
ACM, 2010, pp. 223–234.

44. G. Kahn: The semantics of a simple language for parallel programming. In: J.L. Rosenfeld
(ed.) Information processing, pp. 471–475. North Holland, Amsterdam, Stockholm, Sweden
(1974)

45. G. Kahn, MacQueen, D.B.: Coroutines and networks of parallel processes. In: IFIP Congress,
pp. 993–998 (1977)

http://graphiti-editor.sf.net
http://www.chiariglione.org/mpeg/technologies/mpb-rvc/index.h%tm
http://www.chiariglione.org/mpeg/technologies/mpb-rvc/index.h%tm
http://dx.doi.org/10.1007/s11265-009-0397-5
http://dx.doi.org/10.1007/s11265-009-0397-5
https://doi.org/10.1109/SIPS.2008.4671777
https://doi.org/10.1109/SIPS.2008.4671777

248 M. Mattavelli et al.

46. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, page 75. IEEE Computer Society,
2004.

47. E.A. Lee and D.G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, vol.
75, no. 9, pp. 1235–1245, 1987.

48. E.A. Lee: The problem with threads. IEEE Computer Society 39(5), 33–42 (2006). http://doi.
ieeecomputersociety.org/10.1109/MC.2006.180

49. E.A. Lee and T.M. Parks: Dataflow Process Networks. Proceedings of the IEEE 83(5), 773–801
(1995)

50. C. Lucarz, I. Amer, and M. Mattavelli: Reconfigurable Video Coding: Concepts and Tech-
nologies. In: IEEE International Conference on Image Processing, Special Session on
Reconfigurable Video Coding. Cairo, Egypt (2009)

51. M. Mattavelli, I. Amer, and M. Raulet, “The Reconfigurable Video Coding Standard [Standards
in a Nutshell],” Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 159–167, May 2010.

52. Malgorzata Maria Michalska, Systematic Design Space Exploration of Dynamic Dataflow
Programs for Multi-core Platforms, Thèse École polytechnique fédérale de Lausanne EPFL,
no. 7607 (2017). http://infoscience.epfl.ch/record/226334

53. S. P. Midkiff, Automatic Parallelization: An Overview of Fundamental Compiler Techniques,
Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers 2012

54. Moses project: http://www.tik.ee.ethz.ch/moses/
55. The Open RVC CAL Compiler project sourceforge: http://orcc.sf.net
56. The OpenDF dataflow project sourceforge: http://opendf.sf.net
57. C. von Platen and J. Eker: Efficient realization of a cal video decoder on a mobile terminal

(position paper). In: Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pp.
176–181 (2008). https://doi.org/10.1109/SIPS.2008.4671758

58. W. Plishker, N. Sane, M. Kiemb, K. Anand, and S.S. Bhattacharyya: Functional DIF for Rapid
Prototyping. In: Proceedings of the 2008 The 19th IEEE/IFIP International Symposium on
Rapid System Prototyping - Volume 00, pp. 17–23. IEEE Computer Society (2008)

59. Ptolemy II: http://ptolemy.eecs.berkely.edu
60. TURNUS: http://github.com/turnus
61. XRONOS: http://github.com/orcc/xronos
62. J. Janneck, I.D. Miller, and D.B. Parlour: Profiling dataflow programs. in: Proceedings of the

IEEE International Conference on Multimedia and Expo, 2008, pp. 1065–1068.
63. S. Casale-Brunet, M. Mattavelli, A. Elguindy, E. Bezati, R. Thavot, G. Roquier, and J. Janneck:

Methods to explore design space for MPEG RMC codec specifications. In: Journal of Signal
Processing Image Communication, Elsevier, (2013).

64. M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli: Validation of bitstream syntax and synthesis of
parsers in the MPEG Reconfigurable Video Coding framework. In: Signal Processing Systems,
2008. SiPS 2008. IEEE Workshop on, pp. 293–298 (2008). https://doi.org/10.1109/SIPS.2008.
4671778

65. G. Roquier, E. Bezati and M. Mattavelli: Hardware and Software Synthesis of Heterogeneous
Systems from Dataflow Programs, Journal of Electrical and Computer Engineering, special
issue on “ESL Design Methodology”, vol. 2012, Article ID 484962, 11 pages, 2012. doi:
10.1155/2012/484962.

66. G. Roquier, M. Wipliez, M. Raulet, J.W. Janneck, I.D. Miller, and D.B. Parlour: Automatic
software synthesis of dataflow program: An MPEG-4 simple profile decoder case study. In:
Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pp. 281–286 (2008). https://
doi.org/10.1109/SIPS.2008.4671776

67. J. Thomas-Kerr, J.W. Janneck, M. Mattavelli, I. Burnett, and C. Ritz: Reconfigurable media
coding: Self-Describing multimedia bitstreams. In: Signal Processing Systems, 2007 IEEE
Workshop on, pp. 319–324 (2007). https://doi.org/10.1109/SIPS.2007.4387565

http://doi.ieeecomputersociety.org/10.1109/MC.2006.180
http://doi.ieeecomputersociety.org/10.1109/MC.2006.180
http://infoscience.epfl.ch/record/226334
http://www.tik.ee.ethz.ch/moses/
http://orcc.sf.net
http://opendf.sf.net
https://doi.org/10.1109/SIPS.2008.4671758
http://ptolemy.eecs.berkely.edu
http://github.com/turnus
http://github.com/orcc/xronos
https://doi.org/10.1109/SIPS.2008.4671778
https://doi.org/10.1109/SIPS.2008.4671778
https://doi.org/10.1109/SIPS.2008.4671776
https://doi.org/10.1109/SIPS.2008.4671776
https://doi.org/10.1109/SIPS.2007.4387565

MPEG Reconfigurable Video Coding 249

68. J.A. Thomas-Kerr, I. Burnett, C. Ritz, S. Devillers, D.D. Schrijver, and R. Walle: Is that a fish
in your ear? a universal metalanguage for multimedia. Multimedia, IEEE 14(2), 72–77 (2007).
https://doi.org/10.1109/MMUL.2007.38

69. T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra: Overview of the H.264/AVC video
coding standard. Circuits and Systems for Video Technology, IEEE Transactions on 13(7),
560–576 (2003). https://doi.org/10.1109/TCSVT.2003.815165

70. M. Wipliez, G. Roquier, and J.F. Nezan: Software code generation for the RVC-CAL language.
Journal of Signal Processing Systems (2011). http://dx.doi.org/10.1007/s11265-009-0390-z

71. M. Michalska, N. Zufferey, E. Bezati, M. Mattavelli: "High-precision performance estima-
tion of dynamic dataflow programs," IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, IEEE MCSoC, Lyon, France, September 21–23 2016.

72. M. Michalska, N. Zufferey, E. Bezati, M. Mattavelli: "Design space exploration problem
formulation for dataflow programs on heterogeneous architectures," IEEE 10th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE MCSoC, Lyon,
France, September 21–23 2016.

https://doi.org/10.1109/MMUL.2007.38
https://doi.org/10.1109/TCSVT.2003.815165
http://dx.doi.org/10.1007/s11265-009-0390-z

Signal Processing for Wireless
Transceivers

Markku Renfors, Markku Juntti, and Mikko Valkama

Abstract The data rates as well as quality of service (QoS) requirements for
rich user experience in wireless communication services are continuously growing.
While consuming a major portion of the energy needed by wireless devices, the
wireless transceivers have a key role in guaranteeing the needed data rates with
high bandwidth efficiency. The cost of wireless devices also heavily depends on the
transmitter and receiver technologies. In this chapter, we concentrate on the problem
of transmitting information sequences efficiently through a wireless channel and
performing reception such that it can be implemented with state of the art signal
processing tools. The operations of the wireless devices can be divided to RF
and baseband (BB) processing. Our emphasis is to cover the BB part, including
the coding, modulation, and waveform generation functions, which are mostly
using the tools and techniques from digital signal processing. But we also look
at the overall transceiver from the RF system point of view, covering issues like
frequency translations and channelization filtering, as well as emerging techniques
for mitigating the inevitable imperfections of the analog RF circuitry through
advanced digital signal processing methods.

1 Introduction and System Overview

The data rates as well as quality of service (QoS) requirements for rich user
experience in wireless communication services are continuously growing. More
and more devices will be connected to the global ubiquitous information network.
According to Cisco’s prediction, the volume of mobile data traffic will expand

M. Renfors (�) · M. Valkama
Tampere University of Technology, Faculty of Computing and Electrical Engineering, Tampere,
Finland
e-mail: markku.renfors@tut.fi; mikko.e.valkama@tut.fi

M. Juntti
University of Oulu, Centre for Wireless Communications, Oulu, Finland
e-mail: markku.juntti@oulu.fi

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_8

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_8&domain=pdf
mailto:markku.renfors@tut.fi
mailto:mikko.e.valkama@tut.fi
mailto:markku.juntti@oulu.fi
https://doi.org/10.1007/978-3-319-91734-4_8

252 M. Renfors et al.

seven times over the next 4 years, reaching nearly 12 billion mobile devices
and generating 49 exabytes of mobile traffic by 2021 [39]. The diversity of the
devices and services will increase. While the demand of high data rates to provide
multimedia services, like video transmission, is increasing, the demand of low rate
sensor information to enable location and context awareness of the services is also
increasing. While the 4th generation (4G) LTE network, supporting mainly mobile
broadband communications, has been widely deployed, the on-going 5th generation
(5G) wireless cellular system development aims to create a multi-service network
supporting a wide range of services with different requirements regarding data rate,
latency, and reliability. These services include enhanced mobile broadband (eMBB)
targeting at Gbps peak data rates, massive machine-type communications (mMTC)
closely related to the Internet-of-things (IoT) concept, and ultra reliable low-latency
communications (URLLC) needed, e.g., in the contexts of smart traffic, remote
control of vehicles and industrial processes, and so-called tactile communications
[150].

To enable the cost, energy and bandwidth efficient realization of the vision, the
transceiver and technology need to make major leaps. One of the key concerns
is the overall power and energy consumption of the devices and the whole
network infrastructure. The energy efficiency is major issue from battery and device
operation perspective, but also relates to the sustainable development when the
complete system is concerned. Therefore, in addition to more conventional target
of bandwidth efficiency and increasing the data rates, also the power and energy
efficiency of the evolving wireless systems is of major concern. The goal of this
chapter is to introduce the key aspects of the baseband (BB) and radio frequency
(RF) signal processing chains of wireless transmitters and receivers. Our emphasis
is on cellular type systems, but many of the principles can be applied in various
short range, wireless local area networks and other wireless applications.

The higher layers of the communication protocol stack of the Open System
Interconnect (OSI) model have conventionally been designed separate from the
physical layer. However, the current wireless systems are introducing more and
more crosslayer design and optimization. As an example, the evolving cellular
Third Generation (3G) Long Term Evolution (LTE) systems use so called channel
aware user scheduling and radio resource management (RRM) techniques. The
applied methodology capitalizes on signal processing tools and uses to some extent
similar approach as the physical layer signal processing. However, we do not cover
those either, but they are definitely important currently evolving fields of research
and development. Signal processing tools are applied in wireless devices also in
multimedia and application processing, data compression, etc. However, we do not
cover those aspects, but concentrate on the connectivity related problems on the
physical layer.

The typical transmitter (TX) and receiver (RX) functionalities are summarized
in Fig. 1. Starting with the first block in the TX chain, information is coded using
forward error control (FEC) coding with interleaving. The purpose of this is to
protect the information from errors. Data modulation transforms the information bit
sequence into a complex multi-level symbol sequence with reduced sample rate and

Signal Processing for Wireless Transceivers 253

Filtering,
decimation &

downconversion

Coding &
modulation

Infor-
mation

a

b

Waveform
generation

D/A
conversion

Inter-
polation &

upconversion

RF
system

RF
signal

Demodulation
&

decoding

Infor-
mation

estimate

Waveform
matched

filter

A/D
conversion

RF
system

RF
signal

Fig. 1 Simplified wireless transceiver processing chain: (a) transmitter, (b) receiver

bandwidth. The waveform generation block creates discrete-time baseband signal
with specific spectral and time-domain characteristics suitable for transmission
in the used frequency band and radio propagation environment. The fundamental
classes of waveforms include linear and FSK-type single-carrier transmission,
multicarrier transmission, as well as spread-spectrum techniques. Multiplexing and
multiple-access functionalities are also closely related with waveform generation.
Finally, the generated waveform is upconverted to the used RF channel and
amplified to desired transmission power level. Depending on the used transmitter
architecture, the upconversion can be done in multiple steps, using intermediate
frequency (IF) processing stages along the way. Also, the upconversion process
may be carried out at least partially in the DSP domain. In general, digital-to-
analog (D/A) converter, which acts as the interface between digital and analog
front-ends, is gradually moving towards the antenna. The receiver side processing
in Fig. 1b performs the opposite operations to recover the original information
sequence with as little errors as possible while keeping the processing latency and
energy consumption feasible.

This chapter is organized as follows. Section 2 introduces the concepts for
coding, interleaving and modulation as well as their receiver counterparts. Because
receiver processing in general and equalization in particular is the more demanding
task, the emphasis is on that side of the problem. One of the main capacity boosters
at the physical layer is the use of multiple antennas both/either in a transmitter and/or
in a receiver or so called multiple-input multiple-output (MIMO) communications;
it is considered as a key example in the receiver processing. Section 3 focuses on
the waveform generation and its inverse operations and it has special emphasis
on multicarrier techniques which have been adopted in most of the recent and
emerging broadband wireless system standards. Also the timely topic of spectrum
agility, facilitating effective fragmented spectrum use, is addressed. The generation
of the actual transmitted signal, using both digital signal processing and analog RF
processing, is treated in Sect. 4. Because RF parts are usually the most expensive
and power hungry components of a wireless device, it often makes sense to use BB
processing to compensate for RF non-idealities; this is also a major topic in that
section. Finally, conclusions and some further topics are discussed in Sect. 5

254 M. Renfors et al.

FEC

TX

xFEC
encoding

Infor-
mation Interleaver Modulation

Channel
H

x

FEC
decoding

Infor-
mation

estimate

De-
interleaver

Equalizer &
demodulation

RX

y=Hx+ηg y

Fig. 2 Symbol rate system for coding, modulation, demodulation, equalization and decoding

2 Equalization and MIMO Processing

This section focuses on the demodulation and decoding block of Fig. 1, which
belongs to the most computation-intensive parts of the receiver baseband processing.
We also consider the channel equalization as part of this problem. The model is
simplified such that all our processing is performed on symbol rate, while the
subsequent blocks of Fig. 1 perform all the higher sampling rate operations needed
in radio transmission and reception. The simplified system model is depicted in
Fig. 2. In other words, we focus on coding and modulation in the transmitter side
and their counterpart operations in the receive end. In addition, the channel impulse
response needs to be estimated, and that is considered as well.

2.1 System Model

We consider transmission of a binary information stream or data packet via bit inter-
leaved coded modulation (BICM). The information sequence is first FEC encoded
by some appropriate coding method, like block, convolutional or concatenated
coding [22, 126, 148]. Parallel concatenated convolutional (PCC) or so called turbo
codes [24] are among the most commonly applied codes currently. They have been
adopted to 3G and LTE cellular systems, amongst others. Other popular codes
include low-density parity check (LDPC) codes [61]. As shown in Fig. 2, the coded
information is interleaved and modulated. The purpose of interleaving is to protect
the data from bursty errors due to fading of the wireless channel. It re-organizes
the order in which encoded bits are transmitted so that the consequent bits are
uncorrelated. This maintains the error correction capability of the code [22, 66, 126].
Several interleaver designs exist, but we do not discuss that further. We assume any
interleaving with sufficient length compared to the channel coherence time.

Signal Processing for Wireless Transceivers 255

Multiple-input-multiple-output radio channel, i.e., multiple transmit and receive
antennas [27, 66, 165] is considered. The MIMO technology can be used to boost
both/either the performance (error rate) and/or data rate of a single link as well as
the whole system by applying multiuser MIMO processing. We assume that the
channel is frequency-flat so that no inter-symbol interference (ISI) is generated.
This can be achieved, e.g., by orthogonal frequency division multiplexing (OFDM),
which is commonly used in current wireless systems like in the downlink 3GPP
Long Term Evolution (LTE) and its Advanced version (LTE-A) [45], wireless local
loops (WLAN) 802.11a/g/n, and Worldwide Interoperability for Microwave Access
(WiMAX). If ISI is generated, an equalizer is needed as is discussed later in this
chapter. The channelization and different multiplexing schemes are covered in more
detail in Sect. 3. Perfect time and frequency synchronization is assumed.

A MIMO transmission system with N TX and M RX antennas, where N ≤ M ,
is considered. This assumption is used to guarantee unique detectability of the data.
We assume a linear quadrature amplitude modulation (QAM). The received signal
can be described with the equation

y = HPx+ η, (1)

where x ∈ �N is the vector of transmitted data symbols, � ⊂ C is a discrete set of
modulation symbols, η ∈ C

M is a vector containing identically distributed circularly
symmetric complex Gaussian noise samples with variance σ 2, H ∈ C

M×N is the
channel matrix containing complex Gaussian fading coefficients, and P ∈ C

N×N is
the pre-coding matrix. In other words, the element at the mth row and nth column of
H is the complex channel coefficient between TX antenna n and RX antenna m. The
pre-coding matrix can be used for beamforming to improve the system performance
in case some degree of channel knowledge is available at the transmitter. That can
be achieved by some feedback mechanism or assuming reciprocal reverse channel,
which may be the case in time-division duplex (TDD) systems, for example.

The modulated symbols, i.e., the entries of x are drawn from a complex QAM
constellation � with size |�| = 2Q, where Q is the number of encoded bits
per symbol. For example, the 16-QAM constellation would be � = {(±3 ±
j3), (±3±j), (±1±j3), (±1±j)},where j2 = −1. The modulation mapping from
consequent encoded and interleaved bits is typically performed by Gray mapping
[126, Sect. 4.3]. We denote the bijective mapping function by ψ such that the
binary encoded bit vector bn ∈ {−1,+1}Q is mapped to symbol xn = ψ(b) or
x = ψ(b), where b = [bT

1,bT
2, . . . ,bT

N]T ∈ {−1,+1}QN . The coded bit sequence
b has been obtained from the original information bit sequence via FEC encoding,
whose operation depends on the applied coding scheme.

The model presented herein is a MIMO system in a frequency-flat channel with
no ISI. However, the mathematical formulation can be relatively straightforwardly
generalized to cover also multipath propagation and ISI. The receiver principles
and the solutions proposed below are also applicable to a large extent for such a
model. The equalizer principles developed for ISI channels have been a source of
inspiration also for the MIMO problem and from mathematical perspective they are
equivalent to a large extent.

256 M. Renfors et al.

The model above covers several MIMO configurations. It can incorporate space-
time coding or transmit diversity schemes, which usually aim at increasing the
diversity gain or robustness to fading [27, 66, 165]. They can similarly include
spatial multiplexing (SM), wherein the key target is to increase the data rate of
the transmission. From receiver signal processing perspective, which is the key
topic of this chapter and best aligned on the scope of this handbook, the SM is
conceptually the simplest yet very challenging. Therefore, we focus on that in most
of the discussion.

SM can apply different so called layering solutions. A layer refers to a coded
data stream which can be multiplexed to transmit antennas using different schemes.
In horizontal layering, each stream is transmitted from different antenna, which
makes the spatial separation of the streams somewhat more straightforward. Vertical
layering multiplexes each stream to all transmit antennas, which enables achieving
spatial diversity amongst encoded bits, but complicates the receiver processing.

In the forthcoming discussion on the receiver design in Sects. 2.2–2.4, we assume
for the simplicity of notation that P = IN (where IN is a N × N identity matrix),
i.e., no pre-coding without loss of generality. If pre-coding is applied, we just need
to replace H by HP in the discussion below.

2.2 Optimum Detector and Decoding

The ultimate target of the receiver processing is to reproduce the true transmitted
information bit sequence at the FEC decoder output. This is of course usually
not perfectly possible, because of the random noise, fading, interference and other
sources of distortion in the radio channel and in the communication equipment.
Therefore, a pragmatic optimum receiver would minimize the probability of decod-
ing errors given the received observation y in (1). Such an approach would lead
to jointly optimum decoding, demodulation and equalization, which is practically
too complex to be realized [109]. This is the reason, why practical receivers are
partitioned as shown in Figs. 1b and 2. Therein the equalizer and demodulator
process the received signal y to provide an estimate of the coded bit sequence b
in a form applicable for the FEC decoder, which then provides the final estimate of
the information bit sequence.

If there were no FEC coding, the optimum detector would simply make a hard
decision by finding the most likely transmitted data symbol vector x given the
observed received signal y, or x̂MAP = arg minx∈�N p(x|y), where p(x|y) denotes
the conditional probability density (or mass) function (PDF) (depending on the
context). We also assume herein that the channel matrix H is perfectly known. In the
receiver context p(x|y) is usually called as the a posteriori probability (APP), and
the optimum detector is the maximum APP (MAP) receiver, which minimizes the
average probability of symbol sequence decision error; the same principle has also
been called maximum likelihood sequence estimation (MLSE) in the ISI channel
context [126]. By Bayes rule p(x|y) = p(x, y)/p(y) = p(y, x)p(x)/p(y). Thus, if

Signal Processing for Wireless Transceivers 257

there is no a priori information or all the possible modulation symbols are equally
likely, the maximization in the MAP sequence detector reduces to the maximum
likelihood (ML) sequence detector x̂ML = arg minx∈�N p(y|x). In the Gaussian
channel with known channel realization, p(y|x) is the Gaussian PDF the ML
detection reduces to finding the constellation points with the minimum Euclidean
distance (ED) to the received signal vector y, or

x̂ML = arg min
x∈�N

||y−Hx||2. (2)

The FEC decoding is assumed to be a soft-input soft-output (SfISfO) decoder
[148], which is the practically pervasive choice in current wireless devices. This
means that the decoder needs probability information about the coded bits to be
able to calculate the corresponding most likely information bit sequence. This is
usually represented as by log-likelihood ratio (LLR) value of the kth element of
b as

LD(bk|y) = ln
Pr(bk = 1|y)
Pr(bk = 0|y) (3)

= ln(p(y|bk = 1))− ln(p(y|bk = 0)).

If the interleaver is sufficiently long, the consequent bits become (approximately)
independent of each other. In that case, the logarithm of the APP above become by
the Bayes rule [77, 90]

LD(bk|y) = LA(bk)+ ln

∑
b∈Lk,+1

exp(�(b,b[k], lA,[k]|y,H))∑
b∈Lk,−1

exp(�(b,b[k], lA,[k]|y,H))
, (4)

where

LA(bk) = ln
Pr(bk = 1)

Pr(bk = 0)
, (5)

is a priori information or LLR,

(�(b,b[k], lA,[k]|y,H)) = − 1

2σ 2 ||y−Hx||2 + 1

2
bT[k]lA,[k], (6)

b[k] ∈ {−1,+1}QN−1 consists of all the elements of b excluding the kth one, lA,[k]
is a vector of LA for all bits in b[k], and Lk,β = {b ∈ {−1,+1}QN |bk = β}. The
expression in (6) follows from the fact that (y|b,H) in (1) is Gaussian. Therefore,
the LLR is related to the Euclidean distance metric.

The above expression is in general complex to evaluate, because the number of
elements in the summation (4) is exponential in the number of spatial channels (or
the number of TX antennas N) and the number of bits per symbol Q. This also

258 M. Renfors et al.

implies a polynomial complexity in terms of the size of the modulation alphabet.
In other words, the search of the maximum APP performed by the MAP receiver
is exponentially complex. Therefore, approximations are usually needed, and those
will be discussed in more detail below in Sect. 2.3. Equivalent problem has been
classically considered in the context of equalizers for ISI channels [59, 126]. The
idea in those is to limit the search space, while still achieving reasonably good
performance.

In practical receivers, also the LLR computation is usually approximated in
addition to reducing the search space. A typical approximation is to use a small
look-up table and the Jacobian logarithm

jacln(a1, a2) := ln(ea1 + ea2) = max(a1, a2)+ ln(1+ e−|a1−a2|). (7)

The Jacobian logarithm in (7) can be computed without the logarithm or exponential
functions by storing r(|a1−a2|) in a look-up table, where r(·) is a refinement of the
approximation max(a1, a2) [77].

2.3 Suboptimal Equalization

The suboptimal detector or equalizer principles are similar to those applied earlier in
ISI channels [126] or in multiuser detection to mitigate multiple-access interference
(MAI) [83, 177]. Among the simplest approaches is to process the received
signal (1) linearly, i.e., apply linear equalizer. It can be represented as multiplying y
by an equalizer represented as a matrix W so that the equalizer output is

yEQ = Wy = WHx+Wη. (8)

The simplest choice for the equalizer would be the complex conjugate transpose of
the channel realization, i.e., W = HH, where (·)H denotes the complex conjugate
transpose. This corresponds to the channel matched filter (MF) maximizing the
signal-to-noise ratio (SNR) of each of the spatial channels with no consideration
on the spatial multiplexing interference (SMI) often present in MIMO systems; in
spread spectrum or code-division multiple access (CDMA), this would be called
the rake receiver or conventional MF detector. The equalizer perfectly removing all
the SMI is the zero-forcing (ZF) one or W = (HHH)−1HH, which is the pseudo-
inverse of the channel realization yielding the linear least squares estimate of the
transmitted symbol vector x. It completely removes all the SMI, but it has the
commonly known drawback of noise enhancement. In other words, it can be seen as
maximizing signal-to-interference ratio (SIR) with no consideration on the noise; in
the CDMA context this is often called as decorrelator. Finally, the linear minimum
mean square error (LMMSE) equalizer

W = B(HHH+ σ 2IM)−1HH (9)

Signal Processing for Wireless Transceivers 259

makes a controlled compromise by jointly minimizing the impact of both noise
and SMI or ISI. For the Wiener filter or the actual LMMSE equalizer B = I, but
its output is in general biased, because its expected output is a scaled version of
x, not x itself. The bias can be removed by the choice B = diag[diag((HHH +
σ 2IM)−1HH)−1]. In that case, the mth diagonal element of B becomes [40] Bm,m =
(ρm+1)/ρm, where the signal-to-interference-plus-noise ratio (SINR) per stream is

ρm = 1

σ 2[(HHH+ σ 2IM)−1]m,m

− 1. (10)

This scaled version of the LMMSE equalizer maximizes the SINR with some
penalty in mean square error (MSE) [73, 165].

Calculating the soft output for the FEC decoder from the linear equalizer output
requires some further attention. Because linear processing maintains sufficient
statistics, the optimum MAP detection would remain equally complex as above.
However, there are reasonably good simplified approximations of the LLR for
BICM. One efficient method has been presented in [40]. It reduces complexity
and latency with only a minor impact on performance. Instead of calculating the
Euclidean distance between the LMMSE equalizer output and all the possible trans-
mitted symbols, Gray labeling of the signal points is exploited therein. The LLR
bit-metric L̂(bξ |yEQ,W) for bit bξ (where ξ is an integer) can be approximated as
ρkΞ(bξ , yEQ), where

Ξ(bξ , yEQ) = min
x̃k∈X0

k,ξ

|yEQ,k − x̃k|2 − min
x̃k∈X1

k,ξ

|yEQ,k − x̃k|2, (11)

where k = �ξ/Q� + 1, X = {xk : bξ = i} is the subset of hypersymbols {x} for
which the ξ th bit of label b is i. Ξ(bξ , yEQ) can be simplified by considering yEQ,k

in only one quadrature dimension given by ξ [40].
Decision-feedback equalization (DFE) is a classic alternative to linear processing

to improve the performance both under ISI or MAI. One version is based on
successive interference cancellation (SIC) and linear MMSE equalization. It was
proposed in the early MIMO communication proposals known as Bell Labs layered
space-time (BLAST) scheme [182]. It is best applicable for horizontally layered
spatial multiplexing, because then the layers align on physical channels transmitted
from a transmit antenna. The received layers are ordered with respect to their SNR
or received power level. The strongest signal is detected and decoded first so that
the SMI it suffers from the weaker ones is suppressed by a linear equalizer, which
is typically based on MMSE or maximum SINR (9) criterion. The interference it
causes to the other streams is estimated based on the decoded data and subtracted
from them. Then the second strongest signal is similarly detected, decoded and
canceled from the remaining signals and so on. This also is called successive nulling
and interference cancellation. The decoding requires deinterleaving, which imposes
latency to the processing.

260 M. Renfors et al.

The weight matrix is calculated with the LMMSE rule as in (9). The layer for
detection is chosen according to the post-detection SINR and the corresponding
nulling vector is chosen from the weight matrix W [182]. All the weight matrices
in an OFDM symbol are calculated and the layer to be detected is chosen according
to the average over all the subcarriers. After the first iteration, the canceled symbol
expectation is used to update the weight matrix. The weight matrix for the second
layer to be canceled is calculated as

W = (E{x}E{x}∗hkhH
k +Hk(I− (E{x}E{x}∗)HH

k + σ 2IM))−1hH
k , (12)

where hk is the kth vector from matrix H, k is the layer to be detected, Hk is matrix
H with the vectors from previously detected layers removed and E{x} is the symbol
expectation.

The detected layer is decoded and symbol expectations from the soft decoder
outputs can be calculated as [167]

E{x} = (
1

2
)Q
∑
xl∈�

xl

Q∏
i=1

(1+ bi,l tanh(LA(bi)/2)), (13)

where LA(bi) are the LLRs of coded bits corresponding to x and bi,l are bits
corresponding to constellation point xl . The expectation calculation in (13) can be
simplified to the form

E{x}re = sgn(LA(bi))S|tanh(LA(bi+2))|. (14)

The constellation point S is chosen from {1,3,5,7} depending on the signs of
LA(bi+1) and LA(bi+2).

In addition to the linear and decision-feedback based equalization, there are also
several other suboptimal equalizers, e.g., based on various tree-search approaches.
One of the most popular ones is the concept of sphere detector (SD). Another closely
related one is a selective spanning with fast enumeration (SSFE) [98]. In the case of
transmission with no FEC coding, a SD calculates the ML solution by taking into
account only the lattice points that are inside a sphere of a given radius [46, 58].
The SDs take into account only the constellation points that are inside a sphere of a
given radius, or

||y−Hx||2 ≤ C0. (15)

After QR decomposition (QRD) of the channel matrix H in (15), it can be
rewritten as

||y′ − Rx||2 ≤ C′0, (16)

Signal Processing for Wireless Transceivers 261

where C′0 = C0 − ||(Q′)Hy||2, y′ = QHy, R ∈ C
N×N is an upper triangular matrix

with positive diagonal elements, Q ∈ C
M×N and Q′ ∈ C

M×(M−N) are orthogonal
matrices.

The squared partial Euclidean distance (PED) of xN
i , i.e., the square of the

distance between the partial candidate symbol vector and the partial received vector,
can be calculated as

d(xN
i) =

N∑
j=i

∣∣∣∣∣∣y
′
j −

N∑
l=j

rj,lxl

∣∣∣∣∣∣
2

, (17)

where i = N . . . , 1 and xN
i denotes the last N − i + 1 components of vector x [46].

In the presence of FEC coding, the SD must be modified to provide an
appropriate soft output to approximate the MAP detector. A list sphere detector
(LSD) [77] is capable of doing that by providing a list L of candidates and their
APP or LLR values of the coded bits in b to the FEC decoder. There are different
strategies to perform the search of the potential candidates. Most of them have
been originally proposed for the conventional sphere detector and then subsequently
generalized for the LSD version. The breadth-first tree search based K-best LSD
algorithm [67, 148, 183] is a variant of the well known M algorithm [9, 81]. It keeps
the K nodes which have the smallest accumulated Euclidean distances at each level.
If the PED is larger than the squared sphere radius C0, the corresponding node will
not be expanded. We assume no sphere constraint or C0 = ∞, but set the value for K
instead, as is common with the K-best algorithms. The depth-first [154] and metric-
first [119] sphere detectors have a closer to optimal search strategy and achieve a
lower bit error rate than the breadth-first detector. However, the K-best LSD has
received significant attention, because it can be easily pipelined and parallelized
and provides a fixed detection rate. The breadth-first K-best LSD can also be more
easily implemented and provide the high and constant detection rates required in
the LTE.

In the discussion above, we have assumed mostly one-pass type receiver process-
ing. In other words, equalization/detection and channel estimation are performed
first. The detector soft output is then forwarded to the FEC decoder where the final
data decisions are made. However, the performance can be enhanced by iterative
information processing based on so called turbo principle [1, 2, 69], originating from
the concept of parallel (or serial) concatenated convolutional codes often known
as turbo codes [24, 25, 148]. This means that the feedback from FEC decoder to
the equalizer as shown in Fig. 2 is applied. Therein, the decoder output extrinsic
LLR value is used as a priori LLR value in the second equalization iteration
[188]. This typically improves the performance at the cost of increased latency
and complexity [90]. Because the decoder is also usually iterative, the arrangement
results in multiple iterations, i.e., local iterations within the (turbo type) decoder
and global iterations between the equalizer and decoder. The useful number of
iterations is usually determined by computer simulations or semianalytical study
of the iteration performance.

262 M. Renfors et al.

2.4 Channel Estimation

The discussion above assumes that the channel realization or the matrix H is
perfectly known, which is the basic assumption in coherent receivers. Therefore,
channel estimation needs to be performed. This is usually based on transmitting
reference or pilot symbols known by the receiver [34]. By removing their impact, the
received signal reduces to the unknown channel realization and additive Gaussian
noise. Classical or Bayesian estimation framework [86, 147] can be then applied
to estimate the channel realization. The channel time and frequency selectivity and
other propagation phenomena need to be appropriately modeled to create a real-
istic channel model and corresponding estimation framework [123]. If orthogonal
frequency-division multiplexing (OFDM) [70] is assumed, the frequency-selectivity
of the channel can be handled very efficiently. This is a benefit from the equalizer
complexity perspective.

It should be noted here that the assumption of no pre-coding makes channel
estimation different to the case with pre-coding. Pre-coding optimization is typically
based on the channel state, and in that sense to the channel estimate. Therefore, there
are two options to deal with this case. The channel estimate is usually based on pilot
or reference signals, which may either be similarly precoded as the data symbols or
not precoded.

The system model for the channel estimation for an OFDM based MIMO
transmission system is defined below. The received signal vector y(n) on the mRth
receive antenna at discrete time index n after the discrete Fourier transform (DFT)
can be described as

y
mR

(n) = X(n)FhmR(n)+ wmR(n), (18)

where X = [X1, . . . ,XN] ∈ C
P×PN is the transmitted signal over P subcarriers,

wmR ∈ C
P×1 contains identically distributed complex white Gaussian noise, F

is a NP × NL matrix from the DFT matrix with [F]u,s = 1√
P
e−j2πus/P , u =

0, . . . , P − 1, s = 0, . . . , L − 1, L is the length of the channel impulse response
and hmR is the time domain channel vector. XmT ∈ C

P×P is a diagonal matrix with
entries from a complex quadrature amplitude modulation (QAM) constellation �

and |�| = 2Q, where Q is the number of bits per symbol and mT = 1, . . . , N and
mR = 1, . . . ,M .

The reference signal or pilot symbol positions in 3GPP Long Term Evolution
(LTE) resource blocks are illustrated in Fig. 3. [62]. A downlink slot consist of 7
OFDM symbols and reference signals are transmitted in the first, second and fifth
OFDM symbols of every slot. The reference signal positions for each antenna port
are indicated in the figure, while nothing is transmitted on the other antenna ports
when a reference signal is transmitted on one antenna port. The pilot overhead, in
terms of the portion of data symbols in time or frequency used for training, is in the
2× 2 MIMO roughly 9.5% and in the 4× 4 MIMO about 14%. With 8× 8 MIMO
the pilot overhead could be close to 30% [15].

Signal Processing for Wireless Transceivers 263

Fig. 3 Pilot symbol spacing in LTE standard for 4× 4 MIMO channel [91]. The figure shows two
resource blocks, each consisting of seven QAM symbols (horizontal dimension) in 12 subcarriers
(vertical dimension)

The least-squares (LS) channel estimator based on training symbols is probably
the simplest one to calculate the channel estimates from pilot symbols. The received
symbol vector is often transformed into frequency domain before the LS channel
estimation. The result of the LS estimator, on the other hand, is in time domain in
the formulation below and it has to be transformed into frequency domain for the
detector. The LS estimate of the channel can be calculated as

ĥmR (n) = (FH XH(n)X(n)F)−1FHXH (n)y
mR

(n), (19)

where X contains the pilot symbols, which are known by the receiver. Because
of that, the matrix inverse can be pre-computed and stored in a memory. Usually
orthogonal (in time or frequency) training sequences or a diagonal matrix X are
used such that there is no SMI in the channel estimate. The performance of the LS
estimator can be improved by applying the Bayesian philosophy, i.e., by using the
channel statistics to optimize the channel estimation filtering in frequency, spatial
or temporal domain [110].

The reference signals or pilot symbols used in channel estimation are placed
in the OFDM time-frequency grid at certain intervals. The interval may not be
sufficiently short when the user velocity is high and the channel is fast fading.
Furthermore, the pilot overhead increases with the number of MIMO streams. It
becomes problematic already in the 4× 4 antenna system and is significant (almost
30%) with an 8× 8 system [15]. Decision directed (DD) channel estimation can be
used to improve the performance or to reduce the pilot overhead. This can also be
based on the same principle as the pilot based LS estimate (19), such that matrix X
now includes the data decisions. However, this increases the complexity, because the
matrix inverse must be computed now in real-time [189]. Typically this is realized

264 M. Renfors et al.

Equalizer
De-

inter-
leaver

Decoder

Inter-
leaver

Soft
decisionsIFFT

FFT LS
ch.est FFT

SAGE
ch.est.

ĥ

y Ĥ

ĥ
y

Fig. 4 Decision-directed channel estimation in MIMO receiver [91]

in the form of iterative receivers. The principle therein is similar to the one in
Sect. 2.3 with the iterative detection–decoding, while now we have in general three
blocks for the global iterations, namely, detection–decoding–channel estimation.
This framework has been analyzed in detail, e.g., in [79, 94, 186, 188]. Several
approaches are based on expectation-maximization (EM) algorithm [48, 108] or
space-alternating generalized EM (SAGE) algorithm [56]. A the resulting receiver
structure is illustrated in Fig. 4.

2.5 Implementations

The MIMO detection and channel estimation algorithms have found practical
deployment in cellular and Wi-Fi WLAN standards, for example. Therefore, several
works on practical receiver implementations and transceiver designs have been
made. The computationally most demanding part of the filter matrix computation
is the matrix inverse or some equivalent operation such as QR decomposition calcu-
lation. Designs for the MIMO detector context can be found, e.g., in [16, 32, 184].
In the sphere detector and other similar tree search algorithms, the search indexing
and sorting are usually the most complex functionalities [31, 117].

Recent implementations include [17, 90, 117, 118, 155–157, 162]. The recent
work by Suikkanen [156, 157] illustrates the trade-off between the receiver energy
efficiency and useful data rate or goodput, which is defined as the minimum of
the detection rate enabled by the receiver hardware and useful throughput of the
communications system [90]. The latter depends on the error rate performance and
the nominal data rate such that the value gives the error free or reliable transmission
rate, practically achieved via hybrid automatic repeat request (HARQ) protocol
with price of introduced latency. The throughput analysis assumed 4G cellular
system or LTE-A standard system assumptions. The detection rate and receiver
power consumption results were based on 28 nm CMOS technology based receiver
baseband designs and the real time detection requirements of 4G cellular systems.
High performance sphere detectors become necessary to achieve highest reliable
throughput, but their energy efficiency in terms of processing energy per transmitted
bit is often not as good as that of the simple linear detectors, which suffer data rate
penalty.

Signal Processing for Wireless Transceivers 265

3 Multicarrier Waveforms

Referring to Fig. 1, this section addresses the waveform generation function on the
transmitter side, as well as the corresponding block on the receiver side.

3.1 Waveform Processing in OFDM Systems

The coding and modulation block produces a sequence of typically QAM modulated
symbols, and the purpose of the waveform generation block is to produce a digital
sample sequence which corresponds to the discrete-time baseband version of the
final RF signal to be transmitted. Likewise, on the receiver side the waveform
processing block receives the corresponding digital sample sequence, but affected
by additive noise and interferences as well as various distortion effects, and produces
a sample sequence corresponding to the QAM modulated symbol sequence at the
coding and modulation block output.

In today’s wireless communication system, various waveforms are utilized
including linear single carrier modulation, i.e., QAM-type symbol sequence with
Nyquist pulse shaping, Gaussian minimum shift keying (GMSK), and various types
of spread-spectrum techniques, including direct sequence (DS) spread-spectrum
with code-division multiple access (CDMA) [22, 165]. However, we focus here
on the celebrated multicarrier transmission technique called orthogonal frequency-
division multiplexing (OFDM) [26, 45, 95, 121, 127, 164, 180], which is the
basis for most of the recent broadband wireless systems, including 802.11 WLAN
family, DVB-T terrestrial TV broadcasting standards, WiMAX, 3GPP-LTE and
LTE-Advanced.

3.1.1 OFDM Principle

A fundamental issue in wireless communications with increasing data rates is
the complexity of the channel equalization. Channel equalization is needed in
practically all wireless communication systems for compensating the effects of the
multipath propagation channel, which appears as frequency dependency (frequency-
selectivity) of the channel response experienced by the transmitted waveform. More
importantly, this effect introduces dispersion to the symbol pulses which appears as
inter-symbol interference (ISI), and eventually as errors in detecting the transmitted
symbol values [22]. Traditional time-domain techniques for channel equalization,
based on adaptive filtering or maximum likelihood sequence detection, would have
prohibitive complexity at the signal bandwidths adopted in many of the recent
communication standards.

As illustrated in Fig. 5, OFDM solves the problem by splitting the high-rate sym-
bol sequence into a high number (N) of lower-rate sequences which are transmitted

266 M. Renfors et al.

Coding &
modulation

Serial-to-
parallel

-point
IFFT

Add cyclic
prefix

Parallel-to-
serial

Digital
front-end &
RF system

De-
modulation
& decoding

Parallel-
to-seria

-point
FFT

Remove
cyclic
prefix

Serial-to-
parallel

RF system
& digital
front-end

Channel

Channel
equalizer

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

Undistorted transmitted spectrum

Channel frequency response

Distorted received spectrum

symbol -1 symbol symbol +1

symbol -1 symbol symbol +1

symbol -1 symbol symbol +1

Direct component:

1st delayed component:

2nd delayed component:

FFT
window

a

b c

Fig. 5 (a) Basic OFDM transmission chain. (b) Effect of channel frequency selectivity. (c) Effect
of multipath delays not exceeding the channel delay spread in CP-OFDM

in parallel, over a spectrally compact multiplex of orthogonal subchannels. Due to
the increased symbol interval in the subchannels, the effects of channel dispersion
are reduced, and the channel frequency response within each subchannel is, at most,
mildly frequency selective. Furthermore, a cyclic prefix (CP) is commonly inserted
in front of each OFDM symbol. The idea of CP is that it will absorb the variations
in the delays of different multipath components of the channel, preventing ISI if the
length of the CP is at least equal to the maximum delay spread of the channel. In this
case, the effect of the channel can be modeled as a cyclic convolution. Consequently,
the channel effect can be precisely modeled as flat fading at subcarrier level, and can
be compensated by a single complex multiplication for each data symbol modulated
to a subcarrier [45, 127].

In existing specifications, the FFT size of OFDM systems ranges from 64 in
IEEE 802.11a/g WLAN to 32k in DVB-T2 [175]. The subcarrier spacings range,
correspondingly, from 325 kHz to 279 Hz. As an important example, 3GPP-LTE
uses 15 kHz subcarrier spacing and up to 20 MHz bandwidth, the maximum FFT-
size being 2048 [45].

The practical implementation of OFDM utilizes inverse fast Fourier transform
(IFFT) for multiplexing each block of parallel data symbols. Correspondingly, FFT
is used for demultiplexing the block of complex sample values corresponding to the
data symbols. Orthogonality of the subchannels follows directly from the properties

Signal Processing for Wireless Transceivers 267

of discrete Fourier transform (DFT). In the channel, each data symbols appears as a
square-windowed sinusoid, the frequency of which is determined by the subcarrier
index and amplitude and phase are determined by the transmitted complex symbol
value. Using continuous-time model, the transmitter and receiver OFDM waveform
processing can be formulated as follows.

An OFDM symbol with IFFT size of N and duration of Ts is given by

x(t) =
N−1∑
k=0

X(k)ej2πfkt , t ∈ [0, Ts] (20)

where X(k), k = 0, . . . , N − 1, are complex data symbols, typically from a QAM
alphabet,

fk = f0 + k ·�f (21)

are the subcarrier frequencies and

�f = 1

Ts
(22)

is the frequency separation between subcarriers. With this choice, the subcarriers
are orthogonal, i.e.,

1

Ts

∫ Ts

0
ej2πflt e−j2πfkt dt = δkl =

{
1, k = l

0, otherwise
(23)

Therefore in the absence of noise and other imperfections, the kth symbol is
demodulated as

1

Ts

∫ Ts

0
x(t)e−j2πfktdt = 1

Ts

∫ Ts

0

N−1∑
l=0

X(l)ej2πflt e−j2πfktdt = X(k). (24)

In practical systems, guard-bands are introduced in the OFDM signal spectrum
by modulating zero-valued symbols to the subcarriers close to the band edges.
The requirements of the digital/analog anti-imaging filter, needed at the digital-to-
analog interface, depend essentially on the width of the guard-band. Similarly, the
guard-band width affects also the specifications of the channelization filtering on
the receiver side.

The signal path of an OFDM transmission link, as illustrated in Fig. 5a, includes
on the transmitter side the IFFT for a block of data symbols and copying a number
of IFFT output samples in front of the produced OFDM symbol as a cyclic prefix,
along with the needed buffering and serial-parallel and parallel-serial operations. On
the receiver side, the core functions include extracting a block of N ISI-free samples

268 M. Renfors et al.

from the baseband sample sequence, FFT, and 1-tap subcarrier-wise equalizers.
Additionally, a channel estimation function, usually based on known subcarrier
symbols (scattered pilots and/or preambles) is needed, as described in Sect. 2.4.
Also time and frequency synchronization functionalities are necessary in OFDM,
as in any communication link [127].

3.1.2 Synchronization, Adaptive Modulation and Coding, and Multiple
Access

The coarse time synchronization, i.e., determination of the optimum FFT window
location, is commonly based on the correlation introduced to the signal by the cyclic
prefixes. Residual timing offsets can be estimated using the pilot sequences and
compensated by adjusting the channel equalizer coefficients accordingly. Various
techniques are available in the literature for estimating the coarse frequency offsets,
due to imprecise local oscillators in the transmission link. Fine frequency estimation
can again be carried out using the pilots [45, 127].

Due to the narrow spacing of subcarriers (e.g., 1 kHz in DVB-T and 15 kHz in
3GPP-LTE), OFDM systems are quite sensitive to carrier frequency offset, the target
values being at the order of ±1% of the subcarrier spacing, or less. This makes
OFDM systems rather sensitive to fast-fading channels, and even to phase noise
of the local oscillators. In general, these effects introduce inter-carrier interference
(ICI).

Since OFDM is meant to be used with frequency/time-selective channels,
some of the subcarrier symbols are bound to experience severe attenuation in the
transmission channel, and the corresponding information bits would be lost in
symbol-wise detection. In general, the channel gain for each subcarrier symbol
depends on the instantaneous channel frequency response during the transmission.
On the other hand, the whole OFDM multiplex has usually wide bandwidth
compared to the channel coherence bandwidth, i.e., the channel appears as heavily
frequency selective. While some of the subcarrier symbols are lost, a majority of
them is received with good quality. Using FEC, the average bit-error rate (BER)
or frame error rate (FER) achieves a targeted low value, in spite of some of the
symbols being lost. Thus FEC is an essential element on OFDM systems, helping to
exploit the inherent frequency diversity of the wideband transmission channel, and
sometimes the scheme is referred to as coded OFDM (COFDM) [95].

The different subcarrier symbols in OFDM are transmitted independently of
each other, through orthogonal subchannels. Then it is obvious that a single
OFDM symbol is able to carry multiple users’ data, using so-called orthogonal
frequency division multiple access (OFDMA) [45]. In the downlink direction (from
base-station, BS, to mobile stations, MS) this is quite straightforward. In the
uplink direction, a BS receives a multiplex of subcarriers composed of subcarriers
originating from different transmitters. In order to maintain orthogonality, so-called
quasi-synchronous operation must be established. This means that the MS’s must be
precisely synchronized in frequency (say ±1% of subcarrier spacing), and different

Signal Processing for Wireless Transceivers 269

mobiles’ OFDM symbols, as seen at the BS receiver, must be time-aligned in such
a way that the cyclic prefix is able to absorb both the channel delay spread and
relative timing offsets between different MS’s, as illustrated in Fig. 5c. Additionally,
effective power control is needed to avoid excessive differences in the power levels
of the received signals, thus avoiding serious problems due to RF impairments.

The practical OFDMA schemes are dynamic in the sense that variable data rates
can be supported for each user. To achieve this, the BS must send side information to
each MS about the set of subcarrier symbols allocated to each user, both for uplink
and downlink. To keep the amount of side information reasonable, the allocation is
commonly done using a resource block as the basic unit. For example in 3GPP-LTE,
the resource block consists of 12 subcarriers and 7 consecutive symbols (this for the
most commonly used transmission mode; there are also others) [45].

The basic form of OFDM systems uses the same modulation scheme (e.g.,
QPSK, 16QAM, or 64QAM) and code rate for all subcarriers and all OFDM
symbols. The specifications are usually flexible, and allow the configuration of
the system for different tradeoffs between data rate and robustness through the
choice of modulation level and code rate. In broadcast systems, this is the scheme
that has to be followed as it is not possible to tailor the transmission parameters
separately for different users. However, in two-way communication, like cellular
mobile systems and wireless local area networks (WLANs), it is possible to
provide feedback information to the transmitter end about the channel quality and
characteristics. If the transmitter has knowledge of the signal-to-interference-plus-
noise (SINR) of each subcarrier, then the water-filling principle can be used for
determining the optimal modulation level for each subcarrier. In OFDMA, the
feedback information can also be used for allocating resource blocks optimally for
the users based on the instantaneous channel response and quality (including various
interferences) experienced by each user at each specific frequency slot. Furthermore,
the modulation level and code rate can be tuned independently for each user to
optimize the usage of transmission resources. This scheme is generally known as
adaptive modulation and coding (AMC) [45].

3.2 Enhanced Multicarrier Waveforms

OFDM solves in an elegant and robust way the fundamental channel equalization
problem in wideband wireless communications, and it provides efficient means
for channel aware scheduling of the transmission resources in an optimal way to
different users. Due to the flat-fading channel characteristics at subcarrier level, CP-
OFDM is also an excellent basis for different multi-antenna (MIMO) techniques
which are able to enhance the performance at link and system levels [45]. However,
OFDM has also a number of limitations, which have motivated research on various
enhancements as well as on alternative waveforms.

270 M. Renfors et al.

3.2.1 Peak-to-Average Power Ratio Issues and SC-FDMA

OFDM, and multicarrier waveforms in general, have the problem of high crest factor
or peak-to-average power ratio (PAPR). This means that the peak envelope value of
the modulated waveform is much higher than the RMS value, which introduces
great challenges to the transmitter power amplifier implementation because high
linearity is needed in order to avoid serious distortion effects [127]. Why the PAPR
becomes high can be easily seen when we consider the OFDM signal as a sum of
sinusoids with amplitudes and phases determined by the modulating symbol values.
In the worst case, the amplitudes add up at some point within the OFDM symbol
interval, and the PAPR is proportional to the number of active subcarriers. However,
the probability of such a worst-case situation is in practice very small, and the
PAPR characteristics of a waveform are better characterized by the complementary
cumulative distribution function (see Fig. 7 for an example). Various techniques for
reducing the PAPR of OFDM-modulated signals can be found from the literature
[82, 127]. This problem is common with CDMA waveforms, and also various
generic methods for reducing PAPR have also been developed, e.g., based on
envelope peak clipping with smooth widowing [168].

Mainly due to the critical PAPR problem in hand-held devices, the single-carrier
waveform has re-appeared in the OFDM context, in the form of so-called single-
carrier frequency division multiple access (SC-FDMA) [45, 120, 164] . As shown,
in Fig. 6, using DFT transform as precoding, a SC-FDMA block can be included
in an OFDMA transmission frame while maintaining all the flexibility in allocation
the resources to each user. The cascade of DFT and IFFT transforms (also referred
to as DFT-spread-OFDM1) in the transmitter side effectively provides frequency
shift of the single carrier symbol block to the frequency slot corresponding to the
allocated subcarriers, as well as time-domain interpolation and rudimentary pulse
shaping for the symbol pulses. With this model in mind, it is clear that accumulation
of high PAPR does not take place in this process. However, while the pulse shaping

Coding &
modulation

Serial-to-
parallel

N-point
IFFT

Add
cyclic
prefix

Parallel-
to-serial

Digital
front-end &
RF system

De-
modulation
& decoding

RF system
& digital
front-end

Channel

K-point
IDFT

N-point
FFT

Remove
cyclic
prefix

Serial-to-
parallel

Channel
equalizer

Parallel-
to-serial

K-point
DFT

Fig. 6 SC-FDMA transmission link

1The terminology reflects the fact that the transform length in the core OFDM system is typically
a power of two, whereas also other lengths need to be considered for the SC symbol block in order
to reach sufficient flexibility.

Signal Processing for Wireless Transceivers 271

3 4 5 6 7 8 9 10 11 12
0.0001

0.001

0.01

0.1

0

PAPR [dB]

CC
D

F

OFDM
DFT-S-OFDM
SC

α = 0.5

α = 0.3

α = 0.1

Fig. 7 Complementary cumulative distribution functions for the PAPR of OFDM, SC-FDMA, and
single-carrier waveforms with different excess bandwidths. QPSK modulation, 160 subcarriers in
OFDM and SC-FDMA. The roll-off parameter α controls the signal bandwidth as (1 + α)/T ,
where T is the symbol interval in traditional SC-transmission

provided by the DFT-spread-OFDM processing satisfies the Nyquist criteria for zero
ISI, the pulse shaping is sub-optimal and has small excess bandwidth. This leads to
relatively high PAPR for SC-modulation, yet significantly smaller than in OFDM,
as illustrated in Fig. 7. On the other hand, good spectral efficiency is achieved as
different SC-FDMA blocks can be allocated next to each other without any guard-
band in-between, as long as the conditions for quasi-synchronicity are maintained.
Since the high PAPR of OFDM is mainly a problem on the mobile transmitter side,
the SC-FDMA scheme is mainly considered for uplink transmission. An alternative
implementation structure has been developed in [178], with additional flexibility for
the DFT block size.

What was described above is the so-called contiguous subcarrier allocation
case of SC-FDMA. Also a uniformly interleaved subcarrier allocation is possible,
without any effects on the PAPR,2 but has not been adopted in practice due to
increased sensitivity to time selectivity, frequency offsets, and phase noise.

From the channel equalization point of view, the channel estimation and equalizer
structure is the same as in the core OFDM system, except that scattered pilots cannot
be utilized in SC-FDMA. From the SC-modulation point of view, the single-tap
subcarrier equalizers correspond to a frequency-domain implementation of a linear
equalizer [52, 145]. The MSE criterion is preferred over zero-forcing solution to

2This follows from the fact that uniform subcarrier interleaving corresponds to pulse repetition in
time domain.

272 M. Renfors et al.

reduce the noise enhancement effects. The linear equalizer can be complemented
with a decision-feedback structure. The noise prediction based DFE principle
is particularly suitable for this configuration [23, 199], and including the FEC
decoding in the DFE feedback loop leads to an effective iterative receiver structure
with significantly improved performance over the linear equalizer solution.

Since SC-FDMA is based on a core OFDM system, various multiantenna
schemes can be combined with it, including space-time and space-frequency block
coding and spatial multiplexing [45, 164].

3.2.2 Enhancing Spectral Containment of OFDM

OFDM systems maintain orthogonality between spectral components which are
synchronized in time and frequency to satisfy the quasi-synchronicity conditions.
However, the spectral containment of the OFDM waveform is far from ideal (see
Fig. 8), and the attenuation of a basic OFDM receiver for non-synchronized spectral
components (interferences, adjacent channels) is limited.

Spectrum agile waveform processing is needed in case of various co-existence
scenarios, where the idea is to use effectively frequency slots between channels
occupied by legacy radio communication systems, as illustrated in Fig. 9. This is one
central theme in the cognitive radio context [7] but also considered in various other
developments of broadband wireless communications under concepts like carrier
aggregation [37] and broadband-narrowband coexistence [131]. A very flexible
way of approaching these goals can be named as non-contiguous multicarrier
modulation, as a generalization of non-contiguous OFDM [194]. Here the idea is
that the spectrum of the transmitted waveform can be controlled by activating only
those subcarriers which are available and have been allocated for transmission,
and modulating zero-symbols on the others. The approach is the same as the
basic idea of OFDMA, but now the target is to be able to tolerate asynchronous
waveforms in the unused frequency slots. Using basic OFDM in this way, the
spectrum leakage would necessitate considerable guardbands between the active
subcarriers and occupied frequency channels, and would thus lead to low spectrum
efficiency.

The on-going 5th generation (5G) wireless cellular system development under
3GPP aims to create a multi-service network supporting a wide range of services
with different requirements regarding data rate, latency, and reliability. These
services include enhanced mobile broadband (eMBB) targeting at Gbps peak
data rates, massive machine-type communications (mMTC) closely related to the
Internet-of-things (IoT) concept, and ultra reliable low-latency communications
(URLLC) needed, e.g., in the contexts of smart traffic, distant control of vehicles
and industrial processes, and so-called tactile communications [150]. The 5G Phase
1 physical layer development in 3GPP, the so-called 5G New Radio, is also based
on the OFDM waveform, but certain spectrum enhancement schemes can be applied
to improve the quality of multi-service operation [20, 63]. Generally, it would be
very difficult to satisfy the requirements of all the mentioned services by an OFDM

Signal Processing for Wireless Transceivers 273

0 2 4 6 8 10
−70

−60

−50

−40

−30

−20

−10

0

10

SUBCHANNEL INDEX

M
AG

N
IT

U
D

E

FBMC
OFDM

0 50 100 150 200 250 300 350
−80
−60
−40
−20

0
OFDM

M
AG

N
IT

U
D

E

0 50 100 150 200 250 300 350
−80
−60
−40
−20

0
FBMC

SUBCARRIER INDEX

M
AG

N
IT

U
D

E

Fig. 8 OFDM and FBMC/OQAM spectra for individual subcarriers (top) and for the transmitted
signal (bottom). Effects of nonlinearities are not included. The FBMC prototype filter design is
from [179] with overlapping factor 4

system with fixed parametrization and, therefore, the concept of mixed numerology
OFDM system has emerged. Here the idea is to utilize different subcarrier spacings
and/or CP-lengths (guard periods) in different subbands of an OFDM carrier.
However, this cannot be achieved without destroying the strict orthogonality of
OFDM subcarriers. Then methods to reduce the OFDM spectral sidelobes are
needed to be able to allocate groups of subcarriers with different numerologies in
the same OFDM multiplex, with narrow guardband (few subcarriers) in-between,
while keeping the interference leakage at an acceptable level.

274 M. Renfors et al.

frequency

PU1 PU2 PU3

Non-contiguous multicarrier transmission

Fig. 9 Non-contiguous multicarrier transmission in spectrum gaps between primary users (PU’s)

Another related aspect is that for sporadic low-rate multiuser uplink communi-
cation, the overhead to synchronize the devices for quasi-synchronous operation is
significant. Then asynchronous operation mode, with relaxed time synchronization,
would be preferred. Also in such scenarios, the strong sidelobes of basic OFDM
is an issue. Notably, this aspect is relevant in OFDM based uplink, whereas the
sidelobes issue is critical also in OFDMA downlink with mixed numerology.

Various techniques have been presented in the literature for reducing the
spectral leakage in CP-OFDM-based systems. Two of these methods, time-domain
windowing and OFDM subband filtering, are under consideration for 5G, and they
will be discussed below in some more details. Other methods include subcarrier
weighting [41], cancellation carrier methods [30, 103, 194], and pre-coding meth-
ods [36].

The general idea of time-domain windowing is to use a tapered time-domain win-
dow for OFDM symbols [18, 181], instead of rectangular windowing. Especially,
raised cosine window in combination with extended CP has been widely considered.
For effective spectrum leakage suppression, the CP has to be significantly extended
to accommodate a higher roll-off of the RC-window (longer tapering interval),
leading to reduced spectrum efficiency. Raised-cosine windowing can be used also
on the receiver side for better rejection of interference leakage from the unused
spectral slots [18, 116], with similar tradeoffs. In [103, 142], it is proposed to use
the windowing in edge subcarriers only to improve spectrum efficiency. In the 5G
New Radio context, time-domain windowing is referred to as windowed-overlap
add (WOLA) [129, 195], and it is considered be applied in the transmitter, receiver,
or both.

Another obvious alternative to control OFDM spectrum is the filtering of
independently generated groups of subcarriers, typically by FIR filters, before
combining them as the OFDM multiplex signal to be provided to the DAC and
RF stages of the transmitter [6, 54, 97, 106, 146, 187]. On the receiver side,
channelization filtering can be done separately for different groups of subcarriers to
reduce leakage from adjacent asynchronously operated subcarrier groups, or groups
with different numerologies. This general idea is referred to as filtered OFDM
(F-OFDM). One related target in 5G is to reduce the spectral overhead due to
guardbands between active transmission channels from 10% to about 1%. Together
with increasing carrier bandwidth (e.g., 100 MHz instead of 20 MHz in LTE), this
leads to high complexity of traditional FIR-type channelization filters. The general

Signal Processing for Wireless Transceivers 275

FC-based filtering for a subband
OFDM generation

for a subband

L
c hanne lizat ion

w
ei gh ts

Buffer
LOFDM
-point
IFFT

CP-insertion &
distributing samples to
partly overlapping FC

blocks

L-point
FFT

O
utputdata

blo c k
w

ithoutov erl ap

...

N
- point IFFT ...

.. .
O

the rsub ban ds

Fig. 10 Fast-convolution filtered OFDM transmitter structure

target of F-OFDM is to support flexible allocation of different numerologies in a
single OFDM multiplex, in which case traditional digital filtering solutions would
have high structural and computational complexity. This is especially the case on the
base-station side, while mobile devices typically need to process only one subband,
and basic time-domain filtering with reasonable complexity and sufficient flexibility
is achievable [187].

An alternative approach to subband filtering by individual filters is to use
uniform filter banks for combining filtered subbands on the transmitter side and
for separating filtered subbands on the receiver side [97]. In case of regular subband
structure, this would be a very effective approach, but it has limited flexibility for
dynamic adaptation of the subband widths.

The third approach is to define the filtering in FFT-domain, using the fast-
convolution approach [28, 122, 136]. Figure 10 illustrates this scheme for the
transmitter side [187]. First CP-OFDM signals are generated individually for each
subcarrier group which needs to be isolated by filtering. Then short FFTs are
applied to partly overlapping blocks of the CP-OFDM signal. The filter is defined
by FFT-domain weights, and the output signal is generated by long IFFTs. The
output sample sequence is obtained by collecting non-overlapping samples from
the IFFT output blocks. This model utilizes fast-convolution with overlap-save
processing to implement linear convolution by the FFT-domain filtering process,
which implements cyclic convolution by nature. With sufficiently long overlap,
perfect linear convolution would be reached. However, by allowing tolerable amount
of distortion, the overlap can be significantly reduced, resulting in remarkable
reduction in the computational complexity. Typical values of the overlap are 25–
50%. In case of multiple filtered subbands, the CP-OFDM generation, short FFT,
and FFT-domain weights are specific to each subband, but the long IFFT is common
to all. A narrow guardband (e.g., 1–6 subcarriers) is inserted between active
subcarriers of different groups.

276 M. Renfors et al.

Tight filtering harms the orthogonality of subcarriers in all F-OFDM schemes,
introducing inband interference especially to the subcarriers close to subband
edges [54, 106]. Effective FFT-domain weight optimization scheme is presented in
[187] for minimizing the inband interference under constraints on the out-of-band
power leakage. This optimization methods takes into account both the filtering effect
on OFDM subcarriers, as well as the cyclic distortion caused by the reduced overlap
in fast-convolution processing.

3.2.3 Filterbank Multicarrier Waveforms

Another approach for spectrally agile waveforms and signal processing is filter bank
based multicarrier modulation (FBMC) [35, 51, 53, 75, 125, 143, 153]. Here the
idea is to use spectrally well-contained synthesis and analysis filter banks in the
transmultiplexer configuration, instead of the IFFT and FFT, respectively. The most
common approach is to use modulated uniform polyphase filter banks based on a
prototype filter design, which determines the spectral containment characteristics of
the system. Figure 8 shows an example of the resulting spectral characteristics, in
comparison with basic OFDM without any additional measures for controlling the
sidelobes. It can be seen that the FBMC is able to reduce the sidelobes to a level
which depends in practice only on the spectral leakage (spectral regrowth) resulting
from the transmitter power amplifier nonlinearities.

The two basic alternatives are filtered multitone modulation (FMT) [38, 174] and
FBMC/OQAM (or OFDM/OQAM) [53, 153]. In typical FBMC/OQAM designs
(like the example case of Fig. 8), each subchannel overlaps with the adjacent ones,
but not with the more distant ones, and orthogonality of subcarriers is achieved
by using offset-QAM modulation of subcarriers, in a specific fashion [153]. Due
to the absence of cyclic prefix and reduced guard-bands in frequency domain,
FBMC/OQAM reaches somewhat higher spectral efficiency than CP-OFDM [137].
However, its main benefits can be found in scenarios with asynchronous multiuser
operation, mixed numerology, or dynamic and non-contiguous (i.e., fragmented)
spectrum allocation [149, 196]. Its main drawbacks are due to the need to use offset
(staggered) QAM modulation, leading to somewhat more complicated pilot struc-
tures for synchronization and channel estimation. OQAM signal structure causes
also difficulties with certain multiantenna transmission schemes, especially with
Alamouti space-time coding [133]. FBMC/OQAM has also higher computational
complexity, which in terms of real multiplication rate, is three to five times that of
OFDM with the same transform size [19, 63].

In FMT, the adjacent subchannels are isolated by designing them to have non-
overlapping transition bands and, for each subcarrier, basic subcarrier modulation,
like QAM with Nyquist pulse shaping, can be used. The principle of FMT is just fre-
quency division multiplexing/multiple access. It relies on specific uniform multirate
filter bank structures, typically based on IFFT/FFT transforms complemented by
polyphase filtering structures. To reach high spectral efficiency, narrow transition
bands should be used, leading to increased latency and high implementation
complexity, also in comparison with FBMC/OQAM.

Signal Processing for Wireless Transceivers 277

Both FBMC/OQAM and FMT systems can be designed to have similar number
of subcarriers as an OFDM system, in which case the channel can usually be
considered as flat-fading at subcarrier level, and one-tap complex subcarrier-wise
channel equalizers are sufficient. However, there is also the possibility to increase
the subcarrier spacing, e.g., in order to relax the ICI effects with high mobility,
in which case multi-tap equalizers are needed [75]. A convenient approach for
realizing multitap subcarrier equalizers is based on frequency sampling [80]. The
special OQAM-type signal structure has to be taken into account when designing the
pilot structures for channel estimation and synchronization [96], and it introduces
also difficulties in adapting certain multiantenna schemes to the FBMC/OQAM
context.

Fast-convolution based filterbank (FC-FB) schemes have been proposed also
for flexible and effective implementation of FBMC/OQAM and FMT waveform
processing. Actually, FC-FB can be seen as a generic waveform processing engine,
facilitating simultaneous processing of different multicarrier and single-carrier
waveforms [132, 135, 136, 152].

In recent years, also a family of multicarrier waveforms which apply CPs for
blocks of multicarrier symbols has been introduced. These include generalized
frequency division multiplexing (GFDM) [63, 111], Cyclic Block-Filtered Mul-
tiTone (CB-FMT) [65], and Circular Offset Quadrature Amplitude Modulation
(COQAM) [99]. The CP-insertion works basically in the same way as with CP-
OFDM, but since CP is applied for a block of P multicarrier symbols (i.e., PN

high-rate samples), the CP-overhead can be greatly reduced for a given channel
delay spread. GFDM uses QAM subcarrier modulation with filtered subcarrier
signals spaced at 1/TS , leading to non-orthogonal subcarriers. Therefore, some
form of ICI cancellation is required, at least for high-order modulations. CB-FMT
is cyclic block-filtered variant of FMT, maintaining orthogonality of subcarriers.
COQAM uses OQAM subcarrier modulation, as in FBMC/OQAM, also maintain-
ing subcarrier orthogonality. In basic form, all these waveforms apply rectangular
window over the block of multicarrier symbols, resulting in sinc-type spectra. Since
the rectangular window length is increased in time, the sidelobes decay faster. Well-
contained spectra have been demonstrated for these waveforms by applying sidelobe
suppression methods introduced earlier for the OFDM case, in somewhat relaxed
ways. Also effective realizations for these schemes are available, based FFT-domain
filtering using cyclic convolution (i.e., FC without overlap).

In summary, FBMC and enhanced OFDM schemes are alternative approaches for
developing flexible spectrum agile waveforms with improved spectral containment,
which is particularly important in fragmented spectrum use, asynchronous multiuser
operation, or mixed numerology cases.

278 M. Renfors et al.

4 Transceiver RF System Fundamentals and I/Q Signal
Processing

This section looks at radio transceiver fundamentals from a broader perspective,
by considering also the essentials of analog radio frequency (RF) functionalities
in addition to digital front-end and digital baseband aspects described in the
previous sections. Overall, understanding the RF world is one central aspect in radio
communications since the energy of the true electromagnetic waves radiated and
absorbed by the antennas, and thus the spectral contents of the underlying electrical
signals, are indeed located at radio frequencies. Depending on the actual radio
system and radio application, the used RF band is typically within the range of
few tens or hundreds of MHz up to several GHz.

In this section, we’ll go through the basics of transceiver signal processing
from radio architecture perspective, with main focus on frequency translations and
filtering tasks. The exact circuit-level treatments are out of our scope, and we focus
on signal and RF-module level aspects only. One central tool in the presentation is
the deployment of complex-valued I/Q signal and processing models, especially in
the frequency translation and filtering tasks. In addition to RF front-end, the notion
of complex-valued I/Q signals is central also in the digital front-end and baseband
processing units as is evident from the presentation in the previous sections which
all rely on complex-valued signals. Some classical literature in this field are, e.g.,
[44, 57, 60, 107, 109, 112]. Some sections in the following also build on the
presentation of [170].

4.1 RF-System Fundamentals

The fundamental tasks of transmitter RF front-end are to upconvert the data-
modulated communication waveform to the desired RF (carrier) frequency and
produce the needed RF power to the transmit signal. How these are exactly
organized and implemented in the full transmitter chain, depends on the chosen
radio architecture. Independently of this, the transmitter performance is typically
measured in terms of spectral purity or spectral mask which dictates how much
energy the transmitter can leak outside its own frequency band. Such out of band
emissions can stem, e.g., from transmit chain nonlinearities and/or insufficient
filtering. Another important aspect is the in-band purity of the RF waveform
which quantifies the waveform generation accuracy from the data modulation and
transmission point of view. One typically deployed measure here is the error vector
magnitude (EVM).

On the receiver side, the key tasks of the RF front-end are to amplify the weak
received desired signal, downconvert the desired signal from RF down to lower
frequencies, and to at least partially attenuate the undesired other radio signals
picked up by the antenna. Again, the chosen radio architecture has a big influence on

Signal Processing for Wireless Transceivers 279

how these tasks are implemented in the receiver chain. In general, one can perhaps
claim that the implementation challenges on receiver side are typically even bigger
than on the transmitter side. This is indeed because the antenna is picking up also
many other radio signals, in addition to the desired one, which can also be several
tens of dB’s stronger than the desired one. Thus being able to demodulate and detect
a weak desired signal in the presence of strong neighboring channels is indeed a
complicated task. The receiver front-end performance is typically measured, e.g., in
terms of sensitivity, linearity and spurious free dynamic range. In short, sensitivity
measures the ability to detect very weak signals in noise-limited scenarios. Linearity
and spurious-free dynamic range, in turn, measure the relative levels of spurious
components stemming from the intermodulation of the strong neighboring channels
and out-of-band blocking signals, falling on top of the desired signal band. Measures
like input-intercept point (IIP, specifically IIP2 and IIP3 for second-order and third-
order nonlinearities, respectively) are typically used to measure receiver linearity.

4.2 Complex I/Q Signal Processing Fundamentals

4.2.1 Basic Definitions and Connection to Bandpass Signals

All physical signals and waveforms, like voltage or current as a function of time,
are by definition real-valued. However, when modeling, analyzing and processing
bandpass signals whose spectral content is located around some center-frequency
fc, the use and notion of complex-valued signals turns out to be very useful. This has
then direct applications in radio communications, like various complex modulation
methods and more generally different frequency translations and filtering methods
in transceiver analog and digital front-ends. This is where we have main emphasis
on in this section. Furthermore, complex-valued signal and processing models are
fundamental also in digital baseband processing, including e.g. modeling of radio
channel impacts on the modulating data and the resulting equalization and detection
processing in receiver baseband parts. Examples of this can be found from earlier
sections. Useful general literature in this field are, e.g., [68, 107, 166, 170].

By definition, the time domain waveform x(t) of a complex signal is complex-
valued, i.e.

x(t) = xI(t)+ jxQ(t) = $ [x(t)]+ j% [x(t)] (25)

In practice, this is nothing more than a pair of two real-valued signals xI(t) and
xQ(t) carrying the real and imaginary parts. Similarly, a complex linear system is
defined as a system with complex-valued impulse response

h(t) = hI(t)+ jhQ(t) = $ [h(t)]+ j% [h(t)] (26)

280 M. Renfors et al.

One of the beautiful properties of complex-valued models is that in frequency
domain, there are no symmetry constraints opposed to real-valued signals/systems
which are always forced to have even-symmetric amplitude spectrum/response
and odd-symmetric phase spectrum/response with respect to the zero frequency
in two-sided spectral analysis. In the following presentation, we focus mostly on
continuous-time waveform and system aspects, but similar concept carry on to
discrete-time world as well. Some additional digital filter specific aspects are also
addressed in Sect. 4.3.2.

One basic operation related to complex quantities is complex-conjugation. Now
if the spectrum (Fourier transform) of x(t) is denoted by X(f), then the spectrum
of complex-conjugated signal x∗(t) is X∗(−f). This implies that the amplitude
spectra of x(t) and x∗(t) are mirror images of each other. Notice that physically,
complex conjugation is nothing more than changing the sign of the Q branch signal.
This simple result related to conjugation has an immediate consequence that if one
considers only the real part of x(t), i.e., y(t) = $ [x(t)] = (x(t) + x∗(t))/2, its
spectrum is Y (f) = (X(f) + X∗(−f))/2. Now if X(f) and X∗(−f) are not
overlapping, y(t) = $ [x(t)] contains all the information about x(t). Based on this,
it directly follows that for any complex signal x(t) such that X(f) and X∗(−f) are
not overlapping, y(t) = $ [x(t)] contains all the information about x(t).

The notion of complex signals has strong connection to bandpass signals. By
definition, a general real-valued bandpass signal can be written as

vBP(t) = A(t) cos (2πfct + φ(t)) = vI(t)cos(2πfct)− vQ(t) sin (2πfct)

= $
[
vLP(t)e

j2πfct
]
= vLP(t)e

j2πfct + v∗LP(t)e
−j2πfct

2
(27)

where vLP(t) = vI(t) + jvQ(t) = A(t)ejφ(t) is the corresponding lowpass or
baseband equivalent signal, vI(t) and vQ(t) are the inphase (I) and quadrature (Q)
components, and A(t) and φ(t) denote envelope and phase functions. Principal
spectral characteristics are illustrated in Fig. 11. Thus in the general case, the
baseband equivalent of a real-valued bandpass signal is complex-valued. Intuitively,
the complex-valued baseband equivalent describes the oscillating physical bandpass
signal with a time-varying phasor (complex number at any given time) such that the
length of the phasor corresponds to physical envelope and the phase to the physical
phase characteristics.

Two basic operations related to processing of complex signals are (1) complex
multiplication and (2) complex convolution (filtering). In the general case, by simply
following the complex arithmetic, these can be written as

x(t)× y(t) = (xI(t)+ jxQ(t)
) × (yI(t)+ jyQ(t)

)
= xI(t)× yI(t)− xQ(t)× yQ(t)+ j

(
xI(t)× yQ(t)+ xQ(t)× yI(t)

)
(28)

Signal Processing for Wireless Transceivers 281

f

t

vBP(t)

VBP(f)

A()
~1/fC

RE

vLP(t)

IM

A(t)

φ(t)

vQ(t)

vI()

-fC fC

W

|VBP(f)|

argVBP(f)

W

|VLP(f)

argVLP(f)

VLP(f)

f
0

|

t

t

Fig. 11 Illustration of bandpass signal structure in time- and frequency domains. Left half shows
a principal bandpass signal spectrum and the corresponding time-domain waveform. Right half,
in turn, shows the corresponding lowpass equivalent signal spectrum and the corresponding time-
domain complex signal as a time-varying phasor in complex plane

x(t) ∗ h(t) = (xI(t)+ jxQ(t)
) ∗ (hI(t)+ jhQ(t)

)
= xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)+ j

(
xI(t) ∗ hQ(t)+ xQ(t) ∗ hI(t)

)
(29)

Thus in general, four real multiplications (plus two additions) and four real
convolutions (plus two additions) are needed, respectively, in the physical imple-
mentations. This is illustrated in Fig. 12 for general complex convolution. Obvious
simplifications occur if either of the components (input signal or filter impulse
response) is real valued.

4.2.2 Analytic Signals and Hilbert Transforms

Hilbert transformer [68] is generally defined as an allpass linear filter which shifts
the phase of its input signal by 90◦. In the continuous-time case, the (non-causal)
impulse and frequency responses can be formulated as

hHT(t) = 1

πt
(30)

HHT(t) =
{
−j, f > 0

+j, f < 0
(31)

282 M. Renfors et al.

Fig. 12 Illustration of complex filtering (complex convolution) in terms of complex signals
(upper) and parallel real signals (lower)

Similar concepts carry on also to discrete-time filters [122].
In practice, the above behavior can be well approximated over any finite

bandwidth. One fascinating property related to Hilbert filters/transformers is that
they can be used to construct signals with only positive or negative frequency
content. These kind of signals are generally termed analytic signals and they are
always complex-valued. The simplest example is to take a cosine wave A cos(ω0t)

whose Hilbert transform is A sin(ω0t). Then these together when interpreted as I and
Q components of a complex signal result in A cos(ω0t) + jA sin(ω0t) = Aejω0t

whose spectrum has an impulse at ω0 (but not at −ω0). The elimination of the
negative (or positive) frequencies can more generally be formulated as follows.
Starting from an arbitrary signal x(t) we form a complex signal x(t) + jxHT(t)

where xHT(t) denotes the Hilbert transform of x(t). This is illustrated in Fig. 13.
In practice a proper delay is needed in the upper branch to facilitate the delay of
a practical HT. Then the spectrum of the complex signal is X(f) + jXHT(f) =
X(f) [1+ jHHT(f)] where 1 + jHHT(f) = 0 for f < 0. Based on this, it can
easily be shown that the I and Q (real and imaginary parts) of any analytic signal are
always related through Hilbert transform.

4.3 Frequency Translations and Filtering

4.3.1 Frequency Translations for Signals

One key operation in radio signal processing is the shifting of a signal spectrum
from one center-frequency to another. Conversions between baseband and bandpass
representations and I/Q modulation and demodulation (synchronous detection) are

Signal Processing for Wireless Transceivers 283

Fig. 13 Illustration of creating analytic signal using a Hilbert transformer

Fig. 14 An example of pure frequency translation using complex mixing

special cases of this. The basis of all the frequency translations lies in multiplying a
signal with a complex exponential, generally referred to as complex or I/Q mixing.
This will indeed cause a pure frequency shift, i.e.,

y(t) = x(t)ejωLOt ⇔ Y (f) = X(f − fLO) (32)

where ⇔ denotes transforming between time and frequency domain. This forms
the basis, e.g., for all the linear modulations, and more generally for all frequency
translations. This is illustrated in frequency domain in Fig. 14 in the case where the
input signal is at baseband.

In general, since

x(t)ejωLOt = xI(t) cos (ωLOt)− xQ(t) sin (ωLOt)

+ j
(
xQ(t) cos (ωLOt)+ xI(t) sin (ωLOt)

)
, (33)

four real mixers and two adders are needed to implement a full complex mixer (full
complex multiplication). This illustrated in Fig. 15. Notice again that in the special
case of real-valued input signal, only two mixers are needed.

284 M. Renfors et al.

Fig. 15 Illustration of complex mixing (complex signal multiplication) in terms of complex
signals (upper) and parallel real signals (lower)

Real mixing is obviously a special case of the previous complex one and results
in two frequency translations:

y(t) = x(t) cos (ωLOt)

= x(t)
1

2

(
ejωLO + e−jωLOt

)
⇔ Y (f) = 1

2
X (f − fLO)+ 1

2
X (f + fLO)

(34)

Here, the original spectrum appears twice in the mixer output, the two replicas being
separated by 2fLO in frequency. In receivers, this results in the so called image
signal or mirror-frequency problem since the signals from both fc + fLO and fc −
fLO will appear at fc after a real mixing stage. Thus if real mixing is used in the
receiver, the image signal or mirror-frequency band needs to be attenuated before the
actual mixer stage. This is the case, e.g., in the classical superheterodyne receiver.
Similar effects have to be taken into consideration also in transmitters, meaning that
the unwanted spectral replica produced by real mixing needs to be attenuated.

Linear I/Q modulation methods are basically just a special case of complex
mixing. Given a complex message signal x(t) = xI(t)+ jxQ(t), it is first complex-
modulated as x(t)ejωct , after which only the real part is actually transmitted. This
can be written as

y(t) = $
[
x(t)ejωCt

]
= xI(t) cos (ωct)− xQ(t) sin (ωct)

= 1

2
x(t)ejωCt + 1

2
x∗(t)e−jωCt (35)

Signal Processing for Wireless Transceivers 285

Cj te

f

input outputRe[.]

f
fCfC

Fig. 16 Principal structure of I/Q modulation using complex signal notations

Cj te

f
fCfC

f

input outputLPF

Fig. 17 Principal structure of I/Q demodulation using complex signal notations

While physical implementations build on the middle expression where xI(t) and
xQ(t) are modulated onto two orthogonal (cosine and sine) carriers, the complex
models are very handy e.g. from spectral analysis point of view. Notice that both
terms or spectral components (at +fc and −fc) contain all the original information
(i.e., x(t)). This overall process, also termed lowpass-to-bandpass transformation,
is pictured at conceptual level in Fig. 16.

On the receiver side, the goal in the demodulation phase is to recover the
original message x(t) from the carrier-modulated signal y(t). Based on the previous
discussion, it’s easy to understand that either of the signal components at+fc or−fc
can be used for that purpose, while the other one should be rejected. Since

y(t)e−jωct =
(

1

2
x(t)ejωct + 1

2
x∗(t)e−jωct

)
e−jωct = 1

2
x(t)+ 1

2
x∗(t)e−j2ωct

(36)

the message x(t) can be fully recovered by simply lowpass filtering the complex
receiver mixer output. Practical implementation builds again on parallel real
downconversion with cosine and sine followed by lowpass filtering in both branches.
Formal block-diagram for the I/Q demodulator in terms of complex signals is
presented in Fig. 17.

4.3.2 Frequency Translations for Linear Systems and Filters

The idea of frequency translations can be applied not only to signals but linear
systems or filters as well [122]. Good example is bandpass filter design through
proper modulation of lowpass prototype filter. In other words, assuming a digital

286 M. Renfors et al.

filter with impulse response h(n), modulated filter coefficients are of the form
h(n)ejω0n, h(n) cos (ω0n), and/or h(n)sin (ω0n) which have frequency-shifted or
modulated frequency responses compared to h(n). In general, such frequency
translation principles apply to both analog and digital filters but our focus in the
notations here is mostly on digital filters. Notice also that analytic bandpass filters
of the form h(n)ejω0n has direct connection to Hilbert transforms.

When it comes to digital filters, very interesting and low-complexity transforms
are obtained when the modulating sequence is either ejπn = {. . . ,+1,−1,+1,
−1,+1,−1, . . . } or ej

π
2 n = {. . . ,+1,+j,−1,−j,+1,+j,−1,−j, . . .} which

correspond to frequency translation by fs/2 and fs/4, respectively. Implementation-
wise, these are close to trivial mappings (only sign changes and proper changes
between I and Q branch sequences) which means very efficient implementation.
This applies of course also to digital downconversion and demodulation as well
which is one reason why fs/4 is a popular choice for intermediate frequency (IF) in
many advanced receivers. Notice also that in general, coefficient symmetry can be
exploited in modulated filter implementation as long as the prototype filter h(n) is
symmetric.

One additional key property is obtained from the transfer function interpretation
of modulated complex filters. For H(z) =∑N

n=0 h(n)z
−n, we can write

N∑
n=0

(
h(n)ejω0n

)
z−n =

N∑
n=0

h(n)
(
z−1ejω0

)n = H(z)|z−1←z−1ejω0 (37)

This means that the modulated filter can also be implemented by simply replacing
the unit delays (z−1 elements) of the original filter with generalized elements
z−1ejω0 . Thus implementing frequency translations is very straight-forward also
for IIR type filters.

We illustrate the modulated FIR filter characteristics with a design example
where analytic bandpass filter is obtained through complex modulation. Target is
to have passband at 0.6π . . . 0.8π and the filter length is 50. Equiripple (Remez)
design is used, and the lowpass prototype is an ordinary LPF with passband
−0.1π . . . 0.1π . Then complex modulation with ej0.7πn is deployed. The results
are illustrated in Fig. 18.

After learning that we can generally build complex (analytic) bandpass filters,
it’s also easy to devise an alternative strategy, other than the classical scheme
with complex down-conversion and lowpass filtering, for I/Q demodulation. This
is illustrated in Fig. 19, and uses the idea of filtering the signal first with complex
bandpass filter after which complex downconversion takes place. Notice that in this
scheme the complex bandpass filter creates already complex output signal and thus
a true complex mixer is required (4 muls and 2 adds). This structure has, however,
some benefits e.g. from analysis point of view, and it is also very suitable for digital
I/Q demodulation combined with decimation/down-sampling since the complex
filter output is free from negative frequencies.

Signal Processing for Wireless Transceivers 287

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
100

50

0

Frequency ω / π

A
m

pl
itu

de
 [d

B
]

Lowpass Prototype

40 30 20 10 0 10 20 30 40
0.2

0

0.2
Lowpass Prototype

n

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
100

50

0

Frequency ω / π

A
m

pl
itu

de
 [d

B
]

Modulated Filter

40 30 20 10 0 10 20 30 40
0.2

0

0.2
Modulated Filter, I Branch

n

n
40 30 20 10 0 10 20 30 40

0.2

0

0.2
Modulated Filter, Q Branch

Fig. 18 An illustration of analytic bandpass filter generation through complex modulation of a
lowpass prototype

288 M. Renfors et al.

Cj te

Complex
BPF

f
fCfC

f

input output

Fig. 19 An alternative structure for I/Q demodulation using complex bandpass filtering and
complex downconversion

Fig. 20 A principal spectral illustration of two-carrier low-IF receiver principle using wideband
complex I/Q downconversion

Additional good example of applying complex signal processing tools in radio
transceivers is, e.g., a dual-carrier or dual-channel receiver in which the RF front-
end implements wideband I/Q downconversion of the received signal such that the
two interesting carriers are located at positive and negative (small) intermediate
frequencies (IFs) after the analog front-end. The signal is then sampled and the
two carriers are demodulated in parallel in the digital front-end to baseband for
equalization and detection purposes. This is conceptually illustrated in Fig. 20. Now
there are two possibilities how to implement the carrier separation and demodulation
in the digital front-end: (1) complex digital bandpass filters centered at positive
and negative IFs, respectively, followed by complex digital downconversions or (2)
complex digital downconversions from positive and negative IFs to baseband (in
parallel) and real digital lowpass filtering for both signals. In practice, this is also
accompanied with sample rate adaptation (decimation).

Signal Processing for Wireless Transceivers 289

4.4 Radio Architecture Basics

In general the term radio architecture refers to the communication circuit and
module level arrangements in radio devices, and especially to how the elementary
tasks like frequency translations, filtering and amplification are organized and
sequenced in the radio chain. For presentation purposes we focus here on the
receiver side, while many of the principles and observations are valid also on the
transmitter side. There are also many transmitter-specific architectures, like polar
transmitter and other envelope/phase oriented structures, which focus specifically
on limiting the peak-to-average power ratio (PAPR) at the power amplifier input or
improving the PA power efficiency.

Theoretically, on the receiver side, the desired frequency channel could be
selected from the received radio frequency (RF) signal using a tunable and highly-
selective bandpass filter. This is, however, not feasible in practice since the used
RF bands are commonly in the GHz range while the interesting or desired signal
is typically very narrowband compared to the center-frequency. Therefore, the
received signal is downconverted to lower frequencies, either intermediate fre-
quency (IF) or directly to baseband, where selectivity filtering and other processing
can be implemented in a more feasible manner. Below we review how such
frequency translations and filtering are implemented in the most typical receiver
structures, namely superheterodyne, direct-conversion and low-IF type receivers.
Useful general literature is this field are, e.g., [44, 105, 112]. We also shortly touch
the subsampling aspects [42, 176] where controlled aliasing, instead of explicit
mixing, is used for frequency translation. As in the whole communications signal
processing field, the concept of complex-valued or I/Q signals plays an essential
role also here in designing and understanding different receiver principles.

4.4.1 Superheterodyne Receiver

The previously-described real mixing approach is deployed in the traditional
superheterodyne receiver. A tunable local oscillator is used to select the channel
of interest which is translated to a fixed intermediate frequency using real mixing.
At the IF stage, a highly selective bandpass filter is used to separate the desired
channel signal from the others. Tunability in the local oscillator facilitates the use
of a fixed intermediate frequency, thus enabling efficient implementation of the IF
channel selection filter. Special analog filter technologies, such as surface acoustic
wave (SAW), can be deployed in the implementation. After this, the signal is
traditionally quadrature downconverted to baseband, possibly through an additional
IF stage, and the baseband signal is finally A/D converted. Another more advanced
alternative is to sample and digitize the signal directly at IF and carry out the final
I/Q demodulation using DSP. The overall structure with baseband A/D conversions
is illustrated in Fig. 21.

290 M. Renfors et al.

BPF

LO

RF LNA

BPF

AGC

IF

I/Q LO

LPF

LPF

A/D

A/D

I

Q

Fig. 21 Principal structure of classical superheterodyne radio receiver

As shortly discussed already earlier, a real mixer is equally sensitive to frequen-
cies below and above the oscillator frequency. Thus for oscillator frequency fLO,
any input signal component at some frequency fc will appear at both fc − fLO and
fc + fLO at the mixer output. Thus in addition to the desired channel signal, also
the so called image band signal will appear at the IF if not filtered away before
the downconversion. For this purpose, superheterodyne receivers always use RF
image rejection filtering. In general, the used LO frequencies can be either below
(fLO = fc−fIF, lower side injection) or above (fLO = fc+fIF, upper side injection)
the desired channel center-frequency. In any case, the frequency separation between
the desired and image signals is always 2fLO. Thus in practice the image band is
located at the distance 2fIF either below or above the desired channel, depending on
the side of LO injection. The basic superheterodyne principle can also be extended
to double-IF or triple-IF scenario where the signal is brought to baseband through
many consecutive IFs, and selectivity is implemented step by step.

From the receiver design point of view, a proper compromise is required in
selecting or specifying the intermediate frequency. On one hand, a high enough
IF should be used since the desired and image bands are separated by 2fIF and the
image rejection filtering is performed at RF. On the other hand, a low enough IF is
needed to make the implementation of the IF channel selectivity filtering as feasible
as possible. As an example, intermediate frequencies around 71 MHz (first) and
13 MHz (second) are traditionally used in superheterodyne based GSM receivers,
whereas IFs around 10 MHz are typical in broadcast FM receivers.

4.4.2 Direct-Conversion Receiver

Due to the high number of discrete components and high power consumption, the
above superheterodyne architecture is, however, not the most appropriate choice for
highly integrated transceiver implementations in mass-market devices. Furthermore,
the use of fixed discrete components in the RF front-end limits the receiver
flexibility. Thus, architectures with more simplified analog front-ends with less RF
processing are in general desirable.

Signal Processing for Wireless Transceivers 291

BPF

RF LNA

I/Q LO

A/D

A/D

I

Q

LPF

LPF

AGC

Fig. 22 Principal structure of direct-conversion radio receiver

A simple way to reduce the number of components in the receiver and alleviate
the problem of receiver complexity is to avoid the use of intermediate frequency
stage and use complex or quadrature downconversion of the desired channel signal
from RF directly to baseband. Complete elimination of the IF stage results in highly
simplified structure where most of the channel selectivity and amplification are
implemented at baseband. In practice, depending on the performance of the A/D
interface, the overall selectivity can be split properly between analog and digital
filters. On one hand, since most of the signal processing tasks take place at low
frequencies, the power consumption of the radio is minimized. On the other hand,
very low noise operation is called for in all the remaining analog components since
the amplification provided by the RF stage is only moderate. The basic block-
diagram for RF I/Q downconversion based receivers is illustrated in Fig. 22.

In theory, the complex mixing approach corresponds to pure frequency trans-
lation and the image signal related problems present in real mixer are basically
avoided. In practice, however, complex-valued processing always calls for two
parallel signal branches (I and Q, e.g. two mixers and LO signals in case of real-
valued input and complex mixer) whose characteristics are (unintentionally) likely
to differ to some extent. This so-called I/Q imbalance problem has the net effect of
reducing the image rejection capability to only 20 . . .40 dB in practical analog I/Q
front-ends, at least without digital calibration. In the pure direct-conversion radio,
the image signal band is the desired signal itself (at negative center-frequency), and
the I/Q imbalances cause self-image interference. Other practical implementation
problems, stemming from direct RF-baseband downconversion, are LO leakage and
DC offsets, or in general second order intermodulation (IM2), which create spurious
signal energy and interference on top of the desired signal. We will discuss these
aspects, together with other RF impairment issues, in more details in Sect. 4.6.

292 M. Renfors et al.

4.4.3 Low-IF Receiver

In the basic low-IF receiver, in order to reduce the effects of LO leakage and
DC offsets, the desired signal is I/Q or quadrature downconverted to a low but
non-zero IF. Thus the basic structure is similar to previous direct-conversion block-
diagram but the complex I/Q signal after I/Q downconversion is located at low
intermediate frequency. As an example, intermediate frequencies in the order of
one or two channel bandwidths have been proposed and considered. Selectivity
can be implemented with special complex analog bandpass filters, centered at low
IF, or then with more wideband lowpass filter after which the final selectivity and
downconversion from IF to baseband is carried out digitally after A/D interface.
Notice that since the image signal in RF-IF downconversion comes now again from
another channel/band with a (possibly) very high power level, the use of a non-zero
IF reintroduces the image signal problem to big extent and the practical 20–40 dB
image attenuation of analog I/Q downconversion can easily be insufficient.

In a “per-channel” downconverting low-IF receiver, the image signal originates
from one of the nearby (adjacent) channels. Though the image problem is in this
case partly alleviated by the system specifications, which usually limit the power
difference of the nearby channels to 10 . . .25 dB, the 20 . . .40 dB attenuation pro-
vided by a practical analog front-end is clearly inadequate for most communication
waveforms. In a multichannel scenario, which is especially interesting, e.g., on
the base station side of cellular systems, several channels are downconverted as
a whole and the image frequency band may carry a signal at the maximum allowed
(blocking) signal level. Thus, for some of the channels, the image band signal
can be up to 50 . . .100 dB stronger than the desired signal, and the imbalanced
analog front-end image attenuation is clearly insufficient. Obviously, to facilitate
the use of these low-IF schemes in future high-performance highly-integrated
receivers, novel digital techniques enhancing the analog front-end image rejection
to an acceptable level are needed. Some example techniques are shortly cited in
Sect. 4.6. Using the multichannel direct-conversion/low-IF scheme with demanding
mobile communication system specifications is generally a very challenging idea.
With a proper combination of advanced analog signal processing (like the complex
analog Hilbert filtering type technique) and advanced DSP solutions, the required
performance is still feasible.

4.4.4 RF/IF Subsampling Receiver

One interesting class of receivers builds on bandpass subsampling principle, in
which the incoming radio (RF or IF) signal is deliberately sampled below the
classical Nyquist rule. Stemming from the bandlimited nature of the radio signals,
aliasing in the sense of creating new frequencies or “images” of the original signal at
lower center-frequencies can actually be allowed, as long as the original modulating
or information bearing signal remains undistorted. This is called subsampling and
essentially means that aliasing is used in a controlled manner to bring the signal
closer to baseband without explicit mixer techniques.

Signal Processing for Wireless Transceivers 293

Starting from a real-valued incoming bandpass signal, the subsampling radio
can be building on either (1) real or (2) complex I/Q subsampling. In case of real
subsampling, the signal is simply periodically sampled at a deliberate rate below
the Nyquist rate and the output sequence is still a real bandpass signal but at a
new lower center-frequency. Because of general bandpass radio waveform contains
I and Q components, the resulting signal cannot be aliased directly to baseband but
needs to be still in bandpass form. In case of complex I/Q subsampling, the idea
is to sample the incoming real-valued bandpass signal in two parallel branches; one
branch is directly the original input signal and the other branch is a 90◦ phase-shifted
version which is obtained using a Hilbert transformer type filter discussed earlier in
this Chapter. In such case, when the two parallel signals are viewed as a complex
signal, the sampler input is free from negative frequencies and thus aliasing can
be used more flexibly without the constraints of real subsampling. As an extreme
example, if the input center-frequency is an integer multiple of the sampling rate,
a direct bandpass-baseband conversion is obtained and the resulting two parallel
sample streams are sampled I and Q components of the original baseband signal.

One of the biggest practical limitations in deploying bandpass sampling, espe-
cially at RF frequencies in the GHz range, is related to practical imperfections of
the sampling circuits. Especially the impact of uncertainties in the sampling instants,
called sampling jitter, is generally increased when the center frequency is increased
[13]. This is because the instantaneous rate of change of the time domain waveform
is directly proportional to the center frequency. Different SNR degradation rules
are available in the literature to quantify the impact of sampling jitter in bandpass
sampling, see e.g. [13].

There are also recent advances in the concept called charge-domain sampling and
its applications in radio devices. Interested reader is referred to [76, 115].

4.5 Transceiver Digital Front-End

The waveform generation block of Fig. 1 produces a digital sample sequence
which corresponds to the discrete-time baseband version of the final RF signal
to be transmitted. The up-conversion of the baseband signal to the RF carrier
frequency can be done solely by the analog RF module, following D/A conversion
of the generated waveform. As discussed above, the up-conversion can be done in
multiple steps. Likewise, the received signal at the wanted RF channel is bandpass
filtered and down-converted to baseband, traditionally within the RF system block.
Eventually, a digital sample sequence corresponding to the coding and modulation
block output (but affected by additive noise and interferences as well as various
distortion effects) is fed to the demodulation and decoding block.

294 M. Renfors et al.

4.5.1 Traditional vs. Software Defined Radio Models

In basic single-mode transceiver solutions, the interpolation and upconversion
and filtering, decimation and down-conversion blocks of Fig. 1 maybe absent or
minimal, and DAC and ADC are working at a sampling rate which is at or close
to the minimum required for the specific waveform processing. However, in many
applications, and wireless mobile communication terminals in particular, the device
needs to implement multiple radio systems (e.g., GSM, WCDMA, 3GPP LTE,
802.11 WLAN, Bluetooth, GPS), and a multi-radio platform is needed. Even though
most of the current implementations still use different radio circuits for different
systems (see Fig. 23a), there is increasing interest for a highly configurable radio
platform able to implement different wireless system standards. The concept of
DSP-intensive software defined radio (SDR) has emerged from this need [74, 113,
166, 170]. In such DSP intensive solutions, the roles of interpolation and upconver-
sion and filtering, decimation and down-conversion modules is pronounced and they
are intended to take over various functionalities traditionally implemented by the RF
system blocks. In addition to multi-standard transceivers, multichannel transceiver,
utilizing common analog sections and DSP techniques for combining/separating
different frequency channels, is another motivation for DSP intensive solutions,
especially on the base-station side. The spectrum agile radio concept, discussed in
Sect. 3.2.2, inevitably leads to the same direction.

In such solutions, the DAC and ADC sampling rates are typically much
higher than the symbol rate, and multirate signal processing is used to implement
channelization filtering and up- and down-conversion functions. In the extreme
case (so-called direct digital synthesis transmitter and RF sampling receiver), the
RF system blocks would include only amplification and rudimentary filtering
operations. Even though the needed technologies are not mature enough for full
SDR implementations of wireless consumer devices, the development is gradually
moving in that direction.

In a SDR receiver, the digital front-end includes adjustable channelization
filtering and sampling rate reduction, jointly implemented through digital multirate
filtering. Depending on the radio architecture, this may be implemented as a lowpass
decimation filter if the wanted frequency channel is down-converted to baseband
using analog or digital mixing stages (see Fig. 23b). Alternatively, a bandpass
decimation structure may be used, which utilizes the aliasing effects in sampling
rate reduction for frequency translation purposes (see Fig. 23c) [166]. This approach
usually allows to down-convert the wanted frequency channel close to baseband,
after which a fine-tuning mixing operation is usually needed for compensating the
frequency offsets due to the limited granularity of this principle, together with the
compensation of frequency offsets of the local oscillators of the transmission link.

In a DSP intensive transmitter or receiver, the ADC/DAC sampling rate is
often high compared to the channel bandwidth, and a very effective channelization
filtering solution is needed in order not to increase the implementation complexity
of the overall solution significantly. Luckily, in a well-design multirate filtering
solution, the complexity is proportional to the low sampling rate (filter input

Signal Processing for Wireless Transceivers 295

Wideband
A/D

conversion

Multimode
multiband
RF system

e-j ct

Lowpass
decimator
Lowpass
decimator

Configurable
channelization
Sampling rate

reduction, possibly
with noninteger

factor

To baseband
processing

Antenna
signals

Wireless system specific circuitry, repeated for each system
Some common digital functions through processors or configurable HW

RF system
A/D

conversion
Waveform
processing

Demodulation
&

decoding

Antenna

a

b

c

signal

Partly common
circuitry

Dedicated RF filters
& LNAs for different

systems

Wideband
A/D

conversion

Multimode
multiband
RF system

e-j t

Bandpass
decimator
Bandpass
decimator

Antenna
signals

To baseband
processing

To baseband
processing

w

Dw

Fig. 23 Alternative multi-radio approaches. (a) Traditional receiver structure. (b) Configurable
receiver based on digital I/Q mixing and baseband decimation filtering. (c) Configurable receiver
based on bandpass decimation filtering and frequency offset compensation at low sample rate

sampling rate in transmitter and output sampling rate in receiver) [43]. Multi-
stage interpolation/decimation structures are commonly considered as they are
often most effective in terms of multiplication and addition rates, as well as
coefficient and data memory requirements [134]. Typically the first stages of
a decimator and last stages of an interpolator have relaxed frequency response
requirements, and multiplication-free solutions are available, like the cascaded
ingrator-comb (CIC) structures [78, 144]. Considering the bandpass decimator
based receiver structure of Fig. 23c, one quite flexible and efficient approach is to use
lowpass/bandpass/highpass FIR or IIR half-band filters in cascade [71]. Filter bank
based channelizers provide computationally effective solutions for multichannel
transmitters and receivers. [72].

A SDR is often expected to do the waveform processing for communication
signals with a wide range of signal bandwidths and, therefore, the sampling
rate conversion factor has to be adjustable. Furthermore, in different systems the
sampling rates of modulation and demodulation blocks are seldom in a simple
relation with each other. Yet it is often desirable to use a fixed ADC/DAC clock

296 M. Renfors et al.

frequency for different waveforms to simplify clock synthesizer implementation
or to facilitate simultaneously operating multiradio solutions. If different types of
signals are to be transmitted or received at the same time, adjusting the sampling
clock is not a possible solution. Even though sampling rate conversion with
simple fractional factors is possible with basic multirate signal processing methods,
techniques for arbitrary sampling rate conversion are very useful in the SDR context.
For time-synchronization purposes, fractional delay filters are also useful. Both of
these functions can be implemented using polynomial interpolation based on the
Farrow structure. [74, 109, 170]

In a SDR transmitter, the dual elements are needed. Digital interpolation filtering,
in combination with I/Q mixing is used for increasing the sampling rate and
frequency translation. Arbitrary sampling rate conversion may be needed also in
this context.

The compensation of time and frequency synchronization offsets needs to be
included in the receiver signal path, either as explicit functions as indicated above, or
in waveform-specific way in combination with channel equalization, as discussed in
Sect. 3.1 in the OFDM context. Additionally, waveform-specific time and frequency
offset estimation functions are needed in the digital front-end, either explicitly or in
a feedback loop configuration. [109]

4.6 RF Imperfections and DSP

The term RF imperfection refers to the circuit implementation nonidealities and the
resulting signal distortion in the central building blocks, like amplifiers, mixers,
oscillators and data converters, used in radio transceivers [57, 169, 173]. These
aspects have become more and more important in the recent years, stemming
from the development and utilization of more and more complex (and thus
sensitive) communication waveforms like multicarrier signal structures with high-
order subcarrier modulation as well as the carrier aggregation (CA) principle, in
modern radio communications. Such wideband complex waveforms are much more
sensitive to any signal distortion or interference, compared to earlier narrowband
binary-modulated waveforms. The other reason for increased interest towards these
issues is demands for transceiver flexibility which typically implies, e.g., less
RF filtering and increased dynamic range on the RF modules especially on the
receiver side. Also increasing miniaturization of the used electronics and underlying
silicon processes, together with decreasing supply voltages and increasing center
frequencies, all tend to make electronics more “dirty”.

Understanding and recognizing the above RF imperfection aspects are central in
modern radio communications, both at circuit and system levels. Stemming from the
increasing digital number crunching power of digital circuits, one interesting R&D
field in radio communications is then to develop digital signal processing (DSP)
methods and algorithms, perhaps specifically tailored for certain modulation and/or
radio architecture, to suppress or mitigate the impact of these RF imperfections.

Signal Processing for Wireless Transceivers 297

Best known example of such methods is transmitter power amplifier linearization,
through for example digital predistortion (DPD), which has been researched for
several decades. But during the past 10 years or so, also many other RF impair-
ments, like mirror-frequency interference due to I/Q imbalances, oscillator phase
noise, receiver small signal component nonlinearities, A/D interface nonlinearities,
and sampling circuit imperfections, have also been studied. This section shortly
addresses these aspects, at very coarse or introductory level, and gives some
directions in the recent literature where interested readers can find more information
on this theme.

4.6.1 I/Q Imbalance and Mirror-Frequency Interference

Due to finite tolerances of practical analog electronics, there’s always some imbal-
ance or mismatch between the relative amplitudes and phases of the analog I and
Q branches in transmitters and receivers. This is called I/Q mismatch. Commonly,
mismatch levels around 1–5% in amplitude and 1–5◦ in phase are stated feasible or
realistic. This has the impact of creating mirror-frequency distortion or interference
to the signal. With the previous mismatch levels, the mirror-frequency attenuation
is in the order of 40 . . .25 dB. In the very basic single-channel direct-conversion
radio, the mirror-frequencies are the mirror-image of the signal itself (baseband
signal spectrum flipped), and thus the problem is not extremely challenging since
the strength of the mirror-frequencies is in the same order as the actual signal
frequencies. In case of OFDM, for example, the impact is to create cross-talk
between the mirror-symmetric subcarrier pairs.

In case of more general I/Q downconversion based receiver, e.g. I/Q down-
conversion of a collection of frequency channels or subbands as a whole, the
mirror-frequencies of an individual channel or subband are coming from a different
channel or subband, and can thus potentially have much more severe effects due to
possibly higher power level at the mirror band. An extreme example could be an
overall I/Q downconversion of, e.g., whole GSM 1800 MHz uplink band in a base-
station device, where in principle the total dynamic range of the overall signal could
be in the order of 50–100 dB. In such cases, the image rejection requirements from
individual channel perspective are in the same order, and thus impossible to achieve
without digital calibration.

The available literature in this field, in terms of digital I/Q calibration and
imbalance compensation, is already fairly massive. To get an overview of different
digital compensation and calibration methods, both data-aided and non-data-aided,
and different radio architecture aspects, the reader is referred to [11, 12, 55, 160,
161, 171, 201].

298 M. Renfors et al.

4.6.2 Transmitter Nonlinearities

When emphasizing power-efficient operation, the power amplifier is always oper-
ating in a nonlinear region. This has the impact of creating intermodulation at the
PA output. These intermodulation components are basically falling both on top of
the ideal waveform bandwidth (inband effect, degrades EVM) as well as next to the
ideal waveform bandwidth which is typically called spectral regrowth. Such spectral
regrowth can potentially interfere with either other signals of the same radio system
or even signals of other radio systems (or both), and is thus typically controlled in
the radio system specifications through different emission masks, particularly in the
form of adjacent channel leakage ratio (ACLR). Furthermore, out-of-band emissions
beyond the ACLR region are also regulated through, e.g., the general spurious
emission limits. Particularly in cases with non-contiguous transmit spectrum, it is
many times the ACLR and spurious emission limitations, instead of EVM, that
form the most severe emission limits thus also then limiting the available or usable
transmit power.

Simple way to reduce the intermodulation is to backoff the amplifier input closer
to the linear region. This, however, also directly reduces the efficiency and typically
also the output power. In order have good balance between output power, efficiency
and linearity, digital predistortion techniques can be deployed in which the digital
transmit data is pre-processed such that when going through the nonlinear PA, the
intermodulation levels are still within the target limits. Alternative method for PA
linearization is, e.g. feedforward linearization in which the intermodulation of the
core PA is explicitly estimated and subtracted properly from the final transmitter
output.

The literature in this field is even more massive than in the previous sub-section,
but some seminal works are, e.g., [10, 14, 49, 84, 85, 89, 93, 101, 114, 197, 198].
More recent works specifically developed and tailored to linearizing very wideband
transmitters and/or transmitters with non-contiguous transmit spectrum are, e.g., [3–
5, 21, 29, 33, 64, 92, 100, 102, 104, 128, 138, 139, 190–193].

4.6.3 Receiver and ADC Nonlinearities

Even though the typical signal levels on the receiver side are much smaller than
on the transmitter side, also many receiver components are nonlinear. This applies,
e.g., to low noise amplifier (LNA), mixers and also to A/D interface. The most
challenging conditions are the cases when the desired signal is weak (close to
sensitivity level) while the neighboring channels, or more far away blocking signals,
are several tens of decibels stronger. Then depending on the receiver linearity, the
neighboring channels and/or blocking signals create intermodulation on top of the
weak desired signal. For the RF components, measures like input intercept point
(IIP) are typically used to quantify this phenomenon. IIP2 and IIP3 measure second-
order and third-order intermodulation behavior, respectively. It is also somewhat
radio architecture specific whether the second-order or third-order intermodulation

Signal Processing for Wireless Transceivers 299

is the critical interference source. In plain direct-conversion receiver, the second-
order effects are typically dominating while in IF-receivers it can be third-order
intermodulation.

An interesting research direction is to devise receiver linearization signal pro-
cessing. Such approach has not been studied very extensively but some seminal
works are available, see e.g., [50, 87, 88, 140, 151, 172]. They can be broadly
categorized to interference cancellation methods where intermodulation is sup-
pressed explicitly from the weak desired signal band, either using analog or digital
signal processing, and hybrid receiver or module calibration methods where e.g.
the mixer bias conditions are tuned to optimize IP2 or IP3 using a feedback from
downconverted signal.

In addition to actual RF components, also the A/D interface is inherently nonlin-
ear creating spurious components. In radio signal context, especially with wideband
multichannel A/D conversion, these spurious components result in intermodulation
between the signal bands. A/D interface linearization, especially through offline
calibration with e.g. lookup tables, has been also studied fairly widely, but recently
also some online signal processing innovations for challenging radio applications
have been reported [8].

4.6.4 Oscillator Phase Noise

Phase noise refers to random fluctuations of the instantaneous phase or frequency
of the oscillator signals used in radio devices e.g. for frequency translations.
Simple behavior modeling reveals that such phase noise appears as additional phase
modulation in the time-domain waveform, or when viewed from complex baseband
equivalent signal perspective, in multiplicative form as a complex exponential
multiplier with the phase jitter in the exponent. This has the principal effect of
broadening the signal spectrum.

From an individual waveform point of view, such additional time-domain phase
modulation or spectral broadening depends heavily of the used communication
waveform. For single-carrier signals, this is directly additional phase jitter in the
constellation while in the multicarrier/OFDM case, the spectral broadening of
individual subcarriers causes intercarrier interference (ICI) between the neighboring
subcarriers.

In a wider scale, the spectral broadening causes the energy of an individual radio
signal to leak on top of the neighboring channels. Again due to possibly different
power levels of different signals or subbands, this can be potentially much bigger
interference source, compared to above single-waveform impact, and typically
dictates the oscillator design—especially from large frequency offsets perspective.

In the recent years, the issue of phase noise estimation and digital suppression
has also started to raise some interest. Some seminal works in this field, mostly
focusing to ICI estimation and suppression with OFDM signals, are e.g. [47, 124,
130, 158, 163, 185, 200].

300 M. Renfors et al.

4.6.5 Sampling Jitter

Sampling jitter refers to the instantaneous timing uncertainties in the sampling
process and sample instants. This has typically big effect when the signal that
is sampled has high rate of change, which is the case in IF and especially RF
sampling, or high instantaneous envelope dynamics. With bandpass signals, the
impact of timing jitter is basically similar to phase noise, meaning that it is seen as
additional random phase modulation in the sampled sequence. How the power of the
interference or distortion due to jitter is distributed in the frequency domain, depends
heavily on the correlation properties of the jitter process itself. Some elementary
receiver system calculations typically assume white jitter and thereon white jitter
noise, but if the jitter process has more correlation between consecutive sample
instants, the induced noise has also more structure. In the literature, some works
exists where this phenomenon is utilized, the reader is directed e.g. to [141, 159]
and the references therein.

5 Concluding Remarks

This chapter has focused on the algorithms for baseband processing and digital
front end of wireless communication systems. The field is rapidly developing and
the timely topics of R&D activities include technologies for flexible and effective
spectrum use, supporting a wide range of services including mobile broadband
with highly increasing data rate and speed of mobility (e.g., high-speed trains),
massive machine-type communications and Internet-of-things, as well ultra reliable
and low-latency communications. The cellular mobile network is evolving towards
a multi-service network for all these services, while the development of dedicated
networks for specific services is on-going in parallel. Meanwhile, the used carrier
frequencies are extending towards mm-wave frequency bands (30–100 GHz) and
the carrier bandwidths are growing to several hundreds of MHz and beyond.

On the other hand, the practical implementation of the algorithms, derived
from communication theoretic viewpoint, requires another round of optimization
exploring the tradoffs between algorithmic simplifications and implementation
related cost criteria (complexity, energy consumption, etc.). This optimization
depends greatly on the target hardware architecture, which could be based on
dedicated VLSI, processors, or FPGAs.

Signal Processing for Wireless Transceivers 301

References

1. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle:
From theory to practise I, May (2001)

2. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle:
From theory to practise II, Sep (2001)

3. Abdelaziz, M., Anttila, L., Kiayani, A., Valkama, M.: Decorrelation-based concurrent digital
predistortion with a single feedback path. IEEE Transactions on Microwave Theory and
Techniques PP(99), 1–14 (2017). https://doi.org/10.1109/TMTT.2017.2706688

4. Abdelaziz, M., Anttila, L., Tarver, C., Li, K., Cavallaro, J.R., Valkama, M.: Low-complexity
subband digital predistortion for spurious emission suppression in noncontiguous spectrum
access. IEEE Transactions on Microwave Theory and Techniques 64(11), 3501–3517 (2016).
https://doi.org/10.1109/TMTT.2016.2602208

5. Abdelaziz, M., Fu, Z., Anttila, L., Wyglinski, A.M., Valkama, M.: Digital predistortion for
mitigating spurious emissions in spectrally agile radios. IEEE Communications Magazine
54(3), 60–69 (2016). https://doi.org/10.1109/MCOM.2016.7432149

6. Abdoli, J., Jia, M., Ma, J.: Filtered OFDM: A new waveform for future wireless systems. In:
IEEE Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
pp. 66–70 (2015). https://doi.org/10.1109/SPAWC.2015.7227001

7. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: Next generation/dynamic spectrum access/cog-
nitive radio wireless networks: A survey. Computer Networks Journal, Elsevier 50,
2127–2159 (2006)

8. Allen, M., Marttila, J., Valkama, M.: Digital post-processing for reducing A/D converter
nonlinear distortion in wideband radio receivers. In: Signals, Systems and Computers, 2009
Conference Record of the Forty-Third Asilomar Conference on, pp. 1111 –1114 (2009)

9. Anderson, J., Mohan, S.: Source and channel coding: An algorithmic approach. IEEE Trans.
Commun. 32(2), 169–176 (1984)

10. Anttila, L., Händel, P., Valkama, M.: Joint mitigation of power amplifier and I/Q modulator
impairments in broadband direct-conversion transmitters. IEEE Transactions on Microwave
Theory and Techniques 58(4), 730–739 (2010)

11. Anttila, L., Valkama, M., Renfors, M.: Circularity-based I/Q imbalance compensation in
wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 57(4), 2099 –2113 (2008)

12. Anttila, L., Zou, Y., Valkama, M.: Digital compensation and calibration of I/Q gain and phase
imbalances, chap. 16. Cambridge University Press, Cambridge, UK (2011)

13. Arkesteijn, V., Klumperink, E., Nauta, B.: Jitter requirements of the sampling clock in
software radio receivers. IEEE Trans. Circuits Syst. II 53(2), 90 – 94 (2006)

14. Aschbacher, E.: Digital predistortion of microwave power amplifiers. Ph.D. thesis, Technishe
Universitat Wien (2004)

15. Auer, G.: Bandwidth efficient 3D pilot design for MIMO-OFDM. In: Proc. European Wireless
Conf. Lucca, Italy (2010)

16. Auras, D., Leupers, R., Ascheid, G.: Efficient VLSI architecture for matrix inversion in soft-
input soft-output MMSE MIMO detectors. In: Proc. IEEE Int. Symp. Circuits and Systems,
pp. 1018–1021. Melbourne, Australia (2014)

17. Auras, D., Leupers, R., Ascheid, G.: A novel reduced-complexity soft-input soft-output
MMSE MIMO detector: Algorithm and efficient VLSI architecture. In: Proc. IEEE Int. Conf.
Commun., pp. 4722–4728. Sydney, Australia (2014)

18. Bala, E., Li, J., Yang, R.: Shaping spectral leakage: A novel low-complexity transceiver
architecture for cognitive radio. IEEE Vehicular Technology Magazine 8(3), 38–46 (2013).
https://doi.org/10.1109/MVT.2013.2269178

19. Baltar, L., Schaich, F., Renfors, M., Nossek, J.: Computational complexity analysis of
advanced physical layers based on multicarrier modulation. In: Proc. Future Network &
Mobile Summit, pp. 1–8. Warsaw, Poland (2011)

https://doi.org/10.1109/TMTT.2017.2706688
https://doi.org/10.1109/TMTT.2016.2602208
https://doi.org/10.1109/MCOM.2016.7432149
https://doi.org/10.1109/SPAWC.2015.7227001
https://doi.org/10.1109/MVT.2013.2269178

302 M. Renfors et al.

20. Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., Ugolini, A.: Modulation
Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?: An overview
of alternative modulation schemes for improved spectral efficiency. IEEE Signal Processing
Mag. 31(6), 80–93 (2014). https://doi.org/10.1109/MSP.2014.2337391

21. Bassam, S., Ghannouchi, F., Helaoui, M.: 2-D Digital Predistortion (2-D-DPD) architecture
for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and
Techniques 59, 2547–2553 (Oct. 2011)

22. Benedetto, S., Biglieri, E.: Principles of Digital Transmission; With Wireless Applications.
Kluwer Academic Publishers, New York (1999)

23. Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation
with a DFE using a frequency-domain feedforward filter. IEEE Trans. Commun. 50(6), 947–
955 (2002)

24. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turbo codes.
IEEE Trans. Commun. 44(10), 1261–1271 (1996)

25. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error correcting coding and
decoding: Turbo codes. In: Proc. IEEE Int. Conf. Commun., vol. 2, pp. 1064–1070. Geneva,
Switzerland (1993)

26. Bingham, J.: Multicarrier modulation for data transmission: An idea whose time has come.
IEEE Communications Magazine 28(5), 5–14 (1990)

27. Boelcskei, H., Gesbert, D., Papadias, C.B., van der Veen, A.J.: Space-Time Wireless Systems:
From Array Processing to MIMO Communications. Cambridge University Press, Cambridge,
UK (2006)

28. Borgerding, M.: Turning overlap-save into a multiband mixing, downsampling filter bank.
IEEE Signal Processing Mag. pp. 158–162 (2006)

29. Braithwaite, R.: Closed-loop digital predistortion (DPD) using an observation path with
limited bandwidth. IEEE Transactions on Microwave Theory and Techniques 63, no. 2, 726–
736 (Feb. 2015)

30. Brandes, S., Cosovic, I., Schnell, M.: Sidelobe suppression in OFDM systems by insertion
of cancellation carriers. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 152–156. Los Angeles,
CA, USA (2005)

31. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bölcskei, H.: VLSI
implementation of MIMO detection using the sphere decoding algorithm. IEEE J. Solid-State
Circuits 40(7), 1566–1577 (2005)

32. Burg, A., Haene, S., Perels, D., Luethi, P., Felber, N., Fichtner, W.: Algorithm and VLSI
architecture for linear MMSE detection in MIMO–OFDM systems. In: Proc. IEEE Int. Symp.
Circuits and Systems. Kos, Greece (2006)

33. Cabarkapa, M., Neskovic, N., Budimir, D.: A Generalized 2-D linearity enhancement
architecture for concurrent dual-band wireless transmitters. IEEE Transactions on Microwave
Theory and Techniques 61(12), 4579–4590 (2013). https://doi.org/10.1109/TMTT.2013.
2287679

34. Cavers, J.K.: An analysis of pilot symbol assisted modulation for Rayleigh fading channels.
IEEE Trans. Veh. Technol. 40(4), 686–693 (1991)

35. Chang, R.: High-speed multichannel data transmission with bandlimited orthogonal signals.
Bell Syst. Tech. J. 45, 1775–1796 (1966)

36. Chen, H.M., Chen, W.C., Chung, C.D.: Spectrally precoded OFDM and OFDMA with cyclic
prefix and unconstrained guard ratios. IEEE Trans. Wireless Commun. 10(5), 1416 – 1427
(2011)

37. Chen, L., Chen, W., Zhang, X., Yang, D.: Analysis and simulation for spectrum aggregation
in LTE-advanced system. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 1–6. Anchorage, AK,
USA (2009)

38. Cherubini, G., Eleftheriou, E., Olcer, S.: Filtered multitone modulation for VDSL. In: Proc.
IEEE Global Telecommun. Conf., pp. 1139–1144 (1999)

39. CISCO: Visual networking index (VNI) mobile white paper [online]. available at http://
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html (2017)

https://doi.org/10.1109/MSP.2014.2337391
https://doi.org/10.1109/TMTT.2013.2287679
https://doi.org/10.1109/TMTT.2013.2287679
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

Signal Processing for Wireless Transceivers 303

40. Collings, I., Butler, M., McKay, M.: Low complexity receiver design for MIMO bit-
interleaved coded modulation. In: Proc. IEEE Int. Symp. Spread Spectrum Techniques and
Applications, pp. 1993–1997. Sydney, Australia (2004)

41. Cosovic, I., Brandes, S., Schnell, M.: Subcarrier weighting: a method for sidelobe suppression
in OFDM systems. IEEE Commun. Lett. 10(6), 444–446 (2006)

42. Coulson, A., Vaughan, R., Poletti, M.: Frequency-shifting using bandpass sampling. IEEE
Trans. Signal Processing 42(6), 1556 –1559 (1994)

43. Crochiere, R., Rabiner, L.: Multirate Digital Signal Processing. Prentice-Hall, Englewood
Cliffs, NJ, USA (1983)

44. Crols, J., Steyaert, M.: CMOS Wireless Transceiver Design. Kluwer, Dordrecht, The
Netherlands (1997)

45. Dahlman, E., Parkvall, S., Sköld, J.: 4G LTE / LTE-Advanced for Mobile Broadband.
Academic Press (2011)

46. Damen, M.O., Gamal, H.E., Caire, G.: On maximum–likelihood detection and the search for
the closest lattice point. IEEE Trans. Inform. Theory 49(10), 2389–2402 (2003)

47. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: A unifying theory and
numerical methods for characterization. Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on 47(5), 655 –674 (2000)

48. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)

49. Ding, L.: Digital predistortion of power amplifiers for wireless applications. Ph.D. thesis,
School of Electrical and Computer Engineering, Georgia Institute of Technology (2004)

50. Dufrêne, K., Boos, Z., Weigel, R.: Digital adaptive IIP2 calibration scheme for CMOS
downconversion mixers. IEEE J. Solid-State Circuits 43(11), 2434–2445 (2008)

51. EMPHATIC: (2015). INFSO-ICT-211887 Project EMPHATIC Deliverables [Online]. Avail-
able at http://www.ict-emphatic.eu

52. Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar, A., Eidson, B.: Frequency domain
equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–
66 (2002)

53. Farhang-Boroujeny, B., Kempter, R.: Multicarrier communication techniques for spectrum
sensing and communication in cognitive radios. IEEE Commun. Mag. 46(4), 80–85 (2008)

54. Faulkner, M.: The effect of filtering on the performance of OFDM systems. IEEE Trans. Veh.
Technol. 49(9), 1877–1884 (2000)

55. Faulkner, M., Mattsson, T., Yates, W.: Automatic adjustment of quadrature modulators. IEE
Electron. Lett. 27(3), 214 –216 (1991)

56. Fessler, J., Hero, A.: Space-alternating generalized expectation-maximization algorithm.
IEEE Trans. Signal Processing 42(10), 2664–2677 (1994)

57. Fettweis, G., Löhning, M., Petrovic, D., Windisch, M., Zillmann, P., Rave, W.: Dirty RF: A
new paradigm. Int. J. Wireless Inform. Networks 14, 138–148 (2007)

58. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis. Math. Comput. 44(5), 463–471 (1985)

59. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
60. Frerking, M.E.: Digital Signal Processing in Communication Systems. Chapman & Hall,

New York, USA (1994)
61. Gallager, R.: Low-Density Parity-Check Codes. MIT Press, Cambridge, USA (1963)
62. 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Net-

work: Evolved universal terrestrial radio access E-UTRA; physical channels and modulation
TS 36.211 (version 8.5.0). Tech. rep. (2008)

63. Gerzaguet, R., Bartzoudis, N., Baltar, L.G., Berg, V., Doré, J.B., Kténas, D., Font-Bach,
O., Mestre, X., Payaró, M., Färber, M., Roth, K.: The 5G candidate waveform race: A
comparison of complexity and performance. EURASIP Journal on Wireless Communications
and Networking 2017(1), 13 (2017). https://doi.org/10.1186/s13638-016-0792-0

http://www.ict-emphatic.eu
https://doi.org/10.1186/s13638-016-0792-0

304 M. Renfors et al.

64. Gilabert, P.L., Montoro, G.: 3-D distributed memory polynomial behavioral model for
concurrent dual-band envelope tracking power amplifier linearization. IEEE Transactions on
Microwave Theory and Techniques 63(2), 638–648 (2015). https://doi.org/10.1109/TMTT.
2014.2387825

65. Girotto, M., Tonello, A.M.: Orthogonal design of cyclic block filtered multitone modulation.
IEEE Transactions on Communications 64(11), 4667–4679 (2016). https://doi.org/10.1109/
TCOMM.2016.2606624

66. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York, USA
(2005)

67. Guo, Z., Nilsson, P.: Algorithm and implementation of the K-best sphere decoding for MIMO
detection. IEEE J. Select. Areas Commun. 24(3), 491–503 (2006)

68. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, MA, USA (1996)
69. Hanzo, L., Liew, T., Yeap, B.: Turbo Coding, Turbo Equalisation and Space-Time Coding for

Transmission over Fading Channels. John Wiley & Sons, Chichester, UK (2002)
70. Hara, S., Prasad, R.: Design and performance of multicarrier CDMA system in frequency-

selective Rayleigh fading channels. IEEE Trans. Veh. Technol. 48(5), 1584–1595 (1999)
71. fred harris, Venosa, E., Chen, X., Renfors, M.: Cascade linear phase recursive half-band filters

implement the most efficient digital down-converter. In: SDR’11 - Wireless Innovation Forum
Conference on Communications Technologies and Software Defined Radio. Washington DC,
USA (2011)

72. harris, f., McGwier, R., Egg, B.: A versatile multichannel filter bank with multiple channel
bandwidths. In: Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and
Communications, pp. 1 –5. Cannes, France (2010)

73. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA
(1996)

74. Hentschel, T.: Sample rate conversion in software configurable radios. Artech House,
Norwood, MA, USA (2002)

75. Hirosaki, B.: An orthogonally multiplexed QAM system using the discrete Fourier transform.
IEEE Trans. Commun. 29(7), pp. 982 – 989 (1981)

76. Ho, Y.C., Staszewski, R.B., Muhammad, K., Hung, C.M., Leipold, D., Maggio, K.: Charge-
domain signal processing of direct RF sampling mixer with discrete-time filter in Bluetooth
and GSM receivers. EURASIP J. Wireless Comm. and Netw. 2006(3), 1–14 (2006)

77. Hochwald, B., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE
Trans. Commun. 51(3), 389–399 (2003)

78. Hogenauer, E.: An economical class of digital filters for decimation and interpolation. IEEE
Trans. Acoust., Speech, Signal Processing 29(2), 155 – 162 (1981)

79. Huang, Y., Ritcey, J.A.: Joint iterative channel estimation and decoding for bit-interleaved
coded modulation over correlated fading channels. IEEE Trans. Wireless Commun. 4(5),
2549–2558 (2005)

80. Ihalainen, T., Ikhlef, A., Louveaux, J., Renfors, M.: Channel equalization for multi-antenna
FBMC/OQAM receivers. IEEE Trans. Veh. Technol. 60(5), 2070–2085 (2011)

81. Jelinek, F., Anderson, J.: Instrumentable tree encoding of information sources. IEEE Trans.
Inform. Theory 17(1), 118–119 (1971)

82. Jiang, T., Wu, Y.: An overview: Peak-to-average power ratio reduction techniques for OFDM
signals. IEEE Trans. Broadcast. 54(2), 257–268 (2008)

83. Juntti, M., Glisic, S.: Advanced CDMA for wireless communications. In: S.G. Glisic, P.A.
Leppänen (eds.) Wireless Communications: TDMA Versus CDMA, chap. 4, pp. 447–490.
Kluwer (1997)

84. Katz, A.: Linearization: reducing distortion in power amplifiers. IEEE Microwave 2(4), 37
–49 (2001)

85. Katz, A., Gray, R., Dorval, R.: Truly wideband linearization. IEEE Microwave Magazine
10(7), 20–27 (2009)

86. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall,
Englewood Cliffs, NJ, USA (1993)

https://doi.org/10.1109/TMTT.2014.2387825
https://doi.org/10.1109/TMTT.2014.2387825
https://doi.org/10.1109/TCOMM.2016.2606624
https://doi.org/10.1109/TCOMM.2016.2606624

Signal Processing for Wireless Transceivers 305

87. Keehr, E., Hajimiri, A.: Equalization of third-order intermodulation products in wideband
direct conversion receivers. IEEE J. Solid-State Circuits 43(12), 2853 –2867 (2008)

88. Keehr, E., Hajimiri, A.: Successive regeneration and adaptive cancellation of higher order
intermodulation products in RF receivers. IEEE Trans. Microwave Theory Tech. 59(5), 1379
–1396 (2011)

89. Kenington, P.B.: Linearized transmitters: An enabling technology for software defined radio.
IEEE Communications Magazine 40(2), 156–162 (2002)

90. Ketonen, J., Juntti, M., Cavallaro, J.: Performance-complexity comparison of receivers for a
LTE MIMO-OFDM system. IEEE Trans. Signal Processing 58(6), 3360–3372 (2010)

91. Ketonen, J., Juntti, M., Ylioinas, J.: Decision directed channel estimation for reducing pilot
overhead in LTE-A. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., pp. 1503–1507.
Pacific Grove, USA (2010)

92. Kim, J., Roblin, P., Chaillot, D., Xie, Z.: A generalized architecture for the frequency-selective
digital predistortion linearization technique. IEEE Transactions on Microwave Theory and
Techniques 61, 596–605 (Jan. 2013)

93. Kim, W.J., Stapleton, S.P., Kim, J.H., Edelman, C.: Digital predistortion linearizes wireless
power amplifiers. IEEE Microwave Magazine 6(3), 54–61 (2005)

94. Komninakis, C., Wesel, R.D.: Joint iterative channel estimation and decoding in flat correlated
Rayleigh fading. IEEE J. Select. Areas Commun. 19(9), 1706 – 1717 (2001)

95. Le Floch, B., Alard, M., Berrou, C.: Coded orthogonal frequency division multiplex. Proc.
IEEE 83(6), 982–996 (1995)

96. Lélé, C., Javaudin, J.P., Legouable, R., Skrzypczak, A., Siohan, P.: Channel estimation
methods for preamble-based OFDM/OQAM modulation. European Trans. Telecommun.
19(7), 741–750 (2008)

97. Li, J., Bala, E., Yang, R.: Resource block filtered-OFDM for future spectrally agile and power
efficient systems. Physical Communication 14, 36–55 (2014). http://dx.doi.org/10.1016/j.
phycom.2013.10.003

98. Li, M., Bougart, B., Lopez, E., Bourdoux, A.: Selective spanning with fast enumeration:
A near maximum-likelihood MIMO detector designed for parallel programmable baseband
architectures. In: Proc. IEEE Int. Conf. Commun., pp. 737 – 741. Beijing, China (2008)

99. Lin, H., Siohan, P.: Multi-carrier modulation analysis and WCP-COQAM proposal.
EURASIP Journal on Advances in Signal Processing 2014(1), 1–19 (2014). https://doi.org/
10.1186/1687-6180-2014-79

100. Liu, J., Zhou, J., Chen, W., Zhou, B., Ghannouchi, F.: Low-complexity 2D behavioural model
for concurrent dual-band power amplifiers. Electronics Letters 48(11), 620–621 (2012).
https://doi.org/10.1049/el.2012.1183

101. Liu, T., Boumaiza, S., Ghannouchi, F.: Augmented Hammerstein predistorter for linearization
of broad-band wireless transmitters. IEEE Trans. Microwave Theory and Techniques 54(4),
1340–1349 (2006)

102. Liu, Y., Yan, J., Asbeck, P.: Concurrent dual-band digital predistortion with a single feedback
loop. IEEE Transactions on Microwave Theory and Techniques 63, no. 5, 1556–1568 (May
2015)

103. Loulou, A., Renfors, M.: Enhanced OFDM for fragmented spectrum use in 5G systems.
Trans. Emerging Tel. Tech. 26(1), 31–45 (2015). https://doi.org/10.1002/ett.2898

104. Ma, Y., Yamao, Y.: Spectra-folding feedback architecture for concurrent dual-band power
amplifier predistortion. IEEE Transactions on Microwave Theory and Techniques 63(10),
3164–3174 (2015). https://doi.org/10.1109/TMTT.2015.2472011

105. Mak, P.I., U, S.P., Martins, R.: Transceiver architecture selection: Review, state-of-the-art
survey and case study. IEEE Circuits Syst. Mag. 7(2), 6 –25 (2007)

106. Maliatsos, K., Adamis, A., Kanatas, A.G.: Interference versus filtering distortion trade-offs in
OFDM-based cognitive radios. Transactions on Emerging Telecommunications Technologies
24(7-8), 692–708 (2013). https://doi.org/10.1002/ett.2727

107. Martin, K.: Complex signal processing is not complex. IEEE Trans. Circuits Syst. I 51(9),
1823 – 1836 (2004)

http://dx.doi.org/10.1016/j.phycom.2013.10.003
http://dx.doi.org/10.1016/j.phycom.2013.10.003
https://doi.org/10.1186/1687-6180-2014-79
https://doi.org/10.1186/1687-6180-2014-79
https://doi.org/10.1049/el.2012.1183
https://doi.org/10.1002/ett.2898
https://doi.org/10.1109/TMTT.2015.2472011
https://doi.org/10.1002/ett.2727

306 M. Renfors et al.

108. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York, USA
(1997)

109. Meyr, H., Moeneclaey, M., Fechtel, S.A.: Digital Communication Receivers: Synchroniza-
tion, Channel Estimation and Signal Processing. John Wiley and Sons, New York, USA
(1998)

110. Miao, H., Juntti, M.: Space-time channel estimation and performance analysis for wireless
MIMO-OFDM systems with spatial correlation. IEEE Trans. Veh. Technol. 54(6), 2003–
2016 (2005)

111. Michailow, N., Matthé, M., Gaspar, I.S., Caldevilla, A.N., Mendes, L.L., Festag, A., Fet-
tweis, G.: Generalized frequency division multiplexing for 5th generation cellular networks.
IEEE Transactions on Communications 62(9), 3045–3061 (2014). https://doi.org/10.1109/
TCOMM.2014.2345566

112. Mirabbasi, S., Martin, K.: Classical and modern receiver architectures. IEEE Commun. Mag.
38(11), 132 – 139 (2000)

113. Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26 –38 (1995)
114. Morgan, D., et al.: A generalized memory polynomial model for digital predistortion of RF

power amplifiers. IEEE Trans. Signal Processing 54(10), 3852–3860 (2006)
115. Muhammad, K., Staszewski, R., Leipold, D.: Digital RF processing: Toward low-cost

reconfigurable radios. Communications Magazine, IEEE 43(8), 105 – 113 (2005)
116. Muschallik, C.: Improving an OFDM reception using an adaptive Nyquist windowing. In:

1996. Digest of Technical Papers., International Conference on Consumer Electronics, pp. 6–
(1996). https://doi.org/10.1109/ICCE.1996.517186

117. Myllylä, M.: Detection algorithms and architectures for wireless spatial multiplexing in
MIMO–OFDM systems. Ph.D. thesis, Acta Univ. Oul., C Technica 380, University of Oulu
(2011)

118. Myllylä, M., Cavallaro, J.R., Juntti, M.: Architecture design and implementation of the metric
first list sphere detector algorithm. IEEE Trans. VLSI Syst. 19(5), 895–899 (2011)

119. Myllylä, M., Juntti, M., Cavallaro, J.: Architecture design and implementation of the
increasing radius - List sphere detector algorithm. In: Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, pp. 553–556. Taipei, Taiwan (2009)

120. Myung, H.G., Junsung, L., Goodman, D.J.: Single carrier FDMA for uplink wireless
transmission. IEEE Veh. Technol. Mag. 1(7), 30–38 (2006)

121. Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications. Arthec House,
Boston (2000)

122. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall, Englewood
Cliffs, NJ, USA (1989)

123. Parsons, J.D.: The Mobile Radio Propagation Channel, second edn. John Wiley & Sons
(2001)

124. Petrovic, D., Rave, W., Fettweis, G.: Effects of phase noise on OFDM systems with and
without PLL: Characterization and compensation. IEEE Transactions on Communications
55(8), 1607 –1616 (2007)

125. PHYDYAS: (2011). INFSO-ICT-211887 Project PHYDYAS Deliverables, [Online]. Avail-
able at http://www.ict-phydyas.org

126. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2000)
127. Pun, M.O., Morelli, M., Kuo, C.C.: Multi-Carrier Techniques for Broadband Wireless

Communications. Imperial College Press (2007)
128. Qian, H., Yao, S., Huang, H., Yang, X., Feng, W.: Low complexity coefficient estimation

for concurrent dual-band digital predistortion. IEEE Transactions on Microwave Theory and
Techniques 63(10), 3153–3163 (2015). https://doi.org/10.1109/TMTT.2015.2472002

129. Qualcomm: 5G Waveform & Multiple Access Techniques (2015). Online: www.qualcomm.
com/media/documents/files/5g-waveform-multiple-access-techniques.pdf, last accessed 3
June 2016

130. Rabiei, P., Namgoong, W., Al-Dhahir, N.: A non-iterative technique for phase noise ICI
mitigation in packet-based OFDM systems. IEEE Trans. Signal Processing 58(11), 5945
–5950 (2010)

https://doi.org/10.1109/TCOMM.2014.2345566
https://doi.org/10.1109/TCOMM.2014.2345566
https://doi.org/10.1109/ICCE.1996.517186
http://www.ict-phydyas.org
https://doi.org/10.1109/TMTT.2015.2472002
www.qualcomm.com/media/documents/files/5g-waveform-multiple-access-techniques.pdf
www.qualcomm.com/media/documents/files/5g-waveform-multiple-access-techniques.pdf

Signal Processing for Wireless Transceivers 307

131. Renfors, M., Bader, F., Baltar, L., Ruyet, D.L., Roviras, D., Mege, P., Haardt, M., Stitz, T.H.:
On the use of filter bank based multicarrier modulation for professional mobile radio. In:
2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2013). https://
doi.org/10.1109/VTCSpring.2013.6692670

132. Renfors, M., et al.: Flexible and spectrally localized waveform processing for next generation
wireless communications (2015). INFSO-ICT-211887 Project PHYDYAS, White Paper,
[Online]. Available at http://www.ict-emphatic.eu/dissemination.html

133. Renfors, M., Ihalainen, T., Stitz, T.: A block-Alamouti scheme for filter bank based
multicarrier transmission. In: European Wireless Conference, pp. 1031 –1037 (2010). https://
doi.org/10.1109/EW.2010.5483517

134. Renfors, M., Saramäki, T.: Recursive Nth-band digital filters- Part II: Design of multistage
decimators and interpolators. IEEE Trans. Circuits Syst. 34(1), 40 – 51 (1987)

135. Renfors, M., Yli-Kaakinen, J.: Flexible fast-convolution implementation of single-carrier
waveform processing. In: IEEE Int. Conf on Communications Workshops, ICCW 2015, pp.
1243–1248. London, UK (2015). https://doi.org/10.1109/ICCW.2015.7247352

136. Renfors, M., Yli-Kaakinen, J., Harris, F.: Analysis and design of efficient and flexible fast-
convolution based multirate filter banks. IEEE Trans. Signal Processing 62(15), 3768–3783
(2014)

137. Ringset, V., Rustad, H., Schaich, F., Vandermot, J., Najar, M.: Performance of a filterbank
multicarrier (FBMC) physical layer in the WiMAX context. In: Proc. Future Network &
Mobile Summit. Florence, Italy (2010)

138. Roblin, P., Myoung, S.K., Chaillot, D., Kim, Y.G., Fathimulla, A., Strahler, J., Bibyk, S.:
Frequency-selective predistortion linearization of RF power amplifiers. IEEE Transactions
on Microwave Theory and Techniques 56, 65–76 (Jan. 2008)

139. Roblin, P., Quindroit, C., Naraharisetti, N., Gheitanchi, S., Fitton, M.: Concurrent lineariza-
tion. IEEE Microwave Magazine pp. 75–91 (Nov. 2013)

140. Rodriguez, S., Rusu, A., Zheng, L.R., Ismail, M.: CMOS RF mixer with digitally enhanced
IIP2. Electronics Letters 44, 121–122 (2008)

141. Rutten, R., Breems, L., van Veldhoven, R.: Digital jitter-cancellation for narrowband signals.
In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 1444 –1447 (2008)

142. Sahin, A., Arslan, H.: Edge windowing for OFDM based systems. IEEE Commun. Lett.
15(11), 1208–1211 (2011)

143. Saltzberg, B.: Performance of an efficient parallel data transmission system. IEEE Trans.
Commun. Technol. 15(6), 805–811 (1967)

144. Saramäki, T., Ritoniemi, T.: A modified comb filter structure for decimation. In: Proc. IEEE
Int. Symp. Circuits and Systems, pp. 2353–2356. Hong-Kong (1997)

145. Sari, H., Karim, G., Jeanclaude, I.: Transmission techniques for digital terrestrial TV
broadcasting. IEEE Commun. Mag. 33(2), 100–109 (1995)

146. Schaich, F., Wild, T., Chen, Y.: Waveform contenders for 5G – Suitability for short packet and
low latency transmissions. In: IEEE Vehicular Technology Conference (VTC Spring 2014),
pp. 1–5 (2014)

147. Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis.
Addison-Wesley, Reading, MA, USA (1991)

148. Schlegel, C., Pérez, L.: Trellis and Turbo Coding. Wiley IEEE Press Publication, Piscataway,
USA (2004)

149. Shaat, M., Bader, F.: Computationally efficient power allocation algorithm in multicarrier-
based cognitive radio networks: OFDM and FBMC systems. EURASIP J. Advances Signal
Processing 2010, 1–13 (2010)

150. Shafi, M., Molisch, A.F., Smith, P.J., Haustein, T., Zhu, P., Silva, P.D., Tufvesson, F.,
Benjebbour, A., Wunder, G.: 5G: A tutorial overview of standards, trials, challenges,
deployment and practice. IEEE Journal on Selected Areas in Communications PP(99), 1–
1 (2017). https://doi.org/10.1109/JSAC.2017.2692307

https://doi.org/10.1109/VTCSpring.2013.6692670
https://doi.org/10.1109/VTCSpring.2013.6692670
http://www.ict-emphatic.eu/dissemination.html
https://doi.org/10.1109/EW.2010.5483517
https://doi.org/10.1109/EW.2010.5483517
https://doi.org/10.1109/ICCW.2015.7247352
https://doi.org/10.1109/JSAC.2017.2692307

308 M. Renfors et al.

151. Shahed, A., Valkama, M., Renfors, M.: Adaptive compensation of nonlinear distortion in
multicarrier direct-conversion receivers. In: IEEE Radio Wireless Conf., RAWCON’04, pp.
35–38. Atlanta, GA (2004)

152. Shao, K., Alhava, J., Yli-Kaakinen, J., Renfors, M.: Fast-convolution implementation of filter
bank multicarrier waveform processing. In: IEEE Int. Symp. on Circuits and Systems (ISCAS
2015), pp. 978–981. Lisbon, Portugal (2015). https://doi.org/10.1109/ISCAS.2015.7168799

153. Siohan, P., Siclet, C., Lacaille, N.: Analysis and design of OFDM-OQAM systems based on
filterbank theory. IEEE Trans. Signal Processing 50(5), 1170–1183 (2002)

154. Studer, C., Burg, A., Bolcskei, H.: Soft-output sphere decoding: algorithms and VLSI
implementation. IEEE J. Select. Areas Commun. 26(2), 290–300 (2008)

155. Studer, C., Fateh, S., Seethaler, D.: ASIC implementation of soft-input soft-output MIMO
detection using MMSE parallel interference cancellation. IEEE J. Solid-State Circuits 46(7),
1754–1765 (2011)

156. Suikkanen, E.: Detection algorithms and ASIC designs for MIMO-OFDM downlink
receivers. Ph.D. thesis, Acta Univ. Oul., C Technica 606, University of Oulu, Oulu, Finland
(2017)

157. Suikkanen, E., Juntti, M.: ASIC implementation and performance comparison of adaptive
detection for MIMO–OFDM system. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp.,
pp. 1632–1636. Pacific Grove, USA (2015)

158. Syrjälä, V., Valkama, M.: Analysis and mitigation of phase noise and sampling jitter in OFDM
radio receivers. Int. J. Microwave and Wireless Technologies 2(4), 193–202 (2010)

159. Syrjälä, V., Valkama, M.: Sampling jitter cancellation in direct-sampling radio. In: Proc. IEEE
Wireless Commun. and Networking Conf., pp. 1 –6 (2010)

160. Tandur, D., Moonen, M.: Joint adaptive compensation of transmitter and receiver IQ
imbalance under carrier frequency offset in OFDM-based systems. IEEE Trans. Signal
Processing 55(11), 5246 –5252 (2007)

161. Tarighat, A., Bagheri, R., Sayed, A.: Compensation schemes and performance analysis of IQ
imbalances in OFDM receivers. IEEE Trans. Signal Processing 53(8), 3257 – 3268 (2005)

162. Tarver, C., Sun, Y., Amiri, K., Brogioli, M., Cavallaro, J.R.: Application-specific accelerators
for communications. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.)
Handbook of Signal Processing Systems, third edn. Springer (2018)

163. Tomba, L.: On the effect of Wiener phase noise in OFDM systems. IEEE Trans. Commun.
46(5), 580 –583 (1998)

164. Toskala, A., Holma, H.: LTE for UMTS - OFDMA and SC-FDMA Based Radio Access. John
Wiley and Sons, New York, USA (2009)

165. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University
Press, Cambridge, UK (2005)

166. Tsui, J.: Digital Techniques for Wideband Receivers. Artech House, Norwood, MA, USA
(1995)

167. Tüchler, M., Singer, A.C., Koetter, R.: Minimum mean squared error equalisation using a
priori information. IEEE Trans. Signal Processing 50(3), 673–683 (2002)

168. Väänänen, O., Vankka, J., Halonen, K.: Simple algorithm for peak windowing and its
application in GSM, EDGE and WCDMA systems. IEE Proc. – Commun. 152(3), 357–362
(2005)

169. Valkama, M.: RF impairment compensation for future radio systems. In: G. Hueber and R.B.
Staszewski, Eds., Multi-Mode/Multi-Band RF Transceivers for Wireless Communications:
Advanced Techniques, Architectures, and Trends. Wiley/IEEE Press, U.K. (2010)

170. Valkama, M., Pirskanen, J., Renfors, M.: Signal processing challenges for applying software
radio principles in future wireless terminals: An overview. Int. Journal of Communication
Systems, Wiley 15, 741–769 (2002)

171. Valkama, M., Renfors, M., Koivunen, V.: Advanced methods for I/Q imbalance compensation
in communication receivers. IEEE Trans. Signal Processing 49(10), 2335 –2344 (2001)

172. Valkama, M., Shahed hagh ghadam, A., Anttila, L., Renfors, M.: Advanced digital signal
processing techniques for compensation of nonlinear distortion in wideband multicarrier radio
receivers. IEEE Trans. Microwave Theory and Techniques 54(6), 2356–2366 (2006)

https://doi.org/10.1109/ISCAS.2015.7168799

Signal Processing for Wireless Transceivers 309

173. Valkama, M., Springer, A., Hueber, G.: Digital signal processing for reducing the effects of
RF imperfections in radio devices – An overview. In: Proc. IEEE Int. Symp. Circuits and
Systems, pp. 813 –816 (2010)

174. Vallet, R., Taieb, K.H.: Fraction spaced multi-carrier modulation. Wireless Pers. Commun.,
Kluwer 2, 97–103 (1995)

175. Vangelista, L., Benvenuto, N., Tomasin, S., Nokes, C., Stott, J., Filippi, A., Vlot, M., Mignone,
V., Morello, A.: Key technologies for next-generation terrestrial digital television standard
DVB-T2. IEEE Commun. Mag. 47(10), 146–153 (2009)

176. Vaughan, R., Scott, N., White, D.: The theory of bandpass sampling. IEEE Trans. Signal
Processing 39(9), 1973 –1984 (1991)

177. Verdú, S.: Multiuser Detection. Cambridge University Press, Cambridge, UK (1998)
178. Viholainen, A., Ihalainen, T., Rinne, M., Renfors, M.: Localized mode DFT-S-OFDMA

implementation using frequency and time domain interpolation. EURASIP Journal on
Advances in Signal Processing 2009, 1–9 (2009). https://doi.org/10.1155/2009/750534

179. Viholainen, A., Ihalainen, T., Stitz, T.H., Renfors, M., Bellanger, M.: Prototype filter design
for filter bank based multicarrier transmission. In: Proc. European Sign. Proc. Conf. Glasgow,
Scotland (2009)

180. Weinsten, S.B., Ebert, P.M.: Data transmission by frequency division multiplexing using the
discrete Fourier transform. IEEE Trans. Commun. Technol. 19(5), 628–634 (1971)

181. Weiss, T.A., Hillenbrand, J., Krohn, A., Jondral, F.K.: Mutual interference in OFDM-based
spectrum pooling systems. In: Proc. IEEE Veh. Technol. Conf. Spring, pp. 1872–1877. Dallas,
TX, USA (2004)

182. Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: V-BLAST: An architecture
for realizing very high data rates over the rich-scattering wireless channel. In: International
Symposium on Signals, Systems, and Electronics (ISSSE), pp. 295–300. Pisa, Italy (1998)

183. Wong, K., Tsui, C., Cheng, R.K., Mow, W.: A VLSI architecture of a K-best lattice decoding
algorithm for MIMO channels. In: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp.
273–276. Scottsdale, AZ (2002)

184. Wu, M., Yin, B., Vosoughi, A., Studer, C., Cavallaro, J.R., Dick, C.: Approximate matrix
inversion for high-throughput data detection in the large-scale MIMO uplink. In: Proc. IEEE
Int. Symp. Circuits and Systems, pp. 2155–2158. Beijing, China (2013)

185. Wu, S., Bar-Ness, Y.: OFDM systems in the presence of phase noise: Consequences and
solutions. IEEE Trans. Commun. 52(11), 1988 – 1996 (2004)

186. Xie, Y., Georghiades, C.N., Li, Q.: A novel low complexity detector for MIMO system. In:
Proc. Annual Asilomar Conf. Signals, Syst., Comp., vol. 1, pp. 208 – 212 (2004)

187. Yli-Kaakinen, J., Levanen, T., Valkonen, S., Pajukoski, K., Pirskanen, J., Renfors, M.,
Valkama, M.: Efficient fast-convolution based waveform processing for 5G physical layer.
IEEE Journal on Selected Areas in Communications 35, 1–18 (2017)

188. Ylioinas, J., Juntti, M.: Iterative joint detection, decoding, and channel estimation in turbo
coded MIMO-OFDM. IEEE Trans. Veh. Technol. 58(4), 1784–1796 (2009). https://doi.org/
10.1109/TVT.2008.2005724

189. Ylioinas, J., Raghavendra, M.R., Juntti, M.: Avoiding matrix inversion in DD SAGE channel
estimation in MIMO-OFDM with M-QAM. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5.
Anchorage, USA (2009)

190. Younes, M., Kwan, A., Rawat, M., Ghannouchi, F.M.: Linearization of concurrent tri-
band transmitters using 3-D phase-aligned pruned volterra model. IEEE Transactions on
Microwave Theory and Techniques 61(12), 4569–4578 (2013). https://doi.org/10.1109/
TMTT.2013.2287176

191. Yu, C., Allegue-Martinez, M., Guo, Y., Zhu, A.: Output-controllable partial inverse digital
predistortion for RF power amplifiers. IEEE Transactions on Microwave Theory and
Techniques 62(11), 2499–2510 (2014). https://doi.org/10.1109/TMTT.2014.2360175

192. Yu, C., Guan, L., Zhu, E., Zhu, A.: Band-limited volterra series-based digital predistortion for
wideband RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques
60(12), 4198–4208 (2012). https://doi.org/10.1109/TMTT.2012.2222658

https://doi.org/10.1155/2009/750534
https://doi.org/10.1109/TVT.2008.2005724
https://doi.org/10.1109/TVT.2008.2005724
https://doi.org/10.1109/TMTT.2013.2287176
https://doi.org/10.1109/TMTT.2013.2287176
https://doi.org/10.1109/TMTT.2014.2360175
https://doi.org/10.1109/TMTT.2012.2222658

310 M. Renfors et al.

193. Yu, C., Xia, J., Zhu, X., Zhu, A.: Single-model single-feedback digital predistortion for
concurrent multi-band wireless transmitters. IEEE Transactions on Microwave Theory and
Techniques 63(7), 2211–2224 (2015). https://doi.org/10.1109/TMTT.2015.2429633

194. Yuan, Z., Wyglinski, A.: On sidelobe suppression for multicarrier-based transmission in
dynamic spectrum access networks. IEEE Trans. Veh. Technol. 59(4), 1998 – 2006 (2010)

195. Zayani, R., Medjahdi, Y., Shaiek, H., Roviras, D.: WOLA-OFDM: A potential candidate
for asynchronous 5G. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–5 (2016).
https://doi.org/10.1109/GLOCOMW.2016.7849087

196. Zhang, H., LeRuyet, D., Roviras, D., Medjahdi, Y., Sun, H.: Spectral efficiency comparison of
OFDM/FBMC for uplink cognitive radio networks. EURASIP J. Advances Signal Processing
2010, 1–14 (2010)

197. Zhou, D., DeBrunner, V.E.: Novel adaptive nonlinear predistorters based on the direct learning
algorithm. IEEE Trans. Signal Processing 55(1), 120–133 (2007)

198. Zhou, G.T., et al.: On the baseband representation of a bandpass nonlinearity. IEEE Trans.
Signal Processing 53(8), 2953–2957 (2005)

199. Zhu, Y., Letaief, K.: Single carrier frequency domain equalization with time domain noise
prediction for wideband wireless communications. IEEE Trans. Wireless Commun. 5(12),
3548–3557 (2006)

200. Zou, Q., Tarighat, A., Sayed, A.: Compensation of phase noise in OFDM wireless systems.
IEEE Trans. Signal Processing 55(11), 5407 –5424 (2007)

201. Zou, Y., Valkama, M., Renfors, M.: Digital compensation of I/Q imbalance effects in space-
time coded transmit diversity systems. IEEE Trans. Signal Processing 56(6), 2496 –2508
(2008)

https://doi.org/10.1109/TMTT.2015.2429633
https://doi.org/10.1109/GLOCOMW.2016.7849087

Signal Processing for Radio Astronomy

Alle-Jan van der Veen, Stefan J. Wijnholds, and Ahmad Mouri Sardarabadi

Abstract Radio astronomy is known for its very large telescope dishes but is
currently making a transition towards the use of a large number of small antennas.
For example, the Low Frequency Array, commissioned in 2010, uses about 50
stations each consisting of 96 low band antennas and 768 or 1536 high band anten-
nas. The low-frequency receiving system for the future Square Kilometre Array is
envisaged to initially consist of over 131,000 receiving elements and to be expanded
later. These instruments pose interesting array signal processing challenges. To
present some aspects, we start by describing how the measured correlation data
is traditionally converted into an image, and translate this into an array signal
processing framework. This paves the way to describe self-calibration and image
reconstruction as estimation problems. Self-calibration of the instrument is required
to handle instrumental effects such as the unknown, possibly direction dependent,
response of the receiving elements, as well a unknown propagation conditions
through the Earth’s troposphere and ionosphere. Array signal processing techniques
seem well suited to handle these challenges. Interestingly, image reconstruction,
calibration and interference mitigation are often intertwined in radio astronomy,
turning this into an area with very challenging signal processing problems.

A.-J. van der Veen (�)
TU Delft, Faculty of EEMCS, Delft, The Netherlands
e-mail: a.j.vanderveen@tudelft.nl

S. J. Wijnholds
Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo, The Netherlands
e-mail: wijnholds@astron.nl

A. M. Sardarabadi
University of Groningen, Kapteyn Astronomical Institute, Groningen, The Netherlands
e-mail: ammsa@astro.rug.nl

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_9

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_9&domain=pdf
mailto:a.j.vanderveen@tudelft.nl
mailto:wijnholds@astron.nl
mailto:ammsa@astro.rug.nl
https://doi.org/10.1007/978-3-319-91734-4_9

312 A.-J. van der Veen et al.

1 Introduction

Astronomical instruments measure cosmic particles or electromagnetic waves
impinging on the Earth. Astronomers use the data generated by these instruments
to study physical phenomena outside the Earth’s atmosphere. In recent years,
astronomy has transformed into a multi-modal science in which observations at
multiple wavelengths are combined. Figure 1 provides a nice example showing the
lobed structure of the famous radio source Cygnus A as observed at 240 MHz with
the Low Frequency Array (LOFAR) overlaid by an X-Ray image observed by the
Chandra satellite, which shows a much more compact source.

Such images are only possible if the instruments used to observe different parts
of the electromagnetic spectrum provide similar resolution. Since the resolution is
determined by the ratio of observed wavelength and aperture diameter, the aperture
of a radio telescope has to be 5 to 6 orders of magnitude larger than that of an optical
telescope to provide the same resolution. This implies that the aperture of a radio
telescope should have a diameter of several hundreds of kilometers. Most current
and future radio telescopes therefore exploit interferometry to synthesize a large
aperture from a number of relatively small receiving elements.

An interferometer measures the correlation of the signals received by two
antennas spaced at a certain distance. After a number of successful experiments
in the 1950s and 1960s, two arrays of 25-m dishes were built in the 1970s: the
3 km Westerbork Synthesis Radio Telescope (WSRT, 14 dishes) in Westerbork, The
Netherlands and the 36 km Very Large Array (VLA, 27 movable dishes) in Socorro,
New Mexico, USA. These telescopes use Earth rotation to obtain a sequence of

Fig. 1 Radio image of Cygnus A observed at 240 MHz with the Low Frequency Array (showing
mostly the lobes left and right), overlaid over an X-Ray image of the same source observed by the
Chandra satellite (the fainter central cloud) [65] (Courtesy of Michael Wise and John McKean)

Signal Processing for Radio Astronomy 313

correlations for varying antenna baselines, resulting in high-resolution images via
synthesis mapping. A more extensive historical overview is presented in [52].

The radio astronomy community has recently commissioned a new generation of
radio telescopes for low frequency observations, including the Murchison Widefield
Array (MWA) [38, 53] in Western Australia and the Low Frequency Array (LOFAR)
[24, 58] in Europe. These telescopes exploit phased array technology to form a
large collecting area with ∼1000 to ∼50,000 receiving elements. The community
is also making detailed plans for the Square Kilometre Array (SKA), a future radio
telescope that should be one to two orders of magnitude more sensitive than any
radio telescope built to date [18]. Even in its first phase of operation, the low-
frequency receiving system of the SKA (SKA-low) is already envisaged to consist
of over 131,000 receiving elements [17, 56].

The individual antennas in a phased array telescope have an extremely wide
field-of-view, often the entire visible sky. This poses a number of signal processing
challenges, because certain assumptions that work well for small fields-of-view
(celestial sphere approximated by a plane, homogenous propagation conditions over
the field-of-view), are no longer valid. Furthermore, the data volumes generated by
these new instruments will be huge and will have to be reduced to manageable
proportions by a real-time automated data processing pipeline. This combination of
challenges led to a flurry of research activity in the area of array calibration, imaging
and RFI mitigation, which are often intertwined in the astronomical data reduction.

The goal of calibration is to find the unknown instrumental, atmospheric and
ionospheric disturbances. The imaging procedure should be able to apply appropri-
ate corrections based on the outcome of the calibration process to produce a proper
image of the sky. In this chapter, we review some of the array processing techniques
that have been proposed for use in standard calibration and imaging pipelines, many
of which are already being used in data reduction pipelines of instruments like
LOFAR.

2 Notation

Matrices and vectors will be denoted by boldface upper-case and lower-case
symbols, respectively. Entries of a matrix A are denoted by aij , and its columns
by ai . Overbar (·) denotes complex conjugation. The transpose operator is denoted
by T , the complex conjugate (Hermitian) transpose by H and the Moore-Penrose
pseudo-inverse by †. For matrices A of full column rank, i.e., AHA invertible, this
is equal to the left inverse:

A† = (AHA)−1AH . (1)

The expectation operator is denoted by E{·}.

314 A.-J. van der Veen et al.

We will multiply matrices in many different ways. Apart from the usual
multiplication AB, we will use A B to denote the Hadamard product (element-wise
multiplication), and A⊗ B to denote the Kronecker product,

A⊗ B =
⎡
⎢⎣
a11B a12B · · ·
a21B a22B · · ·
...

...
. . .

⎤
⎥⎦ .

We will also use the Khatri-Rao or column-wise Kronecker product of two matrices:
let A = [a1, a2, · · ·] and B = [b1,b2, · · ·], then

A ◦ B = [a1 ⊗ b1, a2 ⊗ b2, · · ·] .

Depending on the context, diag(·) converts a vector to a diagonal matrix with the
elements of the vector placed on the main diagonal, or converts a general matrix to
a diagonal matrix by selecting its main diagonal. Further, vec(·) converts a matrix
to a vector by stacking the columns of the matrix.

Properties of Kronecker products are listed in, e.g., [43]. We frequently use

(A⊗ B)(C⊗D) = AC⊗ BD (2)

vec(ABC) = (CT ⊗A)vec(B) (3)

vec(A diag(b)C) = (CT ◦A)b . (4)

Property (3) is used to move a matrix B from the middle of an equation to the right
of it, exploiting the linearity of the product. Property (4) is a special case of it, to
be used if B is a diagonal matrix: in that case vec(B) has many zero entries, and we
can omit the corresponding columns of CT ⊗ A, leaving only the columns of the
Khatri-Rao product CT ◦ A. A special case of (3) is

vec(aaH) = ā⊗ a (5)

which shows how a rank-1 matrix aaH is related to a vector with a specific
“Kronecker structure”.

3 Basic Concepts of Interferometry; Data Model

The concept of interferometry is illustrated in Fig. 2. An interferometer measures the
spatial coherency of the incoming electromagnetic field. This is done by correlating
the signals from the individual receivers with each other. The correlation of each
pair of receiver outputs provides the amplitude and phase of the spatial coherence
function for the baseline defined by the vector pointing from the first to the second

Signal Processing for Radio Astronomy 315

x̃2(t)
g2g1

geometric
delay

x̃J(t)
gJbaseline

FOV

x̃1(t)

Fig. 2 Schematic overview of a radio interferometer

receiver in a pair. In radio astronomy, these correlations are called the visibilities. In
this section, we describe the data acquisition in detail and construct a suitable data
model.

3.1 Data Acquisition

Assume that there are J receiving elements. Depending on the context, a receiving
element can be a telescope dish, a single antenna within a subarray (usually referred
to as a station) or a beamformed subarray. The RF signal from the j th telescope,
x̃j (t) is first moved to baseband where it is denoted by xj (t), then sampled and split
into narrow subbands, e.g., of 100 kHz each, such that the narrowband condition
holds. This condition states that the maximal geometrical delay across the array
should be fairly representable by a phase shift of the complex baseband signal, and
this property is discussed in more detail in the next subsection. The resulting signal
is called xj (n, k), for the j th telescope, nth time bin, and for the subband frequency
centered at RF frequency fk . The J signals can be stacked into a J × 1 vector
x(n, k).

For each short-term integration (STI) intervalm and each subband k, a covariance
matrix estimate is formed by integrating (summing or averaging) the cross-
correlation products x(n, k)xH(n, k) over N subsequent samples,

R̂m,k = 1

N

mN−1∑
n=(m−1)N

x(n, k)xH(n, k) , (6)

This processing chain is summarized in Fig. 3.

316 A.-J. van der Veen et al.

BB
filter
bank

x(t) x(n, k)

100 kHz
10 µs

x(n, k)x(n, k)H

10 MHz

10 s

10 s

R̂m,k

x̃1(t)

x̃J(t)

RF
to

Fig. 3 The processing chain to obtain covariance data

The duration of an STI depends on the stationarity of the data, which is limited
by factors like Earth rotation and the diameter of the array. For the LOFAR, a
typical value for the STI is 1–10 s. A complete observation can last from a few
minutes to a full night, i.e., more than 12 h. The resulting number of samples N in a
snapshot observation is equal to the product of bandwidth and integration time and
typically ranges from 103 (1 s, 1 kHz) to 106 (10 s, 100 kHz) in radio astronomical
applications.

3.2 Complex Baseband Signal Representation

Before we can derive a data model, we need to include some more details on the RF
to baseband conversion. In signal processing, signals are usually represented by their
low pass equivalents, which is a suitable representation for narrowband signals in a
digital communication system, and also applicable in the radio astronomy context.
A complex valued bandpass signal, also called the complex baseband signal, with
center frequency fc may be written as

s̃(t) = s(t)ej2πfct (7)

Suppose that the bandpass signal s̃(t) is delayed by a time τ . This can be written
as

s̃τ (t) := s̃(t − τ) = s(t − τ)ej2πfc(t−τ) = s(t − τ)e−j2πfcτ ej2πfct .

The complex envelope of the delayed signal is thus sτ (t) = s(t − τ)e−j2πfcτ . Let B
be the bandwidth of the complex envelope (the baseband signal) and let S(f) be its
Fourier transform. We then have

Signal Processing for Radio Astronomy 317

s(t − τ) =
∫ B/2

−B/2
S(f)e−j2πfτ ej2πf tdf ≈

∫ B/2

−B/2
S(f)ej2πf t df = s(t)

where the approximation e−j2πfτ ≈ 1 is valid if |2πf τ | (1 for all frequencies
|f | ≤ B

2 . Ignoring a factor π , the resulting condition Bτ (1 is called the
narrowband condition. The quantitative interpretation of “much less than one”
depends on the SNR of the received signals [67] and the sensitivity loss considered
acceptable [9]. Under this condition, we have for the complex envelope sτ (t) of the
delayed bandpass signal s̃τ (t) that

sτ (t) ≈ s(t)e−j2πfcτ for Bτ (1 .

The conclusion is that, for narrowband signals, time delays smaller than the inverse
bandwidth may be represented as phase shifts of the complex envelope. Phased array
processing heavily depends on this step. For radio astronomy, the maximal delay τ

is equal to the maximal geometric delay, which can be related to the diameter of the
array. The bandwidth B is the bandwidth of each subband fk in the RF processing
chain that we discussed in the previous subsection.

3.3 Data Model

We return to the radio astronomy context. For our purposes, it is convenient to
model the sky as consisting of a collection of Q spatially discrete point sources,
with sq (n, k) the signal of the qth source at time sample n and frequency fk .

The signal received at the j th antenna is a sum of delayed source signals, where
the delays are geometric delays that depend on the direction under which each of the
signals is observed. In the previous subsection, we saw that under the narrowband
condition a delay of a narrowband signal s(t, k) by τ can be represented by a phase
shift:

sτ (t, k) = e−j2πfkτ s(t, k)

which takes the form of a multiplication of s(t, k) by a complex number. Let
zj = [xj , yj , zj]T be the location of the j th antenna. Further, let lq be a unit-length
direction vector pointing into the direction of the qth source.

The geometrical delay τ at antenna j for a signal coming from direction lq can be
computed as follows. For a signal traveling directly from the origin of the coordinate
system used to specify the antenna locations to antenna j , the delay is the distance
from the origin to the j th antenna divided by c, the speed of light. For any other
direction, the delay depends on the cosine of the angle of incidence (compared to
the baseline vector) at observing time n, and is thus described by the inner product

318 A.-J. van der Veen et al.

of the location vector with the direction vector, i.e., τq,j (n) = zj · lq(n)/c. Overall,
the phase factor representing the geometric delay is

aj,q(n, k) = e−j2πfkτq,j (n) = e
− 2π jfk

c
zTj lq(n) . (8)

The coordinates of source direction vectors lq are expressed as1 (,m, n), where
 , m and n are direction cosines and n = √1− 2 −m2 due to the normalization.
There are several conventions and details regarding coordinate systems [52], but
they are not of concern for us here.

Besides the phase factor aq,j (n, k), the received signals are also affected by the
direction dependent response of the receiving element bj (l, n, k) and the direction
independent complex valued receiver path gain gj (n, k). The function bj (l, n, k) is
referred to as the primary beam to distinguish it from the array beam and the point
spread function or dirty beam that results from beamforming over a full synthesis
observation (more about this later). The general shape of the primary beam is known
from (electromagnetic) modelling during the design of the telescope. If that model
is not sufficiently accurate, it needs to be calibrated. Together with the tropospheric
and ionospheric propagation conditions, the primary beam determines the direction
dependent gain gdj,q(n, k) of the j th receiving element. The signal xj (n, k) received
by the j th receiving element can thus be described by

xj (n, k) = gj (n, k)

Q∑
q=1

gdj,q(n, k)aj,q (n, k)sq(n, k)+ nj (n, k), (9)

where nj (n, k) denotes the additive noise in the j th receive path.
We can stack the phase factors aj,q(n, k) into an array response vector for each

source as

aq(n, k) =
[
a1,q(n, k), · · · , aJ,q(n, k)

]T
. (10)

In a similar way, we can stack the direction independent gains gj (n, k) into a
vector g(n, k), stack the direction dependent gains gdj,q(n, k) into a vector for each

source gdq(n, k) and stack the additive noise signals in a vector n(n, k). With these
conventions, we can formulate the data model for the array signal vector as

x(n, k) = g(n, k)
Q∑

q=1

gdq(n, k) aq(n, k)sq(n, k)+ n(n, k). (11)

For convenience of notation, we introduce the gain matrix

1With abuse of notation, as m,n are not related to the time variables used earlier.

Signal Processing for Radio Astronomy 319

G(n, k) =
[
g(n, k) gdq(n, k), · · · , g(n, k) gdQ(n, k)

]
.

As we will see in Sect. 5, this gain matrix may have a specific structure depending
on a priori knowledge about the direction independent gains and the direction
dependent gains. This structure can then be exploited during calibration. We can
also stack the array response vectors into an array response matrix A(n, k) =[
a1(n, k), · · · aQ(n, k)

]T . These conventions allow us to write Eq. (11) as

x(n, k) = (G(n, k) A(n, k)) s(n, k)+ n(n, k), (12)

where s(n, k) = [s1(n, k), · · · sQ(n, k)
]T .

For convenience of notation, we will in future usually drop the dependence on the
frequency fk (index k) from the notation. Previously, in (6), we defined correlation
estimates R̂m as the output of the data acquisition process, where the time index
m corresponds to the mth STI interval, such that (m − 1)N ≤ n ≤ mN . Due
to Earth rotation, the vectors aq(n) change slowly with time, but we assume that
within an STI it can be considered constant and can be represented, with some abuse
of notation, by aq(m). In that case, x(n) is wide sense stationary over the STI, and
a single STI covariance matrix is defined as

Rm = E{x(n) xH(n)} , m = ⌈ n
N

⌉
(13)

where Rm has size J × J . Each element of Rm represents the interferometric
correlation along the baseline vector between the two corresponding receiving
elements. It is estimated by STI sample covariance matrices R̂m defined in (6), and
our stationarity assumptions imply E{R̂m} = Rm.

We will model the source signals sq (n, k) and the noise signals nj (n, k) as zero
mean white Gaussian random processes sampled at the Nyquist rate. We will also
assume that the source signals and noise signals are mutually uncorrelated. With
these assumptions, we find, by substituting Eq. (12) into Eq. (13), that

Rm = E
{
(Gm Ams(n)+ n(n)) (Gm Ams(n)+ n(n))H

}

= (Gm Am)E
{

s(n)sH (n)
}
(Gm Am)

H + E
{

n(n)nH (n)
}

= (Gm Am)�s (Gm Am)
H +�n, (14)

where �s = diag (σ s) with σ s = [σ 2
1 , · · · , σ 2

Q]T is the source covariance matrix

and �n = diag (σ n) with σ n = [σ 2
n,1, · · · , σ 2

n,J]T is the noise covariance matrix. In
radio astronomy, the covariance data model described in Eq. (14) is usually referred
to as the measurement equation.

320 A.-J. van der Veen et al.

3.4 Radio Interferometric Imaging Concepts

Under ideal circumstances, the array response matrix Am is not perturbed by the
gain matrix Gm, i.e., we have Gm = 11H where 1 denotes a vector of ones of
appropriate size. The columns of Am are given by Eq. (8). Its entries represent
the phase shifts due to the geometrical delays associated with the array and source
geometry. By adding the gain matrix Gm, we can introduce directional disturbances
due to non-isotropic antennas, unequal antenna gains and disturbances due to
ionospheric effects.

Assuming ideal conditions and ignoring the additive noise, a single element of
the array covariance matrix, usually referred to as a visibility, can be written as

(Rm)ij =
Q∑

q=1

ai,qaj,qσ
2
q =

Q∑
q=1

I
(
lq
)
e−j 2π

λ (zi (m)−zj (m))
T lq . (15)

where I (lq) = σ 2
q is the brightness (power) in direction lq . The function I (l) is

the brightness image (or map) of interest: it is this function that is shown when
we refer to a radio-astronomical image like Fig. 1. It is a function of the direction
vector l: this is a 3D vector, but due to its normalization it depends on only two
parameters. We could e.g., show I (·) as function of the direction cosines (,m), or
of the corresponding angles.

For our discrete point-source model, the brightness image is

I (l) =
Q∑

q=1

σ 2
q δ(l− lq) (16)

where δ(·) is a Kronecker delta, and the direction vector l is mapped to the location
of “pixels” in the image (various transformations are possible). Only the pixels lq
are nonzero, and have value equal to the source variance σ 2

q .
The vector zi (m) − zj (m) is the baseline: the (normalized) vector pointing

from telescope i to telescope j . In radio astronomy, it is usually expressed in
coordinates denoted by uij = (u, v,w) and normalized by the wavenumber, i.e.,
uij (m) = (2π/λ)(zi (m) − zj (m)). The objective in telescope design is often to
have as many different baselines as possible. In that case the entries of Rm are
different and non-redundant. As the Earth turns, the baselines also turn, thus giving
rise to new baseline directions. We will see later that the set of baselines during an
observation determines the spatial sampling function by which the incoming wave
field is sampled, with important implications on the quality of the resulting image.

Equation (15) describes the relation between the visibility model and the desired
image, and it has the form of a Fourier transform; it is known in radio astronomy
as the Van Cittert-Zernike theorem [49, 52]. Image formation (map making) is
essentially the inversion of this relation. Unfortunately, we have only a finite set

Signal Processing for Radio Astronomy 321

of observations, therefore we can only obtain a dirty image: if we apply the inverse
Fourier transformation to the measured correlation data, we obtain

ÎD(l) :=
∑
i,j,m

(
R̂m

)
ij
e

juT
ij (m)lq (17)

In terms of the measurement data model (15), the “expected value” of the image is
obtained by replacing R̂m by Rm, or

ID(l) :=
∑
i,j,m

(Rm)ij e
juT

ij (m)l

=
∑
i,j,m

∑
q

σ 2
q e

juT
ij (m)(l−lq)

=
∑
q

I (lq)B(l − lq)

= I (l) ∗ B(l), (18)

where the dirty beam is given by

B(l) :=
∑
i,j,m

e
juT

ij (m)l
. (19)

The dirty image ID(l) is the desired “true” image I (l) convolved with the dirty
beam B(l): every point source excites a beam B(l − lq) centered at its location lq .
The effect of this is that the true image gets blurred, thus limiting its resolution. Note
that B(l) is a known function: it only depends on the locations of the telescopes, or
rather the set of telescope baselines uij (m) = (2π/λ)(zi (m)− zj (m)).

Note that Eq. (17) has the form of a Fourier transform, although it has been
defined on (u, v,w) samples that are non-uniformly spaced. To be able to use
the computationally efficient fast Fourier transform (FFT), astronomy software first
applies a gridding operation that interpolates and resamples the visibilities onto a
regular grid, after which the FFT can be used to obtain the dirty image [49, 52]. This
essentially implements a non-uniform FFT as used in other science communities
[19].

As an example, the antenna configuration for the six stations forming the core
of the LOFAR and the resulting single-STI dirty beam is shown in Fig. 4. The dirty
beam has heavy sidelobes as high as −10 dB. A resulting dirty image (in dB scale)
is shown in Fig. 5. In this image, we see the complete sky, in (,m) coordinates,
where the reference direction is pointing towards zenith. The strong visible sources
are Cassiopeia A and Cygnus A, also visible is the Milky Way. The image was
obtained by averaging 259 STIs, each consisting of 1 s data in a single frequency
channel of 195 kHz wide at a central frequency of 58.9 MHz.

322 A.-J. van der Veen et al.

-1 -0.5 0 0.5 1
East l West

-1
a b

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ou

th

 m

 N
or

th

-40

-35

-30

-25

-20

-15

-10

-5

0

-150 -100 -50 0 50 100 150 200
East x West

-150

-100

-50

0

50

100

150

S
ou

th

 y

 N
or

th

Fig. 4 (a) Coordinates of the antennas in the LOFAR Superterp, which defines the spatial
sampling function, and (b) the resulting dirty beam in dB scale

East l West

-1
-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

So
ut

h
 m

 N

or
th

DFT dirty image

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Fig. 5 Dirty image following (18), using LOFAR Superterp data

The dirty beam is essentially a non-ideal point spread function due to finite and
non-uniform spatial sampling: we only have a limited set of baselines. The dirty
beam usually has a main lobe centered at l = 0, and many side lobes. If we
would have a large number of telescopes positioned in a uniform rectangular grid,
the dirty beam would be a 2-D sinc-function (similar to a boxcar taper in time-
domain sampling theory). The resulting beam size is inversely proportional to the

Signal Processing for Radio Astronomy 323

aperture (diameter) of the array. This determines the resolution in the dirty image.
The sidelobes of the beam give rise to confusion between sources: it is unclear
whether a small peak in the image is caused by the main lobe of a weak source,
or the sidelobe of a strong source. Therefore, attempts are made to design the array
such that the sidelobes are low. It is also possible to introduce weighting coefficients
(“tapers”) in (18) to obtain an acceptable beamshape.

Another aspect is the summation over m (STI intervals) in (19), where the
rotation of the Earth is used to obtain essentially many more antenna baselines.
This procedure is referred to as Earth rotation synthesis as more (u, v,w) sampling
points are obtained over time. The effect of this is that the sidelobes tend to get
averaged out, to some extent. Many images are also formed by averaging over a
small number of frequency bins (assuming the σ 2

q are constant over these frequency
bins), which enters into the equations in exactly the same way: Replace zi (m) by
zi (m, k) and also sum over the frequency index k.

4 Image Reconstruction

The goal of image reconstruction is to obtain an estimate of the true image I (l).
Many approaches to this problem have been proposed, which can be divided
into two classes. The first is a non-parametric approach that starts from the dirty
image. Since the dirty image is the convolution of the true image by the dirty
beam, this reduces the image reconstruction problem to a deconvolution problem.
Deconvolution is the process of recovering I (l) from ID(l) using knowledge of
the dirty beam and thus to obtain the high-resolution “clean” image. A standard
algorithm for doing this is CLEAN [27] and variants; however, many other
algorithms are possible, depending on the underlying model assumptions and on
a trade-off between accuracy and numerical complexity.

The second class of approaches is to consider image reconstruction as an
estimation problem in which an unknown set of parameters describing I (l) need
to be extracted from the measured visibilities collected in the measured array
covariance matrices R̂m. This “model matching” approach is discussed in more
detail in Sect. 4.4.

After a telescope has been designed and built, algorithms for image formation
are the most important topic for signal processing. Careful techniques can increase
the dynamic range (ratio between powers of the strongest and the weakest features
in the image) by several orders of magnitude. However, the numerical complexity
is often large, and high-resolution images require dedicated hardware solutions
and sometimes even supercomputers. In this section, we will describe some of the
algorithms. Additional overviews are available in [13, 14, 33, 36], as well as in the
books [4, 52].

324 A.-J. van der Veen et al.

4.1 Constructing Dirty Images

4.1.1 Beamforming Formulation

Previously (Eq. (17)), we formulated the dirty image as the inverse Fourier transform
of the measured correlations. Here, we will interpret this process as beamforming.
Once we have this formulation, we may derive many other dirty images via
beamforming techniques. For simplicity of notation, we assume from now on that
only a single STI snapshot is used in the imaging, hence we also drop the time index
m from the equations. The results can easily be extended.

The imaging process transforms the covariances of the received signals to an
image of the source structure within the field-of-view of the receivers. In array
processing terms, it can be described as follows [33]. Assume a data model as in (12)
with all gain factors equal to unity, and recall the definition of the array response
vector a(l) in (8) and (10) (using yet another change of notation to emphasize now
that a is a function of the source direction l). There are J antennas. To determine
the power of a signal arriving from a particular direction l, a weight vector

w(l) = 1

J
a(l) = 1

J
e−j 2π

λ ZT l, (20)

where Z = [z1, · · · , zJ], is applied to the array signal vector x(n). The operation
y(n) = wH x(n) is generally called beamforming. The choice w = a precisely
compensates the geometric phase delays so that the antenna signals are added in-
phase. This can be regarded as a spatially matched filter, or conjugate field match.
The (often omitted) scaling by 1/J ensures the correct scaling of the output power.
Indeed, the output power of a beamformer is, generally,

E{|y|2} = wHE{xxH }w = wHRw .

For a data model consisting of a single source with power σ 2 arriving from direction
a(l), i.e., x(n) = a(l)s(n), we have, with w = 1

J
a(l),

E{|y|2} = wH(aσ 2aH)w = σ 2 aHa
J

aHa
J

= σ 2 . (21)

Thus, the matched beamformer corrects precisely the signal delays (phase shifts)
present in a(l), when w matches a(l), i.e. the beamformer is pointed into the same
direction as the source. If the beamformer is pointed into other directions, the
response is usually much smaller.

Using the beamformer to scan over all pixels l in an image, we can create an
image via beamforming as

ÎBF (l) = w(l)H R̂w(l) (22)

Signal Processing for Radio Astronomy 325

and the corresponding model for this image is

IBF (l) = w(l)HRw(l) . (23)

The matched filter corresponds to weights w(l) defined as in (20). Except for a
factor J 2, the image IBF (l) is identical to the dirty image ID(l) defined in (18) for
this choice! Indeed, starting from (18), we can write

ID(l) =
∑
i,j

Rij e
juT

ij l =
∑
i,j

ai(l)Rij aj (l) = a(l)HRa(l)

which is the beamforming image obtained using w(l) = a(l). The response to a
single source at the origin is

B(l) = a(l)Ha(0)a(0)Ha(l)

= a(l)H11Ha(l)

= 1H [a(l)a(l)H]1
=
∑
i,j

e
juT

ij l

which is the dirty beam defined in (19), now written in beamforming notation. It
typically has a spike at l = 0, and many sidelobes, depending on the spatial sampling
function. We have already seen that these sidelobes limit the resolution, as they can
be confused with (or mask) other sources.

So far, we looked at the response to a source, but ignored the effect of the noise
on an image. In the beamforming formulation, the response to a data set which only
consists of noise, or R = �n is

In(l) = w(l)H�nw(l) .

Suppose that the noise is spatially white, �n = σ 2
n I, and that we use the matched

beamformer (20), we obtain

In(l) = σ 2
n

a(l)H

J

a(l)
J
= σ 2

n

‖a(l)‖2

J 2
= σ 2

n

J
, (24)

since all entries of a(l) have unit magnitude. As this is a constant, the image will
be “flat”. For a general data set, the responses to the sources and to the noise will
be added. Comparing (21)–(24), we see that the noise is suppressed by a factor
J compared to a point source signal coming from a specific direction. This is the
array gain. If we use multiple STIs and/or frequencies fk , the array gain can be
larger than J .

326 A.-J. van der Veen et al.

4.1.2 Constructing Dirty Images by Adaptive Beamforming

Now that we have made the connection of the dirty image to beamforming, we
can apply a range of other beamforming techniques instead of the matched filter,
such as the class of spatially adaptive beamformers. In fact, these can be considered
as 2D spatial-domain versions of (now classical) spectrum estimation techniques
for estimating the power spectral density of a random process (viz. [26]), and the
general idea is that we can obtain a higher resolution if the sidelobes generated by
strong sources are made small.

As an example, the “minimum variance distortionless response” (MVDR)
beamformer is defined such that the response towards the direction of interest l is
unity, but signals from other directions are suppressed as much as possible, i.e.,

w(l) = arg min
w

wHRw , such that wHa(l) = 1.

This problem can be solved in various ways. For example, after making a transfor-
mation w′ := R1/2w, a′ := R−1/2a, the problem becomes

w′(l) = arg min
w′

‖w′‖2 , such that w′H a′(l) = 1.

To minimize the norm of w′, it should be aligned to a′, i.e., w′ = αa′, and the
solution is w′ = a′/(a′Ha′). In terms of the original variables, the solution is then

w(l) = R−1a(l)
a(l)HR−1a(l)

, (25)

and the resulting MVDR dirty image can thus be described as

IMVDR(l) = w(l)HRw(l) = 1

a(l)HR−1a(l)
. (26)

For a point-source model, this image will have a high resolution: two sources that
are closely spaced will be resolved. The corresponding beam responses to different
sources will in general be different: the beamshape is spatially varying. While we
may represent IMVDR(l) as a convolution of the true image with a dirty beam, this
is now a spatially varying convolution (viz. the convolution in a linear time-varying
system). Deconvolution is still possible but has to take this into account.

Another consequence of the use of an adaptive beamformer is that the output
noise power is not spatially uniform. Consider the data model R = A�sAH + �n,
where �n = σ 2

n I is the noise covariance matrix, then at the output of the
beamformer the noise power is, using (25),

In(l) = w(l)HRnw(l) = a(l)HR−1(σ 2
n I)R−1a(l)

[a(l)HR−1a(l)]2 = σ 2
n

a(l)HR−2a(l)
[a(l)HR−1a(l)]2 .

Thus, the output noise power is direction dependent.

Signal Processing for Radio Astronomy 327

As a remedy to this, a related beamformer which satisfies the constraint
w(l)Hw(l) = 1 (and therefore has spatially uniform output noise) is obtained by
using a different scaling of the MVDR beamformer:

w(l) = μR−1a(l) , μ = 1

[a(l)HR−2a(l)]1/2 .

This beamformer is known as the “Adapted Angular Response” (AAR) [8]. The
resulting image is

IAAR(l) = w(l)H Rw(l) = a(l)HR−1a(l)
a(l)HR−2a(l)

.

It has a high resolution and suppresses sidelobe interference under the white noise
constraint.

Example MVDR and AAR dirty images using the same LOFAR stations as
before are shown in Fig. 6. Comparing to Fig. 5, we observe that, as predicted, the
sidelobe suppression in the MVDR and AAR dirty images is much better than the
original matched beamformer dirty image. The images have a higher contrast and
it appears that some additional point sources emerge as the result of lower sidelobe
levels. This is especially true for the AAR dirty image.

4.2 Deconvolution

Having obtained a dirty image, we then attempt to recover the true image via
deconvolution: inverting the effect of the (known) dirty beam.

4.2.1 The CLEAN Algorithm

A popular method for deconvolution is the CLEAN algorithm [27]. It was proposed
for the classical, matched beamformer dirty image ID(l) defined in (17). From ID(l)
and the known dirty beam B(l), the desired image I (l) is obtained via a sequential
Least Squares fitting method. The algorithm is based on the assumption that the sky
is mostly empty, and consists of a set of discrete point sources. The brightest source
is estimated first, its contribution is subtracted from the dirty image, then the next
brightest source is subtracted, etc.

The algorithm further uses the fact that B(l) has its peak at the origin. Inside
the loop, a candidate location lq is selected as the location of the largest peak in
ID(l), the corresponding power σ̂ 2

q is estimated, and subsequently a small multiple

328 A.-J. van der Veen et al.

East l West

-1
-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

So
ut

h
 m

 N

or
th

MVDR dirty image

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

East l West

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

So
ut

h
 m

 N

or
th

AAR dirty image

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

a

b

Fig. 6 Dirty images corresponding to the (a) MVDR and (b) AAR beamformers

Signal Processing for Radio Astronomy 329

of σ̂ 2
q B(l − lq) is subtracted from ID(l). The objective is to minimize the residual,

until it converges to the noise level:

q = 0
while ID(l) is not noise-like:⎡
⎢⎢⎢⎣
q = q + 1
lq = arg maxl ID(l)
σ̂ 2
q = ID(lq)/B(0)

ID(l) := ID(l)− γ σ̂ 2
q B(l − lq) , ∀l

Iclean(l) = ID(l)+∑q γ σ̂ 2
q Bsynth(l− lq), ∀l .

The scaling parameter γ ≤ 1 is called the loop gain; for accurate convergence
it should be small because the estimated location of the peak is at a grid point,
whereas the true location of the peak may be in between grid points. Bsynth(l) is a
“synthetic beam”, usually a Gaussian bell-shape with about the same beam width as
the main lobe of the dirty beam; it is introduced to mask the otherwise high artificial
resolution of the image.

In current imaging systems, instead of the subtractions on the dirty image, it is
considered more accurate to do the subtractions on the sample covariance matrix R̂
instead,

R̂ := R̂− γ σ̂ 2
q a(lq)a(lq)H

and then to recompute the dirty image. Computing a dirty image is the most
expensive step in this loop, therefore usually a number of peaks are estimated from
the dirty image together, the covariance is updated for this ensemble, and then the
residual image is recomputed.

4.2.2 CLEAN Using Other Dirty Images

Instead of the matched beamformer dirty image ID(l), we can use other beamformed
dirty images in the CLEAN loop, for example the MVDR dirty image. Due to its
high resolution, the location of sources is better estimated than using the original
dirty image (and the location estimate can be further improved by searching for
the true peak on a smaller grid in the vicinity of the location of the maximum). A
second modification to the CLEAN loop is also helpful: suppose that the location
of the brightest source is lq , then the corresponding power αq should be estimated
by minimizing the residual ‖R− αa(lq)a(lq)H‖2. This can be done in closed form:
using (5) we find

‖R− αa(lq)a(lq)H‖ = ‖vec(R)− α[ā(lq)⊗ a(lq)]‖ .

330 A.-J. van der Veen et al.

The optimal least squares solution for α is, using (1), (3) and (2) in turn,

αq = [ā(lq)⊗ a(lq)]†vec(R)

= [ā(lq)⊗ a(lq)]Hvec(R)

[ā(lq)⊗ a(lq)]H [ā(lq)⊗ a(lq)]

= a(lq)H Ra(lq)
[a(lq)H a(lq)]2

= a(lq)HRa(lq)
J 2 ,

which is the power estimate of the matched filter. In the CLEAN loop, R should
be replaced by its estimate R̂ minus the estimated components until q , and also a
constraint that αq is to be positive should be included. This method was proposed in
[3].

Using the AAR dirty image in the CLEAN loop is also possible, and the resulting
CLEANed image was called LS-MVI in [3].

4.3 Matrix Formulations

Because our data model is linear, it is beneficial to represent the covariance
model and all subsequent operations on it in a linear algebra framework. In this
more abstract formulation, details are hidden and it becomes easier to recognize
the connection of image formation to standard formulations and more generic
approaches, such as matrix inversion and parametric estimation techniques.

4.3.1 Matrix Formulation of the Data Model

Let us start again from the data model given by Eq. (12) assuming an ideal situation,
in which all gain factors are unity. For simplicity, we consider only a single
frequency bin and STI interval, but all results can be generalized straightforwardly.
The model for the signals arriving at the antenna array is thus

x(n) = As(n)+ n(n)

and the covariance of x is (viz. (14))

R = A�sAH +�n .

Signal Processing for Radio Astronomy 331

We have available a sample covariance matrix

R̂ = 1

N

∑
n

x(n)x(n)H

which serves as the input data for the imaging step. Let us now vectorize this data
model by defining

r̂ = vec(R̂) , r = vec(R)

where r has the data model (using (4))

r = (Ā ◦ A)σ s + vec(�n) .

If �n is diagonal, we can write vec(�n) = (I◦I)σ n, where σ n is a vector containing
the diagonal entries of �n. Define Ms = Ā ◦ A and Mn = I ◦ I. Then

r = Msσ s +Mnσ n = [Ms Mn]
[

σ s

σ n

]
= Mσ . (27)

In this formulation, several modifications can be introduced. E.g., a non-diagonal
noise covariance matrix �n will lead to a more general Mn, while if �n = σ 2

n I, we
have Mn = vec(I) and σ n = σ 2

n . Some other options are discussed in [47]. Also, if
we have already an estimate of σ n, we can subtract it and write the model as

r′ := r−Mnσ n = Msσ s (28)

The available measurements r̂ should be modified in the same way. This model is
similar to (27), with the advantage that the number of unknown parameters in σ is
smaller.

We can further write

r̂ = r+ w = Mσ + w , (29)

where r̂ is the available “measurement data”, r is its mean (expected value), and
w is additive noise due to finite samples. It is not hard to derive that (for Gaussian
signals) the covariance of this noise is [47]

Cw = E(r̂− r)(r̂− r)H = 1

N
(R̄⊗ R)

where N is the number of samples on which R̂ is based. We have thus written our
original data model on x as a similar data model on r̂. Many estimation techniques
from the literature that are usually applied to data models for x can be applied to
the data model for r. Furthermore, it is straightforward to extend this vectorized

332 A.-J. van der Veen et al.

formulation to include multiple snapshots over time and frequency to increase the
amount of measurement data and thus to improve the imaging result: Simply stack
the covariance data in r̂ and include the model structure in M; note that σ remains
unchanged. Similarly, assuming a diagonal noise covariance matrix, astronomers
often drop the autocorrelation terms (diagonal of R̂), rather than attempting to do
the subtraction in (28); this corresponds to dropping rows in M and corresponding
rows in Ms , and leads to a model similar to (28) but without the autocorrelation
terms.

The unknown parameters in the data model are, first of all, the powers σ . These
appear linear in the model. Regarding the positions of the sources, we can consider
two cases:

1. We consider a point source model with a “small” number of sources. In that
case, A = A(θ) and M = M(θ), where θ is some parameterization of the
unknown locations of the sources (the position vectors lq for each source). These
enter in a nonlinear way into the model M(θ). The image I (l) is constructed
following (16), usually convolved with a synthetic beam Bsynth(l) to make the
image look nicer. The resulting estimation techniques are very much related to
direction of arrival (DOA) estimation in array signal processing, with a rich
literature.

2. Alternatively, we consider a model where, for each pixel in the image, we assume
a corresponding point source: the source positions lq directly correspond to the
pixels in the image. This can lead to a large number of sources. With the locations
of the pixels predetermined, M is a priori known and not a function of θ , but M
will have many columns (one for each pixel-source). The image I (l) has a one-
to-one relation to the source power vector σ s , we can thus regard σ s as the image
in this case.

We need to pose several requirements on M or M(θ) to ensure identifiability.
First of all, in the first case we must have M(θ) = M(θ ′) → θ = θ ′, otherwise we
cannot uniquely find θ from M. Furthermore, for both cases we will require that M
is a tall matrix (more rows than columns) and has full column rank, so that it has a
left inverse (this will allow to estimate σ). This puts a limit on the number of sources
in the image (number of columns of M) in relation to the number of observations
(rows). If more snapshots (STIs) and/or multiple frequencies are available, as is the
case in practice, then M will become taller, and more sources can be estimated thus
increasing the resolution. If M is not tall, then there are some ways to generalize this
using prior knowledge on the image, e.g. via the context of compressive sampling
where we can have M wide as long as σ is sparse [59], which we will briefly discuss
in Sect. 4.5.5.

For the moment, we will continue with the second formulation: one source per
pixel, fewer pixels than available correlation data.

Signal Processing for Radio Astronomy 333

4.3.2 Matrix Formulation of Imaging via Beamforming

Let us now again interpret the “beamforming image” (22) as a linear transformation
on the covariance data r̂. We can stack all image values I (l) over all pixels lq into
a single vector i, and similarly, we can collect the weights w(l) over all pixels into
a single matrix W = [w(l1), · · · ,w(lQ)]. From (3), we know that wHRw = (w ⊗
w)Hvec(R̂), so that we can write

îBF = (W ◦W)H r̂ . (30)

We saw before that the dirty image is obtained if we use the matched filter. In this
case, we have W = 1

J
A, where A contains the array response vectors a(l) for every

pixel lq of interest. In this case, the image is

îD = 1

J 2 (Ā ◦ A)H r̂ = 1

J 2 MH
s r̂ . (31)

The expected value of the image is obtained by using r = Mσ :

iD = 1

J 2 MH
s Mσ = 1

J 2 (M
H
s Ms)σ s + 1

J 2 (M
H
s Mn)σ n .

The quality or “performance” of the image, or how close îD is to iD , is related to its
covariance,

cov(îD) = E{(îD − iD)(îD − iD)H } = 1

J 4 MH
s CwMs

where Cw = 1
N
(R̄⊗R) is the covariance of the noise on the covariance data. Since

usually the astronomical sources are much weaker than the noise (often at least by a
factor 100), we can approximate R ≈ �n. If the noise is spatially white, �n = σ 2

n I,
we obtain for the covariance of îD

cov(îD) ≈ σ 4
n

J 4N
MH

s Ms .

The variance in the image is given by the diagonal of this expression. From this and
the structure of Ms = (Ā◦A) and the structure of A, we can see that the variance on
each pixel in the dirty image is constant, σ 4

n /(J
2N), but that the noise on the image

is correlated, possibly leading to visible structures in the image. This is a general
phenomenon. Similar equations can be derived for the MVDR image and the AAR
image.

334 A.-J. van der Veen et al.

4.4 Parametric Image Estimation

In Sect. 4.2, we discussed various deconvolution algorithms based on the CLEAN
algorithm. This algorithm uses a successive approximation of the dirty image using
a point source model. Alternatively, we take a model-based approach. The imaging
problem is formulated as a parametric estimation problem where certain parameters
(source locations, powers, noise variance) are unknown and need to be estimated.
Although we start from a Maximum Likelihood formulation, we will quickly arrive
at a more feasible Least Squares approach. The discussion was presented in [45]
and follows to some extent [47], which is a general array processing approach to a
very similar problem and can be read for further details.

4.4.1 Weighted Least Squares Imaging

The image formation problem can be formulated as a maximum likelihood (ML)
estimation problem, and solving this problem should provide a statistically efficient
estimate of the parameters. Since all signals are assumed to be i.i.d. Gaussian
signals, the derivation is standard and the ML estimates are obtained by minimizing
the negative log-likelihood function [47]

{σ̂ , θ̂} = arg min
σ ,θ

ln |R(σ , θ)| + tr
(

R−1(σ , θ)R̂
)

(32)

where | · | denotes the determinant. R(σ , θ) is the model, i.e., vec(R(σ , θ)) = r =
M(θ)σ , where θ parameterizes the source locations, and σ their intensities.

We will first consider the overparameterized case, where θ is a (known) list of all
pixel coordinates in the image, and each pixel corresponds to a source. In this case,
M is a priori known, the model is linear, and the ML problem reduces to a Weighted
Least Squares (WLS) problem to match r̂ to the model r:

σ̂ = arg min
σ

‖C−1/2
w (r̂− r)‖2

2 = arg min
σ

(r̂−Mσ)H C−1
w (r̂−Mσ) (33)

where we fit the “data” r̂ to the model r = Mσ . The correct weighting is the inverse
of the covariance of the residual, w = r̂− r, i.e., the noise covariance matrix Cw =
1
N
(R̄ ⊗ R). For this, we may also use the estimate Ĉw obtained by using R̂ instead

of R. Using the assumption that the astronomical sources are much weaker than
the noise we could contemplate to use R ≈ �n for the weighting. If the noise is
spatially white, �n = σ 2

n I, the weighting can then even be omitted.
The solution of (33) is obtained by applying the pseudo-inverse,

σ̂ = [C−1/2
w M]†C−1/2

w r̂ = (MHC−1
w M)−1MHC−1

w r̂ =: M−1
d σ̂ d (34)

Signal Processing for Radio Astronomy 335

East ← l → West

So
ut

h
←

 m
 →

 N
or

th

WLS image estimate

Cas A

Cyg A
loop III

NPS
Vir A

Sun
−0.500.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 7 Image corresponding to the WLS formulation (34)

where

Md := MH C−1
w M , σ̂ d := MHC−1

w r̂ .

Here, we can consider the term σ̂ d = MH C−1
w r̂ as a “dirty image”: it is comparable

to (31), although we have introduced a weighting by C−1
w and estimate the noise

covariance parameters σ n as well as the source powers in σ s (the actual image).
The factor 1/J 2 in (31) can be seen as a crude approximation of M−1

d .
Figure 7 shows an example WLS image for a single LOFAR station. The image

was obtained by deconvolving the dirty image from 25 STIs, each consisting of 10 s
data in 25 frequency channels of 156 kHz wide taken from the band 45–67 MHz,
avoiding the locally present radio interference. As this shows data from a single
LOFAR station, with a relatively small maximal baseline (65 m), the resolution is
limited and certainly not representative of the capabilities of the full LOFAR array.
The resolution (number of pixels) in this image is kept limited (about 1000) for
reasons discussed below.

The term M−1
d = (MH C−1

w M)−1 is a deconvolution operation. This inversion
can only be carried out if the deconvolution matrix Md = MH C−1

w M is not rank
deficient. This requires at least that M is a tall matrix (“less pixels than observations”
in case we take one source per pixel). Thus, high resolution WLS imaging is only
possible if a limited number of sources is present. The condition number of Md , i.e.,
the ratio of the largest to the smallest eigenvalue of Md , gives important information
on our ability to compute its inverse: LS theory tells us that the noise on σ̂ d could, in
the worst case, be magnified by this factor. The optimal (smallest) condition number
of any matrix is 1, which is achieved if Md is a scaling of the identity matrix, or if

336 A.-J. van der Veen et al.

the columns of C−1/2
w M are all orthogonal to each other. If the size of M becomes

less tall, then the condition number of Md becomes larger (worse), and once it is a
wide matrix, M is singular and the condition number will be infinite. Thus, we have
a trade-off between the resolution (number of pixels in the image) and the noise
enhancement.

The definition of Md shows that it is not data dependent, and it can be
precomputed for a given telescope configuration and observation interval. It is thus
possible to explore this trade-off beforehand. To avoid numerical instabilities (noise
enhancement), we would usually compute a regularized inverse or pseudo-inverse
of this matrix, e.g., by first computing the eigenvalue decomposition

Md = UΛUH

where U contains the (orthonormal) eigenvectors and Λ is a diagonal matrix
containing the eigenvalues, sorted from large to small. Given a threshold ε on the
eigenvalues, we can define Λ̃ to be a diagonal matrix containing only the eigenvalues
larger than ε, and Ũ a matrix containing the corresponding eigenvectors. The ε-
threshold pseudo-inverse is then given by

M†
d := ŨΛ̃

−1
ŨH

and the resulting image is

σ = ŨΛ̃
−1

ŨHσ d . (35)

This can be called the “Karhunen-Loève” image, as the rank reduction is related to
the Karhunen-Loève transform (KLT). It corresponds to selecting an optimal (Least
Squares) set of basis vectors on which to project a certain data set, here σ d .

An example KLT image is shown in Fig. 8. In this image, the number of pixels
is much larger than before in Fig. 7 (about 9000), but the rank of the matrix Md

is truncated at 1/200 times the largest eigenvalue, leaving about 1300 out of 9000
image components. The result is not quite satisfactory: the truncation to a reduced
basis results in annoying ripple artefacts in the image.

Computing the eigenvalue decomposition for large matrices is complex. A
computationally simpler alternative is to compute a regularized inverse of Md , i.e.,
to take the inverse of Md + εI. This should yield similar (although not identical)
results.

If we use the alternative sky model where we assume a point source model with
a “small” number of sources (M = M(θ)), then the conditioning of Md , and thus
the performance of the deconvolution, is directly related to the number of sources
and their spatial distribution.

The performance of the method is assessed by looking at the covariance of the
resulting image (plus noise parameters) σ̂ in (34). It is given by

Signal Processing for Radio Astronomy 337

East ← l → West

So
ut

h
←

 m
 →

 N
or

th

KLT image

−1−0.500.51
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.05

0

0.05

0.1

0.15

Fig. 8 Image corresponding to the KLT solution (35)

Cσ = (MH C−1
w M)−1MH C−1

w (Cw)C−1
w M(MH C−1

w M)−1

= (MH C−1
w M)−1 = M−1

d .

This again shows that the performance of the imaging method follows directly
from the conditioning of the deconvolution matrix Md . If Md is sufficiently well
conditioned, the noise on the image is limited, otherwise it may be large. The
formulation also shows that the pixels in the image are correlated (Md is in general
not diagonal), as we obtained before for the dirty image.

Similarly, if we use the pseudo-inverse M†
d = ŨΛ̃

−1
ŨH for the deconvolution,

then we obtain Cσ = M†
d . In this case, the noise enhancement depends on the chosen

threshold ε. Also, the rank of Cσ depends on this threshold, and since it is not full
rank, the number of independent components (sources) in the image is smaller than
the number of shown pixels: the rank reduction defines a form of interpolation.

Using a rank truncation for radio astronomy imaging was already suggested in
[10]. Unfortunately, if the number of pixels is large, this technique by itself is not
sufficient to obtain good images, e.g., the resulting pixels may not all be positive,
which is unplausible for an intensity image. Thus, the overparameterized case
requires additional constraints; some options are discussed in Sects. 4.5.4 and 4.5.5.

4.4.2 Estimating the Position of the Sources

Let us now consider the use of the alternative formulation, where we write A = A(θ)

and M = M(θ), where θ captures the positions of the limited number of sources in

338 A.-J. van der Veen et al.

the image. In this case, we have to estimate both σ and θ . If we start again from the
ML formulation (32), it does not seem feasible to solve this minimization problem in
closed form. However, we can again resort to the WLS covariance matching problem
and solve instead

{σ̂ , θ̂} = arg min
σ ,θ

‖C−1/2
w [r̂− r(σ , θ)]‖2

= arg min
σ ,θ

[r̂−M(θ)σ]HC−1
w [(r̂−M(θ)σ] . (36)

It is known that the resulting estimates are, for a large number of samples, equivalent
to ML estimates and therefore asymptotically efficient [47].

The WLS problem is separable: suppose that the optimal θ is known, so that
M = M(θ) is known, then the corresponding σ will satisfy the solution which we
found earlier:

σ̂ = (MHC−1
w M)−1MHC−1

w r̂ .

Substituting this solution back into the problem, we obtain

θ̂ = arg min
θ

r̂H [I−M(θ)(M(θ)H C−1
w M(θ))−1M(θ)HC−1

w]H ·

· C−1
w · [I−M(θ)(M(θ)HC−1

w M(θ))−1M(θ)H C−1
w]r̂

= arg min
θ

r̂H C−1/2
w (I−Π(θ))C−1/2

w r̂

= arg max
θ

r̂HC−1/2
w Π(θ)C−1/2

w r̂

where Π(θ) = C−1/2
w M(θ)

(
M(θ)HC−1

w M(θ)
)−1M(θ)HC−1/2

w .

Π(θ) is an orthogonal projection: Π2 = Π, ΠH = Π. The projection is onto
the column span of M′(θ) := C−1/2

w M(θ). The estimation of the source positions θ

is nonlinear. It could be obtained iteratively using a Newton iteration (cf. [47]). The
sources can also be estimated sequentially [47], which provides an alternative to the
CLEAN algorithm.

4.4.3 Preconditioned WLS

WLS imaging can be improved using preconditioning, and this has an interesting
relation to the adaptive beamforming techniques discussed earlier. From this point
forward we assume that an estimate of the noise has been subtracted from the images
as in (28) such that M = Ms and σ = σ s .

Signal Processing for Radio Astronomy 339

If M has full column rank then HLS := MH M and HWLS := MH C−1
w M are

non-singular and there exists a unique solution to LS and WLS. For example the
solution to the LS imaging becomes

σ = H−1
LS σ̂D (37)

where σ̂D = MH r̂ is the estimated dirty image. Unfortunately, if the number
of pixels is large then HLS and HWLS become ill-conditioned or even singular.
Generally, we need to improve the conditioning of the deconvolution matrices and
to find appropriate regularizations.

One way to improve the conditioning of a matrix is by applying a preconditioner.
The most widely used and simplest preconditioner is the Jacobi preconditioner [1]
which, for any matrix M, is given by [diag(M)]−1. Let DWLS = diag(HWLS), then
by applying this preconditioner to HWLS we obtain

[D−1
WLSHWLS]σ = D−1

WLSσ̂ WLS (38)

where σ̂ WLS = MH C−1
w r̂. We take a closer look at D−1

WLSσ̂WLS. For a single STI

HWLS = (Ā ◦ A)H (R̂−T ⊗ R̂−1)(Ā ◦ A)

= (AT R̂−T Ā) (AH R̂−1A)

and

D−1
WLS =

⎡
⎢⎢⎢⎣

1
(aH1 R̂−1a1)2

. . .
1

(aHQR̂−1aQ)2

⎤
⎥⎥⎥⎦ , (39)

where we have assumed that ai is normalized by a factor 1/
√
J such that aHi ai = 1.

This means that

D−1
WLSσ̂WLS = D−1

WLS

(
(R̂−T ⊗ R̂−1

1)(Ā ◦A)
)H

r̂

= (R̂−T ĀD−1/2
WLS ◦ R̂−1AD−1/2

WLS)
H r̂

which is equivalent to a dirty image that is obtained by applying a beamformer of
the form

wi = 1

aHi R̂−1ai
R̂−1ai (40)

340 A.-J. van der Veen et al.

to both sides of R̂ and stacking the results, σ̂i = wH
i R̂wi , of each pixel into a vector.

This beamformer is the MVDR beamformer which we have introduced before! This
shows that the Preconditioned WLS (PWLS) image (motivated from its connection
to the maximum likelihood) is expected to exhibit the features of high-resolution
beamforming associated with the MVDR. The PWLS was introduced in [45].

4.5 Constraints on the Image

Another approach to improve the conditioning of a problem is to introduce
appropriate constraints on the solution. Typically, image formation algorithms
exploit external information regarding the image in order to regularize the ill-posed
problem. For example maximum entropy techniques [21] impose a smoothness
condition on the image while the CLEAN algorithm [27] exploits a point source
model wherein most of the image is empty, and this has recently been connected to
sparse optimization techniques [59].

4.5.1 Non-negativity Constraint

A lower bound on the image is almost trivial: each pixel in the image represents the
intensity at a certain direction, hence is non-negative. This is physically plausible,
and to some extent already covered by CLEAN [41]. It is an explicit condition in a
Non-Negative Least Squares (NNLS) formulation [10], which searches for a Least
Squares fit while requiring that the solution σ has all entries σi ≥ 0:

min
σ
‖r̂−Mσ‖2

subject to 0 ≤ σ
(41)

4.5.2 Dirty Image as Upper Bound

A second constraint follows if we also know an upper bound γ such that σ ≤ γ ,
which will bound the pixel intensities from above. We will propose several choices
for γ .

By closer inspection of the ith pixel of the matched beamformer dirty image σ̂D,
we note that its expected value is given by

σD,i = aHi Rai .

Using normalization aHi ai = 1, we obtain

σD,i = σi + aHi Rrai , (42)

Signal Processing for Radio Astronomy 341

where

Rr =
∑
j �=i

σjajaHj + Rn (43)

is the contribution of all other sources and the noise. Note that Rr is positive-
(semi)definite. Thus, (42) implies σD,i ≥ σi which means that the expected value of
the matched beamformer dirty image forms an upper bound for the desired image,
or

σ ≤ σD . (44)

We can extend this concept to a more general beamformer wi . The output power of
this beamformer, in the direction of the ith pixel, becomes

σw,i = wH
i Rwi = σiwH

i aiaHi wi + wH
i Rrwi . (45)

If we require that

wH
i ai = 1 (46)

we have

σw,i = σi + wH
i Rrwi . (47)

As before, the fact that Rr is positive definite implies that

σi ≤ σw,i . (48)

We can easily verify that the matched filter weights wD,i as given in (20) satisfy
(46) and, hence, that the resulting dirty image σD,i is a specific upper bound.

4.5.3 Tightest Upper Bound

The next question is: What is the tightest upper bound for σi that we can construct
using linear beamforming?

We can translate the problem of finding the tightest upper bound to the following
optimization question:

σopt,i = min
wi

wH
i Rwi (49)

s.t. wH
i ai = 1

342 A.-J. van der Veen et al.

where σopt,i would be this tightest upper bound. This optimization problem is
exactly the same as the one used in Sect. 4.1.2 to obtain the MVDR beamformer.
Hence

wi = 1

aHi R−1ai
R−1ai .

This means that for a single STI the MVDR image is the tightest upper bound that
can be constructed using beamformers.

Note that wD,i also satisfies the constraint in (46), i.e. wH
D,iai = aHi ai = 1, but

does not necessary minimize the output power wH
i Rwi , therefore the MVDR dirty

image is smaller than the matched beamformer dirty image: σMVDR ≤ σD. This
relation also holds if R is replaced by the sample covariance R̂.

For multiple snapshots the tightest bound can be obtained by taking the minimum
of the individual MVDR estimates [44]. The bound becomes

σopt,i = min
m

1

am,iR
−1
m am,i

.

One problem with using this result in practice is that σopt,i depends on a single
snapshot. Actual dirty images are based on the sample covariance matrix R̂ and
hence they are random variables. If we use a sample covariance matrix R̂ instead of
the true covariance matrix R, this bound would be too noisy without any averaging.
Hence we would like to find a beamformer that exhibits the same averaging behavior
as the matched beamformer while being as tight as possible. Sardarabadi [44] shows
that a modified multi-snapshot MVDR image can be defined as

σMVDR,i = 1
1
M

∑
m aHm,iR

−1
m am,i

, (50)

which satisfies σi ≤ σMVDR,i ≤ σD,i and produces a very tight bound.

4.5.4 Constrained WLS Imaging

Now that we have lower and upper bounds on the image, we can use these as
constraints in the LS imaging problem to provide a regularization. The resulting
constrained LS (CLS) imaging problem is

min
σ
‖r̂−Mσ‖2

s.t. 0 ≤ σ ≤ γ
(51)

where γ can be chosen either as γ = σD for the matched beamformer dirty image
or γ = σMVDR for the MVDR dirty image.

Signal Processing for Radio Astronomy 343

The extension to constrained WLS leads to the problem formulation

min
σ
‖C−1/2

w

(
r̂−Mσ

) ‖2

s.t. 0 ≤ σ ≤ γ .
(52)

It is also recommended to include a preconditioner which, as was shown in
Sect. 4.4.3, relates the WLS to the MVDR dirty image. However, because of the
inequality constraints, (52) does not have a closed form solution and it is solved by
an iterative algorithm. In order to have the relation between the WLS and MVDR
dirty image during the iterations we introduce a change of variables of the form
σ̌ = Dσ , where σ̌ is the new variable for the preconditioned problem and the
diagonal matrix D is given in (39). The resulting constrained preconditioned WLS
(CPWLS) optimization problem is

σ̌ = arg min
σ̌
‖C−1/2

w

(
r̂−MD−1σ̌

)
‖2

s.t. 0 ≤ σ̌ ≤ Dγ
(53)

and the final image is found by setting σ = D−1σ̌ . Here we used that D is a positive
diagonal matrix so that the transformation to an upper bound for σ̌ is correct. As
mentioned, the dirty image that follows from the (unconstrained) Weighted Least
Squares part of the problem is given by the MVDR image σ̂ MVDR.

These problems are convex and their solutions can be found using various
numerical optimization techniques such as the active set method, as discussed in
more detail in [45]. Some experimental results using non-negative constraints are
shown in [23, 37, 51].

4.5.5 Imaging Using Sparse Reconstruction Techniques

Compressive sampling/sensing (CS) is a “new” topic, currently drawing wide
attention. It is connected to random or non-uniform sampling, and as such, it has
been used in radio astronomy for a long time. In the CS community, the recovery
of full information from undersampled data is the central problem, and to regularize
this problem, the main idea has been to exploit the sparsity of the solution: the
number of nonzero entries in the solution is supposed to be small. This is measured
by the 0-norm: ‖σ‖0 is the number of nonzero entries in σ . Optimizing using this
norm is difficult, and therefore as a surrogate, the 1-norm is used.

To introduce this, let us start from the Least Squares formulation, and consider
the KLT regularization. This constrains the solution image to lie on a basis
determined by the dominant column span of M (possibly giving rise to artefacts).
It is straightforward to show that this regularization is connected to adding a
regularization term

min
σ
‖r̂−Mσ‖2

2 + λ‖σ‖2

344 A.-J. van der Veen et al.

where λ is related to the truncation threshold used in the KLT. The used norm on σ

is 2, the sum of squares, or the total “energy” of the image.
An alternative to this is to use a regularization term ‖σ‖1 based on the 1 norm

of σ , or the sum of absolute values [35, 59]. The resulting problem is

min
σ
‖r̂−Mσ‖2

2 + λ‖σ‖1

An alternative formulation of this problem is

min
σ
‖σ‖1 subject to ‖r̂−Mσ‖2

2 ≤ ε

where ε is threshold on the residual noise. Like for KLT, the results depend on the
chosen noise threshold ε (or regularization parameter λ).

Minimizing the 1-norm is known to promote the sparsity of the solution
vector. The implied sparsity assumption in the model poses that the sky is mostly
empty. Although it has already long been suspected that CLEAN is related to 1-
optimization [41] (in fact, it is now recognized as a Matching Pursuit algorithm
[39]), CS theory states the general conditions under which this assumption is likely
to recover the true image [35, 59]. Extensions are needed in case of extended
emissions [37]. As images may consist of sources with different source structures,
different sources may be best represented, i.e., best compressible, by different bases.
This is the basic idea behind the Sparsity Averaging Reweighted Analysis (SARA)
algorithm, which aims to find the sparsest representation using an overdetermined
dictionary composed of multiple complete bases [11, 12].

4.5.6 Comparison of Regularization Techniques

In this section, we discussed a number of constraints to regularize the ill-posed
inverse imaging problem: non-negativity, upper bound, and sparsity of the image.
This can be combined into a single problem,

min
σ̌
‖C−1/2

w

(
r̂−MD−1σ̌

) ‖2 + λ‖D−1σ‖
s.t. 0 ≤ σ̌ ≤ Dγ

(54)

where D is an optional preconditioner, the resulting image is σ = D−1σ̌ , and the
norm is either 1 or 2. Many variations on this problem are possible. Taken by
itself, the non-negativity constraint is already known to be a strong constraint for
regularization. It can even be shown that, when certain conditions are satisfied, the
non-negativity constraint alone already promotes a sparse solution [20]. In cases
where there is a combination of sparse and extended structures in the image, an 2
regularization might be more appropriate.

Signal Processing for Radio Astronomy 345

-1
-60 -40 -20 0

q
20 40 60

-60 -40 -20 0
q

20 40 60 -60 -40 -20 0
q

20 40 60

-60 -40 -20 0
q

20 40 60

0

1

2

3

4

5
a b

c d

truth
Reg. LS
LS

-1

0

1

2

3

4

5

truth
Reg. PWLS
PWLS

truth
Reg. CLS
CLS

truth
Reg. CPWLS
CPWLS

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 9 Solutions for different algorithms with and without regularization; (a) Unconstrained LS.
(b) Unconstrained PWLS. (c) Constrained LS. (d) Constrained PWLS

To illustrate the effects of regularization, constraints, and preconditioning, we
consider a 1D “image” reconstruction example. A uniform linear array (ULA) with
20 receivers is simulated. The array is exposed to two point sources with magnitudes
5 and 2 and an extended rectangular source with a magnitude of 1. Because it is a
ULA, rank(M) = 2J −1 = 39, while the number of pixels is Q = 245. This shows
that HLS = MH M is singular. We use 2-norm regularization with a regularization
coefficient λ = 1/

√
N where N = 1000 is the number of samples in a single STI.

Figure 9 shows the result of the various estimation techniques with and without
bound constraints and regularization. Figure 9a shows the result of standard LS
with and without regularization, Fig. 9b shows similar results for unconstrained
Preconditioned WLS, Fig. 9c incorporates the bound constraints for the LS problem,
and Fig. 9d shows the results for CPWLS.

346 A.-J. van der Veen et al.

The figures show the following:

• Both standard LS and PWLS are unable to recover the point sources and suffer
from high sidelobe levels. The regularization does not seem to affect the LS
solution while it improves the sidelobe behavior in the PWLS solution at the
cost of less accurate estimates for the extended structure.

• Both Constrained LS and Constrained PWLS without regularization attempt
to model the extended structure using a series of point sources. This is the
consequence of the non-negativity constraint which tends to promote sparsity.

• For CLS and CPWLS an 2-norm regularization helps with the recovery of the
extended structure. The value of λ = 1/

√
N seems to be a good balance for both

extended and point sources.

5 Calibration

5.1 Non-ideal Measurements

In the previous section we showed that there are many options to make an
image from radio interferometric measurements. However, we assumed that these
measurements were done under ideal circumstances, such that the gain matrix in our
data model given by (14) only contains ones. In practice, there are several effects
that make matters more complicated causing G �= 11H (where we omitted the STI
indexm for convenience of notation as we will initially consider calibration on a per-
STI basis). These effects need to be estimated and corrected for in a process called
calibration. For this, some reference information is needed. In this section, we will
assume that the locations and powers of Q reference sources are known, where Q

can be small (order 1 to 10) or large (up to a complete image). In practice, calibration
is an integral part of the imaging step, and not a separate phase as we will see in
Sect. 6. The model given by (14) is not identifiable in its generality unless we make
some assumptions on the structure of G (in the form of a suitable parameterization)
and describe how it varies with time and frequency, e.g., in the form of (stochastic)
models for these variations.

The effects captured by the gain matrix G can be subdivided in instrumental
effects and propagation effects. We start by describing a few basic effects as
understanding those will help to establish a suitable representation of the gain
matrix.

5.1.1 Instrumental Effects

The instrumental effects consist of the directional response of the receiving ele-
ments (antennas) and the direction-independent electronic gains and phases of the
receivers.

Signal Processing for Radio Astronomy 347

The directional response or primary beam of the receiving elements in the
array can be described by a function bj (l), where we have assumed that this
function is constant over the time and frequency span of the STI. It is generally
assumed that the primary beam is equal for all elements in the array. With Q point
sources, we will collect the resulting samples of the primary beam into a vector
b = [b(l1), · · · , b(lQ)]T . These coefficients are seen as gains that (squared) will
multiply the source powers σ 2

q . The general shape of the primary beam b(l) is known
from electromagnetic modeling during the design of the telescope. If this is not
sufficiently accurate, then it has to be calibrated, which is typically done off-line in
the lab.

Next, each receiver element in the array is connected to a receiver chain
(low-noise amplifier, bandpass filter, down-modulator), and initially the direction-
independent electronic gains and phases of each receiver chain are unknown and
have to be estimated. They are generally different from element to element. We thus
have an unknown vector g (size J × 1) with complex entries that each multiply the
output signal of each telescope. As the direction independent gains are identical for
all Q sources while the direction dependent response is identical for all elements,
the gain matrix can be factored as G = gbH . By introducing the diagonal matrices
Γ = diag(g) and B = diag(b), we can write G A = Γ AB.

Also the noise powers of each element are unknown and generally unequal to
each other. We will still assume that the noise is independent from element to
element. We can thus model the noise covariance matrix by an (unknown) diagonal
�n.

For instrumental calibration, we can thus reformulate our data model in (14) to

R = (Γ AB)�s(BH AHΓ H) + �n (55)

Usually, Γ and B are considered to vary only slowly with time m and frequency k.

5.1.2 Propagation Effects

Ionospheric and tropospheric turbulence cause time-varying refraction and diffrac-
tion, which has a profound effect on the propagation of radio waves. In the simplest
case, the ionosphere is modeled as a thin layer at some height (say 100 km) above the
Earth, causing delays that can be represented as phase shifts. At the low frequencies
used for LOFAR, this effect is more pronounced. Generally it is first assumed that
the ionosphere is “constant” over about 10 km and about 10 s. A better model is to
model the ionospheric delay as a “wedge”, a linear function of the distance between
piercing points (the intersection of the direction vectors lq with the ionospheric
phase screen). As illustrated in Fig. 10, this modifies the geometric delays, leading
to a shift in the apparent position of the sources. For larger distances, higher-order
functions are needed to model the spatial behaviour of the ionosphere, and if left
uncorrected, the resulting image distortions are comparable to the distortions one
sees when looking at lights at the bottom of a swimming pool.

348 A.-J. van der Veen et al.

geometric delays

ionosphere
phase screen
(time varying)

station
beamformers

xJ (t)x1 (t)

Fig. 10 A radio interferometer where stations consisting of phased array elements replace
telescope dishes. The ionosphere adds phase delays to the signal paths. If the ionospheric electron
density has the form of a wedge, it will simply shift the apparent positions of all sources

Previously, we described the array response matrix A as a function of the
source direction vectors lq , and we wrote A(θ) where the vector θ was a suitable
parameterization of the lq (typically two direction cosines per source). If a linear
model for the ionospheric disturbance is sufficient, then it is sufficient to replace
A(θ) by A(θ ′), where θ ′ differs from θ due to the shift in apparent direction of each
source.

The modified data model that captures the above effects is thus

R = (Γ A(θ ′)B)�s (BH A(θ ′)HΓ H) + �n . (56)

In the next subsection, we will first describe how models of the form (55) or (56)
can be identified. This step will serve as a stepping stone in the identification of a
more general G.

Signal Processing for Radio Astronomy 349

5.2 Calibration Algorithms

5.2.1 Estimating the Element Gains and Directional Responses

Let us assume a model of the form (55), where there are Q dominant calibration
sources within the field of view. For these sources, we assume that their positions
and source powers are known with sufficient accuracy from tables, i.e., we assume
that A and �s are known. We can then write (55) as

R = Γ A�AHΓ H +�n (57)

where � = B�sB is a diagonal matrix with apparent source powers. With B
unknown, � is unknown, but estimating � is precisely the problem we studied in
Sect. 4 when we discussed imaging. Thus, once we have estimated � and know �s ,
we can easily estimate the directional gains B. The problem thus reduces to estimate
the diagonal matrices Γ , � and �n from a model of the form (57).

For some cases, e.g., arrays where the elements are traditional telescope dishes,
the field of view is quite narrow (degrees) and we may assume that there is only a
single calibrator source in the observation. Then � = σ 2 is a scalar and the problem
reduces to

R = gσ 2gH + �n

and since g is unknown, we could even absorb the unknown σ in g (it is not
separately identifiable). The structure of R is a rank-1 matrix gσ 2gH plus a diagonal
�n. This is recognized as a “rank-1 factor analysis” model in multivariate analysis
theory [32, 40]. Given R, we can solve for g and �n in several ways [6, 7, 64].
For example, any submatrix away from the diagonal is only dependent on g and is
rank 1. This allows direct estimation of g. This property is related to the gain and
phase closure relations often used in the radio astronomy literature for calibration
(in particular, these relations express that the determinant of any 2 × 2 submatrix
away from the main diagonal will be zero, which is the same as saying that this
submatrix is rank 1).

In general, there are more calibrator sources (Q) in the field of view, and we have
to solve (57). A simple idea is to resort to an Alternating Least Squares approach.
If Γ would be known, then we can correct R for it, so that we have precisely the
same problem as we considered before, (33), and we can solve for � and �n using
the techniques discussed in Sect. 4.4.1. Alternatively, with � known, we can say we
know a reference model R0 = A�AH , and the problem is to identify the element
gains Γ = diag(g) from a model of the form

R = Γ R0Γ
H + �n

350 A.-J. van der Veen et al.

or, after applying the vec(·)-operation,

vec(R) = diag(vec(R0))(g⊗ g)+ vec(�n) .

This leads to the Least Squares problem

ĝ = arg min
g

‖vec(R̂−�n)− diag(vec(R0))(g⊗ g)‖2 .

This problem cannot be solved in closed form. Alternatively, we can first solve an
unstructured problem: define x = g⊗ g and solve

x̂ = diag(vec(R0))
−1vec(R̂−�n)

or equivalently, if we define X = ggH ,

X̂ = (R̂−�n)*R0.

where* denotes an element-wise matrix division. After estimating the unstructured
X, we enforce the rank-1 structure X = ggH , via a rank-1 approximation, and find
an estimate for g. The element-wise division can lead to noise enhancement; this
is remediated by only using the result as an initial estimate for a Gauss-Newton
iteration [22] or by formulating a weighted least squares problem instead [61, 64].

With g known, we can again estimate � and �n, and make an iteration.
Overall we then obtain an alternating least squares solution. A more optimal
solution can be found by solving the overall problem (57) as a covariance matching
problem with a suitable parameterization, and the more general gradient descent
algorithms (e.g., Gauss-Newton and Levenberg-Marquardt) presented in [47] lead
to an asymptotically unbiased and statistically efficient solution.

For large arrays, Gauss-Newton iterations or weighted least squares approaches
become computationally expensive as they scale cubicly with the number of
receiving elements in the array. Several people have therefore proposed an iterative
alternating direction implicit (ADI) method [25, 42, 50], which was demonstrated
to have robust convergence and to be statistically efficient for typical scenarios
encountered in radio astronomy in which the noise powers dominate over the source
powers and are very similar for all elements in the array [50].

The resulting calibration algorithms are one step in the classical self-calibration
(SelfCal) algorithm [15, 48] widely used in the radio astronomy literature, in
particular for a single calibrator source. In the calibration step of SelfCal, R0 is
a reference model, obtained from the best known map at that point in the iteration.
Next, in the imaging step of SelfCal, the calibration results are used to correct the
data R̂ and the next best image is constructed. This leads to a new reference model
R0, etc.

Signal Processing for Radio Astronomy 351

5.2.2 Estimating the Ionospheric Perturbation

The more general calibration problem (56) follows from (55) by writing A = A(θ ′)
where θ ′ are the apparent source locations. This problem can be easily solved in
quite the same way: in the alternating least squares problem we solve for g, θ ′, σ s

and σ n in turn, keeping the other parameters fixed at their previous estimates. After
that, we can relate the apparent source locations to the (known) locations of the
calibrator sources θ .

The resulting phase corrections A′ to relate A(θ ′) to A(θ) via A(θ ′) = A(θ) A′
give us an estimate of the ionospheric phase screen in the direction of each source.
These “samples” can then be interpolated to obtain a phase screen model for the
entire field of view. This method is limited to the regime where the phase screen can
be modeled as a linear gradient over the array. An implementation of this algorithm
is called Field-Based Calibration [16].

Other techniques are based on “peeling” [42]. In this method of successive
estimation and subtraction, calibration parameters are obtained for the brightest
source in the field. The source is then removed from the data, and the process is
repeated for the next brightest source. This leads to a collection of samples of the
ionosphere, to which a model phase screen can be fitted.

5.2.3 Estimating the General Model

In the more general case (14), viz.

R = (G A)�s (G A)H +�n ,

we have an unknown full matrix G. We assume A and �s known. Since A element-
wise multiplies G and G is unknown, we might as well omit A from the equations
without loss of generality. For the same reason also �s can be omitted. This leads
to a problem of the form

R = GGH +�n ,

where the J ×Q matrix G and �n (diagonal) are unknown. This problem is known
as a rank-Q factor analysis problem. Note that if the noise would be spatially white
(�n = σ 2

n I), then G can be solved from an eigenvalue decomposition of R, up to a
unitary factor at the right.

The more general Factor Analysis problem is a classical problem in multivariate
statistics that has been studied since the 1930s [32, 40]. Currently, FA is an
important and popular tool for latent variable analysis with many applications in
various fields of science [2]. However, its application within the signal processing
community has been surprisingly limited. The problem can be regarded as a special
case of covariance matching, studied in detail in [47]. Thus, the problem can be

352 A.-J. van der Veen et al.

solved using Gauss-Newton iterations. The current algorithms are robust and have a
computational complexity similar to that of an eigenvalue decomposition of R [44].

It is important to note that G can be identified only up to a unitary factor V at the
right: G′ = GV would also be a solution. This factor makes the gains unidentifiable
unless we introduce more structure to the problem. To make matters worse, note
that this problem is used to fine-tune earlier coarser models (56). At this level of
accuracy, the number of dominant sources Q is often not small anymore, and at
some point G is not identifiable: counting number of equations and unknowns, we
find that the maximum factor rank is limited by Q < J −√J .

As discussed in [46] and studied in more detail in [55], more structure needs to be
introduced to be able to solve the problem. Typically, what helps is to consider the
problem for a complete observation (rather than for a single snapshot R) where we
have many different frequencies fk and time intervals m. The directional response
matrix Am,k varies with m and k in a known way, and the instrumental gains g
and b are relatively constant. The remaining part of G = gbH A′ is due to the
ionospheric perturbations, and models can be introduced to describe its fluctuation
over time, frequency, and space using some low order polynomials. We can also
introduce stochastic knowledge that describe a correlation of parameters over time
and space.

For LOFAR, a complete calibration method that incorporates many of the above
techniques was recently proposed in [28]. In general, calibration and imaging need
to be considered in unison, leading to many potential directions, approaches, and
solutions. Once calibration reaches the stage of full image calibration at the full
resolution, we basically try to identify a highly detailed parametric model using
gradient descent techniques. The computational complexity can be very high. To
limit this, SAGEcal [31] clusters parameters into non-overlapping sets associated
with different directions on the sky, solves the “independent” problems separately,
and then combines in a parameter-fusing step. Distributed SAGEcal [66] also
exploits parallelism such as continuity over time and frequency, again solving
“independent” problems separately in parallel, followed by a fusion step.

6 A Typical Signal Processing Pipeline

To conclude this chapter, we discuss how calibration and imaging techniques are
put together to form an imaging pipeline. We do this using a pipeline developed
to guide the design of the SKA computing systems [29, 30] as an example. If the
receiving elements of such a system are phased array stations, as is the case for
the low-frequency system of the SKA, an end-to-end imaging pipeline consists of
three stages of processing: Station Beamforming, processing in the Central Signal
Processor (CSP), and the Science Data Processor (SDP). Block diagrams for each
stage are shown in Figs. 11, 12 and 13.

Figure 11 shows a typical block diagram for signal processing within a phased
array station. The signals from the receiving elements within a station are digitized

Signal Processing for Radio Astronomy 353

Fig. 11 Typical block diagram for signal processing within a phased array station [29, 30]

and combined into a single beamformed output, providing a well-defined beam
on the sky. This is usually done by a standard delay beamformer by applying
weights as described in (20). As the delays are represented by phase shifts, the
signals need to be narrowband with respect to this delay. This is ensured by splitting
the digitized signal of each receiver path into multiple coarse frequency channels
(typically order (a few) 100 kHz wide) by a polyphase filter bank. The time series
produced for each of these coarse channels can also be fed into a correlator to
produce array covariance matrices for the station. These covariance matrices can
be used to perform calibration. Usually, this only concerns direction independent
gain calibration as described in Sect. 5.2.1. Those calibration solutions can be used
to adapt the beamformer weights to correct for complex valued gain differences
between receive paths. The beamformed output of each phased array station is sent
to the CSP for further processing.

Figure 12 shows the block diagram for the signal processing within the CSP
of the SKA. The goal of the CSP is to combine data from the receiving elements
of the SKA interferometer by correlating its input signals. As the signals can be
integrated after correlation, this step can significantly reduce the data volume using
relatively simple operations. The input signals are either beamformed signals from
phased array stations or coarsely channelized signals from reflector dishes. As
the longest baselines of the SKA interferometer are much longer than the size of
an individual station, much narrower frequency channels are required to satisfy
the narrowband assumption discussed in Sect. 3.2. This is achieved by a second
polyphase filter bank, which splits the coarse frequency channels further into fine
channels (typically order 1 kHz wide). Any residual time delay across the array
remaining after the coarse delay correction done by shifting time series with respect

354 A.-J. van der Veen et al.

Fig. 12 Block diagram for data processing in the Central Signal Processor (CSP) of the SKA
[29, 30]

to each other before the polyphase filter bank, is then corrected by applying an
appropriate phase rotation. As the power received in individual frequency channels
may vary significantly across frequency due to the intrinsic spectrum of most
astronomical sources and the gain characteristics of the instrument, a bandpass
correction is applied to equalize the power across frequency before the signals are
correlated. After correlation, the data is integrated into STIs and data corrupted by
radio frequency interference (RFI) is flagged before the data is transferred to the
SDP.

A block diagram for an imaging pipeline within the SDP is shown in Fig. 13.
After some pre-processing, consisting of demixing, integration and initial calibra-
tion, a self-calibration and imaging cycle is started.

Signal Processing for Radio Astronomy 355

Sc
ie

nc
e

da
ta

 p
ro

ce
ss

or

D
at
a

fro
m

CS
P

RF
I F

la
gg

in
g

Ca
lib

ra
tio

n

Pr
ed

ic
t

vi
si

bi
lit

ie
s

Ca
lib

ra
tio

n
cy

cl
e

M
aj

or
 c

yc
le

M
in

or
 c

yc
le

Ca
lib

ra
tio

n
pa

ra
m

et
er

s
D

em
ix

in
g

∫
In

iti
al

ca
lib

ra
tio

n
+

−

In
iti

al
sk

y
m

od
el

Be
am

m
od

el

Be
am

m
od

el

Sk
y

m
od

el

Re
st

or
e

Sk
y

im
ag

es
 to

da
ta

 a
rc

hi
ve

Vi
si

bi
lit

ie
s

an
d

ca
lib

ra
tio

n
pa

ra
m

et
er

s
to

da
ta

 a
rc

hi
ve

So
ur

ce
ex

tr
ac

t

Vi
si

bi
lit

ie
s

Co
rr

ec
t

G
rid

di
ng

2D
 iF

FT
D

irt
y

im
ag

e
cu

be

U
pd

at
e

U
pd

at
e

Vi
si

bi
lit

y
da

ta
Im

ag
e

da
ta

Sk
y

an
d

be
am

 m
od

el
, c

al
ib

ra
tio

n
da

ta

F
ig

.1
3

B
lo

ck
di

ag
ra

m
fo

r
th

e
im

ag
in

g
pi

pe
li

ne
in

th
e

Sc
ie

nc
e

D
at

a
Pr

oc
es

so
r

of
th

e
SK

A
[2

9,
30

]

356 A.-J. van der Veen et al.

We first discuss the pre-processing steps. A few exceptionally bright astronom-
ical radio sources, like Cas A and Cyg A, are so bright that their signature can
be detected in the data even in observations on fields that are at a considerable
distance from these sources. This is mitigated by applying phase rotation (effectively
applying beamforming weights to the visibilities without adding them together)
towards these sources, estimating and subtracting their response, and undoing the
phase rotation again. This process is called demixing. After demixing, further
integration is possible, which reduces the computational burden in further stages of
the pipeline. Initial calibration usually consists of direction independent calibration
of the complex valued gains of the individual receive paths in the interferometer
array. The algorithms used here are very similar to those exploited in the station
calibration mentioned before.

After initial calibration, the self-calibration and imaging cycle is entered, which
is the main part of the SDP imaging pipeline. It starts by computing the residual
visibilities obtained after subtracting the best available model for the visibilities
based on the current best knowledge of calibration parameters and sky model from
the measured visibilities. A dirty image is made from the residual visibilities. The
required operations (17) are essentially a Fourier transform, but on non-uniformly
sampled data. To be able to use the fast Fourier transform (required because this
step is the most expensive in the entire processing pipeline), the residual visibilities
are gridded onto a uniform grid, after which the inverse FFT is applied. Other
computationally efficient implementations for non-uniform fast Fourier transforms
may be considered. As this processing step is similar in many other image formation
instruments (e.g., geophysics [19] and MRI), the available literature is rich.

Iterative algorithms such as CLEAN are used to find and subtract new sources
in the residual image. This is referred to as the minor cycle. The new source
components are added to the sky model, which is then used in the next iteration
of the self-calibration and imaging cycle, the major cycle. Once this process has
converged sufficiently, the sky model (deconvolved image) is added to the residual
image, which should ideally only contain noise at this stage. That result is then
presented as the final image. Since the major cycle is very expensive, the usual
approach is to detect thousands of sources in each minor cycle, and to run the major
cycle less than 10 times.

7 Concluding Remarks and Further Reading

In this chapter, we presented a signal processing viewpoint on radio astronomy. We
showed how, with the right translations, the “measurement equations” are connected
to covariance matrix data models used in the phased array signal processing
literature. In this presentation, the resulting data models are very compact and clean,
in the sense that the most straightforward covariance data models, widely studied in
the signal processing literature as theoretical models, already seem valid. This is
because far field assumptions clearly hold, and the propagation channels are very

Signal Processing for Radio Astronomy 357

simple (no multipath), in contrast to other array processing applications such as
seismology, synthetic aperture radar, or biomedical tomography.

However, this does not mean that radio astronomy is a “simple” application: data
volumes are massive, and the requirements on resolution and accuracy are mind-
boggling. Current telescopes, developed in the 1970s, start with signals sampled
at 1–2 bits accuracy (because anyway the signals are mostly noise), and after data
reduction and map making routinely end up with images with a dynamic range of
105.

So far, radio astronomy has done very well without explicit connection to
the array signal processing literature. However, we expect that, by making this
connection, a wealth of new insights and access to “new” algorithms can be
obtained. This will be beneficial, and possibly essential, for the development of new
instruments like LOFAR and SKA.

For further reading we suggest, first of all, the classical radio astronomy
textbooks, e.g., by Thompson et al. [52] and by Perley et al. [49]. The August
2009 issue of the Proceedings of the IEEE was devoted to the presentation of new
instruments. The January 2010 issue of IEEE Signal Processing Magazine gave a
signal processing perspective. For general insights into imaging and deconvolution,
we suggest Blahut [4].

Challenges for signal processing lie in (1) imaging, (2) calibration, (3) interfer-
ence suppression. These problems are really intertwined. It is interesting to note that,
especially for calibration and interference suppression, factor analysis is an essential
tool. Our contributions in these areas have appeared in [3, 6, 33, 34, 36, 55, 57, 62–
64] and are summarized in the PhD theses [5, 44, 54, 60], which should provide
ample details for further reading.

References

1. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA (1994)

2. Bartholomew, D.J., Knott, M., Moustaki, I.: Latent Variable Models and Factor Analysis: A
Unified Approach. John Wiley and Sons (2011)

3. Ben-David, C., Leshem, A.: Parametric high resolution techniques for radio astronomical
imaging. IEEE Journal of Selected Topics in Signal Processing 2(5), 670–684 (2008)

4. Blahut, R.E.: Theory of remote image formation. Cambridge University Press (2004). ISBN
0521553733

5. Boonstra, A.J.: Radio frequency interference mitigation in radio astronomy. Ph.D. thesis, TU
Delft, Dept. EEMCS (2005). ISBN 90-805434-3-8

6. Boonstra, A.J., van der Veen, A.J.: Gain calibration methods for radio telescope arrays. IEEE
Transactions on Signal Processing 51(1), 25–38 (2003)

7. Boonstra, A.J., Wijnholds, S.J., van der Tol, S., Jeffs, B.: Calibration, sensitivity and RFI
mitigation requirements for LOFAR. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Philadelphia (Penn.), USA (2005)

8. Borgiotti, G.B., Kaplan, L.J.: Superresolution of uncorrelated interference sources by using
adaptive array techniques. IEEE Transactions on Antennas and Propagation 27, 842–845
(1979)

358 A.-J. van der Veen et al.

9. Bridle, A.H., Schwab, F.R.: Bandwidth and Time-Average Smearing. In: G.B. Taylor, C.L.
Carilli, R.A. Perley (eds.) Synthesis Imaging in Radio Astronomy II, Astronomical Society of
the Pacific Conference Series, vol. 180, chap. 18, pp. 371–382. Astronomical Society of the
Pacific (1999)

10. Briggs, D.S.: High fidelity deconvolution of moderately resolved sources. Ph.D. thesis, New
Mexico Inst. of Mining and Technology, Socorro (NM) (1995)

11. Carrillo, R.E., McEwen, J.D., Wiaux, Y.: Sparsity averaging reweighted analysis (SARA): a
novel algorithm for radio-interferometric imaging. Monthly Notices of the Royal Astronomical
Society 426(2), 1223–1234 (2012)

12. Carrillo, R.E., McEwen, J.D., Wiaux, Y.: PURIFY: a new approach to radio-interferometric
imaging. Monthly Notices of the Royal Astronomical Society 439(4), 3591–3604 (2014)

13. Cornwell, T., Braun, R., Brigss, D.S.: Deconvolution. In: G.B. Taylor, C.L. Carilli, R.A.
Perley (eds.) Synthesis Imaging in Radio Astronomy II, Astronomical Society of the Pacific
Conference Series, vol. 180, pp. 151–170. Astronomical Society of the Pacific (1999)

14. Cornwell, T.J.: Multiscale CLEAN deconvolution of radio synthesis images. IEEE Journal of
Selected Topics in Signal Processing 2(5), 793–801 (2008)

15. Cornwell, T.J., Wilkinson, P.N.: A new method for making maps with unstable radio
interferometers. Monthly Notices of the Royal Astronomical Society 196, 1067–1086 (1981)

16. Cotton, W.D., et al.: Beyond the isoplanatic patch in the VLA Low-frequency Sky Survey. In:
Proceedings of the SPIE, vol. 5489, pp. 180–189. Glasgow (2004)

17. Dewdney, P.E., Braun, R.: SKA1-low configuration coordinates - complete set. Tech. Rep.
SKA-TEL-SKO-0000422, SKA Office, Manchester (UK) (2016)

18. Dewdney, P.E., Hall, P.J., Schilizzi, R.T., Lazio, T.J.L.W.: The square kilometre array.
Proceedings of the IEEE 97(8), 1482–1496 (2009)

19. Duijndam, A.J.W., Schonewille, M.A.: Nonuniform fast Fourier transform. Geophysics 64(2),
539–551 (1999)

20. Foucart, S., Koslicki, D.: Sparse recovery by means of nonnegative least squares. IEEE Signal
Processing Letters 21(4), 498–502 (2014)

21. Frieden, B.: Restoring with maximum likelihood and maximum entropy. Journal of the Optical
Society of America 62, 511–518 (1972)

22. Fuhrmann, D.R.: Estimation of sensor gain and phase. IEEE Transactions on Signal Processing
42(1), 77–87 (1994)

23. Garsden, H., et al.: LOFAR sparse image reconstruction. Astronomy & Astrophysics
575(A90), 1–18 (2015)

24. van Haarlem, M.P., et al.: LOFAR: The low frequency array. Astronomy & Astrophysics
556(A2), 1–53 (2013)

25. Hamaker, J.P.: Understanding radio polarimetry - iv. the full-coherency analogue of scalar
self-calibration: Self-alignment, dynamic range and polarimetric fidelity. Astronomy &
Astrophysics Supplement 143(3), 515–534 (2000)

26. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. John Wiley and Sons (1996)
27. Hogbom, J.A.: Aperture synthesis with non-regular distribution of interferometer baselines.

Astronomy and Astrophysics Suppl. 15, 417–426 (1974)
28. Intema, H.T., et al.: Ionospheric calibration of low frequency radio interferometric observations

using the peeling scheme. I. Method description and first results. Astronomy & Astrophysics
501(3), 1185–1205 (2009)

29. Jongerius, R.: Exascale computer system design: The square kilometre array. Ph.D. thesis,
Eindhoven University of Technology (2016). ISBN 978-90-386-4136-2

30. Jongerius, R., Wijnholds, S., Nijboer, R., Corporaal, H.: An end-to-end computing model for
the square kilometre array. IEEE Computer 47(9), 48–54 (2014)

31. Kazemi, S., Yatawatta, S., Zaroubi, S., Lampropoulos, P., de Bruyn, A.G., Koopmans, L.V.E.,
Noordam, J.: Radio interferometric calibration using the sage algorithm. Monthly Notices of
the Royal Astronomical Society 414(2), 1656 (2011)

32. Lawley, D.N., Maxwell, A.E.: Factor Analysis as a Statistical Method. Butterworth & Co,
London (1971)

Signal Processing for Radio Astronomy 359

33. Leshem, A., van der Veen, A.J.: Radio-astronomical imaging in the presence of strong radio
interference. IEEE Transactions on Information Theory 46(5), 1730–1747 (2000)

34. Leshem, A., van der Veen A. J., Boonstra, A.J.: Multichannel interference mitigation technique
in radio astronomy. Astrophysical Journal Supplements 131(1), 355–374 (2000)

35. Levanda, R., Leshem, A.: Radio astronomical image formation using sparse reconstruction
techniques. In: IEEE 25th convention of Elec. Electron. Eng. in Israel (IEEEI 2008), pp. 716–
720 (2008)

36. Levanda, R., Leshem, A.: Synthetic aperture radio telescopes. IEEE Signal Processing
Magazine 27(1), 14–29 (2010)

37. Li, F., Cornwell, T.J., de Hoog, F.: The application of compressive sampling to radio
astronomy; I deconvolution. Astronomy and Astrophysics 528(A31), 1–10 (2011)

38. Lonsdale, C., et al.: The Murchison Widefield Array: Design overview. Proceedings of the
IEEE 97(8), 1497–1506 (2009)

39. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transac-
tions on Signal Processing 41(12), 3397–3415 (1993)

40. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, New York (1979)
41. Marsh, K.A., Richardson, J.M.: The objective function implicit in the CLEAN algorithm.

Astronomy and Astrophysics 182(1), 174–178 (1987)
42. Mitchell, D.A., et al.: Real-time calibration of the Murchison Widefield Array. IEEE Journal

of Selected Topics in Signal Processing 2(5), 707–717 (2008)
43. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing.

Prentice Hall (2000). ISBN 0201361868
44. Mouri Sardarabadi, A.: Covariance matching techniques for radio astronomy calibration and

imaging. Ph.D. thesis, TU Delft, Dept. EEMCS (2016)
45. Mouri Sardarabadi, A., Leshem, A., van der Veen, A.J.: Radio astronomical image formation

using constrained least squares and Krylov subspaces. Astronomy & Astrophysics 588, A95
(2016)

46. Noordam, J.E.: Generalized self-calibration for LOFAR. In: XXVIIth General Assembly of
the International Union of Radio Science (URSI). Maastricht (The Netherlands) (2002)

47. Ottersten, B., Stoica, P., Roy, R.: Covariance matching estimation techniques for array signal
processing applications. Digital Signal Processing, A Review Journal 8, 185–210 (1998)

48. Pearson, T.J., Readhead, A.C.S.: Image formation by self-calibration in radio astronomy.
Annual Review of Astronomy and Astrophysics 22, 97–130 (1984)

49. Perley, R.A., Schwab, F.R., Bridle, A.H.: Synthesis Imaging in Radio Astronomy, Astronomical
Society of the Pacific Conference Series, vol. 6. BookCrafters Inc. (1994)

50. Salvini, S., Wijnholds, S.J.: Fast gain calibration in radio astronomy using alternating direction
implicit methods: Analysis and applications. Astronomy & Astrophysics 571(A97), 1–14
(2014)

51. Schwardt, L.C.: Compressed sensing imaging with the KAT-7 array. In: International
Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 690–693 (2012)

52. Thompson, A.R., Moran, J.M., Swenson, G.W.: Interferometry and Synthesis in Radio
Astronomy, 2nd edn. Wiley, New York (2001)

53. Tingay, S.J., et al.: The Murchison widefield array: The square kilometre array precursor at low
radio frequencies. Publications of the Astronomical Society of Australia 30(7) (2013)

54. van der Tol, S.: Bayesian estimation for ionospheric calibration in radio astronomy. Ph.D.
thesis, TU Delft, Dept. EEMCS (2009)

55. van der Tol, S., Jeffs, B.D., van der Veen, A.J.: Self-calibration for the LOFAR radio
astronomical array. IEEE Transactions on Signal Processing 55(9), 4497–4510 (2007)

56. Turner, W.: SKA phase 1 system requirements specification. Tech. Rep. SKA-TEL-SKO-
0000008, SKA Office, Manchester (UK) (2016)

57. van der Veen, A.J., Leshem, A., Boonstra, A.J.: Array signal processing for radio astronomy.
Experimental Astronomy 17(1–3), 231–249 (2004)

58. de Vos, M., Gunst, A., Nijboer, R.: The LOFAR telescope: System architecture and signal
processing. Proceedings of the IEEE 97(8), 1431–1437 (2009)

360 A.-J. van der Veen et al.

59. Wiaux, Y., Jacques, L., Puy, G., Scaife, A.M.M., Vandergheynst, P.: Compressed sensing
imaging techniques for radio interferometry. Monthly Notices of the Royal Astronomical
Society 395, 1733–1742 (2009)

60. Wijnholds, S.J.: Fish-eye observing with phased array radio telescopes. Ph.D. thesis, TU Delft,
Dept. EEMCS (2010). ISBN 978-90-9025180-6

61. Wijnholds, S.J., Boosntra, A.J.: A multisource calibration method for phased array telescopes.
In: Fourth IEEE Workshop on Sensor Array and Multi-channel Processing (SAM). Waltham
(Mass.), USA (2006)

62. Wijnholds, S.J., van der Tol, S., Nijboer, R., van der Veen, A.J.: Calibration challenges for the
next generation of radio telescopes. IEEE Signal Processing Magazine 27(1), 32–42 (2010)

63. Wijnholds, S.J., van der Veen, A.J.: Fundamental imaging limits of radio telescope arrays.
IEEE Journal of Selected Topics in Signal Processing 2(5), 613–623 (2008)

64. Wijnholds, S.J., van der Veen, A.J.: Multisource self-calibration for sensor arrays. IEEE
Transactions on Signal Processing 57(9), 3512–3522 (2009)

65. Wise, M.W., Rafferty, D.A., McKean, J.P.: Feedback at the working surface: A joint X-ray and
low-frequency radio spectral study of the Cocoon Shock in Cygnus A. In: 13th Meeting of
the American Astronomical Society’s High Energy Astrophysics Division (HEAD), pp. 88–89
(2013)

66. Yatawatta, S.: Distributed radio interferometric calibration. Monthly Notices of the Royal
Astronomical Society 449(4), 4506 (2015)

67. Zatman, M.: How narrow is narrowband. IEE Proc. Radar, Sonar and Navig. 145(2), 85–91
(1998)

Distributed Smart Cameras and
Distributed Computer Vision

Marilyn Wolf and Jason Schlessman

Abstract Distributed smart cameras are multiple-camera systems that perform
computer vision tasks using distributed algorithms. Distributed algorithms scale
better to large networks of cameras than do centralized algorithms. However, new
approaches are required to many computer vision tasks in order to create efficient
distributed algorithms. This chapter motivates the need for distributed computer
vision, surveys background material in traditional computer vision, and describes
several distributed computer vision algorithms for calibration, tracking, and gesture
recognition.

1 Introduction

Distributed smart cameras have emerged as an important category of distributed
sensor and signal processing systems. Distributed sensors in other media have been
important for quite some time, but recent advances have made the deployment
of large camera systems feasible. The unique properties of imaging add new
classes of problems that are not apparent in unidimensional and low-rate sensors.
Physically distributed cameras have been used in computer vision for quite
some time to handle two problems: occlusion and pixels-on-target. Cameras at
different locations expose and occlude different parts of the scene. Their imagery
can be combined to create a more complete model of the scene. Pixels-on-target
refers to the resolution with which a part of the scene is captured, which in most
applications is primarily limited by sensor resolution and not by optics. Wide-
angle lenses cover a large area but at low resolution for any part of the scene.
Imagery from multiple cameras can be combined to provide both extended coverage

M. Wolf (�)
School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA
e-mail: wolf@ece.gatech.edu

J. Schlessman
Department of Electrical Engineering, Princeton University, Princeton, NJ, USA

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_10

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_10&domain=pdf
mailto:wolf@ece.gatech.edu
https://doi.org/10.1007/978-3-319-91734-4_10

362 M. Wolf and J. Schlessman

and adequate resolution. Distributed smart cameras combine physically distributed
cameras and distributed algorithms. Early approaches to distributed-camera-based
computer vision used server-based, centralized algorithms. While such algorithms
are often easier to conceive and implement, they do not scale well. Properly-
designed distributed algorithms scale to handle much larger camera networks.
VLSI technology has aided both the image-gathering and computational abilities of
distributed smart camera systems. Moore’s Law has progressed to the point where
very powerful multiprocessors can be put on a single chip at very low cost [32]. The
same technology has also provided cheap and powerful image sensors, particularly
in the case of CMOS image sensors [33]. Distributed smart cameras have been
used for a variety of applications, including tracking, gesture recognition, and target
identification. Networks of several hundred cameras have been tested. Over time, we
should expect to see much larger networks both tested and deployed. Surveillance
is one application that comes to mind. While surveillance and security are a large
application—analysts estimate that 25 million security cameras are installed in the
United States—that industry moves at a relatively slow pace. Health care, traffic
analysis, and entertainment are other important applications of distributed smart
cameras. After starting in the mid-1990s, research on distributed smart cameras has
progressed rapidly.

We start with a review of some techniques from computer vision that were not
specifically developed for distributed systems but have been used as components in
distributed systems. Section 3 reviews early research in distributed smart cameras.
Section 4 considers the types of challenges created by distributed smart cameras.
We next consider calibration of cameras in Sect. 5, followed by algorithms for
tracking in Sect. 6 and gesture recognition in Sect. 7. Section 8 discusses computing
platforms suitable for real-time distributed computer vision.

2 Approaches to Computer Vision

Several algorithms that used in traditional computer vision problems such as track-
ing also play important roles as components in distributed computer vision systems.
In this section we briefly review some of those algorithms. Tracking refers to the tar-
get or object of interest as foreground and non-interesting objects as background
(even though this usage is at variance with the terminology of theater). Many
tracking algorithms assume that the background is relatively static and use a separate
step, known as background elimination or background subtraction, to eliminate
backgrounds. The simplest background subtraction algorithm simply compares each
pixel in the current frame to the corresponding pixel in a reference frame that does
not include any targets. If the current-frame pixel is equal the reference-frame pixel,
then it is marked as background. This algorithm is computationally cheap but not
very accurate. Even very small amounts of movement in the background can cause
erroneous classification; the classic example of extraneous motion is the blowing
of tree leaves in the wind. The mixture-of-Gaussians approach [14] provides much

Distributed Smart Cameras and Distributed Computer Vision 363

more results. Mixture-of-Gaussian systems also use multiple models so more than
one candidate model can be kept alive at a time. The algorithm proceeds in three
steps: compare Gaussians of each model to find matches; update Gaussian mean
and variance; update weights. Given a pixel value as a vector of luminance (Y) and

chrominance (Cb,Cr) information, X ∈ (Y,Cb,Cr) and αx =
√ |X−μx |

σx
, we can

compare a current-frame and reference-frame pixels using a threshold T :

(
αY

aY

)2

+
(
αCb

aCb

)2

+
(
αCr

aCr

)2

< T (1)

Matching weights are updated as follows, where n is the number of frames over
which this Gaussian distribution has been active:

N =
{
n, n < Nmax

Nmax, n ≥ Nmax

(2)

μXn = μXn−1 + (Xn−μXn−1)

N
(3)

σXn = σXn−1 + (Xn−μXn−1)(Xn−μXn)−σXn−1
N

(4)

A weight wm evaluates the system’s confidence in that model and pixel position:

wm =
{
wm−1 + (ρ−wm−1)

m
, m < Mmax

wm−1 + (ρ−wm−1)
Mmax

, m ≥Mmax

(5)

An appearance model is used to compare the appearance of targets in different
frames; appearance models are useful both in a single-camera system to ensure
tracking continuity or between cameras to compare views. Appearance models may
make use of shape and/or color. Bounding box is a simple shape model, but more
complex curve-based models may also be used. A color or luminance histogram is
often used to represent detail within the image. One common method for comparing
two histograms is the Bhattacharyya distance. More than one appearance model
may be necessary since many interesting targets change in both shape and color as
a function of the observer’s position. The two major approaches to single-camera
tracking are Kalman filtering [6] and particle filters. Particle filters [8] use Monte
Carlo methods to estimate a probability distribution. Weighted particles represent
samples of the hidden states as weighted by Bayesian estimates of probability
masses. Coates [10] describes a distributed algorithms for computing particle filters.
In their architecture, each sensor node ran one particle filter, with random number
generators on each node that were synchronized. They described two approaches to
the problem of distributing observations over the network, one parametric and one
based on adaptive encoding. Sheng et al. [27] developed two distributed particle
filter algorithms: one that exchanges information between cliques (nearby sensors

364 M. Wolf and J. Schlessman

whose signals tend to be correlated) and another in which cliques compute partial
estimates based on local information and forward their estimates to a fusion center.

3 Early Work in Distributed Smart Cameras

The DARPA-sponsored Video Surveillance and Monitoring (VSAM) program was
one of the first efforts to develop distributed computer vision systems. A system
developed at Carnegie Mellon University [11] developed a cooperative tracking
system in which tracking targets were handed off from camera to camera. Each
sensor processing unit (SPU) classified targets into categories such as human or
vehicle. At the MIT Media Lab, Mallet and Bove [20] developed a distributed
camera network that could hand-off tracking targets in real time. Their camera
network consisted of small cameras mounted on tracks in the ceiling of a room. The
cameras would move to improve their view of subjects based on information from
other cameras as well as their own analysis. Lin et al. [19] developed a distributed
system for gesture recognition that fuses data after some image processing using a
peer-to-peer protocol. That system will be described in more detail in Sect. 7. The
distributed tracker of Bramberger et al. [7] passed off a tracking task from camera
to camera as the target moved through the scene. Each camera ran its own tracker.
Handoffs were controlled by a peer-to-peer protocol.

4 Challenges

A distributed smart camera is a data fusion system—samples from cameras are
captured, features are extracted and combined, and results are classified. There is
more than one way to perform these steps, providing a rich design space. We can
identify several axes on which the design space of distributed smart cameras can be
analyzed:

• How abstract is the data being fused: pixel, small-scale feature, shape, etc.? What
methods are used to fuse data?

• What groups/cliques of sensors combine their data? For example, groups may be
formed by network connectivity, location, or signal characteristics. How does the
group structure evolve as the scene changes?

• How sparse in time and space is the data?

We can also identify some axes based on the underlying technology:

• Number of cameras.
• Heterogeneity of cameras.
• Fixed and/or moving cameras.
• Fields-of-view (overlapping, non-overlapping).

Distributed Smart Cameras and Distributed Computer Vision 365

• Server-assisted (directories, etc.) vs. peer-to-peer.
• Data fusion level: pixels (server-based) vs. mid-level vs. high-level

The simplest form of data fusion is to directly combine pixels. Image stitching
algorithms [21] can be used to merge several images into a larger image. Such
algorithms are more often used for photography—that is, directly-viewed images—
than for computer vision. Thanks to the large amount of data involved, some amount
of preprocessing is often done before merging data. Features can be extracted using
a variety of methods. Scale-invariant feature transform (SIFT) is a widely used
feature extraction algorithm. A set of feature vectors is extracted from the image
as min/max of the difference-of-Gaussians function to smoothed and resampled
images. The features are then clustered to identify corresponding features in the
images to be compared. These features can be combined in a variety of ways using
distributed algorithms, either tree-based or graph-based. Group structure is an issue
that cuts across image processing and distributed algorithms. The natural structure
of the problem suggests certain groupings of data that are reflected in the formulas
that describe the image processing being performed. Distributed algorithms and
networks also encourage grouping. In many cases, the groupings suggested by
those two disciplines are complementary but in some cases their recommendations
conflict.

Group structure in networks is often based on network distance as illustrated
in Fig. 1. Network distance is determined in part in a wireless network by the
transmission radius of a node, which determines what other nodes can be reached
directly. It is also determined by the path length between nodes in a network. In
contrast, group structure for image processing algorithms is determined by field-of-
view as illustrated in Fig. 2. When cameras have overlapping fields of view, a target
is in general visible to several cameras, These cameras are not always physically
adjacent—in fact, to battle occlusion, cameras at widely different angles provide the
best coverage. The cameras also may not be close in the network sense. However,
these cameras do need to talk to each other. In the case of non-overlapping fields-
of-view, as shown in Fig. 3, communication between nodes is determined by the
possible or likely paths of targets, which may or may not correspond to network
topology. Features from multiple sensors need to be combined at some point. Where

Fig. 1 Groups in wireless
networks

group

366 M. Wolf and J. Schlessman

Fig. 2 Groups in overlapping
field-of-view image
processing

Fig. 3 Groups in non-overlapping cameras

they are combined and how they are combined are both factors. We will use two
example systems to illustrate different approaches to feature analysis, fusion, and
classification. A separate chapter in this book describes sensor networks in more
detail.

5 Camera Calibration

Several aspects of the camera network need to be calibrated:

• Intrinsic calibration determines camera parameters such as focal length and
color response.

Distributed Smart Cameras and Distributed Computer Vision 367

Fig. 4 Overlapping fields of view

• Extrinsic spatial calibration determines the position of the camera relative to the
scene that it views and, in the case of camera networks, to the other cameras in
the system.

• Temporal calibration determines the time at which frames are captured and, in
the case of camera networks, how the cameras are synchronized relative to each
other.

Some calibration problems for camera networks are similar to the calibration
problems for a single camera. Camera networks also introduce new calibration
problems. Without proper calibration, we cannot properly compare data or analysis
results between cameras.

Figure 4 shows a simple example of extrinsic calibration. The two cameras have
different views of the road and the tracking subjects.

The book by Hartley and Zisserman [13] provides a thorough discussion of
camera calibration. A thorough review of the subject is beyond the scope of this
article; we concentrate here on distributed algorithms to solve calibration problems.
However, we can identify a few basic techniques for calibration. Intrinsic calibration
is necessary to determine the relationship between image features and objects in
world coordinates. When we have multiple cameras, we need to determine the
relationships between the cameras as well as the internal parameters of each camera.
The fundamental matrix describes the relationship between two views of a point
in space. The three-view geometry problem determines the relationships between
three cameras, which is based on the correspondence between two lines and a point.
The trifocal tensor describes the required relationship, along with a set of internal
constraints. The four-view geometry problem is yet more complex and is often

368 M. Wolf and J. Schlessman

solved using the simpler affine camera model. This problem can be generalized to
the n-camera case.

Radke et al. [25] developed a distributed algorithm for the metric calibration
of camera networks. External calibration of a camera determines the position of
the camera in world coordinates using a rotation matrix and translation vector.
Intrinsic parameters include focal length, location of the principal point, and skew.
Calibrating cameras through image processing is usually more feasible than by
directly measuring camera position. Devarajan et al. model the camera network
using a communication graph and a vision graph. The communication graph is based
on network connectivity—it has an edge between nodes that directly communicate;
this graph can be constructed using standard ad-hoc network techniques. The vision
graph is based on signal characteristics—it has an edge between two nodes that have
overlapping fields-of-view; this graph needs to be constructed during the calibration
process. Each camera is described by a 3×4 matrix Pi that gives the rotation matrix
and optical center of the camera. The intrinsic parameter matrix for camera i is
known as Ki . A set of points X = {X1, . . . , Xn} are used as reference points for
calibration; these points can be selected using a variety of methods, such as SIFT.
Two cameras have overlapping fields-of-view if they can both see a certain number
of the Xs.

The reconstruction is ambiguous and we need to estimate a matrix H that turns
the reconstruction into a metric form (preserving angles, etc.). A bundle adjustment
step uses nonlinear minimization to improve the calibration. Synchronization, also
known as temporal calibration, is necessary to provide an initial time base for
video analysis. Cameras may also need to be resynchronized during operation.
Even professional cameras may not provide enough temporal stability for long-
running experiments and low-cost cameras often display wide variations in frame
rate. Lamport and Melliar-Smith [18] developed an algorithm for synchronizing
clocks in distributed systems; such approaches are independent of the distributed
camera application. Velipasalar and Wolf [30] developed a video-based algorithm
for synchronization. The algorithm works by matching target positions between
cameras, so it assumes that the cameras have previously been spatially calibrated. A
set of frames is selected for comparison by each camera. For each frame, an anchor
point is selected. The targets are assumed to be on a plane, so the anchor point
is determined by dropping a line from the top of the bounding box to the ground
plane. Given these reference points, a search algorithm compares the positions of
the targets to minimize the distance D1,2

i,j between frame sequences 1 and 2 at offsets
i and j .

Pollefeys et al. [23] developed an algorithm for combined spatial and temporal
calibration of camera networks. They use a moving target, such as a person, to
provide data for calibration in the form of boundary points on the target’s silhouette.
They use RANSAC to match points from frames from two videos. The RANSAC
search evaluates both the epipolar geometry and the temporal offset between the
frames. They first generate a consistent set of fundamental matrix for three cameras.

Distributed Smart Cameras and Distributed Computer Vision 369

They then add cameras one at a time until either all cameras have been calibrated or
the errors associated with a camera’s calibration are too large.

Porikli and Divakaran [24] calibrate color models of cameras by recording
images of identical objects from each camera and then computing a correlation
matrix of the histograms generated for the object from each camera.

6 Tracking

Tracking models the movement of targets over an extended period. The tracking
problem can take different forms when several cameras are used, depending on
whether the fields-of-views of the cameras overlap.

6.1 Tracking with Overlapping Fields-of-View

Velipasalar et al. [29] developed a peer-to-peer tracking system that fuses data
at a higher level. At system calibration time, the cameras determine all other
cameras that share overlapping fields-of-view. This information is used to build
groups for sharing information about targets. Each camera runs its own tracker.
As illustrated in Fig. 5, a camera maintains for each target in its field-of-view the
position and appearance model of the target. The cameras then trade information
about targets. The cameras that have a given target in their fields-of-view form a
group. Cameras communicate every n frames, where n is chosen at design time.
A more adaptive approach would be to adapt the communication rate based upon

Fig. 5 Combining tracks
during distributed tracking

target
model

target
model

node 1 node 2

370 M. Wolf and J. Schlessman

the rate at which targets move. The group is built on top of a logical ring structure,
which is commonly used to communicate in multiprocessors. The cameras in the
group exchange information on the position of the target. Exchange allows cameras
to estimate position more accurately. It also allows cameras whose view of the
target is occluded to know where the target is during the occlusion interval. The
protocol also negotiates an identity for each target. When a target enters the system,
the cameras must also agree upon a common label for the target. They compare
appearance models and positions to determine that they, in fact share a target. They
then select a common label for that target.

Fleuret et al. [12] use dynamic programming to track multiple people in a scene.
They discretize the planar floor into discrete regions and compute the most likely
positions of people from frame to frame. They solve overlapping windows of 100
frames. Models for motion and color constrain the search space. They identify tracks
one subject at a time to minimize the size of the search space.

6.2 Tracking in Sparse Camera Networks

In many environments, we cannot set up cameras whose fields-of-view cover the
entire area of interest. In sparse camera networks, we must find alternative methods
to correlate observations between cameras. The most common approach is to use
Bayesian metrics to group observations into sets that correspond to paths. Search
algorithms find the most likely assignments of observations to paths. A graph
models the set of observation positions as nodes and the possible paths between
those positions as edges.

Oh et al. [22] developed a Markov chain Monte Carlo (MCMC) algorithm for
multi-target tracking (MCMC-MTT). We are given a set of target positions xi and
a set of observations yi . We partition the available observations into a set of tracks
τ = {y1, . . . , yt }. The set of all tracks for a given scene is ω. Given a new set of
observations yt+1, we want to assign them to tracks and possibly reassign existing
observations to different tracks, generating an updated set of tracks ω′ such that we
maximize the posterior of ω′. Oh et al. showed that the posterior of ω′ is:

P(ω | Y) = 1

Z

∏
1≤t≤T

pzt
z (1− pz)

ct p
dt
d (1− pd)

ut λ
at
b λ

ft
f ×

∏
τ∈ω/{τ0}

∏
1≤i≤|τ |−1

N(τ(ti+1 | x̄ti+1(τ), bti+1(τ)) (6)

In this formula, Z is a normalizing constant and N() is the Gaussian density
function with mean μ and covariance matrix !. In the approach of Oh et al., MCMC
multi-target tracking makes use of several types of moves to generate new candidate
tracks:

Distributed Smart Cameras and Distributed Computer Vision 371

• Birth/death: A birth move creates a new track while death destroys an existing
one.

• Split/merge: A split breaks one track into two pieces while a merge combines
two tracks into one.

• Extension/reduction: Extension lengthens an existing track by adding new
observations at the end of the track while reduction shortens a track.

• Track update: An update adds an observation to a track.
• Track switch: A track switch exchanges observations between two tracks.

A move is accepted or rejected with probability

A(ω,ω′) = min

(
1,

π(ω′)q(ω′, ω)
π(ω)q(ω,ω′)

)
(7)

where π(ω) is the stationary distribution of the states and q(ω,ω′) is the proposal
distribution.

Kim et al. [16] used a modified graph model to encapsulate information about
priors that guides the search process. Entry and exit nodes are often connected
by cycles of edges that model entry and exit. Such cycles can induce long
paths to be generated that consist of the target shuttling between two nodes. A
supernode models a set of nodes and associated edges. The supernode represents
the prior knowledge that such cycles are unlikely. Kim and Wolf [17] developed a
distributed algorithm to perform the search over candidate paths. A camera is able to
communicate only with nearby cameras. Each camera estimates local paths for the
targets using its own observations and observations obtained from nearby cameras.
A maximum weighted bipartite matching algorithm is used to match observations
with their immediate predecessors. The local paths are then concatenated to create
global paths for the targets.

Song and Roy-Chowdhury [28] used a modified form of optimal path solving
with random variables for weights. They compare the similarity between observa-
tions to compute a similarity score for a pair of observations. They then solve a
maximum matching problem in a weighted bipartite graph. They handle variations
among the observations by relaxing independence of the correspondences between
features using a path smoothness function.

Javed et al. [15] model variations in appearance of targets from camera to camera
due to a combination of camera parameters, illumination, and pose using brightness
transfer functions (BTFs). They generated inter-camera BTFs for pairs of cameras
during a training phase using object histograms. They then use inter-camera BTFs
to modify the similarity metric for observations during computation of the track.

Tracking from pan-tilt-zoom (PTZ) cameras is more challenging. de Agapito
et al. [1] developed an algorithm for calibrating using a set of images from a camera
that rotates. They assume that pixels are square, that the images are not skewed, and
that there is a known principal point. Given those constraints, they can formulate the
homographies between the reference image and the other images from the camera.

372 M. Wolf and J. Schlessman

Standard least-squares algorithms can be used to solve the system of equations. Del
Bimbo et al. [4] perform real-time tracking taking into account the homography
between the reference view and successive frames of the PTZ camera. They use
a particle filter to estimate the camera parameters. They use a SIFT algorithm to
extract points in the images.

7 Gesture Recognition

A gesture is a sequence of poses [34]. Each pose can be extracted from a frame.
The sequence of poses can then be determined from the poses using a variety of
techniques such as hidden Markov models.

Van den Bergh et al. [2] developed an algorithm for pose estimation. They extract
a three-dimensional hull over the subject using voxel carving. They achieve real-
time performance by using a fixed lookup table for each voxel that gives for each
pixel the set of voxels that project onto that pixel. They use an example-based
classifier to bin the 3D hulls into poses.

Lin et al. [19] developed a peer-to-peer algorithm for gesture recognition. The
distributed system is based on a single-camera gesture recognition system [34]. That
algorithm extracts shapes, builds a graph model of the relationships between the
shapes, and then matches that graph against a library of graphs representing poses.

The basic challenge in extending the single-camera system to multiple cameras
is that a subject may stand such that no single camera has a complete view. In
general, data must be combined from multiple cameras before a graph can be built.
A brute-force approach would be to share frames, but this entails a substantial
bandwidth penalty. Lin’s system combines the features created by pixel-level region
identification. The regions from different cameras are easily fused but they can be
transmitted at lower cost. As shown in Fig. 6, when the target appears in the view

Fig. 6 Combining features
for gesture recognition

Distributed Smart Cameras and Distributed Computer Vision 373

of multiple cameras, each camera extracts the foreground object and extracts pixel
boundaries for the foreground regions. A protocol determines which camera will
fuse these boundaries and complete the recognition process. A group is formed by
the cameras that can view the target. One member of the group, the lead node, has
a token that denotes that it is responsible for fusion. The token moves to a different
node when the target’s position, as determined by the centerline of its bounding box,
moves out of the field-of-view of the lead node. The token is passed to a camera
whose field-of-view contains the target centerline.

8 Platform Architectures

The computing platform includes processing elements, interconnect, memory, and
networking. The details of the platform can vary widely, but the fundamental
assumptions made by most distributed computer vision algorithms include the
nodes and network in a distributed system. Processing nodes are assumed to have
reasonably powerful processors that can perform significant amounts of work in
real time. RAM is generally not unlimited but enough is available for the required
algorithms. Most systems assume that power is available to nodes for continuous
operations, although it is possible to build a battery-operated system that will operate
for a short interval. Network bandwidth and quality-of-service are an important
consideration. Wireless networks generally do not provide enough bandwidth to
allow a large number of cameras to stream video for processing in the cloud. Wired
networks provide more bandwidth and better QoS but streaming video from multiple
nodes will still require significant network resources. Distributed smart cameras that
process video streams locally are motivated in part by networking limitations.

Heterogeneous platforms are commonly used for embedded computer vision.
These platforms provide different types of computational units that can be applied
to different parts of the system. In addition to CPUs, heterogeneous platforms may
make use of graphics processing units (GPUs), digital signal processors (DSPs), and
field-programmable gate arrays (FPGAs). The OpenCV library (http://opencv.org)
has become a popular development environment for computer vision applications.
OpenCV has been ported to a wide variety of platforms, including both CPUs and
GPUs. Many platforms that target embedded computer vision applications include
GPUs. These platforms fall into one of two categories: embedded GPUs such as the
NVIDIA Tegra used in their Jetson platform is designed for mobile graphics and
computer vision; smartphone platforms such as the Qualcomm Snapdragon family
include both computational and wireless networking resources.

A GPU provides large number of floating-point units that can operate on local
memory, features that can be exploited by computer vision algorithms. Modern
GPUs use a multithreaded programming model to provide highly parallel execution.
Yu and van Engelen [35] developed a GPU-based algorithm for importance
sampling with parallelization of irregular wavefronts. They exploited properties
of the probability distribution to determine an address calculation for accessing

http://opencv.org

374 M. Wolf and J. Schlessman

importance function tables. Chen et al. [9] developed a hardware architecture for
k-means clustering with hierarchical data sampling; their design included pipelined
processors for logarithm and Bayesian Information Criterion computations. Boden-
steiner and Arens [5] developed an algorithm for registration of 2D video to 3d
LiDAR imagery; they used a GPU to perform backprojection of the video 2D
features to the LiDAR models. Berjon et al. [3] developed a Bayesian classifier for
moving object detection. They used region-of-interest masks to reduce computation
time; they mapped the irregular set of RoI areas onto the GPU using a 1D list. Wang
et al. [31] developed an MCMC-based learning algorithm for GPUs.

DSPs are instruction set processors optimized for streaming and array pro-
cessing workloads found in digital signal processing. Very long instruction word
(VLIW) architectures, which statically dispatch several instructions per cycle,
are widely used in DSPs. Vector processors are also commonly used for signal
processing workloads to take advantage of the vector and matrix operations
commonly found in DSP and computer vision workloads.

Field-programmable gate arrays (FPGAs) can be used to build custom acceler-
ators and heterogeneous architectures without resorting to a custom chip design.
Typically an FPGA will be utilized either as a design and test platform for a
final custom build or as a target reconfigurable fabric for these cases, respectively.
Much like DSPs, these provide optimized processing ability, in this case with
specialized processing units within the FPGA fabric. For example, high-speed
integer multipliers and adders are found in many FPGA cells currently on the
market. Furthermore, many FPGAs incorporate a simple embedded processor for
algorithm flow control. The complexity in using this type of platform is in design
overhead. An FPGA requires significantly more design consideration than the
previously mentioned platforms. This is due to the inherent need for hardware
and software task analysis. Also, the determined hardware tasks typically cannot
be directly mapped to FPGA logic, and instead require algorithmic redesign and
hardware timing scheme design and analysis.

All of these platforms raise the need for memory bandwidth analysis during
architectural design and mapping. This is due to the platforms having a smaller
footprint, and resultant lower amount of available storage on the board, not to
mention on the chip itself. As vision algorithm complexity increases through
use of larger pixel representation schemes, greater temporal frame storage, and
also accuracy requirements which abound in real-time critical vision systems, the
amount of data which needs to be both transferred on and off chip as well as stored
on-chip intermediately increases dramatically. Schlessman [26] addresses each of
these issues with the MEAD methodology for embedded architectural design,
ultimately providing vision designers with a clearer concept of what platform
architecture is best suited for the algorithm under consideration.

Distributed Smart Cameras and Distributed Computer Vision 375

9 Summary

Distributed algorithms offer a new approach to computer vision. Nodes in a
distributed system communicate explicitly through mechanisms that have non-zero
cost in delay and energy. This constraint encourages us to consider algorithms that
refine the representation of a scene in stages with predictable ways of combining
data within a stage. Distributed algorithms are, in general, more difficult to develop
and prove correct, but they also provide advantages such as robustness. Distributed
signal processing may require new statistical representations of signals that can
be efficiently shared over the network while preserving the useful properties of
the underling signal. We also need a better understanding of the accuracy of
the approximations underlying distributed signal processing algorithms—how do
termination conditions affect the accuracy of the estimate, for example.

Acknowledgements This work was supported in part by the National Science Foundation under
grant 0720536.

References

1. de Agapito, L., Hartley, R., Hayman, E.: Linear self-calibration of a rotating and zooming
camera. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on., vol. 1, pp. 2 vol. (xxiii+637+663) (1999). https://doi.org/10.1109/CVPR.1999.
786911

2. den Bergh, M.V., Koller-Meier, E., Kehl, R., Gool, L.V.: Real-time 3d body pose estimation.
In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications,
chap. 14. Academic Press (2009)

3. Berjon, D., Cuevas, C., Moran, F., Garca, N.: Region-based moving object detection using
spatially conditioned nonparametric models in a GPU. In: 2014 IEEE International Conference
on Consumer Electronics (ICCE), pp. 359–360 (2014). https://doi.org/10.1109/ICCE.2014.
6776041

4. Bimbo, A.D., Dini, F., Pernici, F., Grifoni, A.: Pan-tilt-zoom camera networks. In: H. Aghajan,
A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 8. Academic
Press (2009)

5. Bodensteiner, C., Arens, M.: Real-time 2d video/3d lidar registration. In: Proceedings of the
21st International Conference on Pattern Recognition (ICPR2012), pp. 2206–2209 (2012)

6. Boykov, V., Huttenlocher, D.: Adaptive Bayesian recognition in tracking rigid objects. In:
Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 697–704.
IEEE (2000)

7. Bramberger, M., Quaritsch, M., Winkler, T., Rinner, B., Schwabach, H.: Integrating multi-
camera tracking into a dynamic task allocation system for smart cameras. In: Proceedings of
the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS 2005), pp.
474–479. IEEE (2005)

8. Candy, J.V.: Boostrap particle filtering. IEEE Signal Processing Magazine 73, 73–85 (2007)
9. Chen, T.W., Chien, S.Y.: Flexible hardware architecture of hierarchical k-means clustering for

large cluster number. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
19(8), 1336–1345 (2011). https://doi.org/10.1109/TVLSI.2010.2049669

https://doi.org/10.1109/CVPR.1999.786911
https://doi.org/10.1109/CVPR.1999.786911
https://doi.org/10.1109/ICCE.2014.6776041
https://doi.org/10.1109/ICCE.2014.6776041
https://doi.org/10.1109/TVLSI.2010.2049669

376 M. Wolf and J. Schlessman

10. Coates, M.: Distributed particle filters for sensor networks. In: Information Processing in
Sensor Networks, 2004. IPSN 2004. Third International Symposium on, pp. 99–107. IEEE
(2004)

11. Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensory
surveillance. Proceedings of the IEEE 89(10), 1456–1477 (2001)

12. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic
occupancy map. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30(2), 267
–282 (2008). https://doi.org/10.1109/TPAMI.2007.1174

13. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn.
Cambridge University Press, ISBN: 0521540518 (2004)

14. Horprasesert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust
background subtraction and shadow detection. In: IEEE International Conference on Computer
Vision FRAME-RATE Workshop (1999)

15. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-
overlapping cameras. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 2, pp. 26–33 (2005). https://doi.org/10.1109/CVPR.
2005.71

16. Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using Markov chain
monte carlo. In: Proceedings, 2009 ACM/IEEE International Conference on Distributed Smart
Cameras. ACM (2009)

17. Kim, H., Wolf, M.: Distributed tracking in a large-scale network of smart cameras. In:
Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras,
p. 8–16. ACM Press (2010)

18. Lamport, L., Melliar-Smith, M.: Synchronizing clocks in the presence of faults. Journal of the
ACM 32(1), 52–78 (1985)

19. Lin, C.H., Lv, T., Wolf, W., Ozer, I.B.: A peer-to-peer architecture for distributed real-time
gesture recognition. In: Proceedings, International Conference on Multimedia and Exhibition,
pp. 27–30. IEEE (2004)

20. Mallett, J., Jr., V.M.B.: Eye society. In: Proceedings IEEE ICME 2003. IEEE (2003)
21. McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In:

Proceedings, ACM SIGGRAPH, pp. 39–46. ACM (1995)
22. Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-

target tracking problems. In: Proc. 43rd IEEE Conf. Decision and Control (2004)
23. Pollefeys, M., Sinha, S.N., Guan, L., Franco, J.S.: Multi-view calibration, synchronization, and

dynamic scene reconstruction. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks:
Principles and Applications, chap. 2. Academic Press (2009)

24. Porikli, F., Divakaran, A.: Multi-camera calibration, object tracking and query generation.
Tech. Rep. TR-2003-100 (2003)

25. Radke, R., Devarajan, D., Cheng, Z.: Calibrating distributed camera networks. Proceedings of
the IEEE 96(10), 1625–1639 (2008)

26. Schlessman, J.: Methodology and architectures for embedded computer vision (2012). PhD
Thesis, Department of Electrical Engineering, Princeton University, in preparation

27. Sheng, X., Hu, Y.H., Ramanathan, P.: Distributed particle filter with gmm approximation
for multiple targets localization and tracking in wireless sensor network. In: Information
Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pp.
181–188. IEEE (2005)

28. Song, B., Roy-Chowdhury, A.: Robust tracking in a camera network: A multi-objective
optimization framework. Selected Topics in Signal Processing, IEEE Journal of 2(4), 582
–596 (2008). https://doi.org/10.1109/JSTSP.2008.925992

29. Veliapasalar, S., Schlessman, J., Chen, C.Y., Wolf, W.H., Singh, J.P.: A scalable clustered
camera system for multiple object tracking. EURASIP Journal on Image and Video Processing
2008 (2008). Article ID 542808

https://doi.org/10.1109/TPAMI.2007.1174
https://doi.org/10.1109/CVPR.2005.71
https://doi.org/10.1109/CVPR.2005.71
https://doi.org/10.1109/JSTSP.2008.925992

Distributed Smart Cameras and Distributed Computer Vision 377

30. Velipasalar, S., Wolf, W.H.: Frame-level temporal calibration of video sequences from
unsynchronized cameras. Machine Vision and Applications Journal (DOI 10.1007/s00138-
008-0122-6) (2008)

31. Wang, Y., Qian, W., Zhang, S., Liang, X., Yuan, B.: A learning algorithm for bayesian networks
and its efficient implementation on gpus. IEEE Transactions on Parallel and Distributed
Systems 27(1), 17–30 (2016). https://doi.org/10.1109/TPDS.2014.2387285

32. Wolf, W.: High Performance Embedded Computing. Morgan Kaufman (2006)
33. Wolf, W.: Modern VLSI Design: IP-Based Design, fourth edn. PTR Prentice Hall (2009)
34. Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems. IEEE Computer 35(9), 48–53

(2002)
35. Yu, H., van Engelen, R.: Importance sampling on Bayesian networks with deterministic

causalities

https://doi.org/10.1109/TPDS.2014.2387285

Part II
Architectures

Arithmetic

Oscar Gustafsson and Lars Wanhammar

Abstract In this chapter fundamentals of arithmetic operations and number repre-
sentations used in DSP systems are discussed. Different relevant number systems
are outlined with a focus on fixed-point representations. Structures for accelerating
the carry-propagation of addition are discussed, as well as multi-operand addition.
For multiplication, different schemes for generating and accumulating partial
products are presented. In addition to that, optimization for constant coefficient
multiplication is discussed. Division and square-rooting are also briefly outlined.
Furthermore, floating-point arithmetic and the IEEE 754 floating-point arithmetic
standard are presented. Finally, some methods for computing elementary functions,
e.g., trigonometric functions, are presented.

1 Number Representation

The way we select to represent our numbers has a profound impact on the
corresponding computational units. Here we consider number representations based
on a positional weight (radix) of two. It is worth noting that as the main application
area considered here is digital signal processing (DSP), we will, where required,
choose to consider numbers that are fractional rather than integer. This will mainly
effect the numbering of the indices.

O. Gustafsson (�) · L. Wanhammar
Department of Electrical Engineering, Linköping University, Linköping, Sweden
e-mail: oscar.gustafsson@liu.se; lars.wanhammar@liu.se

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_11

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_11&domain=pdf
mailto:oscar.gustafsson@liu.se
mailto:lars.wanhammar@liu.se
https://doi.org/10.1007/978-3-319-91734-4_11

382 O. Gustafsson and L. Wanhammar

1.1 Binary Representation

An unsigned binary number, X, with Wf fractional bits can be written as

X =
Wf∑
i=1

xi2−i , (1)

where xi ∈ {0, 1}. Denoting the weight of the least significant position as Q, in
this case Q = 2−Wf , one can see that the range of X is 0 ≤ X ≤ 1 − Q. Q is
sometimes referred to as unit of least significant position, ulp. As an example, the
number 0.2510 is written using Wf = 3 as .0102 and Q = 2−3 = 0.12510.

1.2 Two’s Complement Representation

To represent negative numbers, there are several different number representations
proposed. The most common one is the two’s complement (2C) representation.
Here, a binary number, X, with Wf fractional bits is written as

X = −x0 +
Wf∑
i=1

xi2
−i . (2)

This gives a numerical range as −1 ≤ X ≤ 1−Q. It is worth noting that the range
is not symmetric. This will cause problems when implementing certain arithmetic
operations as discussed later. The sign bit, x0, is one if X < 0 and zero otherwise.
A number−0.2510 is represented as 1.112C with Wf = 2, while 0.2510 is 0.012C .

A beneficial property of two’s complement arithmetic is the fact that an arbitrary
long sequence of numbers can be added in arbitrary order as long as the result is
known to be in the range of the representation. Any overflows/underflows in the
intermediate computations will cancel. This is related to the fact that computations
in two’s complement number representation are performed modulo 2WS , where WS

is the weight of the sign bit. For the representation in (2) WS = 1 so all computations
are performed modulo 2.

1.3 Redundant Representations

A redundant representation is a representation where a number may have more than
one representation. As we will see later the fact that we can select the representation
will provide a number of advantages, most importantly the ability to perform
addition in constant time.

Arithmetic 383

1.3.1 Signed-Digit Representation

In a signed-digit (SD) number representation, the digits may have either positive
or negative sign. For a radix-2 representation we have xi ∈ {−1, 0, 1}. Using Wf

fractional bits as in (1) the range of X is −1 + Q ≤ X ≤ 1 − Q. A number may
now have more than one representation. Consider the number 0.2510 which can be
written as .01SD or .11̄SD, where 1̄ is used to denote−1.

In some applications as, for instance, digital filters [30], FFTs [5] and DCTs
[28] as well as general DSP algorithms [45], it is of interest to find a signed-
digit representation with a minimum number of non-zero positions to simplify
the corresponding multiplication (see Sect. 3.5). This is referred to as a minimum
signed-digit (MSD) representation. However, in general it is non-trivial to determine
if a representation is minimum. A specific minimum signed-digit representation is
obtained if the constraint xixi+1 = 0,∀i is imposed. The resulting representation is
called canonic signed-digit (CSD) representation and is apart from being minimum
also unique (as the name indicates).

1.3.2 Carry-Save Representation

The carry-save representation stems from the ripple-carry adder, which will be
further discussed in Sect. 2.1. Instead of propagating the carries in the addition, these
bits are stored and the data is represented using two vectors. This also leaves an
additional input of the full adder cells unused, so it is possible to add three vectors.
A full adder cell is illustrated in Fig. 1b and the truth table is given in Fig. 1a. From
this we can see that

si = parity (ai ⊕ bi ⊕ di) = ai ⊕ bi ⊕ di, (3)

where⊕ is the exclusive-OR operation, and

ci = majority (ai, bi, di) = aibi + aidi + bidi. (4)

Fig. 1 Full adder: (a) truth
table, (b) symbol

ai bi

ci si

cisi

FA

0 0 0

a b

0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

di

ai bi di

384 O. Gustafsson and L. Wanhammar

Fig. 2 Redundant binary
adder with two positive and
one negative inputs: symbol

Fig. 3 Redundant binary
adder with two positive and
one negative inputs: truth
table

Result
0

−1

1
0
1
0
2
1

cisiai bi di

0 0 0 0 0
0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

Assuming two’s complement representation of the vectors, a number is repre-
sented as

X = S + C = −s0 +
Wf∑
i=1

si2−i − c0 +
Wf∑
i=1

ci2−i . (5)

It is possible to represent numbers in the range −2 ≤ X ≤ 2 − 2Q. However,
it is common to let X span the same numerical range as the two’s complement
representation since it usually will be converted into a non-redundant representation.
The carry-save representation can also be seen as a representation with radix-2 and
digits xi ∈ {0, 1, 2, 3} where xi = 2ci + si (Fig. 3).

The concept of carry-save representation can be generalized to binary redundant
representations by replacing the relation xi = 2ci+si with either xi = 2ci−si where
xi ∈ {−1, 0, 1, 2} or xi = −2ci + si where xi ∈ {−2,−1, 0, 1}. It is then possible
to use cells corresponding to full adders, but with designated signs of the inputs,
such that the bits with negative weights should be connected to ‘−’-inputs. This is
illustrated in Fig. 3 while the computational rules for an adder with two positive and
one negative input are shown in Fig. 2. Note that both types of representations needs
to be used as otherwise there would be an imbalance as each adder produces one
positive and one negative vector but inputs either one positive and two negative or
two positive and one negative.

Arithmetic 385

1.4 Shifting and Increasing the Word Length

When adding signed numbers it is for most number representations important that
the vectors have the same lengths. For two’s complement representation we must
extend the sign by copying the sign-bit at the MSB side of the vector. On the LSB
side it is enough to extend with zeros. It is worth noting that for one’s complement
the sign-bits are inserted at the LSB side.

The operation of shifting, i.e., multiplying or dividing by a power of two, is in
fact the same as increasing the word length. Hence, shifting a two’s complement
number two positions to the right (dividing by 4) requires copying of the sign-bit to
the two introduced positions.

For carry-save representation, the extension of the word length on the MSB side
requires that the sign-bits of the carry and sum vectors are corrected to avoid what
is referred to as carry overflow [38]. The origin of this effect is that once the carry
and sum vectors are added there is an overflow in the addition. As the resulting
carry bit from the MSB position is neglected the result still remains valid, in fact
this is a required property for two’s complement representation to work. However,
if the vectors are shifted once before the final addition, the effect of the overflow
will occur in an earlier position.

1.5 Negation

Negation is a useful operation in itself, but also in a subtraction, Z = X− Y , which
can be seen as an addition of the negated value, Z = X + (−Y).

To negate a two’s complement number one inverts all the bits and add a one
to the LSB position. As will be seen later on, this does not necessarily have to be
performed explicitly, but can rather be integrated with an addition.

1.6 Finite Word Length Effects

In recursive algorithms, it is necessary to use non-linear operations to maintain a
finite word length. This introduces small re-quantization errors, so called granularity
errors. In addition, very large overflow errors will occur if the finite number range
is exceeded. These errors will not only cause distortion, but may also be the cause
of parasitic oscillations in recursive algorithms [6, 14, 47].

The effect of these errors depends on many factors, for example, type of
quantization, algorithm, type of arithmetic, representation of negative numbers, and
properties of the input signal[31]. The analysis of the influence of round-off errors
in floating-point arithmetic is very complicated [32, 46, 58], because quantization
of products as well as addition in floating-point arithmetic and subtraction causes

386 O. Gustafsson and L. Wanhammar

errors that depend on the signal values. Quantization errors in fixed-point arithmetic
are with few exceptions independent of the signal values and can, therefore, be
analyzed independently. Lastly, the high dynamic range provided by floating-point
arithmetic is not really needed in good filter algorithms, since filter structures with
low coefficient sensitivity also utilize the available number range efficiently.

Fixed-point arithmetic is predominately used in application-specific ICs since the
required hardware is much simpler, faster, and consumes less power compared with
floating-point arithmetic. We will, therefore, focus on fixed-point arithmetic.

1.6.1 Overflow Characteristics

A two’s complement representation of negative numbers is usually employed in dig-
ital hardware. The overflow characteristic of the two’s complement representation
is shown in Fig. 4.

As discussed earlier, the largest and smallest numbers in two’s complement
representation are 1−Q and −1, respectively. A two’s complement number larger
than 1−Q will be interpreted as x−2, while a number slightly smaller than−1 will
be interpreted as x − 2. Hence, very large overflows errors are incurred. A common
scheme to reduce the size of overflow errors and mitigate their harmful effect is to
limit numbers outside the normal range to either the largest or smallest representable
number. This scheme is referred to as saturation arithmetic and is shown in Fig. 5.

Many standard signal processors provide addition and subtraction instructions
with inherent saturation. Another saturation scheme, which may be simpler to
implement in hardware, is to invert all bits when overflow occurs. Using fixed-point
arithmetic the signal levels need to be adjusted at the input of multiplications with
non-integer coefficients. Note that, as discussed earlier, a sum of several numbers,

Fig. 4 Overflow
characteristic of two’s
complement arithmetic

1–Q

–2 –1
–1

1 2
X

XQ

Fig. 5 Overflow
characteristic of saturation
arithmetic

1–Q

–2 –1 1 2
–1

XQ

X

Arithmetic 387

e

p(e)
Q
1

–Q
2

Q
2

Rounding
e

p(e)
Q
1

–Q Truncation

p(e)

e
–Q Q

2Q
1

X > 0 X < 0

Magnitude Truncation

Fig. 6 Error distributions for fixed-point arithmetic

using two’s complement representation, may have intermediate overflows as long as
the final value (sum) is within the valid range.

1.6.2 Truncation

Quantizing a binary number, X, with infinite word length to a number, XQ, with
finite word length yields an error

e = XQ −X. (6)

Truncation of the binary number is performed by removing the bits with index i >

Wf . The resulting error density distribution is shown in the center of Fig. 6. The

variance is σ 2 = Q2

12 and the mean value is −Q/2 where Q refer to the weight of
the last bit position.

1.6.3 Rounding

Rounding is, in practice, performed by adding 2−(Wf+1) to the non-quantized num-
ber before truncation. Hence, the quantized number is the nearest approximation to
the original number. However, if the word length of X is Wf + 1, the quantized
number should, in principle, be rounded upwards if the last bit is 1 and downwards
if it is 0, in order to make the mean error zero. This special case is often neglected in
practice. The resulting error density distribution, p(e), is shown to the left in Fig. 6.

The variance is σ 2 = Q2

12 and the mean value is zero.

1.6.4 Magnitude Truncation

Magnitude truncation quantizes the number so that

∣∣XQ

∣∣ ≤ |X| . (7)

388 O. Gustafsson and L. Wanhammar

Hence, e ≤ 0 if X ≥ 0 and e ≥ 0 if X ≤ 0. This operation can be performed
by adding 2−(Wf+1) before truncation if X is negative and 0 otherwise. That is,
in two’s complement representation adding the sign bit to the last position. The
resulting error density distribution is shown to the right in Fig. 6. The error analysis
of magnitude truncation becomes very complicated since the error and sign of the
signal are correlated [31].

Magnitude truncation is needed to suppress parasitic oscillation in wave digital
filters [14].

1.6.5 Quantization of Products

The effect of a quantization operation, except for magnitude truncation, can be
modeled with a white additive noise source that is independent of the signal and
with the error density functions as shown in Fig. 6. This model can be used if the
signal varies from sample to sample over several quantization levels in an irregular
way. However, the error density function is a discrete function if both the signal and
the coefficient have finite word lengths. The difference is significant only if a few
bits are discarded by the quantization. The mean value and variance for the errors
are

m =
{

Qc

2 Q, rounding
Qc−1

2 Q, truncation
(8)

and

σe2 = ke(1−Q2
c)
Q2

12
, (9)

where

ke =
{

1, rounding or truncation

4− 6
π
, magnitude truncation

, (10)

where Q and Qc refer to the signal and coefficient, respectively. For long coefficient
word lengths the average value is close to zero for rounding and −Q/2 for
truncation. Correction of the average value and variance is only necessary for short
coefficient word lengths, for example, for the scaling coefficients.

2 Addition

The operation of adding two or more numbers is in many ways the most fundamental
arithmetic operation since most other operations in one or another way are based on
addition.

Arithmetic 389

The methods discussed here concerns either two’s complement or unsigned
representation. Then, the major problem is to efficiently speed up the carry-
propagation in the adder. There are other schemes than those presented here, for
more details we refer to e.g., [59]. It is also possible to perform addition in constant
time using redundant number systems such as the previously discussed signed-
digit or carry-save representations. An alternative is to use residue number systems
(RNS), that split the carry-chain into several shorter ones [40].

2.1 Ripple-Carry Addition

The probably most straightforward way to perform addition of two numbers is
to perform bit-by-bit addition using a full adder (FA) cell, shown in Fig. 1b, and
propagate the carry bit to the next stage. This is called ripple-carry addition and is
illustrated in Fig. 7. This type of adder can add both unsigned and two’s complement
numbers. However, for two’s complement numbers the result must have the same
number of bits as the inputs, while for unsigned numbers the carry bit acts as
a possible additional bit to increase the word length. The operation of adding
two two’s complement numbers is outlined in Fig. 8 for the example of numbers
−53/256 and 94/256.

The major drawback with the ripple-carry adder is that the worst case delay is
proportional to the word length. Also, typically the ripple-carry adder will produce
many glitches due to the full adder cells having to wait for the correct carry. This
situation is improved if the delay for the carry bit is smaller than that of the sum
bit [22]. However, due to the simple design the energy per computation is still
reasonably small [59].

Fig. 7 Ripple-carry adder

Fig. 8 Example of addition
in two’s complement
arithmetic using a
ripple-carry adder

Value

1 1 0 0 1 0 1 1
0 1 0 1 1 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 1 1 1 0

0 1 2 3 4 5 6 7 Signal

94/256
–53/256

41/256

ci

si

xi

yi

390 O. Gustafsson and L. Wanhammar

2.2 Carry-Lookahead Addition

To speed up the addition several different methods have been proposed, see, for
instance, [59]. Methods typically referred to as carry-lookahead methods are based
on the following observation. The carry output of a full adder sometimes depends on
the carry input and sometimes it is determined without the need of the carry input.
This is illustrated in Table 1. Based on this we can define the propagate signal, pi ,
and the generate signal, gi , as

pi = ai ⊕ bi and gi = aibi. (11)

Now, the carry output can be expressed as

ci−1 = gi + pici . (12)

For the next stage the expression becomes

ci−2 = gi−1 + pi−1ci−1 = gi−1 + pi−1(gi + pici) = gi−1 + pi−1gi + pi−1pici .

(13)
For N + 1:th stage we have

ci−(N+1) = gi−N + pi−Ngi−(N−1) + pi−Npi−N−1gi−(N−2) + . . . (14)

+pi−(N−1) . . . pi−1pici.

The terms containing gk and possibly pk terms are called group generate, as they
together acts as a merged generate signal for all the bits i to i − N . The subterm
pi−(N−1) . . . pi−1pi is similarly called group propagate. Both the group generate
and group propagate signals are independent of any carry signal. Hence, (15) shows
that it is possible to have the carry propagate N stages with a maximum delay of
one AND-gate and one OR-gate as illustrated in Fig. 9. However, the complexity and
delay of the precomputation network grows with N , and, hence, a careful design is
required to not make the precomputation the new critical path.

Table 1 Cases for
carry-propagation in a full
adder cell

ai bi ci−1 Case

0 0 0 No carry-propagation (kill)

0 1 ci Carry-propagation (propagate)

1 0 ci Carry-propagation (propagate)

1 1 1 Carry-generation (generate)

Fig. 9 Illustration of N-stage
carry-lookahead carry
propagation

Arithmetic 391

The carry-lookahead approach can be generalized using dot-operators. Adders
using dot-operators are often referred to as parallel prefix adders. The dot-operator
operates on a pair of generate and propagate signals and is defined as

[
gk

pk

]
=
[
gi

pi

]
•
[
gj

pj

]
�
[
gi + pigj

pipj

]
. (15)

The group generate from position k to position l, k < l, can be denoted by Gk:l
and similarly the group propagate as Pk:l . These are then defined as

[
Gk:l
Pk:l

]
�
[
gk

pk

]
•
[
gk+1

pk+1

]
• · · · •

[
gl

pl

]
. (16)

The dot operator is associative but not commutative. Furthermore, the dot-
operation is idempotent. This means that

[
gk

pk

]
=
[
gk

pk

]
•
[
gk

pk

]
. (17)

For the group generate and propagate signals this leads to that

[
Gk:n
Pk:n

]
=
[
Gk:l
Pk:l

]
•
[
Gm:n
Pm:n

]
, k ≤ l,m ≤ n,m ≤ l − 1. (18)

This is illustrated in Fig. 10. Hence, we can form the group generate and group
propagate signals by combining smaller, possibly overlapping, subgroup generate
and propagate signals.

The carry signal in position k can be written as

ck = G(k+1):l + P(k+1):lcl (19)

Similarly, the sum signal in position k for an adder using Wf fractional bits is then
expressed according to (3) as

sk = ak ⊕ bk ⊕ dk = pk ⊕ (G(k+1):Wf
+ P(k+1):Wf

cin) = pk ⊕ ck (20)

Fig. 10 Illustration of the
idempotency property for
group generate and propagate
signals

392 O. Gustafsson and L. Wanhammar

Fig. 11 Sequential computation of group generate and propagate signals

From this, one can see that it is of interest to compute all group generate and
group propagate originating from the LSB position, i.e., Gk:Wf and Pk:Wf for 1 ≤
k ≤ Wf .

A straightforward way of obtaining this is to do a sequential operation as shown
in Fig. 11. However, again the delay will be linear in the word length, as for the
ripple-carry adder. Indeed, the adder in Fig. 11 is a ripple-carry adder where the full
adder cells explicitly compute pi and gi .

Based on the properties of the dot operator, we can possibly find ways to
interconnect the adders such that the depth is reduced by computing different group
generate and propagate signals in parallel. This is illustrated for an 8-bit adder in
Fig. 12. This particular structure of interconnecting the dot-operators are referred to
as a Ladner-Fischer parallel prefix adder [27]. Often one uses a simplified structure
to represent the parallel prefix computation, as shown in Fig. 13a. Comparing
Figs. 12 and 13a it is clear that dots in Fig. 13a correspond to dot-operators in
Fig. 12. In fact, the parallel prefix graphs in Fig. 13 work for any associative
operation.

Over the years there has been a multitude of different schemes for parallel prefix
addition trading the depth, number of dot-product operations, and fan-out of the
dot-product cells. In Fig. 13b–d, three of the earlier proposed schemes for 16-bit
parallel prefix computations are illustrated, namely Ladner-Fischer [27], Kogge-
Stone [24], and Brent-Kung [4], respectively. Unified views of all possible parallel
prefix schemes have been proposed in [20, 23].

Arithmetic 393

Fig. 12 Parallel computation of the group generate and propagate signals

a b

c d

Fig. 13 Different parallel prefix schemes for an 8-bit Ladner-Fischer adder [27] as shown in
Fig. 12 and for 16-bit adders: (b) Ladner-Fischer [27], (c) Kogge-Stone [24], and (d) Brent-Kung
[4]

394 O. Gustafsson and L. Wanhammar

2.3 Carry-Select and Conditional Sum Addition

The fundamental idea of carry-select addition is to split the adder into two or more
stages. For all stages except the stage with the least significant bits one uses two
adders. It is assumed that the incoming carry bit is zero one of the adders and one
for the other. Then, a multiplexer is used to select the correct result and carry to
the next stage once the incoming carry is known. A two-stage carry-select adder is
shown in Fig. 14. The length of the stages should be designed such that the delay of
the stage is equivalent to the delay of the first stage plus the number of multiplexers
that the carry signal passes through. Hence, the actual values are determined by
the relative adder and multiplexer delays, as well as the fan-out of the multiplexer
control signals.

For each smaller adder in the carry-select adder, it is possible to apply the same
idea of splitting each smaller adder into even smaller adders. For example, each of
the two k1 bit adders can be split into two k3 bits and one k4 bits adders, where k1 =
k3 + k4, in a similar way. Note, however, that only four smaller adders are required
instead of six as the same two k3 bits adders can be used. If this is applied until
only one-bit adders remain, we obtain a conditional sum adder. There are naturally,
a wide range of intermediate adder structures based on the ideas of carry-select and
conditional sum adders.

Fig. 14 Two-stage carry-select adder

Arithmetic 395

Fig. 15 Principle of a
multi-operand adder

Fig. 16 4:2 compressor
composed of full adders (3:2
counters)

2.4 Multi-Operand Addition

When several operands are to be added, it is beneficial to avoid several carry-
propagations. Especially, when there are delay constraints it is inefficient to use
several high-speed adders. Instead it is common to use a redundant intermediate
representation and a fast final carry-propagation adder (CPA). The basic concept is
illustrated in Fig. 15.

For performing multi-operand addition, either counters or compressors or a
combination of counters and compressors can be used. A counter is a logic gate that
takes a number of inputs, add them together and produce a binary representation of
the output. The simplest counter is the full adder cell shown in Fig. 1b. In terms of
counters, it is a 3:2 counter, e.g., it has three inputs and produces a 2-bit output word.
This can be generalized to n : k counters, having n inputs of the same weight and
producing a k bit output corresponding to the number of ones in the input. Clearly,
n and k must satisfy n ≤ 2k − 1 or equivalently k ≥ ⌈log2(n+ 1)

⌉
.

A compressor on the other hand does not produce a valid binary count of the
number of input bits. However, it does reduce the number of partial products, but at
the same time has several incoming and outgoing carries. The output carries should
be generated without any dependence on the input carries. The most frequently
used compressor is the 4:2 compressor shown in Fig. 16, which is realized using
full adders. Clearly, there is no major advantage using 4:2 compressors that are
implemented as in Fig. 16 compared to using 3:2 counters (full adders). However,
other possible realizations are available. These should satisfy

x1 + x2 + x3 + x4 + cin = s + 2c+ 2cout (21)

396 O. Gustafsson and L. Wanhammar

and cout should be independent of cin. There exist realizations with lower logic depth
compared to full adders, and, hence, the total delay of the multi-operand addition
may be reduced using 4:2 compressors.

It is important to note that an n:k counter or compressor reduces the number of
bits in the computation with exactly n− k. Hence, it is easy to estimate the required
number of counters and compressors to perform any addition if the original number
of bits to be added and the number of bits for the result are known. It should also be
noted, that depending on the actual structure it is typically impossible to use only
one type of compressors and adders. Specifically, half adders (or 2:2 counters) may
sometimes be needed, despite not reducing the number of bits, to move bits to the
correct weights for further additions.

3 Multiplication

The process of multiplication can be divided into three different steps: partial
product generation that determines a number of bits to be added, summation of
the generated partial products, and, for some of the summation structures, carry-
propagation addition, usually called vector merging addition (VMA), as many
summation structures produce redundant results.

3.1 Partial Product Generation

For unsigned binary representation, the partial product generation can be readily
realized using AND-gates computing bit-wise multiplications as

Z = XY =
WfX∑
i=1

xi2
−i

WfY∑
j=1

yj2−j =
WfX∑
i=1

WfY∑
j=1

xiyj2−i−j . (22)

This leads to a partial product array as shown in Fig. 17.

Fig. 17 Partial product array for unsigned multiplication

Arithmetic 397

Fig. 18 Partial product array for two’s complement multiplication

For two’s complement data the result is very similar, except that the sign-bit
causes some of the bits to have the negative sign. This can be seen from

Z = XY

=
⎛
⎝−x0 +

WfX∑
i=1

xi2
−i
⎞
⎠
⎛
⎝−y0 +

WfY∑
j=1

yj2−j
⎞
⎠

= x0y0 − x0

WfY∑
j=1

yj2−j − y0

WfX∑
i=1

xi2−i +
WfX∑
i=1

WfY∑
j=1

xiyj2−i−j . (23)

The corresponding partial product matrix is shown in Fig. 18.

3.1.1 Avoiding Sign-Extension

As previously stated, the word lengths of two two’s complement numbers should be
equal when performing the addition or subtraction. Hence, the straightforward way
of dealing with the varying word lengths in two’s complement multiplication is to
sign-extend the partial results to obtain the same word length for all rows.

To avoid this excessive sign-extension it is possible to either perform the
summation from top to bottom and perform sign-extension of the partial results to
match the next row to be added. This is further elaborated in Sects. 3.2.1 and 3.2.2.
However, if we want to be able to add the partial products in an arbitrary order using
a multi-operand adder as discussed in Sect. 2.4, the following technique, proposed
initially by Baugh and Wooley [2], can be used. Note that for a negative partial
product we have −p = p̄ − 1. Hence, we can replace all negative partial products
with an inverted version. Then, we need to subtract a constant value from the result,
but as there will be several constants, one from each negative partial product, we
can sum these up and form a single compensation vector to be added. When this is
applied we get the partial product array as shown in Fig. 19.

398 O. Gustafsson and L. Wanhammar

Fig. 19 Partial product array without sign-extension

Table 2 Rules for the radix-4 modified Booth encoding

x2k x2k+1 x2k+2 rk d2kd2k+1 Description

0 0 0 0 00 String of zeros

0 0 1 1 01 End of ones

0 1 0 1 01 Single one

0 1 1 2 10 End of ones

1 0 0 −2 1̄0 Start of ones

1 0 1 −1 01̄ Start and end of ones (1̄0+ 01)

1 1 0 −1 01̄ Start of ones

1 1 1 0 00 String of ones

3.1.2 Reducing the Number of Rows

As discussed in Sect. 1.3.1, it is possible to reduce the number of non-zero positions
by using a signed-digit representation. It would be possible to use, e.g., a CSD
representation to obtain a minimum number of non-zeros. However, the drawback is
that the conversion from two’s complement to CSD requires the carry-propagation.
Furthermore, the worst case is that half of the positions are non-zero, and, hence,
one would still need to design the multiplier to deal with this case.

Instead, it is possible to derive a signed-digit representation that is not necessarily
minimum but has at most half of the positions being non-zero. This is referred
to modified Booth encoding [33] and is often described as being a radix-4
signed-digit representation where the recoded digits ri ∈ {−2,−1, 0, 1, 2}. An
alternative interpretation is a radix-2 signed-digit representation where didi−1, i ∈
{Wf ,Wf−2,Wf−4, . . . }. The logic rules for performing the modified Booth encod-
ing are based on the idea of finding strings of ones and replace them as 011 . . .11 =
100 . . .01̄ and are illustrated in Table 2. From this, one can see that there is at most
one non-zero digit in each pair of digits (d2kd2k+1).

Now, to perform the multiplication, we must be able to possibly negate and
multiply the operand with 0, 1, or 2. This can conceptually be performed as in
Fig. 20. As discussed earlier, the negation is typically performed by inverting the bits
and add a one in the column corresponding to the LSB position. The partial product
array for a multiplier using the modified Booth encoding is shown in Fig. 21.

Arithmetic 399

Fig. 20 Generation of partial
products for radix-4 modified
Booth encoding

Fig. 21 Partial product array for radix-4 modified Booth encoded multiplier

It is possible to use the modified Booth encoding with higher radices than two.
However, that requires the computations of non-trivial multiples such as 3 for radix-
8 and 3, 5, and 7 for radix-16. The number of rows is reduced roughly by a factor of
k for the radix-2k modified Booth encoding.

3.1.3 Reducing the Number of Columns

It is common that the results after the multiplication are quantized to be represented
with fewer bits than the original result. To reduce the complexity of the multiplica-
tion in these cases it has been proposed to perform the quantization at the partial
product stage [29]. This is commonly referred to as fixed-width multiplication
referring to the fact that (most of) the partial products rows have the same width.

Simply truncating the partial products will result in a rather large error. Several
methods have, therefore, been proposed to compensate for the introduced error [43].

400 O. Gustafsson and L. Wanhammar

3.2 Summation Structures

The problem of summing up the partial products can be solved in three general
ways; sequential accumulation where a subset of the partial products are accu-
mulated in each cycle, array accumulation which gives a regular structure, and
tree accumulation which gives the smallest logic depth but in general an irregular
structure.

3.2.1 Sequential Accumulation

In so-called add-and-shift multipliers, the partial bit-products are generated sequen-
tially and successively accumulated as generated. Therefore, this type of multiplier
is slow as it requires multiple cycles, but the required chip area is small. The
accumulation can be done using any of the bit-parallel adders discussed above
or using digit-serial or bit-serial accumulators. A major advantage of bit-serial
over bit-parallel arithmetic is that it significantly reduces chip area. This is done
in two ways. First, it eliminates wide buses and simplifies the wire routing.
Second, by using small processing elements, the chip itself will be smaller and will
require shorter wiring. A small chip can support higher clock frequencies and is,
therefore, faster. Two’s complement representation is suitable for DSP algorithms
implemented with bit-serial arithmetic, since the bit-serial operations then can be
done without knowing the sign of the numbers involved. Figure 22 shows a 5-
bit serial/parallel multiplier, where the bit-products are generated row-wise. In a
serial/parallel multiplier, the multiplicand X arrive bit-serially while the multiplier
a is applied in a bit-parallel format. Many different schemes for bit-serial multipliers
have been proposed. They differ mainly in which order bit-products are generated
and accumulated and in the way subtraction is handled.

Addition of the first set of partial bit-products starts with the products corre-
sponding to the LSB of X. Thus, in the first time slot, at bit xWf , we simply add,
a × xWf to the initially cleared accumulator. Next, the D flip-flops are clocked

D D

D

& &

D

D

&

D

D

&

D

D

&

----x0.x1x2x3x4x5
a0 a1 a2 a3 a4

y

Sign-Ext.

x0x0x0x0x0.x1x2x3x4x5
Wf+Wc–1

Wc–1

FAFAFAFAFA

Fig. 22 Serial/parallel multiplier based on carry−save adders

Arithmetic 401

and the sum-bits from the FAs are shifted one bit to the right, each carry-bit is
saved and added to the full-adder in the same stage, the sign-bit is copied, and one
bit of the product is produced at the output of the accumulator. These operations
correspond to multiplying the accumulator contents by 2−1. In the following clock
cycle, the next bit of X is used to form the next set of bit-products, which are
added to the value in the accumulator, and the value in the accumulator is again
divided by 2. This process continues for Wf clock cycles, until the sign bit x0 is
reached, whereupon a subtraction must be done instead of an addition. During the
first Wf clock cycles, the least significant part of the product is computed and the
most significant is stored in the D flip-flops. In the next Wf clock cycles, zeros
are, therefore, applied to the input so that the most significant part of the product
is shifted out of the multiplier. Note that the accumulation of the bit-products is
performed using a redundant representation, which is converted to a non-redundant
representation in the last stage of the multiplier. A digit-serial multiplier, which
accumulate several bits in each stage, can be obtained either via unfolding of a bit-
serial multiplier or via folding of a bit-parallel multiplier.

3.2.2 Array Accumulation

Array multipliers use an array of almost identical cells for generation and accu-
mulation of the bit-products. Figure 23 shows a realization of the Baugh-Wooley
multiplier [2] with the multiplication time proportional to 2Wf .

3.2.3 Tree Accumulation

The array structure provides a regular structure, but at the same time the delay grows
linearly with the word length. Considering Figs. 19 and 21, they both provide a
number of partial products that should be accumulated. As mentioned earlier, it is
common to accumulate the partial products such that there are at most two partial
products of each weight and then use a fast carry-propagation adder to perform the
final step.

In Sect. 2.4, the problem of adding a number of bits was considered. Here,
we will focus on structures using full and half adders (or 3:2 and 2:2 counters),
although there are other structures proposed using different types of counters and
compressors.

The first approach is to add as many full adders as possible to reduce as many
partial products as possible. Then, we add as many half adders as possible to
minimize the number of levels and try to shorten the word length for the vector
merging adder. This approach is roughly the Wallace tree proposed in [54]. The
main drawback of this approach is an excessive use of half adders. Dadda [8] instead
proposed that full and half adders should only be used if required to obtain a number
of partial products equal to a value in the Dadda series. The value of position n in
the Dadda series is the maximum number of partial products that can be reduced

402 O. Gustafsson and L. Wanhammar

FA
x2*y0

p–1 p0 p1 p2 p3 p4 p5 p6don’t
care

x3*y1

x0*y0

x1*y1 x2*y1

x1*y2 x2*y2 x3*y2

x1*y3 x2*y3

x0*y1

x1*y0 x3*y0

x0*y2

x0*y3

FA FA FA

FA FAFA

FAFA

FAFAFAFA
1

0 0 0

1

x3*y3

Fig. 23 A Baugh-Wooley multiplier

using n levels of full adders. The Dadda series starts {3, 4, 6, 9, 13, 19, . . . }. The
benefit of this is that the number of half adders is significantly reduced while still
obtaining a minimum number of levels. However, the length of the vector merging
adder increases. A compromise between these two approaches is the Reduced Area
heuristic [3], where similarly to the Wallace tree, as many full adders as possible
are introduced in each level. Half adders are on the other hand only introduced
if required to reach a number of partial products corresponding to a value in the
Dadda series or if the least significant weight with more than one partial products
is represented with exactly two partial products. In this way, a minimum number
of stages is obtained, while at the same time both the length of the vector merging
adder and the number of half adders is kept small.

To illustrate the operation of the reduction tree approaches we use dot diagrams,
where each dot corresponds to a bit (partial product) to be added. Bits with the same
weight are in the same column and bits in adjacent columns have one position higher
or lower weight, with higher weights to the left. The bits are manipulated by either
full or half adders. The operation of these are illustrated in Fig. 24.

The reduction schemes are exemplified based on an unsigned 6 × 6-bits
multiplication in Fig. 25. The complexity results are summarized in Table 3. It
should be noted that the positioning of the results in the next level is done based
on ease of illustration. From a functional point of view this step is arbitrary, but it is
possible to optimize the timing by carefully utilizing different delays of the sum and

Arithmetic 403

Fig. 24 Operation on bits in
a dot diagram with (a) full
adder and (b) half adder

a b

a b c

Fig. 25 Reduction trees for a 6 × 6-bits multiplier: (a) Wallace [54], (b) Dadda [8], and (c)
Reduced area [3]

Table 3 Complexity of the three reduction trees in Fig. 25

Tree structure Full adders Half adders VMA length

Wallace [54] 16 13 8

Dadda [8] 15 5 10

Reduced area [3] 18 5 7

carry outputs of the adder cells [39]. Furthermore, it is possible to reduce the power
consumption by optimizing the interconnect ordering [41].

The reduction trees in Fig. 25 does not provide any regularity. This means that
the routing is complicated and may become the limiting factor in an implementation.
Reduction structures that provide a more regular routing, but still a small number of
stages, include the Overturned stairs reduction tree [35] and the HPM tree [13].

3.3 Vector Merging Adder

The role of the vector merging adder is to add the outputs of the reduction tree. In
general, any carry-propagation adder can be used, e.g., those presented in Sect. 2.
However, the different input signals to the adders will typically be available at
different delays from the multiplier input values. Therefore, it is possible to derive
carry-propagation adders that utilize the different signal arrival times to optimize
the adder delay [49].

404 O. Gustafsson and L. Wanhammar

D

& & & & &

x0.x1x2 ... xWd–1
a0a1a2a3a4

y
z

Set

D D D D

FA FA

D

FA

D

FA

D

FA

D

Fig. 26 Serial/parallel multiplier-accumulator

3.4 Multiply-Accumulate

In many DSP algorithms, computations of the form Z = XY + A are common.
These can be efficiently implemented by simply adding another row corresponding
to A in the partial product array. In many cases, this will not increase the number of
levels required.

For sequential operation, the modification of the first stage of the serial/parallel
multiplier as shown in Fig. 26, makes it possible to add an input Z to be added to
the product at the same level of significance as X.

3.5 Multiplication by Constants

When the multiplier coefficient is known, it is possible to reduce the complexity of
the corresponding circuit. First of all, no circuitry is required to generate the partial
products. Second, there will in general be fewer partial products to add. This can
easily be realized considering the partial product array in Fig. 17. For the coefficient
bits that are zero, all the corresponding partial product bits will also be zero, and,
hence, these are not required to be added. To obtain more zero positions, the use of
a minimum signed digit representation such as CSD is useful.

It is also possible to utilize potential redundancy in the computations to further
reduce the complexity. How this is done in detail depends on which type of addition
is assumed to the basic operation. As both addition and subtraction have the same
complexity, we will refer to both as the addition. In the following, we will assume
carry-propagation addition, i.e., two input and one output, realized in any way
discussed in Sect. 2. Furthermore, for ease of exposition, we will assume that the
standard sign-extension is used. For carry-save addition we refer to [19].

Consider a signed-digit representation of a multiplier coefficientX such as shown
in (1) with xi ∈ {−1, 0, 1}. Each non-zero position will produce a partial result row

Arithmetic 405

a b c

Fig. 27 Constant multiplication with 231/256 = 1.001̄01001̄ using (a) no sharing, (b) sharing of
the subexpression 1001̄, and (c) sharing of the subexpression 10001

and these partial result rows can be added in an arbitrary order. Now, if the same
pattern of non-zero positions, called subexpression, occurs in more than one position
of the representation, we only need to compute the corresponding partial result once
and use it for all the instances where it is required. Figure 27a, b show examples of
multiplication with the constant 231/256 = 1.001̄01001̄ with and without utilizing
redundancy, respectively. In this case, the subexpression 1001̄ is extracted, but we
might just as well have chosen 10001 and subtracted one of the subexpressions as
shown in Fig. 27c.

This can be performed is a systematic way as described below. However, first
we note that if we multiply the same data with several constant coefficients, as
in a transposed direct form FIR filter [57], the different coefficients can share
subexpressions. Hence, the systematic way is as follows [21, 44]:

1. Represent the coefficients in a given representation.
2. For each coefficient find and count possible subexpressions. A subexpression is

characterized by the difference in non-zero position and if the non-zeros have the
same or opposite signs.

3. If there are common subexpressions, select one to replace and replace instances
of it by introducing a new symbol in place of the subexpression. The most
common approach is to select the most frequent subexpression, thus, applying a
greedy optimization approach, and replace all instances of it. However, it should
be noted that from a global optimality point of view this is not always the best.

4. If there were subexpressions replaced, go to Step 2 otherwise the algorithm is
done.

There is a number of sources of possible sub-optimality in the procedure
described above. The first is that the results are representation dependent, and,
hence, it will in general reduce the complexity trying several different represen-
tations. It may seem to make sense to use an MSD representation as it originally
have few non-zero positions. However, the more non-zeros the more likely is it that

406 O. Gustafsson and L. Wanhammar

common subexpressions will exist. For the single constant multiplication case this
has been utilized for a systematic algorithm that searches all representations with
the minimum number of non-zero digits plus k additional non-zero digits [17]. The
second source is the selection of subexpression to replace. It is common to select the
most frequent one, applying a greedy strategy, and replace all instances. However,
it has been shown that from a global optimization point of view, it is not always
beneficial to replace all subexpressions. Another issue is which subexpression to
choose if there are more than one that are as frequent.

For single constant coefficients, an optimal approach based on searching all the
possible interconnections of a given number of adders is presented in [17]. It is
shown that multiplication with all coefficients up to 19 bits can be realized using at
most five additions, compared to up to nine additions using a straightforward CSD
realization without sharing. The optimal approach avoids the issue of representation
dependence by only considering the decimal value at each addition, independent
of underlying representation. For the multiple constant multiplication case several
effective algorithms have been proposed over the years that avoids the problem of
representation dependence [15, 53]. Theoretical lower bounds for related problems
have been presented in [16].

3.6 Distributed Arithmetic

Distributed arithmetic is an efficient scheme for computing inner products of a fixed
and a variable data vector

Y = aT X =
N∑
i=1

aiXi . (24)

The basic principle is owed to Croisier et al. [7]. The inner product can be rewritten
using two’s complement representation

Y =
N∑
i=1

ai

⎡
⎣−xi0 +

Wf∑
k=1

xik2−k
⎤
⎦ , (25)

where xik is the kth bit in xi . By interchanging the order of the two summations we
get

Y = −
N∑
i=1

aixi0 +
Wf∑
k=1

[
N∑
i=1

aixik

]
2−k (26)

Arithmetic 407

Table 4 Distributed
arithmetic look-up table for
a1 = (0.0100001)2C ,
a2 = (0.1010101)2C , and
a3 = (1.1110101)2C

x1 x2 x3 Fk Fk

0 0 0 0 (0.0000000)2C

0 0 1 a3 (1.1110101)2C

0 1 0 a2 (0.1010101)2C

0 1 1 a2 + a3 (0.1001010)2C

1 0 0 a1 (0.0100001)2C

1 0 1 a1 + a3 (0.0010110)2C

1 1 0 a1 + a2 (0.1110110)2C

1 1 1 a1 + a2 + a3 (0.1101011)2C

ROM

 2N

words

WROM

LSB
X1

XN

Add/Sub

Reg.

WROMWROM

SR

Y

Fig. 28 Block diagram for distributed arithmetic

= −F0(x10, x20, , xN0)+
Wf∑
k=1

Fk(x1k, x2k, . . . , xNk)2
−k, (27)

where

Fk(x1k, x2k, . . . , xNk) =
N∑
i=1

aixik. (28)

Fk is a function of N binary variables, ith variable being the kth bit in xi . Since Fk

can take on only 2N values, it can be precomputed and stored in a look-up table.
For example, consider the inner product Y = a1X1 + a2X2 + a3X3 where a1 =
(0.0100001)2C, a2 = (0.1010101)2C, and a3 = (1.1110101)2C. Table 4 shows the
function Fk and the corresponding addresses.

Figure 28 shows a realization of (27) by Horner’s method

y =
((

. . .
((

0+ FWf

)
2−1 + . . .+ F2

)
2−1 + F1

)
2−1 − F0

)
. (29)

The inputs, X1,X2,XN , are shifted bit-serially out from the shift registers
with the least-significant bit first. Bits xik are used to address the look-up table.

408 O. Gustafsson and L. Wanhammar

Since, the output is divided by 2, by the inherent shift, the circuit is called a shift-
accumulator [57]. Computation of the inner product requiresWf +1 clock cycles. In
the last cycle,F0 is subtracted from the accumulator register. Notice the resemblance
with a shift-and-add implementation of a real multiplication.

A more parallel form of distributed arithmetic can also be realized by allocating
several tables. The tables, which are identical, may be addressed in parallel and their
appropriately shifted values.

3.6.1 Reducing the Memory Size

The memory requirement becomes very large for long inner products. There are
mainly two ways to reduce the memory requirements. One of several possible ways
to reduce the overall memory requirement is to partition the memory into smaller
pieces that are added before the shift-accumulator, as shown in Fig. 29. The amount
of memory is in this case reduced from 2N words to 2× 2N/2 words. For example,
for N = 10 we get 210 = 1024 words, which is reduced to only 2× 25 = 64 words
at the expense of an additional adders.

Memory size can be halved by using the ingenious scheme[7] based on the
identity X = 1

2 [X − (−X)], which can be rewritten

X = − (x0 − x̄0) 2−1 +
Wf∑
k=1

(xk − x̄k) 2−k−1 − 2−(Wf+1). (30)

Note that (xk − x̄k) can only take on the values −1 or +1. Inserting this expression
into (24) yields

ROM

 2N/2

words LSB

X1

XN/2

Reg.

X2
ROM

 2N/2

words

XN/2+1
XN/2+2

XN

Add

Add/Sub

Y

Fig. 29 Reducing the memory by partitioning

Arithmetic 409

Table 5 Look-up table
contents using half-sized
memory

x1 x2 x3 Fk u1 u2 A/S

0 0 0 −a1 − a2 − a3 0 0 A

0 0 1 −a1 − a2 + a3 0 1 A

0 1 0 −a1 + a2 − a3 1 0 A

0 1 1 −a1 + a2 + a3 1 1 A

1 0 0 +a1 − a2 − a3 1 1 S

1 0 1 +a1 − a2 + a3 1 0 S

1 1 0 +a1 + a2 − a3 0 1 S

1 1 1 +a1 + a2 + a3 0 0 S

ROM

 2N–1

words

WROM

LSB

X1

XN

Add/Sub

Reg.

WROMWROM

=1

=1

=1

X2

xSign-bit
Add/Sub

Y

Fig. 30 Distributed arithmetic with half-sized memory

Y =
Wf∑
k=1

Fk(x1k, . . . , xNk)2
−k−1 − F0(x10, . . . , xN)2−1 + F(0, . . . , 0)2−(Wf+1),

(31)
where

Fk(x1k, x2k, xNk) =
N∑
i=1

ai (xik − x̄ik) . (32)

The function Fk is shown in Table 5 for N = 3. Notice that only half the values are
needed, since the other half can be obtained by changing the signs. To explore this
redundancy we make the following address modification u1 = x1⊕x2, u2 = x1⊕x3,
and A/S = x1 ⊕ ssign− bit where X1 has been selected as control variable [57]. The
control signal xsign− bit is zero at all times except when the sign bit of the inputs
arrives. Figure 30 shows the resulting realization with halved look-up table. The
XOR-gates used for halving the memory can be merged with the XOR-gates that
are needed for inverting Fk .

410 O. Gustafsson and L. Wanhammar

3.6.2 Complex Multipliers

A complex multiplication requires three or four real multiplications and some
additions but only two distributed arithmetic units, which from area, speed, and
power consumption points of view are comparable to the real multiplier. Let X =
A+ jB and K = c+ jd where K is the fixed coefficient and X is a variable. Now,
the product of the two complex numbers can be written as

KX = (cA− dB)+ j (dA+ cB)

=
⎧⎨
⎩−c(a0 − ā0)2−1 +

Wf∑
k=1

c(ak − āk)2−k−1 − c2−(Wf+1)

⎫⎬
⎭

−
⎧⎨
⎩−d(b0 − b̄0)2−1 +

Wf∑
k=1

d(bk − b̄k)2−k−1 − d2−(Wf+1)

⎫⎬
⎭

+j
⎧⎨
⎩−d(a0 − ā0)2−1

Wf∑
k=1

d(ak − āk)2−k−1 − d2−(Wf+1)

⎫⎬
⎭

+j
⎧⎨
⎩−c(bk − b̄k)2−1 +

Wf∑
k=1

c(bk − b̄k)2−k−1 − c2−(Wf+1)

⎫⎬
⎭

= F1(a0, b0)2
−1 +

Wf∑
k=1

F1(ak, bk)2
−k−1 + F1(0, 0)2−(Wf+1)

+j
⎧⎨
⎩F2(a0, b0)2−1 +

Wf∑
k=1

F2(ak, bk)2−k−1 + F2(0, 0)2−(Wf+1)

⎫⎬
⎭ .

Hence, the real and imaginary parts of the product can be computed using just two
distributed arithmetic units. The content of the look-up table that stores F1 and F2
is shown in Table 6.

Obviously only two coefficients are needed, (c+ d) and (c− d). If aj ⊕ bj = 1,
the F coefficients values are applied directly to the accumulators, and if aj⊕bj = 0,

Table 6 ROM contents for a
complex multiplier based on
distributed arithmetic

ai bi F1 F2

0 0 −(c − d) −(c + d)

0 1 −(c + d) (c − d)

1 0 (c + d) −(c − d)

1 1 (c − d) (c + d)

Arithmetic 411

F1 F2
Add/Sub

(C + D) (C – D)

AC – BD AD + BC

MUX

Shift-Accumulator

Real part

Shift-Accumulator

Imaginary part

Add/Sub

ai bi+

= 1ai bi+ = 0ai bi+

biai

Fig. 31 Block diagram for a complex multiplier based on distributed arithmetic

the F coefficients values are interchanged and added or subtracted depending on the
data bits ak and bk . The realization is shown in Fig. 31.

4 Division

Of the four basic arithmetic operations, the division is the most complex to compute.
Furthermore, the result of a division consists of two components, the quotient, Z,
and the remainder, R, such that

X = ZD + R, (33)

where X is the dividend, D �= 0 is the divisor, and |R| < D. By definition the
sign of the remainder should be the same as that of the dividend. For the result to
be a fractional number we must have

∣∣X
D

∣∣ ≤ 1. This can always be obtained by
shifting the dividend and/or divisor. For ease of exposition we will initially start
with unsigned data, but eventually introduce signed data. For further information on
the methods presented here and others, we refer to [11].

4.1 Restoring and Nonrestoring Division

The simplest way to perform a division is to sequentially shift the dividend one
position (multiply by two) and then check if the divisor has larger magnitude than
the dividend. If so, the corresponding magnitude bit of the quotient is one and we
subtract the divisor from the dividend. Conceptually, the comparison can be made by
first subtracting the divisor from the dividend and then check if the result is positive

412 O. Gustafsson and L. Wanhammar

(quotient bit is one) or negative (quotient bit is zero). If the result is negative we
need to add the divisor again, which gives the name restoring division.

The computation in step i can be written as

ri = 2ri−1 − ziD, (34)

where r0 = X. Therefore, if 2ri−1 −D is positive, we set zi = 1, otherwise zi = 0
and ri = 2ri−1. ri is the remainder after iteration i and considering (33) we have
R = ri2−1. To compute a quotient with Wf fractional bits obviously Wf iterations
of (34) are required.

Instead of restoring the remainder by adding the divisor, we can assign a negative
quotient digit. This gives the nonrestoring division selection rule of the quotient
digits, zi , in (34) as

zi =
{

1, ri−1D ≥ 0 i.e. same sign
−1, ri−1D < 0 i.e. different signs.

(35)

Note that with this definition of the selection rules the remainder will sometimes
be positive, sometimes negative. Hence, division with a signed dividend and/or
divisor is well covered within this approach. This also gives that the final remainder
does not always have the same sign as the dividend. Hence, in that case we must
compensate by adding or subtracting D to R and consequently subtracting or adding
one LSB to Z.

The result from the nonrestoring division will be represented using a representa-
tion with qi ∈ {−1, 1}. This representation is sometimes called nega-binary and is
in fact not a redundant representation. The result should in most cases be converted
into a two’s complement representation. Naturally, one can convert this by forming a
word with positive bits and one with negative bits and subtract the negative bits from
the positive bits. However, for this all bits must be computed before the conversion
can be done. Instead, it is possible to use the on-the-fly conversion technique in [10]
to convert the digits into bits once they are computed.

Another consequence of the nega-binary representation is that if a zero remainder
is obtained, this will not remain zero in the succeeding stages. Hence, a zero
remainder should be detected and either the iterations stopped or corrected for at
the end.

4.2 SRT Division

The SRT division scheme extends the nonrestoring scheme by allowing 0 as a
quotient digit. Furthermore, by restricting the dividend to be in the range 1/2 ≤
D < 1, which can be obtained by shifting, the selection rule for the quotient digit
in (34) can be defined as

Arithmetic 413

zi =
⎧⎨
⎩
−1, 2ri−1 < −1/2

0, −1/2 ≤ 2ri−1 < 1/2
1, 1/2 ≤ 2ri−1

(36)

for the binary case. This has two main advantages: firstly, when zi = 0 there is no
need to add or subtract; secondly, comparing with 1/2 or −1/2 only requires three
bits of 2ri−1. There exists slightly improved selection rules that further reduce the
number of additions/subtractions. However, the number of iterations are still Wf for
a quotient with Wf fractional bits.

4.3 Speeding Up Division

While the number of additions/subtractions are reduced in the SRT scheme it would
require an asynchronous circuit to improve the speed. In many situations, this is not
wanted. Instead, to reduce the number of cycles one can use division with a higher

radix. Using radix b = 2m reduces the number of iterations to
⌈
Wf

m

⌉
. The iteration

is now

ri = bri−1 − ziD, (37)

where zi ∈ {0, 1, . . . , b−1} for restoring division. For SRT division zi ∈ {−a,−a+
1, . . . ,−1, 0, 1, . . . , a}, where �(b − 1)/2� ≤ a ≤ (b − 1). The selection rules can
be defined in several different ways similar to radix-2 discussed earlier. We can
guarantee convergence by selecting the quotient digit such that |ri | < D, which
typically implies maximizing the magnitude of the quotient digit.

For SRT division it is possible to select the redundancy of the representation
based on a. Higher redundancy leads to a larger overlap in the regions where one
can select any of two different quotient digits. Having an overlap means that one can
select the breakpoint such that few bits of ri and D need to be compared. However,
a higher redundancy means that there are more multiples of D that needs to be
computed for the comparison. Hence, there is a trade-off between the number of
bits that needs to be compared and the precomputations for the comparisons.

Even though higher-radix division reduces the number of iteration, each iteration
still needs to be performed sequentially. In each step, the current remainder must be
known and the quotient digit selected before it is possible to start a new step. There
are two different ways to overcome this limitation. First, it is possible to overlap
the complete computation of the partial remainder in step i and the selection of the
quotient digit in step i + 1. This is possible since not all bits of the remainder must
be known to select the next quotient digit. Second, the remainder can be computed
in a redundant number system.

414 O. Gustafsson and L. Wanhammar

4.4 Square Root Extraction

Computing the square root is in some ways a similar operation to division as one
can sequentially iterate the remainder, initialized to the radicand, r0 = X, with the
partially computed square root Zi = ∑i

k=1 zk2−k in a similar way as for division.
More precisely, the iteration for square root extraction is

ri = 2r i − 1− zi

(
2zi + zi2−i

)
, (38)

where Z0 = 0.
Schemes similar restoring, nonrestoring, and SRT division can be defined. For the

quotient digit selection scheme similar to SRT division the square root is restricted
to 1/2 ≤ Z < 1, which corresponds to 1/4 ≤ X < 1. The selection rule is then

zi =
⎧⎨
⎩

1 1/2 ≤ ri−1 < 2
0 −1/2 < ri−1 < 1/2
−1 −2 ≤ ri−1 ≤ −2.

(39)

5 Floating-Point Representation

Floating-point numbers consists of two parts, the mantissa (or significand), M , and
the exponent (or characteristic), E, with a number, X, represented as

X =MbE, (40)

where b is the base of the exponent. For ease of exposition we assume b = 2. With
floating-point numbers we obtain a larger dynamic range, but at the same time a
lower precision compared to a fixed-point number system using the same number
of bits.

Both the exponent and the mantissa are typically signed integer or fractional
numbers. However, their representation are often not two’s complement. For the
mantissa it is common to use a sign-magnitude representation, i.e., use a separate
sign-bit, S, and represent an unsigned mantissa magnitude with the remaining bits.
For the exponent it is common to use excess-k, i.e., add k to the exponent to obtain
an unsigned number.

Arithmetic 415

5.1 Normalized Representations

A general floating-point representation is redundant since

M2E = M

2
2E+1. (41)

However, to use as much as possible of the dynamic range provided by the
mantissa, we would like to use the representation without any leading zeros. This
representation is called the normalized form.

Another benefit of normalized representations is that comparison is simpler. It is
possible to just compare the exponents, and only if the exponents are the same, the
mantissas must be compared. Also, as it is known there are no leading zeros, the
first one in the representation is made explicit, and, hence, effectively add a bit to
the representation.

5.2 IEEE Standard for Floating-Point Arithmetic, IEEE 754

Before the emergence of the IEEE 754 floating-point standard, typically different
computer systems had different floating-point standards making the transportation
of binary data between different systems difficult. Nowadays, while some computer
systems have their own floating-point representations, most have converged to the
IEEE 754 standard. The most recent installment was released in August 2008 [1].

The IEEE 754-2008 standard defines three binary and two decimal basic inter-
change formats, where we will focus on the 32-bit binary format, called binary32.

The binary32 format has a sign bit, eight exponent bits using excess-127 repre-
sentation, and 23 bits for the mantissa plus a hidden leading one. The representation
can be visualized as

s︸︷︷︸
Sign

e−7e−6e−5e−4e−3e−2e−1e0︸ ︷︷ ︸
E, 8− bit biased exponent

f1f2f3f4f5f6 . . . f22f23︸ ︷︷ ︸
F, 23− bit unsigned fraction

.

The value of the floating-point number is given by

X = (−1)s 1.F 2E−127. (42)

Note the hidden one due to the normalized number system, so M = 1.F . This means
that the actual mantissa value will be in the range 1 ≤M < 2−2−23. Out of the 256
possible values for the exponent, two have special meanings to deal with zero value,
±∞, and undefined results (Not-a-Number, NaN). This is outlined in Table 7.

416 O. Gustafsson and L. Wanhammar

Table 7 Special cases for the
exponent in binary32

F = 0 F �= 0

E = 0 0 Denormalized

E = 255 ±∞ NaN

Table 8 The four smallest binary formats in IEEE 754-2008

Property binary16 binary32 binary64 binary128

Total bits 16 32 64 128

Mantissa bits 10 + 1 23 + 1 52 + 1 112 + 1

Exponent bits 5 8 11 15

Bias 15 127 1023 16,383

The denormalized numbers are used to extend the dynamic range as the
hidden one otherwise limits the smallest positive number to 21−127 = 2−126. A
denormalized number has a value of

X = (−1)s 0.F 2−126. (43)

Using denormalized numbers it is possible to represent 2−232−126 = 2−149.
However, the implementation cost of denormalized numbers are high, and, hence,
are not always included.

There is also an extended format defined that is used for intermediate results
in certain complex functions. The extended binary32 format uses 11 bits for the
exponent and at least 32 bits for the mantissa (now without a hidden bit).

In Table 8, the main parameters of the binary floating-point formats up to 128 bits
are outlined. binary32, binary64, and binary128 are the three basic binary formats. A
conforming implementation must fully implement as least one of the basic formats.

5.3 Addition and Subtraction

Adding and subtracting floating-point values require that both operands have the
same exponent. Hence, we have to shift the mantissa of the smaller operand as
in (41) such that both exponents are the same. Then, assuming binary32 and EX ≥
EY , it is possible to factor out the exponent term as

Z=(−1)sZMZ2EZ−127=X±Y=
(
(−1)sX MX ± (−1)sY MY 2−(EX−EY)

)
2EX−127,

(44)
where we can identify

(−1)sZ M̂Z = (−1)sX MX ± (−1)sY MY 2−(EX−EY) (45)

Arithmetic 417

and

ÊZ = EX. (46)

Depending on the operation required and the sign of the two operand, either a
subtraction or an addition of the mantissas are performed. If the effective operation
is an addition, we have 1 ≤ M̂Z < 4, which means that we may need to right-
shift once to obtain the normalized mantissa, MZ , and at the same time increase
ÊZ by one to obtain EZ . If the effective operation is a subtraction, the result is
0 ≤ |M̂Z | < 2. For this case we might have to right-shift to obtain the normalized
number, MZ, and correspondingly decrease the exponent to obtain EZ.

It should be noted that adding or subtracting sign-magnitude numbers is more
complex compared to adding or subtracting two’s complement numbers as one will
have to make decisions based on the sign and the magnitude of the operators to
determine which the effective operation to be performed is. In addition, in the case
of subtraction, one needs to either determine which is the largest magnitude and
subtract the smaller from the larger or negate the result in the case it is negative.

5.4 Multiplication

The multiplication of two floating-point numbers (assumed to be in IEEE 754
binary32 format) is computed as

Z = (−1)sZ MZ 2EZ−127 = XY = (−1)sX MX 2EX−127(−1)sY MY 2EY−127,

(47)
where we see that

sZ = sX ⊕ sY (48)

M̂Z = MXMY (49)

ÊZ = EX + EY − 127. (50)

As we have 1 ≤MX,MY < 2 for normalized numbers, we get 1 ≤ M̂Z < 4. Hence,
it may be required to shift M̂Z one position to the right to obtain the normalized
value MZ , which can be seen by comparing with (41). If this happens one will also
need to add 1 to ÊZ to obtain EZ.

This gives that the multiplication of two floating-point numbers corresponds to
one fixed-point multiplication, one fixed-point addition, and a simple normalizing
step after the operations.

For multiply-accumulate it is possible to use a fused architecture with the benefit
that the alignment of the operand to be added can be done concurrently with the
multiplication. In this way, it is possible to reduce the delay for the total MAC

418 O. Gustafsson and L. Wanhammar

ε

p(ε)

–2Q

2Q
1

Magnitude Truncation
ε

p(ε)

–2Q 2Q

4Q
1

Truncation
ε

p(ε)

–Q Q

2Q
1

Rounding

Fig. 32 Error distributions for floating-point arithmetic

operation compared to using separate multiplication and addition. Furthermore,
rounding is performed only for the final output.

5.5 Quantization Error

The quantization error in the mantissa of a floating-point number is

XQ = (1+ ε)X. (51)

Hence, the error is signal dependent and the analysis becomes very complicated
[32, 46, 58]. Figure 32 shows the error distributions of floating-point arithmetic.
Also, the quantization procedure needed to suppress parasitic oscillation in wave
digital filters is more complicated for floating-point arithmetic.

6 Computation of Elementary Functions

The need of computing non-linear functions arises in many different algorithms. The
straightforward method of approximating an elementary function is of course to just
store the function values in a look-up table. However, this will typically lead to large
tables, even though the resulting area from standard cell synthesis grows slower than
the number of memory bits [18]. Instead it is of interest to find ways to approximate
elementary functions using a trade-off between arithmetic operations and look-up
tables. In this section, we briefly look at three different classes of algorithms. For a
more thorough explanation of these and other methods we refer to [36].

6.1 CORDIC

The coordinate rotation digital computer (CORDIC) algorithm is a recursive algo-
rithm to calculate elementary functions such as the trigonometric and hyperbolic
(and their inverses) functions as well as magnitude and phase of complex vectors
and was introduced by Volder [51] and generalized by Walther [55]. A summary of

Arithmetic 419

the development of CORDIC can be found in [34, 52, 56]. It revolves around the
idea of rotating the phase of a complex number by multiplying it by a succession
of constant values. However, these multiplications can all be made as powers of 2
and hence, in binary arithmetic they can be done using just shifts and adds. Hence,
CORDIC is in general a very attractive approach when a hardware multiplier is not
available.

A rotation of a complex number X + jY by an angle θ can be written as

[
Xr

Yr

]
=
[

cos (θ) − sin (θ)

sin (θ) cos (θ)

] [
X

Y

]
. (52)

The idea of the CORDIC is to decompose the rotation by θ in several steps such that
each rotation is a simple operation. In the straightforward CORDIC algorithm, we
have

θ =
∞∑
k=0

dkwk, dk = ±1, wk = arctan(2−k). (53)

Considering rotation k we get

[
Xk+1

Yk+1

]
=
[

cos (dkwk) − sin (dkwk)

sin (dkwk) cos (dkwk)

] [
Xk

Yk

]

= cos (wk)

[
1 −dk2−k

dk2−k 1

] [
Xk

Yk

]
. (54)

Now, neglecting the cos(wk) term, we get a basic iteration which is a multiplication
with 2−k and an addition or subtraction. The sign of the rotation (dn) is determined
by comparing the required rotation angle θ with the currently rotated angle. This is
typically done by using a third variable, Zk, where Z0 = θ and Zk+1 = Zk + dkwk .
Then

dk =
{

1 Zk ≥ 0
−1 Zk < 0.

(55)

The effect of neglecting the cos(wk) in (54) is that the rotation is in fact not a
proper rotation but instead a similarity [36]. Furthermore, as illustrated in Fig. 33,
the magnitude of the vector is increased. The gain of the rotations depends on the
number of iterations and can be written as

G(k) =
k∏

i=0

√
1+ 2−2i . (56)

420 O. Gustafsson and L. Wanhammar

Fig. 33 Similarity (rotation)
in the CORDIC algorithm

For k → ∞, G ≈ 1.6468. Several schemes to compensate for the gain has been
proposed and a survey can be found in [50].

The above application of the CORDIC algorithm is usually referred to as rotation
mode and can be used to compute sin (θ) and cos (θ) or perform rotations of
complex vectors. There are also a vectoring mode, where the rotation is performed
such that the imaginary part, Yk , becomes zero.

The generalized CORDIC iterations can be written as

Xk+1 = Xk −mdkYk2−σ(k)

Yk+1 = Yk + dkXk2−σ(k)

Zk+1 = Zk − dkwσ(k). (57)

With an appropriate choice of m, dk, wk , and σ(k) the CORDIC algorithm can
perform a wide number of functions. These are summarized in Table 9, where
three different types of CORDIC algorithms are introduced; Circular for computing
trigonometric expressions, Linear for linear relationships, and Hyperbolic for
hyperbolic computation. The scaling factor Ĝk for hyperbolic computations is

Ĝk =
k∏

i=1

√
1− 2−2(i−hi) (58)

and the factor hk is defined as the largest integer such that 3hk+1+ 2hk− 1 ≤ 2n. In
practice, this leads to that certain iteration angles, such that k = (3i+1 − 1

)
/2, are

used twice to obtain convergence in the hyperbolic case.
The CORDIC computations can be performed in an iterative manner as in (57),

but naturally also be unfolded. There has also been proposed radix-4 CORDIC
algorithms, performing two iterations in each step, as well as different approaches
using redundant arithmetic to speed up each iteration.

Arithmetic 421

Table 9 Variable selection for generalized CORDIC

Type Parameters Rot. mode, dk = sign(zk) Vec. mode, dk = −sign(yk)

Circular m = 1 Xk → Gk(X0 cos (Z0) −
Y0 sin (Z0))

Xn → Gk

√
X2

0 + Y 2
0

wk = arctan(2−k) Yk → Gk(Y0 cos (Z0) +
X0 sin (Z0))

Yn → 0

σ(k) = k Zk → 0 Zn → Z0 + arctan
(

Y0
X0

)

Linear m = 0 Xk → X0 Xn → X0

wk = 2−k Yk → Y0 +X0Z0 Yn → 0

σ(k) = k Zk → 0 Zn → Z0 + Y0
X0

Hyperbolic m = −1 Xk → Ĝk(X1 cosh (Z1) −
Y1 sin (Z1))

Xn → Ĝk

√
X2

1 − Y 2
1

wk = tanh−1(2−k) Yk → Ĝk(Y1 cosh (Z1) +
X1 sinh (Z1))

Yn → 0

σ(k) = k − hk Zk → 0
Zn → Z1 + tanh−1

(
Y1
X1

)

6.2 Polynomial and Piecewise Polynomial Approximations

It is possible to derive a polynomial p(X) that approximates a function f (X) by
performing a Taylor expansion for a given point a such as

p(X) =
∞∑
i=0

f (i)(a)

i! (X − a)i. (59)

When the polynomial is restricted to a certain number of terms it is often better
to optimize the polynomial coefficients as there are some accuracy to be gained.
To determine the best coefficients is an approximation problems where typically
there are more constraints (number of points for the approximation) than variables
(polynomial order). This problem can be solved for a minimax solution using, e.g.,
Remez’ exchange algorithm or linear programming. For a least square solution, the
standard methods to solve over-determined systems can be applied. If fixed-point
coefficients are required, the problem becomes much harder.

The polynomial approximations can be efficiently and accurately evaluated using
Horner’s method. This says that a polynomial

p(X) = b0 + b1X + b2X
2 + · · · + bn−1X

n−1 + bnX
n (60)

is to be evaluated as

p(X) = ((. . . ((bnX + bn−1)X + bn−1)X + · · · + b2)X + b1)X + b0. (61)

422 O. Gustafsson and L. Wanhammar

Fig. 34 Block diagram for Horner’s method used for polynomial evaluation

Hence, there no need to compute any powers of x explicitly and a minimum number
of arithmetic operations is used. Polynomial evaluation using Horner’s method maps
nicely to MAC-operations. The resulting scheme is illustrated in Fig. 34.

The drawback of Horner’s method is that the computation is inherently sequen-
tial. An alternative is to use Estrin’s method [36], which by explicitly computing the
terms X2i rearranges the computation in a tree structure, increasing the parallelism
and reducing the longest computational path. Estrin’s method for polynomial
evaluation can be written as

p(X) = (b3X + b2)X
2 + (b1X + b0) (62)

for a third-order polynomial. For a seventh-order polynomial it becomes

p(X) =
(
(b7X + b6)X

2 + (b5X + b4)

)
X4 +

(
(b3X + b2)X

2 + (b1X + b0)

)
.

(63)
As can be seen, Estrin’s method also maps well to MAC-operations.

The required polynomial order depends very much on the actual function that
is approximated [36]. An approach to obtain a higher resolution despite using a
lower polynomial order is to use different polynomials for different ranges. This is
referred to as piecewise polynomials. A j segment n:th-order piecewise polynomial
with segment breakpoints xk, k = 1, 2, . . . , j + 1 can be written as

p(X) =
n∑

i=0

bi,j
(
X − xj

)i
, xj ≤ X < xj+1. (64)

From an implementation point of view it is often practical to have 2k uniform
segments and let the k most significant bits determine the segmentation. However,
it can be shown that in general the total complexity is reduced for non-uniform
segments. An illustration of a piecewise polynomial approximation is shown in
Fig. 35.

Arithmetic 423

Fig. 35 Piecewise polynomial approximation using uniform segmentation based on the most
significant bits

6.3 Table-Based Methods

The bipartite table method is based on splitting the input word, X, in three different
subwords, X0, X1, and X2. For ease of exposition we will assume that the length of
these are identical, Ws and Wf = 3Ws , but in general it is possible to find a lower
complexity realization by selecting non-uniform word lengths. Hence, we have

X = X0 + 2−WsX1 + 2−2WsX2. (65)

Now taking the first-order Taylor expansion of f at X0 + 2−WsX1 we get

f (X) ≈ f
(
X0 + 2−WsX1

)
+ 2−2WsX2f

′ (X0 + 2−WsX1

)
. (66)

Again, we take the Taylor expansion, this time a zeroth-order expansion of f ′(X0+
2−WsX1) at X0 as

f ′
(
X0 + 2−WsX1

)
≈ f ′ (X0) (67)

This gives the bipartite approximation as

f (x) ≈ T1 (X0,X1)+ T2 (X0,X2) (68)

where

T1 (X0,X1) = f
(
X0 + 2−WsX1

)

T2 (X0,X2) = 2−2WsX2f
′ (X0) . (69)

424 O. Gustafsson and L. Wanhammar

Fig. 36 Bipartite table approximation structure

The functions T1 and T2 are tabulated and the results are added. The resulting
structure is shown in Fig. 36.

The bipartite approximation can be seen as a piecewise linear approximation
where the same slope tables are used in several intervals. Here, T1 contains the
offset values, and T2 contains tabulated lines with slope f ′ (X0).

The accuracy of the bipartite approximation can be improved by instead per-
forming the first Taylor expansion at X0 + 2−WsX1 + 2−2Ws−1 and the second at
X0 + 2−Ws−1 [48]. It is also possible to split the input word into more subwords
yielding a multipartite table approximation [9].

7 Further Reading

Several books have been published on related subjects. For general digital arithmetic
we refer to [12, 25, 26, 42]. For the specific cases of approximation of elementary
functions and floating-point arithmetic, [36] and [37] provide both broad overviews
and in-depth knowledge, respectively.

References

1. IEEE standard for floating-point arithmetic (2008)
2. Baugh, C.R., Wooley, B.A.: A two’s complement parallel array multiplication algorithm C-

22(12), 1045–1047 (1973)
3. Bickerstaff, K.C., Schulte, M.J., Swartzlander Earl E., J.: Parallel reduced area multipliers. J.

Signal Process. Syst. 9(3), 181 (1995)
4. Brent, R.P., Kung, H.T.: A regular layout for parallel adders C-31(3), 260–264 (1982)
5. Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform

using sum-of-powers-of-two (SOPOT) coefficients 9(10), 322–325 (2002)
6. Claasen, T., Mecklenbrauker, W., Peek, J.: Effects of quantization and overflow in recursive

digital filters 24(6), 517–529 (1976)

Arithmetic 425

7. Croisier, A., Esteban, D., Levilion, M., Riso, V.: Digital filter for PCM encoded signals (1973).
US Patent 3,777,130

8. Dadda, L.: Some schemes for parallel multipliers. Alta Frequenza 34(5), 349–356 (1965)
9. de Dinechin, F., Tisserand, A.: Multipartite table methods 54(3), 319–330 (2005)

10. Ercegovac, M.D., Lang, T.: On-the-fly conversion of redundant into conventional representa-
tions C-36(7), 895–897 (1987)

11. Ercegovac, M.D., Lang, T.: Division and square root: digit-recurrence algorithms and imple-
mentations. Kluwer Academic Publishers (1994)

12. Ercegovac, M.D., Lang, T.: Digital arithmetic. Elsevier (2004)
13. Eriksson, H., Larsson-Edefors, P., Sheeran, M., Sjalander, M., Johansson, D., Scholin, M.:

Multiplier reduction tree with logarithmic logic depth and regular connectivity. In: Proc. IEEE
Int. Symp. Circuits Syst., pp. 4–8 (2006)

14. Fettweis, A., Meerkotter, K.: On parasitic oscillations in digital filters under looped conditions
24(9), 475–481 (1977)

15. Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication
problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100 (2007)

16. Gustafsson, O.: Lower bounds for constant multiplication problems 54(11), 974–978 (2007)
17. Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified

design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(2), 225–251 (2006)
18. Gustafsson, O., Johansson, K.: An empirical study on standard cell synthesis of elementary

function lookup tables. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 1810–1813 (2008)
19. Gustafsson, O., Wanhammar, L.: Low-complexity and high-speed constant multiplications for

digital filters using carry-save arithmetic. In: Digital Filters. InTech (2011)
20. Harris, D.: A taxonomy of parallel prefix networks. In: Proc. Asilomar Conf. Signals Syst.

Comput., vol. 2, pp. 2213–2217 Vol.2 (2003)
21. Hartley, R.I.: Subexpression sharing in filters using canonic signed digit multipliers 43(10),

677–688 (1996)
22. Johansson, K., Gustafsson, O., Wanhammar, L.: Power estimation for ripple-carry adders with

correlated input data. Proc. Int. Workshop Power Timing Modeling Optimization Simulation
(2004)

23. Knowles, S.: A family of adders. In: Proc. IEEE Symp. Comput. Arithmetic, pp. 277–281
(2001)

24. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of
recurrence equations C-22(8), 786–793 (1973)

25. Koren, I.: Computer arithmetic algorithms. Universities Press (2002)
26. Kornerup, P., Matula, D.W.: Finite precision number systems and arithmetic, vol. 133.

Cambridge University Press (2010)
27. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)
28. Liang, J., Tran, T.D.: Fast multiplierless approximations of the DCT with the lifting scheme

49(12), 3032–3044 (2001)
29. Lim, Y.C.: Single-precision multiplier with reduced circuit complexity for signal processing

applications 41(10), 1333–1336 (1992)
30. Lim, Y.C., Yang, R., Li, D., Song, J.: Signed power-of-two term allocation scheme for the

design of digital filters 46(5), 577–584 (1999)
31. Liu, B.: Effect of finite word length on the accuracy of digital filters–a review 18(6), 670–677

(1971)
32. Liu, B., Kaneko, T.: Error analysis of digital filters realized with floating-point arithmetic

57(10), 1735–1747 (1969)
33. Macsorley, O.L.: High-speed arithmetic in binary computers. Proc. IRE 49(1), 67–91 (1961)
34. Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC:

Algorithms, architectures, and applications 56(9), 1893–1907 (2009)
35. Mou, Z.J., Jutand, F.: ‘overturned-stairs’ adder trees and multiplier design 41(8), 940–948

(1992)
36. Muller, J.M.: Elementary functions. Springer (2006)

426 O. Gustafsson and L. Wanhammar

37. Muller, J.M., Brisebarre, N., De Dinechin, F., Jeannerod, C.P., Lefevre, V., Melquiond, G.,
Revol, N., Stehlé, D., Torres, S.: Handbook of floating-point arithmetic. Springer Science &
Business Media (2009)

38. Noll, T.G.: Carry-save architectures for high-speed digital signal processing. J. Signal Process.
Syst. 3(1-2), 121 (1991)

39. Oklobdzija, V.G., Villeger, D., Liu, S.S.: A method for speed optimized partial product
reduction and generation of fast parallel multipliers using an algorithmic approach 45(3),
294–306 (1996)

40. Omondi, A., Premkumar, B.: Residue number systems: theory and implementation. World
Scientific (2007)

41. Oskuii, S.T., Kjeldsberg, P.G., Gustafsson, O.: Power optimized partial product reduction
interconnect ordering in parallel multipliers. In: Proc. Norchip 2007, pp. 1–6 (2007)

42. Parhami, B.: Computer arithmetic, vol. 20. Oxford university press (2010)
43. Petra, N., Caro, D.D., Garofalo, V., Napoli, E., Strollo, A.G.M.: Truncated binary multipliers

with variable correction and minimum mean square error 57(6), 1312–1325 (2010)
44. Potkonjak, M., Srivastava, M.B., Chandrakasan, A.P.: Multiple constant multiplications: effi-

cient and versatile framework and algorithms for exploring common subexpression elimination
15(2), 151–165 (1996)

45. Puschel, M., Moura, J.M.F., Johnson, J.R., Padua, D., Veloso, M.M., Singer, B.W., Xiong, J.,
Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: Spiral: Code
generation for DSP transforms 93(2), 232–275 (2005)

46. Rao, B.D.: Floating point arithmetic and digital filters 40(1), 85–95 (1992)
47. Samueli, H., Willson, A.: Nonperiodic forced overflow oscillations in digital filters 30(10),

709–722 (1983)
48. Schulte, M.J., Stine, J.E.: Approximating elementary functions with symmetric bipartite tables

48(8), 842–847 (1999)
49. Stelling, P.F., Oklobdzija, V.G.: Design strategies for optimal hybrid final adders in a parallel

multiplier. J. Signal Process. Syst. 14(3), 321 (1996)
50. Timmermann, D., Hahn, H., Hosticka, B., Rix, B.: A new addition scheme and fast scaling

factor compensation methods for CORDIC algorithms. Integration, the VLSI J. 11(1), 85–100
(1991)

51. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput.
EC-8(3), 330–334 (1959)

52. Volder, J.E.: The birth of CORDIC. J. Signal Process. Syst. 25(2), 101 (2000)
53. Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Trans.

Algorithms 3(2), 11 (2007)
54. Wallace, C.S.: A suggestion for a fast multiplier EC-13(1), 14–17 (1964)
55. Walther, J.S.: A unified algorithm for elementary functions. In: Proc. Spring Joint Computer

Conf., pp. 379–385. ACM (1971)
56. Walther, J.S.: The story of unified CORDIC. J. Signal Process. Syst. 25(2), 107–112 (2000)
57. Wanhammar, L.: DSP integrated circuits. Academic press (1999)
58. Zeng, B., Neuvo, Y.: Analysis of floating point roundoff errors using dummy multiplier

coefficient sensitivities 38(6), 590–601 (1991)
59. Zimmermann, R.: Binary adder architectures for cell-based VLSI and their synthesis. Hartung-

Gorre (1998)

Coarse-Grained Reconfigurable Array
Architectures

Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts

Abstract Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate
the same inner loops that benefit from the high instruction-level parallelism (ILP)
support in very long instruction word (VLIW) architectures. Unlike VLIWs,
CGRAs are designed to execute only the loops, which they can hence do more
efficiently. This chapter discusses the basic principles of CGRAs and the wide range
of design options available to a CGRA designer, covering a large number of existing
CGRA designs. The impact of different options on flexibility, performance, and
power-efficiency is discussed, as well as the need for compiler support. The ADRES
CGRA design template is studied in more detail as a use case to illustrate the need
for design space exploration, for compiler support, and for the manual fine-tuning
of source code.

1 Application Domain of Coarse-Grained Reconfigurable
Arrays

Many embedded applications require high throughput. At the same time, the power
consumption of battery-operated devices needs to be minimized to increase their
autonomy. In general, the performance obtained on a programmable processor for
a certain application can be defined as the reciprocal of the application execution
time. Considering that most programs consist of a series P of consecutive phases
with different characteristics, performance can be defined in terms of the operating
frequencies fp, the instructions executed per cycle IPCp and instruction count ICp

B. De Sutter (�)
Ghent University, Gent, Belgium
e-mail: bjorn.desutter@ugent.be

P. Raghavan · A. Lambrechts
imec, Heverlee, Belgium
e-mail: ragha@imec.be; lambreca@imec.be

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_12

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_12&domain=pdf
mailto:{bjorn.desutter@ugent.be}
mailto:ragha@imec.be
mailto:lambreca@imec.be
https://doi.org/10.1007/978-3-319-91734-4_12

428 B. De Sutter et al.

of each phase, and in terms of the time overhead involved in switching between the
phases tp→p+1 as follows:

1

performance
= execution time =

∑
p∈P

ICp

IPCp · fp + tp→p+1. (1)

The operating frequencies fp cannot be increased infinitely because of power-
efficiency reasons. Alternatively, a designer can increase the performance by
designing or selecting a system that can execute code at higher IPCs. In a power-
efficient architecture, a high IPC is reached for the most important phases l ∈ L ⊂
P , with L typically consisting of the compute-intensive inner loops, while limiting
their instruction count ICl and reaching a sufficiently high, but still power-efficient
frequency fl . Furthermore, the time overhead tp→p+1 as well as the corresponding
energy overhead of switching between the execution modes of consecutive phases
should be minimized if such switching happens frequently. Note that such switching
only happens on hardware that supports multiple execution modes in support of
phases with different characteristics.

Course-Grained Reconfigurable Array (CGRA) accelerators aim for these goals
for the inner loops found in many digital signal processing (DSP) domains. Such
applications have traditionally employed Very Long Instruction Word (VLIW)
architectures such as the TriMedia 3270 [112] and the TI C64 [106], Application-
Specific Integrated Circuits (ASICs), and Application-Specific Instruction Proces-
sors (ASIPs). To a large degree, the reasons for running these applications on VLIW
processors also apply for CGRAs. First of all, a large fraction of the computation
time is spent in manifest nested loops that perform computations on arrays of data
and that can, possibly through compiler transformations, provide a lot of Instruction-
Level Parallelism (ILP). Secondly, most of those inner loops are relatively simple.
When the loops include conditional statements, those can be implemented by
means of predication [70] instead of control flow. Furthermore, none or very few
loops contain multiple exits or continuation points in the form of, e.g., break or
continue statements. Moreover, after inlining the loops are free of function calls.
Finally, the loops are not regular or homogeneous enough to benefit from vector
computing, like on the EVP [8] or on Ardbeg [113]. When there is enough regularity
and Data-Level Parallelism (DLP) in the loops of an application, vector computing
can typically exploit it more efficiently than what can be achieved by converting
the DLP into ILP and exploiting that on a CGRA. So in short, CGRAs are ideally
suited for applications of which time-consuming parts have manifest behavior, large
amounts of ILP and limited amounts of DLP.

Over the last decade, applications from many domains have been accelerated
on CGRAs. These include video processing [7, 17, 18, 67, 71, 100], image pro-
cessing [40], audio processing [103], linear [76] and non-linear [69, 92] algebras,
software-defined radios [11, 12, 25, 104, 110], augmented reality [85], biomedical
applications [44], and Map-Reduce algorithms [62]. In support of these applications,
CGRAs have also been commercialized. The Samsung Reconfigurable Processor,

Coarse-Grained Reconfigurable Array Architectures 429

the commercialized version of the ADRES CGRA that Samsung and imec initially
developed as a proof-of-concept, has been used in ultra-high definition televisions
and in smartphones, amongst others.

In the remainder of this chapter, Sect. 2 presents the fundamental properties
of CGRAs. Section 3 gives an overview of the design options for CGRAs. This
overview help designers in evaluating whether or not CGRAs are suited for their
applications and their design requirements, and if so, which CGRA designs are
most suited. After the overview, Sect. 4 presents a case study on the ADRES CGRA
architecture. This study serves two purposes. First, it illustrates the extent to which
source code needs to be tuned to map well onto CGRA architectures. As we will
show, this is an important aspect of using CGRAs, even when good compiler
support is available and when a very flexible CGRA is targeted, i.e., one that puts
very few restrictions on the loop bodies that it can accelerate. Secondly, our use
case illustrates how Design Space Exploration is necessary to instantiate optimized
designs from parameterizable and customizable architecture templates such as the
ADRES architecture template. Some conclusions are drawn in Sect. 5.

2 CGRA Basics

CGRAs focus on the efficient execution of the type of loops discussed in the
previous section. By neglecting non-loop code or outer-loop code that is assumed
to be executed on other cores, CGRAs can take the VLIW principles for exploiting
ILP in loops a step further to consume less energy and deliver higher performance,
without compromising on available compiler support. Figures 1 and 2 illustrate this.

Higher performance for high-ILP loops is obtained through two main features
that separate CGRA architectures from VLIW architectures. First, CGRA archi-
tectures typically provide more Issue Slots (ISs) than typical VLIWs do. In the
CGRA literature, some other commonly used terms to denote CGRA ISs are
Arithmetic-Logic Units (ALUs), Functional Units (FUs), or Processing Elements
(PEs). Conceptually, these terms all denote the same: logic on which an instruction
can be executed, typically one per cycle. For example, a typical ADRES CGRA [11–
13, 24, 71, 73–75] consists of 16 issue slots, whereas the TI C64 features 8 slots, and

Fig. 1 An example clustered VLIW architecture with two RFs and eight ISs. Solid directed
edges denote physical connections. Black and white small boxes denote input and output
ports, respectively. There is a one-to-one mapping between input and output ports and physical
connections

430 B. De Sutter et al.

a

b
CGRA organization

Connectivity of register files and issue slots

Fig. 2 Part (a) shows an example CGRA with 16 ISs and 4 RFs, in which dotted edges denote
conceptual connections that are implemented by physical connections and muxes as in part (b)

the NXP TriMedia features only 5 slots. The higher number of ISs directly allows
to reach higher IPCs, and hence higher performance, as indicated by Eq. (1). To
support these higher IPCs, the bandwidth to memory is increased by having more
load/store ISs than on a typical VLIW, and special memory hierarchies as found on
ASIPs, ASICs, and other DSPs. These include FIFOs, stream buffers, scratch-pad
memories, etc. Secondly, CGRA architectures typically provide a number of direct
connections between the ISs that allow data to flow from one IS to another without

Coarse-Grained Reconfigurable Array Architectures 431

needing to pass data through a Register File (RF). As a result, less register copy
operations need to be executed in the ISs, which reduces the IC factor in Eq. (1) and
frees ISs for more useful computations.

Higher energy-efficiency is obtained through several features. Because of the
direct connections between ISs, less data needs to be transferred into and out
of RFs. This saves considerable energy. Also, because the ISs are arranged in a
2D matrix, small RFs with few ports can be distributed in between the ISs as
depicted in Fig. 2. This contrasts with the many-ported RFs in (clustered) VLIW
architectures, which basically feature a one-dimensional design as depicted in Fig. 1.
The distributed CGRA RFs consume considerably less energy. Finally, by not
supporting control flow, the instruction memory organization can be simplified.
In statically reconfigurable CGRAs, this memory is nothing more than a set of
configuration bits that remain fixed for the whole execution of a loop. Clearly this
is very energy-efficient. Other CGRAs, called dynamically reconfigurable CGRAs,
feature a form of distributed level-0 loop buffers [59] or other small controllers that
fetch new configurations every cycle from simple configuration buffers. To support
loops that include control flow and conditional operations, the compiler replaces that
control flow by data flow by means of predication [70] or other mechanisms. In this
way, CGRAs differ from VLIW processors that typically feature a power-hungry
combination of an instruction cache, instruction decompression and decoding
pipeline stages, and a non-trivial update mechanism of the program counter.

CGRA architectures have two main drawbacks. Firstly, because they only
execute loops, they need to be coupled to other cores on which all other parts of
the program are executed. This coupling can introduce run-time and design-time
overhead. Secondly, as clearly visible in the example in Fig. 2, the interconnect
structure of a CGRA is vastly more complex than that of a VLIW. On a VLIW,
scheduling an instruction in some IS automatically implies the reservation of
connections between the RF and the IS and of the corresponding ports. On CGRAs,
this is not the case. Because there is no one-to-one mapping between connections
and input/output ports of ISs and RFs, connections need to be reserved explicitly
by the compiler or programmer together with ISs, and the data flow needs to be
routed explicitly over the available connections. This can be done, for example,
by programming switches and multiplexors (a.k.a. muxes) explicitly, like the ones
depicted in Fig. 2b. Consequently more complex compiler technology than that of
VLIW compilers [43] is needed to automate the mapping of code onto a CGRA.
Moreover, writing assembly code for CGRAs ranges from being very difficult to
virtually impossible, depending on the type of reconfigurability and on the form of
processor control.

Having explained these fundamental concepts that differentiate CGRAs from
VLIWs, we can now also differentiate them from Field-Programmable Gate Arrays
(FPGAs), where the name CGRA actually comes from. Whereas FPGAs feature
bitwise logic in the form of Look-Up Tables (LUTs) and switches, CGRAs feature
more energy-efficient and area-conscious word-wide ISs, RFs, and interconnections.
Hence the name coarse-grained array architecture. As there are much fewer ISs on
a CGRA than there are LUTs on an FPGA, the number of bits required to configure

432 B. De Sutter et al.

the CGRA ISs, muxes, and RF ports is typically orders of magnitude smaller than
on FPGAs. If this number becomes small enough, dynamic reconfiguration can be
possible every cycle. So in short, CGRAs can be seen as statically or dynamically
reconfigurable coarse-grained FPGAs, or as 2D, highly-clustered loop-only VLIWs
with direct interconnections between ISs that need to be programmed explicitly.

3 CGRA Design Space

The large design space of CGRA architectures features many design options. These
include the way in which the CGRA is coupled to a main processor, the type of
interconnections and computation resources used, the reconfigurability of the array,
the way in which the execution of the array is controlled, support for different forms
of parallelism, etc. This section discusses the most important design options and the
influence of the different options on important aspects such as performance, power
efficiency, compiler friendliness, and flexibility. In this context, higher flexibility
equals placing fewer restrictions on loop bodies that can be mapped onto a CGRA.

Our overview of design options is not exhaustive. Its scope is limited to the most
important features of CGRA architectures that feature a 2D array of ISs. However,
the distinction between 1D VLIWs and 2D CGRAs is anything but well-defined.
The reason is that this distinction is not simply a layout issue, but one that also
concerns the topology of the interconnects. Interestingly, this topology is precisely
one of the CGRA design options with a large design freedom.

3.1 Tight Versus Loose Coupling

Some CGRA designs are coupled loosely to main processors. For example, Fig. 3
depicts how the MorphoSys CGRA [60] is connected as an external accelerator to a
TinyRISC Central Processing Unit (CPU) [1]. The CPU is responsible for executing
non-loop code, for initiating DMA data transfers to and from the CGRA and the
buffers, and for initiating the operation of the CGRA itself by means of special
instructions added to the TinyRISC ISA.

This type of design offers the advantage that the CGRA and the main CPU can be
designed independently, and that both can execute code concurrently, thus delivering
higher parallelism and higher performance. For example, using the double frame
buffers [60] depicted in Fig. 3, the MorphoSys CGRA can be operating on data in
one buffer while the main CPU initiates the necessary DMA transfers to the other
buffer for the next loop or for the next set of loop iterations. One drawback is that
any data that needs to be transferred from non-loop code to loop code needs to
be transferred by means of DMA transfers. This can result in a large overhead,
e.g., when frequent switching between non-loop code and loops with few iterations
occurs and when the loops consume scalar values computed by non-loop code.

Coarse-Grained Reconfigurable Array Architectures 433

Fig. 3 A TinyRISC main processor loosely coupled to a MorphoSys CGRA array. Note that the
main data memory (cache) is not shared and that no IS hardware or registers is are shared between
the main processor and the CGRA. Thus, both can run concurrent threads

Fig. 4 A simplified picture of an ADRES architecture. In the main processor mode, the top row
of ISs operates like a VLIW on the data in the shared RF and in the data memories, fetching
instructions from an instruction cache. When the CGRA mode is initiated with a special instruction
in the main VLIW ISA, the whole array starts operating on data in the distributed RFs, in the shared
RF and in the data memories. The memory port in IS 0 is also shared between the two operating
modes. Because of the resource sharing, only one mode can be active at any point in time

By contrast, an ADRES CGRA is coupled tightly to its main CPU. A simplified
ADRES is depicted in Fig. 4. Its main CPU is a VLIW consisting of the shared
RF and the top row of CGRA ISs. In the main CPU mode, this VLIW executes
instructions that are fetched from a VLIW instruction cache and that operate on
data in the shared RF. The idle parts of the CGRA are then disabled by clock-gating
to save energy. By executing a start_CGRA instruction, the processor switches
to CGRA mode in which the whole array, including the shared RF and the top row
of ISs, executes a loop for which it gets its configuration bits from a configuration
memory. This memory is omitted from the figure for the sake of simplicity.

434 B. De Sutter et al.

The drawback of this tight coupling is that because the CGRA and the main
processor mode share resources, they cannot execute code concurrently. However,
this tight coupling also has advantages. Scalar values that have been computed
in non-loop code, can be passed from the main CPU to the CGRA without any
overhead because those values are already present in the shared RFs or in the shared
memory banks. Furthermore, using shared memories and an execution model of
exclusive execution in either main CPU or CGRA mode significantly eases the
automated co-generation of main CPU code and of CGRA code in a compiler,
and it avoids the run-time overhead of transferring data between memories. Finally,
on the ADRES CGRA, switching between the two modes takes only two cycles.
Thus, the run-time overhead is minimal. That overhead can still be considerable,
however, in the case of nested loops, as inner loops are then entered and exited
many times. Moreover, upon entry and exit of a software pipelined loop, resources
are wasted as the software pipeline fills and drains in the so-called prologue and
epilogue of the loop. This will be discussed in more detail in Sect. 4.1.1. Two
design extensions have been proposed to reduce this overhead. First, instruction set
extensions have been proposed to reduce the overhead that flattening of imperfectly
nested loops introduces [57]. By flattening loop nests, less mode switches are
necessary. Secondly, the Remus CGRA design for streaming data applications
features an array in which the data flows in one direction, i.e., from one row to
another, top to bottom [66, 117, 118]. The rows of the CGRA then operate as if
they are a statically scheduled pipeline. During the epilogue of one loop, the rows
gradually become unused by that loop, and hence they become available for the
next loop to be executed. The next loop’s prologue can hence start executing as
soon as the current loop’s epilogue has started. In many applications, this can save
considerable execution time.

Silicon Hive CGRAs [14, 15] do not feature a clear separation between the
CGRA accelerator and the main processor. Instead there is just a single processor
that can be programmed at different levels of ILP, i.e., at different instruction word
widths. This allows for a very simple programming model, with all the programming
and performance advantages of the tight coupling of ADRES. Compared to ADRES,
however, the lack of two distinctive modes makes it more difficult to implement
coarse-grained clock-gating or power-gating, i.e., gating of whole sets of ISs
combined instead of separate gating of individual ISs.

Somewhere in between loose and tight coupling is the PACT XPP design [79],
in which the array consist of simpler ISs that can operate like a true CGRA, as well
as of more complex ISs that are in fact full-featured small RISC processors that can
run independent threads in parallel with the CGRA.

As a general rule, looser coupling potentially enables more Thread-Level
Parallelism (TLP) and it allows for a larger design freedom. Tighter coupling can
minimize the per-thread run-time overhead as well as the compile-time overhead.
This is in fact no different from other multi-core or accelerator-based platforms.

Coarse-Grained Reconfigurable Array Architectures 435

3.2 CGRA Control

Many different mechanisms exist to control how code gets executed on CGRAs,
i.e., to control which operation is issued on which IS at which time and how data
values are transferred from producing operations to consuming ones. Two important
aspects of CGRAs that drive different methods for control are reconfigurability and
scheduling. Both can be static, dynamic, or a hybrid combination thereof.

3.2.1 Reconfigurability

Some CGRAs, like ADRES, Silicon Hive, and MorphoSys are fully dynamically
reconfigurable: Exactly one full reconfiguration takes place for every execution
cycle. Of course no reconfiguration takes places in cycles in which the whole
array is stalled. Such stalls can happen, e.g., because memory accesses take longer
than expected in the schedule as a result of a cache miss or a memory bank
access conflict. This cycle-by-cycle reconfiguration is similar to the fetching of
one VLIW instruction per cycle, but on these CGRAs the fetching is simpler as
it only iterates through a loop body existing of straight-line CGRA configurations
without control flow. Other CGRAs like the KressArray [37–39] are fully statically
reconfigurable, meaning that the CGRA is configured before a loop is entered, and
no reconfiguration takes place during the loop at all. Still other architectures feature
a hybrid reconfigurability. The RaPiD [22, 27] architecture features partial dynamic
reconfigurability, in which part of the bits are statically reconfigurable and another
part is dynamically reconfigurable and controlled by a small sequencer. Yet another
example is the PACT architecture, in which the CGRA itself can initiate events that
invoke (partial) reconfiguration. This reconfiguration consumes a significant amount
of time, however, so it is advised to avoid it if possible, and to use the CGRA as a
statically reconfigurable CGRA.

In statically reconfigured CGRAs, each resource performs a single task for the
whole duration of the loop. In that case, the mapping of software onto hardware
becomes purely spatial, as illustrated in Fig. 5a. In other words, the mapping
problem becomes one of placement and routing, in which instructions and data
dependencies between instructions have to mapped on a 2D array of resources. For
these CGRAs, compiler techniques similar to hardware synthesis techniques can be
used, as those used in FPGA placement and routing [9].

By contrast, dynamic reconfigurability enables the programmer to use hardware
resources for multiple different tasks during the execution of a loop or even during
the execution of a single loop iteration. In that case, the software mapping problem
becomes a spatial and temporal mapping problem, in which the operations and data
transfers not only need to be placed and routed on and over the hardware resources,
but in which they also need to be scheduled. A contrived example of a temporal
mapping is depicted in Fig. 5b. Most compiler techniques [24, 26, 29, 73, 75, 78, 81,
82, 107] for these architectures also originate from the FPGA placement and routing

436 B. De Sutter et al.

a b

Fig. 5 Part (a) shows a spatial mapping of a sequence of four instructions on a statically
reconfigurable 2 × 2 CGRA. Edges denote dependencies, with the edge from instruction 3 to
instruction 0 denoting that instruction 0 from iteration i depends on instruction 3 from iteration
i − 1. So only one out of four ISs is utilized per cycle. Part (b) shows a temporal mapping of the
same code on a dynamically reconfigurable CGRA with only one IS. The utilization is higher here,
at 100%

world. For CGRAs, the array of resources is not treated as a 2D spatial array, but as
a 3D spatial-temporal array, in which the third dimension models time in the form
of execution cycles. Scheduling in this dimension is often based on techniques that
combine VLIW scheduling techniques such as modulo scheduling [43, 54, 93], with
FPGA synthesis-based techniques [9]. Still other compiler techniques exist that are
based on constraint solving [101], or on integer linear programming [2, 56, 127].

The most important advantage of static reconfigurability is the lack of reconfigu-
ration overhead, in particular in terms of power consumption. For that reason, large
arrays can be used that are still power-efficient. The disadvantage is that even in the
large arrays the amount of resources constrains which loops can be mapped.

Dynamically reconfigurable CGRAs can overcome this problem by spreading
the computations of a loop iteration over multiple configurations. Thus a small
dynamically reconfigurable array can execute larger loops. The loop size is then not
limited by the array size, but by the array size times the depth of the reconfiguration
memories. For reasons of power efficiency, this depth is also limited, typically to
tens or hundreds of configurations, which suffices for most if not all inner loops.

A potential disadvantage of dynamically reconfigurable CGRAs is the power
consumption of the configuration memories, even for small arrays, and of the
configuration fetching mechanism. The disadvantage can be tackled in different
ways. ADRES and MorphoSys tackle it by not allowing control flow in the loop
bodies, thus enabling the use of very simple, power-efficient configuration fetching
techniques similar to level-0 loop buffering [59]. Whenever control flow is found in
loop bodies, such as for conditional statements, this control flow then first needs to
be converted into data flow, for example by means of predication and hyperblock
formation [70]. While these techniques can introduce some initial overhead in the
code, this overhead typically will be more than compensated by the fact that a more
efficient CGRA design can be used.

The MorphoSys design takes this reduction of the reconfiguration fetching logic
even further by limiting the supported code to Single Instruction Multiple Data

Coarse-Grained Reconfigurable Array Architectures 437

(SIMD) code. In the two supported SIMD modes, all ISs in a row or all ISs in a
column perform identical operations. As such only one IS configuration needs to
be fetched per row or column. As already mentioned, the RaPiD architecture limits
the number of configuration bits to be fetched by making only a small part of the
configuration dynamically reconfigurable. Kim et al. provide yet another solution
in which the configuration bits of one column in one cycle are reused for the next
column in the next cycle [52]. Furthermore, they also propose to reduce the power
consumption in the configuration memories by compressing the configurations [53].

Still, dynamically reconfigurable designs exist that put no restrictions on the code
to be executed, and that even allow control flow in the inner loops. The Silicon Hive
design is one such design.

A general rule is that a limited reconfigurability puts more constraints on the
types and sizes of loops that can be mapped. Which design provides the highest
performance or the highest energy efficiency depends, amongst others, on the
variation in loop complexity and loop size present in the applications to be mapped
onto the CGRA. With large statically reconfigurable CGRAs, it is only possible to
achieve high utilization for all loops in an application if all those loops have similar
complexity and size, or if they can be made so with loop transformations, and if the
iterations are not dependent on each other through long-latency dependency cycles
(as was the case in Fig. 5). Dynamically reconfigurable CGRAs, by contrast, can
also achieve high average utilization over loops of varying sizes and complexities,
and with inter-iteration dependencies. That way dynamically reconfigurable CGRAs
can achieve higher energy efficiency in the data path, at the expense of higher energy
consumption in the control path. Which design option is the best depends also on the
process technology used, and in particular on the ability to perform clock or power
gating and on the ratio between active and passive power (a.k.a. leakage).

In that regard, it is interesting to note the recent research direction of so-called
dual-Vdd and multi-Vdd CGRA designs [33, 115, 120] that goes beyond the binary
approach of gating. In these designs, the supply voltage fed to different parts of a
CGRA, which can be individual ISs or clusters thereof, can vary independently. This
resembles dynamic voltage scaling as found on many modern multi-core CPUs, but
in the case of CGRAs the supply voltages fed to a part of the CGRA is determined by
the length of the critical path in the circuit that is triggered by the specific operations
executing on that part of the array.

3.2.2 Scheduling and Issuing

Both with dynamic and with static reconfigurability, the execution of operations
and of data transfers needs to be controlled. This can be done statically in a
compiler, similar to the way in which operations from static code schedules are
scheduled and issued on VLIW processors [28, 43], or dynamically, similar to the
way in which out-of-order processors issue instructions when their operands become
available [99]. Many possible combinations of static and dynamic reconfiguration
and of static and dynamic scheduling exist.

438 B. De Sutter et al.

A first class consists of dynamically scheduled, dynamically reconfigurable
CGRAs like the TRIPS architecture [32, 95]. For this architecture, the compiler
determines on which IS each operation is to be executed and over which connections
data is to be transferred from one IS to another. So the compiler performs placement
and routing. All scheduling (including the reconfiguration) is dynamic, however, as
in regular out-of-order superscalar processors [99]. TRIPS mainly targets general-
purpose applications, in which unpredictable control flow makes the generation of
high-quality static schedules difficult if not impossible. Such applications most often
provide relatively limited ILP, for which large arrays of computational resources are
not efficient. So instead a small, dynamically reconfigurable array is used, for which
the run-time cost of dynamic reconfiguration and scheduling is acceptable.

A second class of dynamically reconfigurable architectures avoids the overhead
of dynamic scheduling by supporting VLIW-like static scheduling [28]. Instead of
doing the scheduling in hardware where the scheduling logic then burns power,
the scheduling for ADRES, MorphoSys and Silicon Hive architectures is done by
a compiler. Compilers can do this efficiently for loops with regular, predictable
behavior and high ILP, as found in many DSP applications. As is the case for VLIW
architectures, software pipelining [43, 54, 93] is very important to expose the ILP
in CGRA software kernels, so most compiler techniques [19, 24, 26, 29, 34, 35, 73,
75, 78, 81, 82, 107, 128] for statically scheduled CGRAs implement some form of
software pipelining.

A third class of CGRAs are the statically reconfigurable, dynamically scheduled
architectures, such as KressArray or PACT (neglecting the time-consuming partial
reconfigurability of the PACT). The compiler performs placement and routing, and
the code execution progress is guided by tokens or event signals that are passed
along with data. Thus the control is dynamic, and it is distributed over the token
or event path, similar to the way in which transport-triggered architectures [21]
operate. These statically reconfigurable CGRAs do not require software pipelining
techniques because there is no temporal mapping. Instead the spatial mapping
and the control implemented in the tokens or event signals implement a hardware
pipeline.

Hybrid designs exist as well. Park et al. use tokens not to trigger the execution
of instructions, but to enable an opcode compression scheme without increasing
decoder complexity with the end goal of reducing the power consumption [84]. In
their statically scheduled CGRA, data-producing ISs send a token to the consuming
ISs over a token datapath that complements the existing datapath. Based on the
tokens that arrive, the consuming IS then already knows which type of operation it
will need to execute, so less opcode bits need to be retrieved and decoded to program
the IS. This way, they were able to obtain a 56% power reduction in the control path.

Another form of hybrid designs are the so-called triggered execution and dual-
issue designs [36, 125, 126]. These are scheduled statically, but feature extensions to
increase the resource utilization of loops bodies containing if-then-else structures.
With standard predication techniques, the instructions of both the then and else
branches occupy ISs. So in every iteration, the ISs used for the non-occupied branch
are wasted. With the trigger-based and dual-issue extensions, two operations (one

Coarse-Grained Reconfigurable Array Architectures 439

from the then branch and one from the else branch) can be loaded together to
configure the same IS, and additional predicate logic decides dynamically which
of the operations is actually executed.

We can conclude by noting that, as in other architecture paradigms such as
VLIW processing or superscalar out-of-order execution, dynamically scheduled
CGRAs can deliver higher performance than statically scheduled ones for control-
intensive code with unpredictable behavior. On dynamically scheduled CGRAs the
code path that gets executed in an iteration determines the execution time of that
iteration, whereas on statically scheduled CGRAs, the combination of all possible
execution paths (including the slowest path which might be executed infrequently)
determines the execution time. Thus, dynamically scheduled CGRAs can provide
higher performance for some applications. However, the power-efficiency will
then typically also be poor because more power will be consumed in the control
path. Again, the application domain determines which design option is the most
appropriate.

3.2.3 Thread-Level and Data-Level Parallelism

Another important aspect of control is the possibility to support different forms
of parallelism. Obviously, loosely-coupled CGRAs can operate in parallel with the
main CPU, but one can also try to use the CGRA resources to implement SIMD or
to run multiple threads concurrently within the CGRA.

When dynamic scheduling is implemented via distributed event-based control, as
in KressArray or PACT, implementing TLP is relatively simple and cheap. For small
enough loops of which the combined resource use fits on the CGRA, it suffices to
map independent thread controllers on different parts of the distributed control.

For architectures with centralized control, the only option to run threads in
parallel is to provide additional controllers or to extend the central controller, for
example to support parallel execution modes. While such extensions will increase
the power consumption of the controller, the newly supported modes might suit
certain code fragments better, thus saving in data path energy and configuration
fetch energy.

The TRIPS controller supports four operation modes [95]. In the first mode, all
ISs cooperate for executing one thread. In the second mode, the four rows execute
four independent threads. In the third mode, fine-grained multi-threading [99] is
supported by time-multiplexing all ISs over multiple threads. Finally, in the fourth
mode each row executes the same operation on each of its ISs, thus implementing
SIMD in a similar, fetch-power-efficient manner as is done in the two modes of the
MorphoSys design. Thus, for each loop or combination of loops in an application,
the TRIPS compiler can exploit the most suited form of parallelism.

The Raw architecture [105] is a hybrid between a many-core architecture and
a CGRA architecture in the sense that it does not feature a 2D array of ISs, but
rather a 2D array of tiles that each consist of a simple RISC processor. The tiles
are connected to each other via a mesh interconnect, and transporting data over

440 B. De Sutter et al.

this interconnect to neighboring tiles does not consume more time than retrieving
data from the RF in the tile. Moreover, the control of the tiles is such that they can
operate independently or synchronized in a lock-step mode. Thus, multiple tiles can
cooperate to form a dynamically reconfigurable CGRA. A programmer can hence
partition the 2D array of tiles into several, potentially differently sized, CGRAs that
each run an independent thread. This provides very high flexibility to balance the
available ILP inside threads with the TLP of the combined threads.

The Polymorphic Pipeline Array (PPA) [83] and similar designs [110] integrate
multiple tightly-coupled ADRES-like CGRA cores into a larger array. Independent
threads with limited amounts of ILP can run on the individual cores, but the
resources of those individual cores can also be configured to form larger cores, on
which threads with more ILP can then be executed. The utilization of the combined
resources can be optimized dynamically by configuring the cores according to the
available TLP and ILP at any point during the execution of a program.

Other architectures do not support (hardware) multi-threading within one CGRA
core at all, like the Silicon Hive. The first solution to run multiple threads with these
designs is to incorporate multiple CGRA accelerator cores in a System-on-Chip
(SoC) [116]. The advantage is then that each accelerator can be customized for a
certain class of loop kernels.

Alternatively, TLP can be converted into ILP and DLP by combining, at compile-
time, kernels of multiple threads and by scheduling them together as one kernel, and
by selecting the appropriate combination of scheduled kernels at run time [96].

3.3 Interconnects and Register Files

3.3.1 Connections

A wide range of connections can connect the ISs of a CGRA with each other, with
the RFs, with other memories and with IO ports. Buses, point-to-point connections,
and crossbars are all used in various combinations and in different topologies.

For example, some designs like MorphoSys and the most common ADRES and
Silicon Hive designs feature a densely connected mesh-network of point-to-point
interconnects in combination with sparser buses that connect ISs further apart.
Thus the number of long power-hungry connections is limited. Multiple studies
of point-to-point mesh-like interconnects as in Fig. 6 have been published in the
past [13, 51, 55, 72]. Other designs like RaPiD feature a dense network of segmented
buses. Typically the use of crossbars is limited to very small instances because large
ones are too power-hungry. Fortunately, large crossbars are most often not needed,
because many application kernels can be implemented as systolic algorithms, which
map well onto mesh-like interconnects as found in systolic arrays [90].

Unlike crossbars and even busses, mesh-like networks of point-to-point connec-
tions scale better to large arrays without introducing too much delay or power
consumption. For statically reconfigurable CGRAs, this is beneficial. Buses and

Coarse-Grained Reconfigurable Array Architectures 441

a b

c d

Fig. 6 Basic interconnects that can be combined. All bidirectional edges between two ISs denote
that all outputs of one IS are connected to the inputs of the other IS and vice versa. Buses that
connect all connected IS outputs to all connected IS inputs are shown as edges without arrows. (a)
Nearest neighbor (nn), (b) next hop (nh), (c) buses (b), (d) extra (ex)

other long interconnects connect whole rows or columns to complement short-
distance mesh-like interconnects. The negative effects that such long interconnects
can have on power consumption or on obtainable clock frequency can be avoided
by segmentation or by pipelining. In the latter case, pipelining latches are added
along the connections or in between muxes and ISs. Our experience, as presented
in Sect. 4.2.2 is that this pipelining will not necessarily lead to lower IPCs in
CGRAs. This is different from out-of-order or VLIW architectures, where deeper
pipelining increases the branch misprediction latency [99]. Instead at least some
CGRA compilers succeed in exploiting the pipelining latches as temporary storage,
rather than being hampered by them. This is the case in compiler techniques
like [24, 73, 107] that are based on FPGA synthesis methods in which RFs and
pipelining latches are treated as interconnection resources that span multiple cycles

442 B. De Sutter et al.

instead of as explicit storage resources. This treatment naturally fits the 3D array
modeling of resources along two spatial dimensions and one temporal dimension.
Consequently, those compiler techniques can use pipelining latches for temporary
storage as easily as they can exploit distributed RFs. This ability to use latches for
temporary storage has been extended even beyond pipeline latches, for example to
introduce retiming chains and shift registers in CGRA architectures [108].

As was already discussed in Sect. 3.1, the Remus architecture has an interconnect
that lets data flow from top to bottom through an array. This fits streaming
data applications, it simplifies the interconnect to potentially yield lower power
consumption and higher clock speeds, and it enables to overlapping execution of
one loop’s epilogue with the next loop’s prologue [125, 126].

3.3.2 Register Files

CGRA compilers place operations on ISs, thus also scheduling them, and route
the data flow over the connections between the ISs. Those connections may be
direct connections, or latched connections, or even connections that go through
RFs. Therefore most CGRA compilers treat RFs not as temporary storage, but as
interconnects that can span multiple cycles. Thus the RFs can be treated uniformly
with the connections during routing. A direct consequence of this compiler approach
is that the design space freedom of interconnects extends to the placement of RFs
in between ISs. During the Design Space Exploration (DSE) for a specific CGRA
instance in a CGRA design template such as the ADRES or Silicon Hive templates,
both the real connections and the RFs have to be explored, and that has to be
done together. Just like the number of real interconnect wires and their topology,
the size of RFs, their location and their number of ports then contribute to the
interconnectivity of the ISs. We refer to [13, 72] for DSEs that study both RFs and
interconnects.

Besides their size and ports, another important aspect is that RFs can be
rotating [94]. The power and delay overhead of rotation is very small in distributed
RFs, simply because these RFs are small themselves. Still they can provide an
important functionality. Consider a dynamically reconfigurable CGRA on which a
loop is executed that iterates over x configurations, i.e., each iteration takes x cycles.
That means that for a write port of an RF, every x cycles the same address bits get
fetched from the configuration memory to configure the address set at that port. In
other words, every x cycles a new value is being written into the register specified by
that same address. This implies that values can stay in the same register for at most
x cycles; then they are overwritten by a new value from the next iteration. In many
loops, however, some values have a life time that spans more than x cycles, because
it spans multiple loop iterations. To avoid having to insert additional data transfers
in the loop schedules, rotating registers can be used. At the end of every iteration of
the loop, all values in rotating registers rotate into another register to make sure that
old values are copied to where they are not overwritten by newer values.

Coarse-Grained Reconfigurable Array Architectures 443

3.3.3 Predicates, Events and Tokens

To complete this overview on CGRA interconnects, we want to point out that it can
be very useful to have interconnects of different widths. The data path width can be
as small as 8 bits or as wide as 64 or 128 bits. The latter widths are typically used to
pass SIMD data. However, as not all data is SIMD data, not all paths need to have the
full width. Moreover, most CGRA designs and the code mapped onto them feature
signals that are only one or a few bits wide, such as predicates or events or tokens.
Using the full-width datapath for these narrow signals wastes resources. Hence it is
often useful to add a second, narrow datapath for control signals like tokens or events
and for predicates. How dense that narrow datapath has to be, depends on the type of
loops one wants to run on the CGRA. For example, multimedia coding and decoding
typically includes more conditional code than SDR baseband processing. Hence the
design of, e.g., different ADRES architectures for multimedia and for SDR resulted
in different predicate data paths being used, as illustrated in Sect. 4.2.1.

At this point, it should be noted that the use of predicates is fundamentally not
that different from the use of events or tokens. In KressArray or PACT, events and
tokens are used, amongst others, to determine at run time which data is selected to
be used later in the loop. For example, for a C expression like x + (a>b) ? y
+ z : y - z one IS will first compute the addition y+z, one IS will compute
the subtraction y-z, and one IS will compute the greater-than condition a>b. The
result of the latter computation generates an event that will be fed to a multiplexor
to select which of the two other computer values y+z and y-z is transferred to
yet another IS on which the addition to x will be performed. Unlike the muxes in
Fig. 2b that are controlled by bits fetched from the configuration memory, those
event-controlled multiplexors are controlled by the data path.

In the ADRES architecture, the predicates guard the operations in ISs, and
they serve as enable signals for RF write ports. Furthermore, they control special
select operations that pass one of two input operands to the output port of an IS.
Fundamentally, an event-controlled multiplexor performs exactly the same function
as the select operation. So the difference between events or tokens and predicates
is really only that the former term and implementation are used in dynamically
scheduled designs, while the latter term is used in static schedules. As was already
pointed out in Sect. 3.2.2, dual-issue and triggered instruction CGRAs combine the
two forms to obtain higher resource utilization in the case of if-then-else structures.

3.4 Computational Resources

Issue slots are the computational resources of CGRAs. Over the last decade,
numerous designs of such issue slots have been proposed, under different names,
that include PEs, FUs, ALUs, and flexible computation components. Figure 7
depicts some of them. For all of the possible designs, it is important to know the

444 B. De Sutter et al.

Fig. 7 Four different structures of ISs proposed in the literature. Part (a) displays a fixed
MorphoSys IS, including its local RF. Part (b) displays the fully customizable ADRES IS, that can
connect to shared or non-shared local RFs. Part (c) depicts the IS structure proposed by Galanis et
al. [31], and (d) depicts a row of four RSPA ISs that share a multiplier [48]

context in which these ISs have to operate, such as the interconnects connecting
them, the control type of the CGRA, etc.

Figure 7a depicts the IS of a MorphoSys CGRA. All 64 ISs in this homogeneous
CGRA are identical and include their own local RF. This is no surprise, as the two
MorphoSys SIMD modes (see Sect. 3.2.1) require that all ISs of a row or of a column
execute the same instruction, which clearly implies homogeneous ISs.

In contrast, almost all features of an ADRES IS, as depicted in Fig. 7b, can be
chosen at design time, and can be different for each IS in a CGRA that then becomes
heterogeneous: the number of ports, whether or not there are latches between the
multiplexors and the combinatorial logic that implements the operations, the set
of operations supported by each IS, how the local registers file are connected to
ISs and possibly shared between ISs, etc. As long as the design instantiates the
ADRES template, the ADRES tool flow will be able to synthesize the architecture
and to generate code for it. A similar design philosophy is followed by the Silicon
Hive tools. Of course this requires more generic compiler techniques than those
that generate code for the predetermined homogeneous ISs of, e.g., the MorphoSys
CGRA. As we will discuss later in Sect. 3.6.2, this typically implies much longer

Coarse-Grained Reconfigurable Array Architectures 445

compilation times. Moreover, we need to note that while extensive specialization
will typically benefit performance, it can also have negative effects, in particular on
energy consumption [109].

Figure 7c depicts the IS proposed by Galanis et al. [31]. Again, all ISs are
identical. In contrast to the MorphoSys design, however, these ISs consist of several
ALUs and multipliers with direct connections between them and their local RFs.
These direct connections within each IS can take care of a lot of data transfers,
thus freeing time on the shared bus-based interconnect that connects all ISs. Thus,
the local interconnect within each IS compensates for the lack of a scaling global
interconnect. One advantage of this clustering approach is that the compiler can be
tuned specifically for this combination of local and global connections and for the
fact that it does not need to support heterogeneous ISs. Whether or not this type of
design is more power-efficient than that of CGRAs with more design freedom and
potentially more heterogeneity is unclear at this point in time. At least, we know
of no studies from which, e.g., utilization numbers can be derived that allow us to
compare the two approaches.

Some architectures combine the flexibility of heterogeneous ADRES ISs with
clustering. For example, the CGRA Express [86] and the expression-grained
reconfigurable array (EGRA) [3] feature heterogeneous clusters of relatively simple,
fast ALUs. Within the clusters, those ALUs are chained by means of a limited
number of latchless connections. Through careful design, the delay of those chains
is comparable to the delay of other, more complex ISs on the CGRA that bound
the clock frequency. So the chaining does not effect the clock frequency. It does
allow, however, to execute multiple dependent operations within one clock cycle.
It can therefore improve performance significantly. As the chains and clusters are
composed of existing components such as ISs, buses, multiplexers and connections,
these clustered designs do not really extend the design space of non-clustered
CGRAs like ADRES. Still it can be useful to treat clusters as a separate design
level in between the IS component level and the whole array architecture level, for
example because it allows code generation algorithms in compilers to be tuned for
there existence [86].

A specific type of clustering was proposed to handle floating-point arithmetic.
While most CGRAs are limited to integer and fixed-point arithmetic, Lee at al.
proposed to cluster two ISs to handle floating-point data [56]. In their design, both
ISs in the cluster can operate independently on integer or fixed-point data, but they
can also cooperate by means of a special direct interconnect between them. When
they cooperate, one IS in the cluster consumes and handles the mantissas, while
the other IS consumes and produces the exponents. As a single ISs can thus be
used for both floating-point and integer computations, Lee et al. are able to achieve
high utilization for integer applications, floating-point applications, as well as mixed
applications.

Yet another type of clustering was proposed by Suh et al. [103]. They build
a larger CGRA out of identical clusters, not to enable faster compilation or to
obtain better performance, but to limit the time needed to perform design space
explorations in order to reduce the time to market.

446 B. De Sutter et al.

With respect to utilization, it is clear that the designs of Fig. 7a, b will only be
utilized well if a lot of multiplications need to be performed. Otherwise, the area-
consuming multipliers remain unused. To work around this problem, the sharing
of large resources such as multipliers between ISs has been proposed in the RSPA
CGRA design [48]. Figure 7d depicts one row of ISs that do not contain multipliers
internally, but that are connected to a shared multiplier through switches and a
shared bus. The advantage of this design, compared to an ADRES design in which
each row features three pure ALU ISs and one ALU+MULT IS, is that this design
allows the compiler to schedule multiplications in all ISs (albeit only one per cycle),
whereas this scheduling freedom would be limited to one IS slot in the ADRES
design. To allow this schedule freedom, however, a significant amount of resources
in the form of switches and a special-purpose bus need to be added to the row. While
we lack experimental data to back up this claim, we firmly believe that a similar
increase in schedule freedom can be obtained in the aforementioned 3+1 ADRES
design by simply extending an existing ADRES interconnect with a similar amount
of additional resources. In the ADRES design, that extension would then also be
beneficial to operations other than multiplications.

The optimal number of ISs for a CGRA depends on the application domain, on
the reconfigurability, as well as on the IS functionality and on the DLP available
in the form of subword parallelism. As illustrated in Sect. 4.2.2, a typical ADRES
would consist of 4 × 4 ISs [12, 71]. TRIPS also features 4 × 4 ISs. MorphoSys
provides 8 × 8 ISs, but that is because the DLP is implemented as SIMD over
multiple ISs, rather than as subword parallelism within ISs.

In our experience, scaling dynamically reconfigurable CGRA architectures such
as ADRES to very large arrays (8× 8 or larger) is rarely useful, even with scalable
interconnects like mesh or mesh-plus interconnects. Even in loops with high ILP,
utilization drops significantly on such large arrays [77]. It is not clear what causes
this lower utilization, and there might be several reasons. These include a lack of
memory bandwidth, the possibility that the compiler techniques [24, 73] simply do
not scale to such large arrays, or the fact that the relative connectivity in such large
arrays is lower. Simply stated, when a mesh interconnects all ISs to their neighbors,
each IS not on the side of the array is connected to 4 other ISs out of 16 in a 4× 4
array, i.e., to 25% of all ISs, while it is connected to 4 out of 64 ISs on an 8 × 8
array, i.e., to 6.25% of all ISs.

Of course, large arrays can still be useful, e.g., if they can be partitioned in
smaller arrays to run multiple threads in parallel, as discussed in Sect. 3.2.3. Also in
CGRAs with limited connectivity, such as the Remus design introduced in Sect. 3.1,
larger cores have proven useful.

3.5 Memory Hierarchies

CGRAs have a large number of ISs that need to be fed with data from the memory.
Therefore the data memory sub-system is a crucial part of the CGRA design. Many

Coarse-Grained Reconfigurable Array Architectures 447

reconfigurable architectures feature multiple independent memory banks or blocks
to achieve high data bandwidth.

The RAW architecture features an independent memory block in each tile for
which Barua developed a method called modulo unrolling to disambiguate and
assign data to different banks [5]. However, this technique can only handle array
references through affine index expression on loop induction variables.

MorphoSys has a 256-bit wide frame buffer between the main memory and a
reconfigurable array to feed data to the ISs operating in SIMD mode [60]. The
efficient use of such a wide memory depends by and large on manual data placement
and operation scheduling. Similar techniques for wide loads and stores have also
been proposed in regular VLIW architectures for reducing power [91]. Exploiting
that hardware requires manual data layout optimizations as well.

Both Silicon Hive and PACT feature distributed memory blocks without a
crossbar. A Silicon Hive programmer has to specify the allocation of data to
the memory for the compiler to bind the appropriate load/store operations to the
corresponding memories. Silicon Hive also supports the possibility of interfacing
the memory or system bus using FIFO interfaces. This is efficient for streaming
processing but is difficult to interface when the data needs to be buffered on in case
of data reuse.

The ADRES architecture template provides a parameterizable Data Memory
Queue (DMQ) interface to each of the different single-ported, interleaved level-1
scratch-pad memory banks [23]. The DMQ interface is responsible for resolving
bank access conflicts, i.e., when multiple load/store ISs would want to access the
same bank at the same time. Connecting all load/store ISs to all banks through a
conflict resolution mechanism allows maximal freedom for data access patterns and
also maximal freedom on the data layout in memory. The potential disadvantage of
such conflict resolution is that it increases the latency of load operations. In software
pipelined code, however, increasing the individual latency of instructions most often
does not have a negative effect on the schedule quality, because the compiler can
hide those latencies in the software pipeline. In the main processor VLIW mode of
an ADRES, the same memories are accessed in code that is not software-pipelined.
So in that mode, the conflict resolution is disabled to obtain shorter access latencies.

Alternatively, a data cache can be added to the memory hierarchy to complement
the scratch-pad memories. By letting the compiler partition the data over the scratch-
pad memories and the data cache in an appropriate manner, high throughput can be
obtained in the CGRA mode, as well as low latency in the VLIW mode [41, 45]. On
a SoC with multiple CGRAs, the caches can be shared, and cache partitioning can
be used to ensure that each CGRA obtains high throughput [116].

Furthermore, small local memories can be added exclusively to the CGRA to
store data temporarily to lower the pressure on register files [124]. This way,
memory hierarchies in CGRAs show many similarities to those found in modern
Graphics Processing Units (GPUs). This should not be surprising. Samsung has
already hinted that they plan to start using their Samsung Reconfigurable Processor
designs in their future generations of GPUs [61]. Next to those GPU-like features,
other features are adopted from high-level CPU designs. For example, data prefetch-

448 B. De Sutter et al.

ing mechanisms have been proposed based on the history of the loop nests executed
in CGRA mode [119].

3.6 Compiler Support

Two lines of research have to be discussed with respect to compiler support. The
oldest one concerns the scheduler in the compiler back-end. This scheduler is
responsible for determining where and when the operations of a loop body will be
executed, and how data will flow through the interconnect from one IS to another.
In some cases, it is also responsible for register allocation.

The other, more recent line of research concerns intermediate code generation
and the optimization of intermediate code. This is the phase of the compiler that
transforms the intermediate code to obtain loop bodies that are better suited to be
mapped onto the targeted CGRAs, i.e., for which the scheduler can generate more
efficient code.

3.6.1 Intermediate Code Generation and Optimization

In order to enable the back-end’s scheduler to generate efficient code, i.e., code that
utilizes the available resources of a CGRA well, some conditions need to be met:
The loop bodies need to contain sufficient operations to utilize all the resources,
the data dependencies between the operations need to enable high ILP, the memory
access patterns should not create bottlenecks, as much as possible time has to be
spent in inner loops, etc.

To obtain such loop bodies, compiler middle-ends apply loop transformations,
such as flattening and unrolling [4]. For well-formed loop nests, such as affine ones,
algebraic models are available, so-called polyhedral models [42], to reason about
the degrees of freedom that a compiler has for reordering the operations in loop
nests and to decide on the best transformation strategy for each loop. Such models
have been used in parallelizing compilers of all kinds since about two decades [6].
The boundary conditions are somewhat different for CGRA compilers, however:
entering and exiting CGRA mode results in considerably more overhead than doing
so on general-purpose CPUs or VLIW processors and the number of available
resources to be exploited through ILP is much higher. In Sect. 4.1, we will discuss
these in more detail, when we discuss loop transformations for the ADRES CGRA
template as a use case.

In CGRA programming environments that lack automated CGRA-specific loop
optimization strategies, manual fine tuning of loops by rewriting their source code
is therefore necessary to obtain acceptable code quality. Over the last couple
of years, however, a range of automated loop optimization strategies has been
developed that specifically target CGRAs and that can hence result in much more
productive programming. Of those strategies, many rely on polyhedral models

Coarse-Grained Reconfigurable Array Architectures 449

and integer-linear programming for optimally merging affine or other perfect
loop nests [64, 65, 68, 122, 123] and imperfectly nested loop nests [63, 121].
Others focus on determining the best loop unrolling parameters [98]. Whereas
the aforementioned techniques focus on optimizing performance, some polyhedral
techniques also consider battery conservation for mobile applications [88, 89].

3.6.2 CGRA Code Mapping and Scheduling Techniques

Apart from the specific algorithms used to schedule code, the major distinctions
between CGRA schedulers relate to whether or not they support static scheduling,
whether or not they support dynamic reconfiguration, whether or not they rely on
special programming languages, and whether or not they are limited to specific hard-
ware properties, or are instead flexible enough to support, e.g., very heterogeneous
instances within an architecture template. Because most compiler research has been
done to generate static schedules for CGRAs, we focus on those in this section.
As already indicated in Sects. 3.2.1 and 3.2.2, many algorithms are based on FPGA
placement and routing techniques [9] in combination with VLIW code generation
techniques like modulo scheduling [54, 93] and hyperblock formation [70].

Whether or not compiler techniques rely on specific hardware properties is
not always obvious in the literature, as not enough details are available in the
descriptions of the techniques, and few techniques have been tried on a wide range
of CGRA architectures. For that reason, it is very difficult to compare the efficiency
(compilation time), the effectiveness (quality of generated code) and the flexibility
(e.g., support for heterogeneity) of the different techniques.

The most widely applicable static scheduling techniques use different forms of
Modulo Resource Routing Graphs (MRRGs). RRGs are time-space graphs, in which
all resources (space dimension) are modeled with vertices. There is one such vertex
per resource per cycle (time dimension) in the schedule being generated. Directed
edges model the connections over which data values can flow from resource to
resource. The schedule, placement, and routing problem then becomes a problem
of mapping the Data Dependence Graph (DDG) of some loop body on the RRG.
Scheduling refers to finding the right cycle to perform an operation (i.e., a DDG
node) in the schedule, placement refers to finding the right IS (i.e., MRRG vertex) in
that cycle, and routing refers to finding connections to transfer data from producing
operations to consuming operations, i.e., to find a route in the MRRG for a DDG
edge. In the case of a modulo scheduler, the modulo constraint is enforced by
modeling all resource usage in the modulo time domain. This is done by modeling
the appropriate modulo reservation tables [93] on top of the RRG, hence the name
MRRG.

The granularity of its vertices depends on the precise compiler algorithm. One
modulo graph embedding algorithm [81] for ADRES-like CGRAs models whole
ISs or whole RFs with single vertices, whereas the simulated-annealing technique

450 B. De Sutter et al.

in the DRESC [24, 73, 75] compiler that also targets ADRES instances models
individual ports to ISs and RFs as separate vertices. Typically, fewer nodes that
model larger components lead to faster compilation because the graph mapping
problem operates on a smaller graph, but also to lower code quality because some
combinations of resource usage cannot be modeled precisely. Moreover, models
with fewer nodes also lack the flexibility to model a wide variation in resources, and
hence can typically not model heterogeneous designs.

Several types of modulo schedulers for CGRAs exist. In the aforementioned
DRESC, simulated annealing is used to explore different placement and routing
options until a valid placement and routing of all operations and data dependencies
is found. The cost function used during the simulated annealing is based on the total
routing cost, i.e., the combined resource consumption of all placed operations and
of all routed data dependencies. In this technique, a huge number of possible routes
is evaluated, as a result of which the technique is very slow: Scheduling individual
loops can take tens of minutes.

Later modulo scheduling techniques [29, 47, 78, 81, 82, 107] for ADRES-like
CGRAs operate much more like (modulo) list schedulers [28]. These list-based
CGRA schedulers still target MRRG representations of the hardware, and thus offer
a large amount of flexibility in the architectures they support. Like DRESC, they
rely heavily on routing costs. However, whereas DRESC first places DDG nodes
in an MRRG and then tries to find good routes for the DDG edges connecting
the nodes, these list schedulers work the opposite way. When one node of a DDG
edge has already been placed (e.g., its sink node), a good place for the other node
(the source node) is found by finding the cheapest possible path for the DDG
edge in the MRRG, starting from the place of the already placed node. So in this
case, the scheduler first identifies a good route for a DDG edge, and that route
determines where its DDG node is placed. These schedulers are therefore called
edge-centric schedulers. To find the best (i.e., cheapest) routes, they use a myriad of
cost functions. These functions assign costs to nodes in the MRRG such that nodes
that should not yet be occupied at a certain point during the iterative scheduling,
e.g., because they model scarce resources that need to remain available for placing
other DDG nodes later during the scheduling, are considered expensive and are
hence avoided during the searches for cheapest routes. After every placement of a
DDG node, the cost functions are updated in function of the next node to be placed,
the nodes already placed and their places, the available resources, and the amounts
and types of resources that will still be needed in the future. For some types of
cost functions, these updates are simple, but for others they are very complex and
computing them is time-consuming. The second [78] and third [107] generation
edge-centric schedulers outperform the others in terms of generated code quality
and compilation time because they offer a better balance between (1) cost function
complexity; (2) priority functions, i.e., the order in which nodes are chosen to be
placed onto the MRRG; and (3) their backtracing heuristics, i.e., the cases in which
they unplace DDG nodes to try alternative places after a placement was found to
block the generation of a valid, high quality schedule. The currently best scheduler
even offers several modes of operation, in which fast, inaccurate cost functions are

Coarse-Grained Reconfigurable Array Architectures 451

tried first, and only if those fail, the slower, more accurate ones are used [107].
This delivers better code quality than DRESC can deliver, in particular for more
heterogeneous CGRA designs, while requiring about 2 orders of magnitude less
compilation time.

Several other graph-based modulo schedulers have been proposed that build on
heavily simplified resource graphs to model the CGRA [19, 34, 35, 128]. Using
different customized algorithms to find limited forms of sub-graph isomorphisms
between a loop’s DDG and the architecture resource graph, these schedulers can
generate schedules very quickly. However, the limitation to certain forms of sub-
graph isomorphisms can result in significantly lower code quality. Moreover, the
simplified resource graphs cannot express many kinds of heterogeneity and features,
such as varying places of latches in the CGRA. So these publications only consider
rather homogeneous designs, in which only the supported instruction classes vary
per IS. Some algorithms even seem to rely on the (in our view unrealistic)
assumption that all operations have the same latency [34, 35].

Kim et al. presented a scheduler in which the generic NP-hard problem of
modulo scheduling becomes tractable by imposing the constraint of following pre-
calculated patternized rules [46]. As expected, the compilation times are improved
by several orders of magnitude, at the cost of code quality (−30% compared to
the already badly performing, first-generation edge-centric technique of [82]).
Through its use of patternized rules, this scheduler is by construction limited to
mostly homogeneous CGRAs. Lee et al. present an integer linear programming
approach and a quantum-inspired evolutionary algorithm, both applied after an
initial list scheduling [56]. Their mapping algorithms adopt high-level synthesis
techniques combined with loop unrolling and software pipelining. They also target
homogeneous targets.

MRRG-based compiler techniques are easily retargetable to a wide range of
architectures, such as those of the ADRES template, and they can support many
programming languages. Different architectures can simply be modeled with differ-
ent MRRGs. It has even been demonstrated that by using the appropriate modulo
constraints during the mapping of a DDG on a MRRG, compilers can generate a
single code version that can be executed on CGRAs of different sizes [87]. This
is particularly interesting for the PPA architecture that can switch dynamically
between different array sizes [83] to support either a single big loop executing in a
single threads or multiple smaller loops executing in parallel threads as discussed in
Sect. 3.2.3. For CGRAs in which the hardware does not support parallel threads, the
compiler can still merge the DDGs of multiple loops, and schedule them together,
onto subpartitions of the CGRA [80]. That way, software-controlled multi-threading
can still be achieved.

The aforementioned algorithms have been extended to not only consider the costs
of utilized resources inside the CGRA during scheduling, but to also consider bank
conflicts that may occur because of multiple memory accesses being scheduled in
the same cycle [49, 50].

Many other CGRA compiler techniques have been proposed, most of which are
restricted to specific architectures. Static reconfigurable architectures like RaPiD

452 B. De Sutter et al.

and PACT have been targeted by compiler algorithms [16, 26, 114] based on
placement and routing techniques that also map DDGs on RRGs. These techniques
support subsets of the C programming language (no pointers, no structs, . . .) and
require the use of special C functions to program the IO in the loop bodies to be
mapped onto the CGRA. The latter requirement follows from the specific IO support
in the architectures and the modeling thereof in the RRGs.

For the MorphoSys architecture, with its emphasis on SIMD across ISs, compiler
techniques have been developed for the SA-C language [111]. In this language the
supported types of available parallelism are specified by means of loop language
constructs. These constructs are translated into control code for the CGRA, which
are mapped onto the ISs together with the DDGs of the loop bodies.

CGRA code generation techniques based on integer-linear programming have
been proposed for the several architectures, both for spatial [2] and for temporal
mapping [56, 127]. Basically, the ILP formulation consists of all the requirements
or constraints that must be met by a valid schedule. This formulation is built
from a DDG and a hardware description, and can hence be used to compile many
source languages. It is unclear, however, to what extent the ILP formulation and
its solution rely on specific architecture features, and hence to which extent it
would be possible to retarget the ILP-formulation to different CGRA designs. A
similar situation occurs for the constraint-based compilation method developed for
the Silicon Hive architecture template [101], of which no detailed information is
public. Furthermore, ILP-based compilation is known to be unreasonably slow. So
in practice it can only be used for small loop kernels.

Code generation techniques for CGRAs based on instruction-selection pattern
matching and list-scheduling techniques have also been proposed [30, 31]. It is
unclear to what extent these techniques rely on a specific architecture because we
know of no trial to use them for different CGRAs, but these techniques seem to
rely heavily on the existence of a single shared-bus that connects ISs as depicted
in Fig. 7c. Similarly, the static reconfiguration code generation technique by Lee et
al. relies on CGRA rows consisting of identical ISs [58]. Because of this assumption,
a two-step code generation approach can be used in which individual placements
within rows are neglected in the first step, and only taken care of in the second step.
The first step then instead focuses on optimizing the memory traffic.

Finally, compilation techniques have been developed that are really specialized
for the TRIPS array layout and for its out-of-order execution [20].

4 Case Study: ADRES

This section presents a case study on one specific CGRA design template. The
purpose of this study is to illustrate that it is non-trivial to compile and optimize
code for CGRA targets, and to illustrate that within a design template, there is a need
for hardware design exploration. This illustrates how both hardware and software

Coarse-Grained Reconfigurable Array Architectures 453

designers targeting CGRAs need a deep understanding of the interaction between
the architecture features and the used compiler techniques.

ADRES [7, 11–13, 23, 24, 71, 73–75] is an architecture design template from
which dynamically reconfigurable, statically scheduled CGRAs can be instantiated.
In each instance, an ADRES CGRA is coupled tightly to a VLIW processor. This
processor shares data and predicate RFs with the CGRA, as well as memory ports
to a multi-banked scratch-pad memory as described in Sect. 3.1. The compiler-
supported ISA of the design template provides instructions that are typically found
in a load/store VLIW or RISC architecture, including arithmetic operations, logic
operations, load/store operations, and predicate computing instructions. Additional
domain-specific instructions, such as SIMD operations, are supported in the pro-
gramming tools by means of intrinsics [102]. Local rotating and non-rotating, shared
and private local RFs can be added to the CGRA as described in the previous
sections, and connected through an interconnect consisting of muxes, buses and
point-to-point connections that are specified completely by the designer. Thus, the
ADRES architecture template is very flexible: it offers a high degree of design
freedom, and it can be used to accelerate a wide range of loops.

4.1 Mapping Loops on ADRES CGRAs

The first part of this case study concerns the mapping of loops onto ADRES CGRAs,
which are one of the most flexible CGRAs supporting a wide range of loops. This
study illustrates that many loop transformations need to be applied carefully before
mapping code onto ADRES CGRAs. We discuss the most important compiler
transformations and, lacking a full-fledged loop-optimizing compiler, manual loop
transformations that need to be applied to source code in order to obtain high
performance and high efficiency. For other, less flexible CGRAs, the need for such
transformations will even be higher because there will be more constraints on the
loops to be mapped in the first place. Hence many of the discussed issues not only
apply to ADRES CGRAs, but also to other CGRA architectures. We will conclude
from this study that programming CGRAs with the existing compiler technology is
not compatible with high programmer productivity.

4.1.1 Modulo Scheduling Algorithms for CGRAs

To exploit ILP in inner loops on VLIW architectures, compilers typically apply
software pipelining by means of modulo scheduling [54, 93]. This is no different for
ADRES CGRAs. In this section, we will not discuss the inner working of modulo
scheduling algorithms. What we do discuss, are the consequences of using that
technique for programming ADRES CGRAs.

After a loop has been modulo-scheduled, it consists of three phases: the prologue,
the kernel and the epilogue. During the prologue, stages of the software-pipelined

454 B. De Sutter et al.

loop gradually become active. Then the loop executes the kernel in a steady-state
mode in which all software pipeline stages are active, and afterwards the stages are
gradually disabled during the epilogue. In the steady-state mode, a new iteration is
started after every II cycles, which stands for Initiation Interval. Fundamentally,
every software pipeline stage is II cycles long. The total cycle count of a loop with
iter iterations that is scheduled over ps software pipeline stages is then given by

cyclesprologue + II · (iter − (ps − 1))+ cyclesepilogue. (2)

In this formula, we neglect processor stalls because of, e.g., memory access conflicts
or cache misses.

For loops with a high number of iterations, the term II · iter dominates this
cycle count, and that is why modulo scheduling algorithms try to minimize II , thus
increasing the IPC terms in Eq. (1).

The minimal II that modulo scheduling algorithms can reach is bound by
minII = max(RecMII,ResMII). The first term, called resource-minimal
II (ResMII) is determined by the resources required by a loop and by the
resources provided by the architecture. For example, if a loop body contains nine
multiplications, and there are only two ISs that can execute multiplications, then
at least �9/2� = 5 cycles will be needed per iteration. The second term, called
recurrence-minimal II (RecMII) depends on recurrent data dependencies in a loop
and on instruction latencies. Fundamentally, if an iteration of a loop depends on the
previous iteration through a dependency chain with accumulated latency RecMII ,
it is impossible to start that iteration before at least RecMII cycles of the previous
iteration have been executed.

The next section uses this knowledge to apply transformations that optimize
performance according to Eq. (1). To do so successfully, it is important to know
that ADRES CGRAs support only one thread, for which the processor has to switch
from a non-CGRA operating mode to CGRA mode and back for each inner loop.
So besides minimizing the cycle count of Eq. (2) to obtain higher IPCs in Eq. (1), it
is also important to consider the terms tp→p+1 in Eq. (1).

4.1.2 Loop Transformations

Loop Unrolling

Loop unrolling and the induction variable optimizations that it enables can be used
to minimize the number of iterations of a loop. When a loop body is unrolled x

times, iter decreases with a factor x, and ResMII typically grows with a factor
slightly less than x because of the induction variable optimizations and because
of the ceiling operation in the computation of ResMII . By contrast, RecMII

typically remains unchanged or increases only a little bit as a result of the induction
variable optimizations that are enabled after loop unrolling.

Coarse-Grained Reconfigurable Array Architectures 455

In resource-bound loops, ResMII > RecMII . Unrolling will then typically
have little impact on the dominating term II · iter in Eq. (2). However, the prologue
and the epilogue will typically become longer because of loop unrolling. Moreover,
an unrolled loop will consume more space in the instruction memory, which might
also have a negative impact on the total execution time of the whole application. So
in general, unrolling resource-bound loops is unlikely to be very effective.

In recurrence-bound loops, RecMII · iter > ResMII · iter . The right hand
side of this inequality will not increase by unrolling, while the left hand side will
be divided by the unrolling factor x. As this improvement typically compensates
for the longer prologue and epilogue, we can conclude that unrolling can be an
effective optimization technique for recurrence-bound loops if the recurrences can
be optimized with induction variable optimizations. This is no different for CGRAs
than it is for VLIWs. However, for CGRAs with their larger number of ISs, it is
more important because more loops are recurrence-bound.

Loop Fusion, Loop Interchange, Loop Combination and Data Context
Switching

Fusing adjacent loops with the same number of iterations into one loop can also be
useful, because fusing multiple recurrence-bound loops can result in one resource-
bound loop, which will result in a lower overall execution time. Furthermore, less
switching between operating modes takes place with fused loops, and hence the
terms tp→p+1 are minimized. Furthermore, less prologues and epilogues need to be
executed, which might also improve performance. This improvement will usually
be limited, however, because the fused prologues and epilogues will rarely be much
shorter than the sum of the original ones. Moreover, loop fusion does result in a
loop that is bigger than any of the original loops, so it can only be applied if the
configuration memory is big enough to fit the fused loop. If this is the case, less
loop configurations need to be stored and possibly reloaded into the memory.

Interchanging an inner and outer loop serves largely the same purpose as loop
fusion. As loop interchange does not necessarily result in larger prologues and
epilogues, it can be even more useful, as can be the combining of nested loops
into a single loop. Data-context switching [10] is a very similar technique that
serves the same purpose. That technique has been used by Lee et al. for statically
reconfigurable CGRAs as well [58], and in fact most of the loop transformations
mentioned in this section can be used to target such CGRAs, as well as any other
type of CGRA.

Live-In Variables

In our experience, there is only one caveat with the above transformations. The
reason to be careful when applying them is that they can increase the number of
live-in variables. A live-in variable is a variable that gets assigned a value before the

456 B. De Sutter et al.

loop, which is consequently used in the loop. Live-in variables can be manifest in the
original source code, but they can also result from compiler optimizations that are
enabled by the above loop transformations, such as induction variable optimizations
and loop-invariant code motion. When the number of live-in variables increases,
more data needs to be passed from the non-loop code to the loop code, which might
have a negative effect on tp→p+1. The existence and the scale of this effect will
usually depend on the hardware mechanism that couples the CGRA accelerator
to the main core. Possible such mechanisms are discussed in Sect. 3.1. In tightly-
coupled designs like that of ADRES or Silicon Hive, passing a limited amount of
values from the main CPU mode to the CGRA mode does not involve any overhead:
the values are already present in the shared RF. However, if their number grows too
big, there will not be enough room in the shared RF, which will result in much less
efficient passing of data through memory. We have experienced this several times
with loops in multimedia and SDR applications that were mapped onto our ADRES
designs. So, even for tightly-coupled CGRA designs, the above loop transformations
and the enabled optimizations need to be applied with great care.

Predication

The “basic” modulo scheduling techniques for CGRAs [24, 26, 29, 73, 75, 78, 81, 82,
107] only schedule loops that are free of control flow transfers. Hence any loop body
that contains conditional statements first needs to be if-converted into hyperblocks
by means of predication [70]. For this reason, many CGRAs, including ADRES
CGRAs, support predication.

Hyperblock formation can result in very inefficient code if a loop body contains
code paths that are executed rarely. All those paths contribute to ResMII and
potentially to RecMII . Hence even paths that get executed very infrequently
can slow down a whole modulo-scheduled loop. Such loops can be detected with
profiling, and if the data dependencies allow this, it can be useful to split these loops
into multiple loops. For example, a first loop can contain the code of the frequently
executed paths only, with a lower II than the original loop. If it turns out during the
execution of this loop that in some iteration the infrequently executed code needs to
be executed, the first loop is exited, and for the remaining iterations a second loop is
entered that includes both the frequently and the infrequently executed code paths.

Alternatively, for some loops it is beneficial to have a so-called inspector loop
with very small II to perform only the checks for all iterations. If none of the
checks are positive, a second so-called executor loop is executed that includes all
the computations except the checks and the infrequently executed paths. If some
checks were positive, the original loop is executed.

One caveat with this loop splitting is that it causes code size expansion in the
CGRA instruction memories. For power consumption reasons, these memories are
kept as small as possible. This means that the local improvements obtained with the
loop splitting need to be balanced with the total code size of all loops that need to
share these memories.

Coarse-Grained Reconfigurable Array Architectures 457

Fig. 8 On the left a traditional modulo-scheduled loop, on the right a kernel-only one. Each
numbered box denotes one of four software pipeline stages, and each row denotes the concurrent
execution of different stages of different iterations. Grayed boxes denote stages that actually get
executed. On the left, the dark grayed boxes get executed on the CGRA accelerator, in which
exactly the same code is executed every II cycles. The light grayed boxes are pipeline stages that
get executed outside of the loop, in separate code that runs on the main processor. On the right,
kernel-only code is shown. Again, the dark grey boxes are executed on the CGRA accelerator.
So are the white boxes, but these get deactivated during the prologue and epilogue by means of
predication

Kernel-Only Loops

Predication can also be used to generate so-called kernel-only loop code. This is
loop code that does not have separate prologue and epilogue code fragments. Instead
the prologues and epilogues are included in the kernel itself, where predication
is now used to guard whole software pipeline stages and to ensure that only the
appropriate software pipeline stages are activated at each point in time. A traditional
loop with a separate prologue and epilogue is compared to a kernel-only loop in
Fig. 8. Three observations need to be made here.

The first observation is that kernel-only code is usually faster because the pipeline
stages of the prologue and epilogue now get executed on the CGRA accelerator,
which typically can do so at much higher IPCs than the main core. This is a major
difference between (ADRES) CGRAs and VLIWs. On the latter, kernel-only loops
are much less useful because all code runs on the same number of ISs anyway.

Secondly, while kernel-only code will be faster on CGRAs, more time is spent
in the CGRA mode, as can be seen in Fig. 8. During the epilogue and prologue, the
whole CGRA is active and thus consuming energy, but many ISs are not performing
useful computations because they execute operations from inactive pipeline stages.
Thus, kernel-only is not necessarily optimal in terms of energy consumption.

The third observation is that for loops where predication is used heavily to create
hyperblocks, the use of predicates to support kernel-only code might over-stress

458 B. De Sutter et al.

Table 1 Main differences between two studied ADRES CGRAs

Power, clock and area include the CGRA and its configuration memory, the VLIW processor for
non-loop code, including its 32K L1 I-cache, and the 32K 4-bank L1 data memory. These numbers
are gate-level estimates

the predication support of the CGRA. In domains such as SDR, where the loops
typically have no or very little conditional statements, this poses no problems.
For applications that feature more complex loops, such as in many multimedia
applications, this might create a bottleneck even when predicate speculation [97]
is used. This is where the ADRES template proves to be very useful, as it allowed
us to instantiate specialized CGRAs with varying predicate data paths, as can be
seen in Table 1.

4.1.3 Data Flow Manipulations

The need for fine-tuning source code is well known in the embedded world. In
practice, each compiler can handle some loop forms better than other forms. So
when one is using a specific compiler for some specific VLIW architecture, it can
be very beneficial to bring loops in the appropriate shape or form. This is no different
when one is programming for CGRAs, including ADRES CGRAs.

Apart from the above transformations that relate to the modulo scheduling of
loops, there are important transformations that can increase the “data flow” character
of a loop, and thus contribute to the efficiency of a loop. Three C implementations
of a Finite Impulse Response (FIR) filter in Fig. 9 provide an excellent example.

Figure 9a depicts a FIR implementation that is efficient for architectures with
few registers. For architectures with more registers, the implementation depicted
in Fig. 9b will usually be more efficient, as many memory accesses have been

Coarse-Grained Reconfigurable Array Architectures 459

a

b

c

Fig. 9 Three C versions of a FIR filter. (a) Original 15-tap FIR filter, (b) filter after loop unrolling,
with hard-coded constants, (c) after redundant memory accesses are eliminated

Table 2 Number of execution cycles and memory accesses (obtained through simulation) for the
FIR-filter versions compiled for the multimedia CGRA, and for the TI C64+ DSP

Cycle count Memory accesses

Program CGRA TI C64+ CGRA TI C64+

FIR (a) 11,828 1054 6221 1618

FIR (b) 1247 1638 3203 2799

FIR (c) 664 10,062 422 416

eliminated. Finally, the equivalent code in Fig. 9c contains only one load per outer
loop iteration. To remove the redundant memory accesses, a lot of temporary
variables had to be inserted, together with a lot of copy operations that implement
a delay line. On regular VLIW architectures, this version would result in high
register pressure and many copy operations to implement the data flow of those copy
operations. Table 2 presents the compilation results for a 16-issue CGRA and for an
8-issue clustered TI C64+ VLIW. From the results, it is clear that the TI compiler
could not handle the latter code version: its software-pipelining fails completely due
to the high register pressure. When comparing the minimal cycle times obtained for
the TI C64+ with those obtained for the CGRA, please note that the TI compiler
applied SIMDization as much as it could, which is fairly orthogonal to scheduling
and register allocation, but which the experimental CGRA compiler used for this
experiment did not yet perform. By contrast, the CGRA compiler could optimize the
code of Fig. 9c by routing the data of the copy operations over direct connections

460 B. De Sutter et al.

between the CGRA ISs. As a result, the CGRA implementation becomes both fast
and power-efficient at the same time.

This is a clear illustration of the fact that, lacking fully automated compiler
optimizations, heavy performance-tuning of the source code can be necessary.
The fact that writing efficient source code requires a deep understanding of the
compiler internals and of the underlying architecture, and the fact that it frequently
includes experimentation with various loop shapes, severely limits the programming
productivity. This has to be considered a severe drawback of CGRAs architectures.

Moreover, as the FIR filter shows, the optimal source code for a CGRA target can
be radically different than that for, e.g., a VLIW target. Consequently, the cost of
porting code from other targets to CGRAs or vice versa, or of maintaining code ver-
sions for different targets (such as the main processor and the CGRA accelerator),
can be high. This puts an additional limitation on programmer productivity.

4.2 ADRES Design Space Exploration

In this part of our case study, we discuss the importance and the opportunities
for DSE within the ADRES template. First, we discuss some concrete ADRES
instances that have been used for extensive experimentation, including the fabri-
cation of working silicon samples. These examples demonstrate that very power-
efficient CGRAs can be designed for specific application domains.

Afterwards, we will show some examples of DSE results with respect to some of
the specific design options that were discussed in Sect. 3.

4.2.1 Example ADRES Instances

During the development of the ADRES tool chain and design, two main ADRES
instances have been worked out. One was designed for multimedia applications
[7, 71] and one for SDR baseband processing [11, 12]. Their main differences are
presented in Table 1. Both architectures have a 64-entry data RF (half rotating,
half non-rotating) that is shared with a unified three-issue VLIW processor that
executes non-loop code. Thus this shared RF has six read ports and three write
ports. Both CGRAs feature 16 FUs, of which four can access the memory (that
consists of four single-ported banks) through a queue mechanism that can resolve
bank conflicts. Most operations have latency one, with the exception of loads, stores,
and multiplications. One important difference between the two CGRAs relates to
their pipeline schemes, as depicted for a single IS (local RF and FU) in Table 1.
As the local RFs are only buffered at their input, pipelining registers need to be
inserted in the paths to and from the FUs in order to obtain the desired frequency
targets as indicated in the table. The pipeline latches shown in Table 1 hence directly
contribute in the maximization of the factor fp in Eq. (1). Because the instruction
sets and the target frequencies are different in both application domains, the SDR

Coarse-Grained Reconfigurable Array Architectures 461

CGRA has one more pipeline register than the multimedia CGRA, and they are
located at different places in the design.

Traditionally, in VLIWs or in out-of-order superscalar processors, deeper
pipelining results in higher frequencies but also in lower IPCs because of
larger branch misprediction penalties. Following Eq. (1), this can result in lower
performance. In CGRAs, however, this is not necessarily the case, as explained in
Sect. 3.3.1. To illustrate this, Table 3 includes IPCs obtained when generating code
for both CGRAs with and without the pipelining latches.

The benchmarks mapped onto the multimedia ADRES CGRA are a H.264AVC
video decoder, a wavelet-based video decoder, an MPEG4 video coder, a black-and-
white TIFF image filter, and a SHA-2 encryption algorithm. For each application
at most the 10 hottest inner loops are included in the table. For the SDR ADRES
CGRA, we selected two baseband modem benchmarks: one WLAN MIMO Channel
Estimation and one that implements the remainder of a WLAN SISO receiver. All
applications are implemented in standard ANSI C using all language features such
as pointers, structures, different loop constructs (while, for, do-while), but not using
dynamic memory management functions like malloc or free.

The general conclusions to be taken from the mapping results in Table 3 are as
follows. (1) Very high IPCs are obtained at low power consumption levels of 91 and
310 mW and at relatively high frequencies of 300 and 400 MHz, given the standard
cell 90 nm design. (2) Pipelining seems to be bad for performance only where the
initiation interval is bound by RecMII , which changes with pipelining. (3) In some
cases pipelining even improves the IPC.

Synthesizable VHDL is generated for both processors by a VHDL generator
that generates VHDL code starting from the same XML architecture specification
used to retarget the ANSI C compiler to different CGRA instances. A TSMC
90 nm standard cell GP CMOS (i.e. the General-Purpose technology version that is
optimized for performance and active power, not for leakage power) technology was
used to obtain the gate-level post-layout estimates for frequency, power and area in
Table 1. More detailed results of these experiments are available in the literature for
this SDR ADRES instance [11, 12], as well as for the multimedia instance [7, 71].
The SDR ADRES instance has also been produced in silicon in samples of a full
SoC SDR chip [25]. The two ADRES cores on this SoC proved to be fully functional
at 400 MHz, and the power consumption estimates have been validated.

One of the most interesting results is depicted in Fig. 10, which displays the
average power consumption distribution over the ADRES SDR CGRA when the
CGRA mode is active in the above SDR applications. Compared to VLIW processor
designs, a much larger fraction of the power is consumed in the interconnects
and in the FUs, while the configuration memory (which corresponds to an L1
VLIW instruction cache), the RFs and the data memory consume relatively little
energy. This is particularly the case for the local RFs. This clearly illustrates that by
focusing on regular loops and their specific properties, CGRAs can achieve higher
performance and a higher power-efficiency than VLIWs. On the CGRA, most of the
power is spent in the FUs and in the interconnects, i.e., on the actual computations
and on the transfers of values from computation to computation. The latter two

462 B. De Sutter et al.

Table 3 Results for the benchmark loops

Pipelined Non-pipelined

Benchmark CGRA Loop #ops ResMII RecMII II IPC RecMII II IPC

AVC Multimedia MBFilter1 70 5 2 6 11.7 1 6 11.7

decoder MBFilter2 89 6 7 9 9.9 6 8 11.1

MBFilter3 40 3 3 4 10.0 2 3 13.3

MBFilter4 105 7 2 9 11.7 1 9 11.7

MotionComp 109 7 3 10 10.9 2 10 10.9

FindFrameEnd 27 4 7 7 3.9 6 6 4.5

IDCT1 60 4 2 5 12.0 1 5 12.0

MBFilter5 87 6 3 7 12.4 2 7 12.4

Memset 10 2 2 2 5.0 1 2 5.0

IDCT2 38 3 2 3 12.7 1 3 12.7

Average 10.0 10.5

Wavelet Multimedia Forward1 67 5 5 6 11.2 5 5 13.4

Forward2 77 5 5 6 12.8 5 6 12.8

Reverse1 73 5 2 6 12.2 1 6 12.2

Reverse2 37 3 2 3 12.3 1 3 12.3

Average 12.1 12.7

MPEG-4 Multimedia MotionEst1 75 5 2 6 12.5 1 6 12.5

encoder MotionEst2 72 5 3 6 12.0 2 6 12.0

TextureCod1 73 5 7 7 10.4 6 6 12.2

CalcMBSAD 60 4 2 5 12.0 1 5 12.0

TextureCod2 9 1 2 2 4.5 1 2 4.5

TextureCod3 91 6 2 7 13.0 1 7 13.0

TextureCod4 91 6 2 7 13.0 1 7 13.0

TextureCod5 82 6 2 6 13.7 1 6 13.7

TextureCod6 91 6 2 7 13.0 1 7 13.0

MotionEst3 52 4 3 4 13.0 2 5 10.4

Average 11.7 11.6

Tiff2BW Multimedia Main loop 35 3 2 3 11.7 1 3 11.7

SHA-2 Multimedia Main loop 111 7 8 9 12.3 8 9 12.3

MIMO SDR Channel2 166 11 3 14 11.9 1 14 10.4

Channel1 83 6 3 8 10.4 1 8 10.7

SNR 75 5 4 6 12.5 2 6 12.5

Average 11.6 11.2

WLAN SDR DemapQAM64 55 4 3 6 9.2 1 6 9.2

64-point FFT 123 8 4 10 12.3 2 12 10.3

Radix8 FFT 122 8 3 10 12.2 1 12 10.2

Compensate 54 4 4 5 10.8 2 5 10.8

DataShuffle 153 14 3 14 10.9 1 16 9.6

Average 11.1 10.0

First, the target-version-independent number of operations (#ops) and the ResMII. Then for each
target version the RecMII, the actually achieved II and IPC (counting SIMD operations as only one
operation), and the compile time

Coarse-Grained Reconfigurable Array Architectures 463

Fig. 10 Average power
consumption distribution of
the ADRES SDR CGRA in
CGRA mode

aspects are really the fundamental parts of the computation to be performed, unlike
the fetching of data or the fetching of code, which are merely side-effects of the fact
that processors consist of control paths, data paths, and memories.

4.2.2 Design Space Exploration Example

Many DSEs have been performed within the ADRES template [7, 13, 18, 55, 71, 77].
We present one experimental result [55] here, not to present absolute numbers but to
demonstrate the large impact on performance and on energy consumption that some
design choices can have. In this experiment, a number of different interconnects
have been explored for four microbenchmarks (each consisting of several inner
loops): a MIMO SDR channel estimation, a Viterbi decoder, an Advanced Video
Codec (AVC) motion estimation, and an AVC half-pixel interpolation filter. All of
them have been compiled with the DRESC compiler for different architectures of
which the interconnects are combinations of the four basic interconnects of Fig. 6,
in which distributed RFs have been omitted for the sake of clarity.

Figure 11 depicts the relative performance and (estimated) energy consumption
for different combinations of these basic interconnects. The names of the different
architectures indicate which basic interconnects are included in its interconnect. For
example, the architecture b_nn_ex includes the buses, nearest neighbor intercon-
nects and extra connections to the shared RF. The lines connecting architectures
in the charts of Fig. 11 connect the architectures on the Pareto fronts: these are
the architectures that have an optimal combination of cycle count and energy
consumption. Depending on the trade-off made by a designer between performance
and energy consumption, he will select one architecture on that Pareto front.

The lesson to learn from these Pareto fronts is that relatively small architectural
changes, in this case involving only the interconnect but not the ISs or the distributed
RFs, can span a wide range of architectures in terms of performance and energy-
efficiency. When designing a new CGRA or choosing for an existing one, it is hence

464 B. De Sutter et al.

a b

c d

Fig. 11 DSE results for four microbenchmarks on 4 × 4 CGRAs with fixed ISs and fixed RFs,
but with varying interconnects. (a) MIMO, (b) AVC interpolation, (c) Viterbi, (d) AVC motion
estimation

absolutely necessary to perform a good DSE that covers ISA, ISs, interconnect and
RFs. Because of the large design space, this is far from trivial.

5 Conclusions

This chapter on CGRA architectures presented a discussion of the CGRA processor
design space as an accelerator for inner loops of DSP-like applications such as
software-defined radios and multimedia processing. A range of options for many
design features and design parameters has been related to power consumption,
performance, and flexibility. In a use case, the need for design space exploration
and for advanced compiler support and manual high-level code tuning have been
demonstrated. The above discussions and demonstration support the following
main conclusions. Firstly, CGRAs can provide an excellent alternative for VLIWs,
providing better performance and better energy efficiency. Secondly, design space
exploration is needed to achieve those goals. Finally, existing compiler support
needs to be improved, and until that happens, programmers need to have a deep
understanding of the targeted CGRA architectures and their compilers in order
to manually tune their source code. This can significantly limit programmer
productivity.

Coarse-Grained Reconfigurable Array Architectures 465

6 Further Reading

For further reading, the historic development of the ADRES architecture is interest-
ing, from the first academic conception of the architecture and its initial compiler
support [73–75], over the first fabricated prototypes [12, 25], to their commercial
derivatives [44]. The historic development of appropriate compiler models [24] and
scheduling techniques [78, 81, 82, 107] to achieve both high code quality and fast
compilation is interesting as well.

Some of the more interesting recent research directions include power optimiza-
tion by means of adaptive and multiple Vdd’s [33, 115, 120], architectural and
compiler support for nested loops [57, 121–123], more dynamic control [126], and
support for thread-level parallelism [80, 83, 110].

For pointers for further reading on other specific design aspects of CGRAs,
we refer to the corresponding sections in this chapter, which include plenty of
references.

References

1. Abnous, A., Christensen, C., Gray, J., Lenell, J., Naylor, A., Bagherzadeh, N.: Design and
implementation of the “Tiny RISC” microprocessor. Microprocessors & Microsystems 16(4),
187–193 (1992)

2. Ahn, M., Yoon, J.W., Paek, Y., Kim, Y., Kiemb, M., Choi, K.: A spatial mapping algorithm
for heterogeneous coarse-grained reconfigurable architectures. In: DATE ’06: Proceedings of
the Conference on Design, Automation and Test in Europe, pp. 363–368 (2006)

3. Ansaloni, G., Bonzini, P., Pozzi, L.: EGRA: A coarse grained reconfigurable architectural
template. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(6), 1062–
1074 (2011)

4. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance
computing. ACM Comput. Surv. 26(4), 345–420 (1994)

5. Barua, R.: Maps: a compiler-managed memory system for software-exposed architectures.
Ph.D. thesis, Massachusetts Institute of Technology (2000)

6. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral model
is more widely applicable than you think. In: Proceedings of the 19th Joint European
Conference on Theory and Practice of Software, International Conference on Compiler
Construction, CC’10/ETAPS’10, pp. 283–303. Springer-Verlag, Berlin, Heidelberg (2010)

7. Berekovic, M., Kanstein, A., Mei, B., De Sutter, B.: Mapping of nomadic multimedia
applications on the ADRES reconfigurable array processor. Microprocessors & Microsystems
33(4), 290–294 (2009)

8. van Berkel, k., Heinle F. amd Meuwissen, P., Moerman, K., Weiss, M.: Vector processing
as an enabler for software-defined radio in handheld devices. EURASIP Journal on Applied
Signal Processing 2005(16), 2613–2625 (2005)

9. Betz, V., Rose, J., Marguardt, A.: Architecture and CAD for Deep-Submicron FPGAs. Kluwer
Academic Publishers (1999)

10. Bondalapati, K.: Parallelizing DSP nested loops on reconfigurable architectures using data
context switching. In: DAC ’01: Proceedings of the 38th annual Design Automation
Conference, pp. 273–276 (2001)

466 B. De Sutter et al.

11. Bougard, B., De Sutter, B., Rabou, S., Novo, D., Allam, O., Dupont, S., Van der Perre, L.:
A coarse-grained array based baseband processor for 100Mbps+ software defined radio. In:
DATE ’08: Proceedings of the Conference on Design, Automation and Test in Europe, pp.
716–721 (2008)

12. Bougard, B., De Sutter, B., Verkest, D., Van der Perre, L., Lauwereins, R.: A coarse-grained
array accelerator for software-defined radio baseband processing. IEEE Micro 28(4), 41–50
(2008). http://doi.ieeecomputersociety.org/10.1109/MM.2008.49

13. Bouwens, F., Berekovic, M., Gaydadjiev, G., De Sutter, B.: Architecture enhancements
for the ADRES coarse-grained reconfigurable array. In: HiPEAC ’08: Proceedings of the
International Conference on High-Performance Embedded Architectures and Compilers, pp.
66–81 (2008)

14. Burns, G., Gruijters, P.: Flexibility tradeoffs in SoC design for low-cost SDR. Proceedings of
SDR Forum Technical Conference (2003)

15. Burns, G., Gruijters, P., Huiskens, J., van Wel, A.: Reconfigurable accelerators enabling
efficient SDR for low cost consumer devices. Proceedings of SDR Forum Technical
Conference (2003)

16. Cardoso, J.M.P., Weinhardt, M.: XPP-VC: A C compiler with temporal partitioning for the
PACT-XPP architecture. In: FPL ’02: Proceedings of the 12th International Conference on
Field-Programmable Logic and Applications, pp. 864–874 (2002)

17. Cervero, T.: Analysis, implementation and architectural exploration of the H.264/AVC
decoder onto a reconfigurable architecture. Master’s thesis, Universidad de Los Palmas de
Gran Canaria (2007)

18. Cervero, T., Kanstein, A., López, S., De Sutter, B., Sarmiento, R., Mignolet, J.Y.: Architec-
tural exploration of the H.264/AVC decoder onto a coarse-grain reconfigurable architecture.
In: Proceedings of the International Conference on Design of Circuits and Integrated Systems
(2008)

19. Chen, L., Mitra, T.: Graph minor approach for application mapping on CGRAs. ACM Trans.
on Reconf. Technol. and Systems 7(3), 21 (2014)

20. Coons, K.E., Chen, X., Burger, D., McKinley, K.S., Kushwaha, S.K.: A spatial path schedul-
ing algorithm for EDGE architectures. In: ASPLOS ’06: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 129–148 (2006)

21. Corporaal, H.: Microprocessor Architectures from VLIW to TTA. John Wiley (1998)
22. Cronquist, D., Franklin, P., Fisher, C., Figueroa, M., Ebeling, C.: Architecture design of

reconfigurable pipelined datapaths. In: Proceedings of the Twentieth Anniversary Conference
on Advanced Research in VLSI (1999)

23. De Sutter, B., Allam, O., Raghavan, P., Vandebriel, R., Cappelle, H., Vander Aa, T., Mei,
B.: An efficient memory organization for high-ILP inner modem baseband SDR processors.
Journal of Signal Processing Systems 61(2), 157–179 (2010)

24. De Sutter, B., Coene, P., Vander Aa, T., Mei, B.: Placement-and-routing-based register
allocation for coarse-grained reconfigurable arrays. In: LCTES ’08: Proceedings of the 2008
ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems, pp. 151–160 (2008)

25. Derudder, V., Bougard, B., Couvreur, A., Dewilde, A., Dupont, S., Folens, L., Hollevoet, L.,
Naessens, F., Novo, D., Raghavan, P., Schuster, T., Stinkens, K., Weijers, J.W., Van der Perre,
L.: A 200Mbps+ 2.14nJ/b digital baseband multi processor system-on-chip for SDRs. In:
Proceedings of the Symposium on VLSI Systems, pp. 292–293 (2009)

26. Ebeling, C.: Compiling for coarse-grained adaptable architectures. Tech. Rep. UW-CSE-02-
06-01, University of Washington (2002)

27. Ebeling, C.: The general RaPiD architecture description. Tech. Rep. UW-CSE-02-06-02,
University of Washington (2002)

http://doi.ieeecomputersociety.org/10.1109/MM.2008.49

Coarse-Grained Reconfigurable Array Architectures 467

28. Fisher, J., Faraboschi, P., Young, C.: Embedded Computing, A VLIW Approach to Architec-
ture, Compilers and Tools. Morgan Kaufmann (2005)

29. Friedman, S., Carroll, A., Van Essen, B., Ylvisaker, B., Ebeling, C., Hauck, S.: SPR: an
architecture-adaptive CGRA mapping tool. In: FPGA ’09: Proceeding of the ACM/SIGDA
International symposium on Field Programmable Gate Arrays, pp. 191–200. ACM, New
York, NY, USA (2009)

30. Galanis, M.D., Milidonis, A., Theodoridis, G., Soudris, D., Goutis, C.E.: A method for
partitioning applications in hybrid reconfigurable architectures. Design Automation for
Embedded Systems 10(1), 27–47 (2006)

31. Galanis, M.D., Theodoridis, G., Tragoudas, S., Goutis, C.E.: A reconfigurable coarse-grain
data-path for accelerating computational intensive kernels. Journal of Circuits, Systems and
Computers pp. 877–893 (2005)

32. Gebhart, M., Maher, B.A., Coons, K.E., Diamond, J., Gratz, P., Marino, M., Ranganathan, N.,
Robatmili, B., Smith, A., Burrill, J., Keckler, S.W., Burger, D., McKinley, K.S.: An evaluation
of the TRIPS computer system. In: ASPLOS ’09: Proceeding of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 1–12 (2009)

33. Gu, J., Yin, S., Liu, L., Wei, S.: Energy-aware loops mapping on multi-vdd CGRAs without
performance degradation. In: 22nd Asia and South Pacific Design Automation Conference,
ASP-DAC 2017, Chiba, Japan, January 16–19, 2017, pp. 312–317 (2017)

34. Hamzeh, M., Shrivastava, A., Vrudhula, S.: EPIMap: using epimorphism to map applications
on CGRAs. In: Proc. 49th Annual Design Automation Conf., pp. 1284–1291 (2012)

35. Hamzeh, M., Shrivastava, A., Vrudhula, S.B.K.: REGIMap: register-aware application
mapping on coarse-grained reconfigurable architectures (CGRAs). In: Proc. Annual Design
Automation Conf., pp. 1–10 (2013)

36. Hamzeh, M., Shrivastava, A., Vrudhula, S.B.K.: Branch-aware loop mapping on CGRAs. In:
The 51st Annual Design Automation Conference 2014, DAC ’14, San Francisco, CA, USA,
June 1–5, 2014, pp. 107:1–107:6 (2014)

37. Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications onto
reconfigurable KressArrays. In: Proceedings of the 9th International Workshop on Field
Programmable Logic and Applications (1999)

38. Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Generation of design suggestions
for coarse-grain reconfigurable architectures. In: FPL ’00: Proceedings of the 10th Interna-
tional Workshop on Field Programmable Logic and Applications (2000)

39. Hartenstein, R., Hoffmann, T., Nageldinger, U.: Design-space exploration of low power
coarse grained reconfigurable datapath array architectures. In: Proceedings of the Interna-
tional Workshop - Power and Timing Modeling, Optimization and Simulation (2000)

40. Hartmann, M., Pantazis, V., Vander Aa, T., Berekovic, M., Hochberger, C., De Sutter, B.: Still
image processing on coarse-grained reconfigurable array architectures. In: Proceedings of
the IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia, pp. 67–72
(2007)

41. Jang, C., Kim, J., Lee, J., Kim, H.S., Yoo, D., Kim, S., Kim, H.S., Ryu, S.: An instruction-
scheduling-aware data partitioning technique for coarse-grained reconfigurable architectures.
In: Proc. ACM SIGPLAN/SIGBED Conf. Languages, compilers, and tools for embedded
systems (LCTES), pp. 151–160 (2011)

42. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for uniform
recurrence equations. J. ACM 14(3), 563–590 (1967)

43. Kessler, C.W.: Compiling for VLIW DSPs. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer
(2018)

468 B. De Sutter et al.

44. Kim, C., Chung, M., Cho, Y., Konijnenburg, M., Ryu, S., Kim, J.: ULP-SRP: Ultra
low power Samsung Reconfigurable Processor for biomedical applications. In: 2012
International Conference on Field-Programmable Technology, pp. 329–334 (2012). DOI
10.1109/FPT.2012.6412157

45. Kim, H.s., Yoo, D.h., Kim, J., Kim, S., Kim, H.s.: An instruction-scheduling-aware data
partitioning technique for coarse-grained reconfigurable architectures. In: LCTES ’11:
Proceedings of the 2011 ACM SIGPLAN-SIGBED Conference on Languages, Compilers,
Tools and Theory for Embedded Systems, pp. 151–160 (2011)

46. Kim, W., Choi, Y., Park, H.: Fast modulo scheduler utilizing patternized routes for coarse-
grained reconfigurable architectures. ACM Trans. on Architec. and Code Optim. 10(4), 1–24
(2013)

47. Kim, W., Yoo, D., Park, H., Ahn, M.: SCC based modulo scheduling for coarse-grained
reconfigurable processors. In: Proc. Conf. on Field-Programmable Technology, pp. 321–328
(2012)

48. Kim, Y., Kiemb, M., Park, C., Jung, J., Choi, K.: Resource sharing and pipelining in
coarse-grained reconfigurable architecture for domain-specific optimization. In: DATE ’05:
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 12–17 (2005)

49. Kim, Y., Lee, J., Shrivastava, A., Paek, Y.: Operation and data mapping for CGRAs with
multi-bank memory. In: LCTES ’10: Proceedings of the 2010 ACM SIGPLAN-SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems, pp. 17–25 (2010)

50. Kim, Y., Lee, J., Shrivastava, A., Yoon, J., Paek, Y.: Memory-aware application mapping on
coarse-grained reconfigurable arrays. In: HiPEAC ’10: Proceedings of the 2010 International
Conference on High Performance Embedded Architectures and Compilers, pp. 171–185
(2010)

51. Kim, Y., Mahapatra, R.: A new array fabric for coarse-grained reconfigurable architecture.
In: Proceedings of the IEEE EuroMicro Conference on Digital System Design, pp. 584–591
(2008)

52. Kim, Y., Mahapatra, R., Park, I., Choi, K.: Low power reconfiguration technique for coarse-
grained reconfigurable architecture. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 17(5), 593–603 (2009)

53. Kim, Y., Mahapatra, R.N.: Dynamic Context Compression for Low-Power Coarse-Grained
Reconfigurable Architecture. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 18(1), 15–28 (2010)

54. Lam, M.S.: Software pipelining: an effective scheduling technique for VLIW machines. In:
Proc. PLDI, pp. 318–327 (1988)

55. Lambrechts, A., Raghavan, P., Jayapala, M., Catthoor, F., Verkest, D.: Energy-aware inter-
connect optimization for a coarse grained reconfigurable processor. In: Proceedings of the
International Conference on VLSI Design, pp. 201–207 (2008)

56. Lee, G., Choi, K., Dutt, N.: Mapping multi-domain applications onto coarse-grained recon-
figurable architectures. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems 30(5), 637–650 (2011)

57. Lee, J., Seo, S., Lee, H., Sim, H.U.: Flattening-based mapping of imperfect loop nests for
CGRAs. In: 2014 International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2014, Uttar Pradesh, India, October 12–17, 2014, pp. 9:1–9:10
(2014)

58. Lee, J.e., Choi, K., Dutt, N.D.: An algorithm for mapping loops onto coarse-grained
reconfigurable architectures. In: LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
Conference on Languages, Compilers, and Tools for Embedded Systems, pp. 183–188 (2003)

59. Lee, L.H., Moyer, B., Arends, J.: Instruction fetch energy reduction using loop caches for
embedded applications with small tight loops. In: ISLPED ’99: Proceedings of the 1999
International symposium on Low power electronics and design, pp. 267–269. ACM, New
York, NY, USA (1999)

Coarse-Grained Reconfigurable Array Architectures 469

60. Lee, M.H., Singh, H., Lu, G., Bagherzadeh, N., Kurdahi, F.J., Filho, E.M.C., Alves, V.C.:
Design and implementation of the MorphoSys reconfigurable computing processor. J. VLSI
Signal Process. Syst. 24(2/3), 147–164 (2000)

61. Lee, W.J., Woo, S.O., Kwon, K.T., Son, S.J., Min, K.J., Jang, G.J., Lee, C.H., Jung, S.Y., Park,
C.M., Lee, S.H.: A scalable GPU architecture based on dynamically reconfigurable embedded
processor. In: Proc. ACM Conference on High-Performance Graphics (2011)

62. Liang, S., Yin, S., Liu, L., Guo, Y., Wei, S.: A coarse-grained reconfigurable architecture
for compute-intensive MapReduce acceleration. Computer Architecture Letters 15(2), 69–72
(2016)

63. Lin, X., Yin, S., Liu, L., Wei, S.: Exploiting parallelism of imperfect nested loops with sibling
inner loops on coarse-grained reconfigurable architectures. In: 21st Asia and South Pacific
Design Automation Conference, ASP-DAC 2016, Macao, January 25–28, 2016, pp. 456–461
(2016)

64. Liu, D., Yin, S., Liu, L., Wei, S.: Mapping multi-level loop nests onto CGRAs using
polyhedral optimizations. IEICE Transactions 98-A(7), 1419–1430 (2015)

65. Liu, D., Yin, S., Peng, Y., Liu, L., Wei, S.: Optimizing spatial mapping of nested loop for
coarse-grained reconfigurable architectures. IEEE Trans. VLSI Syst. 23(11), 2581–2594
(2015)

66. Liu, L., Deng, C., Wang, D., Zhu, M., Yin, S., Cao, P., Wei, S.: An energy-efficient coarse-
grained dynamically reconfigurable fabric for multiple-standard video decoding applications.
In: Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, pp. 1–4 (2013).
https://doi.org/10.1109/CICC.2013.6658434

67. Liu, L., Wang, D., Chen, Y., Zhu, M., Yin, S., Wei, S.: An implementation of multiple-
standard video decoder on a mixed-grained reconfigurable computing platform. IEICE
Transactions 99-D(5), 1285–1295 (2016)

68. Madhu, K.T., Das, S., Nalesh, S., Nandy, S.K., Narayan, R.: Compiling HPC kernels for
the REDEFINE CGRA. In: 17th IEEE International Conference on High Performance
Computing and Communications, HPCC 2015, 7th IEEE International Symposium on
Cyberspace Safety and Security, CSS 2015, and 12th IEEE International Conference on
Embedded Software and Systems, ICESS 2015, New York, NY, USA, August 24–26, 2015,
pp. 405–410 (2015)

69. Mahadurkar, M., Merchant, F., Maity, A., Vatwani, K., Munje, I., Gopalan, N., Nandy,
S.K., Narayan, R.: Co-exploration of NLA kernels and specification of compute elements in
distributed memory CGRAs. In: XIVth International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, SAMOS 2014, Agios Konstantinos,
Samos, Greece, July 14–17, 2014, pp. 225–232 (2014)

70. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective compiler
support for predicated execution using the hyperblock. In: MICRO 25: Proceedings of
the 25th annual International symposium on Microarchitecture, pp. 45–54. IEEE Computer
Society Press, Los Alamitos, CA, USA (1992)

71. Mei, B., De Sutter, B., Vander Aa, T., Wouters, M., Kanstein, A., Dupont, S.: Implementation
of a coarse-grained reconfigurable media processor for AVC decoder. Journal of Signal
Processing Systems 51(3), 225–243 (2008)

72. Mei, B., Lambrechts, A., Verkest, D., Mignolet, J.Y., Lauwereins, R.: Architecture exploration
for a reconfigurable architecture template. IEEE Design and Test of Computers 22(2), 90–101
(2005)

73. Mei, B., Vernalde, S., Verkest, D., Lauwereins, R.: Design methodology for a tightly coupled
VLIW/reconfigurable matrix architecture: A case study. In: DATE ’04: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1224–1229 (2004)

74. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: An architecture with
tightly coupled VLIW processor and coarse-grained reconfigurable matrix. In: Proc. of Field-
Programmable Logic and Applications, pp. 61–70 (2003)

https://doi.org/10.1109/CICC.2013.6658434

470 B. De Sutter et al.

75. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: Exploiting loop-level
parallelism for coarse-grained reconfigurable architecture using modulo scheduling. IEE
Proceedings: Computer and Digital Techniques 150(5) (2003)

76. Merchant, F., Maity, A., Mahadurkar, M., Vatwani, K., Munje, I., Krishna, M., Nalesh,
S., Gopalan, N., Raha, S., Nandy, S.K., Narayan, R.: Micro-architectural enhancements in
distributed memory CGRAs for LU and QR factorizations. In: 28th International Conference
on VLSI Design, VLSID 2015, Bangalore, India, January 3–7, 2015, pp. 153–158 (2015)

77. Novo, D., Schuster, T., Bougard, B., Lambrechts, A., Van der Perre, L., Catthoor, F.: Energy-
performance exploration of a CGA-based SDR processor. Journal of Signal Processing
Systems (2009)

78. Oh, T., Egger, B., Park, H., Mahlke, S.: Recurrence cycle aware modulo scheduling for
coarse-grained reconfigurable architectures. In: LCTES ’09: Proceedings of the 2009 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,
pp. 21–30 (2009)

79. PACT XPP Technologies: XPP-III Processor Overview White Paper (2006)
80. Pager, J., Jeyapaul, R., Shrivastava, A.: A software scheme for multithreading on CGRAs.

ACM Trans. Embedded Comput. Syst. 14(1), 19 (2015)
81. Park, H., Fan, K., Kudlur, M., Mahlke, S.: Modulo graph embedding: Mapping applications

onto coarse-grained reconfigurable architectures. In: CASES ’06: Proceedings of the 2006
International Conference on Compilers, architecture and synthesis for embedded systems, pp.
136–146 (2006)

82. Park, H., Fan, K., Mahlke, S.A., Oh, T., Kim, H., Kim, H.S.: Edge-centric modulo scheduling
for coarse-grained reconfigurable architectures. In: PACT ’08: Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques, pp. 166–176
(2008)

83. Park, H., Park, Y., Mahlke, S.: Polymorphic pipeline array: a flexible multicore accelerator
with virtualized execution for mobile multimedia applications. In: MICRO ’09: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 370–380
(2009)

84. Park, H., Park, Y., Mahlke, S.A.: A dataflow-centric approach to design low power control
paths in CGRAs. In: Proc. IEEE Symp. on Application Specific Processors, pp. 15–20 (2009)

85. Park, J., Park, Y., Mahlke, S.A.: Efficient execution of augmented reality applications on
mobile programmable accelerators. In: Proc. Conf. on Field-Programmable Technology, pp.
176–183 (2013)

86. Park, Y., Park, H., Mahlke, S.: CGRA express: accelerating execution using dynamic
operation fusion. In: CASES ’09: Proceedings of the 2009 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pp. 271–280 (2009)

87. Park, Y., Park, H., Mahlke, S., Kim, S.: Resource recycling: putting idle resources to work on
a composable accelerator. In: CASES ’10: Proceedings of the 2010 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, pp. 21–30 (2010)

88. Peng, Y., Yin, S., Liu, L., Wei, S.: Battery-aware loop nests mapping for CGRAs. IEICE
Transactions 98-D(2), 230–242 (2015)

89. Peng, Y., Yin, S., Liu, L., Wei, S.: Battery-aware mapping optimization of loop nests for
CGRAs. In: The 20th Asia and South Pacific Design Automation Conference, ASP-DAC
2015, Chiba, Japan, January 19–22, 2015, pp. 767–772 (2015)

90. Petkov, N.: Systolic Parallel Processing. North Holland Publishing (1992)
91. P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, D. Verkest, Corporaal, H.: Very wide

register: An asymmetric register file organization for low power embedded processors. In:
DATE ’07: Proceedings of the Conference on Design, Automation and Test in Europe (2007)

92. Rákossy, Z.E., Merchant, F., Aponte, A.A., Nandy, S.K., Chattopadhyay, A.: Efficient and
scalable CGRA-based implementation of column-wise Givens rotation. In: IEEE 25th
International Conference on Application-Specific Systems, Architectures and Processors,
ASAP 2014, Zurich, Switzerland, June 18–20, 2014, pp. 188–189 (2014)

93. Rau, B.R.: Iterative modulo scheduling. Tech. rep., Hewlett-Packard Lab: HPL-94-115 (1995)

Coarse-Grained Reconfigurable Array Architectures 471

94. Rau, B.R., Lee, M., Tirumalai, P.P., Schlansker, M.S.: Register allocation for software
pipelined loops. In: PLDI ’92: Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation, pp. 283–299 (1992)

95. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D., Keckler, S.W.,
Moore, C.R.: Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.
SIGARCH Comput. Archit. News 31(2), 422–433 (2003)

96. Scarpazza, D.P., Raghavan, P., Novo, D., Catthoor, F., Verkest, D.: Software simultaneous
multi-threading, a technique to exploit task-level parallelism to improve instruction- and
data-level parallelism. In: PATMOS ’06: Proceedings of the 16th International Workshop
on Integrated Circuit and System Design. Power and Timing Modeling, Optimization and
Simulation, pp. 107–116 (2006)

97. Schlansker, M., Mahlke, S., Johnson, R.: Control CPR: a branch height reduction optimization
for EPIC architectures. SIGPLAN Notices 34(5), 155–168 (1999)

98. Shao, S., Yin, S., Liu, L., Wei, S.: Map-reduce inspired loop parallelization on CGRA. In:
IEEE International Symposium on Circuits and Systems, ISCAS 2014, Melbourne, Victoria,
Australia, June 1–5, 2014, pp. 1231–1234 (2014)

99. Shen, J., Lipasti, M.: Modern Processor Design: Fundamentals of Superscalar Processors.
McGraw-Hill (2005)

100. Shi, R., Yin, S., Liu, L., Liu, Q., Liang, S., Wei, S.: The implementation of texture-based
video up-scaling on coarse-grained reconfigurable architecture. IEICE Transactions 98-D(2),
276–287 (2015)

101. Silicon Hive: HiveCC Databrief (2006)
102. Sudarsanam, A.: Code optimization libraries for retargetable compilation for embedded

digital signal processors. Ph.D. thesis, Princeton University (1998)
103. Suh, D., Kwon, K., Kim, S., Ryu, S., Kim, J.: Design space exploration and implementation

of a high performance and low area coarse grained reconfigurable processor. In: Proc. on
Conf. Field-Programmable Technology, pp. 67–70 (2012)

104. Suzuki, T., Yamada, H., Yamagishi, T., Takeda, D., Horisaki, K., Vander Aa, T., Fujisawa,
T., Van der Perre, L., Unekawa, Y.: High-throughput, low-power software-defined radio using
reconfigurable processors. IEEE Micro 31(6), 19–28 (2011)

105. Taylor, M., Kim, J., Miller, J., Wentzla, D., Ghodrat, F., Greenwald, B., Ho, H., Lee, M.,
Johnson, P., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Frank, V., Amarasinghe,
S., Agarwal, A.: The Raw microprocessor: A computational fabric for software circuits and
general purpose programs. IEEE Micro 22(2), 25–35 (2002)

106. Texas Instruments: TMS320C64x Technical Overview (2001)
107. Theocharis, P., De Sutter, B.: A bimodal scheduler for coarse-grained reconfigurable arrays.

ACM Trans. on Architecture and Code Optimization 13(2), 15:1–15:26 (2016)
108. Van Essen, B., Panda, R., Wood, A., Ebeling, C., Hauck, S.: Managing short-lived and long-

lived values in coarse-grained reconfigurable arrays. In: FPL ’10: Proceedings of the 2010
International Conference on Field Programmable Logic and Applications, pp. 380–387 (2010)

109. Van Essen, B., Panda, R., Wood, A., Ebeling, C., Hauck, S.: Energy-Efficient Specialization
of Functional Units in a Coarse-Grained Reconfigurable Array. In: FPGA ’11: Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp.
107–110 (2011)

110. Vander Aa, T., Palkovic, M., Hartmann, M., Raghavan, P., Dejonghe, A., Van der Perre, L.:
A multi-threaded coarse-grained array processor for wireless baseband. In: Proc. 9th IEEE
Symp. Application Specific Processors, pp. 102–107 (2011)

111. Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W., Hammes, J.:
Automatic compilation to a coarse-grained reconfigurable system-on-chip. ACM Trans.
Embed. Comput. Syst. 2(4), 560–589 (2003)

112. van de Waerdt, J.W., Vassiliadis, S., Das, S., Mirolo, S., Yen, C., Zhong, B., Basto, C.,
van Itegem, J.P., Amirtharaj, D., Kalra, K., Rodriguez, P., van Antwerpen, H.: The TM3270
media-processor. In: MICRO 38: Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture, pp. 331–342. IEEE Computer Society, Washington, DC,
USA (2005)

472 B. De Sutter et al.

113. Woh, M., Lin, Y., Seo, S., Mahlke, S., Mudge, T., Chakrabarti, C., Bruce, R., Kershaw,
D., Reid, A., Wilder, M., Flautner, K.: From SODA to scotch: The evolution of a wireless
baseband processor. In: MICRO ’08: Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pp. 152–163. IEEE Computer Society, Washington, DC,
USA (2008)

114. Programming XPP-III Processors White Paper (2006)
115. Xu, B., Yin, S., Liu, L., Wei, S.: Low-power loop parallelization onto CGRA utilizing variable

dual vdd . IEICE Transactions 98-D(2), 243–251 (2015)
116. Yang, C., Liu, L., Luo, K., Yin, S., Wei, S.: CIACP: A correlation- and iteration- aware cache

partitioning mechanism to improve performance of multiple coarse-grained reconfigurable
arrays. IEEE Trans. Parallel Distrib. Syst. 28(1), 29–43 (2017)

117. Yang, C., Liu, L., Wang, Y., Yin, S., Cao, P., Wei, S.: Configuration approaches to improve
computing efficiency of coarse-grained reconfigurable multimedia processor. In: 24th
International Conference on Field Programmable Logic and Applications, FPL 2014, Munich,
Germany, 2–4 September, 2014, pp. 1–4 (2014)

118. Yang, C., Liu, L., Wang, Y., Yin, S., Cao, P., Wei, S.: Configuration approaches to enhance
computing efficiency of coarse-grained reconfigurable array. Journal of Circuits, Systems,
and Computers 24(3) (2015)

119. Yang, C., Liu, L., Yin, S., Wei, S.: Data cache prefetching via context directed pattern
matching for coarse-grained reconfigurable arrays. In: Proceedings of the 53rd Annual Design
Automation Conference, DAC 2016, Austin, TX, USA, June 5–9, 2016, pp. 64:1–64:6 (2016)

120. Yin, S., Gu, J., Liu, D., Liu, L., Wei, S.: Joint modulo scheduling and vdd assignment for
loop mapping on dual-vdd CGRAs. IEEE Trans. on CAD of Integrated Circuits and Systems
35(9), 1475–1488 (2016)

121. Yin, S., Lin, X., Liu, L., Wei, S.: Exploiting parallelism of imperfect nested loops on coarse-
grained reconfigurable architectures. IEEE Trans. Parallel Distrib. Syst. 27(11), 3199–3213
(2016)

122. Yin, S., Liu, D., Liu, L., Wei, S., Guo, Y.: Joint affine transformation and loop pipelining for
mapping nested loop on CGRAs. In: Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9–13, 2015, pp.
115–120 (2015)

123. Yin, S., Liu, D., Peng, Y., Liu, L., Wei, S.: Improving nested loop pipelining on coarse-grained
reconfigurable architectures. IEEE Trans. VLSI Syst. 24(2), 507–520 (2016)

124. Yin, S., Yao, X., Liu, D., Liu, L., Wei, S.: Memory-aware loop mapping on coarse-grained
reconfigurable architectures. IEEE Trans. VLSI Syst. 24(5), 1895–1908 (2016)

125. Yin, S., Zhou, P., Liu, L., Wei, S.: Acceleration of nested conditionals on CGRAs via trigger
scheme. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2015, Austin, TX, USA, November 2–6, 2015, pp. 597–604 (2015)

126. Yin, S., Zhou, P., Liu, L., Wei, S.: Trigger-centric loop mapping on CGRAs. IEEE Trans.
VLSI Syst. 24(5), 1998–2002 (2016)

127. Yoon, J., Ahn, M., Paek, Y., Kim, Y., Choi, K.: Temporal mapping for loop pipelining on a
MIMD-style coarse-grained reconfigurable architecture. In: Proceedings of the International
SoC Design Conference (2006)

128. Yoon, J.W., Shrivastava, A., Park, S., Ahn, M., Jeyapaul, R., Paek, Y.: SPKM : A novel
graph drawing based algorithm for application mapping onto coarse-grained reconfigurable
architectures. In: Proc. 13th Asia South Pacific Design Automation Conf. (ASP-DAC), pp.
776–782 (2008)

High Performance Stream Processing
on FPGA

John McAllister

Abstract Field Programmable Gate Array (FPGA) have plentiful computational,
communication and member bandwidth resources which may be combined into
high-performance, low-cost accelerators for computationally demanding operations.
However, deriving efficient accelerators currently requires manual register trans-
fer level design—a highly time-consuming and unproductive process. Software-
programmable processors are a promising way to alleviate this design burden but
are unable to support performance and cost comparable to hand-crafted custom
circuits. A novel type of processor is described which overcomes this shortcoming
for streaming operations. It employs a fine-grained processor with very high
levels of customisability and advanced program control and memory addressing
capabilities in very large-scale custom multicore networks to enable accelerators
whose performance and cost match those of hand-crafted custom circuits and well
beyond comparable soft processors.

1 Introduction

Field Programmable Gate Array (FPGA) technologies have long been recognised
for their ability to enable very high-performance realisations of computationally
demanding, highly parallel operations beyond the capability of other embedded
processing technologies. Recent generations of FPGA have seen a rapid increase
in this computational capacity and the emergence of System-on-Chip SoC-FPGA,
incorporating heterogeneous multicore processors alongside FPGA programmable
fabric. A key motivation for these hybrid architectures is the ability of FPGA to host
performance-critical operations, offloaded from processors, as application-specific
accelerators with any combination of high-performance, low cost or high energy
efficiency.

J. McAllister (�)
Institute of Electronics, Communications and Information Technology (ECIT), Queen’s
University Belfast, Belfast, UK
e-mail: jp.mcallister@ieee.org

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_13

473

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_13&domain=pdf
mailto:jp.mcallister@ieee.org
https://doi.org/10.1007/978-3-319-91734-4_13

474 J. McAllister

The resources available with which accelerators may be built are enormous: the
designer has, every second, access to trillions of multiply accumulate operations via
on-chip DSP units [3, 30] and memory locations in Block RAM (BRAM) [3, 31],
alongside the computationally powerful and highly flexible Look-Up Table (LUT)
FPGA programmable logic [17]. For instance, the Virtexő-7 family of Xilinx FPGAs
offers up to 7× 1012 multiply-accumulate (MAC) operations per second and 40 ×
1012 bits/s memory access rates.

To combine these resources into accelerators of highest performance or lowest
cost, though, requires manual design of custom circuit architectures at Register
Transfer Level (RTL) in a hardware design language. This is a low level of design
abstraction which imposes a heavy design burden, significantly more complicated
than describing behaviour in a software programming language. Hence, for many
years designers have sought a way to realise accelerators more rapidly without
suffering critical performance or cost bottlenecks. Software-programmable ‘soft’
processors are one way to do so, but at present adopting such an approach demands
substantial compromise on performance and cost. Soft processors allow their
architecture to be tuned before synthesis to improve the performance and cost of
the final result. Soft general-purpose processors such as MicroBlaze [32] and Nios-
II [2] are performance-limited and a series of approaches attempt to resolve this
issue. One approach uses soft vector coprocessors [9, 24, 33, 34] employing either
assembly-level [34] or mixed C-macro and inline assembly programming. These
enable performance increases by orders of magnitude beyond Nios-II and MIPS
[34], but performance and cost still lag custom circuits. An alternative approach is to
redesign the architecture of the central processor architecture for performance/cost
benefit, and approach adopted in the iDEA [8] processor. Multicore architectures
incorporating up to 16 [12, 22, 25] or even 100 processors in [12] have also been
proposed.

However, the cost of enabling software programmability in all of these
approaches is a reduction in performance or efficiency in the resulting accelerators,
relative to custom circuit solutions. The result is that the performance of these
architectures is only marginally beyond that of software-programmable devices and
there is no evidence these are competitive with custom circuits. It appears that if
FPGA soft processors are to be a viable alternative to custom accelerators then
performance and cost must improve radically.

2 The FPGA-Based Processing Element (FPE)

A unique, lean soft processor—the FPGA Processing Element (FPE)—is proposed
to resolve this deficiency. The architecture of the FPE is shown in Fig. 1. It contains
only the minimum set of resources required for programmability: the instructions
pointed to by the Program Counter (PC) are loaded from Program Memory (PM)
and decoded by the Instruction Decoder (ID). Data operands are read either from
Register File (RF), or in the case of immediate data Immediate Memory (IMM) and

High Performance Stream Processing on FPGA 475

ID/RF

Program
Counter

Program
Memory

Register
File

COMM
Branch

Detection

Branch
Control

Instruction
Fetch

Source
Select

Result
Select

Write
Back

Datapath

ALU

EX

Data Memory

Imm.
Memory

Instrn.
Decode

Coprocessor

Fig. 1 The FPGA processing element

Table 1 FPE parameters and instructions

(a) FPE configuration parameters

Parameter Meaning Values

DataWidth Data wordsize 16/32 bits

DataType Type of data Real/complex

ALUWidth No. DSP48e slices 1–4

PMDepth PM Capacity Unlimited

PMWidth PM Wordsize Unlimited

DMDepth DM/RF Capacity Unlimited

RFDepth No. RF locations Unlimited

TxCOMM No. Tx ports ≤1024

RxCOMM No. Rx ports ≤1024

IMMDepth IMM Capacity Unlimited

(b) FPE instruction set

Instruction Function

LOOP Loop

BEQ/BGT/BLT Branching

GET/PUT FIFO get/put

NOP No operation

MUL/ADD/SUB Multiply/add/subtract

MULADD(FWD) Multiply-add

MULSUB(FWD) Multiply-subtract

COPROC Coprocessor access

LD/ST Load/store

LDIMM/STIMM IMM load/store

processed by the ALU (implemented using a Xilinx DSP48e). In addition, a Data
Memory (DM) is used for bulk data storage and a Communication Adapter (COMM)
performs on/off-FPE communications.

The FPE is soft and hence configurable to allow its architecture to be customised
pre-synthesis in terms of the aspects listed in Table 1(a). Beyond these, custom
coprocessors can also be integrated alongside the ALU to accelerate specific custom
instructions. Of course, the FPE is also programmable, with an instruction set
described in Table 1(b).

When implemented on Xilinx Virtex 5 VLX110T FPGA, a 16 bit Real FPE costs
90 LUTs, 1 DSP48e and enables 483 × 106 multiply-add operations per second.
This represents around 18% of the resource of a conventional MicroBlaze processor,
whilst increasing performance by a factor 2.8.

The FPE’s low cost allows it to be combined in very large numbers on a
single FPGA, to realise operations via multicore architectures, with communication
between FPEs via point-to-point queues. Hence the FPE may be viewed as a

476 J. McAllister

RF

ALU

COMM

Program
Counter

Program
Memory

Instruction
Decoder

Immediate
MemoryRF

ALU

COMM

RF

ALU

COMM

Fig. 2 SIMD processor architecture

fundamental building block for realising computationally demanding operations
on FPGA.

To do so efficiently, the FPE should be able to exploit all the different types
of parallelism in a program or application. Task parallelism is exploited in the
multicore architectures proposed, but using these to realise data parallel operation
is less than efficient, due to the duplication of control logic and data and memory
resources. In this case each FPE will contain the same instructions in their PM,
access RF in the same orders and execute the same programs. There is considerable
overhead incurred when control resource is duplicated for each FPE. To avoid
this occurring, the FPE is further extended into a configurable SIMD processor
component, as illustrated in Fig. 2.

The width of the SIMD is configurable via a new parameter, SIMDways, which
dictates the number of datapath lanes. All of the FPE instructions (except BEQ,
BGT and BLT) can be used as SIMD instructions.

3 Case Study: Sphere Decoding for MIMO Communications

To illustrate the use of FPE-based multicores for FPGA accelerators, a case study—
Sphere Decoding (SD) for Multiple-Input, Multiple-Output (MIMO) communica-
tions systems—is used. MIMO systems employ multiple transmit and multiple
receive channels [26] to enable data rates of unprecedented capacity, prompting
their adoption in standards such as 802.11n [14]. An M-element array of transmit
antennas emit a vector s ∈ C

M of QAM-modulated symbols. The vector of symbols
y ∈ C

N received at an N-element array of antennas is related to s by:

y = Hs+ v, (1)

where H ∈ C
N×M represents the MIMO channel, used typically as a parallel set of

flat-fading subchannels via Orthogonal Frequency Division Multiplexing (OFDM)

High Performance Stream Processing on FPGA 477

a b

Preprocessing

Sorting

Metric
Calculation &

Sorting

Detected Symbols

Received Symbols

Full Search

Single Search

(1,nss+1)

(2,nss+1)

(N,nss+1)

(1,M)

(2,M)

(N,M)

(1,1)

(2,1)

(N,1)

(1,nss)

(2,nss)

(N,nss)

nss nfs

Detection Order

Most
Distorted
Symbol

Least
Distorted
Symbol

Increasing
Distortion

Increasing
Distortion

Fig. 3 FSD algorithm components. (a) FSD Tree Structure. (b) General Form of H†

(108 in the case of 802.11n) and v ∈ C
N additive noise. Sphere Decoding (SD)

is used to derive an estimate ŝ of s. It offers near that of the ideal ML detector,
with significantly reduced complexity [20, 23]. The Fixed-Complexity SD (FSD)
has a particularly low complexity, two-stage deterministic process which makes it
ideal for efficient realisation via an FPGA accelerator [5]. FSD realises a two-stage
detection process illustrated in Fig. 3a.

Algorithm 1 SQRD for FSD

input : H, M
output: Q, R, order

1 Phase 1: Initialization
2 Q = H,R = 0M,

3 order = [1, · · · ,M],

nf s =
⌈√

M − 1
⌉

4 for i ← 1 to M do
5 normi =

∥∥qi

∥∥2

6 end

7 Phase 2: SQRD ordering
8 for i ← 1 to M do
9 k = min (nf s + 1,M − i + 1)

10 ki =
k

arg min
j=i,··· ,M

normj

11 Exchange columns i and ki in R, order, norm and Q
12 ri,i = √normi
13 qi = qi/ri,i
14 for l ← i + 1 to M do
15 ri,l = qH

i · ql
16 ql = ql − ri,l · qi

17 norml = norml − r2
i,l

18 end
19 end

478 J. McAllister

Pre-Processing (PP) orders the symbols of y according to the perceived dis-
tortion experienced by each. This is achieved by reordering the columns of H to
give H† (the general form of which is illustrated in Fig. 3b). Practically, this is
achieved via an iterative Sorted QR Decomposition (SQRD) algorithm, described in
Algorithm 1 [11].

SQRD-based PP ordering for FSD transforms the input channel matrix H to the
product of a unitary matrix Q and an upper-triangular R via QR decomposition,
whilst deriving order, the order of detection of the received symbols during MCS. It
operates in two phases, as described in Algorithm 1. In Phase 1 Q, R, order, norm
and nf s are initialized as shown in lines 2–5 of Algorithm 1, where qi is the ith
column of Q. Phase 2 comprises M iterations, in each of which the kth lowest entry
in norm is identified (lines 9 and 10) before the corresponding column of R and
elements in order and norm are permuted with the ith (line 11) and orthogonalized
(line 12–18). The resulting Q, R, and order are used for Metric Calculation and
Sorting (MCS) as defined in (3) and (4).

Metric Calculation and Sorting uses an M-level decode tree to perform a
Euclidean distance based statistical estimation of s. Groups of M symbols undergo
detection via a tree-search structure illustrated in Fig. 3a.

The number of nodes at each tree level is given by nS = (n1, n2, . . . , nM)T . The
first nfs levels process the symbols from the worst distorted paths by Full Search
(FS) enumeration of all elements of the search space. This results in P child nodes
at level i+1 per node at level i, where P is the number of QAM constellation points.
For full diversity, nfs is given by

nf s = �√M − 1�. (2)

The remaining nss (nss = M − nf s) levels undergo Single Search (SS) where
only a single candidate detected symbol is maintained between layers. At each MCS
tree level, (3) and (4) are performed.

s̃i = ŝZF,i −
Mt∑

j=i+1

rij

rii

(
ŝZF,j − ŝj

)
(3)

di =
Mt∑
j=i

r2
ij

∥∥ŝZF,j − ŝj
∥∥2

,Di = di +Di+1 (4)

In (3) and (4), rij refers to an entry in R, derived by QR decomposition of H
during PP, ŝZF is the center of the FSD sphere and s̃j is the j th detected data, which
is sliced to ŝj in subsequent iterations of the detection process [13]. Since Di+1
can be considered as the Accumulated Partial Euclidean Distance (APED) at level
j = i + 1 of the MCS tree and di as the PED in level i, the APED can be obtained
by recursively applying (4) from level i = M to i = 1. The resulting candidate
symbols are sorted based on their Euclidean distance measurements, and the final
result produced post-sorting.

High Performance Stream Processing on FPGA 479

This behaviour is duplicated across all OFDM subcarriers, of which there are
108 in 4×4 16-QAM 802.11n MIMO. For real-time processing this behaviour is
repeated independently for all 108 subcarriers and must occur within 4 μs and at
a rate of 480 Mbps for real-time performance. These are challenging requirements
which has seen detection using custom circuit accelerators become a well-studied
real-time implementation problem [4, 7, 15, 16, 21, 27]. It is notable that none of
these uses software-programmable accelerator components. This section considers
the use of the FPE to realise such a solution.

4 FPE-Based Pre-processing Using SQRD

The SQRD preprocessing technique is low-complexity relative to other, ideal
preprocessing approaches. It is also numerically stable and lends itself well to fixed-
point implementation, hence making it suitable for realisation on FPGA, as a result
of its reliance on QRD. However, there are two major issues that must be resolved to
enable FPE-based SQRD PP for 4×4 802.11n. It computational complexity remains
high as outlined in Table 2; given the capabilities of a single FPE, it appears that a
large-scale multi-FPE architecture is required to enable SQRD for 4 × 4 802.11n.
Its reliance on square root and division operations also present a challenge, since
these operations are not native to the DSP48e components used as the datapaths for
the FPE and will have low performance when realised thereon [19].

To avoid this performance bottleneck, datapath coprocessors are considered to
enable real-time division and square-root operations.

4.1 FPE Coprocessors for Arithmetic Acceleration

Non-restoring 16-bit division [19] requires 312 cycles when implemented using
only the DSP48e in an 16R FPE. This equates to approximately 1.2 × 106 div/s
(divisions per second). Hence, around 100 FPEs would be required to realise the
120×106 divisions required per second (MDiv/s) for 4×4 SQRD for 802.11n. The
high resource cost this would entail can be alleviated by adding radix-2 or radix-
4 non-restoring division coprocessors [19] alongside the DSP48e in the FPE ALU
(Fig. 4).

The performance, cost and efficiency (in terms of throughput per LUT, or
TP/LUT) of the programmed FPE when division is realised using a programmed
approach and the DSP48e only, (FPE-P) and when radix-2 or radix-4 coprocessors

Table 2 4× 4 SQRD
operational complexity

Operation +/− × ÷ √
op/second (×109) 3.24 12.72 0.12 0.12

480 J. McAllister

Fig. 4 FPE division
coprocessor

Partial remainder

+

Quotient

+/-

MSB Q16-j

16

1/2

1 quotient bit obtained per
iteration

1/x

Divisor

16

16 1/2

Table 3 SQRD division
implementations

Resource Throughput

Solution FPEs DSP48es LUTs (MDiv/s)

FPE-P 100 100 13,600 120

FPE-R2 5 5 900 120

FPE-R4 4 4 944 144

are added alongside the DSP48e (FPE-R2, FPE-R4 respectively) on Virtex 5
FPGA is described in Table 3. The FPE-R2 and FPE-R4 solutions both increase
throughput, by factors of 8.9 and 13.3 respectively and hence increase hardware
efficiency by respective factors of 9.4 and 10.7 as compared to FPE-P. Since 4× 4
802.11n MIMO requires 120 MDiv/s for SQRD-based preprocessing, the implied
cost and performance metrics of each option are summarised in Table 3. According
to these estimates, FPE-R2 represents the lowest cost real-time solution, enabling a
93.4% reduction in resource cost relative to FPE-P. This approach is adopted in the
FPE-based SQRD implementation.

To realise the 120× 106 square root operations required per second (MSQRT/s),
performance and cost estimates for software-based execution on the FPE using the
pencil-and-paper method [19] (FPE-P), or by adding a CORDIC coprocessor [28]
(FPE-C) are compared in Table 4(a). The coprocessor-based FPE-C solution at
once increases throughput and efficiency by factors of 23 and 10 respectively as
compared to FPE-P, implying the resources required to realise real-time square-
root for SQRD-based detection of 4 × 4 802.11n MIMO can be estimated as in
Table 4(b). As this shows, FPE-C enables real-time performance using only 11% of
the resource required by FPE-P, and is adopted for realising FPE-based square root
operations.

High Performance Stream Processing on FPGA 481

Table 4 FPE square root options

(a) 16-Bit PSQRT, CSQRT (b) 802.11n SQRD

FPE-P FPE-C FPE-P FPE-C

PM/RF locations 29/14 8/1 FPEs 63 3

LUTs 142 330 LUTs 8946 990

DSP48es 1 0 DSP48es 63 3

Clock (MHz) 367.7 350 T (MSQRT/s) 121.6 130.8

Latency (cycles) 191 8

T (MSQRT/s) 1.93 43.6

T/LUT (×10−3) 13.6 132.1

4.2 SQRD Using FPGA

Integrating these components into a coherent processing architecture to perform
SQRD, and replicating that behaviour to provide PP for the 108 subcarriers of
802.11n MIMO is a large scale accelerator design challenge. Figure 5 describes the
SQRD algorithm as a, iterative four-task (T1, T2.1–T2.3) process. The first task, T1,
conducts channel norm ordering, and computes the diagonal elements of R (lines
11–13 in Algorithm 1). This is followed by T2.1–T2.3, which are independent and
permute and update Q, R and norm respectively (lines 14–18 in Algorithm 1).

This process is realised using a 4-FPE Multiple Instruction, Multiple Data
(MIMD) architecture, shown in Fig. 6, is used. All FPEs employ 16-bit datapaths
and are otherwise configured as described in Table 5(a). FPE1–FPE3 permute Q, R
and norm and iteratively update (T2.1–T2.3 in Fig. 5). FPE4 calculates the diagonal
elements of R (T1). The SQRD process executes in three phases. Initially, H and
the calculation of norm are distributed amongst the FPEs, with the separate parts
of norm gathered by FPE4 to undergo ordering, division and square root. The
results are distributed to the outer FPEs for permutation and update of Q, R and
norm. Inter-FPE communication occurs via point-to-point FIFO links, chosen due
to their relatively low cost on FPGA and implicit ability to synchronize the multi-
FPE architecture in a data-driven manner whilst avoiding data access conflicts.

The performance and cost of the 4-FPE grouping is given in Table 5(b).
According to these metrics, the throughput of each 4-FPE group is sufficient to
support SQRD-based PP of 3 802.11n subcarriers. To process all 108 subcarriers, the
architecture is replicated 36 times, as shown in Fig. 6. The mapping of subcarriers
to groups is as described in Fig. 6.

On Xilinx Virtex 5 VSX240T FPGA, the cost and performance of this architec-
ture is described in Table 5(b). As this describes, 32.5 MSQRD/s are achieved, in
excess of the 30 MSQRD/s required for 4× 4 802.11n MIMO.

482 J. McAllister

Fig. 5 4× 4 SQRD

5 FSD Tree-Search for 802.11n

Computing MCS for FSD in 4 × 4 16 QAM 802.11n is even more computation-
ally demanding than SQRD-based preprocessing. The operational complexity is
described in Table 6(a). When a single 4 × 4 16-QAM FSD MCS is implemented
on a 16R FPE, the performance and cost are as reported as 16R-MCS in Table 6(b).

To scale this performance to support all 108 subcarriers for 4 × 4 16-QAM
802.11n MIMO, a large-scale architecture is required. Two important observations
of the application’s behaviour help guide the choice of multiprocessing architecture:

1. THE FSD MCS tree exhibits strong SIMD-like behaviour, where each branch
(Fig. 3a), performs an identical sequence of operations on data-parallel samples.

2. The number of FPEs required to implement MCS for all 108 OFDM subcarriers
on a single, very wide SIMD processor implies limitations on the achievable
clock rate as a result of high signal fan-outs to broadcast instructions from a
central PM to a very large number of ALUs, restricting performance [10]. Hence,
a collection of smaller SIMDs is used.

As described in Table 6(b), the cost of 16R-MCS as compared to the basic 16-bit
FPE described in Sect. 2 (from 90 LUTs to 2530 approximately) is significantly
higher. This large increase is due to the large PM required to house the 4591

High Performance Stream Processing on FPGA 483

%&BL

%&BQ

36
%&BL

%&BQ

35%&BL

%&BQ

2%&BL

%&BQ

4-FPE1

FPE1 FPE1

FPE1

FPE1

Subcarrier
3

Subcarrier
2Subcarrier

1

Subcarrier
6

Subcarrier
5Subcarrier

4

Subcarrier
108

Subcarrier
107

Subcarrier
106

Fig. 6 4× 4 SQRD mapping

Table 5 4-FPE-based SQRD

(a) FPE configuration (b) FPE-SQRD metrics

Parameter Value 4-FPE1 FPE-SQRD

PMDepth 350 LUTs 2109 70,560

RFDepth 32 DSP48es 4 144

IMMDepth 32 Clock (MHz) 315 265

DMDepth 64 T (MSQRD/s) 1.07 32.5

TxComm 32 Latency (μS) 0.9 1.1

RxComm 32

instructions. A significant factor in this large number of instructions are the
comparison operations required for slicing (Eq. (3)) and sorting the PED metrics,
which require branch instructions, which have associated NOP operations due to
the deep FPE pipeline and the lack of forwarding logic [10]. These represent wasted
cycles and dramatically increase cost and reduce throughput—branch and NOP
instructions represent 50.7% of the total number of instructions. Optimising the FPE
to reduce the impact of these branch instructions could have a significant impact on
the MCS cost/performance.

484 J. McAllister

Table 6 802.11n MCS complexity

(a) Operational complexity (b) MCS implementation options

Operation op/s (×109) 16R-MCS 16R

+/− 32.37 LUTs 2520 805

× 19.20 DSP48es 1 0

Clock (MHz) 367.7 350

L (Cycles) 3281 1420

T (MOP/s) 1.9 4.5

a b

Switch

C1
C2
C3
C4

>

min

+ >0
-

Fig. 7 (a) Switch coprocessor (b) Min coprocessor

5.1 FPE Coprocessors for Data Dependent Operations

Employing ALU coprocessors can significantly reduce these penalties. A switch
coprocessor compares the input to each of four constants, determined pre-synthesis
(a logical depiction of behaviour is shown in Fig. 7a), selecting the closest. This
increases the efficiency of slicing by comparing an input operand to one of a
number of pre-defined values. Similarly, a MIN coprocessor (Fig. 7b) can be used
to accelerate sorting.

Each of these coprocessors occupy around 20 LUTs, but their ability to eliminate
wasted instructions can significantly reduce the PM size. This can enable significant
reductions in overall cost and increases in performance as described in column 3
of Table 6(b). Including these components results in a 68% reduction in resource
cost and a factor 2.3 increase in throughput. The resulting component is capable of
realising FSD MCS for a single 802.11n subcarrier in real-time, providing a good
foundation unit for implementing MCS for all 108 subcarriers.

High Performance Stream Processing on FPGA 485

Fig. 8 802.11n OFDM MCS-SIMD mapping

5.2 SIMD Implementation of 802.11n FSD MCS

To scale the FPE to realise all 108 subcarriers, a range of architectures may be used.
The data-parallel operation of the subcarriers suggests that a very wide single SIMD
could be used, providing the most efficient realisation from the perspective of PM
and control logic cost. However, as the width of an FPE SIMD unit increases beyond
16 lanes, the instruction broadcast from the single central PM limits the speedup
which may be obtained by constraining the clock frequency. Hence, 16-way SIMDs
are employed and FSD MCS for all 108 802.11n subcarriers is implemented on a
dual-layer network of such processors, as illustrated in Fig. 8.

Level 1 consists of eight SIMDs. The 802.11n subcarriers are clustered into eight
groups {Gi = {j : (j − 1) mod 8 = i}108

j=1}7i=0, where j is the set of subcarriers
processed by FPE i. The 16 branches of the MCS tree for each subcarrier are
processed in parallel across the 16 ways of the Level 1 SIMD onto which they
have been mapped. Sorting for the subcarriers implemented in each Level 1 SIMD
is performed by adjacent pairs of ways in the Level 2 SIMD—hence given the 8
Level 1 SIMDs, the Level 2 SIMD is composed of 16 ways.

Each FPE is configured to exploit 16-bit real-valued arithmetic [6]. All proces-
sors exploit PMDepth = 128, RFDepth = 32 and DMDepth = 0, and communi-
cation between the two levels exploit 8-element FIFO queues. The Level 1 SIMDs
incorporate SWITCH coprocessors to accelerate the slicing operation, whilst the
Level 2 SIMDs support the MIN ALU extension to accelerate the sort operation.

The program flow for each Level 1 SIMD is as illustrated in Fig. 9a. Each FPE
performs a single branch of the MCS tree, with the empty parts of the program
flow—representing NOP instructions—used to properly synchronise movement of
data into and out of memory.

486 J. McAllister

a b

Fig. 9 FPE branch interleaving. (a) Original FSD threads. (b) Interleaved threads

Table 7 4× 4 16-QAM FSD
using FPE

FPE-MCS FPE-FSD

LUT 16,601 96,115

DSP48e 144 408

Clock (MHz) 296 189

T (Mbps) 502.5 483

L (μS) 0.9 2.3

The NOP cycles represent 29% of the total instruction count but since they
represent ALU idle cycles they should preferably be eliminated. To do so, NOP
cycles in one branch can be occupied by the useful, independent instructions from
another, i.e. the branches may be interleaved as illustrated in Fig. 9.This interleaving
occupies wasted NOP cycles, to the extent that when two branches are interleaved
the proportion of wasted cycles is reduced to 4%.

On Xilinx Virtex 5 VSX240T FPGA, this multi-SIMD architecture enables FSD-
MCS for 802.11n as reported Table 7. As this shows, it comfortably exceeds the
real-time performance criteria of 802.11n.

Together with the results of the SQRD preprocessing accelerator, these MCS
metrics show that the FPE can support accelerators for applications with demanding
real-time requirements. By using massively parallel networks of simple processors
(>140 in this case), FPGA can support real-time behaviour and can enable solutions
with resource cost comparable to custom circuits. When the PP and MCS are com-
bined to create a full FSD detector (FPE-FSD in Table 7) the resulting architecture
is the only software-defined FPGA structure to enable real-time performance for
4× 4 16 QAM 802.11n.

High Performance Stream Processing on FPGA 487

6 Stream Processing for FPGA Accelerators

The FPE is a load-store structure, supporting only register-register and immediate
instructions. All non-constant operands and results access the ALU via Register File
(RF). Consider the effect of this approach for a 256-point FFT (FFT256) realised
using two FPE configurations: an 8-way FPE SIMD (FPE8) or a MIMD multi-
FPE composed of 8 SISD FPEs (8-FPE). The FFT mappings and itemized ALU,
communication (IPC), memory (MEM) and NOP instructions for each are shown in
Fig. 10.

Figure 10 shows that the efficiency of each of these programs is low—only
52.5% and 31.8% of the respective cycles in 8-FPE1 and FPE8 are used for ALU
instructions. The resulting effect on accelerator performance and cost is clear
from Table 8, which compares 8-FPE1 with the Xilinx Core Generator FFT [29]
component. The FPE is not competitive with the custom circuit Xilinx FFT, which
exhibits twice the performance at a fraction of the LUT cost.

These results follow from the restriction to register-register instructions. Each
FFT256 stage consume 512 complex words. Since RF is the most resource-costly
element of the FPE, buffering this volume of data requires BRAM Data Memory
(DM); in order for these operands to be processed and results stored, a large
number of loads (stores) are required between BRAM and RF, increasing PM
cost. Given the simplicity of the FFT butterfly operation, the overhead imposed
by these is significant. This is combined with the effect of the FPE’s require-
ment to be standalone: since it must handle its own communication, further
cycles are consumed transferring incoming and outgoing data between DM and
COMM, reducing program efficiency still further. Finally, each of these transfers
induces a latency between source and destination—as Fig. 11 illustrates, each FPE

a b

ALU
52.5%

19.2%
MEM

17.5%
NOP

Total
2962

10.8%
COMM

ALU
31.8%

MEM
13.9%

NOP
35.4%

Total
5146

COMM
19.9%

Fig. 10 FFT256: FPE-based 256 Point FFT. (a) 8-FPE1. (b) FPE8

Table 8 256-Point FFT
performance/cost comparison

Cost T T/LUT

LUTs DSP48e (MSamples/s) (×103)

8-FPE1 2296 8 30.5 13.3

Xilinx 621 6 61.9 99.7

488 J. McAllister

Fig. 11 Load-store paths in the FPE

DM-RF (black) and COMM-RF (red) transfer takes eight cycles, imposing the
need for NOPs.

These factors combine to severely limit the efficiency of the FPE for applications
such as FFT. Mitigating the effect of these overheads requires two features:

• Direct instruction access to any combination of RF, DM and COMM for either
instruction source or destination.

• In cases where local buffering is not required, data streaming through the PE
should be enabled, reducing load/store and communication cycle overhead.

6.1 Streaming Processing Elements

To support these features, a streaming FPE (sFPE) is proposed. The sFPE is still
standalone, software-programmable and lean, but supports a processing approach—
streaming—which diverges from the load-store FPE approach. Streaming means
that focus is placed on ensuring that data can stream into and out of operation
sources and destinations and through the ALU without the need for load and store
cycles. This streaming takes two forms:

• Internal: between RF, DM, COMM and IMM without load-store cycles.
• External: from input FIFOs to output FIFOs via only ALU.

The architecture of a SISD sFPE1 is illustrated in Fig. 12. There are three main
architectural features of note.

• An entire pipeline stage is dedicated to instruction decode (ID)
• A FlexData data manager has been added which allows zero-latency access to

any data source or sink.

High Performance Stream Processing on FPGA 489

Fig. 12 SISD sFPE architecture

• Off-FPE communication has been decoupled into read (COMMGET) and write
(COMMPUT) components

In the sFPE, ID and FlexData are assigned entire pipeline stages. The ID
determines the source or destination of any instruction operand or result, with all
of the potential sources or destinations of data incorporated in FlexData to allow
each to be addressed with equal latency; this flat memory architecture is unique to
the sFPE. This approach removes the load/store overhead of accessing, for example,
data memory or off-FPE communication; all data operands and results may be
sourced/produced to any of IMM, RF, DM or COMM with identical pipeline control
and without the need for explicit load and store cycles or instructions for DM or
COMM.

To allow unbuffered streaming from input FIFOs or output FIFOs via ALU,
simultaneous read/write to external FIFOs is required, with direct access to ALU
in both directions. Decoupling the off-FPE communication components into COM-
MGET and COMMPUT allow each to be accessed with zero-latency, from a
single instruction—note that these both reside in the same pipeline stage and
hence conform to the regular dataflow pipeline maintained across the remainder
of FlexData. In addition, since all of COMMGET, COMMPUT, DM, RF and IMM
access distinct memory resources (with separate memory banks employed within
the sFPE and a FIFO employed per off-sFPE communication channel) there is
no memory bandwidth bottleneck resulting from decoupling these accesses in this
way—all could be accessed simultaneously if needed.

490 J. McAllister

Table 9 ALU
operand/destination
instruction coding

Op Source/sink x

Rx RF Register location

&x DM DM address

^x COMMGET/COMMPUT IPC channel no.

x IMM Constant value

Fig. 13 FFT256: sFPE
implementations. (a)
8-sFPE1. (b) sFPE8

a b

6.2 Instruction Coding

To support the increase level of specialisation of the operands in each instruction,
however, operand addressing needs to become more complicated. Generally, sFPE
ALU instructions take the form:
INSTR dest, opA, opB, opC

where INSTR is the instruction class, dest identifies the result destination and
opA, opB, opC identify the source operands. The possible encodings of each of
dest, opA,
opB, opC and the destination are described in Table 9.

This encoding allows any of RF, DM, COMMGET and COMMPUT to be
addressed directly from the absolute addresses quoted in the sFPE instruction.
Constant operands are hard-coded into the instruction and IMM locations allocated
by the assembler.

This architecture and data access strategy can lead to sFPE programs which
are substantially more efficient that their FPE counterparts. Using the sFPE, the
number of instructions needed for FFT256 in both the 8-sFPE and sFPE8 variants
are described in Fig. 13.

In MIMD 8-sFPE form, the total number of instructions required is 257, a
decrease of around 91%. In addition, the efficiency of this realisation is now 99.6%,
with only a single non-ALU instruction required for control. Similarly, sFPE8
requires 95.9% fewer instructions and operates with an efficiency of 98.4%. Given
these metrics it is reasonable to anticipate increases in throughput for 8-sFPE and
sFPE8 by factors of 20 and 30.

High Performance Stream Processing on FPGA 491

a b

Fig. 14 Itemised sFPE matrix multiplication and ME operations. (a) Matrix multiplication. (b)
Motion estimation

7 Streaming Block Processing

In many operations, however, addressing modes other than the simple direct
approach used in the FPE are vital. An itemized instruction breakdown for
multiplication of two 32×32 matrices and Full-Search ME (FS-ME) with a 16×16
macroblock on a 32× 32 search window are quoted in Fig. 14.

A number of points are notable. Firstly, the programs are very efficient, verifying
the techniques described in the previous section. However, the programs are
extremely large—35,375 instructions for matrix multiplication (MM) and 284,428
for FS-ME. To store this number of instructions, a very large PM is required,
requiring a lot of FPGA resources—for FS-ME, 241 BRAMs would be required
for the PM alone. These demands are a direct result of the FPE’s restriction to direct
addressing. This is because, in a direct addressing scheme then every operation
requires an instruction; for MM and ME, this translates a very large number of
instructions.

However, both of these operations and their operand accesses are very regular
and can be captured in programs with many fewer instructions than those quoted
above. Both repeat the same operation many times on small subsets of the input
data at regularly-spaced memory locations. For example, Bock-MM of two matrices
A ∈ R

m×n and B ∈ R
n×p when m = n = p = 8 via four 4 × 4 submatrices.

Assuming that A and B are stored in contiguous memory locations in row-major
order and that C is derived in row-major order, the operand memory access are as
illustrated in Fig. 15.

To compute an element of a submatrix of C, the inner product of a four-element
vector of contiguous locations in A (a row of the submatrix) and a four-element
vector of elements spaced by 8 locations in B (a column of the submatrix) is
formed. Afterwards either or both of the row of A or column of B are incremented
to derive the next element of C, before operation proceeds to the next submatrix.
The resulting memory accesses are highly predictable: a regular repeated increment
along the rows of A and columns of B, periodic re-alignment to a new row of
A and/or column of B, repeated multiple times before realigning for subsequent
submatrices.

492 J. McAllister

Fig. 15 sFPE block matrix multiply operand addressing

These patterns can be used to enable highly compact programs if two features
are available—repeat-style behaviour with the ability for a single instruction to
address blocks or memory are regularly-spaced locations when invoked multiple
times by a repeat.

7.1 Loop Execution Without Overheads

To enable low-overhead loop operation, the sFPE is augmented with the ability to
perform repeat-type behaviour. This means managing the PC such that when a
repeat instruction is encountered, the body of the associated block of statements
is executed a number of times. This task if fulfilled by a PC Manager (PCM), the
behaviour of which is described in Fig. 16.

The PCM controls PC update given its previous value and the instruction
referenced in PM given pieces of information—the start and end lines of the body
statements to be repeated S and E, the number of repetitions N. These are encoded
in a RPT instruction added to the sFPE instruction set. These instructions are
encoded as:
RPT N S E
The behaviour of RPT is shown in Listing 1. This dictates five repetitions of lines

2–5. Any number of repeat instructions can be nested to allow efficient execution of
loop nests with static and compile-time known loop bounds.

Listing 1 RPT Instruction Coding

RPT 5 2 4
INSTR1...
INSTR2...
INSTR3...

High Performance Stream Processing on FPGA 493

start

i = 0
ei = ∞
si = 0
ni = ∞

0

PC =
ei

PC =
PC+1

1

OP =
RPT

i = i + 1
ei = E
si = S
ni = N

3

PC = si
ni = ni − 1

2

ni = 0

i = i − 1
4

no
yesno

yes
yes

no

Fig. 16 sFPE PCM behaviour

The PCM arbitrates the PC to ensure that the body statements are repeated the
correct number of times and support the construction of nested repeat operations. It
enacts the flowchart in Fig. 16. For an n-level nest it maintains a n+ 1-element lists
of metrics, with an additional element added to support infinite repetition of the top-
level program, considered to be an implicit infinite repeat instruction. For layer i of
the loop nest, the start line, end line and number of repetitions are stored in element
i + 1 of the lists s, e and n respectively. In all cases s0 = 0, e0 = ∞ and n0 = ∞ to
represent the start line, end line and number of repetitions of the top-level program
(0 in Fig. 16).1 Every time a repeat instruction is encountered i, the current index
into s, e and n is incremented and the values of the new element initialised using
S, E and N from the decoded instruction in 3 . Regular PC updating then proceeds
(1) until either another repeat instruction is detected or until ei is encountered. In
the latter case, the number of iterations of the current statement is decremented (2)
or, if ni = 0 all of the iterations of the current repeat statement have been completed
and control of the loop nest reverts to the previous level (4).

The PCM component requires 36 LUTs and hence imposes a relatively high
resource cost as compared to the FPE. This can be controlled by compile-time
customisation via the parameters listed in Table 10.

1Note that this assumes that the end line of the program is a JMP instruction with the start line as
the target.

494 J. McAllister

Table 10 PC configuration
parameters

Parameter Meaning Values

pcm_en Enable/disable PCM Boolean

pcm_depth Max. repeat nest depth N ∈ [1, 232 − 1]

a b

Fig. 17 sFPE block memory management elements. (a) sFPE FlexData. (b) Pointer Architecture

The pcm_en parameter is a Boolean which dictates whether the PCM is included
or not. When it is, the maximum depth of loop nest is configurable via pcm_en
which can take, hypothetically, any integer value. As such, the PCM may be

included or excluded and hence imposes no cost when it is not required; further,
when it is included its cost can be tuned to the application at hand by adjusting the
maximum depth of loop nest.

7.2 Block Data Memory Access

Enabling block memory access requires three important capabilities:

• Auto-increment with any constant stride
• Manual increment with any stride
• Custom offset

The need for each of these is evident in MM: auto-increment traverses along
rows and columns with a fixed memory stride—there are many such operations
and so eliminating the need for an individual instruction for each reduce overall
instruction count considerably. Manual increment is required for movement between
rows/columns, whilst custom offset is used to identify the starting point for the
increments, such as the first element of a submatrix.

A Block Memory Manager (BMM) is incorporated in the sFPE FlexData, as
illustrated in Fig. 17a, to enable these properties. The BMM arbitrates access to DM
via Read Pointers (RPs) and Write Pointers (WPs). The architecture of FlexData
and a pointer is illustrated in Fig 17b.

Each pointer controls access to a subset (block) of the sFPE DM and addresses
individual elements of that block via a combination of two subaddress elements: a

High Performance Stream Processing on FPGA 495

Table 11 BMM configuration parameters

Parameter Meaning Values

mode Addressing mode Direct, block

n_rptrs / n_wptrs No. of read /write pointers N ∈ [1, 232]
s_stride Constant stride N ∈ [1, 232]

Table 12 BMM instructions Operand field Meaning

INC_RP / INC_WP Increment base of RP/WP n to val

SET_RP /SET_WP Set offset of RP/WP n to val

Table 13 ALU block operand instruction coding

Operand field ofs idx !

Meaning Offset Pointer reference Autoincrement base

base and an offset. The offset selects the root block data element whilst the base
iterates over elements relative to the offset.

Pointers operate in one of three modes. Either the base auto-increments, or it is
incremented by explicit instruction, or the offset increments by explicit instruction.
All three modes are supported under the control of the set, inc and data
interfaces. The offset selects the root data element of the submatrices of A, B

and C, with the base added to address elements relative to the offset. The base is
updated via two mechanisms, under the control of inc. The first auto-increments
by a value (s_stride in Fig.17b) set as a constant at synthesis time. Manually
incrementing the base is achieved by c_stride, which is defined at run-time.
Finally, when update of the offset is required, data is accepted on assertion of set.
To allow absolute minimum cost for any operation, configuration parameters for the
sFPE FlexData, BMM and pointer components are configurable by the parameters
in Table 11.

It is notable that addressing mode is now a configuration parameter of the sFPE,
with direct and block modes supported. In direct mode, the BMM is absent whilst
it is included in the block mode. In that case, the cost can be minimised via control
of the number of read and write pointers via n_rptrs and n_rptrs. Finally, the
auto-increment stride s_stride for each pointer is fixed at the point of synthesis.

To support custom increment of the base and offset for each pointer, BMM
instructions take the form
INSTR n val

where n specify the pointer. The permitted values of INSTR are given in Table 12.
ALU operands accessing DM have an encoding of the form &<ofs><idx><!>,

elaborated in Table 13.

496 J. McAllister

a b c

Fig. 18 sFPE COMM adapters. (a) COMMGET. (b) COMMPUT. (c) COMM pointer

Table 14 COMM
configuration parameters

Parameter Meaning Values

mode Addressing mode Direct, block

n_chan No. channels N ∈ [1, 64)

s_stride Constant stride N ∈ [1, 64)

Table 15 sFPE-based MM and ME: itemized PM

Matrix multiply Motion estimation

Class sFPE sFPE-B δ (%) sFPE sFPE-B δ (%)

ALU 32,768 32 −99.9 268353 26 −99.9

COMM 2048 6 −99.7 2467 14 −99.4

CTRL 559 4 −99.7 12582 12 −99.9

NOP 0 6 1026 6 −99.6

Total 35,375 54 −99.8 284428 58 −99.9

7.3 Off-sFPE Communications

The COMMGET and COMMPUT components, illustrated in Fig. 18 are also both
configurable according to the parameters in Table 14.

Each of COMMGET and COMMPUT can operate under direct and block
addressing modes. In direct mode, individual FIFO channels and be accessed via
addresses encoded within the instruction. Instructions for either COMM unit are
encoded as:
^<p><ofs/idx><!>

where p differentiates peek (read-without-destroying) and get (read-and-destroy)
operations, ofs denotes the offset, idx the pointer reference and ! autoincrement.

7.4 Stream Frame Processing Efficiency

The effect of these streaming and block addressing features can be profound. The
number of instructions required by direct (sFPE) and block-based (sFPE-B) sFPE
modes are quoted in Table 15. Very large reductions in program size have resulted

High Performance Stream Processing on FPGA 497

from the addition of block memory management—sFPE-B requires fewer than 1%
of the number of instructions required by sFPE. Hence, the stream processing and
advanced program and memory control features of the sFPE have a clear beneficial
effect on program efficiency and scale. Section 8 compares sFPE-based accelerators
for a number of typical signal and image processing operations against real-time
performance criteria and custom circuit and soft processor alternatives.

8 Experiments

Accelerators were created using the sFPE for five typical operations:

• 512-point Fast Fourier Transform (FFT)
• 1024× 1024 Matrix Multiplication
• Sobel Edge Detection (SED) on 1280× 768 image frames.
• FS-ME: 16× 16 macroblock, 32× 32 search window on CIF 352× 288 images.
• Variable Block Size ME (VBS-ME) with 16 × 16 macroblock, 32 × 32 search

window on CIF 720× 480 images.

The sFPF configurations used to realise each of these operations are described in
Table 16. All accelerators target Xilinx Kintex®-7 XC7K70TFBG484 using Xilinx
ISE 14.2.

These configurations expose the flexibility of the sFPE. One notable feature is
the complete absence of RF in many components, such as MM, FS-ME and FFT.
This is a very substantial resource saving which has been enabled as a result of
the sFPE being able to stream data from and to COMM components and DM. This
flexibility also enables a number of performance and cost advantages, as quoted
in Fig. 19. Specifically, the FSME accelerator exhibits real-throughput for H.264;
VBS-ME can support real-time processing of 480p video in H.264 Level 2.2. To the
best of the authors’ knowledge, these are the first time an FPGA-based software-
programmable component has demonstrated this capability.

To compare the performance and cost of sFPE-based accelerators relative to
custom circuits, sFPE FFTs for IEEE 802.11ac have been developed and compared

Table 16 sFPE-based accelerator configurations

MM FS-ME SED FFT

Config. sFPE8 sFPE32 3-sFPE3 5-sFPE

data_ws 32 16 16 16

data_type Real Real Real Complex

dm_depth 1024 1009 1800 [0,32,32,128,512]

pm_depth 64 64 113 [68,78,190,758,1949]

rf_depth 0 0 32 0

n_rptrs 2 2 1 1

n_wptrs 1 1 1 1

498 J. McAllister

a b c

d e

Fig. 19 sFPE accelerators. (a) T. (b) clk (MHz). (c) LUTs. (d) DSP48e. (e) BRAM

Table 17 802.11ac FFT
characteristics

Frequency (MHz) 20 40 80 160

FFT 64 128 256 512

Throughput (×106 Samples/s) 160 320 640 1280

Table 18 sFPE FFT configurations

Parameter FFT64 FFT128 FFT256 FFT512

Config. 1-sFPE3 1-sFPE8 3-sFPE8 5-sFPE8

data_ws 16

data_type Complex

dm_depth 192 128 [32,256] [0,32,32,128,512]

pm_depth 1184 902 [134,1852] [68,78,190,758,1949]

rf_depth 0

sm_depths 32 64 [32,128] [0,32,32,64,256]

to both the Xilinx FFT and those generated by Spiral [18]. The IEEE 802.11ac
standard [1] mandates 8-channel FFT operations on 20 MHz, 40 MHz, 80 MHz and
160 MHz frequency bands with FFT size and throughput requirements as outlined
in Table 17.

These multi-sFPE accelerator configurations are summarised in Table 18—in the
case where more than one sFPE is used, the configurations of each are presented
in vector format.2 The performance and cost of the resulting architectures are
described in Fig. 20.

Figure 20 shows that the sFPE FFT accelerators for 802.11ac, supported by clock
rates of 528 MHz (FFT64, FFT128), 506 MHz (FFT256) and 512 MHz (FFT512),
the real-time throughput requirements listed in Table 17 are satisfied. In addition,
performance and cost are highly competitive with the Xilinx and Spiral custom
circuits. The LUT, DSP48e and BRAM costs are lower than the Xilinx FFT in 9 out

2Note that FFT512 takes a different configuration to the 512-point FFT previously addressed.

High Performance Stream Processing on FPGA 499

a b c

d e

Fig. 20 FPGA-based FFT: performance and cost. (a) LUT cost (×103). (b) DSP48e cost. (c)
BRAM cost. (d) % device occupied. (e) T (×109 Samples/s)

a b c d

Fig. 21 Softcore matrix multiplication: performance and cost comparison. (a) T (MM/s). (b)
LUTs. (c) DSP48e. (d) BRAM

a b c d

Fig. 22 Softcore FS-ME: performance and cost comparison. (a) T (FPS). (b) LUTs (×103). (c)
DSP48e. (d) BRAM

of 12 cases, with savings of up to 69, 53 and 56%. Relative to the Spiral FFT, the
performance and cost of the sFPE accelerators are similarly encouraging, enabling
increased throughput in all but one case and reduced LUT and BRAM costs in 7
out of 8 cases; savings reaching 62.8% and 55% respectively. The Spiral FFTs have
consistently lower DSP48e cost, however the total proportion of the device occupied
by each, reported in Fig. 20d, remains in favour of the sFPE in all but one instance.

The performance and cost of sFPE-based MM and FS-ME is compared with
other soft processors in Figs. 21 and 22.

When applied to MM, the performance and cost advantages relative to 32-way
VEGAS (VEGAS32) [9] and 4-way VENICE (VENICE4) [24] are clear. Relative to

500 J. McAllister

VEGAS32, throughput is increased by a factor 2 despite requiring only 25% of the
number of datapath lanes. As compared to VENICE4, throughput is increased by a
factor 4.7 whilst LUT and BRAM cost are reduced by 76% and 5% respectively.

sFPE-based ME is compared with VIPERS16, VEGAS4 and VENICE4 and the
FPE in Fig. 22. sFPE32 is the only realisation capable of supporting the 30 FPS
throughput requirement for standards such as H.264, with absolute throughput
increased by factors of 22.3, 9.8 and 6.8 relative to VIPERS16, VEGAS4 and
VENICE4.

These results demonstrate the benefit of the sFPE relative to other soft
processors—coupled performance/cost increases of up to three orders of magnitude.
Of course, the softcores to which the sFPE is compared here are general purpose
components and hence offer substantially greater run-time processing capability
than the sFPE, which is highly tuned to the operation for which it was created.
In that respect, the sFPE is more a component for constructing fixed-function
accelerators than a general-purpose softcore. However, despite employing similar
multi-lane processing approaches as VIPERS, VEGAS and VENICE the sFPE’s
focus on extreme efficiency, multicore processing, stream processing and novel
block memory management have enabled very substantial performance and cost
benefits.

9 Summary

Soft processors for FPGA suffer from substantial cost and performance penalties
relative to custom circuits hand-crafted at register transfer level. Performance and
resource overheads associated with the need for a host general purpose processor,
load-store processing, loop handling, addressing mode restrictions and inefficient
architectures combine to amplify cost and limit performance.

This paper describes the first approach which challenges this convention. The
sFPE presented realises accelerators using multicore networks of fine-grained, high
performance and standalone processors. The sFPE enables performance and cost
unprecedented amongst soft processors by adopting a streaming operation model
to ensure high efficiency. combined with advanced loop handling and addressing
constructs for very compact and high performance operation on large data sets.
These enable efficiency routinely in excess of 90% and performance and cost which
are comparable to custom circuit accelerators and well in advance of existing soft
processors.

Specifically, real-time accelerators for 802.11ac FFT and H.264 FS-ME VBS-
ME are described; the former of these exhibits performance and cost which are
highly competitive with custom circuits. In addition, it is shown how sFPE-based
MM and ME accelerators offer improvements in resource/cost by up to three orders
of magnitude. To the best of the authors’ knowledge, these capabilities are unique,
not only for FPGA, but for any semiconductor technology.

This work lays a promising foundation for the construction of complete FPGA
accelerators, but in addition may be used to further ease the design process. For

High Performance Stream Processing on FPGA 501

example, in the case where off-chip memory access is required, the programmable
nature of the SAE means that it may also be used as a memory controller to execute
custom memory access schedules and highly efficient block access. However,
resolving this and other accelerator peripheral functions is left as future work.

References

1. 802.11 Working Group: IEEE P802.11ac/D2.2 Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment 4: Enhancements for Very High
Throughput for Operation in Bands below 6 GHz (2012)

2. Altera Inc.: Nios II Processor Reference Handbook (2014)
3. Altera Inc.: Stratix V Device Handbook (2014)
4. Antikainen, J., Salmela, P., Silven, O., Juntti, M., Takala, J., Myllyla, M.: Application-Specific

Instruction Set Processor Implementation of List Sphere Detector. In: Conf. Record of the
Forty-First Asilomar Conf. on Signals, Systems and Computers, 2007, pp. 943–947 (2007).
https://doi.org/10.1109/ACSSC.2007.4487358

5. Barbero, L., Thompson, J.: Fixing the Complexity of the Sphere Decoder for MIMO Detection.
IEEE Trans. Wireless Communications pp. 2131–2142 (2008). https://doi.org/10.1109/TWC.
2008.060378

6. Barbero, L.G., Thompson, J.S.: Rapid Prototyping of a Fixed-Throughput Sphere Decoder for
MIMO Systems. In: IEEE Intl. Conf. on Communications, pp. 3082–3087 (2006). https://doi.
org/10.1109/ICC.2006.255278

7. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bolcskei, H.: VLSI
Implementation of MIMO Detection Using The Sphere Decoding Algorithm. IEEE Journal
of Solid-State Circuits 40(7), 1566–1577 (2005). https://doi.org/10.1109/JSSC.2005.847505

8. Cheah, H.Y., F., B., Fahmy, S., Maskell, D.L.: The iDEA DSP Block Based Soft Processor for
FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7(1) (2014)

9. Chou, C.H., Severance, A., Brant, A.D., Liu, Z., Sant, S., Lemieux, G.G.: VEGAS: Soft Vector
Processor with Scratchpad Memory. In: Proc. ACM/SIGDA Intl. Symp. Field Programmable
Gate Arrays, FPGA ’11, pp. 15–24. ACM, New York, NY, USA (2011). https://doi.org/10.
1145/1950413.1950420. URL http://doi.acm.org/10.1145/1950413.1950420

10. Chu, X., McAllister, J.: FPGA Based Soft-core SIMD Processing: A MIMO-OFDM Fixed-
Complexity Sphere Decoder Case Study. In: IEEE Int. Conf. on Field-Programmable
Technology (FPT), pp. 479–484 (2010). https://doi.org/10.1109/FPT.2010.56814639

11. Chu, X., McAllister, J.: Software-Defined Sphere Decoding for FPGA-Based MIMO Detec-
tion. IEEE Transactions on Signal Processing 60(11), 6017–6026 (2012). https://doi.org/10.
1109/TSP.2012.2210951

12. Hannig, F., Lari, V., Boppu, S., Tanase, A., Reiche, O.: Invasive Tightly-Coupled Processor
Arrays: A Domain-Specific Architecture/Compiler Co-Design Approach. ACM Trans. Embed.
Comput. Syst. 13(4s), 133:1–133:29 (2014). https://doi.org/10.1145/2584660

13. Hanzo, L., Webb, W., Keller, T.: Single and Multi-carrier Quadrature Amplitude Modulation:
Principles and Applications for Personal Communications, WLANs and Broadcasting (2000)

14. IEEE802.11n: 802.11n-2009 IEEE Local and metropolitan area networks–Specific require-
ments Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 5: Enhancements for Higher Throughput (2009). https://doi.org/
10.1109/IEEESTD.2009.5307322

15. Janhunen, J., Silven, O., Juntti, M., Myllyla, M.: Software Defined Radio Implementation of
K-best List Sphere Detector Algorithm. In: Intl. Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pp. 100–107 (2008). https://doi.org/10.
1109/ICSAMOS.2008.4664852

https://doi.org/10.1109/ACSSC.2007.4487358
https://doi.org/10.1109/TWC.2008.060378
https://doi.org/10.1109/TWC.2008.060378
https://doi.org/10.1109/ICC.2006.255278
https://doi.org/10.1109/ICC.2006.255278
https://doi.org/10.1109/JSSC.2005.847505
https://doi.org/10.1145/1950413.1950420
https://doi.org/10.1145/1950413.1950420
http://doi.acm.org/10.1145/1950413.1950420
https://doi.org/10.1109/FPT.2010.56814639
https://doi.org/10.1109/TSP.2012.2210951
https://doi.org/10.1109/TSP.2012.2210951
https://doi.org/10.1145/2584660
https://doi.org/10.1109/IEEESTD.2009.5307322
https://doi.org/10.1109/IEEESTD.2009.5307322
https://doi.org/10.1109/ICSAMOS.2008.4664852
https://doi.org/10.1109/ICSAMOS.2008.4664852

502 J. McAllister

16. Li, M., Bougard, B., Xu, W., Novo, D., Van Der Perre, L., Catthoor, F.: Optimizing Near-
ML MIMO Detector for SDR Baseband on Parallel Programmable Architectures. Design,
Automation and Test in Europe (DATE) pp. 444–449 (2008). https://doi.org/10.1109/DATE.
2008.4484721

17. McAllister, J.: FPGA-based DSP. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala
(eds.) Handbook of Signal Processing Systems, 2nd edn., pp. 363–392. Springer US (2010)

18. Milder, P., Franchetti, F., Hoe, J.C., Püschel, M.: Computer Generation of Hardware for Linear
Digital Signal Processing Transforms. ACM Trans. Des. Autom. Electron. Syst. 17(2), 15:1–
15:33 (2012). https://doi.org/10.1145/2159542.2159547

19. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs, 2nd edition edn. OUP
USA (2010)

20. Pohst, M.: On The Computation of Lattice Vectors of Minimal Length, Successive Minima and
Reduced Bases with Applications. SIGSAM Bull. 15(1), 37–44 (1981). http://doi.acm.org/10.
1145/1089242.1089247

21. Qi, Q., Chakrabarti, C.: Parallel High Throughput Soft-output Sphere Decoder. In: IEEE
Workshop on Signal Processing Systems (SIPS), pp. 174–179 (2010). https://doi.org/10.1109/
SIPS.2010.5624783

22. Ravindran, K., Satish, N., Jin, Y., Keutzer, K.: An FPGA-based soft multiprocessor system for
IPv4 packet forwarding. In: Field Programmable Logic and Applications, 2005. International
Conference on, pp. 487–492 (2005). https://doi.org/10.1109/FPL.2005.1515769

23. Schnorr, C.P., Euchner, M.: Lattice Basis Reduction: Improved Practical Algorithms and
Solving Subset Sum Problems. Mathematical Programming 66(1), 181–199 (1994)

24. Severance, A., Lemieux, G.: VENICE: A Compact Vector Processor for FPGA Applications.
In: Field-Programmable Technology (FPT), 2012 Intl. Conf. on, pp. 261–268 (2012). https://
doi.org/10.1109/FPT.2012.6412146

25. Unnikrishnan, D., Zhao, J., Tessier, R.: Application specific customization and scalability of
soft multiprocessors. In: Field Programmable Custom Computing Machines, 2009. FCCM ’09.
17th IEEE Symposium on, pp. 123–130 (2009). https://doi.org/10.1109/FCCM.2009.41

26. Wolniansky, P., Foschini, G., Golden, G., Valenzuela, R.: V-BLAST: An Architecture for
Realizing Very High Data Rates Over The Rich-Scattering Wireless Channel. In: 1998 URSI
Int. Symp. Signals, Systems, and Electronics, pp. 295–300 (1998). https://doi.org/10.1109/
ISSSE.1998.738086

27. Wu, B., Masera, G.: A Novel VLSI Architecture of Fixed-Complexity Sphere Decoder. In: 13th
Euromicro Conf. on Digital System Design: Architectures, Methods and Tools, pp. 737–744
(2010). https://doi.org/10.1109/DSD.2010.10

28. Xilinx Inc.: LogiCORE IP CORDIC v4.0 (2011)
29. Xilinx Inc.: LogiCORE IP Fast Fourier Transform v7.1 (2011)
30. Xilinx Inc.: 7 Series DSP48E1 Slice User Guide (2013)
31. Xilinx Inc.: 7 Series FPGAs Memory Resources User Guide (2014)
32. Xilinx Inc.: MicroBlaze Processor Reference Guide (2014)
33. Yiannacouras, P., Steffan, J., Rose, J.: Portable, Flexible, and Scalable Soft Vector Processors.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 20(8), 1429–1442 (2012).
https://doi.org/10.1109/TVLSI.2011.2160463

34. Yu, J., Eagleston, C., Chou, C.H., Perreault, M., Lemieux, G.: Vector Processing as a Soft
Processor Accelerator. ACM Trans. Reconfigurable Technology and Systems 2(2) (2009)

https://doi.org/10.1109/DATE.2008.4484721
https://doi.org/10.1109/DATE.2008.4484721
https://doi.org/10.1145/2159542.2159547
http://doi.acm.org/10.1145/1089242.1089247
http://doi.acm.org/10.1145/1089242.1089247
https://doi.org/10.1109/SIPS.2010.5624783
https://doi.org/10.1109/SIPS.2010.5624783
https://doi.org/10.1109/FPL.2005.1515769
https://doi.org/10.1109/FPT.2012.6412146
https://doi.org/10.1109/FPT.2012.6412146
https://doi.org/10.1109/FCCM.2009.41
https://doi.org/10.1109/ISSSE.1998.738086
https://doi.org/10.1109/ISSSE.1998.738086
https://doi.org/10.1109/DSD.2010.10
https://doi.org/10.1109/TVLSI.2011.2160463

Application-Specific Accelerators for
Communications

Chance Tarver, Yang Sun, Kiarash Amiri, Michael Brogioli,
and Joseph R. Cavallaro

Abstract For computation-intensive digital signal processing algorithms, com-
plexity is exceeding the processing capabilities of general-purpose digital signal
processors (DSPs). In some of these applications, DSP hardware accelerators have
been widely used to off-load a variety of algorithms from the main DSP host,
including the fast Fourier transform, digital filters, multiple-input multiple-output
detectors, and error correction codes (Viterbi, turbo, low-density parity-check)
decoders. Given power and cost considerations, simply implementing these com-
putationally complex parallel algorithms with high-speed general-purpose DSP
processor is not very efficient. However, not all DSP algorithms are appropriate
for off-loading to a hardware accelerator. First, these algorithms should have
data-parallel computations and repeated operations that are amenable to hardware
implementation. Second, these algorithms should have a deterministic dataflow
graph that maps to parallel datapaths. In this chapter, we focus on some of the basic
and advanced digital signal processing algorithms for communications and cover
major examples of DSP accelerators for communications.

1 Introduction

In current fourth-generation (4G) wireless systems and emerging fifth-generation
(5G), the signal processing algorithm complexity has far exceeded the processing
capabilities of general-purpose digital signal processors (DSPs). With the inclusion
of multiple-input multiple-output (MIMO) technology and advanced forward error
correction coding in many wireless systems, it becomes increasingly critical to
develop area and power efficient designs. One can not simply implement compu-
tation intensive DSP algorithms with gigahertz DSPs. Besides, it is also critical to
reduce base station power consumption by utilizing optimized hardware accelerator

C. Tarver (�) · Y. Sun · K. Amiri · M. Brogioli · J. R. Cavallaro
Rice University, Houston, TX, USA
e-mail: tarver@rice.edu; kiaa@alumni.rice.edu; brogioli@alumni.rice.edu; cavallar@rice.edu

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_14

503

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_14&domain=pdf
mailto:{tarver@rice.edu}
mailto:kiaa@alumni.rice.edu
mailto:{brogioli@alumni.rice.edu}
mailto:{cavallar@rice.edu}
https://doi.org/10.1007/978-3-319-91734-4_14

504 C. Tarver et al.

design. In 5G this is even more true with the addition of massive MIMO where
hundreds of antennas will simultaneously serve tens of users at high data rates for
greater throughput and spectral efficiency [6, 35].

In this chapter, we will describe a few computationally complex DSP algorithms
in a wireless system that are likely to be offloaded to a specialized accelerator
yielding high performance. These algorithms include turbo decoding, low-density
parity-check (LDPC) decoding, MIMO detection, channel equalization, fast Fourier
transform (FFT), inverse fast Fourier transform (IFFT), and digital predistortion
(DPD). Often these hardware accelerators are integrated into the same die with
DSP processors. In addition, it is also possible to leverage a field-programmable
gate array (FPGA) or a graphics processing unit (GPU) to provide reconfigurable
massive computation capabilities. This is described for FPGAs in another chapter
of this handbook [45].

DSP workloads are typically numerically intensive with large amounts of
both instruction and data level parallelism. To exploit this parallelism with a
programmable processor, most DSP systems utilize very long instruction word or
VLIW architectures. VLIW architectures typically include one or more register
files on the processor die versus a single monolithic register file as is often the
case in general-purpose computing. Examples of such architectures are the NXP
StarCore processor [48], the Texas Instruments TMS320C6x series DSPs [75] as
well as SHARC DSPs from Analog Devices [5], to name a few. A comprehensive
overview of the general-purpose DSP processors is given in other chapters of this
handbook such as [51] and [34].

In some cases, due to the idiosyncratic nature of many DSPs and the implemen-
tation of some of the more powerful instructions in the DSP core, an optimizing
compiler cannot always target core functionality in a perfect manner. Examples of
this include high-performance fractional arithmetic instructions, for example, which
may perform highly SIMD functionality which the compiler cannot always deem
safe at compile time.

While the aforementioned VLIW based DSP architectures provide increased
parallelism and higher numerical throughput performance, this comes at a cost
of ease in programmability. Typically such machines are dependent on advanced
optimizing compilers that are capable of aggressively analyzing the instruction and
data level parallelism in the target workloads, and mapping it onto the parallel
hardware. Due to a large number of parallel functional units and deep pipeline
depths, modern DSPs are often difficult to hand program at the assembly level while
achieving optimal results. As such, one technique used by the optimizing compiler
is to vectorize much of the data level parallelism often found in DSP workloads. In
doing this, the compiler can often fully exploit the single instruction multiple data,
or SIMD functionality found in modern DSP instruction sets.

Despite such highly parallel programmable processor cores and advanced com-
piler technology, however, it is quite often the case that the amount of available
instruction and data level parallelism in modern signal processing workloads far
exceeds the limited resources available in a VLIW based programmable processor
core. For example, the implementation complexity for a 40 Kbps DS-CDMA system

Application-Specific Accelerators for Communications 505

would be 41.8 Gflops/s for 60 users [78], not to mention 100 Mbps+ 3GPP
LTE system and tens of Gbps in 5G [6]. This complexity largely exceeds the
capability of modern DSP processors which typically can provide under 10 Gflops/s
performance per core, such as 9.6 Gflops/s TI 6652 DSP processor and 3 Gflops ADI
TigerSHARC processor. In other cases, the functionality required by the workload
is not efficiently supported by more general-purpose instruction sets typically found
in embedded systems. As such the need for acceleration at both the fine-grain and
coarse-grain levels is often required; the former for instruction set architecture (ISA)
like optimization, and the latter for task like optimization [69].

Additionally, wireless system designers often desire the programmability offered
by software running on a DSP core versus a hardware-based accelerator, to allow
flexibility in various proprietary algorithms. Examples of this can be functionality
such as channel estimation in baseband processing, for which a given vendor may
want to use their algorithm to handle various users in varying system conditions
versus a pre-packaged solution. Typically these demands result in a heterogeneous
system which may include one or more of the following: software programmable
DSP cores for data processing, hardware-based accelerator engines for data process-
ing, and in some instances general-purpose processors, GPUs, or micro-controller
type solutions for control processing.

The motivations for heterogeneous DSP system solutions including hardware
acceleration stem from the tradeoffs between software programmability versus the
performance gains of custom hardware acceleration in its various forms. There are a
number of heterogeneous accelerator based architectures currently available today,
as well as various offerings and design solutions being offered by the research
community.

There are a number of DSP architectures which include true hardware-based
accelerators which are not programmable by the end user. One example of this is the
Texas Instrument’s TCI66x series of DSPs which include hardware-based Viterbi or
turbo decoder accelerators for acceleration of wireless channel decoding [74].

A recent progression in accelerators is the use of GPUs for general purpose
computation including signal processing. This is often referred to as GPGPU which
stands for General-Purpose computation on Graphics Processing Units. Their high-
performance, many-core architecture is well suited for problems that fit a SIMD
computational style. Moreover, because they are software based, there is more
flexibility and portability. Some examples of GPU based accelerators include a
Massive MIMO detector in [40] and an accelerator for LTE-A turbo decoding
in [84]. GPU technology and tools are rapidly progressing and can offer more
parallelism and faster performance for less power. They are also now standard in
most mobile system-on-chips such as the Adreno GPU on Snapdragon chips by
Qualcomm. Considering their prevalence and performance, GPUs are a resource
that should be exploited on modern, heterogeneous compute systems.

506 C. Tarver et al.

Memory Interface

Host
Processor

Main
 Memory

R
ec

on
fig

ur
ab

le
 P

la
ne

Fig. 1 Traditional coarse grained accelerator architecture [10]

1.1 Coarse Grain Versus Fine Grain Accelerator Architectures

Coarse-grain accelerator based DSP systems entail a co-processor type design
whereby larger amounts of work are run on the sometimes configurable co-
processor device. Current technologies being offered in this area support offloading
of functionality such as FFT and various matrix-like computations to the accelerator
versus executing in software on the programmable DSP core. For examples of
architectures for accelerating FFT computations, see [23] in this handbook.

As shown in Fig. 1, coarse-grained heterogeneous architectures typically include
a loosely coupled computational grid attached to the host processor. These types of
architectures are sometimes built using an FPGA, ASIC, or a vendor programmable
acceleration engine for portions of the system. Tightly coupled loop nests or kernels
are then offloaded from executing in software on the host processor to executing in
hardware on the loosely coupled grid.

Fine-grain accelerator based architectures are the flip-side to the coarse-grained
accelerator mindset. Typically, ISAs provide primitives that allow low-cost, low-
complexity implementations while still maintaining high performance for a broad
range of input applications. In certain cases, however, it is often advantageous to
offer instructions specialized to the computational needs of the application. Adding
new instructions to the ISA, however, is a difficult decision to make. On the one
hand, they may provide significant performance increases for certain subsets of
applications, but they must still be general enough such that they are useful across
a much wider range of applications. Additionally, such instructions may become
obsolete as software evolves and may complicate future hardware implementations
of the ISA [86]. Vendors such as Cadence, however, offer toolsets to produce

Application-Specific Accelerators for Communications 507

Host Processor
Pipeline

Register
File

Shadow
Register

File

Reconfigurable
Array (RA)

Execution
Control

Unit

Configuration Control and Caching Unit

Fig. 2 Example fine-grained reconfigurable architecture with customizable ALU for ISA exten-
sions [10]

configurable, extensible processor architectures typically targeted at the embedded
community [14]. These types of products typically allow the user to configure
a predefined subset of processor components to fit the specific demands of the
input application. Figure 2 shows the layout of a typical fine-grained reconfigurable
architecture whereby a custom ALU is coupled with the host processors pipeline.

In summary, both fine and coarse-grained acceleration can be beneficial to the
computational demands of DSP applications. Depending on the overall design
constraints of the system, designers may choose a heterogeneous coarse-grained
acceleration system or a strict software programmable DSP core system.

1.2 Hardware/Software Workload Partition Criteria

In partitioning any workload across a heterogeneous system comprised of recon-
figurable computational accelerators, programmable DSPs or programmable host
processors, and varied memory hierarchy, a number of criteria must be evaluated
in addition to application profile information to determine whether a given task
should execute in software (on the host processor or GPU) or in hardware (on
FPGA or ASIC), as well where in the overall system topology each task should be
mapped. It is these sets of criteria that typically mandate the software partitioning,
and ultimately determine the topology and partitioning of the given system.

508 C. Tarver et al.

Spatial locality of data is one concern in partitioning a given task. In a typical
software implementation running on a host processor, the ability to access data in
a particular order efficiently is of great importance to performance. Issues such
as latency to memory, data bus contention, data transfer times to local compute
element such as accelerator local memory, as well as type and location of memory
all need to be taken into consideration. In cases where data is misaligned, or not
contiguous or uniformly strided in memory, additional overhead may be needed to
arrange data before block DMA transfers can take place or data can efficiently be
computed on. In cases where data is not aligned properly in memory, significant
performance degradations can be seen due to decreased memory bandwidth when
performing unaligned memory accesses on some architectures. When data is not
uniformly strided, it may be difficult to burst transfer even single dimensional
strips of memory via DMA engines. Consequently, with non-uniformly strided data
it may be necessary to perform data transfers into local accelerator memory for
computation via programmed I/O on the part of the host DSP. Inefficiencies in
such methods of data transfer can easily overshadow any computational benefits
achieved by compute acceleration of the FPGA. The finer the granularity of
computation offloaded for acceleration in terms of compute time, quite often the
more pronounced the side effects of data memory transfer to local accelerator
memory.

Data level parallelism is another important criteria in determining the partition-
ing for a given application. Many applications targeted at VLIW-like architectures,
especially signal processing applications, exhibit a large amount of both instruction
and data level parallelism [31]. Many signal processing applications often contain
enough data level parallelism to exceed the available functional units of a given
architecture. FPGA fabrics, GPUs, and highly parallel ASIC implementations can
exploit these computational bottlenecks in the input application by providing not
only large numbers of functional units but also large amounts of local block data
RAM to support very high levels of instruction and data parallelism, far beyond
that of what a typical VLIW signal processing architecture can afford in terms of
register file real estate. Furthermore, depending on the instruction set architecture of
the host processor or DSP, performing sub-word or multiword operations may not be
feasible given the host machine architecture. Most modern DSP architectures have
fairly robust instruction sets that support fine-grained multiword SIMD acceleration
to a certain extent. It is often challenging, however, to efficiently load data from
memory into the register files of a programmable SIMD style processor to be able
to efficiently or optimally utilize the SIMD ISA in some cases.

Computational complexity of the application often bounds the programmable
DSP core, creating a compute bottleneck in the system. Algorithms that are imple-
mented in FPGA are often computationally intensive, exploiting greater amounts
of instruction and data level parallelism than the host processor can afford, given
the functional unit limitations and pipeline depth. By mapping computationally
intense bottlenecks in the application from software implementation executing on
host processor to hardware implementation in FPGA, one can effectively alleviate
bottlenecks on the host processor and permit extra cycles for additional computation
or algorithms to execute in parallel.

Application-Specific Accelerators for Communications 509

Task-level parallelism in a portion of the application can play a role in the ideal
partitioning as well. Quite often, embedded applications contain multiple tasks that
can execute concurrently, but have a limited amount of instruction or data level
parallelism within each unique task [79]. Applications in the networking space,
and baseband processing at layers above the data plane typically need to deal with
processing packets and traversing packet headers, data descriptors and multiple task
queues. If the given task contains enough instruction and data level parallelism
to exhaust the available host processor compute resources, it can be considered
for partitioning to an accelerator. In many cases, it is possible to concurrently
execute multiple of these tasks in parallel either across multiple host processors or
across both host processor and FPGA compute engine depending on data access
patterns and cross task data dependencies. There are a number of architectures
which have accelerated tasks in the control plane, versus data plane, in hardware.
One example of this is the NXP Semiconductor QorIQ platform [49] which provides
hardware acceleration for frame managers, queue managers, and buffer managers.
In doing this, the architecture effectively frees the programmable processor cores
from dealing with control plane management.

2 Hardware Accelerators for Communications

Processors for wireless cellular systems beyond the second-generation systems
typically require high speed, throughput, and flexibility. In addition to this, com-
putationally intensive algorithms are used to remove often high levels of multiuser
interference especially in the presence of multiple transmit and receive antenna
MIMO systems. Time-varying wireless channel environments can also dramatically
deteriorate the performance of the transmission, further requiring powerful channel
equalization, detection, and decoding algorithms for different fading conditions at
the mobile handset. In these types of environments, it is often the case that the
amount of available parallel computation in a given application or kernel far exceeds
the available functional units in the target processor. Even with modern VLIW style
DSPs, the number of available functional units in a given clock cycle is limited and
prevents full parallelization of the application for maximum performance. Further,
the area and power constraints of mobile handsets make a software-only solution
difficult to realize.

Figure 3 depicts a typical MIMO receiver model. Three major blocks, MIMO
channel estimator and equalizer, MIMO detector, and channel decoder, determine
the computation requirements of a MIMO receiver. Thus, it is natural to offload
these very computationally intensive tasks to hardware accelerators to support high
data rate applications. Example include 3GPP LTE-Advanced with 3 Gbps downlink
peak data rate, and future standards such as 5G targeting 10 Gbps speeds.

510 C. Tarver et al.

Fig. 3 Basic structure of a MIMO receiver

Fig. 4 Workload partition for a channel equalizer

2.1 MIMO Channel Equalization Accelerator

The total workload for a given channel equalizer performed as a baseband process-
ing part on the mobile receiver can be decomposed into multiple tasks as depicted
in Fig. 4. This block diagram shows the various software processing blocks, also
known as kernels, that make up the channel equalizer firmware executing on the
DSP of the mobile receiver. The tasks are channel estimation based on known
pilot sequence, covariance computation (first row or column) and circularization,
FFT/IFFT post-processing for updating equalization coefficients, finite-impulse
response (FIR) filtering applied on the received samples (received frame), and user
detection (despreading-descrambling) for recovering the user information bits. The
computed data is shared between the various tasks in a pipeline fashion, in that the
output of covariance computation is used as the input to the matrix circularization
algorithm.

Application-Specific Accelerators for Communications 511

The computational complexity of the various components of the workload vary
with the number of users in the system, the number of users entering and leaving the
cell, and the channel conditions. Regardless of this variance in the system conditions
at runtime, the dominant portions of the workload are the channel estimation, FFT,
IFFT, FIR filtering, and despreading-descrambling.

As an example, using the workload partition criteria for partitioning functionality
between a programmable DSP core and system containing multiple hardware for a
3.5G HSDPA system, it has been shown that impressive performance results can
be obtained. In studying the bottlenecks of such systems when implemented on
a programmable DSP core in software, it has been found the key bottlenecks in
the system to be the channel estimation, FFT, IFFT, FIR filter, and to a lesser
extent despreading-descrambling as illustrated in Fig. 4 [11]. By migrating the
3.5G implementation from a solely software based implementation executing on a
TMS320C64x based programmable DSP core to a heterogeneous system containing
not only programmable DSP cores but also distinct hardware acceleration for
the various bottlenecks, the authors achieve almost an 11.2× speedup in the
system [11]. Figure 5 illustrates the system partitioning between programmable DSP
core and hardware (e.g. FPGA or ASIC) accelerator that resulted in load balancing
the aforementioned bottlenecks.

The arrows in the diagram illustrate the data flow between local programmable
DSP core on-chip data caches and the local RAM arrays. In the case of channel
estimation, the work is performed in parallel between the programmable DSP core
and hardware acceleration. Various other portions of the workload are offloaded
to hardware-based accelerators while the programmable DSP core performs the
lighter-weight signal-processing code and bookkeeping.

Fig. 5 Channel equalizer DSP/hardware accelerator partitioning

512 C. Tarver et al.

Fig. 6 MIMO transmitter
and receiver

Despite the ability to achieve over 11× speedup in performance, it is important to
note that the experimental setup used in these studies was purposely pessimistic. The
various FFT, IFFT, etc. compute blocks in these studies were offloaded to discrete
FPGA/ASIC accelerators. As such, data had to be transferred, for example, from
local IFFT RAM cells to FIR filter RAM cells. This is pessimistic in terms of
data communication time. In most cases the number of gates required for a given
accelerator implemented in FPGA/ASIC was low enough that multiple accelerators
could be implemented within a single FPGA/ASIC drastically reducing chip-to-chip
communication time.

2.2 MIMO Detection Accelerators

MIMO systems, Fig. 6, have been shown to be able to greatly increase the reliability
and data rate for point-to-point wireless communication [35, 72]. Multiple-antenna
systems can be used to improve the reliability and diversity in the receiver by
providing the receiver with multiple copies of the transmitted information. This
diversity gain is obtained by employing different kinds of space-time block codes
(STBC) [3, 70, 71]. In such cases, for a system with M transmit antennas and
N receive antennas and over a time span of T time symbols, the system can be
modeled as

Y = HX+ N, (1)

where H is the N ×M channel matrix. Moreover, X is the M × T space-time code
matrix where its xij element is chosen from a complex-valued constellation Ω of
the order w = |Ω | and corresponds to the complex symbol transmitted from the i-th
antenna at the j -th time. The Y matrix is the received N × T matrix where yij is
the perturbed received element at the i-th receive antenna at the j -th time. Finally,
N is the additive white Gaussian noise matrix on the receive antennas at different
time slots.

MIMO systems could also be used to further expand the transmit data rate using
other space-time coding techniques, particularly layered space-time (LST) codes
[19]. One of the most prominent examples of such space-time codes is Vertical
Bell Laboratories Layered Space-Time (V-BLAST) [25], otherwise known as spatial
multiplexing (SM). In the spatial multiplexing scheme, independent symbols are
transmitted from different antennas at different time slots; hence, supporting even
higher data rates compared to space-time block codes of lower data rate [3, 70]. The

Application-Specific Accelerators for Communications 513

spatial multiplexing MIMO system can be modeled similarly to Eq. (1) with T = 1
since there is no coding across the time domain:

y = Hx+ n, (2)

where H is the N ×M channel matrix, x is the M-element column vector where its
xi-th element corresponds to the complex symbol transmitted from the i-th antenna,
and y is the received N-th element column vector where yi is the perturbed received
element at the i-th receive antenna. The additive white Gaussian noise vector on the
receive antennas is denoted by n.

While spatial multiplexing can support very high data rates, the complexity
of the maximum-likelihood detector in the receiver increases exponentially with
the number of transmit antennas. Thus, unlike the case in Eq. (1), the maximum-
likelihood detector for Eq. (2) requires a complex architecture and can be very
costly. In order to address this challenge, a range of detectors and solutions have
been studied and implemented. In this section, we discuss some of the main
algorithmic and architectural features of such detectors for spatial multiplexing
MIMO systems.

2.2.1 Maximum-Likelihood (ML) Detection

The maximum likelihood (ML) or optimal detection of MIMO signals is known to
be an NP-complete problem. The ML detector for Eq. (2) is found by minimizing the

∣∣∣∣y−Hx
∣∣∣∣2

2 (3)

norm over all the possible choices of x ∈ ΩM . This brute-force search can be a
very complicated task, and as already discussed, incurs an exponential complexity
in the number of antennas. In fact for M transmit antennas and modulation order
of w = |Ω |, the number of possible x vectors is wM . Thus, unless for small
dimension problems, it would be infeasible to implement it within a reasonable
area-time constraint [12, 22].

2.2.2 Sphere Detection

Sphere detection can be used to achieve ML (or close-to-ML) detection. In fact,
while the norm minimization of Eq. (3) is exponential complexity, it has been shown
that using the sphere detection method, the ML solution can be obtained with much
lower complexity [18, 29, 30, 80].

In order to avoid the significant overhead of the ML detection, the distance norm
can be simplified [17] as follows:

514 C. Tarver et al.

D(s) = ‖ y−Hs ‖2

= ‖ QHy− Rs ‖2=
1∑

i=M
|yi ′ −

M∑
j=i

Ri,j sj |2, (4)

where H = QR represents the channel matrix QR decomposition, R is an upper
triangular matrix, QQH = I and y′ = QHy.

The norm in Eq. (4) can be computed in M iterations starting with i = M . When
i = M , i.e. the first iteration, the initial partial norm is set to zero, TM+1(s(M+1)) =
0. Using the notation of [13], at each iteration the partial Euclidean distances (PEDs)
at the next levels are given by

Ti(s(i)) = Ti+1(s(i+1))+ |ei(s(i))|2 (5)

with s(i) = [si, si+1, . . . , sM]T , and i = M,M − 1, . . . , 1, where

|ei(s(i))|2 = |yi ′ − Ri,i si −
M∑

j=i+1

Ri,j sj |2. (6)

One can envision this iterative algorithm as a tree traversal with each level of the tree
corresponding to one i value or transmit antenna, and each node having w′ children
based on the modulation chosen.

The norm in Eq. (6) can be computed in M iterations starting with i = M ,
where M is the number of transmit antennas. At each iteration, partial (Euclidian)
distances, PDi = |yi ′−∑M

j=i Ri,j sj |2 corresponding to the i-th level, are calculated
and added to the partial norm of the respective parent node in the (i − 1)-th level,
PNi = PNi−1 + PDi . When i = M , i.e. the first iteration, the initial partial
norm is set to zero, PNM+1 = 0. Finishing the iterations gives the final value of the
norm. As shown in Fig. 7, one can envision this iterative algorithm as a tree traversal
problem where each level of the tree represents one i value, each node has its own
PN , and w children, where w is the QAM modulation size. In order to reduce the
search complexity, a threshold, C, can be set to discard the nodes with PN > C.
Therefore, whenever a node k with a PNk > C is reached, any of its children will
have PN ≥ PNk > C. Hence, not only the k-th node, but also its children, and all
nodes lying beneath the children in the tree, can be pruned out.

There are different approaches to search the entire tree, mainly classified as
depth-first search (DFS) approach and K-best approach, where the latter is based on
breadth-first search (BFS) strategy. In DFS, the tree is traversed vertically [4, 13];
while in BFS [27, 82], the nodes are visited horizontally, i.e. level by level.

In the DFS approach, starting from the top level, one node is selected, the PNs of
its children are calculated, and among those new computed PNs, one of them, e.g.
the one with the least PN , is chosen, and that becomes the parent node for the next
iteration. The PNs of its children are calculated, and the same procedure continues

Application-Specific Accelerators for Communications 515

Fig. 7 Calculating the distances using a tree. Partial norms, PNs, of dark nodes are less than the
threshold. White nodes are pruned out

until a leaf is reached. At this point, the value of the global threshold is updated with
the PN of the recently visited leaf. Then, the search continues with another node
at a higher level, and the search controller traverses the tree down to another leaf.
If a node is reached with a PN larger than the radius, i.e. the global threshold, then
that node, along with all nodes lying beneath that, are pruned out, and the search
continues with another node.

The tree traversal can be performed in a breadth-first manner. At each level, only
the best K nodes, i.e. the K nodes with the smallest Ti , are chosen for expansion.
This type of detector is generally known as the K-best detector. Note that such a
detector requires sorting a list of size K × w′ to find the best K candidates. For
instance, for a 16-QAM system with K = 10, this requires sorting a list of size
K × w′ = 10× 4 = 40 at most of the tree levels.

2.2.3 Computational Complexity of Sphere Detection

In this section, we derive and compare the complexity of the proposed techniques.
The complexity in terms of number of arithmetic operations of a sphere detection
operation is given by

JSD(M,w) =
1∑

i=M
JiE{Di}, (7)

where Ji is the number of operations per node in the i-th level. In order to compute
Ji , we refer to the VLSI implementation of [13], and note that, for each node,
one needs to compute the Ri,j sj , multiplications, where, except for the diagonal

516 C. Tarver et al.

element, Ri,i , the rest of the multiplications are complex valued. The expansion
procedure, Eq. (4), requires computing Ri,j sj for j = i + 1, . . . ,M , which would
require (M − i) complex multiplications, and also computing Ri,i si for all the
possible choices of sj ∈ Ω . Even though, there are w different sj s, there are only

(
√
w

2 −1) different multiplications required for QAM modulations. For instance, for
a 16-QAM with {±3± 3j,±1± 1j,±3± 1j,±1± 3j }, computing only (Ri,j × 3)
would be sufficient for all the choices of modulation points. Finally, computing the
‖ . ‖2 requires a squarer or a multiplier, depending on the architecture and hardware
availabilities.

In order to compute the number of adders for each norm expansion in (4), we
note that there are (M− i) complex valued adders required for yi ′ −∑M

j=i+1 Ri,j sj ,
and w more complex adders to add the newly computed Ri,i si values. Once the

w different norms, |yi ′ −∑M
j=i Ri,j sj

∣∣2, are computed, they need to be added to
the partial distance coming from the higher level, which requires w more addition
procedures. Finally, unless the search is happening at the end of the tree, the norms
need to be sorted, which assuming a simple sorter, requires w(w + 1)/2 compare-
select operations.

Therefore, keeping in mind that each complex multiplier corresponds to four
real-valued multipliers and two real-valued adders, and that every complex adder
corresponds to two real-valued adders, Ji is calculated by

Ji(M,w) = Jmult + Jadd(M,w)

Jmult (M,w) = ((

√
w

2
− 1)+ 4(M − i)+ 1)

Jadd(M,w) = (2(M − i)+ 2w +w)+ (w(w + 1)/2) · sign(i − 1),

where sign(i − 1) is used to ensure sorting is counted only when the search has not
reached the end of the tree, and is equal to:

sign(t) =
{

1 t ≥ 1
0 otherwise

. (8)

Moreover, we use θ , β and γ to represent the hardware-oriented costs for one
adder, one compare-select unit, and one multiplication operation, respectively.

Figure 8 shows the number of addition and multiplication operations needed for
a 16-QAM system with different number of antennas.

2.2.4 Depth-First Sphere Detector Architecture

The depth-first sphere detection algorithm [13, 18, 22, 30] traverses the tree in a
depth-first manner: the detector visits the children of each node before visiting its
siblings. A constraint, referred to as radius, is often set on the PED for each level

Application-Specific Accelerators for Communications 517

Fig. 8 Number of addition and multiplications operations for 16-QAM with different number of
antennas, M

Fig. 9 Sphere detector architecture with multiple PED function units

of the tree. A generic depth-first sphere detector architecture is shown in Fig. 9. The
pre-processing unit (PPU) is used to compute the QR decomposition of the channel
matrix as well as calculate QHy. The tree traversal unit (TTU) is the controlling unit
which decides in which direction and with which node to continue. The computation
unit (CMPU) computes the partial distances, based on Eq. (4), for w different sj .
Each PD unit computes |yi ′ −∑M

j=i Ri,j sj |2 for each of the w children of a node.

518 C. Tarver et al.

Table 1 FPGA resource utilization for sphere detector

Device Xilinx Virtex-4 xc4vfx100-12ff1517

Number of slices 4065/42176 (9%)

Number of FFs 3344/84352 (3%)

Number of look-up tables 6457/84352 (7%)

Number of RAMB16 3/376 (1%)

Number of DSP48s 32/160 (20%)

Max. Freq. 125.7 MHz

Fig. 10 The K-best MIMO detector architecture: the intermediate register banks contain the
sorting information as well as the other values, i.e. R matrix

Finally, the node ordering unit (NOU) is for finding the minimum and saving other
legitimate candidates, i.e. those inside Ri , in the memory.

As an example to show the algorithm complexity, an FPGA implementation
synthesis result for a 50 Mbps 4 × 4 16-QAM depth-first sphere detector is
summarized in Table 1 [4].

2.2.5 K-Best Detector Architecture

K-best is another popular algorithm for implementing close-to-ML MIMO detec-
tion [16, 27, 82]. The performance of this scheme is suboptimal compared to ML and
sphere detection. However, it has a fixed complexity and relatively straightforward
architecture. In this section, we briefly introduce the architecture [27] to implement
the K-best MIMO detector. As illustrated in Fig. 10, the PE elements at each stage
compute the Euclidean norms of Eq. (6), and find the best K candidates, i.e. the K

candidates with the smallest norms, and pass them as the surviving candidates to the
next level. It should be pointed out that Eq. (2) can be decomposed into separate real
and imaginary parts [27], which would double the size of the matrices. While such
decomposition reduces the complex-valued operations of nodes into real-valued
operations, it doubles the number of levels of the tree. Therefore, as shown in
Fig. 10, there are 8K-best detection levels for the 4-antenna system. By selecting
the proper K value, the real-value decomposition MIMO detection will not cause
performance degradation compared to the complex-value MIMO detection [47].

In summary, both depth-first and K-best detectors have a regular and parallel
data flow that can be efficiently mapped to hardware. The large amount of required
multiplications makes the algorithm very difficult to be realized in a DSP processor.
As the main task of the MIMO detector is to search for the best candidate in a very

Application-Specific Accelerators for Communications 519

short time period, it would be more efficient to be mapped on a parallel hardware
searcher with multiple processing elements. Thus, to sustain the high throughput
MIMO detection, a MIMO hardware accelerator is necessary.

2.3 Channel Decoding Accelerators

Error correcting codes are widely used in digital transmission, especially in wireless
communications to combat the harsh wireless transmission medium. To achieve
high throughput, researchers are investigating advanced error correction codes that
approach the capacity of a channel. The most commonly used error correcting codes
in modern systems are convolutional codes, turbo codes, and low-density parity-
check (LDPC) codes. As a core technology in wireless communications, forward
error correction (FEC) coding has migrated from the basic 2G convolutional/block
codes to more powerful 3G turbo codes, LDPC codes for 4G and 802.11ac systems,
and potentially a new class of codes called polar codes for 5G.

As codes become more complicated, the implementation complexity, especially
the decoder complexity, increases dramatically which largely exceeds the capability
of the general-purpose DSP processor. Even the most capable DSPs today would
need some types of acceleration coprocessor to offload the computation-intensive
error correcting tasks. Moreover, it would be much more efficient to implement
these decoding algorithms on dedicated hardware because typical error correction
algorithms use special arithmetic and therefore are more suitable for ASICs or
FPGAs. Bitwise operations, linear feedback shift registers, and complex look-up
tables can be very efficiently realized with ASICs/FPGAs.

In this section, we will present some important error correction algorithms and
their efficient hardware architectures. We will cover major error correction codes
used in the current and next generation communication standards, such as 3GPP
LTE, IEEE 802.11ac Wireless LAN, IEEE 802.16e WiMax, etc.

2.3.1 Turbo Decoder Accelerator Architecture

Turbo codes are a class of high-performance capacity-approaching error-correcting
codes [8]. As a break-through in coding theory, turbo codes are widely used in many
3G/4G wireless standards such as CDMA2000, WCDMA/UMTS, 3GPP LTE, and
IEEE 802.16e WiMax. However, the inherently large decoding latency and complex
iterative decoding algorithm have made it rarely being implemented in a general-
purpose DSP. For example, Texas Instruments’ latest multi-core DSP processor TI
C6614 employs a turbo decoder accelerator to support 365 Mbps LTE turbo codes
for the base station [73]. The decoding throughput requirement for 3GPP LTE
turbo codes is 80 Mbps in the uplink and 320 Mbps in the downlink. Because the
turbo codes used in many standards are very similar, e.g. the encoding polynomials
are same for WCDMA/UMTS/LTE, the turbo decoder is often accelerated by
reconfigurable hardware.

520 C. Tarver et al.

a b

Fig. 11 Turbo encoder structure. (a) Basic structure. (b) Structure of turbo encoder in 3GPP LTE

a b

Fig. 12 Basic structure of an iterative turbo decoder. (a) Iterative decoding based on two MAP
decoders. (b) Forward/backward recursion on trellis diagram

A classic turbo encoder structure is depicted in Fig. 11. The basic encoder con-
sists of two systematic convolutional encoders and an interleaver. The information
sequence u is encoded into three streams: systematic, parity 1, and parity 2. Here
the interleaver is used to permute the information sequence into a second different
sequence for encoder 2. The performance of a turbo code depends critically on the
interleaver structure [55].

The BCJR algorithm [7], also called forward-backward algorithm or Maximum
a posteriori (MAP) algorithm, is the main component in the turbo decoding process.
The basic structure of turbo decoding is functionally illustrated in Fig. 12. The
decoding is based on the MAP algorithm. During the decoding process, each

Application-Specific Accelerators for Communications 521

MAP decoder receives the channel data and a priori information from the other
constituent MAP decoder through interleaving (π) or deinterleaving (π−1), and
produces extrinsic information at its output. The MAP algorithm is an optimal
symbol decoding algorithm that minimizes the probability of a symbol error. It
computes the a posteriori probabilities (APPs) of the information bits as follows:

Λ(ûk) = ∗
max

u:uk=1

{
αk−1(sk−1)+ γk(sk−1, sk)+ βk(sk))

}
(9)

− ∗
max

u:uk=0

{
αk−1(sk−1)+ γk(sk−1, sk)+ βk(sk))

}
, (10)

where αk and βk denote the forward and backward state metrics, and are calculated
as follows:

αk(sk) = ∗
max
sk−1
{αk−1(sk−1)+ γk(sk−1, sk)}, (11)

βk(sk) = ∗
max
sk+1
{βk+1(sk+1)+ γk(sk, sk+1)}. (12)

The γk term above is the branch transition probability that depends on the trellis
diagram, and is usually referred to as a branch metric. The max∗{.} operator
employed in the above descriptions is the core arithmetic computation that is
required by the MAP decoding. It is defined as:

∗
max(a, b) = log(ea + eb) = max(a, b)+ log(1+ e−|a−b|). (13)

A basic add-compare-select-add unit is shown in Fig. 13. This circuit can process
one step of the trellis per cycle and is often referred to as Radix-2 ACSA unit.
To increase the processing speed, the trellis can be transformed by merging every
two stages into one radix-4 stage as shown in Fig. 14. Thus, the throughput can be

a b

Fig. 13 ACSA structure. (a) Flow of state metric update. (b) Circuit implementation of an ACSA
unit

522 C. Tarver et al.

a

b

Fig. 14 (a) An example of radix-4 trellis. (b) Radix-4 ACSA circuit implementation

doubled by applying this transform. For an N state turbo code, N such ACSA unit
would be required in each step of the trellis processing. To maximize the decoding
throughput, a parallel implementation is usually employed to compute all the N

state metrics simultaneously.
In the original MAP algorithm, the entire set of forward metrics needs to be

computed before the first soft log-likelihood ratio (LLR) output can be generated.
This results in a large storage of K metrics for all N states, where K is the block
length and N is the number of states in the trellis diagram. Similar to the Viterbi
algorithm, a sliding window algorithm is often applied to the MAP algorithm to
reduce the decoding latency and memory storage requirement. By selecting a proper
length of the sliding window, e.g. 32 for a rate 1/3 code, there is nearly no bit error
rate (BER) performance degradation. Figure 15a shows an example of the sliding
window algorithm, where a dummy reverse metric calculation (RMC) is used to get
the initial values for β metrics. The sliding window hardware architecture is shown
in Fig. 15b. The decoding operation is based on three recursion units, two used for
the reverse (or backward) recursions (dummy RMC 1 and effective RMC 2), and one

Application-Specific Accelerators for Communications 523

a

b

Fig. 15 Sliding window MAP decoder. (a) An example of sliding window MAP algorithm,
where a dummy RMC is performed to achieve the initial β metrics. (b) MAP decoder hardware
architecture

for forward metric calculation (FMC). Each recursion unit contains parallel ACSA
units. After a fixed latency, the decoder produces the soft LLR outputs on every
clock cycle. To further increase the throughput, a parallel sliding window scheme
[15, 37, 41, 44, 58, 64, 67, 81, 83] is often applied as shown in Fig. 16.

Another key component of turbo decoders is the interleaver. Generally, the inter-
leaver is a device that takes its input bit sequence and produces an output sequence
that is as uncorrelated as possible. Theoretically a random interleaver would have the
best performance, but it is difficult to implement a random interleaver in hardware.
Thus, researchers are investigating pseudo-random interleavers such as the row-
column permutation interleaver for 3G Rel-99 turbo coding as well as the new
QPP interleaver [59] for LTE turbo coding. The main differences between these
two types of pseudo-random interleavers is the capability to support parallel turbo
decoding. The drawback of the row-column permutation interleaver is that memory
conflicts will occur when employing multiple MAP decoders for parallel decoding.
Extra buffers are necessary to solve the memory conflicts caused by the row-column
permutation interleaver [56]. Given an information block length N , the x-th QPP
interleaved output position is given by

Π(x) = (f2x
2 + f1x) mod N, 0 ≤ x, f1, f2 < N. (14)

524 C. Tarver et al.

a

b

c

d

Fig. 16 An example of parallel sliding window decoding, where a decode block is sliced into four
sections. The sub-blocks are overlapped by one sliding window length W in order to get the initial
value for the boundary states

It has been shown in [59] that the QPP interleaver will not cause memory conflicts as
long as the parallelism level is a factor of N . The simplest approach to implement an
interleaver is to store all the interleaving patterns in non-violating memory such as
ROM. However, this approach can become very expensive because it is necessary to
store a large number of interleaving patterns to support decoding of multiple block
size turbo codes such as 3GPP LTE turbo codes. Fortunately, there usually exists an
efficient hardware implementation for the interleaver. For example, Fig. 17 shows a
circuit implementation for the QPP interleaver in 3GPP LTE standard [67].

A basic turbo accelerator architecture is shown in Fig. 18. The main difference
between the Viterbi decoder and the turbo decoder is that the turbo decoder is based
on the iterative message passing algorithms. Thus, a turbo accelerator may need
more communication and control coordination with the DSP host processor. For
example, the interleaving addresses can be generated by the DSP processor and
passed to the turbo accelerator. The DSP can monitor the decoding process to decide
when to terminate the decoding if there are no more decoding gains. Alternately, the

Application-Specific Accelerators for Communications 525

Fig. 17 An circuit implementation for the QPP interleaver π(x) = (f2x
2 + f1x)modK [67]

Fig. 18 Turbo decoder accelerator architecture. Multiple MAP decoders are used to support
high throughput decoding of turbo codes. Special function units such as interleavers are also
implemented in hardware

turbo accelerator can be configured to operate without DSP intervention. To support
this feature, some special hardware such as interleavers have to be configurable
via DSP control registers. To decrease the required bus bandwidth, intermediate
results should not be passed back to the DSP processor. Only the successfully
decoded bits need to be passed back to the DSP processor, e.g. via the DSP DMA
controller. Further, to support multiple turbo codes in different communication
systems, a flexible MAP decoder is necessary. In fact, many standards employ
similar turbo code structures. For instance, CDMA, WCDMA, UMTS, and 3GPP
LTE all use an eight-state binary turbo code with polynomial (13, 15, 17). Although
IEEE 802.16e WiMax and DVB-RCS standards use a different eight-state double
binary turbo code, the trellis structures of these turbo codes are very similar as
illustrated in Fig. 19. Thus, it is possible design multi-standard turbo decoders based
on flexible MAP decoder datapaths [43, 57, 67]. It has been shown in [67] that
the area overhead to support multi-codes is only about 7%. In addition, when the
throughput requirement is high, e.g. more than 20 Mbps, multiple MAP decoders
can be activated to increase the throughput performance.

In summary, due to the iterative structures, a turbo decoder needs more Gflops
than what is available in a general-purpose DSP processor. For this reason, Texas
Instruments’ latest C66x DSP processor integrates a 282 Mbps LTE turbo decoder
accelerator in the same die [73]. Because of the parallel and recursive algorithms and
special logarithmic arithmetics, it is more cost effective to realize a turbo decoder in
hardware.

526 C. Tarver et al.

a b

Fig. 19 Radix-4 trellis structures of (a) CDMA/WCDMA/UMTS/LTE turbo codes and (b)
WiMax/DVB-RCS turbo codes

2.3.2 LDPC Decoder Accelerator Architecture

A low-density parity-check (LDPC) code [21] is another important error correcting
code that is the among one of the most efficient coding schemes. The remarkable
error correction capabilities of LDPC codes have led to their adoption in many
standards, such as IEEE 802.11ac, IEEE 802.16e, and IEEE 802 10GBase-T.
The huge computation and high throughput requirements make it very difficult
to implement a high throughput LDPC decoder on a general-purpose DSP. For
example, a 5.4 Mbps LDPC decoder was implemented on TMS320C64xx DSP
running at 600 MHz [36]. This throughput performance is not enough to support
high data rates defined in new wireless standards. Thus, it is important to develop
area and power efficient hardware LDPC decoding accelerators.

A binary LDPC code is a linear block code specified by a very sparse binary
M × N parity check matrix: H · xT = 0, where x is a codeword and H can be
viewed as a bipartite graph where each column and row in H represent a variable
node and a check node, respectively.

The decoding algorithm is based on the iterative message passing algorithm (also
called belief propagation algorithm), which exchanges the messages between the
variable nodes and check nodes on graph. The hardware implementation of LDPC
decoders can be serial, semi-parallel, and fully-parallel as shown in Fig. 20. Fully-
parallel implementation has the maximum processing elements to achieve very high

Application-Specific Accelerators for Communications 527

a b

Fig. 20 Implementation of LDPC decoders, where PEC denotes processing element for check
node and PEV denotes processing element for variable node: (a) fully-parallel and (b) semi-parallel

throughput. Semi-parallel implementation, on the other hand, has a lesser number
of processing elements that can be re-used, e.g. z number of processing elements
are employed in Fig. 20b. In a semi-parallel implementation, memories are usually
required to store the temporary results. In many practical systems, semi-parallel
implementations are often used to achieve 100 Mbps to 1 Gbps throughput with
reasonable complexity [9, 26, 32, 54, 60–63, 65, 66, 87].

In LDPC decoding, the main complexity comes from the check node processing.
Each check node receives a set of variable node messages denoted as Nm. Based on
these data, check node messages are computed as

Λmn =
∑

j∈Nm\n
�λmj =

(∑
j∈Nm

�λmj

)
� λmn,

where Λmn and λmn denote the check node message and the variable node message,
respectively. The special arithmetic operators � and � are defined as follows:

a � b � f (a, b) = log
1+ eaeb

ea + eb

= sign(a) sign(b)
(

min(|a|, |b|)+ log(1+ e−(|a|+|b|))− log(1+ e
−
∣∣|a|−|b|∣∣

)
)
,

a � b � g(a, b) = log
1− eaeb

ea − eb

= sign(a) sign(b)
(

min(|a|, |b|)+ log(1− e−(|a|+|b|))− log(1− e
−
∣∣|a|−|b|∣∣

)
)
.

Figure 21 shows a hardware implementation from [61] to compute check node
message Λmn for one check row m. Because multiple check rows can be processed

528 C. Tarver et al.

Fig. 21 Recursive architecture to compute check node messages [61]

Fig. 22 Structured LDPC
parity check matrix with j

block rows and k block
columns. Each sub-matrix is a
z× z identity shifted matrix

simultaneously in the LDPC decoding algorithm, multiple such check node units
can be used to increase decoding speed. As the number of ALU units in a general-
purpose DSP processor is limited, it is difficult to achieve more than 10 Mbps
throughput in a DSP implementation.

Given a random LDPC code, the main complexity comes not only from the
complex check node processing, but also from the interconnection network between
check nodes and variable nodes. To simplify the routing of the interconnection
network, many practical standards usually employ structured LDPC codes, or quasi-
cyclic LDPC (QC-LDPC) codes. The parity check matrix of a QC-LDPC code is
shown in Fig. 22. Table 2 summaries the design parameters of the QC-LDPC codes
for IEEE 802.11n WLAN and IEEE 802.16e WiMax wireless standards. As can be
seen, many design parameters are in the same range for these two applications, thus
it is possible to design a reconfigurable hardware to support multiple standards [61].

As an example, a multi-standard semi-parallel LDPC decoder accelerator archi-
tecture is shown in Fig. 23 [61]. In order to support several hundreds Mbps data rate,

Application-Specific Accelerators for Communications 529

Table 2 Design parameters for H in standardized LDPC codes

z j k Check node degree Variable node degree Max. throughput

WLAN 802.11n 27–81 4–12 24 7–22 2–12 600 Mbps

WiMax 802.16e 24–96 4–12 24 6–20 2–6 144 Mbps

Fig. 23 Semi-parallel LDPC decoder accelerator architecture. Multiple PEs (number of z) are
used to increase decoding speed. Variable messages are stored in L-memory and check messages
are stored in Λ-memory. An interconnection network along with an inverse interconnection
network are used to route data

multiple PEs are used to process multiple check rows simultaneously. As with turbo
decoding, LDPC decoding is also based on an iterative decoding algorithm. The
iterative decoding flow is as follows: at each iteration, 1×z APP messages, denoted
as Ln are fetched from the L-memory and passed through a permuter (e.g. barrel
shifter) to be routed to z PEs (z is the parallelism level). The soft input information
λmn is formed by subtracting the old extrinsic message Λmn from the APP message
Ln. Then the PEs generate new extrinsic messages Λmn and APP messages Ln, and
store them back to memory. The operation mode of the LDPC accelerator needs to
be configured in the beginning of the decoding. After that, it should work without
DSP intervention. Once it has finished decoding, the decoded bits are passed back
to the DSP processor. Figure 24 shows the ASIC implementation result of this
decoder (VLSI layout view) and its power consumption for different block sizes.
As the block size increases, the number of active PEs increases, thus more power is
consumed.

530 C. Tarver et al.

a b

500 1000 1500 2000 2500
250

275

300

325

350

375

400

425

450

Block size (bit)

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Fig. 24 An example of a LDPC decoder hardware accelerator [61]. (a) VLSI layout view
(3.5 mm2 area, 90 nm technology). (b) Power consumptions for different block sizes

2.4 Digital Predistortion

In communications, the power amplifier (PA) is a critical component in the radio
frontend that gives a signal enough power to have sufficient range. Unfortunately,
it is inherently a nonlinear device, and moreover, there is an inverse relationship
between its power efficiency and its nonlinearity [24]. It is desirable in many
applications to have a power efficient PA, especially considering that the PA
consumes most of the power in an RF system [33]. However, the nonlinearities
are an undesirable tradeoff. They cause spectral regrowth around the main carrier,
intermodulation distortions (IMDs), and other in-band distortions which negatively
impacts BERs. An example of the spectral regrowth and IMDs are shown in Fig. 25.
Here, an uplink LTE-Advanced signal through a nonlinear PA model with memory
effects.

Most PAs are more nonlinear at high power levels as the device approaches
saturation and are more linear at lower power levels. To reduce distortions, it is
often necessary to reduce the operating power to be in the linear region of operation.
However this maximum power backoff, as it’s known in the 3GPP literature,
causes a reduction in range and power efficiency [1]. This is especially problematic
for modern signals. Multicarrier signals such as orthogonal frequency division
multiplexing (OFDM) are valued for their spectral efficiency, but they have high
peak-to-average power ratios (PAPR) meaning they have large fluctuations in their
power level. To keep the device operation in the linear region when there are these
large, rapid changes in power, the user must operate with even more backoff than
would be necessary for constant power envelope signals. Hence, PA linearization
has received substantial attention in recent years.

Application-Specific Accelerators for Communications 531

a b

Fig. 25 The effect of a nonlinear PA on an input signal. (a) A 20 MHz LTE-Advanced uplink
signal is broadcast and there is significant spectral regrowth around the main carrier. (b) Two
3 MHz LTE-Advanced uplink signals are broadcast noncontiguously with severe IMD spurious
emissions in the nearby spectrum

PA linearization was first considered in the 1920s with analog, feedforward
circuitry. Since the ’80s, a technique for linearization called predistortion has been
dominant. Now, most of these predistorters are digital, and they are used heavily
in satellite and telecommunications systems. For example, consider the following
commercial solutions. Xilinx has a DPD intellectual property (IP) block that can
linearize up to a 100 MHz bandwidth on their FPGAs [85]. Alternatively, the
TI GC5322 is a dedicated IC for performing linearization. DPD coefficients are
computed on a DSP. The IC can take an input with up to a 40 MHz signal bandwidth,
and it linearizes up to a 140 MHz bandwidth [76].

However, many of these available solutions are becoming inadequate for 4G
and 5G technologies. As spectrum becomes more scarce and data rates increase,
communications standards are necessarily becoming more frequency agile. LTE-
Advanced achieves this through a technology called carrier aggregation (CA) where
multiple component carriers (CCs) are used simultaneously to achieve a larger,
virtual bandwidth. These CCs may be adjacent or noncontiguous in the same LTE
band or may be placed in different LTE bands. The largest CC bandwidth in the
standard is 20 MHz. With CA, up to five of these can be used simultaneously on
the downlink to achieve a virtual carrier bandwidth of 100 MHz [77]. Modern LTE
modems have quickly adopted the technology. For example, the Snapdragon 835
supports four downlink and two uplink carriers [52].

532 C. Tarver et al.

As these bandwidths increase, the necessary feedback sampling rates and the
DPD complexity rate dramatically grow. Moreover, as the bandwidths increase,
the number of DPD parameters needed to be estimated and applied also grows as
memory effects of the PA become more pronounced [33]. Hence, there is a need
for novel algorithms and implementations in this area. The data-parallelism in the
predistortion algorithms makes it a good candidate for acceleration on the various
technologies previously discussed. Recently, there has also been interest in imple-
menting DPD on the mobile devices. Computational complexity has been a concern
that has limited DPDs adaption in this area, but recent developments in mobile
processioning power have led to new implementations targeted for the mobile users.
In the following sections, we examine a GPU and FPGA implementation targeted
to this.

2.4.1 Full-Band DPD Mobile GPU Accelerator Architecture

There has been a substantial increase in the available computing power on mobile
devices over the last 10 years. Modern system-on-chips (SoCs) often integrate
multicore CPUs, GPUs, and DSPs to make a tightly integrated, heterogeneous,
compute system. Multicore CPUs and GPUs have toolchains and languages that
have rapidly matured such as OpenMP, CUDA, and OpenCL which lead to a rapid
implementation of a powerful design with throughputs that rival FPGAs and ASICs.

In [38], the first CUDA-based GPU implementation of DPD was done. The work
was improved upon in [39]. In these works, the implementation is tested on a Jetson
embedded development board with a mobile GPU. This is connected to the wireless
open access research platform (WARP) v3 software-defined radio (SDR) board [42].

It is the goal of the predistorter to distort the input signal with the inverse of the
distortion that the PA will introduce. The modeling of a PA and its corresponding
predistorter can be done to various degrees of precision. Often as a more complete
and precise model is used the complexity of the predistortion increases. Using
the most general form of modeling, a Volterra series could be used. This model
includes memory effects for each nonlinearities in a way that each memory tap
could have a different nonlinear model. Hence, there are many parameters in this
model. A simplification that is commonly used is to separate the memory effects
and nonlinearities. One such model is an augmented parallel Hammerstein (APH)
structure. This is shown in Fig. 26a. The input samples pass through a nonlinear
function ψ and then a memory system realized as an FIR filter, H . The branches of
the parallel structure are combined to form the predistorter output.

This particular implementation also includes correction for other imperfections
in the TX RF hardware including I/Q mismatch compensation and local oscillator
(LO) leakage correction. This is realized by the “conjugate branch” with ψ̄ and H̄

in the APH structure and the addition of a constant, c, respectively. The learning is
performed offline using the widely adopted indirect learning architecture shown in
Fig. 26b.

Application-Specific Accelerators for Communications 533

Main branch
Ψ1 () H1 (z)

ΨP() HP(z)

… … …

APH DPD

Conjugate branch

Ψ1 () H1 (z)

ΨP() HP(z)

… … …

C
1

xn zn

Copy of
DPD(i-1) PA

DPD(i)
-

1

xn
(i) zn

(i)

errorn
(i)

Ψ1
(x0)

…

ΨP
(x0)

x0

Ψ1
(x0)

…

ΨP
(x0)

Ψ1
(x1)

…
ΨP

(x1)

x1

Ψ1
(x1)

…

ΨP
(x1)

Ψ1
(xN-1)

…

ΨP
(xN-1)

xN-1

Ψ1
(xN-1)

…

ΨP
(xN-1)

conv(h,Ψ)
Dependencies across sample

dimension

f1
(x0)

…

fP
(x0)

f1
(x0)

…

fP
(x0)

Ψ1
(x1)

…

ΨP
(x1)

Ψ1
(x1)

…

ΨP
(x1)

Ψ1
(xN-1)

…

ΨP
(xN-1)

Ψ1
(xN-1)

…

ΨP
(xN-1)

Σ Σ Σ

…

…

…

…

Input

(1) Poly.

(2) Filtering

(3) Accum.

Output z0 z1 zN-1

Fig. 26 (a) APH DPD structure. (b) Indirect learning architecture. (c) Data flow and parallelism
[39]

The GPU implementation performs instructions in parallel based on a single
instruction multiple threads (SIMT) paradigm. Three kernels are run with a large
number of parallel threads. The three kernels are polynomial computation, filtering
computation, and accumulation shown in Fig. 26c. The authors are able to support
throughputs of 221.8 Msamples per second on a Maxwell GPU with over 10 dB of
IMD suppression.

2.4.2 Sub-band FPGA Accelerator Architecture

In [2], the authors focus on the case of DPD for mobile users with non-
contiguous transmissions. With non-contiguous transmissions, such as intra-band
non-contiguous CA in LTE-A, the necessary sampling rate to linearize the spurious
emissions created from the IMD rapidly grows as the CC spacing grows. DPD
quickly becomes more costly as a fast ADC is required and a corresponding fast
throughput is maintained in the DPD computations. Instead, a sub-band technique

534 C. Tarver et al.

Block-adaptive IM3 sub-band DPD

PAUpconversionD/A
LPF

Down-
conversion

LPF
A/D

A
tte

nu
at

or

Upsampling and
IF upconversion

Nonlinear
basis

functions
generator

Block Adaptive Algorithm

x ~x1

x2

z-D

z-1 z-1 z-1

10

U
ps

am
pl

in
g

an
d

3x
IF

up

co
nv

er
si

on…

…

…

Fig. 27 Block-adaptive decorrelation-based sub-band DPD system architecture for third-order
spurious intermodulation reduction in a noncontiguous transmitter [2]

can be used where one linearizes individual spurious emissions that are in violation
of the spurious emission masks. The idea is to inject a spur before the PA with
the opposite phase of the natural IMD spur so that they cancel out. By targeting
individual spurs which in many scenarios are the limiting factor for transmitter
emission violations, the complexity is significantly reduced when compared to
other full-band methods.

A block diagram of the sub-band DPD system architecture is shown in Fig. 27
where two CCs, x1 and x2 are used. A block-adaptive least-mean-squares decorre-
lation learning algorithm is used for coefficient training. The observed time-domain
signal of a spur, e(n) is correlated with the expected third-order signal at the spur,
u(n), which is predicted based off the PA modeling such as in Eq. (17). At each
iteration, the DPD coefficient α moves in the opposite direction of the correlation
so that when the DPD injection signal is combined with the main signal, x(n), and
goes through the PA, the output y(n) sees a reduction in the spur. The algorithm is
iterated until the error signal is completely decorrelated with basis function.

An important concern in a design with feedback is the loop delay of the system.
For example, when a change to the DPD coefficient is made, there will be some
time before the DPD learning algorithm actually observes the change since it must
propagate through the system. If this was not accounted for then the device would
be learning on stale data for a short time which could lead to oscillations, overshoot,
or other instabilities in the DPD coefficient convergence. This can be remedied
by using a block-adaptive technique where learning is done on a block of many
samples, then learning pauses for another block so that the updates have time to
propagate.

The analysis is shown below for a noncontiguous signal being broadcast through
a third-order, parallel Hammerstein (PH) PA model at the baseband equivalent level.
The two CCs, x1(n) and x2(n), are assumed to be separated by �f . The PA input
and output signals, x(n) and y(n), read

Application-Specific Accelerators for Communications 535

x(n) = x1(n)e
j2π �f

2fs
n + x2(n)e

−j2π �f
2fs

n (15)

y(n) = f1,n % x(n)+ f3,n % |x(n)|2x(n), (16)

where f1,n and f3,n are the filters in the main and third order PH branches,
respectively, which model the memory effects and % is the convolution operator.
Through substitution of Eq. (15) into Eq. (16), output spurious emissions can be
recovered. For example, the positive IM3 term is found to be

yIM3+(n) = f 3+
3,n % (x∗2 (n)x2

1(n)). (17)

Here, f 3+
3,n is the baseband equivalent response of f3,n at the positive IM3 sub-band

around (fc + �f/2), where fc denotes the carrier frequency. Stemming from the
signal structure in Eq. (17), a natural injection signal is a filtered version of the basis
function x∗2 (n)x2

1 (n) using a filter αn with memory depth N . Incorporating such
DPD processing, the composite baseband equivalent PA input x̃(n) signal reads

x̃(n) = x(n)+
[
α∗n % (x∗2 (n)x2

1(n))
]
e
j2π 3�f

2fs
n
. (18)

Substituting now x̃(n) in (16), the positive IM3 sub-band signal at the PA output
becomes

ỹIM3+(n) ≈ (f 3+
3,n + f 3+

1,n % α∗n) % x∗2 (n)x2
1(n)

+ 2f 3+
3,n %

[
(|x1(n)|2 + |x2(n)|2)(α∗n % x∗2 (n)x2

1 (n))
]
, (19)

Based on the DPD architecture in Fig. 27 and the block-based learning while
assuming an estimation block size of M samples and N + 1 DPD filter coefficients,
the DPD parameter learning algorithm becomes

α(n+ 1) = α(n)− μ

||U(n)||2 + C
[eH(n)U(m)]T , (20)

where

e(n) = ỹIM3+(n) (21)

e(m) = [e(nm) e(nm + 1) . . . e(nm +M − 1)]T (22)

u(n) = x∗2 (n)x2
1 (n) (23)

u(nm) = [u(nm) u(nm + 1) . . . u(nm +M − 1)]T (24)

U(m) = [u(nm) u(nm − 1) . . . u(nm −N)] (25)

α(m) = [α0(m) α1(m) . . . αN(m)]T . (26)

536 C. Tarver et al.

The running complexity for linearizing a single sub-band with this method
consists generating a basis function and, in the case of a third-order memoryless
DPD, multiplying it by a DPD coefficient α. This consists of a total of 3 complex
multiplications which can be implemented with a total of 18 operations per sample.
The minimum sampling rate to linearize a third order term needs to be three times
the bandwidth of the widest CC. For example, with a 5 MHz LTE-A signal, a
15 MHz sample rate can be used for a DPD application complexity of 0.27 GFLOPS.

A dedicated DPD accelerator can be used for both the learning and application of
the DPD so that it can be done in real-time. The authors of [2] do this on the Virtex
6 FPGA of a WARPv3 SDR board for real-time DPD learning and suppression.
The generation of the basis function, the multiplication of the coefficient α, and
the addition of this to the original signal x(n) shown in Eq. (18) is all done in
a streaming, pipelined manner so that there only an overhead of an additional 13
clock cycles in the baseband PHY design. For the learning, the authors input the
signal from the observed output of the PA through the analog-to-digital converter.
The spurious emission is isolated by passing the signal through a low-pass, FIR
filter. From here, the LMS learning step is implemented similarly to Eq. (20) in
a fully pipelined manner so that learning is done quickly in a parallel, streaming
architecture.

3 Summary

Digital signal processing complexity in high-speed wireless communications is
driving a need for high performance heterogeneous DSP systems with real-time
processing. Many wireless algorithms, such as channel decoding and MIMO
detection, demonstrate significant data parallelism. For this class of data-parallel
algorithms, application specific DSP accelerators are necessary to meet real-
time requirements while minimizing power consumption. Spatial locality of data,
data level parallelism, computational complexity, and task level parallelism are
four major criteria to identify which DSP algorithm should be off-loaded to an
accelerator. Additional cost incurred from the data movement between DSP and
hardware accelerator must be also considered.

There are a number of DSP architectures which include true hardware based
accelerators. Examples of these include the Texas Instruments’ CI66x series of
DSPs which include a 365 Mbps turbo decoding accelerator [73], and NXP
Semiconductor’s six core broadband wireless access DSP MSC8156 which includes
a programmable 200 Mbps turbo decoding accelerator (6 iterations), a 115 Mbps
Viterbi decoding accelerator (K = 9), an FFT/IFFT accelerator for sizes 128, 256,
512, 1024 or 2048 points at up to 350 million samples/s, and a DFT/IDFT for sizes
up to 1536 points at up to 175 million samples/s [20].

Relying on a single DSP processor for all signal processing tasks would be
a clean solution. As a practical matter, however, multiple DSP processors are
necessary for implementing a next generation wireless handset or base station.

Application-Specific Accelerators for Communications 537

This means greater system cost, more board space, and more power consumption.
Integrating hardware communication accelerators, such as MIMO detectors and
channel decoders, into the DSP processor silicon can create an efficient System-
on-Chip. This offers many advantages: the dedicated accelerators relieve the DSP
processor of the parallel computation-intensive signal processing burden, freeing
DSP processing capacity for other system control functions that more greatly benefit
from programmability.

4 Further Reading

This chapter serves as a brief introduction to the application-specific accelerators
for communications. For more detailed discussion on the VLSI signal processing
system design and implementation, readers are encouraged to read the following
book [50]. For more information on the software/hardware co-design as well as
the hardware accelerators for 3G/4G wireless systems, one can read the following
dissertations [10, 60]. Finally, major DSP processor vendors such as Texas Instru-
ments, Analog Devices, and NXP Semiconductors provide many application notes
about their DSP hardware accelerators [5, 48, 75].

Readers are also advised to look at several other chapters of this handbook.
For example, [28] discusses the fundamental computer arithmetic, [51] talks
about the general-purpose DSP processors, and [34] introduces the VLIW DSP
processors. Wireless transceiver signal processing is also discussed in [53]. When
making accelerators, usually we need to utilize a fixed word-length and fixed-point
arithmetic. This is discussed in [28, 68], and [46].

References

1. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE) radio
transmission and reception, 3GPP TS 36.101 V13.2.1 (Release 13) (May 2016)

2. Abdelaziz, M., Tarver, C., Li, K., Anttila, L., Martinez, R., Valkama, M., Cavallaro, J.R.: Sub-
Band Digital Predistortion for Noncontiguous Transmissions: Algorithm Development and
Real-Time Prototype Implementation. In: 2015 49th Asilomar Conference on Signals, Systems
and Computers, pp. 1180–1186 (2015). https://doi.org/10.1109/ACSSC.2015.7421326

3. Alamouti, S.M.: A Simple Transmit Diversity Technique for Wireless Communications. IEEE
Journal on Selected Areas in Communications 16(8), 1451–1458 (1998)

4. Amiri, K., Cavallaro, J.R.: FPGA Implementation of Dynamic Threshold Sphere Detection for
MIMO Systems. In: IEEE Asilomar Conf. on Signals, Syst. and Computers, pp. 94–98 (2006)

5. Analog Devices: The SHARC Processor Family. http://www.analog.com/en/products/
processors-dsp/sharc.html (2016)

6. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What
Will 5G Be? IEEE Journal on Selected Areas in Communications 32(6), 1065–1082 (2014).
https://doi.org/10.1109/JSAC.2014.2328098

7. Bahl, L., Cocke, J., Jelinek, F., Raviv, J.: Optimal Decoding of Linear Codes for Minimizing
Symbol Error Rate. IEEE Transactions on Information Theory IT-20, 284–287 (1974)

https://doi.org/10.1109/ACSSC.2015.7421326
http://www.analog.com/en/products/processors-dsp/sharc.html
http://www.analog.com/en/products/processors-dsp/sharc.html
https://doi.org/10.1109/JSAC.2014.2328098

538 C. Tarver et al.

8. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon Limit Error-Correcting Coding and
Decoding: Turbo-Codes. In: IEEE Int. Conf. on Commun., pp. 1064–1070 (1993)

9. Brack, T., Alles, M., Lehnigk-Emden, T., Kienle, F., Wehn, N., Lapos, Insalata, N., Rossi,
F., Rovini, M., Fanucci, L.: Low Complexity LDPC Code Decoders for Next Generation
Standards. In: Design, Automation, and Test in Europe, pp. 1–6 (2007)

10. Brogioli, M.: Reconfigurable Heterogeneous DSP/FPGA Based Embedded Architectures for
Numerically Intensive Embedded Computing Workloads. Ph.D. thesis, Rice University,
Houston, Texas, USA (2007)

11. Brogioli, M., Radosavljevic, P., Cavallaro, J.: A General Hardware/Software Codesign Method-
ology for Embedded Signal Processing and Multimedia Workloads. In: IEEE Asilomar Conf.
on Signals, Syst., and Computers, pp. 1486–1490 (2006)

12. Burg, A.: VLSI Circuits for MIMO Communication Systems. Ph.D. thesis, Swiss Federal
Institute Of Technology, Zurich, Switzerland (2006)

13. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bolcskei, H.: VLSI
Implementation of MIMO Detection using the Sphere Decoding Algorithm. IEEE Journal
of Solid-State Circuits 40(7), 1566–1577 (2005)

14. Cadence Design Systems: https://ip.cadence.com/ipportfolio/tensilica-ip (2017)
15. Cheng, C.C., Tsai, Y.M., Chen, L.G., Chandrakasan, A.: A 0.077 to 0.168 nJ/bit/iteration

Scalable 3GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an
Embedded DVFS Engine. In: IEEE Custom Integrated Circuits Conference, pp. 1–4 (2010)

16. Cupaiuolo, T., Siti, M., Tomasoni, A.: Low-Complexity High Throughput VLSI Architecture
of Soft-Output ML MIMO Detector. In: Design, Automation and Test in Europe Conference
and Exhibition, pp. 1396–1401 (2010)

17. Damen, M.O., Gamal, H.E., Caire, G.: On Maximum Likelihood Detection and the Search for
the Closest Lattice Point. IEEE Transaction on Information Theory 49(10), 2389–2402 (2003)

18. Fincke, U., Pohst, M.: Improved Methods for Calculating Vectors of Short Length in a Lattice,
Including a Complexity Analysis. Mathematics of Computation 44(170), 463–471 (1985)

19. Foschini, G.: Layered Space-Time Architecture for Wireless Communication in a Fading
Environment when Using Multiple Antennas. Bell Labs. Tech. Journal 2, 41–59 (1996)

20. Freescale Semiconductor: MSC8156 Six Core Broadband Wireless Access DSP. www.
freescale.com/starcore (2009)

21. Gallager, R.: Low-Density Parity-Check Codes. IEEE Transactions on Information Theory
IT-8, 21–28 (1962)

22. Garrett, D., Davis, L., ten Brink, S., Hochwald, B., Knagge, G.: Silicon Complexity for
Maximum Likelihood MIMO Detection Using Spherical Decoding. IEEE Journal of Solid-
State Circuits 39(9), 1544–1552 (2004)

23. Garrido, M., Qureshi, F., Takala, J., Gustafsson, O.: Hardware architectures for the fast Fourier
transform. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of
Signal Processing Systems, third edn. Springer (2018)

24. Ghannouchi, F.M., Hammi, O.: Behavioral Modeling and Predistortion. IEEE Microwave
Magazine 10(7), 52–64 (2009). https://doi.org/10.1109/MMM.2009.934516

25. Golden, G., Foschini, G.J., Valenzuela, R.A., Wolniansky, P.W.: Detection Algorithms and
Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture. Elec-
tronics Letters 35(1), 14–15 (1999)

26. Gunnam, K., Choi, G.S., Yeary, M.B., Atiquzzaman, M.: VLSI Architectures for Layered
decoding for Irregular LDPC Codes of WiMax. In: IEEE International Conference on
Communications, pp. 4542–4547 (2007)

27. Guo, Z., Nilsson, P.: Algorithm and Implementation of the K-best Sphere Decoding for MIMO
Detection. IEEE Journal on Seleteced Areas in Communications 24(3), 491–503 (2006)

28. Gustafsson, O., Wanhammar, L.: Arithmetic. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

29. Han, S., Tellambura, C.: A Complexity-Efficient Sphere Decoder for MIMO Systems. In: IEEE
International Conference on Communications, pp. 1–5 (2011)

https://ip.cadence.com/ipportfolio/tensilica-ip
www.freescale.com/starcore
www.freescale.com/starcore
https://doi.org/10.1109/MMM.2009.934516

Application-Specific Accelerators for Communications 539

30. Hassibi, B., Vikalo, H.: On the Sphere-Decoding Algorithm I. Expected Complexity. IEEE
Transaction On Signal Processing 53(8), 2806–2818 (2005)

31. Hunter, H.C., Moreno, J.H.: A New Look at Exploiting Data Parallelism in Embedded Systems.
In: Proceedings of the International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pp. 159–169 (2003)

32. Jin, J., Tsui, C.: Low-Complexity Switch Network for Reconfigurable LDPC Decoders. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 18(8), 1185–1195 (2010)

33. Katz, A., Wood, J., Chokola, D.: The Evolution of PA Linearization: From Classic Feedforward
and Feedback Through Analog and Digital Predistortion. IEEE Microwave Magazine 17(2),
32–40 (2016). https://doi.org/10.1109/MMM.2015.2498079

34. Kessler, C.W.: Compiling for VLIW DSPs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,
J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

35. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for Next Generation
Wireless Systems. IEEE Communications Magazine 52(2), 186–195 (2014). https://doi.org/
10.1109/MCOM.2014.6736761

36. Lechner, G., Sayir, J., Rupp, M.: Efficient DSP Implementation of an LDPC Decoder. In: IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 665–668 (2004)

37. Lee, S.J., Shanbhag, N.R., Singer, A.C.: Area-Efficient High-Throughput MAP Decoder
Architectures. IEEE Transaction on VLSI Systems 13(8), 921–933 (2005)

38. Li, K., Ghazi, A., Boutellier, J., Abdelaziz, M., Anttila, L., Juntti, M., Valkama, M., Cavallaro,
J.R.: Mobile GPU Accelerated Digital Predistortion on a Software-Defined Mobile Transmitter.
In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 756–
760 (2015). https://doi.org/10.1109/GlobalSIP.2015.7418298

39. Li, K., Ghazi, A., Tarver, C., Boutellier, J., Abdelaziz, M., Anttila, L., Juntti, M.J., Valkama, M.,
Cavallaro, J.R.: Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore
CPU for Mobile Transmitters. CoRR abs/1612.09001 (2016). URL http://arxiv.org/abs/1612.
09001

40. Li, K., Yin, B., Wu, M., Cavallaro, J.R., Studer, C.: Accelerating Massive MIMO Uplink
Detection on GPU for SDR Systems. In: 2015 IEEE Dallas Circuits and Systems Conference
(DCAS), pp. 1–4 (2015). https://doi.org/10.1109/DCAS.2015.7356600

41. Lin, C.H., Chen, C.Y., Wu, A.Y.: Area-Efficient Scalable MAP Processor Design for High-
Throughput Multistandard Convolutional Turbo Decoding. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 19(2), 305–318 (2011)

42. Mango: WARP Project. URL http://warpproject.org
43. Martina, M., Nicola, M., Masera, G.: A Flexible UMTS-WiMax Turbo Decoder Architecture.

IEEE Transactions on Circuits and Systems II 55(4), 369–273 (2008)
44. May, M., Ilnseher, T., Wehn, N., Raab, W.: A 150Mbit/s 3GPP LTE Turbo Code Decoder. In:

IEEE Design, Automation & Test in Europe Conference & Exhibition, pp. 1420–1425 (2010)
45. McAllister, J.: High performance stream processing on FPGA. In: S.S. Bhattacharyya, E.F.

Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

46. Menard, D., Caffarena, G., Lopez, J.A., Novo, D., Sentieys, O.: Analysis of finite word-length
effects in fixed-point systems. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala
(eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

47. Myllylä, M., Silvola, P., Juntti, M., Cavallaro, J.R.: Comparison of Two Novel List Sphere
Detector Algorithms for MIMO-OFDM Systems. In: IEEE International Symposium on
Personal Indoor and Mobile Radio Communications, pp. 1–5 (2006)

48. NXP Semiconductor: StarCore SC3900FP. http://www.nxp.com/assets/documents/data/en/
brochures/BRSC3900DSPCORE.pdf (2013)

49. NXP Semiconductor: QorIQ Layerscape: A Converged Architecture Approach (2017)
50. Parhi, K.K.: VLSI Digital Signal Processing Systems Design and Implementation. Wiley

(1999)
51. Pelcat, M.: Models of architecture for DSP systems. In: S.S. Bhattacharyya, E.F. Deprettere,

R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

https://doi.org/10.1109/MMM.2015.2498079
https://doi.org/10.1109/MCOM.2014.6736761
https://doi.org/10.1109/MCOM.2014.6736761
https://doi.org/10.1109/GlobalSIP.2015.7418298
http://arxiv.org/abs/1612.09001
http://arxiv.org/abs/1612.09001
https://doi.org/10.1109/DCAS.2015.7356600
http://warpproject.org
http://www.nxp.com/assets/documents/data/en/brochures/BRSC3900DSPCORE.pdf
http://www.nxp.com/assets/documents/data/en/brochures/BRSC3900DSPCORE.pdf

540 C. Tarver et al.

52. Qualcomm: Snapdragon 835 Mobile Platform. online: https://www.qualcomm.com/products/
snapdragon/processors/835 (2017)

53. Renfors, M., Juntti, M., Valkama, M.: Signal processing for wireless transceivers. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

54. Rovini, M., Gentile, G., Rossi, F., Fanucci, L.: A Scalable Decoder Architecture for IEEE
802.11n LDPC Codes. In: IEEE Global Telecommunications Conference, pp. 3270–3274
(2007)

55. Sadjadpour, H., Sloane, N., Salehi, M., Nebe, G.: Interleaver Design for Turbo Codes. IEEE
Journal on Seleteced Areas in Communications 19(5), 831–837 (2001)

56. Salmela, P., Gu, R., Bhattacharyya, S., Takala, J.: Efficient Parallel Memory Organization for
Turbo Decoders. In: Proc. European Signal Processing Conf., pp. 831–835 (2007)

57. Shin, M.C., Park, I.C.: A Programmable Turbo Decoder for Multiple 3G Wireless Standards.
In: IEEE Solid-State Circuits Conference, vol. 1, pp. 154–484 (2003)

58. Studer, C., Benkeser, C., Belfanti, S., Huang, Q.: Design and Implementation of a Parallel
Turbo-Decoder ASIC for 3GPP-LTE. IEEE Journal of Solid-State Circuits 46(1), 8–17 (2011)

59. Sun, J., Takeshita, O.: Interleavers for Turbo Codes Using Permutation Polynomials Over
Integer Rings. IEEE Transaction on Information Theory 51(1), 101–119 (2005)

60. Sun, Y.: Parallel VLSI Architectures for Multi-Gbps MIMO Communication Systems. Ph.D.
thesis, Rice University, Houston, Texas, USA (2010)

61. Sun, Y., Cavallaro, J.R.: A Low-power 1-Gbps Reconfigurable LDPC Decoder Design for
Multiple 4G Wireless Standards. In: IEEE International SOC Conference, pp. 367–370 (2008)

62. Sun, Y., Cavallaro, J.R.: Scalable and Low Power LDPC Decoder Design Using High Level
Algorithmic Synthesis. In: IEEE International SOC Conference (SoCC), pp. 267–270 (2009)

63. Sun, Y., Cavallaro, J.R.: A Flexible LDPC/Turbo Decoder Architecture. Journal of Signal
Processing System 64(1), 1–16 (2011)

64. Sun, Y., Cavallaro, J.R.: Efficient Hardware Implementation of a Highly-Parallel 3GPP LTE,
LTE-Advance Turbo Decoder. Integration, the VLSI Journal, Special Issue on Hardware
Architectures for Algebra, Cryptology and Number Theory 44(4), 305–315 (2011)

65. Sun, Y., Karkooti, M., Cavallaro, J.R.: VLSI Decoder Architecture for High Throughput,
Variable Block-Size and Multi-Rate LDPC Codes. In: IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 2104–2107 (2007)

66. Sun, Y., Wang, G., Cavallaro, J.R.: Multi-Layer Parallel Decoding Algorithm and VLSI
Architecture for Quasi-Cyclic LDPC Codes. In: IEEE International Symposium on Circuits
and Systems, pp. 1776–1779 (2011)

67. Sun, Y., Zhu, Y., Goel, M., Cavallaro, J.R.: Configurable and Scalable High Throughput Turbo
Decoder Architecture for Multiple 4G Wireless Standards. In: IEEE International Conference
on Application-Specific Systems, Architectures and Processors (ASAP), pp. 209–214 (2008)

68. Sung, W.: Optimization of number representations. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

69. Sutter, B.D., Raghavan, P., Lambrechts, A.: Coarse grained reconfigurable array architectures.
In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal
Processing Systems, third edn. Springer (2018)

70. Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-Time Block Codes from Orthogonal
Designs. IEEE Transactions on Information Theory 45(5), 1456–1467 (1999)

71. Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space Time Block Coding for Wireless Commu-
nications: Performance Results. IEEE Journal on Selected Areas in Communications 17(3),
451–460 (1999)

72. Telatar, I.E.: Capacity of Multiantenna Gaussian Channels. European Transaction on Telecom-
munications 10, 585–595 (1999)

73. Texas Instruments: TMS320TCI6614 Communications Infrastructure KeyStone SoC Data
Manual. http://www.ti.com/lit/ds/symlink/tms320tci6614.pdf (2013)

74. Texas Instruments: Communications Processors Products. http://focus.ti.com/docs/prod/
folders/print/tms320c6474.html (2016)

https://www.qualcomm.com/products/snapdragon/processors/835
https://www.qualcomm.com/products/snapdragon/processors/835
http://www.ti.com/lit/ds/symlink/tms320tci6614.pdf
http://focus.ti.com/docs/prod/folders/print/tms320c6474.html
http://focus.ti.com/docs/prod/folders/print/tms320c6474.html

Application-Specific Accelerators for Communications 541

75. Texas Instruments: Digital Signal Processors. https://www.ti.com/lsds/ti/processors/dsp/
overview.page (2017)

76. Texas Instruments: Wideband Transmit IC Solution with integrated Digital Predistortion,
Digital Upconversion. online: http://www.ti.com/product/GC5322/description (2017)

77. Wannstrom, J.: Carrier Aggregation Explained. online: http://www.3gpp.org/technologies/
keywords-acronyms/101-carrier-aggregation-explained (2013)

78. Wijting, C., Ojanpera, T., Juntti, M., Kansanen, K., Prasad, R.: Groupwise Serial Multiuser
Detectors for Multirate DS-CDMA. In: IEEE Vehicular Technology Conference, vol. 1, pp.
836–840 (1999)

79. Willmann, P., Kim, H., Rixner, S., Pai, V.S.: An Efficient Programmable 10 Gigabit Ethernet
Network Interface Card. In: ACM International Symposium on High-Performance Computer
Architecture, pp. 85–86 (2006)

80. Witte, E., Borlenghi, F., Ascheid, G., Leupers, R., Meyr, H.: A Scalable VLSI Architecture
for Soft-Input Soft-Output Single Tree-Search Sphere Decoding. IEEE Tran. on Circuits and
Systems II: Express Briefs 57(9), 706–710 (2010)

81. Wong, C.C., Chang, H.C.: Reconfigurable Turbo Decoder with Parallel Architecture for 3GPP
LTE System. IEEE Tran. on Circuits and Systems II: Express Briefs 57(7), 566–570 (2010)

82. Wong, K., Tsui, C., Cheng, R.S., Mow, W.: A VLSI Architecture of a K-best Lattice Decoding
Algorithm for MIMO Channels. In: IEEE International Symposium on Circuits and Systems,
vol. 3, pp. 273–276 (2002)

83. Wu, M., Sun, Y., Wang, G., Cavallaro, J.R.: Implementation of a High Throughput 3GPP Turbo
Decoder on GPU. Journal of Signal Processing Systems 65(2), 171 (2011). https://doi.org/10.
1007/s11265-011-0617-7

84. Wu, M., Wang, G., Yin, B., Studer, C., Cavallaro, J.R.: LTE-A Turbo Decoder on GPU and
Multicore CPU. In: 2013 Asilomar Conference on Signals, Systems and Computers, pp. 824–
828 (2013). https://doi.org/10.1109/ACSSC.2013.6810402

85. Xilinx: Digital Pre-Distortion. online: https://www.xilinx.com/products/intellectual-property/
ef-di-dpd.html (2017)

86. Ye, Z.A., Moshovos, A., Hauck, S., Banerjee, P.: CHIMAERA: A High Performance Archi-
tecture with a Tightly Coupled Reconfigurable Functional Unit. In: Proceedings of the 27th
Annual International Symposium on Computer Architecture, pp. 225–235 (2000)

87. Zhong, H., Zhang, T.: Block-LDPC: A Practical LDPC Coding System Design Approach.
IEEE Transactions on Circuits and Systems I 52(4), 766–775 (2005)

https://www.ti.com/lsds/ti/processors/dsp/overview.page
https://www.ti.com/lsds/ti/processors/dsp/overview.page
http://www.ti.com/product/GC5322/description
http://www.3gpp.org/technologies/keywords-acronyms/101-carrier-aggregation-explained
http://www.3gpp.org/technologies/keywords-acronyms/101-carrier-aggregation-explained
https://doi.org/10.1007/s11265-011-0617-7
https://doi.org/10.1007/s11265-011-0617-7
https://doi.org/10.1109/ACSSC.2013.6810402
https://www.xilinx.com/products/intellectual-property/ef-di-dpd.html
https://www.xilinx.com/products/intellectual-property/ef-di-dpd.html

System-on-Chip Architectures for Data
Analytics

Gwo Giun (Chris) Lee, Chun-Fu Chen, and Tai-Ping Wang

Abstract Artificial Intelligence (AI) in Industry 4.0, intelligent transportation
system, intelligent biomedical systems and healthcare, etc., plays an important role
requiring complex algorithms. Deep learning in machine learning, for example, is
a popular AI algorithm with high computational demands on EDGE platforms in
Internet-of-Things applications. This chapter introduces the Algorithm/Architecture
Co-Design system design methodology for concurrent design of an algorithm with
highly efficient, flexible and low power architecture in constituting the Smart
System-on-Chip design.

1 Introduction

In the 1960s, Marshall McLuhan published the book entitled, “The Extensions of
Man” focusing primarily on television, an electronic media as being the outward
extension of human nervous system, which from contemporary interpretation marks
the previous stage of Big Data.

In concurrent Industry 4.0 ecosystem, Internet-of-Things (IoT) facilitate extra
sensory perception in reaching out even farther via sensors interconnected through
signals with information exchange. As such, innovations in intelligent surveillance
and monitoring technologies has not only made possible advancements towards
smart cities, intelligent transportation systems (ITS) including autonomous cars,
intelligent home (iHome), and intelligent biomedical and healthcare systems, gen-
eration of even bigger data will inevitably be witnessed. Further inward extension of
human information perception could also be experienced when observing genomic,
neurological, and other physiological phenomena when going deeper inwards into

G. G. Lee (�) · T.-P. Wang
Department of Electrical Engineering, National Cheng Kung University, Tainan City, Taiwan
e-mail: clee@mail.ncku.edu.tw

C.-F. Chen
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_15

543

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_15&domain=pdf
mailto:clee@mail.ncku.edu.tw
https://doi.org/10.1007/978-3-319-91734-4_15

544 G. G. Lee et al.

the human body, again with tremendously big data such as from the human brain
and especially the human genome.

Ubiquitous Artificial Intelligence (AI), brought forth by wearable, mobile and
other IoT devices, requires not only more complex algorithms, but also automated
analytics algorithm for versatile applications which starting from science and
engineering such as multimedia, communication, and biotechnology, will diversify
towards other cross disciplinary domains. Machine learning algorithms such as
deep learning which in addition to having self-learning capabilities also demand
excessively high complexity in processing these big heterogeneous data.

With mathematical fundamentals as foundations for the analysis of correspond-
ing dataflow models from algorithms, intelligent, flexible, and efficient, analytics
architectures, including both software and hardware for VLSI, GPU, multicore, high
performance computing, and reconfigurable computing systems, etc., this chapter
innovates discussions on Smart System-on-Chip design, in expediting the field of
signal and information processing systems into futuristic new era of the Internet-
of-Things and high performance computing based on Algorithm/Architecture Co-
design.

In Algorithm/Architecture Co-Design (AAC), in manners similar to Parhi et al.
and Ha et al., [10, 22], algorithms will be modelled using dataflow graphs (DFG)
which represent different realizations or implementations of an algorithm also
referred to as architecture instantiation. Having information on both algorithmic
behavior and architectural information including both software and hardware for
implementation, the DFG so proposed provides a mathematical representation
which better models the underlying computational platform for systematic analysis
thus providing flexible and efficient management of the computational and storage
resources. Through Eigen-analysis of the DFG, homogeneity and heterogeneity
properties of parallel computing are introduced like the homogeneous systolic array
as presented by Hu et al. [12]. By exploring the similarities in the DFG’s of different
algorithm, reconfigurable architectures at different level of granularities could be
explored where Sutter et al. introduced reconfigurability at coarse granularity [28].

In this chapter, we shall also introduce the design methodology for video
compression and MPEG reconfigurable video coding which was discussed in more
depth by Chen et al. and Mattavelli et al. respectively. Furthermore, AAC is also
applicable to the design of DSP processors [29] multi-core SoC [3], etc.

2 Algorithm/Architecture Co-design: Analytic Architecture
for SMART SoC

NIKLAUS EMIL WIRTH introduced the innovative idea that Programming = Algo-
rithm + Data Structure. Inspired by this, we advance the concept to the next level
by stating that Design = Algorithm + Architecture. With concurrent exploration of
algorithm and architecture entitled Algorithm/Architecture Co-design (AAC), this

System-on-Chip Architectures for Data Analytics 545

methodology innovates a leading paradigm shift in advanced system design from
System-on-a-Chip to IoT, and heterogeneous system.

As high performance computing becomes exceedingly demanding and IoT gen-
erated data becomes increasingly bigger, flexible parallel/reconfigurable processing
are crucial in the design of efficient and flexible signal processing systems with
low power consumption. Hence the analysis of algorithms for potential computing
in parallel, efficient data storage and data transfer is crucial. In analogous to the
analysis of speech and image data in machine learning, this section characterizes
the analysis of dataflow models representing algorithms, for analytics architecture,
a cross-level-of-abstraction system design methodology for SoC on versatile plat-
forms [18].

2.1 Architectural Platform

Current intelligent algorithms such as those for big data analytics and machine
learning are becoming ever more complex. Rapid and continuous enhancements
in semiconductor and information communication technologies (ICT) with inno-
vations in especially advanced systems and architectural platforms capable of
accommodating these intelligent algorithms targeting versatile applications includ-
ing ubiquitous AI are therefore in high demand. These broad application specific
requirements such as for SMART SoC platforms necessitates trade off among
efficiency represented by performance per unit of silicon area (performance/silicon
area); flexibility of usage due to changes or updates in algorithm; and low power
consumption.

Conventional implementations of algorithms were usually placed at two archi-
tectural extremes of either pure hardware or pure software. Although application-
specific integrated circuit (ASIC) implementation of algorithms provides the highest
speed or best performance, this is however achieved via tradeoff of platform
flexibility. Pure software implementations on single-chip processors or CPUs are
the most flexible, but require high power overhead and result in slower processing
speed. Hence, several other classes of architectural platform, such as instruction set
digital signal processors (DSP) and application specific instruction set processors
(ASIP), have also been used as shown in Fig. 1.

It is thus crucial that system design methodologies, such as Smart SoC sys-
tems, emphasize on optimal trade-off among efficiency, flexibility, and low-power
consumptions. Consequently, embedded multicore processors or SoCs and recon-
figurable architectures may frequently be favored. Furthermore, heterogeneous data
generated from versatile IoT devices have further escalated system design towards
cloud and heterogeneous systems in the post Moore’s Law era.

546 G. G. Lee et al.

Flexibility

Towards Cloud & Heterogeneous
Systems

Embedded general purpose instruction set processor

Embedded multicore processor

Instruction Set DSP

Application Specific Instruction Set Processor (ASIP)

Reconfigurable Processor/FPGA

Embedded Reconfigurable Logic/ FPAG
Power

Performance/Area

ASIC

Fig. 1 Architectural platforms trading off performance/area, flexibility and power

2.2 Algorithm/Architecture Co-design: Abstraction at the
System Level

As signal and information processing applications such as visual computing and
communication become increasingly more complicated, corresponding increase in
hardware complexity in SoC design has also required reciprocity in software design
especially for embedded multicore processors and reconfigurable platforms. In
coping with large systems, design details for specific applications are abstracted
into several levels of abstraction.

In traditional ASIC design flow, physical characteristics are typically abstracted
as timing delay at the RTL level. For Smart SoC with yet even higher complexity,
abstraction has been elevated further to system level with algorithmic intrinsic
complexity metrics intelligently extracted from dataflow models, featuring both
hardware and software characteristics for subsequent cross level of abstraction
design.

2.2.1 Levels of Abstraction

The design space for a specific application is composed of all the feasible software
and hardware implementation solutions or instances and is therefore spanned by
corresponding design attributes characterizing all abstraction levels [7].

In a top down manner, design process in this method proceeds from algorithm
development to software and or hardware implementation. Abstracting unnecessary
design details and separating the design flow into several hierarchies of abstraction

System-on-Chip Architectures for Data Analytics 547

level as shown in Fig. 2 could efficiently enhance the design capability. For a specific
application, the levels of abstraction include the algorithmic, architectural, register
transfer, gate, and physical design levels. As shown in Fig. 2, more details are added
as the design progresses to lower abstraction levels and hence with larger design
space.

Figure 3 illustrates design details at every abstraction level of the design space.
At the algorithmic level, functionalities are explored, and the characterizing time
unit used is in order of seconds. Real-time processing, for example, is a common
constraint for visual applications, and the temporal domain precision is measured in
terms of frames per second (FPS).

At the architectural level, exploration focuses on data transaction features
including data transfer, storage, and computation. These information subsequently
facilitate design for hardware/software partition, memory configuration, bus proto-
col, and modules comprising the system. The time unit is in number of cycles.

At the silicon intellectual property (IP) or macro level, micro-architecture
characteristics including the datapath and controller are considered, with the timing
accuracy also counted in cycles. At the module level, features could for instance
be various arithmetic units comprising the datapath. The gate level is characterized
by logic operation for digital circuits. At the circuit level, voltage and current are
notable and finally electrons are considered at the device level.

The discussions above reveal that higher levels of abstraction are characterized by
coarser timing and physical scales and are finer at lower levels. In traditional ASIC
design flow, efforts were focused primarily at the register transfer level (RTL), where
physical circuit behaviors with parasitical capacitance and inductance are abstracted

Application specification

Algorithm

Architecture

RTL model

Synthesized netlist

Physical design

Different instances or realizations
Low

High

Level of
abstraction

Fig. 2 Levels of abstraction

548 G. G. Lee et al.

Device

Circuit

Gate

Module

IP (Macro)

Architecture

n+ n+
SD

G

Vin
CL

VDD

Gnd

ALU

Motion
estimator

CPU

BUS
MPEG

ADCDAC

SRAM

ROM

RF

Symbols Features

IP functionality and
micro-architecture

Arithmetic
operation

Logic
operation

Voltage,
current

Electron

Time units

Number of cycles

Number of cycles

Cycle

ns

ps

ps

Algorithm System
functionality Seconds

System
architecture

Q-1

Frame
Memory DCT

Pre-
processing

Q VLC
Encoder

Frame
MemoryMC

ME

IDCT

+
Input
Data

Output
Data

+-
-

Q

+

+-

Levels

Fig. 3 Features at various levels of abstraction

within timing delay. In the currently proposed AAC design methodology, abstraction
is further elevated to the system level where dataflow or transaction-level modeling
bridges the cross algorithm and architecture levels design space.

2.2.2 Joint Exploration of Algorithms and Architecture

Traditional design methodologies are usually based on the execution of a series of
sequential stages: the theoretical study of a fully specified algorithm, the mapping of
the algorithm to a selected architecture, the evaluation of the performance, and the
final implementation. However, these sequential design procedures are no longer
adequate to cope with the increasing complexity demands of Smart SoC design
challenges. Conventional sequential design flow yields independent design and
development of the algorithm from the architecture. However, with ever increasing
complexity of both algorithm and system platforms in each successive generation,
such unidirectional steps in traditional designs will inevitably lead to the scenario
that designers may either develop highly efficient but highly complex algorithms
that cannot be implemented or else may offer platforms that are impractical for
real world applications because the processing capabilities cannot be efficiently
exploited by the newly developed algorithms. Hence, seamless weaving of the two
previously autonomous algorithmic development and architecture development will
unavoidably be observed.

As shown in Fig. 4, AAC facilitates the concurrent exploration of algorithm and
architecture optimizations through the extraction of algorithmic intrinsic complexity

System-on-Chip Architectures for Data Analytics 549

Fig. 4 Concept of
algorithm/architecture
co-exploration

Data Flow

Algorithm Design

Architecture Design

Back Annotation

Complexity Metrics
No. of operations
Degree of parallelism
Data transfer rate
Data storage requirements

measures from dataflow models. Serving as a bridge between algorithms containing
behavioral information and architecture with design or implementation information,
system level features including, number of operations, degree of parallelism, data
transfer rate, and data storage requirements are extracted as quantitative complexity
measures to provide early understanding and characterization of the system archi-
tecture in cross level designs.

As depicted in Fig. 2, the cost of design changes is high when designs have
already progressed to the later stages at lower level of abstraction and frequently
affects the success of the overall project. Hence it is crucial that these algorithmic
intrinsic complexity measures provide early understanding of the architectural
design and subsequent implementation requirements within the algorithm and
architecture co-design space as shown in Fig. 5. This is in essence a systematic
analytics architecture mechanism for the mapping of algorithms to platforms with
optimal balancing of efficiency, flexibility, and power consumption via architectural
space exploration before software/hardware partitioning.

In situations when the existing architectures or platforms are not able to
accommodate the complexities as it is necessary to feedback or back annotate
the complexity information to the algorithmic level for algorithm modification as
depicted in Figs. 4 and 5.

Hence AAC provides a cross level methodology for smart system design by
which abstraction of architecture features within complexity metrics has been
further escalated to the system level! This is of course the same technique in
traditional ASIC design flow with physical characteristics at physical layers being
abstracted as timing parameters at the microarchitecture or RTL level.

2.3 Algorithmic Intrinsic Complexity Metrics and Assessment

Finding out intrinsic complexity metrics of algorithms providing important archi-
tectural information is critical for Algorithm/Architecture Co-Exploration (AAC)
since the metrics is capable of being feedback- or back-annotated in early design
stages to facilitate concurrent optimizations of both algorithm and architectures.

550 G. G. Lee et al.

Visual computing
applications

Visual computing
algorithms

Definition of
complexity metrics

Quantization of
complexity

Characterization
of algorithmic

complexity

Algorithmic space
exploration

Architectural space
exploration

Algorithm/architecture
co-exploration

Mobile PC
Consumer
electronics

Video coding algorithms: MPEG, H.26x, RVC, SVC...

Video processing algorithms: format converter, scaler...

Computer vision algorithms: FTV, segmentation, Deep Learning

Algorithms Complexity

Complexity

Mapping

(Reconfigurable) computing platforms

Dataflow
model

Causation
traces

Algorithmic
complexity

Software/Hardware
Partition

Architectural
information

Exploration of
(reconfigurable)

computing platform

Architectural
information

Back
annotation

Dataflow modeling
in different

abstraction levels

Fig. 5 Advanced visual system design methodology

The complexity metrics have to be intrinsic to the algorithm and hence are not
biased toward either hardware or software. In other words, they should be platform
independent so as to reveal the anticipated architectural features and electronic
ingredients in the early design stages. In order to characterize the complexity of
algorithms, this chapter introduces four essential algorithmic intrinsic complexity
metrics, number of operations, degree of parallelism, data transfer rate, data storage
requirement, and the corresponding quantification methods based on the metrics.

2.3.1 Number of Operations

The number of arithmetic and logic operations is one of the most intuitive metrics
that can measure the intrinsic complexity of an algorithm during computation. An
algorithm possessing more operations requires more computational power in either
the software on processor-based platforms or the hardware on application-specific
system platforms. Consequently, the number of operations in terms of these four
arithmetic operators, including addition, subtraction, multiplication, and division
and logic, operations can be used to characterize the complexity of the algorithm and

System-on-Chip Architectures for Data Analytics 551

hence to provide insight into architectures such as number of processing elements
(PE) needed and the corresponding operating clock rate for real-time applications.

Estimating the number of operations of an algorithm can provide designers
with the intrinsic complexity that is independent of whether implementation is in
software or hardware. The number of operations can exhibit the gate count estima-
tion if implementation is intended in ASICs. Furthermore, extracting the common
operations and the number of operations in an algorithm can help engineers figure
out feasible field programmable gate array (FPGA) configurations. On the contrary,
if an algorithm is mapped into software, one can know what kind of instruction set
architecture is required in the general-purpose CPU or DSP coprocessors. Since this
metrics can give designers insight into either software or hardware implementation
in early design stages, it can effectively facilitate software/hardware partition and
co-design.

To make this metric more accurate, the types of computational operations have
to be particularly distinguished, since various operations have different costs in
implementation. Among the four basic arithmetic operations, the complexity of
addition and subtraction are similar and simplest, multiplication is so complex
that it can be executed by a series of additions and shifts based on Booth’s
algorithm [2], and division is the most complicated, since it can be performed by
shifts, subtractions, and comparisons. In CPU profiling, different types of operations
spend distinct CPU cycles according to the instruction set architecture. In ASIC
and FPGA designs, each basic mathematical operation and logic operation has
different gate counts and number of configurable logic blocks (CLBs), respectively.
Furthermore, other than gate count and the number of CLBs, one can estimate
the average power consumption at algorithmic level according to the numbers of
operation per second.

In addition to the types of operation, the precision of operand in terms of bit
depth and type of operand (fixed point or floating point) can significantly influence
the implementation cost and hence need to be especially specified. In general, the
gate count of PE increases as the precision grows higher. Besides, the hardware
propagation delay is affected by the precision as well. Hence, the precision is an
important factor in determining the critical path length, maximum clock speed,
and hence the throughput of electronic systems. If an algorithm is implemented on
the processor-orientated platforms composed of general-purpose processors, single-
instruction multiple data (SIMD) machines, or application-specific processors, the
precision of operand will directly determine the number of instructions needed to
complete an operation. Consequently, the operand precision is also a very important
parameter as measuring the number of operations.

Furthermore, whether the input of an operator is variable or constant has to
be differentiated, since a complicated constant-input operation can be executed
via a few simple operations. For example, a constant-input multiplication can be
implemented by fewer additions and shifts, where the shifts can be efficiently
implemented by just wiring in hardware. In software, the constant operations can be
executed by immediate-type instructions that need less access to registers. Hence,

552 G. G. Lee et al.

the variable or constant-input operant is also a significant factor that should be
considered.

The number of different types of operations can be easily quantified according
to the algorithm descriptions. Horowitz et al. [11] introduced a complexity analysis
methodology based on calculating the number of fundamental operations needed by
each subfunction together with the function call frequency in statistics for different
video contents. The worst-case and average-case computational complexity can then
be estimated according to the experimental results. This method can efficiently esti-
mate the number of operations for content-adaptive visual computing algorithms.
Besides, Ravasi and Mattavelli presented a software instrumentation tool capable
of automatically analyzing the high-level algorithmic complexity without rewriting
program codes [26, 27]. This can be done by instrumentation of all the operations
that take place as executing the program. These two techniques can dynamically
quantify the relatively intrinsic algorithmic complexity on number of operations for
ESL design.

2.3.2 Degree of Parallelism

The degree of parallelism is another metric characterizing the complexity of
algorithms. Some partial operations within an algorithm are independent. These
independent operations can be executed simultaneously and hence reveal the degree
of parallelism. An algorithm whose degree of parallelism is higher has larger
flexibility and scalability in architecture exploration. On the contrary, greater data
dependence results in less parallelism, thereby giving a more complex algorithm.
The degree of parallelism embedded within algorithms is one of the most essential
complexity metrics capable of conveying architectural information for parallel and
distributed systems at design stages as early as the algorithm development phase.
This complexity metric is again transparent to either software or hardware. If
an algorithmic function is implemented in hardware, this metric is capable of
exhibiting the upper bound on the number of parallel PEs in datapath. If the
function is intended in software, the degree of parallelism can provide insight
and hence reveal information pertaining to parallel instruction set architecture in
the processor. Furthermore, it can also facilitate the design and configurations of
multicore platforms.

Amdahl’s law introduced a theoretical maximum speed-up for parallelizing a
software program [1]. The theoretical upper bound is determined by the ratio of
sequential part within the program, since the sequential part cannot be paralleled
due to the high data dependencies. Amdahl’s law provided an initial idea in
characterizing parallelism. In a similar manner, the instruction-level parallelism
(ILP) that is more specific for processor-oriented platforms is quantified at a
coarser data granularity based on the graph theory [8]. The parallelization potential
defined based on the ratio between the computational complexity and the critical
path length is also capable of estimating the degree of parallelism [24]. The
computational complexity is measured by means of the total number of operations,

System-on-Chip Architectures for Data Analytics 553

and the critical path length is then defined as the largest number of operations
that have to be sequentially performed. The parallelization potential based on the
number of operations reveals more intrinsic parallelism measurements at a finer
data granularity as compared to Amdahl’s law and the ILP method.

Kung’s array processor design methodology [16] employed the dependency
graph (DG) to lay out all basic operation to the finest details in one single step
based on single assignment codes. Hence, DG is capable of explicitly exhibiting
data dependencies between detailed operations of dataflow at the finest granularity.
This design methodology provides more insight into the exploitation of algorithmic
intrinsic parallelism. For instance, the systolic arrays architecture can efficiently
implement algorithms possessing regular dependency dataflow graphs (DFGs), such
as the full search motion estimation. As considering algorithms having irregular
data dependencies, the outlines of causation trace graphs [14] generated by dataflow
models were used by Janneck et al. in rendering a comparative characterization of
parallelism. Similar to Parhi’s folding and unfolding techniques [23], the thinner
portion of a causation trace graph contains more sequential operations, while the
wider portion of has relatively higher degree of parallelism.

One of the versatile parallelisms embedded within algorithms can be revealed as
the independent operation sets that are independent of each other and hence can be
executed in parallel without synchronization. However, the independent operation
sets are composed of dependent operations that have to be sequentially performed.
Hence, in a strict manner, the degree of parallelism embedded in an algorithm is
equal to the number of the fully independent operation sets. To efficiently explore
and quantify such parallelism, Lee et al. [20] proposed to represent the algorithm
by a high-level dataflow model and analyze the corresponding DFG. The high-
level dataflow model is capable of well depicting the interrelationships between
computations and communications. The generated DFG can clearly reveal the
data dependencies between the operations by vertexes and directed edges, where
the vertexes denote the operations and the directed edges represent the sources
and destinations of the data, which is similar to the DG used in Kung’s array
processor design methodology [16] and the causation trace graphs proposed by
Janneck et al. [14].

Inspired by the principal component analysis in the information theory,
Lee et al. [20] further employed the spectral graph theory [6] for systematically
quantifying and analyzing the DFGs via Eigen-decomposition, since that the
spectral graph theory can facilitate the analysis of data dependency and connectivity
of the DFGs simplistically by means of linear algebra. Consequently, it is capable
of quantifying the parallelism of the algorithm with robust mathematically and
theoretical analysis applicable to a broad range of real-world scenarios.

Given a DFG G of an algorithm composed of n vertexes that represent operations
and m edges that denote data dependency and flow of data, in which the vertex set
of G is V (G) = {v1, v2, . . . , vn} and the edge set of G is E(G) = {e1, e2, . . . , em}.
The spectral graph theory can study the properties of G such as connectivity by the
analysis of the spectrum or eigenvalues and eigenvectors of the Laplacian matrix L
representing G, which is defined as [6, 9]

554 G. G. Lee et al.

L(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

degree(vi) , if i = j,

−1 , if vi and vj are adjacent,

0 , otherwise.

(1)

where degree(vi) is the number of edges connected to the ith vertex vi . In the
Laplacian matrix, the ith diagonal element shows the number of operations that
are connected to the ith operation and the off-diagonal element denotes whether two
operations are connected. Hence, the Laplacian matrix can clearly express the DFG
by a compact linear algebraic form.

Based on the following well-known properties of the spectral graph theory: (I)
the smallest Laplacian eigenvalue of a connected graph equals 0 and the corre-
sponding eigenvector = [1, 1, . . . , 1]T , (II) there exists exactly one eigenvalue = 0
for the Laplacian matrix of a connected graph, and (III) The number of connected
components in the graph equals the number of eigenvalue = 0 of the Laplacian
matrix, it is obvious that in a strict sense, the degree of the parallelism embedded
within the algorithm is equal to the number of the eigenvalue = 0 of the Laplacian
matrix of the DFG. Besides, based on the spectral graph theory, the independent
operation sets can be identified according to the eigenvectors associated with
the eigenvalues = 0. Furthermore, by comparing the eigenvalues and eigenvectors
of each independent operation set, one can know whether the parallelism is
homogeneous or heterogeneous, which is critical in selecting or designing the
instruction set architecture.

This method can be easily extended to the analysis of versatile parallelisms
at various data granularities, namely multigrain parallelism. These multigrain
parallelisms will eventually be used for the exploration of multicore platforms
and reconfigurable architectures or Instruction Set Architecture (ISA) with coarse
and fine granularities, respectively. If the parallelism is homogeneous at fine data
granularity, the SIMD architecture is preferable, since the instructions are identical.
On the contrary, the very long instruction word (VLIW) architecture is favored for
dealing with the heterogeneous parallelism composed of different types of opera-
tions. As the granularity goes coarser, the types of parallelism can help design the
homogeneous or heterogeneous multicore platforms accordingly. In summary, this
method can efficiently and exhaustively explore the possible parallelism embedded
in algorithms with various granularities. The multigrain parallelism extracted can
then facilitate the design space exploration for the advanced AAC.

By directly setting eigenvalues of L = 0, it is easy to prove that the degree of
parallelism is equal to the dimension of the null space of L and the eigenvectors
are the basis spanning the null space. In general, the number of operations needed
to derive the null space of a Laplacian matrix is proportional to the number of
edges. Hence, this method provides an efficient approach to quantify the degree
of parallelism and the independent operation sets. This method is applicable to
large-scale problems by avoiding the computation-intensive procedures of solving
traditional Eigen-decomposition problem. In addition, since the Laplacian matrix is

System-on-Chip Architectures for Data Analytics 555

Algorithm Block diagram

O1 = A1+B1+C1+D1

A1 A2B1 B2C1 C2

O1 O2

+ + + +

+ +

v1 v2 v3 v4

v5v6

D1 D2

O2 = A2+B2+C2+D2

Dataflow graph

Fig. 6 An example for an illustration of quantifying the algorithmic degree of parallelism

sparse and symmetrical, it can be efficiently implemented and processed by linking
list or compressed row storage (CRS) format.

Figure 6 displays a simple example to illustrate the quantification of the
algorithmic intrinsic parallelism. The DFG composed of six operations represented
by vertexes labeled with different numbers. The corresponding Laplacian matrix L
of the DFG with the arbitrary label is

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 −1 0
0 0 0 1 −1 0
0 0 −1 −1 2 0
−1 −1 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The eigenvalues and the corresponding eigenvectors of L are

λ = 0 0 1 1 3 3

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
−2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
0
0
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where λ and x are the eigenvalues and eigenvectors of L, respectively. From the
above result, we can know that the DFG is composed of two independent operation
sets, since it has two Laplacian eigenvalues = 0. So, the degree of parallelism in
this algorithm is two. Subsequently, by observing the first eigenvector associated
with λ= 0, we can find that the values corresponding to v1, v2, and v6 are nonzero,
indicating that the three operations form a connected dataflow subgraph. In a similar
manner, the other eigenvectors associated with λ= 0 can reveal the rest connected
dataflow subgraph. Besides, one can find that the two independent operation sets

556 G. G. Lee et al.

should be isomorphic, since their eigenvalues and eigenvectors are identical. Hence,
the parallelism in this algorithm is homogeneous. This example precisely explains
the parallelism extraction and analysis method based on the spectral graph theory.

The spectral parallelism quantification method has several advantages. First of
all, it provides a theoretically robust method in quantifying the parallelism of
algorithms, whereas the causation trace [16] provided only comparative information
for the potentials of parallelisms. Besides, benefiting from dataflow modeling,
this method is also applicable for characterizing algorithms with irregular data
dependencies. In addition, as compared to the analysis based on the high-level pro-
gramming model in [24] and the quantification of ILP in [8], the parallelism metric
is more intrinsic and hence will not be specific only to processor-oriented platforms
and is capable of mapping algorithms onto generic platforms and even those
for distributed systems. However, the quantification of ILP [8] is used primarily
for software implementations. Furthermore, the data structures in instruction-level
programming models could influence the parallelism extracted in [24].

In traditional graph theory, connected components can be identified by the
depth first search (DFS) or breadth first search (BFS). In general, the algorithmic
complexity of the DFS and BFS in terms of the number of operations is linearly
proportional to the number of edges plus the number of vertexes. However, the
number of operations required by the spectral framework is just proportional to the
number of edges when solving the null space of the Laplacian matrix. In addition,
the multigrain spectral analysis is capable of systematically decomposing DFGs
in a top-down manner, since the eigenvalues and eigenvectors of a graph is the
union of those of its individual components. Besides, the spectral method can
effectively tell whether the parallelism is either homogeneous or heterogeneous.
Furthermore, the spectrum of Laplacian matrix is invariant of the graph matrix
regardless of orders in which the vertices are labeled and the Laplacian matrix can
be efficiently implemented in CRS format. These features make the handling of
matrices representing DFGs efficient in computers and hence preferable for very
efficient design automation.

2.3.3 Data Transfer Rate

Aside from the number of operations and degree of parallelism, the amount of
data transfer is also an intrinsic complexity metric as executing an algorithm.
Algorithms can be represented by natural languages, mathematical expressions,
flowcharts, pseudo codes, high-level programming languages, and so on. In signal
processing applications, mathematical expression is one of the most abstract,
definite, and compact methods to represent an algorithm. The corresponding signal
flow graphs and dataflow models [7, 25] can be then obtained based on mathematical
representation [21]. The dataflow graph is capable of depicting the interrelationships
between computations and communications.

To systematically extract the information embedded in graph, matrix repre-
sentation is commonly used to represent a DFG. For instance, adjacent matrix

System-on-Chip Architectures for Data Analytics 557

introduces the connections among vertices and Laplacian matrix also displays
the connectivity embedded in graph. These matrix representations are usually in
behalf of undirected graph; however, in the study of data transfer of visual signal
processing, data causality is also a significant information that should be retained
in matrix representation. Hence, a dependency matrix conveying data causality
of a directed or undirected graph is required, and its mathematical expression is
illustrated as (4).

M(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
−1 , if vertex vj is the tail of edge ei

1 , if vertex vj is the head of edge ei

0 , otherwise

(4)

To explore the method to quantify corresponding data storage requirement and
data transfer rate via dependency matrix, edge cut is applied since edge cut is a cut
that results in a connected DFG into several disconnected sub-DFGs by removing
the edges in this cut. Therefore, the size of edge cut (or number of edges in this cut)
could be used to estimate the amount of data would be transferred among sub-DFGs
due to the fact that data should be sent or received (via edges) by tasks (vertices).
On the other hand, the behavior of edge cut in DFG is equivalent to applying an
indicator vector x that separates vertices in DFG into two sides for dependency
matrix, M. For example, a simple DFG of an average filter is shown in Fig. 7, the
indicator vector x of corresponding edge cut is [1,−1,−1, 1,]T , then this edge
cut separates v1 and v4 into one group and v2 and v3 belong to the other group.
(The vertices at the side with more input data would be set as 1.) Furthermore,
by computing Mx, the characteristics of edges in DFG would be revealed. In this
example, Mx is [2, 0,−2]T and there are three type of edges that are introduced by
Mx, including in-edge-cut (value in Mx is positive, e1), out-edge-cut (value in Mx is
negative, e3), non-edge-cut (value in Mx is zero, e2). According to Mx, the amount
of data transfer was equal to the half of the summation of all absolute values in
Mx. Corresponding dependency matrix (M), indicator vector (x), characteristics of
edges (Mx), and amount of data transfer are depicted in (5). Therefore, Mx clearly
presents the number of edges crossed by this edge cut and hence corresponding data
transfer rate could be systematically quantified due to the fact that data transactions
occurred on the edges in DFG. Consequently, the amount of data transfer of this
edge cut is 2.

(5)

In general, DFG presents a process for computing one Data Granularity (DG)
of an algorithm and then this DFG is applied iteratively until all to-be-computed
DGs are accomplished; for example, we might build up a DFG for block-based

558 G. G. Lee et al.

Fig. 7 A simple DFG and an
edge cut separate vertices into
two sides

v3

+

v4

e3

e2e1

v1 v2

DFG

y[n] = x[n-1] + x[n]

x[n]

y[n]

x[n-1] Edge cut

v3

e3 e4

e5 e6

e2e1

v1

v4

v7

v5

v6

v2

Edge cut

DFG

Two consecutive DGs

DGN-1 DGN
x[n-1] x[n]x[n-2]

y[n]y[n-1]

+ +

Fig. 8 A DFG composed of two consecutive DGs

Motion Estimation (ME) and hence one DG is one block; as a consequence, to
achieve ME for one frame, this DFG is used for all DGs in one frame. Therefore,
when we combine consecutive processes for different DGs into one DFG, there are
some data could be concurrently used for two DGs, i.e., the data could be reused
and the amount of data transfer would be reduced. For example, two consecutive
processes of Fig. 7 is presented in Fig. 8, and another edge cut crosses all input data.
Its corresponding dependency matrix M, indicator vector x, and characteristics of
edges Mx are illustrated in (6). We could find out the corresponding amount of
data transfer would be four when directly computing absolute summation over Mx.
However, it is clear that if v2 could be reused for both DGN−1 and DGN , when
DGN denotes the DFG computes the n-th DG, the amount of data transfer would be
reduced from four to three but one extra storage size is required. Here we present
a systematic approach to indicate how many data could be reused and which data
would be reused through the dependency matrix.

System-on-Chip Architectures for Data Analytics 559

(6)

Dependency matrix concurrently conveys the direction of data transaction and the
dependency of tasks, so it can indicate that the location where data are transacted
through the determined edge cut. To clearly explain the proposed method, here we
define the symbols used hereafter; an edge characteristic vector y, equals to (1/2)Mx
and one operator, ∩, an element-wise operation which reserves the elements with
the same sign and set others as zero. Therefore, through vector y and operator ∩,
the reusable data could be indicated. ∩ operator remains the elements that exchange
data in this edge cut and hence we could create a new matrix M’ whose i-th column
is coli(M)∩y, where coli(M) is i-th column of matrix M. After that, as shown in (7),
for each column in M’, a maximum operator would be performed on the elements
with positive values to calculate maximum numbers of data should be sent from this
vertex; on the other hand, for each column in M’, the remaining elements with
negative values would be summed up to be the amount of output data. Hence,
the amount of data transfer with data reuse could be quantified systematically.
Furthermore, when we merge more DGs into one DFG, we have the potential to
reduce more data transfer; however, storage requirement would also be increased if
more DGs are considered at the same time. As a result, we have a systematic manner
to explore design space in terms of amount of data transfer and storage requirement.

(7)

2.3.4 Data Storage Requirement

A system is said to be memoryless if its output depends on only the input signals
at the same time. However, in visual computing applications such as video coding
and processing, some intermediate data have to be stored in memory depending
on the dataflow of algorithms in higher abstraction levels. Consequently, in order
to perform the appropriate algorithmic processing, data storage must be properly
configured based on the dataflow scheduling of the intermediate data. Hence, the

560 G. G. Lee et al.

algorithmic storage configuration is another essential intrinsic complexity metric
in AAC design methodology, which is transparent to either software or hardware
designs. For software applications, the algorithmic storage configuration helps
design the memory modules such as cache or scratch-pad and the corresponding data
arrangement schemes for the embedded CPU. In hardware design, the immediate
data can be stored in local memory to satisfy the algorithmic scheduling based
on this complexity metric. The minimum storage requirement of an algorithm is
determined by the maximum amount of data that needed to be accessed at a time
instance, which of course depends on the reuse rate of data.

To provide the better visual quality, more context information should be stored
to exploit and hence the storage size requirement is intended to be increased. In
usual, the picture data is stored in the external storage due to the large amount of
data. Therefore, data transfer rate balance between internal and external storage is
crucial. There are two extreme cases of this consideration. (I) All the needed data
is stored in the internal storage that requires the minimum external data transfer
rate and (II) all the required data is stored in the external storage that requires
the maximum external data transfer rate since the needed data would be fetched
when the algorithm demanded. An intuitive manner to allocate partial picture
data in the internal storage and remaining data in the external storage. However,
these two factors are usually inversely proportional. In the following subsections, a
systematic manner to explore the balance between internal data storage and external
data transfer rate through different executing orders and various data granularities.
Hence, a feasible solution can be found during the design space exploration for the
target application of multidimensional video signal processing.

The first factor, executing order in dataflow, affects internal storage size and
external data transfer rate and the executing order is always restricted to the data
causality of the algorithm. Figure 9 shows a dataflow dependency graph of a
typical image/video processing algorithm exploiting the contextual information in
the spatial domain. To a causal system, only upper and left contextual information
can be referenced.

Three different executing order is illustrated in Fig. 10, including (a) the raster
scan order, (b) diagonal scan order with two rows, and (c) diagonal scan order with
three rows and the number labeled on the vertices denotes that the executing order of
nodes. There are some assumptions are applied for discussing the effect of executing
order on the internal data storage and the external data transfer rate. The contextual
information at left side is stored in the internal storage and the data at upper line
should be fetched from external storage. Thus, the internal storage size is counted
according to the data size of left reference and average external data transfer rate is
measured based on the amount of upper data reference should be fetched within one
time unit.

By analyzing the dataflow illustrated in Fig. 10a, the required storage size is
the one data unit and external data transfer rate is three data units. The dataflow
depicted in Fig. 10b needed to store three data units and transfer three data units
during processing every two data units. The last one dataflow illustrated in Fig. 10c

System-on-Chip Architectures for Data Analytics 561

Fig. 9 Dataflow dependency graph of a typical image/video processing algorithm

stored five data units and three data units should be transferred when processing
every three data units.

In summary, the first dataflow requires the smallest data storage requirement
but the average data transfer rate is the largest among these three dataflow models
due to the fact that the required data would be fetched from external data storage
once requisition. On the other hand, the third dataflow possesses the largest internal
storage size since more contextual information should be kept to process the data
unit at distinct rows; however, the required average data transfer rate is the smallest
one because most of data have been stored in the internal storage already.

The tradeoff between internal storage size and average data transfer rate is made
in accordance with the distinct executing orders. Figure 11 showed the analyzed
result from diagonal scan from one row to thirty-two rows. The normalized average
data transfer rate is inverse proportional to the internal data storage size. Figure 11
shows that the reduction ratio of average data transfer rate could be achieved by
adding some overhead on the internal storage size. The curve in Fig. 11 can facilitate
the design space exploration in terms of the internal data storage and external data
transfer rate based on AAC.

The second factor, data granularities in dataflow, affects internal storage size and
external data transfer rate. For example, transformation from pixel-wise raster scan
(Fig. 12a) to block-wise raster scan (Fig. 12b) is the concept to change the data
granularity from fine data granularity to coarse data granularity; that is, design space
is explored across various data granularities. For instance, filter processing exploits
spatial information to determine the local feature and it usually needs to extend taps
for filtering. Hence, the dataflow with coarser data granularity (Fig. 12b) possess
higher possibility to reuse the data since there are data overlapped between two
consecutive blocks. By analyzing the dataflow with coarser data granularity, the
internal storage size can be characterized as (8):

562 G. G. Lee et al.

0

a b

c

1 2 3 4 5 6 7 0 1 3 5 7 9 11 13

0 1 3 6 9 12 15 18

2 4 7 10 13 16 19 21

5 8 11 14 17 20 22 23

24 25 27 30 33 36 39 42

26 28 31 34 37 40 43 45

29 32 35 38 41 44 46 47

Data stored in internal storage

Data fetched from external storage

Processed data

To-be-processed data

2 4 6 8 10 12 14 15

16 17 19 21 23 25 27 29

18 20 22 24 26 28 30 31

32 33 35 37 39 41 43 45

34 36 38 40 42 44 46 47

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Fig. 10 Storage size comparison of various executing orders

Fig. 11 Normalized average
external data transfer rates
versus internal storage sizes
for various executing order

Average external data transfer rate vs. internal storage size

N
or

m
al

iz
ed

 a
ve

ra
ge

 d
at

a
tr

an
sf

er
ra

te

Internal storage size

(BH +NH − 1)× (BV +NV − 1) (8)

where NH and NV are the extended taps required from the algorithm in the
horizontal and vertical directions, respectively. BH and BV are the width and height
of one data granularity. The amount of non-overlapped input data needed for the
current processed granularity is expressed by:

System-on-Chip Architectures for Data Analytics 563

Pixel-wise raster scan Block-wise raster scan

W

y y

x x

a

b

BH+NH-1 BH+NH-1

2xBH+NH-1

Non-overlap input

Reused data

B
v+

N
v-

1

B
v+

N
v-

1

H H
W

BH

Bv

Fig. 12 Dataflow flow with coarse-granularity. (a) Pixel-wise raster scan vs. block-wise raster
scan. (b) Overlap of input data

BH × (BV +NV − 1) (9)

and the accompanying input data transfer rate per granularity is

(BV +NV − 1)/BV (10)

The amount of non-overlapped input data depended on BH , BV , and NV . On the
other hand, the external data transfer rate per granularity is only related to the BV

and NV since that the parameter, BH , is compensated by the raster scan processing
order. Regarding to the vertical scan order, the results can be derived in the similar
manner and the mathematic expressions are similar to (9) and (10). According to
expression in (10), external data transfer rate can be adjusted by using different
data granularities but this scheme results in various internal storage requirement as
illustrated in (8). Again, the results show that data storage requirement is inverse
proportional to external data transfer rate. Hence, this exploration scheme can
efficiently reduce external data transfer rate with a few overhead in internal storage.

564 G. G. Lee et al.

Subsequently, according to the algorithmic characteristics which is utilized for
different applications, design space can be systematically explored by changing dif-
ferent executing orders and various data granularities; furthermore, some parameters
in algorithm are also took into consideration to determine design solution, e.g. NH

and NV . For example, the line-based scan [5] stores the intermediate 1-D filter,
which results in embedded line buffers to minimize the external data transfer rate.
The block-based scan [15, 30] can further facilitate the trade-off between internal
storage and external data transfer rate with appropriate data granularity, based on the
size of the sliding windows of filters. In addition, the stripe-based scan [13] takes
the data granularity and the executing order into consideration, so that it gives extra
degree of freedom for exploring internal storage and external data transfer rate.

In contrast to average data transfer rate, external instantaneous data transfer rate
is a critical complexity metric of algorithm since external peak data transfer which
reveal the potential bandwidth which could affect the bus configuration and arbiter
when design goes to lower level of abstraction. With a dataflow of an algorithm,
external peak data transfer could be found by exploring various executing orders
and data granularities although average data transfer could be identical.

For instant, by using a larger granularity to fetch data can smooth the discrete
instantaneous data transfer rate; however, it also results in increased internal storage
requirement. Consequently, the lowest external peak data transfer rate could be
considered as an optimization problem whose objective function is trying to find the
lowest external peak data transfer rate among all possible external peak data transfer
rate with different executing orders and various data granularities. The theoretical
lower bound is expressed by

min{Rpeak} = min{max{R[n]}} (11)

where Rpeak is the external peak data transfer rate and R[n] denotes data transfer
rate of all possible executing orders and data granularities.

2.4 Intelligent Parallel and Reconfigurable Computing

As discussed in previous sections, AAC presents a technique, which based on
spectral graph theory, systematically lays out the full spectrum of potential parallel
processing components Eigen-decomposed into all possible data granularities.
This makes possible the study of both quantitative and qualitative potentials for
homogeneous or heterogeneous parallelization at different granularities as opposed
to systolic array for homogeneous designs at only one single fixed granularity. In
addition, we have also discussed on the capabilities of AAC in facilitating systematic
analysis of dataflow models for flexible and efficient data transfer and storage.

Reconfigurable architectures including multicore and GPU platforms provide
balance between flexibility, performance, and power consumption. Starting from

System-on-Chip Architectures for Data Analytics 565

algorithm, the data granularity could be reduced so as to extract common function-
alities among different algorithms. To reduce the granularity from the architectural
side, the Eigen-decomposition of dataflow models described above could also be
used to decompose connected graphs to disconnect components with different
granularities. These commonalities would then require one design of either software
and or hardware which could be share. These lower granularity commonalities also
provide quantitative guidance in reconfiguring architectural resources such as in
multicores or GPUs through graph component synthesis.

The Eigen-analysis of dataflow graphs and graph component synthesis in AAC
for parallel and reconfigurable computing therefore provide a framework similar to
the analysis and synthesis equations in Fourier analysis.

3 AAC Case Studies

In multicore platforms, the algorithmic complexity analysis, especially of the
degree of parallelism helps map applications onto homogeneous or multigrain
heterogeneous architectures. In addition, the complexity analysis also provides
essential information to develop retargetable compilers for multicore platforms.
Furthermore, it is capable of even facilitating porting operating systems onto the
platforms, since designers are aware of the algorithmic intrinsic complexity, thereby
understanding how to appropriately schedule the task.

As the data granularity of the dataflow studied is fine enough, the algorithmic
complexity analysis can be used to extract features common to different algorithms
and formats that are adaptive to versatile video contents. The commonality extracted
can, of course, help in designing datapath and controllers from the hardware
perspective, thereby resulting in highly efficient and flexible reconfigurable archi-
tectures in visual computing applications. For instance, the definition of functional
units in MPEG RVC is done based on such a concept.

Consequently, building a dataflow model at a proper data granularity followed
by thoroughly quantifying the complexity characterizing the algorithms reveals
system architecture information and hence provides a systematic top-down design
methodology for mapping visual applications onto the broad spectrum of platforms
at different levels of granularity and performance. In addition, early understanding
and if necessary feedback or back-annotation of architectural information or
electronic ingredients enables optimization of algorithms. This section then shows
case studies for illustrating mapping motion-compensated frame rate up-convertor
onto multi-core platform via complexity metrics quantification and a reconfigurable
interpolation.

566 G. G. Lee et al.

3.1 Mapping Motion-Compensated Frame Rate Up-Convertor
onto Multi-Core Platform via Complexity Metrics
Quantification

Motion-Compensated Frame Rate Up-Convertor (MC-FRUC) [17] was an emerging
technology that is used to enhance visual quality in temporal domain by interpolat-
ing virtual frames between the original frames. Visual signal processing algorithm
which uses motion information is usually bandwidth-intensive and computation-
intensive. MC-FRUC, whose block diagram is displayed in Fig. 13, hierarchically
performs block-size ME, including Coarse ME (CME) and Refined ME (RME),
to accurately extract Motion Vectors (MVs). The CME uses a spatial-temporal
recursive ME to accurately track the motion trajectory of object; however, there
is highly dependency between the processing of each coarse-grain block due to the
fact that MVs are recursively updated by spatial neighboring blocks and temporal
blocks. On the other hand, in algorithmic consideration, fixed block-size ME would
suffer from the inaccurate MVs at objects boundaries; hence, the RME uses fine-
grain block to refine coarse-grain MVs by re-examining neighboring coarse-grain
MVs; the procedure of each fine-grain block is independent since one fine-grain
block would use four coarse-grain blocks to refine or smooth MVs. Subsequently,
upon having fine-grained MVs, Multiple Block Candidates (MBC) derivation would
indicate several blocks located at two consecutive frames be the candidates of
current to-be-interpolated block based on the motion trajectory of fine-grained
MVs in both forward and backward directions. MBC resolves the problems in
unilateral MVs, such as motion holes and motion block overlapped, by referencing
neighboring block candidates. Subsequently, Motion Compensated Interpolation
(MCI) performs pixel-wise filter among block candidates to fill out the to-be-
interpolated frame.

We span design space from three perspectives, including degree of parallelism at
thread-level, amount of data transfer, and storage size by varying data granularity.
To explore design space, we establish the DFG to model MC-FURC. Take CME as
an example, its DFG is illustrated in Fig. 14a. Every vertex is one task that computes
ME of one coarse-grain block and edges denote the referenced spatial neighboring
MVs.

Low Frame
Rate Video

Coarse-grainedCoarse-grained
Motion Vectors

Coarse Motion
Estimation

Refine Motion
Estimation

Multiple
Block Candidates

Derivation

Motion
Compensated
Interpolation

Doubled Frame
Rate Video

Fine-grained
Motion Vectors

Block
Candiates

Y

Y, Cb, Cr

Fig. 13 Block diagram of MC-FRUC system

System-on-Chip Architectures for Data Analytics 567

0

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

Level of data
dependency

a b

Fig. 14 DFG of CME and level of dependency of each vertex

We could apply the methodology developed by quantifying intrinsic parallelism
using linear algebra for AAC [19] to quantify degree of parallelism at multi-grain
granularity according to various level of data dependency. When data granularity is
larger than one task, it is hard to exploit the degree of parallelism due to the fact all
tasks are connected sequentially; in contrast, when we narrow down data granularity
into one task, the parallelization possibility of CME is increased. In Fig. 14b, level
of data dependencies are listed at each vertex and the dash lines split DFG according
to level of data dependency; then, vertices in identical level of data dependency are
independent. Hence, the degree of parallelism can be systematically quantified via
dependency matrix of DFG. Consequently, the maximum degree of parallelism of
CME is dynamic according to level of data dependency. In the beginning, degree of
parallelism is 1 and then incremented to the bound of available processors, i.e., six in
this case study. On the other hand, RME, MBC derivation, and MCI are also applied
the same approach to exploit the degree of parallelism to maximize the performance
on thread-level. We also use SIMD to enhance performance at data-level; however,
we only apply SIMD for partial operations, such as similarity measurement in CME
and RME or coarse-grain MVs refinement in RME, trajectory tracking for multiple
blocks in MBC derivation, and multiple interpolations in MCI, due to the fact that
we focus on thread-level parallelization in this subsection.

To reduce the data transaction between storages, we utilize the data flow model
and linear algebra method of data transfer analysis in AAC on the transfer between
local storage and external storage. We expand DFG over time to explore the data
reusability; and then indicate that the data would be reused for previous Data
Granularity (DG) and current DG. As a result, we could systematically determine
the suitable DG with highest data reusability; then, we select this data granularity
for our architecture. Although the number of data reuse is deterministic in this
example due to the regular DFG of MC-FRUC; however, the data flow model
and linear algebra method in AAC could also dynamically determine the ratio of
data reuse when data flow of targeted algorithm is irregular or dynamic since the
data flow model in AAC just depends on DFG. Take MBC derivation and MCI as
an example, MBC derivation uses fine-grained MVs to derive MBC according to

568 G. G. Lee et al.

motion trajectory for MCI. Hence, we investigate the DFG of MBC derivation for
computing consecutive DGs, DGN−1 and DGN , in Fig. 15 and the weights in DFG
denotes the ratio of data size with respect to the maximum one. From the figure,
a part of fine-grained MVs and reference pixels would be used for both DGN−1
and DGN ; that is, by using the proposed method, we could indicate how many data
could be reused under the size of current DG and which data would be reused,
then these data would be kept to avoid unnecessary data transaction from external
storage. Then, dependency matrix of the DFG composing of DGN−1 and DGN is
built to systematically achieve smaller data transfer rate; in the implementation, we
encapsulate 16× 16 pixels as one vertex and 16 fine-grained MVs as one vertex in
DFG to avoid huge dependency matrix. We utilize the proposed method for CME,
RME, MBC derivation, and MCI, respectively, to significantly reduce data transfer
rate with acceptable storage requirement.

3.2 Reconfigurable Interpolation

Figure 16 shows the block diagram of our reconfigurable interpolation architecture.
The architecture is designed for the interpolation of one 4 × 4 block in MPEG-
2, MPEG-4, and AVC/H.264. According to the macroblock partition information
and motion vector for the current 4 × 4 block, the address generator determines
the address(es) of the memory block(s) each reference row occupies in the cache
memory. Let the memory reference row refer to the memory block(s) containing one
reference row in the cache memory. The data transporter then loads each memory
reference row from the cache memory to the internal memory. After loading all
memory reference rows for the current 4 × 4 block, the data transporter transmits

16 Block candidates16 Fine-grained MVs 16×16 Reference pixels 16×16 Interpolated pixels

Reusable data
… …

MBC derivation
(DGN-1)

MBC derivation
(DGN)

… …

MCI
(DGN-1)

MCI
(DGN)

Reusable data
…

… …

0.25

1 1 1 1 11 1 1 1 1

1 1 1 1 1 1 1 1 1 1

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.250.25

0.25 0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25 0.25 0.250.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25 0.25

0.25

Fig. 15 DFG of MBC derivation for computing DGN−1 and DGN

System-on-Chip Architectures for Data Analytics 569

Macroblock partition
information

Memory 0 Memory 1

Cache memory

Controller

Interpolator

Interpolated pixel(s)

Data feeder

Motion
vector

Address
generator

Data
transporter

Internal
memory

Fig. 16 Block diagram of reconfigurable interpolation architecture

each memory reference row from the internal memory to the data feeder, and in
the same time loads each memory reference row for the next 4 × 4 block from
the cache memory to the internal memory. The data feeder extracts each reference
row from the input memory reference row. It then supplies the required integer-
pixel samples to the interpolator properly so that the interpolator can perform
subpixel sample interpolation for the target video standard. The controller controls
the internal memory, the data transporter, the data feeder, and the interpolator for
cooperation between them.

For the P-picture, the internal memory must store all memory reference rows for
two 4× 4 blocks, which are the current and the next 4× 4 blocks. For the B picture,
the required internal memory space is doubled. In our target video standards, the
luminance and chrominance interpolations of one 4× 4 block needs at most 11 and
3 memory reference row, respectively. Each memory reference row contains at most
two 8-byte memory blocks. Therefore, the internal memory size is 2 × 2 × (11 +
3) × 2 × 8 = 896 bytes. To support reading data for the current 4 × 4 block and
writing data for the next 4× 4 block simultaneously, the dual port memory is used
for the internal memory.

The data feeder uses one register array to provide the required integer-pixel
samples to the interpolator. The register array is divided into two parts. One
is for luminance interpolation in MPEG-4 and AVC/H.264. The other is for
luminance interpolation in MPEG-2 and chrominance interpolation. For luminance
interpolation in MPEG-4 and AVC/H.264, the data feeder supplies integer-pixel

570 G. G. Lee et al.

samples of one reference row in each cycle. One reference row in MPEG-4 and
AVC/H.264 contains 11 and 9 samples, respectively. Thus, 11 bytes are used for
the first part of the register array. For luminance interpolation in MPEG-2 and
chrominance interpolation, any subpixel sample can be derived from 4 integer-pixel
samples. The data feeder provides individual integer-pixel samples for each of 4
subpixel samples in each cycle. Thus, 16 bytes are used for the second part of the
register array.

Figure 17 shows the interpolator design. The interpolator is composed of four
interpolation units, one averaging and rounding (AR) unit, one dedicated buffer,
and one averaging or bypassing (AB) unit. The four interpolation units derive four
interpolated pixel samples simultaneously, similar to the design in [4]. The AR
unit can perform the required averaging, rounding, or bypassing function for the
interpolation. The dedicated buffer stores the interpolated pixel samples temporarily.
The AB unit then can average or bypass the stored data to obtain the interpolated
pixel samples for the B-picture or P-picture. Each interpolation unit has the same
structure that mainly contains three 1-D reconfigurable FIR filter (RHFIR, RVFIR
and RCFIR), one embedded averaging and rounding (EAR) unit, one 8-byte register
array providing the input of RVFIR, and one 6-byte register array providing the
input of RCFIR. Each reconfigurable FIR filter can be adapted to the target video
standard. The pipeline register is used in the reconfigurable FIR filter. The EAR
unit receives the integer-pixel samples from data feeder and the output of RHVIR.
It then performs averaging and rounding operation for luminance interpolation in
MPEG-4, and bypassing operation for other interpolations. Each interpolation unit
receives the required integer-pixel samples from the data feeder. The interpolation
process for each interpolation unit is similar.

The luminance or chrominance interpolation in MPEG-2, or chrominance inter-
polation in MPEG-4 use RHFIR for half-pixel sample interpolation, as shown
in Fig. 18. The process is similar to that for the chrominance interpolation in
AVC/H.264 with only RHFIR used. Both the Cr and Cb interpolated pixel samples
are also derived at the same time.

According to commonality analysis in AAC, the reconfigurable FIR filter shown
in Fig. 19 is designed for RHFIR, RVFIR, and FCFIR. The design only utilizes
shifters and adders to realize the filter coefficients. The multiplexers are used to
select the data path for each interpolation filter. In addition, the pipeline registers are
added to reduce the critical path delay and achieve the performance for the design
specification.

Figure 20 illustrates the configuration of the reconfigurable FIR filter for each
interpolation filter. In Fig. 20a, b, the 8-tap and 6-tap filters support the derivation
of one subpixel sample in MPEG-4 and AVC/H.264. In Fig. 20c, the filters with
coefficients (1, 1) and (1, 1, 1, 1) support the derivation of 1 integer-pixel and
3 subpixel samples in MPEG-2 or MPEG-4, or the derivation of 4 neighboring
samples for each recursive stage in AVC/H.264.

System-on-Chip Architectures for Data Analytics 571

Interpolation
Unit 2

Interpolation
Unit 1

Interpolation
Unit 3

Interpolation
Unit 4

Feeder for MPEG-4

Feeder for H.264

RHFIR

R
V

F
IR R

C
F

IR
EAR unit

Averaging and rounding unit

Averaging or bypassing unit

Interpolated pixel(s)

Dedicated
buffer

Fig. 17 The interpolator design

572 G. G. Lee et al.

Fig. 18 Data path for
luminance and chrominance
interpolations in MPEG-2,
chrominance interpolation in
MPEG-4, and chrominance
interpolation in AVC/H.264

RHFIR

RVFIR

Output for chorma
interpolation in H.264

Output for luma and chorma
interpolation in MPEG-2, and

chorma interpolation in MPEG-4

RCFIR

x1 x0

x1

+

<<1 <<2

<<2

<<2 <<4<<1

<<1

Pipeline registers

(1) Input for the filter with coefficients
 (-8, 24, -48, 160, 160, -48, 24, -8)
(2) Input for the filter with coefficients
 (1, -5, 20, 20, -5, 1)
(3) Input for the filter with cofficients
 (1, 1) and (1, 1, 1, 1)

<<1

<<3

+

(+)
+

++

+

+

+

(-)

(-)

+ +

x1
x6x7

x5
x5x0

x0

x3

0
x3

x3
x4

x4

x2 (3)
(2)
(1)

x2
x2

Fig. 19 Reconfigurable FIR filter structure

System-on-Chip Architectures for Data Analytics 573

x1x6x0 x7

Pipeline registers

Pipeline registers

result result

result

Pipeline registers

<<2 <<2 <<2 <<2<<4 <<4<<1

<<1

<<2

<<1

<<1

<<3

+

+

+

+ +

++ +

+

+

+ +

+

+

+

++

+ +

+

++

(+)

(+)

(-)

(-) (-)

x3 x4 x0 x1 x4 x20 x3x5x2 x5

x3x0x1 x2

a b

c

Fig. 20 Configuration of reconfigurable FIR filter for each interpolation filter. (a) The case for the
filter with coefficients (8, 24, 48, 160, 160, 48, 24, 8). (b) The case for the filter with coefficients
(1, 5, 20, 20, 5, 1). (c) The case for the filters with coefficients (1, 1) and (1, 1, 1, 1)

574 G. G. Lee et al.

References

1. Amdahl, G.M.: Validity of single-processor approach to achieving large-scale computing
capability. In: Proceedings of AFIPS Conference, pp. 483–485. Atlantic, New Jersey (1967)

2. Booth, A.D.: Signed binary multiplication technique. Quarterly Journal of Mechanics and
Applied Mathematics 4(2), 236–240 (1951)

3. Carron, L., Rutzig, M.B.: Multi-core system on chip. Handbook of Signal Processing Systems,
1st edition., Springer pp. 485–514 (2010)

4. Chen, J.W., Lin, C.C., Guo, J.I., Wang, J.S.: Low Complexity Architecture Design of
AVC/H.264 Predictive Pixel Compensator for HDTV Application. In: Proc. ICASSP2006,
vol. 3, pp. III–932–III–935 (2006)

5. Chrysafis, C., Ortega, A.: Line-based, reduced memory, wavelet image compression. IEEE
Trans. on Image Processing 9(3), 378–389 (2000)

6. Chung, F.R.K.: Spectral graph theory. Regional Conferences Series in Mathematics (92) (1997)
7. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embedded

systems: Formal models, validation and synthesis. In: Proceedings of the IEEE, vol. 85, pp.
366–390 (1997)

8. Escuder, V., Duran, R., Rico, R.: Quantifying ILP by means of graph theory. In: Proceedings
of the 2nd International Conference on Performance Evaluation Methodologies and Tools, pp.
317–322. San Francisco, California (2007)

9. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovakia Mathematical Journal 23(2),
298–305 (1973)

10. Ha, S., Oh, H.: Decidable dataflow models for signal processing: synchronous dataflow and
its extension. Handbook of Signal Processing Systems, 2nd edition., Springer pp. 1083–1110
(2013)

11. Horowitz, M., John, A., Kossentini, F., Hallapuro, A.: H.264/AVC baseline profile decoder
complexity analysis. IEEE Transactions on Circuits and Systems for Video Technology 13(7),
704–716 (2003)

12. Hu, A., Kung, S.Y.: Systolic Arrays. Handbook of Signal Processing Systems, 2nd edition.,
Springer pp. 1111–1144 (2013)

13. Huang, C.T., Tseng, P.C., Chen, L.G.: Analysis and VLSI architecture for 1-D and 2-D discrete
wavelet transform. IEEE Trans. on Signal Processing. 53(4), 1575–1586 (2005)

14. Janneck, J.W., Miller, D., Parlour, D.B.: Profiling dataflow programs. In: Proceedings of IEEE
ICME 2008, pp. 1065–1068 (2008)

15. Jiang, W., Ortega, A.: Lifting factorization-based discrete wavelet transform architecture
design. IEEE Trans. on Circuits and Systems for Video Technology 11(5), 651–657 (2001)

16. Kung, S.Y.: VLSI Array Processor. Upper Saddle River, New Jersey: Prentice-Hall (1988)
17. Lee, G.G., Chen, C.F., Hsiao, C.J., Wu, J.C.: Bi-Directional Trajectory Tracking With Variable

Block-Size Motion Estimation for Frame Rate Up-Convertor. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 4, 29–42 (2014)

18. Lee, G.G., Chen, Y.K., Mattavelli, M., Jang, E.S.: Algorithm/Architecture Co-Exploration of
Visual Computing: Overview and Future Perspectives. IEEE Transactions on Circuits and
Systems for Video Technology 19(11), 1576–1587 (2009)

19. Lee, G.G., Lin, H.Y., Chen, C.F., Huang, T.Y.: Quantifying Intrinsic Parallelism Using
Linear Algebra for Algorithm/Architecture Coexploration. IEEE Transactions on Parallel and
Distributed Systems 23, 944–957 (2012)

20. Lin, H.Y., Lee, G.G.: Quantifying Intrinsic parallelism via Eigen-decomposition of dataflow
graphs for algorithm/architecture co-exploration. In: Proceedings of IEEE SiPS 2010 (2010)

21. Oppenheim, A.V., Schaefer, R.W.: Discrete-Time Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall (1989)

22. Parhi, K., Chen, Y.: Signal Flow Graphs and Data Flow Graphs. Handbook of Signal Processing
Systems, 2nd edition., Springer pp. 1277–1302 (2013)

System-on-Chip Architectures for Data Analytics 575

23. Parhi, K.K.: VLSI Digital Signal Processing Systems: Design and Implementation. New York:
Wiley (1999)

24. Prihozhy, A., Mattavelli, M., Mlynek, D.: Evaluation of the parallelization potential for
efficient multimedia implementations: dynamic evaluation of algorithm critical path. IEEE
Transactions on Circuits and Systems for Video Technology 15(5), 593–608 (2005)

25. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide,
a language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. In: Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation. Seattle, Washington (2013)

26. Ravasi, M., Mattavelli, M.: High-level algorithmic complexity evaluation for system design.
Journal of Systems Architecture 48/1315, 403–427 (2003)

27. Ravasi, M., Mattavelli, M.: High-abstraction level complexity analysis and memory architec-
ture simulations of multimedia algorithms. IEEE Transactions on Circuits and Systems for
Video Technology 15(5), 673–684 (2005)

28. Sutter, B.D., Praveen, P., Lambrechts, A.: Coarse-grain reconfigurable array architectures.
Handbook of Signal Processing Systems, 2nd edition., Springer pp. 553–592 (2013)

29. Takala, J.: General purpose DSP processors. Handbook of Signal Processing Systems, 2nd
edition., Springer pp. 779–802 (2013)

30. Yamauchi, H., et al.: Image processor capable of block-noise-free JPEG2000 compression with
30 frames/s for digital camera applications. In: Proc. IEEE Int. Solid-State Circuits Conf., pp.
46–47 (2003)

Architectures for Stereo Vision

Christian Banz, Nicolai Behmann, Holger Blume, and Peter Pirsch

Abstract Stereo vision is an elementary problem for many computer vision
tasks. It has been widely studied under the following two aspects, increasing the
quality of the results and accelerating the computational processes. This chapter
provides theoretic background on stereo vision systems and discusses architectures
and implementations for real-time applications. In particular, the computationally
intensive part, the stereo matching, is discussed using one of the leading algorithms,
the semi-global matching (SGM) as an example. For this algorithm two implemen-
tations are presented in detail on two of the most relevant platforms for real-time
image processing today: Field Programmable Gate Arrays (FPGAs) and Graphics
Processing Units (GPUs). Thus, the major differences in designing parallelization
techniques for extremely different image processing platforms can be illustrated.

1 Introduction

The field of stereo vision is highly inspired by the capabilities of the human imaging
system. It encompasses all aspects of computer vision processing data from stereo
image pairs in one way or another. The goal is to estimate 3D information about
the observed scene, which can be used for a number of applications such as e.g.
distance measurement, 3D reconstruction, and arbitrary view interpolation. Crucial
for stereo vision is the task of stereo matching which identifies the projection points
of the same 3D real world point in both images of the stereo pair. The location
difference (the disparity) in conjunction with a known stereo camera calibration
allows to infer the depth information. Figure 1 gives an example.

The importance of stereo matching has been underlined by Szeliski and
Scharstein stating that it is “one of the most widely studied and fundamental
problems of computer vision” [93]. Active research in this field has resulted in a

C. Banz · N. Behmann · H. Blume (�) · P. Pirsch
Institute of Microelectronic Systems, Leibniz University of Hannover, Hannover, Germany
e-mail: banz@ims.uni-hannover.de; behmann@ims.uni-hannover.de;
blume@ims.uni-hannover.de; pirsch@ims.uni-hannover.de

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_16

577

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_16&domain=pdf
mailto:banz@ims.uni-hannover.de
mailto:behmann@ims.uni-hannover.de
blume@ims.uni-hannover.de
mailto:pirsch@ims.uni-hannover.de
https://doi.org/10.1007/978-3-319-91734-4_16

578 C. Banz et al.

Fig. 1 Results for the stereo correspondence problem: (a) Left rectified input image (raw input
images taken from [21]), (b) disparity map after left/right check where white denotes disparities
marked as invalid, (c) false color representation of the disparity map, (d) untextured 3D view
generated from the disparity map of (b)

wide range of disparity estimation algorithms using radically different approaches.
A general taxonomy has been introduced [91] including a comprehensive survey,
that resulted in the on-going online Middlebury benchmark [90], which includes
ground truth disparities from a structured light system. Further surveys evaluated
different algorithms and variations thereof [42, 96]. The KITTI stereo benchmark
[27, 69, 70] focuses on automotive scenarios, generated from a front facing
setup and semi automated ground truth disparities. Synthetically rendered stereo
image sequences and reference disparity maps lower the effort of labeling, while
abstracting environmental effects on real cameras [84, 103]. Major focus was the
quality of the stereo matching in terms of accuracy, density of the disparity map,
and robustness.

However, advances in robustness and accuracy were accompanied with signif-
icant increases in complexity and computational requirements making the use of
specialized implementations for many of today’s real-time applications an absolute
necessity. Surveys on efficient implementations for selected types of algorithms
have been conducted [31, 64, 74, 96] and many more specialized implementations

Architectures for Stereo Vision 579

and architectures for individual algorithms and applications have been proposed.
Considering all aspects (algorithmic performance, implementation performance,
architectures) a huge design space is unfolded. For embedded systems the choice is
invariably on low-power solutions, e.g. based on application-specific architectures
implemented on FPGAs or ASICs. However, there has been a rise recently in the
use of GPUs for high performance computing, offering a cost-efficient alternative
for stationary systems where power consumption is not an issue.

This chapter addresses high performance disparity estimation considering both,
algorithmic and implementation performance. The chapter is structured into an
algorithmic and an architectural section; these being Sects. 2 and 3. An introduction
to the fundamental principles of the stereo image matching (epipolar geometry)
and a minimal practical stereo vision system is given in Sect. 2.1. The algorithmic
and architecture sections both give a comprehensive overview of recent works. It
is followed by a detailed discussion of the semi-global matching algorithm (SGM)
[40] (Sect. 2.3) and two exemplary implementations on FPGA (Sect. 3.7) and GPU
(Sect. 3.6), respectively.

2 Algorithms

A minimal system for disparity estimation from a real camera setup consists
of two processing steps: The first step is usually camera lens undistortion and
rectification of non-ideal stereo camera setup (Sect. 2.1) while the second step is the
actual stereo matching (Sect. 2.2). All other image preprocessing steps (e.g. noise
reduction, equalization) and disparity map post-processing steps (e.g. whole filling,
interpolation of pixel with missing stereo information) are optional.

2.1 Epipolar Geometry and Rectification

The objective is to find corresponding pixels in the two images from a stereo camera
setup. Due to the underlying epipolar geometry [37, 93] of a stereo camera setup,
the search space for corresponding pixels is one-dimensional. As shown in Fig. 2a,
for a given pixel in the base image all potential correspondences project onto the
epipolar line (ebm) in the match image and vice versa. Strictly speaking the possible
projections are bound by the epipole and the viewing rays for a real-world point at
infinity.

For efficient correspondence search implementations a preprocessing step, the
rectification, is employed. Both images are warped such that epipolar lines in both
images are parallel to the scanlines and are row-aligned, i.e. corresponding pixels
are in the same horizontal line [37, 117]. Thus, efficient memory access patterns and
parallelism over independent scanlines can be obtained. After rectification, the focal
axis are parallel to each other and perpendicular to the line joining the two camera
centers (baseline) and the disparity for points at infinity is 0.

580 C. Banz et al.

c2

epipolar
line

a b

e2

zn

z1

p

e1
c1

q

epipole

rectification

epipolar
line

xl
xr

baseline T

focal
length f

z

Unrectified stereo camera setup Disparity in rectified setup

Fig. 2 Epipolar geometry: in (a) an unrectified setup and in (b) a rectified setup is shown. The
rectification process in (b) to achieve row-aligned search space is illustrated only for the left
projection plane

The rectified stereo setup is shown in Fig. 2b and the disparity is a purely
horizontal offset d = (xl − xr) with the unit [pixel]. With the rectified focal length
f [pixel], the baseline T [m] of the camera pair, the distance z [m] between the
baseline and the 3D point can be calculated as

z = f T

(xl − xr)
= f T

d
. (1)

This is also referred to as standard rectified geometry [93]. Thus, extracting depth
information from a stereo camera setup becomes the estimation of the disparity map
d(x, y).

In addition to a non-ideal camera setup, stereo vision systems have to handle
camera-inflicted image distortions, of which the most common are radial lens dis-
tortion, sensor tilting and offset from the focal axis [12]. These must be compensated
before rectification. However, when applying undistortion and rectification to a
sequence of input images both steps can be combined. Reverse mapping assigns
every pixel in the undistorted and rectified image a sub-pixel accurate origin in the
input image. The rectified pixels are obtained using any desired pixel interpolation
method. The bilinear interpolation for example, exhibits a reasonable trade-off
between image quality and hardware implementation costs. Alternative interpola-
tion methods are spline interpolation, which has higher silicon area requirements,
and nearest-neighbor, which does not provide the required resolution for disparity
estimation. Intermediate results from the processing steps are shown in Fig. 3.

The displacement vectors for undistortion and rectification are calculated using
the intrinsic and extrinsic matrices, the tangential and the radial distortion parame-
ters. These can be obtained through a separate camera calibration step (e.g. [118])
using a calibration pattern, such as a chessboard pattern employed in OpenCV [12].

Architectures for Stereo Vision 581

Fig. 3 Image results after undistortion and rectification: (a) input images showing that corre-
spondences are not aligned (circle and square). (b) undistorted images showing the epipolar lines
(dashed lines) for two exemplary points (circles). Here, the effect is minor but the epipolar lines
are clearly not aligned to the scanlines (i.e. horizontal pixel rows, white). (c) final, undistorted,
rectified images with row aligned epipolar lines

Alternatively, or additionally, camera self-calibration from scene structure can be
employed for particular camera parameters. In e.g. cars, camera self-calibration or
at least updating of the extrinsic parameters from scene structure is mandatory.

582 C. Banz et al.

2.2 Stereo Correspondence

The origins of classic stereo correspondence were sparse, feature-based methods
processing only a set of potentially highly discriminative image points. Today, most
algorithms are dense methods, trying to infer a complete disparity map even for
texture-less regions. Dense methods are typically classified into local and global
approaches. However, for both classes of dense methods a common taxonomy
and categorization has been introduced in [91]. Generally, a disparity estimation
algorithm consists of the four processing steps:

1. matching cost computation,
2. cost (support) aggregation,
3. disparity computation and optimization, and
4. disparity refinement (or post processing).

The introduction of the census transform in 1994 [111] enables fast dense
disparity estimation. Dynamic programming paradigms [9] and the usage of the
graphcut algorithm [85] for stereo-based depth estimation further improved the
accuracy, by optimizing individual of the before mentioned processing steps. Using
path-aggregation for smoothing in the disparity error function, the semi-global
matching algorithm by Hirschmüller marks a milestone in efficient and high-quality
stereo disparity estimation [39]. In [116] a local shape-adaptive cost function is
proposed to optimize the disparity map quality.

Using superpixels [108] for local texture-sensitive disparity smoothing, or prior
knowledge [33], the quality of disparity estimation can be further improved. The rise
of deep learning has, as in many other fields, opened a new approach to solving the
stereo correspondence problem. In these approaches, some or all of the processing
steps are computed using trained neural networks [54, 115].

The classic methods and the deep learning methods are discussed in Sects. 2.2.1
and 2.2.2, respectively. Figure 4 shows the timeline of research on stereo processing
highlighting the introduction of major new concepts.

2020201020001990

1994
Census

[111]

1996
Dynamic Programming
[9]

1998
Graphcut
[85]

2005
SGM
[39]

2009
Cost Aggregation
[116]

2016
Displets
[33]

2015
MC-CNN
[115]

2017
GC-Net
[54]

2013
StereoSLIC

[108]

Fig. 4 Timeline of the stereo vision related algorithmic developments

Architectures for Stereo Vision 583

2.2.1 Classical Disparity Estimation

It is of crucial importance to distinguish between the matching costs, which is the
initial similarity measure between two pixels in the base and match image (or left
and right image, respectively), and the aggregation method that uses these costs.
The results of the matching cost computation are stored in the disparity space
image C(x, y, d). Cost aggregation of local (or area based) methods is performed
on the information based in a local aggregation region (support region) from the
matching costs C(x, y, d). Global methods on the other hand perform one or more
optimization steps on the matching costs often enforcing some kind of smoothness
criterion. Depending on the algorithm, steps have varying importance and some
might even be omitted. An example is given in Sect. 2.3.

For matching cost computation, a number of different window-based similarity
measures can be employed. With rectified input images, the similarity of potentially
corresponding pixels must be computed at location p = [x, y]T in the left image
and q = [x − d, y]T in the right image. Initially often used and inspired by
other areas of video processing are the sum of squared intensity differences (SSD),
the sum of absolute differences (SAD), the normalized cross correlation (NCC)
and their respective zero mean variations. More recently, measures specifically
for stereo matching have been proposed. For example, rank and census transform
[111] are non-parametric transforms, and are thus robust to a certain amount of
intensity differences. A vast number of other measures based on gradients, phase
correlations, ordinal measures, and dense feature descriptors exist. Entropy based
measures (e.g. mutual information [40, 55]) have also been proposed. For those
measures that compare absolute difference values, the approach of Birchfeld and
Tomasi (BT) [10] can be used to include sampling insensitivity. For a more complete
list of similarity measures refer to [93]. Detailed studies on the performance of the
similarity measures in conjunction with different aggregation methods have been
conducted [42, 91, 100].

Local methods focus on the cost aggregation step (step 2). A comprehensive
comparison of aggregation methods can be found in [96] and of selected methods
for GPU implementation in [31]. Support regions can be two- or three-dimensional
windows from the disparity space with fixed or adaptive window sizes, shapes,
anchor points or weights. Adaptation for example may be performed by a full
search through multiple windows or from a number of cues, e.g. constant disparity
constraints and color-based segmentation. A more complete list may also be found
in [93]. After cost aggregation, the disparity computation (step 3) follows, of which
the most basic form is selecting the disparity with minimal aggregated cost value for
each pixel. Local methods are often well suited for hardware implementation due to
the implicit parallelism and local data dependencies.

With global methods, the cost aggregation (step 2) is often omitted because
the global smoothness constraints, which are enforced by the optimization process
during the disparity computation (step 3), perform similar functions [93]. Global
methods are often formulated within an energy-minimization framework:

E(D) = Ed(D)+ λEs(D). (2)

584 C. Banz et al.

The objective is to find a solution d that minimizes the total energy E for a disparity
map D, where Ed is the data term representing how well the solution fits to the input
image and Es represents the smoothness constraints made by the algorithm. These
regularization or variational formulations are also employed in many other areas of
image processing. In stereo processing, it is important to formulate Es(d) to allow
for discontinuity preservation in the disparity map. Algorithms to find the solution
to (2) include belief propagation, graph cuts, and total variation among others
[93]. Unfortunately, the problem is NP-hard for many discontinuity preserving if
Es is formulated two-dimensionally [11]. Reducing Es to one-dimension along
the scanlines, allows for independent, parallel scanline optimization but suffers
from streaking (inconsistency between scanlines). Other global methods are based
on dynamic programming, which performs global optimization for independent
scanlines. Dynamic programming also suffers from streaking, but several works
have addressed this problem, e.g. [88].

For each approach several algorithms have been proposed and minute details
influence the performance. As mentioned in Sect. 1, comparative studies have been
performed (e.g. [31, 42, 91]) and popular benchmarks already exist [69, 70, 90,
103]. For a stereo vision system with high performance in terms of robustness,
accuracy, and processing speed, several aspects have to be weighted against each
other. While some local methods are more efficiently implementable, they can be
challenged by areas with low or repetitive textures due to a high level of ambiguity
[42]. Iterative, global minimization methods are often computationally intensive.
However, Tombari et al. [96] express, that with sophisticated cost aggregation some
local methods yield performance comparable with many global methods. The semi-
global optimization strategy [40] is a solution resident in between by accumulating
optimization results from multiple independent one-dimensional directions for each
pixel. It produces very high quality results, although not the best in the Middlebury
benchmark [90]. Furthermore, it is robust and it can be implemented efficiently for a
global method. For robustness of the entire disparity estimation a suitable similarity
measure must be chosen. Among the more robust measures in [41, 42] were census,
rank, ordinal measures, and hierarchical mutual information.

Disparity refinement (step 4) often includes sub-pixel refinement, confidence or
integrity checks, and interpolation measures. Since most stereo methods compute
disparities at integer level, a sub-pixel refinement is necessary for many applications.
An easy and computationally efficient way is to fit a curve through the discrete
disparity space around the selected disparity. Interpolation functions are investigated
in [35]. Several issues arising are discussed in [94]. An often computationally
prohibitively expensive alternative is to start the computation with a disparity space
already discretized to sub-pixel accuracy.

Several algorithms use the observation that depth discontinuities on object
borders usually exhibit gray scale differences. This information is used by over-
segmenting the grey scale image into superpixels. In [116], the superpixels are
implicitly build in the cost aggregation step by adapting the size and shape of
the aggregation window by analyzing the input image. Another segmentation
approach is presented in [108], in which a sophisticated post-processing performs

Architectures for Stereo Vision 585

Fig. 5 Oversegmentation of the camera image, representing similar textured regions within one
superpixel (orange bounds)

a segmentation of the image jointly on input image and disparity information.
Each segment is then fitted with planar surface in 3D space observing consistency
constraints building a refined disparity map. This method is extended in [33] by
fitting 3D shape information using deep learning in the disparity map optimizing
textureless or reflective areas. Figure 5 illustrates this method and oversegmentation
on the camera input image.

Foreground objects in the scene occlude different parts of the background
when seen from the two camera perspectives. Consequently disparities cannot be
computed for these occluded areas of the image due to missing stereo correspon-
dences. This is visible in Fig. 1 by the halos around the foreground objects. It
is often desirable to exclude these areas and areas with low confidence from the
disparity map and optionally process them with sophisticated hole filling algorithms.
Identification of these areas is performed with a left/right check, where the disparity
maps for the left and right perspective are computed and only matching depth
information from both perspectives to a 3D world point is allowed. With respect to
the camera-to-camera projection in a rectified stereo pair the constraint for a valid
disparity in the base image can be formulated as

Db,check (x, y) =
{
Db if |Db (x, y)−Dm (emb (x,Db(x, y)) , y)| ≤ δ

invalid otherwise
,

(3)
where Db and Dm are the disparity maps from the base and match perspective,
respectively.

Further post-processing of the disparity map can be performed using basic
median filtering to remove single outliers, peak removal and sophisticated whole
filling algorithms, such as surface fitting. However, without a dense, highly accurate
initial disparity map, post-processing will not provide reliable disparities.

586 C. Banz et al.

2.2.2 Disparity Estimation Using Deep-Learning

Recently, deep learning techniques are used to train the networks for the disparity
estimation. In [115], a siamese network architecture is used to compute the initial
matching costs. The siamese network architecture uses shared weights across two
sub-networks, one for the left and right image patch, followed by combination to
calculate the similarity measurements, i.e. matching costs. The combination is either
a fully connected layer for higher accuracy or a dot-product layer for computation
speed. In [63], the concept of using a dot-product layer is further expanded upon.
In both methods, cost aggregation and disparity selection are then performed with
classic methods to compute the disparity map.

In contrast to these approaches, end-to-end learning approaches aim to learn
the entire processing chain from input images to final disparity map generation.
A end-to-end network consisting of a contractive part and an expanding part with
long-range links between them is designed in [67]. The most recent end-to-end
approach in [54] designs a network architecture guided by the classic steps of
disparity estimation and their specific properties, currently giving best results in
the KITTI stereo benchmark.

2.3 Algorithm Example: Semi-global Matching

As a specific example disparity estimation based on the highly relevant and
top-performing combination of rank transform [111] and semi-global matching
algorithm (SGM) [40] will be used to illustrate the matter of the previous sections.
Simultaneously, SGM will be used as a case study for implementations on FPGA
and GPU, resulting in a reduction of the execution time. This pushes the SGM algo-
rithm in a quality-runtime design space exploration towards a pareto optimal point.

The matching costs C(x, y, d) (step 1) are calculated from the rank transform of
the base and match image Rb and Rm with absolute difference comparison:

C (p, d) = ∣∣Rb

(
px, py

)− Rm

(
px − d, py

)∣∣ . (4)

It is p = [px, py]T the pixel location in the left image. The rank transform is
defined as the number of pixels p′ in a square M × M neighborhood A(p) of the
center pixel p with a luminous intensity I less than I (p)

R(p) = ∥∥{p′ ∈ A (p) | I (p′) < I (p)
}∥∥ . (5)

These initial pixel-wise calculated matching costs (i.e. locally calculated) yield
non-unique or wrong correspondences due to low texture and ambiguity. Therefore,
semi-global matching introduces global consistency constraints by aggregating
matching costs along several independent, one-dimensional paths from different
cardinal directions as shown in Fig. 6. A path r is formulated recursively by the

Architectures for Stereo Vision 587

Fig. 6 The path cost
aggregation is performed
from eight cardinal directions
to every pixel

45°

0°

90° 135°

180°

225°
270°315°

x

y p

definition of the path costs Lr(p, d), defined as:

Lr(p, d) = C(p, d)+min [Lr(p− r, d) ,

Lr(p− r, d − 1)+ P1,

Lr(p− r, d + 1)+ P1,

min
i

Lr (p− r, i)+ P2]−

min
l

Lr (p− r, l)

(6)

The first term, C(p, d), describes the initial matching costs. The second term adds
the minimal path costs of the previous pixel p−r including a penalty P1 for disparity
changes and P2 for disparity discontinuities, respectively. Discrimination of small
changes |�d| = 1 pixel [px] and discontinuities |�d| > 1 px allows for slanted and
curved surfaces on the one hand and preserves disparity discontinuities on the other.
The last term prevents constantly increasing path costs. For a detailed discussion
refer to [40]. P1 is an empirically determined constant. P2 can also be an empirically
determined constant or can be adapted to the image content. The selection of these
penalty functions is investigated in [5] in detail.

Path costs are calculated from several cardinal directions to each pixel, as shown
in Fig. 6, and are summed. The aggregated sum costs S are the sum of the path costs

S (p, d) =
∑

r

Lr(p, d). (7)

By (6) and (7) SGM aims to approximate the following global energy minimiza-
tion problem:

588 C. Banz et al.

E(D) =
∑

p

C(p, d)

︸ ︷︷ ︸
Ed (D)

+
∑

p

⎛
⎝∑

p′∈A
P1T
[∣∣Dp −Dp′

∣∣ = 1
]+∑

p′∈A
P2T
[∣∣Dp −Dp′

∣∣ > 1
]
⎞
⎠

︸ ︷︷ ︸
Es(D)

,

(8)
where Es contains the 2D smoothness constraints on the disparity map. For a deriva-
tion of (8) see [40]. The resulting method of approximation resembles a scanline
optimization approach but with excellent regard to interscanline consistencies.

Final disparity selection (step 3) is performed by a winner-takes-all (WTA)
approach. The disparity map Db(px, py) from the perspective of the base camera is
calculated by selecting the disparity with the minimal aggregated costs

min
d

S(px, py, d) (9)

for each pixel. For calculating the disparity map from the perspective of the match
camera Dm(qx, qy), the minimal aggregated costs along the corresponding epipolar
lines are selected:

min
d

S
(
qx + d, qy, d

)
. (10)

Alternatively, SGM can be applied again, but with the other image as the base image.
The effect of the path costs aggregation and the disparity selection is illustrated

in Fig. 7. The initial matching costs C(p, d) (dashed line) exhibit a high level of
ambiguity. Seven of the eight aggregated paths costs Lr(p, d) already show distinct
minima. The summed path costs S(p, d) (thick black line) clearly identify the
minimum at a disparity level of 32 resolving all ambiguities. However, the cost
difference for the positions 32 and 33 is minimal indicating that the correct position
is located at a subpixel precision.

Finally, left/right check according to (3) and post processing can be applied, e.g.
a median filter in its most basic form. An overview of the processing steps is given
in Fig. 8.

3 Architectures

The variety of architectures and implementations to compute the stereo correspon-
dence easily rivals the variety of the underlying stereo matching algorithms. Today
very efficient implementations for local and global stereo methods are available on
FPGAs, ASICs, GPUs, and DSPs. For real-time image throughput, local methods

Architectures for Stereo Vision 589

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140
co

st
s

Matching Costs
Path Costs 1
Path Costs 2
Path Costs 3
Path Costs 4

Path Costs 5
Path Costs 6
Path Costs 7
Path Costs 8
Sum Costs ÷ 6

Fig. 7 Effect of path cost aggregation: matching costs, aggregated path costs, and sum costs
(scaled by factor 1/6 for better presentation) for the pixel p = [183; 278] of the Teddy test image
[92] calculated with SGM

Matching Cost Calculation

Rank
transform

(1.5)

Rank
transform

(1.5)

Left/
Right
Check
(1.3)

Disparity
selection

left (1.11)
Median

filterΣ
(1.9)

Path cost
calculation
R × (1.8)

Matching
cost

computation
(1.4)

Semi-Global Matching

Rm(p)

Rb(p)

Dm(p)

Db(p)

Db,check(p)

D(p)

S(.,.)
Im(p)

Ib(p)

Disparity
selection

right(1.12)

Fig. 8 Processing steps for disparity estimation using rank transform, semi-global matching, and
optional median filter. Numbers in parenthesis refer to the respective equations and R denotes the
number of paths

have been and continue to be favored by many researchers because of their efficient
implementation possibilities. However, with advances in computational power,
many global methods are also implementable in real-time.

Early work includes a complete stereo vision system from 1996 featuring
rectification and stereo matching with an SSD variant on a custom hardware board
consisting of off-the-shelf components and a DSP array [52]. At 30 fps 200×200
images with 5−bit depth resolution could be computed. Other noteworthy early
implementations have been presented in 1993 using a DSP array [22] and in 1997
using a single DSP [56]. In [56], an early overview of implementations is also
provided. An FPGA array was used in 1997 to implement a census transform
stereo matching method [106]. All of these implementations directly compute the

590 C. Banz et al.

disparity information from the matching costs without cost aggregation. Early work
includes a complete stereo vision system from 1996 featuring rectification and
stereo matching with an SSD variant on a custom hardware board consisting of
off-the-shelf components and an DSP array [52]. At 30 fps 200×200 images with
5−bit depth resolution could be computed. Other noteworthy early implementations
have been presented in 1993 using a DSP array [22] and in 1997 using a single DSP
[56]. In [56], also an early overview of implementations is provided. An FPGA array
was used in 1997 to implement a census transform stereo matching method [106].
All of these implementations directly compute the disparity information from the
matching costs without cost aggregation.

The following three subsections aim to give an overview of the research
conducted on architectures and implementations for disparity estimation. Each
subsection focuses on one specific hardware platform. Some key throughput values
will be highlighted but without indication of algorithmic performance. A fair com-
parison must take into account architecture specific features, scalability, algorithmic
performance under challenging imaging conditions (which are not present in the
standard Middlebury data set), termination criterions on data dependent algorithms
(e.g. belief propagation), and varying post processing steps. Thus, a comparison
is an extremely complex task and beyond the scope of this chapter. The interested
reader may consult the references themselves or one of the comparison studies.

3.1 GPU-Based Implementations

Commodity graphics processing hardware, nowadays superseded by general-
purpose graphics processing units (GP-GPUs), have been used since the beginning
to outsource, firstly, part of the computation and then the entire stereo matching.
For the calculation of disparity maps with an image size of 200×200 pixels and 50
disparity levels (abbreviated 200×200×50), 106 ms were achieved using a variable
window SSD method on a NVIDIA GeForce4 in 2003 [86]. Early implementations
for scene reconstruction are [87] on a Nvidia GeForce4 and [112] on a ATI Radeon
9700Pro from 2002 and 2003, respectively.

For belief propagation (BP) an efficient technique has been proposed in [23]
and implemented for CPUs. It has been extended with occlusion handling and
adapted for GPU implementation [13]. The same technique is used in recent
implementations [46] and [107] reaching 2.75 s for a 640×480×33 image on Nvidia
GeForce GTX 280 and 93.98 s on an Intel Core 2 Duo (2.13 GHz). A fast converging
hierarchical belief propagation is proposed and implemented in [109] reaching
16 fps for 320×240×16 images. New message passing schemes for BP have been
applied in [59] for a GPU and VLSI implementation.

A dynamic programming solution with extensive use of MMX instructions on
the CPU using color based cost aggregation has been presented in [24]. In 2005, the
dynamic programming optimization step was still slower on the GPU than on the
CPU [32] due to the limitations of the general-purpose computation capabilities

Architectures for Stereo Vision 591

of the GPU, e.g. branching. Consequently, mixed CPU/GPU implementations
performing cost aggregation on the GPU and dynamic programming optimization
on the CPU have been presented [32, 60]. Scanline optimization in [113] also shows
mixed performance results when comparing GPU versus CPU implementations.
Recently, [51] presented a multi-resolution symmetric dynamic programming vari-
ant on a GTX 295 reaching 14 fps for 2048×2048×256 images. A total variation
algorithm with GPU implementation has been presented requiring between 15–60 s
per image [81].

Variants of local methods examining the different techniques of adaptive weights
or adaptive support regions have received much attention. Recent local approaches
are census based with basic box filter cost aggregation [102] and a local truncated
laplacian kernel approximation with adaptive cost aggregation [47]. Locally adap-
tive support regions have been used and speeded up with bitwise voting in [53].
Further work on local variants with adaptive cost aggregation methods includes
[48, 71], and [43]. Instead of adaptive support regions on the input images [66] uses
edge-preserving filtering on the matching costs. A comparison of 6 local methods in
terms of algorithmic and computational performance on GPUs has been conducted
[31]. A plane sweep algorithm with local depth connectivity in order to retain depth
discontinuities has been examined in [17].

For SGM various implementations have been presented on a GeForce 8800 Ultra
[20] (0.0057 fps at 640×480×128), a Quadro FX5600 [29], a GTX 280 without
[34] and with increased depth accuracy [75], and on a Tesla C2050 [4], which is
the highest performing implementation with 63 fps for 640×480×128 images. This
allows a very interesting retrospective on the evolution of GPUs. Especially some of
the new features of Nvidia’s compute capability 2.0 graphics cards allow radically
different parallelization schemes, which was exploited in [4]. We will have a detailed
look at this implementation in Sect. 3.6. Furthermore, a combination of adaptive
support regions with a reduced version of SGM is proposed in [68] reaching 10 fps
for 450×375×64 images.

3.2 Dedicated Architectures (FPGA and VLSI)

For dedicated architectures targeting FPGAs or ASICs, local methods are often
favored because of their potential for very small designs. This goes as far as
to omit the cost aggregation altogether despite the drawbacks in accuracy and
robustness. Nevertheless, new cost aggregation concepts have also been investigated
and incorporated in hardware. In the following implementations without cost
aggregation are indicated with “w/o CA”.

Some examples of early architectures using SAD based matching w/o CA are [2,
58, 72]. An SAD based stereo vision system with three cameras has been presented
in [110]. Depending on the emphasis of the referenced work, the results vary in
throughput and resolution up to 640×480×64 and 31 fps. The so-called Tyzx ASIC
for color-image census-based stereo-matching (w/o CA) achieves 200 fps for 512×

592 C. Banz et al.

480 images and 52 disparity levels [104]. It forms the basis of an extended stereo
vision system in [105].

Also for recent implementations local methods with and without cost aggregation
are still popular. This includes [49] where a census transform (w/o CA) is employed
as the basis of an entire stereo vision system on an FPGA. Another complete system
based on SAD (w/o CA) is presented in [101]. Census with aggregation cues from
the original and gradient images is investigated in [1]. Color SAD with a fuzzy
logic disparity selection has been proposed and implemented on an FPGA [28].
Methods and architectures using adaptive support weights have been proposed in
[15] employing a census variant and in [99] employing an absolute differences
variant. In order to reduce the amount of data to be processed, [98] works on Sobel
filtered images, which goes in the direction of sparse matching.

In [65], the architecture of [18], which is based on a local, phase-based method,
is extended to large disparity ranges without significant additional hardware cost by
adapting an offset of the smaller disparity search window across multiple frames.
After large disparity changes, a latency of several frames occurs before correct
disparity information can be regained. A bio-inspired method based on Gabor filters
is introduced in [19].

Among the implementations of dynamic programming approaches a trellis-based
implementation, using a single interline consistency constraint has been investigated
[76]. A dynamic programming approach based on a maximum-likelihood method is
implemented in [88] achieving 64 fps at 640×480 px with 128 disparity levels. And
a symmetric dynamic programming variant, similar to the GPU implementation of
[51], has been implemented on an FPGA [73].

An FPGA architecture for memory efficient belief propagation for stereo match-
ing has been proposed in [79]. New concepts and architectures for the message
passing in BP are proposed [97].

For semi-global matching two architectures have been proposed. The implemen-
tation of [26] utilizes a SGM variant with depth adaptive sub-sampling. It achieves
27 fps at 320×200 px and 64 px disparity range. A parameterizable parallelization
scheme for SGM and a corresponding FPGA architecture have been proposed in [7]
and [8]. It achieves, depending on the degree of parallelism, up to 176 fps for VGA
images with 128 disparity levels and 4 SGM paths. This architecture will be studied
in more detail in Sect. 3.7.

3.3 Other Architectures

The use of programmable architectures besides GPUs has also been investigated
in some depth. Mühlmann et al. [74] investigated memory layout schemes for the
disparity space and implementations schemes including MMX optimizations for
SAD-based matching without cost aggregation (w/o CA).

A number of publications specifically target programmable embedded solutions:
An SSD with multiple window selection has been implemented on the ClearSpeed

Architectures for Stereo Vision 593

CSX700 architecture (250 MHz, 9 W) which provides massively parallel SIMD in
multiple parallel processing elements [44]. The same algorithm has been imple-
mented [89] on the Tilera TILEPro64, which is a MIMD architecture with 64 integer
processing cores organized in a two dimensional mesh network running at MHz. A
SAD w/o CA is also investigated on the Tilera TilePro 64 and on many-core CPUs
[83]. SAD (w/o CA) for a VLIW processor (Texas Instruments TMS320C6414T,
1.0 GHz) has been shown in [14].

Application-specific processors (ASIP) have been investigated in two cases:
For semi-global matching an instruction set extension for the Tensilica LX2 DSP
template has been proposed [6] reporting 20 fps for 640×480×64 images with
reduced number of paths when run at 373 MHz, which is possible with the targeted
TSMC 90 nm process. Similarly for SGM, architecture optimizations for a VLIW
processor template, the MOAI, have been investigated in [77] reaching 30 fps when
running at 400 MHz.

Apart from the original CPU implementation of SGM running at 1.3 s for 450×
375×64 images [39], a variant with depth adaptive sub-sampling has been proposed
running at 14 fps for 320×160 images [25].

The cell broadband engine has been utilized for belief propagation and dynamic
programming, both taking few seconds to process an image pair [62]. An SAD (w/o
CA) implementation on the cell achieves 30 fps for VGA images with 48 disparity
levels.

3.4 Comparison Studies

In addition to the algorithmic studies mentioned earlier, studies also taking into
account the computational performance have been conducted. An evaluation of cost
aggregation for local methods with focus on algorithmic performance and run-time
on CPU can be found in [96]. Selected algorithms (various SAD variants, belief
propagation, and dynamic programing) have been compared on a CPU in [64]. An
evaluation of local algorithms on the GPU has been conducted in [31] and [61].

An implementation of belief propagation on GPU and for VLSI has been
compared in [59]. Symmetric dynamic programing on GPU and FPGA has been
compared in [50]. Comparison of a census based approach (w/o CA) on a DSP
(TI C6416), a GPU (GeForce 9800 GT), and a CPU (Intel Core2Quad) has been
conducted in [45]. In [83] SAD (w/o CA) has been studied on a GPU, two multi-
core CPUs and the MIMD Tile architecture. Furthermore, in many of the references
in the previous sections the GPU or FPGA implementation is compared to a regular
CPU implementation.

594 C. Banz et al.

3.5 Current Trends

When targeting real-world applications, the everlasting question is how to improve
algorithmic performance while reducing computational requirements. This has
already been addressed in many of the references above. A recent research direction
is to integrate the computation of various information retrieval image processing
tasks (e.g. disparity estimation with optical flow). In [30], an algorithm for joint
computation of disparity estimation and optical flow is proposed and implemented
on the GPU. A holistic architecture for phase based disparity estimation, optical
flow, and more is presented in [95] and implemented on an FPGA. An holistic
architecture for disparity estimation and motion estimation based on SAD is
presented in [114].

3.6 Implementation Example: Semi-global Matching on the
GPU

An example implementation of the semi-global matching algorithm for GPUs will
be given based on the works in [4]. Since GPUs are becoming more and more
common, an introduction of the architecture and the terminology will be skipped.
Please refer to the Nvidia manuals and [38] for a detailed background on GPU
architecture or directly to [4] for a short sketch. The evaluation platform in the
following is a Nvidia Tesla C2050 with compute capability 2.0 providing 3 GB
DDRRAM global memory with a maximum theoretical bandwidth of 144 GB/s.

3.6.1 Parallelization Principles

Banz et al. [4] formulate the following performance limiting factors for a kernel:

• Effective memory bandwidth usage for the payload data which is for example
reduced by nonaligned, overhead-producing memory access

• Instruction throughput defined as the number of instructions performing
arithmetics for the core computation and other non-ancillary instructions per unit
of time

• Latency of the memory interface occurring e.g. when accessing scattered
memory locations even if aligned and coalesced, warp-wise access is performed

• Latency of the arithmetic pipeline of the ALUs inside the GPU cores if
arithmetic instructions depend on each other and can only be executed with the
result from the previous instruction

Accordingly, kernels can be memory bound, compute bound, or latency bound.
Kernels that are not limited by any of the three bounds are ill-adapted for GPU
implementation and can be classified as bound by their parallelization scheme.

Architectures for Stereo Vision 595

An efficient parallelization scheme guarantees inherently aligned and coalesced
data access schemes without instruction overhead. Coalesced memory access is
the simultaneous memory access to consecutive memory locations of all threads
of a warp. It further includes a combination of parallel and sequential processing
with independent arithmetic computation steps. An inner (sequential) loop in the
otherwise parallel threads working on a set of data that is kept in shared memory or
register facilitates data reuse, increases the instruction ratio, and keeps the pipeline
filled. Further, coherent access schemes are ensured for the memory interface if
results are written out with each loop iteration. Apart from an inner loop, executing
several warps per streaming multiprocessor increases pipeline utilization.

3.6.2 Rank Transform and Median Filter Kernel

The rank transform and median filter are both non-linear, non-separable 2D image
transforms. To generate the result of one output pixel, the data of a local N×N-
neighborhood from the input image is required.

The kernel for rank transform and median filter are based on the same principle
which is based on the implementation of a separable convolution in [82]. It pre-
fetches the data of a two-dimensional spatial locality from global memory into
shared memory. Thus, data reuse is maximized because all filter kernels that fully
reside in this spatial locality can be processed by a block of threads without
additional global memory access. An aligned group of pixels is processed by a
two-dimensional block of threads first loading the neighboring center pixels of all
kernels. Left and right pixels outside the center area are always loaded with the
warp width. Even though this causes minimal data to be loaded which is not used by
the current block, it ensures inherent coalesced memory access without instruction
overhead or warp divergence. An inner loop allows the processing of several pixels
per thread (nppt) with a stride of the warp width. Adjusting nppt and the launch
configuration, i.e. the number of threads per block in x-dimension (tdx) and y-
dimension (tdy), allows navigation between the different optimization principles.
Figure 9 shows the data layout and thread access scheme.

The median filter is always compute bound and performs best with tdx×tdy =
32×4 threads and nppt = 4. The results of the parameter study for tdx = 32
are shown in Fig. 10. Configurations with nppt = 8 perform slightly worse
although redundant memory access is further reduced because of inefficient pipeline
utilization. Processing times for a 3×3 median filter (i.e. kernel radius K ′ = 1)
are given in Fig. 11 resulting in 0.64 ms for the new shared memory based kernel.
For a texture-memory based kernel, which is the most often suggested way of
implementing a 2D non-separable filter, processing time is 2.77 ms. In comparison,
this yields a speed-up of 4.3 when processing a 1280×960 image.

For a 9×9 rank transform (i.e. K ′ = 4) experiments show that a block size of
tdx×tdy = 32×4 with nppt = 4 yields the best performance. A speed up of 4.0 is
obtained switching from the texture-based kernel (3.13 ms) to the shared memory
kernel (0.78 ms) for 1280×960 images.

596 C. Banz et al.

0 ... 31 0 ... 310 ... 31 0 ... 31 0 ... 31
0
0
0 ... 31

0
.

tdx

tdx
K

’
K

’
tdx

0 ... 31

0

.

0 ... 31

0 ... 31 0 ... 31 0 ... 31 0 ... 31

31
31

K’ tdx-K’

Overhead pixels that are loaded
to process inner pixels

0 ... 31... 31 0 ... 31 0 ... 31 0 ... 31 0 ... 31

x

y
tdx × nppt (here: 32 × 4)

td
y

(h
er

e:
 4

)

Pixels that are not
required for data
processing but to
ensure coalesced,
aligned memory
access

Pixels that are being processed

Fig. 9 Data fetching and accessing scheme for the 2D filter kernels processing tdx · nppt×tdy
kernel windows with a radius of K ′ where nppt is the number of pixels processed per thread
and the launch configuration, which determines how threads are grouped and executed on the
streaming multiprocessors, is tdx×tdy. Each square represents a pixel and the number inside is the
x-dimension thread ID which fetches the pixel from global memory

Fig. 10 Performance of the
3×3 median filter: on
1280×960 images as the
parallelization configuration
changes. Block width is fixed
to tdx = 32. The best
performance is achieved with
tdx×tdy = 32×4 and nppt = 4

1
2

4
8

0.4

0.8

1.2

1
2

4
8

Pr
oc

es
si

ng
 T

im
e

[m
s]

block dimension
tdy

nppt

3.6.3 SGM Kernel

For every pixel location p, calculation of the matching cost C(p, d) according to
Eq. (4) results in a vector with one entry for each disparity level d . Thus, the spatial
directions (x and y) and the disparity range span the three-dimensional disparity
space. The matching cost (MC) calculation for every point in this space can be
performed independently allowing for parallelization in all three dimensions.

A straightforward parallelization is to assign each thread with the calculation of
one entry in the 3D cost space of C(p, d). This kernel (mc_unaligned) reaches
16.3 ms and 48.6 GB/s which is far from the bandwidth limit due to inefficient, often
misaligned memory access, lack of data reuse, and little latency hiding possibilities.
This kernel is latency bound which can only be eliminated by a new parallelization
scheme.

Architectures for Stereo Vision 597

0.17
0.24 0.41 0.64 1.27 1.350.70

1.01
1.78

2.77

5.52
5.89

0

2

4

6

Pr
oc

es
si

ng
 ti

m
e

[m
s]

 Shared mem. kernel
Texture mem. kernel

Fig. 11 Performance of the 3×3 median filter: comparison of the texture memory kernel and the
proposed shared memory kernel on a Tesla C2050 GPU for the best-performing parallelization
configuration

0 ... 31

0 ... 310 ... 310 ... 31

Threads process
pixels in parallel

... Disparity levels d
calculated in inner
loop of each thread

x

y

d

0 ... 31

C(x,y,d)tdx = 32

Left Image

Right Image

Fig. 12 Memory access scheme for calculating the matching costs for tdx pixels in parallel in a
tdx-thread wide warp and tdy = 1. The location of the results in the 3D matching cost space is
shown. Again the numbers in the squares represent the thread ID that fetches the according pixels
from global memory

The new kernel (mc_proposed) processes all disparity levels of a group of
tdx neighboring pixels synchronously in tdx threads. The disparity dimension itself
is further separated into tdy groups each processing drange/tdy disparity levels with
an inner loop in the kernel. By adjusting tdy thread parallelism is substituted with
inner loop complexity. Pixels from the base image are read aligned and coalesced
over the tdx threads. The required pixels from the right image are loaded in
groups of tdx aligned, coalesced pixels into the shared memory where they can
be accessed and reused by all threads. The parallelization scheme is shown in
Fig. 12. Furthermore, only 8−bit precision is required. Since performing arithmetic
in non-native GPU data types (i.e. other than 32-bit integer and float) is slow, input
images and computation are based on 32-bit integer and type conversion to uchar
is performed just before writing out the result. Consequently, type conversion to
uchar is performed just before writing out the result. Choosing tdx as a multiple
of the warp size (i.e. 32) results in always aligned memory access. This kernel
adheres the optimization approach of Sect. 3.6.1 by providing inherently aligned

598 C. Banz et al.

Table 1 Performance results of the optimized kernels (MC: matching costs, PC: path costs,
WTA: winner-takes-all) with optimal launch configuration for computing the semi-global matching
algorithm for images with 1280×960 pixels and 128 disparity levels

Kernel Time (ms) Bandwidth (GB/s) Bound by

MC unaligned 16.32 48.6 Parallelization scheme

MC proposed (uchar4) 1.80 107.3 Pipeline latency

MC+PC 8 path dir. (sequential) 75.68 20.9 Pipeline latency

MC+PC 8 path dir. (concurrent) 39.81 39.7 Pipeline latency

Sum, WTA left disparity map 15.09 117.4 Memory bandwidth

memory access, high data reuse, and efficient use of the arithmetic pipeline. With
an obtained performance of 1.8 ms and 111.2 GB/s this is a speed-up of factor 9.2.
A performance summary is given in Table 1.

The path costs (PC) calculation according to Eq. (6) is performed by individually
traversing along each of the eight path directions updating the matching cost values
and resulting in a new 3D cost space for each path direction. PC calculation must be
done sequentially along the respective path direction (e.g. from left to right) because
the previous pixel’s path costs must be known. The parallel minimum search over
the disparity levels has been implemented similarly to the parallel reduction scheme
from [36]. Although the MCs are common to all PC directions and it seems obvious
to separate MC and PC calculations, it is faster to integrate MC and PC calculations
and recalculate the MCs on-the-fly for each PC direction. This drastically reduces
pressure on the performance-limiting memory bandwidth since the MC data is never
transferred via the external memory but can be kept locally in the shared memory.
All eight path directions are executed concurrently using the CUDA concurrent
kernel execution.

Due to the coalesced memory access necessity, only a group of horizontally
neighboring pixels can be efficiently accessed in memory. The path costs kernels
must be modified according to their path direction in order to maintain efficient
memory access. For each diagonal path direction, processing is separated into
rectangular tiles. Within each tile the processing direction is along the image
columns, i.e. misaligned to the path direction, but ensuring aligned memory access.
Tiles not sharing data dependencies can be processed in parallel as independent
thread blocks. This is similar to the intrablock encoding scheme for video streams
proposed in [57]. An example of the parallel processing order is shown in Fig. 13.
Since block synchronization does not exist on GPUs, correct execution order is
established by sequentially launching a kernel for each diagonal tile front (identical
letters in Fig. 13) causing some minor overhead in time. The practical alternative
of keeping the processing implementation unchanged but rearranging the data in
the memory creates an inherently contradictory situation: if the GPU is used to
rearrange the data, the re-sorting causes additional memory access with is not even
coalesced.

Architectures for Stereo Vision 599

B C

C

0 ... 31

A

0 ... 31

B

Block processing
directionImage frame

Data
dependencies

t y

Thread
processing
direction

Fig. 13 Image tiling for the 45◦ path and ty = 2 allowing divergent processing direction and path
direction while tiles with the same letter can be processed in parallel. The processing direction
ensures coalesced and aligned memory access

4
8

16
32

20

60

100

2
4

8
16

Pr
oc

es
si

ng
 T

im
e

[m
s]

vertical
tiles ty

block dimension
tdy

Fig. 14 Impact of the parallelization configuration on the performance of the concurrent path cost
calculation for 8 paths of the SGM for 1280×960 images and 128 disparity levels. Block width
and tile width are both fixed to tdx = 32. Best performance is achieved with tdx×tdy = 32×4 (i.e.
each inner loop processes 32 disparity levels) and ty = 16

Again, parameters adjustment allows navigation between the performance opti-
mization principles. The first parameter (tdy) trades thread parallelism against
sequential computation in the inner loop for all kernels. The second parameter
(ty) trades the number of parallelly processable blocks versus launch overhead and
memory overhead for the four diagonal paths. Figure 14 shows the result of the
parameter study. Choosing tdy = 4 and ty = 16 results in best performance (39.8 ms
and 39.7 GB/s) for a 1280×960 image. If the concurrent kernel execution is not
used, performance is approximately halved (75.7 ms and 20.9 GB/s). Both kernel
sets, concurrent and sequential, are latency bound.

Summation of the eight path cost spaces (7) and winner-takes-all disparity
selection (9) can be performed independently for each pixel allowing for the same
parallelization scheme as for the MC calculation. This kernel (sum_wta) requires
15.1 ms and is memory bound with 117.4 GB/s.

600 C. Banz et al.

Table 2 Performance results
for the entire disparity
estimation algorithm using
rank transform, semi-global
matching and median filtering
on a Nvidia Tesla C2050
GPU

drange

Image size 64 128 256

640×480 9.7 ms 16.0 ms 29.0 ms

1024×768 21.5 ms 35.9 ms 67.1 ms

1280×960 32.9 ms 56.2 ms 105.7 ms

Results are k-mean values over multiple
runs and images

3.6.4 Performance

The processing time for the complete disparity estimation including rank transform,
semi-global matching for eight paths, disparity map generation (without left/right
check (3)), and median filtering on a Tesla C2050 Fermi architecture GPU is
summarized in Table 2. Overall, a 1280×960 image with 128 disparity levels
requires 56.2 ms. The processing times do not include data transfer between host
and GPU because it can be effectively hidden using concurrent data transfer
when processing image streams. When processing 1280×960 image sets ca. 5 ms
additional transfer time is required.

3.7 Implementation Example: VLSI Architecture for
Semi-global Matching

In this section a parallelization scheme and corresponding VLSI architecture for
semi-global matching will be discussed. It is based on the works of [7] and [8].

3.7.1 Parallelization

A crucial point for VLSI-implementation is the mapping of the algorithm into a
parallel-processable and stream-based flow that only requires a single-pass across
the input images. Further important aspects are the regularity and the locality of the
architecture that implements this flow [80]. Challenges are imposed by the semi-
global matching due to the recursively defined paths and their orientations within
the images (see Sect. 2.3), which are not aligned to a stream-based flow.

First, the two-dimensional parallelization concept that enables stream-based
processing will be introduced. Afterwards, an extension of the concept into the
third dimension is presented, which significantly increases processing speed and
throughput. The two-dimensional parallelization concept is shown in Fig. 15 and
will be presented for the path directions of 0◦, 45◦, 90◦ and 135◦. Pixels are
processed from left to right along the image row (0◦ path). After processing pixel
p−1 = [x − 1, y] of the upper row, all path costs over d of all directions are available

Architectures for Stereo Vision 601

Fig. 15 Synchronized and
parallel calculation of the
path costs of the four paths
L0◦ , L45◦ , L90◦ , and L135◦ for
the two pixels p1 = [x, y]
and p2 = [x − 2, y + 1].
Each delay element stores the
respective path costs over all
disparity levels for the
duration of one processing
step

x+1xx-1x-2

x+1xx-1x-2x-3

Row y

Row y+1

z-1z-1 z-1

z-1z-1

z-1

L135°(x-1,y,d)

L90°(x-2,y,d)

L45°(x-3,y,d)

x-3
Direction of
processing

L0°(x-3,y+1,d)z-1

in the path cost buffers
(
z−1
)
. Path costs are delayed, according to their path

directions of 90◦ and 45◦ by one and two additional processing steps, respectively.
Afterwards, path costs of L45◦(x−3, y, d), L90◦(x−2, y, d) and L135◦(x−1, y, d)
are available at the output of the path cost buffers. These are exactly those path costs
needed for parallel and synchronous calculation of all path costs of all orientations
for pixel p2 = [x − 2, y + 1]. Synchronous calculation allows direct summation of
path costs in a pipeline that returns the aggregated costs S.

Therefore, all paths to the pixels p1 = [x, y] and p2 = [x − 2, y + 1] are
calculated in parallel in a single processing step. This concept is extendable to an
arbitrary number of rows. An additional delay by two pixels is introduced for each
new row as illustrated in Fig. 15. Images are separated into image slices of N parallel
rows in order to process whole images. Path costs of the last row of an image slice
need to be stored and made available to the first row of the next slice.

Generalization of this concept is only limited by the fact that the maximum angle
range must be within the half-closed interval [0, 180◦). This means that no paths
in opposite directions can be directly supported without additional hardware. The
two-dimensional parallelization allows regular data accesses of the input images
and all intermediate values and will be further referred to as row parallelism.
Moreover, this concept is independent of the processing method of the disparity
levels, which can be either serial or parallel. Processing the disparity levels in
parallel establishes a third dimension of parallelism, which will be referred to as
disparity level parallelism. An approach of particular interest for dedicated hardware
implementations is not to choose either extreme (none or all disparity levels in
parallel) but to process the disparity levels in small groups (e.g. 2, 4, or 8). In this
case, the size of the path cost buffers, as specified above, remains constant while

602 C. Banz et al.

parallel
Rank

transform

Calc. of
P2

7

7
4×7

Median
Filter

ld
(d

R
)Row 1

Row N

Row 2

R
ow

-D
eM

U
X

R
ow

-M
U

X

Systolic Array for
SGM calculation

Input row
FIFO

Output row FIFO

External memory
P2(p ,r)

R b(p)

R m(p)

Ib(p)

Im(p)

ld
(d

R
)

Dmedian (p)D(p)

Fig. 16 Hardware architecture for calculation of disparity maps using rank-transform and semi-
global matching. The median filter is optional

C

L0° L45°L90°

L0° L45°L90°

External memory

7

External memory

Σ

4 × 8

Disparity
computation

Σ Disparity
computation

10

ld
 (

d R
)

L135°

L135°

C

FIFO buffers

L/R-
check

L/R-
check

Rb(x,y)

R m(x-d,y)

Rb(x-2,y+1)

Rm(x-2-d,y+1)

d R d R

2·
d R

3·
d R

4 × 8
L r

(x
,y

,d
)

S(
p,

d)
S(

x-
2,

y+
1,

d)

D
b(

p)
D

m
(p

)

C(p ,d)

D
(x

-2
,y

+1
)

D
(x

,y
)

Fig. 17 Hardware architecture of the systolic array for parallel path cost calculation of the semi-
global matching for two parallel rows

the throughput increases linearly with the number of parallelized disparity levels.
However, some additional logic for the arithmetic computation of n paths in parallel
will be required. The increase of logic requirements vs. performance of disparity
level parallelism and row level parallelism will be investigated in Sect. 3.7.3.

3.7.2 Architecture

The hardware architecture for the entire stereo matching algorithm is given in
Fig. 16. Computation of the rank transform of both images and calculation of the
data dependent penalty term P2 is done in parallel and synchronously utilizing the
same data path.

A N-row buffer provides this data to the systolic array, which calculates the
disparities of all N rows in parallel according to the parallelization concept
introduced above. As a basic post processing step, a median filter is employed for
outlier suppression.

A heterogeneous, completely synchronized systolic array realizes the paralleliza-
tion concept for the semi-global matching utilizing path directions from 0◦, 45◦,
90◦ and 135◦. Figure 17 shows the corresponding block diagram without utilization
of disparity level parallelism. In this case, processing of a pixel p is carried out

Architectures for Stereo Vision 603

Fig. 18 Architectural extension (b) of the 2D-systolic array (a) for introducing disparity level
parallelism where dm specifies the number of disparity levels processed in parallel

sequentially over all disparities of this pixel. The first processing elements (C-PEs)
calculate the matching costs C(p, d). Each of the following PEs (L-PEs) calculates
the path costs Lr along a path r according to Eq. (6). The results are buffered in
the appropriate path cost buffers. All L-PEs are completely identical and the path
orientations are solely defined by the delays introduced by the path cost buffers.
Path costs are summed to S and then processed by disparity computation PEs (D-
PEs). D-PEs locate the minimum, i.e. the correct disparity, for the disparity maps Db

and Dm of the base and match camera, respectively. A final L/R-Check-PE projects
the disparity map Dm to the perspective of the base camera, executes the left/right
check including occlusion detection, and marks pixels accordingly. A local single
row buffer is needed for the projection. It functions simultaneously as an output
buffer.

In order to introduce disparity level parallelism in addition to the row level
parallelism, the C-PEs and L-PEs are extended to process several consecutive
disparity levels in parallel. These groups of parallel disparity levels are processed
serially. This leads to an approximately linear increase in throughput. Furthermore,
it is area efficient for two reasons. First, additional logic is only required for parts
of the processing units. And second, the absolute size of local buffers does not
change—only the depth-to-width ratio. This is the major advantage of disparity level
parallelism. The architectural extension for disparity level parallelism is shown in
Fig. 18.

Boundary treatment for pixels with missing stereo overlap (i.e. x < dmax)
significantly reduces the number of entries of the cost spaces C (p, d), Lr (p, d),
S (p, d), and, consequently, leads to a computing time reduction. For VGA images
and a disparity range of 128 px the reduction is 9.9% (without disparity level
parallelism).

An external interim memory is required for storing the path costs of the three non-
horizontal paths of the last row of an image slice and providing them to the first row
of the consecutive image slice. Due to the extremely regular data transfer, obeying
the FIFO-principle, and the low transfer rates, external SSRAM and SDRAM-
memories can be used. Alternatively, on-chip memory can be considered due to
the low absolute memory requirements.

604 C. Banz et al.

Table 3 Minimum required clock frequencies of the SGM unit (including rank transform and
median filter) for a fixed resolution of 640×480 px with 128 disparity levels at 30 fps and resource
usage on a Xilinx Virtex-5 FPGA

Min. clock frequency (MHz) LUTs

pr \ dm 1 2 4 8 1 2 4 8

5 219.6 112.3 58.5 31.6 5652 6621 10,110 17,214

10 111.9 57.4 30.0 16.8 11,595 13,398 20,565 34,589

20 58.3 30.2 17.2 13.4 23,379 26,986 41,292 69,578

30 40.7 21.4 14.9 12.4 35,119 40,700 61,930 103,504

The number of parallel rows and parallel disparity levels is denoted pr and dm, respectively

3.7.3 Performance

Performance of the complete system and scalability of the SGM unit are analyzed
with the minimum clock frequency required to fulfill a fixed throughput constraint.
This metric, i.e. the clock frequency normalized for a fixed throughput, allows direct
and accurate comparison, and reflects the importance of performance while being
independent from varying operating clock frequencies [78]. This also models a
typical design constraint of real-world applications, where the throughput required
is usually specified by external circumstances (e.g. by the cameras, required depth
resolution, etc.). In this case, throughput-normalized metrics for clock frequency,
resource usage, power, and latency enable straightforward identification of the
Pareto-optimal point of operation. Table 3 provides the results for the SGM unit for
a typical parameter set of 640×480 px at 30 fps. As metric for silicon area required,
only Virtex5 LUTs are used. For more information (e.g. BRAMs) please refer to [8].

Interesting insights can be gained by studying the row parallelism vs. disparity
parallelism trade-off. With increasing degree of parallelism, the SGM unit can be
clocked with lower frequencies at the price of higher area requirements. However,
there are significant differences between row level parallelism and disparity level
parallelism. Each point in Fig. 19 is a specific configuration of the design represent-
ing the LUT requirements over the normalized clock frequency. This representation
is considerably different from a typical AT-diagram, which would be inadequate for
this comparison as it would not reflect the throughput constraint.

For a small number of parallel disparity levels, increasing disparity level
parallelism is very efficient since it has a significantly smaller influence on the
total resource usage than increasing row level parallelism. However, row parallelism
is the key concept for stream-based processing and is crucial for a high base
performance but increases linearly with the number of rows. The full potential
of the parallelism approaches is exploited when using a combination of both, i.e.
by using a small number of parallel rows and additionally introducing disparity
level parallelism up to the configuration that does not yet require additional
memory resources. For example, starting from the (pr = 10, dm = 1)-configuration
a performance increase of approximately factor two can be achieved by doubling
the number of either parallel rows or disparity levels. Increasing disparity level

Architectures for Stereo Vision 605

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

N
um

be
r o

f L
U

Ts

Required minimum frequency to fullfil specific throughput [MHz]

LUT saving when switching
from a (pr = 20, dm = 1)-configuration
to a (pr = 10, dm = 2)-configuration

pr = 10

pr = 20

pr = 5

pr = 30

pr = 5
pr = 10
pr = 20
pr = 30

solid line pr = const.
dashed line dm = const

Fig. 19 Required number of LUTs of the systolic array of the SGM unit over the minimum
required clock frequency to process 640×480 px with 128 disparity levels at 30 fps. The number
of parallel rows and parallel disparity levels is denoted pr and dm, respectively. The diagrams
effectively show the impact in area and performance when varying row parallelism and/or disparity
level parallelism. The lower left border in the diagram reflects the Pareto-optimum configuration
points

parallelism does not increase BRAM requirements (not shown, see [8]) and results
in a LUT saving of factor 1.8. The major benefit of increasing disparity level
parallelism is that local memory requirements remain constant for both, path costs
buffers and input/output buffers.

A stereo vision system covering the entire stereo vision process including image
acquisition, noise reduction, rectification, disparity estimation, post processing,
and visualization has been integrated into a single FPGA. The system has been
integrated on a custom build hardware platform show in Fig. 20. This work shows
that it is possible to implement an algorithmically extremely high performing
disparity matching algorithm in an FPGA with true real-time performance. More
details on the implementation can be found in [8].

4 Summary

There has been and continues to be tremendous research in the field of computer
vision, both on the algorithmic side and on the hardware side. Nowadays, many
implementations for GPUs, FPGAs, ASICs, DSPs, and ASIPs are available. These
cover a huge variety of algorithms and design aspects (e.g. algorithmic performance
vs. silicon area). The two example implementations on the GPU and the FPGA for

606 C. Banz et al.

Fig. 20 Hardware setup of the stereo vision system with the system board and the stereo camera
rig. On the right is the input image of lab scene and the computed raw disparity map before false
color visualization and sending to display is conducted

semi-global matching based disparity estimation show, that it is possible to realize
high quality stereo correspondence search in real-time. The GPU implementation
enables SGM processing with 8 paths but without left/right check with more than
62 fps of images with a resolution of 640×480 and 128 disparity levels on a
Nvidia Fermi architecture GPUs. The VLSI architecture is scalable and allows exact
adaptation to the particular application. For the same image resolution frame rates
of 1.7–319 fps are achieved at an operating frequency of 133 MHz. Which of the
two architectures presented offers a more suitable solution depends on the external
parameters.

5 Further Reading

A detailed algorithmic overview is provided in the textbook [93] and the surveys
in [31, 91, 95]. Epipolar geometry and rectification is covered in [37, 117]. The
OpenCV library provides many functions for stereo processing [12]. For multi-view
stereo and 3D reconstruction [93] is a good starting point.

Dedicated image processing architectures including rectification and many more
are covered in [3] and RTL hardware design in [16]. Various kinds of computer
architectures including GPUs are found in the newest edition of [38].

References

1. Ambrosch, K., Kubinger, W.: Accurate hardware-based stereo vision. Computer Vision and
Image Understanding, Elsevier 114, 1303–1316 (2010)

2. Arias-Estrada, M., Xicotencatl, J., Brebner, G., Woods, R.: Multiple stereo matching using
an extended architecture. Proc. Field-Programmable Logic and Applications 2147, 203–212
(2001)

Architectures for Stereo Vision 607

3. Bailey, D.G.: Design for embedded image processing on FPGAs. John Wiley & Sons,
Singapore (2011)

4. Banz, C., Blume, H., Pirsch, P.: Real-time semi-global matching disparity estimation on the
GPU. Proc. IEEE Intl. Conf. Computer Vision Workshops pp. 514–521 (2011)

5. Banz, C., Blume, H., Pirsch, P.: Evaluation of penalty functions for SGM cost aggregation.
Intl. Archives of Photogrammetry and Remote Sensing (2012)

6. Banz, C., Dolar, C., Cholewa, F., Blume, H.: Instruction set extension for high throughput
disparity estimation in stereo image processing. Proc. IEEE Intl. Conf. Architectures and
Processors Application-Specific Systems pp. 169–175 (2011)

7. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system using
semi-global matching disparity estimation: Architecture and FPGA-implementation. Proc.
IEEE Intl. Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation pp.
93–101 (2010)

8. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system using
semi-global matching disparity estimation: Architecture and FPGA-implementation. Trans.
High-Performance Embedded Architectures and Compilers, Springer (2012)

9. Belhumeur, P.N.: A bayesian approach to binocular steropsis. Intl. Journal of Computer
Vision 19(3), 237–260 (1996)

10. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling.
IEEE Trans. Pattern Analysis and Machine Intelligence 20(4), 401–406 (1998)

11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
Proc. IEEE Intl. Conf. Computer Vision 1, 377–384 (1999)

12. Bradski, G., Kaehler, A.: Learning OpenCV, 1 edn. O’Reilly, Sebastopol (2008)
13. Brunton, A., Chang, S., Roth, G.: Belief propagation on the GPU for stereo vision. Proc.

Canadian Conf. Computer and Robot Vision p. 76 (2006)
14. Chang, N., Lin, T.M., Tasi, T.H., Tseng, Y.C., Chang, T.S.: Real-time DSP implementation

on local stereo matching. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 2090–2093 (2007)
15. Chang, N., Tasi, T.H., Hsu, B., Chen, Y., Chang, T.S.: Algorithm and architecture of disparity

estimation with mini-census adaptive support weight. IEEE Trans. Circuits and Systems for
Video Technology 20(6), 792–805 (2010)

16. Chu, P.P.: RTL hardware design using VHDL: Coding for efficiency, portability, and
scalability. Wiley-Interscience, Hoboken and N.J (2006)

17. Cornells, N., van Gool, L.: Real-time connectivity constrained depth map computation
using programmable graphics hardware. Proc. IEEE Conf. Computer Vision and Pattern
Recognition 1, 1099–1104 (2005)

18. Darabiha, A., MacLean, W., Rose, J.: Reconfigurable hardware implementation of a phase-
correlation stereo algorithm. Machine Vision and Applications, Springer 17, 116–132 (2006)

19. Diaz, J., Ros, E., Carrillo, R., Prieto, A.: Real-time system for high-image resolution disparity
estimation. IEEE Trans. Image Processing 16(1), 280–285 (2007)

20. Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the
GPU. Proc. Intl. Symp. Visual Computing 5358, 228–239 (2008)

21. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person
tracking. Proc. IEEE Conf. Computer Vision and Pattern Recognition pp. 1–8 (2008)

22. Faugeras, O., Viéville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., Moll, L., Bertin,
P., Mathieu, H., Fua, P., Berry, G., Proy, C.: Real-time correlation-based stereo: Algorithm,
implementations and applications (1993)

23. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Intl.
Journal of Computer Vision, Springer 70, 41–54 (2006)

24. Forstmann, S., Kanou, Y., Jun, O., Thuering, S., Schmitt, A.: Real-time stereo by using
dynamic programming. Proc. IEEE Conf. Computer Vision and Pattern Recognition
Workshop p. 29 (2004)

25. Gehrig, S., Rabe, C.: Real-time semi-global matching on the CPU. Proc. IEEE Conf.
Computer Vision and Pattern Recognition Workshop pp. 85–92 (2010)

608 C. Banz et al.

26. Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-
global matching. Proc. Intl. Conf. Computer Vision Systems 5815, 134–143 (2009)

27. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision
benchmark suite. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2012)

28. Georgoulas, C., Andreadis, I.: A real-time fuzzy hardware structure for disparity map
computation. Journal of Real-Time Image Processing, Springer 6(4), 257–273 (2011)

29. Gibson, J., Marques, O.: Stereo depth with a unified architecture GPU. Proc. IEEE Conf.
Computer Vision and Pattern Recognition Workshop pp. 1–6 (2008)

30. Gong, M.: Real-time joint disparity and disparity flow estimation on programmable graphics
hardware. Computer Vision and Image Understanding, Elsevier 113(1), 90–100 (2009)

31. Gong, M., Yang, R., Wang, L., Gong Mingwei: A performance study on different cost
aggregation approaches used in real-time stereo matching. Intl. Journal of Computer Vision,
Springer 75, 283–296 (2007)

32. Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable graphics
hardware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, 924–931 (2005)

33. Güney, F., Geiger, A.: Displets: Resolving stereo ambiguities using object knowledge. Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (2015)

34. Haller, I., Nedevschi, S.: GPU optimization of the SGM stereo algorithm. Proc. IEEE Intl.
Conf. Intelligent Computer Communication and Processing pp. 197–202 (2010)

35. Haller, I., Nedevschi, S.: Design of interpolation functions for subpixel-accuracy stereo-vision
systems. IEEE Trans. Image Processing 21(2), 889–898 (2012)

36. Harris: Optimizing parallel reduction in CUDA (2007). Whitepaper included in Nvidia Cuda
SDK 4.0

37. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2. ed., 7. print. edn.
Cambridge Univ. Press, Cambridge (2010)

38. Hennessy, J.L., Patterson, D.A.: Computer architecture: A quantitative approach, 5 edn.
Morgan Kaufmann, San Francisco and Calif and Oxford (2011)

39. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and
mutual information. Proc. IEEE Conf. Computer Vision and Pattern Recognition 2, 807–814
(2005)

40. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE
Trans. Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008)

41. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. Proc. IEEE
Conf. Computer Vision and Pattern Recognition pp. 1–8 (2007)

42. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with
radiometric differences. IEEE Trans. Pattern Analysis and Machine Intelligence 31(9), 1582–
1599 (2009)

43. Hosni, A., Bleyer, M., Rhemann, C., Gelautz, M., Rother, C.: Real-time local stereo matching
using guided image filtering. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 1–6 (2011)

44. Hosseini, F., Fijany, A., Safari, S., Fontaine, J.: Fast implementation of dense stereo vision
algorithms on a highly parallel SIMD architecture. Journal of Real-Time Image Processing,
Springer pp. 1–15 (2011)

45. Humenberger, M., Zinner, C., Kubinger, W.: Performance evaluation of a census-based stereo
matching algorithm on embedded and multi-core hardware. Proc. Intl. Symp. Image and
Signal Processing and Analysis pp. 388–393 (2009)

46. Ivanchenko, V., Shen, H., Coughlan, J.: Elevation-based MRF stereo implemented in real-
time on a GPU. Workshop Applications of Computer Vision pp. 1–8 (2009)

47. Jiangbo, L., Rogmans, S., Lafruit, G., Catthoor, F.: Real-time stereo correspondence using a
truncated separable laplacian kernel approximation on graphics hardware. Proc. IEEE Intl.
Conf. Multimedia and Expo pp. 1946–1949 (2007)

48. Jiangbo, L., Zhang, K., Lafruit, G., Catthoor, F.: Real-time stereo matching: a cross-based
local approach. Proc. IEEE Intl. Conf. Acoustics, Speech and Signal Processing pp. 733–736
(2009)

Architectures for Stereo Vision 609

49. Jin, S., Cho, J., Pham, X.D., Lee, K.M., Park, S.K., Kim, M., Jeon, J.W.: FPGA design and
implementation of a real-time stereo vision system. IEEE Trans. Circuits and Systems for
Video Technology 20(1), 15–26 (2010)

50. Kalarot, R., Morris, J.: Comparison of FPGA and GPU implementations of real-time stereo
vision. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop pp. 9–15
(2010)

51. Kalarot, R., Morris, J., Gimel’farb, G.: Performance analysis of multi-resolution symmetric
dynamic programming stereo on GPU. Proc. Intl. Conf. Image and Vision Computing New
Zealand pp. 1–7 (2010)

52. Kanade, T., Yoshida, A., Oda, K., Kano, H., Tanaka, M.: A stereo machine for video-rate
dense depth mapping and its new applications. Proc. IEEE Conf. Computer Vision and Pattern
Recognition pp. 196–202 (1996)

53. Ke, Z., Jiangbo, L., Qiong, Y., Lafruit, G., Lauwereins, R., van Gool, L.: Real-time and
accurate stereo: A scalable approach with bitwise fast voting on CUDA. IEEE Trans. Circuits
and Systems for Video Technology 21(7), 867–878 (2011)

54. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A., Bry, A.:
End-to-end learning of geometry and context for deep stereo regression. arXiv preprint
arXiv:1703.04309 (2017)

55. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and
mutual information. Proc. IEEE Intl. Conf. Computer Vision pp. 1033–1040 (2003)

56. Konolige, K.: Small vision systems: Hardware and implementation. Proc. Intl. Symp. Robotic
Research (1997)

57. Kung, M., Au, O., Wong, P., Chun, H.L.: Block based parallel motion estimation using
programmable graphics hardware. Proc. Intl. Conf. Audio, Language and Image Processing
pp. 599–603 (2008)

58. Lee, S.H., Yi, J., Kim, J.S.: Real-time stereo vision on a reconfigurable system. Proc. Intl.
Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation Workshops
3553, 299–307 (2005)

59. Liang, C., Cheng, C., Lai, Y., Chen, L., Chen, H.: Hardware-efficient belief propagation. IEEE
Trans. Circuits and Systems for Video Technology 21(5), 525–537 (2011)

60. Liang, W., Miao, L., Minglun, G., Ruigang, Y., Nister, D.: High-quality real-time stereo using
adaptive cost aggregation and dynamic programming. Proc. Intl. Symp. 3D Data Processing,
Visualization, and Transmission pp. 798–805 (2006)

61. Liang, W., Mingwei, G., Minglun, G., Ruigang, Y.: How far can we go with local optimization
in real-time stereo matching. Proc. Intl. Symp. 3D Data Processing, Visualization, and
Transmission pp. 129–136 (2006)

62. Liu, J., Xu, Y., Klette, R., Chen, H., Vaudrey, T.: Disparity Map Computation on a Cell
Processor (2009)

63. Luo, W., Schwing, A., Urtasun, R.: Efficient deep learning for stereo matching. Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (2016)

64. van der Mark, W., Gavrila, D.: Real-time dense stereo for intelligent vehicles. IEEE Trans.
Intelligent Transportation Systems 7(1), 38–50 (2006)

65. Masrani, D., MacLean, W.: A real-time large disparity range stereo-system using FPGAs.
Proc. Intl. Conf. Computer Vision Systems p. 13 (2006)

66. Mattoccia, S., Viti, M., Ries, F.: Near real-time fast bilateral stereo on the GPU. Proc. IEEE
Conf. Computer Vision and Pattern Recognition Workshop pp. 136–143 (2011)

67. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2016)

68. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate stereo
matching system on graphics hardware. Proc. IEEE Intl. Conf. Computer Vision Workshops
pp. 467–474 (2011)

69. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (2015)

610 C. Banz et al.

70. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. ISPRS
Workshop on Image Sequence Analysis (2015)

71. Minglun, G., Ruigang, Y.: Image-gradient-guided real-time stereo on graphics hardware.
Proc. Intl Conf. 3D Digital Imaging and Modeling pp. 548–555 (2005)

72. Miyajima, Y., Maruyama, T.: A real-time stereo vision system with FPGA. Proc. Intl. Conf.
Field Programmable Logic And Application 2778, 448–457 (2003)

73. Morris, J., Jawed, K., Gimel’farb, G., Khan, T.: Breaking the ‘Ton’: Achieving 1% depth
accuracy from stereo in real time. Proc. Intl. Conf. Image and Vision Computing New Zealand
pp. 142–147 (2009)

74. Mühlmann, K., Maier, D., Hesser, J., Manner, R.: Calculating dense disparity maps from
color stereo images, an efficient implementation. Intl. Journal of Computer Vision, Springer
47(1–3), 79–88 (2002)

75. Pantilie, C., Nedevschi, S.: SORT-SGM: Subpixel optimized real-time semiglobal matching
for intelligent vehicles. IEEE Trans. Vehicular Technology 61(3), 1032–1042 (2012)

76. Park, S., Jeong, H.: Real-time stereo vision FPGA chip with low error rate. Proc. Intl. Conf.
Multimedia and Ubiquitous Engineering pp. 751–756 (2007)

77. Paya Vaya, G., Martin Langerwerf, J., Banz, C., Giesemann, F., Pirsch, P., Blume, H.: VLIW
architecture optimization for an efficient computation of stereoscopic video applications.
Proc. Intl. Conf. Green Circuits and Systems pp. 457–462 (2010)

78. Paya-Vaya, G., Martin-Langerwerf, J., Pirsch, P.: A multi-shared register file structure for
VLIW processors. Journal of Signal Processing Systems, Springer 58(2), 215–231 (2010)

79. Perez, J., Sanchez, P., Martinez, M.: High memory throughput FPGA architecture for high-
definition Belief-Propagation stereo matching. Proc. Intl. Conf. Signals, Circuits and Systems
pp. 1–6 (2009)

80. Pirsch, P.: Architectures for digital signal processing. John Wiley & Sons, Inc., Chichester
(2008)

81. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of
continuous multi-label problems. Proc. European Conf. on Computer Vision 5304, 792–805
(2008)

82. Podlozhnyuk, V.: Image Convolution with CUDA (2007). Whitepaper included in Nvidia
Cuda SDK 4.0

83. Ranft, B., Schoenwald, T., Kitt, B.: Parallel matching-based estimation - a case study on three
different hardware architectures. Proc. IEEE Intelligent Vehicles Symposium pp. 1060–1067
(2011)

84. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.: The SYNTHIA dataset: A large
collection of synthetic images for semantic segmentation of urban scenes. Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (2016)

85. Roy, S., Cox, I.: A maximum-flow formulation of the n-camera stereo correspondence
problem. Proc. of Intl. Conf. on Computer Vision (1998)

86. Ruigang, Y., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hard-
ware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, I–211–I–217 (2003)

87. Ruigang, Y., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using
commodity graphics hardware. Proc. Pacific Conf. Computer Graphics and Applications pp.
225–234 (2002)

88. Sabihuddin, S., Islam, J., MacLean, W.: Dynamic programming approach to high frame-
rate stereo correspondence: A pipelined architecture implemented on a field programmable
gate array. Proc. Canadian Conf. Electrical and Computer Engineering pp. 001,461–001,466
(2008)

89. Safari, S., Fijany, A., Diotalevi, F., Hosseini, F.: Highly parallel and fast implementation of
stereo vision algorithms on MIMD many-core Tilera architecture. Proc. IEEE Aerospace
Conf. pp. 1–11 (2012)

90. Scharstein, D., Szeliski, R.: The Middlebury Stereo Pages. http://vision.middlebury.edu/
stereo/

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/

Architectures for Stereo Vision 611

91. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms. Intl. Journal of Computer Vision, Springer 47(1), 7–42 (2002)

92. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Proc.
IEEE Conf. Computer Vision and Pattern Recognition 1, I–195–I–202 (2003)

93. Szeliski, R.: Computer vision: Algorithms and applications. Springer, London and New York
(2011)

94. Szeliski, R., Scharstein, D.: Sampling the disparity space image. IEEE Trans. Pattern Analysis
and Machine Intelligence 26(3), 419–425 (2004)

95. Tomasi, M., Vanegas, M., Barranco, F., Daz, J., Ros, E.: Massive parallel-hardware architec-
ture for multiscale stereo, optical flow and image-structure computation. IEEE Trans. Circuits
and Systems for Video Technology 22(2), 282–294 (2012)

96. Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of
cost aggregation methods for stereo correspondence. Proc. IEEE Conf. Computer Vision and
Pattern Recognition pp. 1–8 (2008)

97. Tseng, Y.C., Chang, T.S.: Architecture design of belief propagation for real-time disparity
estimation. IEEE Trans. Circuits and Systems for Video Technology 20(11), 1555–1564
(2010)

98. Ttofis, C., Hadjitheophanous, S., Georghiades, A., Theocharides, T.: Edge-directed hardware
architecture for real-time disparity map computation. IEEE Trans. Computers PP(99), 1
(2012)

99. Ttofis, C., Theocharides, T.: Towards accurate hardware stereo correspondence: A real-time
FPGA implementation of a segmentation-based adaptive support weight algorithm. Proc.
Conf. Design, Automation & Test in Europe pp. 703–708 (2012)

100. Vaish, V., Levoy, M., Szeliski, R., Zitnick, C., Sing, B.K.: Reconstructing occluded surfaces
using synthetic apertures: Stereo, focus and robust measures. Proc. IEEE Conf. Computer
Vision and Pattern Recognition 2, 2331–2338 (2006)

101. Villalpando, C., Morfopolous, A., Matthies, L., Goldberg, S.: FPGA implementation of stereo
disparity with high throughput for mobility applications. Proc. IEEE Aerospace Conf. pp. 1–
10 (2011)

102. Weber, M., Humenberger, M., Kubinger, W.: A very fast census-based stereo matching
implementation on a graphics processing unit. Proc. IEEE Intl. Conf. Computer Vision
Workshops pp. 786–793 (2009)

103. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene
flow from sparse or dense stereo data. In: 10th European Conf. on Computer Vision, pp.
739–751. Springer-Verlag, Berlin, Heidelberg (2008)

104. Woodfill, J., Gordon, G., Buck, R.: Tyzx DeepSea high speed stereo vision system. Proc.
IEEE Conf. Computer Vision and Pattern Recognition Workshop p. 41 (2004)

105. Woodfill, J., Gordon, G., Jurasek, D., Brown, T., Buck, R.: The Tyzx DeepSea G2 vision
system, a taskable, embedded stereo camera. Proc. IEEE Conf. Computer Vision and Pattern
Recognition Workshop p. 126 (2006)

106. Woodfill, J., Herzen, B.v.: Real-time stereo vision on the PARTS reconfigurable computer.
Proc. IEEE Symp. FPGAs for Custom Computing Machines pp. 201–210 (1997)

107. Xu, Y., Chen, H., Klette, R., Liu, J., Vaudrey, T.: Belief propagation implementation using
CUDA on an Nvidia GTX 280. Proc. Advances in Artificial Intelligence 5866, 180–189
(2009)

108. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling,
stereo and flow estimation. Proc. European Conf. on Computer Vision (2014)

109. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nister, D.: Real-time global stereo matching
using hierarchical belief propagation. Proc. The British Machine Vision Conf. pp. 989–998
(2006)

110. Yunde, J., Xiaoxun, Z., Mingxiang, L., Luping: A miniature stereo vision machine (MSVM-
III) for dense disparity mapping. Proc. IEEE Intl. Conf. Pattern Recognition 1, 728–731
(2004)

612 C. Banz et al.

111. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspon-
dence. Proc. European Conf. on Computer Vision pp. 151–158 (1994)

112. Zach, C., Klaus, A., Hadwiger, M., Karner, K.: Accurate dense stereo reconstruction using
graphics hardware. Proc. EUROGRAPHICS pp. 227–234 (2003)

113. Zach, C., Sormann, M., Karner, K.: Scanline optimization for stereo on graphics hardware.
Proc. Intl. Symp. 3D Data Processing, Visualization, and Transmission pp. 512–518 (2006)

114. Zatt, B., Shafique, M., Bampi, S., Henkel, J.: Multi-level pipelined parallel hardware
architecture for high throughput motion and disparity estimation in Multiview Video Coding.
Proc. Conf. Design, Automation & Test in Europe pp. 1–6 (2011)

115. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare
image patches. Journal of Machine Learning Research (2016)

116. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral
images. Trans. Circuits Syst. Video Techn., IEEE 19, 1073–1079 (2009)

117. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. Intl. Journal of
Computer Vision, Springer 27(2), 161–195 (1998)

118. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and
Machine Intelligence 22(11), 1330–1334 (2000)

Hardware Architectures for the Fast
Fourier Transform

Mario Garrido, Fahad Qureshi, Jarmo Takala, and Oscar Gustafsson

Abstract The fast Fourier transform (FFT) is a widely used algorithm in signal
processing applications. FFT hardware architectures are designed to meet the
requirements of the most demanding applications in terms of performance, circuit
area, and/or power consumption. This chapter summarizes the research on FFT
hardware architectures by presenting the FFT algorithms, the building blocks in FFT
hardware architectures, the architectures themselves, and the bit reversal algorithm.

1 Introduction

The Fourier transform is one of the most important tools in digital signal processing.
It is used to convert continuous signals in time domain into frequency domain. For
discrete data, such as that in digital systems, the discrete Fourier transform (DFT)
is used instead. The DFT transforms a finite sequence of equally spaced samples to
a corresponding frequency domain representation as follows:

X[k] =
N−1∑
n=0

x[n]Wnk
N , k = 0, 1, . . . , N − 1, (1)

where N denotes the DFT size, x[n] is the input signal in the time domain, and X[k]
is the output signal in the frequency domain, which is defined for the frequencies

M. Garrido · O. Gustafsson
Linköping University, Linköping, Sweden
e-mail: mario.garrido.galvez@liu.se; oscar.gustafsson@liu.se

F. Qureshi (�)
Tampere University of Technology, Tampere, Finland
e-mail: fahad@tut.fi

J. Takala
Department of Pervasive Computing, Tampere University of Technology, Tampere, Finland
e-mail: jarmo.takala@tut.fi

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_17

613

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_17&domain=pdf
mailto:mario.garrido.galvez@liu.se
mailto:oscar.gustafsson@liu.se
mailto:fahad@tut.fi
mailto:jarmo.takala@tut.fi
https://doi.org/10.1007/978-3-319-91734-4_17

614 M. Garrido et al.

k ∈ [0, N − 1]. Note that both x[n] and X[k] are discrete signals. The coefficients
Wnk

N are called twiddle factors and correspond to rotations in the complex plane
defined as

Wnk
N = e−j

2π
N nk = cos

(
2π

N
nk

)
− j sin

(
2π

N
nk

)
, (2)

where j denotes the imaginary unit.
The original signal x[n] can be recovered from X[k] by calculating the inverse

discrete Fourier transform (IDFT):

x[n] = 1

N

N−1∑
k=0

X[k]Wnk
N , n = 0, 1, . . . , N − 1. (3)

The arithmetic complexity of the DFT in (1) is O(N2). However, the DFT
contains redundant operations.

The term fast Fourier transform (FFT) refers to various methods that reduce the
computational complexity of the DFT. The most popular one is the Cooley-Tukey
algorithm [16]. Section 2 discusses FFT algorithms and representations.

For the implementation of FFT hardware architectures, Sect. 3 discusses the
building blocks that they consist of, i.e., butterflies, rotators and shuffling circuits.
Later, Sect. 4 presents the FFT hardware architectures. They are divided into fully
parallel, iterative and pipelined FFTs. The outputs of FFT hardware architectures are
generally provided in bit-reversed order. Section 5 explain the bit reversal algorithm
used to sort them out. Finally, Sect. 6 summarizes the main conclusions of this
chapter.

2 FFT Algorithms

2.1 The Cooley-Tukey Algorithm

The Cooley-Tukey algorithm [16] decomposes the DFT into a set of smaller DFTs,
when N is not a prime number. Let us assume that N = N2 ·N1 and consider that n
and k are calculated as

n = n1N2 + n2, with n1 = 0, . . . , N1 − 1 and n2 = 0, . . . , N2 − 1;
k = k2N1 + k1, with k1 = 0, . . . , N1 − 1, and k2 = 0, . . . , N2 − 1.

(4)
Then, (1) can be written as

Hardware Architectures for the Fast Fourier Transform 615

X[k2N1 + k1] =
N2−1∑
n2=0

N1−1∑
n1=0

x[n1N2 + n2]W(n1N2+n2)(k2N1+k1)
N . (5)

By exploiting the periodicity of the twiddle factors, i.e., WφN2
N = W

φ
N1

, WφN1
N =

W
φ
N2

and W
φN1N2
N = 1, the equation is transformed into

X[k2N1 + k1] =
N2−1∑
n2=0

N1−1∑
n1=0

x[n1N2 + n2]Wn2k2
N2

W
n1k1
N1

W
n2k1
N , (6)

which finally results in

X[k2N1 + k1] =
N2−1∑
n2=0

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎝N1−1∑

n1=0

x[n1N2 + k1]Wn1k1
N1

⎞
⎠

︸ ︷︷ ︸
N1−point DFT

W
n2k1
N︸ ︷︷ ︸

Twiddlefactor

⎤
⎥⎥⎥⎥⎥⎦
W

n2k2
N2

︸ ︷︷ ︸
N2−point DFT

, (7)

where the N1-point and N2-point DFTs are referred to as inner and outer DFTs,
respectively. As a result, an N-point DFT is broken down into N2 DFTs of size N1
and N1 FFTs of size N2, with twiddle factor multiplications in the middle. This is
illustrated in Fig. 1 for N = 16, N2 = 8 and N1 = 2.

In general, N can be the product of several numbers, i.e., N = Nm−1 · Nm−2 ·
. . . · N0. Radix-r refers to the case in which Ni = r,∀i = 0 . . .m − 1. The radix-r
FFT is derived by expressing n and k as

n = nm−1 · rm−1 + nm−2 · rm−2 + n1 · r + n0,

ni ∈ [0, . . . , r − 1],∀i = 0, . . . ,m− 1;
k = km−1 · rm−1 + km−2 · rm−2 + k1 · r + k0,

ki ∈ [0, . . . , r − 1],∀k = 0, . . . ,m− 1. (8)

This results in m = logr N nested r-point DFTs with twiddle factors in between.
When r = 2, each nested 2-point DFT is calculated on N/2 pairs of data
and requires a total of N additions. This leads to an arithmetic complexity of
O(N logN) for the entire FFT, compared to O(N2) in the DFT in (1).

Finally, the recursive application of Cooley-Tukey principle can be done by
starting from the time domain sequence, which results in a decimation-in-time
(DIT) decomposition. In a similar fashion, the decimation-in-frequency (DIF)
decomposition is obtained by starting from the frequency sequence.

616 M. Garrido et al.

Fig. 1 Graphical representation of the Cooley-Tukey algorithm

2.2 Representation Using Flow Graphs

Figures 2 and 3 show the flow graphs of the radix-2 DIF and DIT FFT algorithms,
respectively. The numbers at the input of the graph represent the indexes of the
input sequence, x[n], whereas those at the output are the frequencies, k, of the
output signal X[k]. The flow graphs consist of a series of n stages, s ∈ {1 . . . n}.
At each stage, additions, subtractions and rotations are calculated. Additions and
subtractions come in pairs, forming the so called butterflies, which have the shape
�

�
. The upper output of the butterfly provides the sum of the inputs and the lower

part subtracts the lower input from the upper one.
Each number φ in between butterflies represents a rotation, which corresponds

to a complex multiplication by

W
φ
N = e−j

2π
N φ. (9)

Rotations by φ ∈ {0, N/4, N/2, 3N/4} are called trivial rotations, due to the
fact that they correspond to multiplications by 1,−j,−1 or j . Trivial rotations can
easily be calculated by interchanging the real and imaginary parts of the inputs
and/or changing their signs.

Finally, an index I is added to the left of the flow graph, together with its binary
representation bn−1bn−2 . . . b1b0. This index together with the stage is used to refer
to the rotations in the flow graph. For instance, the rotation with index I = 14 at
stage s = 1 in Fig. 2 is φs(I) = φ1(14) = 6. Through the chapter, the symbol

Hardware Architectures for the Fast Fourier Transform 617

Fig. 2 Flow graph of a 16-point radix-2 DIF FFT

(≡) is used to relate decimal numbers and their binary representation, e.g., I ≡
bn−1bn−2 . . . b1b0.

When the FFT size N is large, it is not feasible to represent the FFT by a flow
graph. In this case, the binary tree and the triangular matrix representations are
useful tools to represent the algorithms in a simple manner.

Note that any FFT flow graph of the same radix will look the same. The only
difference is where the twiddle factor multiplications are positioned. This can be
seen by comparing Figs. 2 and 3. Hence, all the following algorithms only differ in
the twiddle factor multiplications, although this may provide significant differences
when implemented.

2.3 Binary Tree Representation

The binary tree representation [61, 83] is a generalization of the Cooley-Tukey
algorithm. In the Cooley-Tukey algorithm, N is decomposed into a product of
factors, i.e., N = Nm−1 · Nm−2 · . . . · N0. This results in nested DFTs where each
DFT contains the previous one. Conversely, in the binary tree representation, N is
only split in two factors, i.e., N = P ·Q, which is analogous to (7). Then, both P

618 M. Garrido et al.

Fig. 3 Flow graph of a 16-point radix-2 DIT FFT

4

2
111 1

2

5

3
4

1
2

5

1
1

1
1

33
4

11

5

1
2

1
1

1

1 4
5

2

11

11

1 3
2

1 4
5

1
1

11

1 4
5

2
111 1

2

1

4 1
5

3
2 1

11

1
4 1

5

3
1 2

1

11

4 1
5

13
12

11

4 1
5

13
21

11

5

3
112 1

2

11

5

3
111 2

2

11

5

2
121 1

3

11

5

2
211 1

3

Fig. 4 Binary tree diagram of all possible algorithm for N = 32

and Q are again decomposed in two factors each. This process repeats iteratively
forming a tree in which each node is split in two unless it is a leaf node.

A binary tree diagram [61] is an effective way of understanding the difference
between FFT algorithms. For instance, Fig. 4 shows all the binary tree representa-
tions for N = 32. Note that each node has at most two branches.

In the binary tree representation, the upper node is assigned a value n to represent
the 2n-point DFT. Then, n is split into p and q , where n = p + q , P = 2p and
Q = 2q . After the first iteration, the remaining DFTs are again divided into smaller
DFTs using the same procedure, so that the value of a node is the same as the sum
of the sub-nodes.

The values of the sub-nodes can be chosen arbitrarily at each iteration. This leads
to a large number of alternatives. In general, for N = 2n, the number of N-point

Hardware Architectures for the Fast Fourier Transform 619

FFT algorithms generated by using binary trees is [83]

(2(n− 1))!
n!(n− 1)! , (10)

which comes from all the possible selections at each iteration. For a 32-point FFT,
the number of FFT algorithms according to (10) is 14, which corresponds to the
cases in Fig. 4.

The twiddle factors at each stages are directly obtained from the binary tree. This
is done by going across the binary tree from left to right. In this process, the final
leafs of the tree represented by 1 are skipped, as they correspond to radix-2 DFT
operations. For example, the sequence of numbers in Fig. 4a is 5, 4, 3, 2. Given this
sequence, the number of angles of the corresponding twiddle factors is the power
of these numbers. Thus, for this example the twiddle factors are W32, W16, W8, and
W4. This corresponds to the DIF decomposition, as it is obtained by decimating a 2-
point DFT at each iteration from the input samples towards the output frequencies.
How to generate the rotation coefficients φ for any FFT stage is described in [83].

2.4 Triangular Matrix Representation

The triangular matrix representation [24] is based on the ideas that rotations can be
moved among FFT stages. The triangular matrix representation of some typical 16-
point FFT algorithms is shown in Fig. 5. Rows are numbered as x = 1, . . . , n − 1
from top to bottom and columns as y = 1, . . . , n−1 from left to right. Each element
in row x and column y, Mxy , corresponds to a set of rotations that can be moved
through several stages. Its value is the stage where these rotations are placed, which
must be in the range x ≤ Mxy ≤ y.

a b c

Fig. 5 Triangular matrix representation of typical 16-point FFT algorithms: (a) radix-2 DIF, (b)
radix-2 DIT, (c) radix-22 DIF

620 M. Garrido et al.

Accordingly, the rotation coefficients φs(I) at any FFT stage s are calculated as

φs(I) =
∑
Mxy=s

bn−x · bn−y−1 · 2n+(x−y)−2. (11)

Note that the numbering of rows and columns differs from the original paper [24],
where the variables i = n− x and j = n− y − 1 are used instead of x and y.

By applying Eq. (11) to Fig. 5a, the rotation coefficients are obtained as

φ1(I) = b3 · b2 · 22 + b3 · b1 · 21 + b3 · b0 · 20 = b3 · [b2b1b0];
φ2(I) = b2 · b1 · 22 + b2 · b0 · 21 = b2 · [b1b00];

φ3(I) = b1 · b0 · 22 = b1 · [b000],
(12)

which correspond to the radix-2 DIF algorithm in Fig. 2. For instance, if s = 1 and
I = 14 ≡ 1110 = b3b2b1b0, then according to (12), φ1(14) = b3 · [b2b1b0] =
1 · [110] = 6. This corresponds to the rotation by 6 for s = 1 and I = 14 in Fig. 2.
The rotations for the other algorithms in Fig. 5 can be derived in the same way.

In the triangular matrix representation, the radix-2 DIF FFT is the case where all
the rotations are in the lowest possible stage, i.e., ∀x, y,Mxy = x. Analogously, the
radix-2 DIT FFT is the case where all the rotations are in the highest possible stage,
i.e., ∀x, y,Mxy = y. Finally, the radix-22 DIF FFT is the case where the rotations
of the radix-2 DIF algorithm in odd stages are moved to the next even stage, except
for those in the main diagonal, which cannot be moved.

Given that x ≤ Mxy ≤ y, each element Mxy can take y − x + 1 different
values. By multiplying all the alternatives, the total number of algorithms that are
represented by the triangular matrix as a function of n is

n−1∏
k=1

(n− k)k. (13)

This is a large number of algorithms that includes, among others, all the algorithms
representable by a binary tree.

2.5 The Radix in FFTs

The concept of radix has been used since the beginning of the FFT. It serves to
distinguish different FFT algorithms. The radix is represented with a base and an
exponent, i.e., r = ρα . The base ρ indicates the size of the butterflies, i.e., the
smallest DFT size that is used for the decomposition. Both base and exponent
together provide the rotations at the FFT stages.

The first radices to be considered were radix-2, radix-4 and higher powers of two.
These algorithms can be derived by the Cooley-Tukey algorithms as in (8).

Hardware Architectures for the Fast Fourier Transform 621

Split radix [20] was also proposed in the early days. It combines radix-2 and
radix-4 into an L-shaped butterfly. Split radix is known for having the least number
of non-trivial rotations among FFT algorithms. However, it is seldom used in FFT
hardware architectures due to the irregularity in the distribution of rotation.

Some years later, radix-22 was introduced for FFT hardware architectures [45].
From the algorithmic point of view, radix-22 is the same algorithm as radix-4 as both
carry out exactly the same arithmetic operations [24]. However, both radices lead to
different FFT architectures, due to the fact that radix-22 groups the calculations into
2-point butterflies and radix-4 groups them into 4-point butterflies.

The binary tree decomposition provides radix-2k, for k ∈ N. Radix-2k is obtained
when any node v of the binary tree is split into k and v − k, being k constant.
Notice that the concept of radix is not unique any more, as radix-2k may refer to
different trees. Furthermore, many FFT algorithms based on the binary tree cannot
be described by a single radix, but by a mixed radix, such as radix-24,23. As a result,
many algorithms are better referred to by their tree than by their radix. The same
happens to the triangular matrix representation, where there are even algorithms
that cannot be described by a radix.

2.6 Non-power-of-two and Mixed-Radix FFTs

Most of the FFT designs consider FFT sizes that are powers of two and the rest of the
chapter focuses on them. However, there are cases when N is a non-power-of-two
and/or is a combination of powers of different radices [11, 88, 105, 106, 111, 112].

When N is a power of the radix, i.e., N = rk , the Cooley-Tukey algorithm is the
most suitable approach, even when it is a non-power-of-two. When N is a product
of powers of coprime numbers, i.e.,

N =
∏
i

r
ki
i , (14)

where ri and rj are coprime ∀i �= j , then the Cooley-Tukey algorithm leads
to twiddle factors between blocks of different radices. Conversely, the twiddle
factors in between those blocks do not appear when using the prime factor
algorithm (PFA) [6, 38]. Therefore, the PFA algorithm is recommended under these
circumstances.

3 Building Blocks for FFT Hardware Architectures

FFT hardware architectures consist of butterflies, rotators and circuits for data
shuffling. In the architectures, butterflies/rotators may be used to calculate one or
several of the butterflies/rotations of the flow graph. Circuits for data shuffling are
used to generate the data order to the butterflies and rotators in the architecture.

622 M. Garrido et al.

3.1 Butterflies

Butterflies in FFT architectures are characterized by their radix. A radix-ρ butterfly
is a circuit with ρ inputs and ρ outputs that calculates an ρ-point DFT. Therefore, it
corresponds to a direct implementation of the ρ-point DFT flow graph, where each
addition/rotation in the flow graph is translated into an adder/rotator.

Radix-ρ butterflies are used in radix-ρα FFTs, α ≥ 0. The most common radices
for butterflies are radix-2 and radix-4, which cover all radix-2k and radix-4k FFTs.
Radix-2 and radix-4 butterflies have the advantage that they only consist of adders,
and no rotator is needed. In case of radix-4, its trivial rotation by −j can be
embedded by changing the routing of the signals and the signs in the butterfly
operations. Conversely, higher-radix butterflies include non-trivial rotators, which
increases their cost.

3.2 Rotators

In a digital system with complex signals, a rotation by an angle α can be described as

[
X

Y

]
=
[
C −S
S C

] [
x

y

]
, (15)

where X + jY is the result of the rotation and C, S ∈ Z are the real and imaginary
part of the rotation coefficient C + jS.

Due the finite word length effects, the rotation by C + jS provides an approxi-
mation of the angle α with a certain error, being

C = R(cosα + εc);
S = R(sin α + εs),

(16)

where εc and εs are the relative approximation errors of the cosine and sine
components, respectively, and R is the magnitude. The approximation error for a
given rotation can then be calculated as [30]

ε =
√
ε2
c + ε2

s . (17)

Here, it should be noted that although it is common that R is a power-of-two, any
magnitude can be used for the rotators, as long as the magnitude is the same for all
the rotators at the same FFT stage [34].

It is often common to map the angle range into one or two quadrants. In this
way, the rotators can often be simplified at the cost of a W2 or W4 rotator at the end.
Which in turn sometimes may be integrated with the preceding butterfly as discussed
above. Hence, in the following, the quadrant discussion is sometimes neglected.

Hardware Architectures for the Fast Fourier Transform 623

Fig. 6 Twiddle factors W4, W8 and W16

The sine and cosine values are typically either stored in a memory or computed
using an approximation, e.g., one of the methods discussed in the chapter “Arith-
metic” [44]. The size of the sine and cosine memory can be reduced by utilizing
octave symmetry, i.e.,

sin (α) = − cos
(
α + π

2

)
cos (α) = sin

(
α + π

2

) . (18)

In this way, only sin and cos values for inputs between 0 and π
4 must be stored or

approximated.
Rotators in FFT hardware architecture usually calculate rotations by different

angles at different time instants. These rotation angles are part of a the set of
rotations

W
φ
L = e−j

2π
L
φ, φ ∈ {0, 1, . . . , L− 1}, (19)

where L is the resolution of the twiddle factor. Note that WL refers to the entire set
of L angles, whereas Wφ

L refers to a single angle which is the φ-th angle of the set.
Any twiddle factor WL divides the circumference in L equal parts and it contains the
angles that create these divisions. The twiddle factors W4, W8 and W16 are shown
in Fig. 6.

The number of different rotation angles that a rotator has to compute depends on
the selected algorithm and architecture. When this number is large, general rotators
are used. When the number of angles is small, the rotators may be simplified. Next
sections describe different techniques to implement general and simplified rotators.
They are mainly based on the use of multipliers or the CORDIC algorithm. An
overview of techniques to implement rotators can be found in [73].

624 M. Garrido et al.

a b

c

Fig. 7 Multiplier-based rotators. (a) Standard complex multiplier using four multiplications and
two additions based on (20). (b) Complex multiplier using three multiplications and five additions
based on (21) (three additions if the gray ones are replaced by memories). (c) Lifting-based rotator

3.2.1 Multiplier-Based General Rotators

The most straightforward approach is the direct implementation of Eq. (15), i.e.,

X = xC − yS;
Y = xS + yC.

(20)

This requires four real-valued multipliers and two real-valued additions, as shown
in Fig. 7a.

C and S are generally obtained as C = �R cosα� and S = �R sin α�, where
�·� represents a rounding operation and being R a power of 2. Allowing R to be
a non-power-of-two, widens the search for efficient rotation coefficients and the
approximation errors can be reduced [30].

Other alternatives are based on rewriting (20) [101] to reduced the number of
multipliers from four to three. Among them, the more interesting ones are

X = x(C + S)− (x + y)S;
Y = y(C − S)+ (x + y)S,

(21)

and

X = (x + y)C − y(C + S);
Y = (x + y)C − x(C − S).

(22)

Both cases include a common term in the equations for X and Y that only need to
be calculated once. Thus, when C + S and C − S are precomputed, these cases
require three real-valued multiplications and three real-valued additions. Otherwise,
they require three real-valued multiplications and five real-valued additions. The
structure for (21) is shown in Fig. 7b.

Hardware Architectures for the Fast Fourier Transform 625

Lifting-based rotators [8, 41, 79] are another way to obtain low-complexity
rotations. There exist several different ways to rewrite (15) using lifting, one being

[
X

Y

]
=
[

1 D

0 1

] [
1 0
S 1

] [
1 D

0 1

] [
x

y

]
, (23)

where S = sin(α) and D = 1−cos(α)
sin(α) = tan(α/2). This requires three real-

valued multiplications and three real-valued additions as shown in Fig. 7c. The other
three standard alternatives have a similar form, but differ in how the coefficient
corresponding to D is derived. Based on the angle, a structure can be selected to

make sure that |D| ≤ 1−cos(π
4)

sin(π
4)

≈ 0.414. This avoids the large magnitudes obtained

for certain angles, as in the example structure D →∞ when α → π .

3.2.2 Multi-Stage General Rotators

As opposed to the multiplier-based rotators in the previous section, multi-stage
rotators perform only a part of the total rotation in each stage. Step k of such a rotator
can rotate with a set of angles, typically δkαk , where δk ∈ {−1, 1} or δk ∈ {−1, 0, 1},
i.e., a fixed angle, αk , can be rotated in either direction or rotated in either direction
or no rotation at all. Based on the remaining angle to be rotated, zk , δk is determined
and the remaining angle after the rotation, zk+1, is updated.

The general structure of a rotation stage includes the calculation of xk+1, yk+1
and zk+1 and is shown in Fig. 8. Multi-stage rotators mainly involve the CORDIC
algorithm and its variations.

The total angle of rotation is then

α =
M∑
k=0

δkαk + εφ, (24)

where εφ is the phase error of the approximation.
The available techniques optimize for different goals. For example, the CORDIC

algorithm initially discussed, selects the angle of rotation such that the rotator
becomes simple. A later discussed technique instead selects the angles to be suited
for FFT computations with length power-of-two, i.e., the angle resolution is on a
grid with power-of-two resolution.

Fig. 8 General rotation stage
in multi-stage rotator

626 M. Garrido et al.

In the CORDIC algorithm [97], discussed from a general perspective in the
chapter “Arithmetic” [44], each stage multiply with the coefficients Ck + jSk =
2k + jδk, where δk ∈ {−1, 1}. The corresponding angles are then

αk = tan−1
(

2−k
)
. (25)

These angles have the property that any angle α can be expressed as a sum
of them. This enables the CORDIC algorithm to rotate by any rotation angle.
Furthermore, due to the simplicity of the coefficients Ck + jSk , each rotation stage
is calculated with only 2 adders/subtracters as

xk+1 = xkCk − ykSk = 2kxk − δkyk;
yk+1 = xkSk + ykCk = 2kyk + δkxk.

(26)

According to this, the scaling of each rotation stage is

Rk =
√
C2
k + S2

k = Ck

√
1+ (Sk/Ck)2 = Ck

√
1+ tan(αk)2 = 2k

cos(αk)
. (27)

The term 2k is generally compensated by removing the k LSBs after each rotation
stage. The product of the scalings by 1/ cos(αk) at all the stages produces a total
scaling of approximately 1.64, which can be compensated by multiplying the output
of the CORDIC rotator by

K =
M∏
k=0

cos(αk) =
M∏
k=0

cos(tan−1(2−k)) = 0.6073. (28)

The CORDIC assumes that the initial angle z0 = α is in the interval [−90◦, 90◦].
Otherwise, this is easily achieved by a trivial rotation by 180◦. Then, direction of
the rotations δk are calculated for k = 0, . . . ,M according to

δk = −sign(zk);
zk+1 = zk + δkαk,

(29)

where zk is the remainder rotation angle at the input of stage k, zM+1 = εφ , and
sign(η) = 1 if η ≥ 0 and sign(η) = −1 if η < 0.

There are multiple variations of the CORDIC algorithm. Some of the main
modifications to the CORDIC algorithms are introduced next, and surveys on
CORDIC techniques can be found in [2, 76]. For some of the mentioned approaches
it is not straightforward to determine the rotation parameters at run-time. Hence,
for these methods it is required to perform the design offline and store the control
signals in memory rather than the angles. This approach is naturally possible for all
techniques, and, as the sequence of angles is often known beforehand, most likely
advantageous compared to storing the angle values.

Hardware Architectures for the Fast Fourier Transform 627

The redundant CORDIC [63, 91] considers that δk ∈ {−1, 0, 1} [91] or even
δk ∈ {−2,−1, 0, 1, 2} [63]. This enables several rotation angles at each CORDIC
stage. However, the scaling for different angles is different, which demands a
specific circuit for scaling compensation. The extended elementary angle set
(EEAS) CORDIC [104] and the mixed-scaling-rotation (MSR) CORDIC [66, 81]
also follow the idea of increasing the number of rotation angles per rotation stage.

The memoryless CORDIC [27] removes the need for rotation memory to store
the FFT rotation angles. Instead, the control signals δk are generated from a counter.
This is advantageous for large FFTs, which have stages with a large number of
rotations.

The modified vector rotational (MRV) CORDIC [103] allows for skipping
and repeating CORDIC stages, whereas the hybrid CORDIC [47, 89] divides the
rotations into a coarse and a fine rotations. These techniques reduce the number of
stages and, therefore, the latency of the CORDIC.

The CORDIC II [33] proposes new types of rotation stages: Friend angles,
uniformly scaled redundant (USR) CORDIC and nanorotations. They allow for both
a low latency and a small number of adders.

Finally, the base-3 rotators [57] consider an elementary angle set that is different
to that of the CORDIC. All the rotations are generated by combining a small set
of FFT angles. This set fits better the rotation angles of the FFT than that of the
CORDIC, which results in a reduction in the rotation error, number of adders and
latency of the circuit.

3.2.3 Simplified Multiplier-Based Rotators

Naturally, the real-valued multipliers in Sect. 3.2.1 can be implemented using shift-
and-add multiplication, as discussed in the chapter “Arithmetic” [44]. This is
specially useful when the rotator only needs to rotate by a single angle.

Initially, consider a rotation by π
4 . As sin

(
π
4

) = cos
(
π
4

)
only one multiplication

coefficient is required for each input (or output). Hence, either each input is
multiplied by sin

(
π
4

)
and then the results are added and subtracted, as shown in

Fig. 9a, or the inputs are first added and subtracted and then multiplied by sin
(
π
4

)
,

as shown in shown in Fig. 9b. The constant multiplication can be implemented
using a optimal single constant multiplier from [42], while the best shift-and-add
approximation with a given number of additions for the exact coefficient sin

(
π
4

)
can be found using the approach in [43].

For a general angle, the rotator shown in Fig. 7a can be used as a starting point.
Now, both the multipliers sharing the same input can be simultaneously realized
using multiple constant multiplication (MCM) techniques. This is illustrated in
Fig. 10a, where the dashed box indicates the two multipliers realized using MCM.
An identical MCM block is used for the other input. General MCM algorithms
include [40, 98], while the algorithm in [18] is specifically tailored for two constants.
An alternative view of the problem is to implement a sum-of-product block for
the two multipliers going to the same output, as illustrated in Fig. 10b. However,

628 M. Garrido et al.

Fig. 9 Single constant
rotations by π/4. (a)
Multiplication followed by
addition. (b) Addition
followed by multiplication

a b

Fig. 10 Single constant
rotations by a general angle.
(a) Rotation implemented by
using two MCM blocks as
indicated by the dashed box.
(b) Rotation implemented
using two sum-of-product
blocks as indicated by the
dashed box

a b

as the MCM and the sum-of-product problems are dual to each other, exactly the
same number of adders are expected. A third option is to consider the problem as a
constant matrix multiplication problem [5, 60].

For the rotators in Fig. 7b, c, no sharing can be done between the multipliers.
However, due to the initially reduced complexity of the rotator, it may still happen
that the total complexity is reduced. It should also be noted that the computations of
the lifting-based structure in (23) can be merged to one matrix.

[
X

Y

]
=
[
E F

S E

] [
x

y

]
, (30)

where E = 1 + DS and F = D(2 + SD). This forms another option to realize in
any of the ways mentioned above.

When more than one angle is considered it is still possible to use shift-and-add
techniques. Consider a W8 rotator with indices φ ∈ {0, 1}. For φ = 0, the inputs are
simply bypassed to the outputs. For φ = 1 one of the approaches in Fig. 9 can be
used. Then, the correct rotation result is selected by using a multiplexer, as shown
in Fig. 11, where the π

4 -rotator in Fig. 9a is used.
For several non-trivial angles, the naïve approach is to implement all different

coefficients by using shift-and-add as an MCM problem and then select the correct
angle by a multiplexer. However, the multiplexers can be merged with the shift-and-
add network to significantly reduce the complexity [77, 96].

Hardware Architectures for the Fast Fourier Transform 629

Fig. 11 W8 rotator based on
Fig. 9a

Of special interest is to note that it may be possible to find coefficients with longer
word length, but with the same or smaller number of adders [34, 43]. Also, as earlier
discussed, the magnitude may be selected as a non-power-of-two to further simplify
the computations [34].

3.2.4 Simplified Multi-Stage Rotators

All the techniques mentioned in Sect. 3.2.2 are based on simple rotator stages.
Clearly, for a constant coefficient the best selection of stages can be found. This
has been explicitly proposed for CORDIC-based rotators [48, 75], although it can
be easily generalized to arbitrary types of stages. If several angles are to be realized
at different time instances it is of benefit having similar structure for the stages such
that multiplexers can be easily introduced.

3.2.5 Rotators Based on Trigonometric Identities

Approaches based on trigonometrical identities [78, 84] search for expressions that
are shared among different rotation angles. As a result, a simplified version of
the rotator is obtained, which includes a reduced number of adders, multiplexers
and multiplications by real constants. For instance, the twiddle factor W16 can be
reduced to constant multiplications by cos(π/8) and/or sin(π/8) [84].

3.3 Shuffling Circuits

The purpose of the shuffling circuits in FFT architectures is to provide the data in
the correct order needed for FFT stages. At each FFT stage, butterflies operate on
pairs of data whose index I differ in bn−s [29]. This can be observed in Fig. 2.
For instance, the index of pairs of inputs to butterflies in stage 1 differs in bn−s =
b4−1 = b3. As I ≡ b3b2b1b0, I = 0 ≡ 0000 and I = 8 ≡ 1000 differ in b3 and are
processed together in a butterfly at the first stage.

As different FFT stages demand different data orders, circuits for data permuta-
tion need to be included in between stages. These circuits have been studied by using
life-time analysis and register allocation [74, 80], Kronecker products [39, 52–54,
82, 87, 92, 93] and bit-dimension permutations [21–23]. The following explanation
is based on the latter, and follows the theory in [23].

630 M. Garrido et al.

a b

c

Fig. 12 Shuffling circuits. (a) Serial-serial permutation. (b) Serial-parallel permutation. (c)
Dataflow of the serial-parallel permutation

Bit-dimension permutations are permutations on a group of 2n data defined by a
permutation of the n bits that represent the index of those data in binary. In FFTs,
each stage processes N = 2n data that we index with I = bn−1 . . . b1b0 as in
Fig. 2. For these data, we can define their position [23]. For instance, P ≡ b0b3b2b1
defines a specific data order, where each index I ≡ b3b2b1b0 is in position P. Thus,
I = 8 ≡ 1000 is in P ≡ 0100. For parallel data, a vertical bar separates serial
and parallel data, e.g., P ≡ b0b3b2|b1. The first part of the position until the bar
indicates the time of arrival, which is defined as the relative time to the arrival of the
first sample to a given point of the circuit. The second part after the bar indicates the
terminal of arrival. The number of parallel dimensions p corresponds to the number
of bits after the bar. Thus, for P ≡ b0b3b2|b1, the number of parallel dimensions is
p = 1 and I = 8 ≡ 1000 is in P = 010|0, i.e., it arrives at terminal T (P) = 0 at
time t (P) = 2 ≡ 010.

Different positions define different orders, and the data order is changed when
permuting the bits of the position. This is achieved by the shuffling circuits in FFT
architectures. Figure 12 shows the main shuffling circuits used in FFT hardware
architectures.

The circuit in Fig. 12a is used to calculate a serial-serial bit-dimension permuta-
tion. It consists of a buffer of length L and two multiplexers. This circuit is used to
change the position of pairs of data separated by L clock cycles. This is done when
one of the data is at the input of the circuit and the other one is at the output of the
buffer. Then S = 0 is selected so that the position change. Otherwise, when S = 1
data passes through the buffer maintaining the order.

Hardware Architectures for the Fast Fourier Transform 631

The length of the buffer defines the bit-dimension permutation that is carried
out. If xn−1 is the first bit from the left and x0 is the last one, then a serial-serial
permutation that interchanges xj and xk, j > k ≥ p has a buffer length [23]

L = (2j − 2k)/2p. (31)

The circuit in Fig. 12b carries out a serial-parallel permutation. Figure 12c shows
how it works: The groups of data A, B, C and D have L data in series each. First,
the L data A and C arrive to the circuit at the upper and lower inputs, respectively.
Then the L data B and D arrive. The circuit first delays the lower data, then it swaps
the groups B and C, and finally it delays the upper part. The result is that data in
groups B and C are interchanged.

The length of the buffers for interchanging xj and xk, j ≥ p > k is [23]

L = 2j−p. (32)

Finally, parallel-parallel permutations interchange parallel data flows. This does
not require any hardware, as it can be hard wired.

4 FFT Hardware Architectures

There are three main types of FFT hardware architectures: Pipelined, iterative and
fully parallel. Next section discusses when to choose each type and the following
sections describe the different types.

4.1 Architecture Selection

Table 1 classifies the types of FFT hardware architectures in terms of the input data
flow and the number of parallel samples, P . The higher P , the higher the throughput
and also the larger the area of the circuit.

Iterative FFT hardware architectures loads data into a memory, then processes
them and finally outputs them. During the processing, new data cannot be loaded.
Therefore, iterative FFT architectures are suitable for processing data bursts.

Table 1 FFT architecture
selection

FFT architecture type Data flow P

Iterative Burst ≥1

Serial pipelined Continuous flow 1

Parallel pipelined Continuous flow >1

Fully parallel Continuous flow N

632 M. Garrido et al.

The other architectures process data in a continuous flow. The difference among
them is the parallelization P . The selection of the architecture depends on the
expected performance. The throughput is calculated as Th = P · fclk where fclk
is the clock frequency of the system and P is generally a power of 2. Thus, if the
minimum throughput that the system must achieve is Thmin, then P is obtained as

P = 2
⌈

log2 (Thmin/fclk)
⌉
. (33)

4.2 Fully Parallel FFT

Fully parallel FFT architectures correspond to the direct implementation of the
FFT flow graph, i.e., each multiplication/addition in the flow graph is implemented
by a separated multiplier/adder. Therefore, the number of hardware components
is of order O(N logN). Fully parallel FFT architectures offer the maximum
parallelization of the FFT algorithm. As a consequence, they provide the maximum
throughput and the minimum latency among FFT architectures.

The implementation of rotators as shift-and-add and the selection of the FFT
algorithm play an important role in the design of fully parallel FFTs. As each rotator
calculates a rotation by a single angle, it is beneficial to use simplified rotators.
Complementary to this, the selection of the FFT algorithms determines the number
of non-trivial rotations in the fully parallel FFT. Therefore, algorithms with a small
number of non-trivial rotations lead to more hardware-efficient implementations.

4.3 Iterative FFT Architectures

Iterative FFT architectures [15, 35, 46, 49, 55, 71, 72, 85, 93, 95] are also called
memory-based or in-place FFT architectures. We suggest to call them iterative, as
this is the term that reflects their nature better. Although the term memory-based is
widely used, we prefer to avoid it due to the facts that non-iterative FFTs may also
use memories, and iterative FFTs may use delays instead of memories.

Iterative FFT architectures generally consist of a memory or bank of data
memories. Data are read from memory, processed by butterflies and rotators, and
stored again in memory. This process repeats iteratively until all the stages of the
FFT algorithm are calculated. The advantage of iterative FFTs is the reduction in the
number of butterflies and rotators, as they are reused for different stages of the FFT.

A simple iterative FFT architecture is shown in Fig. 13. It consists of a memory
and a processing element (PE), which computes the butterfly and rotation. As seen in
Fig. 13, after every iteration data are stored in memory so it is necessary to compute
whole FFT before it receives new samples. Thus, the memory-based architecture
is unable to compute the FFT when data arrives continuously at the input. For a

Hardware Architectures for the Fast Fourier Transform 633

Fig. 13 Iterative
(memory-based) FFT
architecture

continuous flow, the iterative FFT requires additional memory to store the incoming
data while the FFT is being calculated. If the processing time is longer than the time
between FFTs, a larger processing element is also needed in order to handle the
data flow.

Considering that the processing element is a radix-r butterfly and a set of rotators,
the number of iterations of an iterative FFT architecture is calculated as

It = log2 N

log2 r
= n

log2 r
, (34)

and the number of clock cycles to process each iteration is N/r , which leads to a
total processing time of

Tproc = N log2 N

r log2 r
. (35)

The loading time depends on the FFT size and on the number of input samples that
are loaded in parallel to the memory bank:

Tload = N

P
. (36)

When reading output data from the memories and writing the new input data are
done simultaneously, the latency of the iterative FFT in clock cycles is

Lat = Tload + Tproc = N

P
+ N log2 N

r log2 r
, (37)

and, as N samples are processed every Lat clock cycles, the throughput in samples
per clock cycle is

Th = N

Lat
= rP

r + P
log2 N

log2 r

. (38)

To increase the throughput and decrease the latency in iterative FFT architectures,
high-radix processing elements are used. For instance, radix-16 is used in [49].
However, this also increases the amount of hardware of the FFT. Therefore, there is
a trade-off between performance and hardware complexity.

634 M. Garrido et al.

The highest degree of parallelization for iterative FFT architectures consists in
calculating simultaneously all the operations of the same stage of the FFT. This
is done by the so called column FFT [3, 90], which computes the FFT by means
of a column of processing elements composed of butterflies and rotators.. This
architecture allows fast computation of the FFT, but requires a large number of
hardware components, being the number of butterflies and rotators of order O(N).

Finally, the radix-r butterfly in the PE processes r samples in parallel. Thus, r
samples must be read from and written to memory each clock cycle. This requires
to divide the memory into r memory banks that are accessed simultaneously.
Furthermore, data must be written in memory in the same addresses that are read.
This demands a conflict-free access strategy. Such memory organization can be
studied from [15, 35, 46, 49, 55, 71, 72, 85, 93, 95].

4.4 Pipelined FFT Architectures

Pipelined FFT architectures [1, 13, 14, 17, 23, 25, 26, 29, 31, 32, 36, 45, 51, 58, 62,
64, 65, 67–69, 86, 94, 99, 107–109] consist of a set of n = logρ N stages connected
in series, where ρ is the base of the radix r = ρα . In a pipelined FFT, each stage of
the architecture computes one stage of the FFT algorithm. The main advantage of
pipelined architectures is that they process a continuous flow of data, with a good
trade-off between performance and resources.

There are three main types of pipelined FFT architectures: feedback (FB),
feedforward (FF) and serial commutator (SC). First, feedback architectures [13,
14, 17, 26, 45, 62, 64, 68, 69, 86, 94, 99, 107, 109] are characterized by their
feedback loops, i.e., some outputs of the butterflies are fed back to the memories at
the same stage. Feedback architectures are divided into single-path delay feedback
(SDF) [17, 26, 45, 86, 109], which process a continuous flow of one sample per clock
cycle, and multi-path delay feedback (MDF) [13, 14, 62, 64, 68, 69, 94, 99, 107],
which process several samples in parallel. Second, feedforward architectures [1,
9, 10, 17, 25, 29, 31, 36, 45, 51, 58, 70, 86, 108] do not have feedback loops and
each stage passes the processed data to the next stage. Single-delay commutator
(SDC) FFTs are used for serial data [9, 10, 17, 70] and, multi-path delay commutator
(MDC) FFTs [1, 25, 29, 31, 36, 45, 51, 58, 86, 108] are used to process several data
in parallel. Finally, SC FFT architectures [32] are characterized by the use of circuits
for bit-dimension permutation of serial data.

Pipelined FFT architectures can also be classified into serial pipelined and
parallel pipelined FFT architectures. Next sections use this classification, which
allows for comparing the hardware resources of FFTs with the same performance.

Hardware Architectures for the Fast Fourier Transform 635

Fig. 14 64-Point SDF FFT architecture

Table 2 Twiddle factors of a
64-point DIF FFT for
different radices

FFT stage

FFT algorithm 1 2 3 4 5

Radix-2 DIF W64 W32 W16 W8 W4

Radix-22 DIF W4 W64 W4 W16 W4

Radix-23 DIF W4 W8 W64 W4 W8

Radix-24 DIF W4 W64 W4 W16 W4

Fig. 15 Internal structure of
a SDF stage

4.4.1 Serial Pipelined FFT Architectures

Serial pipelined FFT architectures consists of SDF, SDC and SC FFT architectures.
These architectures are characterized by their relatively low number of components
(adders, rotators and memory) and a throughput of 1 sample per clock cycle, which
allows for high data rates of MSamples/s.

An example of SDF FFT architecture is shown in Fig. 14 for N = 64. It
consists of n = log2 N stages with radix-2 butterflies (R2), rotators and buffers.
This architecture can implement radix-2k FFT algorithms, including radix-2. The
difference among FFT algorithms is reflected in the rotations calculated at each
stage. Table 2 shows the twiddle factors for typical DIF algorithms. Note that W4
corresponds to trivial rotations, which leads to simple rotators. Thus, the complexity
of radices 22, 23 and 24 is smaller than that of radix-2.

The twiddle factors for DIT algorithms are the same as DIF ones, where the
twiddle factor at stage s in the DIT case corresponds to that one in stage n− s in the
DIF case.

The internal structure of a SDF stage is shown in Fig. 15. It consists of a buffer,
a radix-2 butterfly, two multiplexers, a rotator and eventually its rotation memory.

The buffer at stage s has length

Ls = 2n−s . (39)

636 M. Garrido et al.

The reason is that Ls input data are loaded to the buffer, causing a delay of those
data. After Ls clock cycles, the output of the buffer is processed in the butterfly
together with the input data for Ls clock cycles. During these clock cycles, one
output of the butterfly is sent to the rotator and the other output of the butterfly is
fed back to the buffer. Later, the values that go through the buffer are sent to the
rotator, while a new sequence is loaded to the buffer. Therefore, the buffer is reused
for inputting and outputting data.

This data management can be related to the data flow of the FFT algorithm: If
we consider data arriving in series from top to bottom in the data flow of Fig. 2
then, at each stage, groups of Ls data must be delayed Ls clock cycles. This makes
them arrive to the input of the butterfly at the same time as the data that they have
to be operated with. For instance, if sample x[0] at stage s = 1 is delayed Ls =
2n−s = 24−1 = 8 clock cycles, then it may be input to the butterfly together with
x[8]. After the butterfly calculation, data are ordered in series again by delaying the
lowest output of the butterfly Ls clock cycles.

In terms of hardware components, the radix-2k SDF FFT requires one butterfly
per stage, which results in 2 log2 N complex adders, a total memory of N − 1,
which is the sum of all the buffer lengths, and a number of rotators that depends on
the algorithm itself.

Figure 16 shows a 64-point radix-4 SDF FFT architecture. In this case, the
number of stages is logρ N = log4 64 = 3. The data management is analogous
to the radix-2k SDF FFT: Data are delayed so that all 4 data into a butterfly arrive at
the same clock cycle.

At each stage, the radix-4 butterfly requires 8 complex adders, leading to a total of
8(log4 N) complex adders for the entire FFT. For the data, radix-4 uses 3 memories
of size 4n−s at stage s, which leads to a total FFT memory of N − 1.

The second type of serial FFT architectures is SDC [9, 10, 17, 70]. It is based on
separating the data stream in two parallel data streams with the real and imaginary
parts of the samples, respectively. An explanation of radix-2k SDC and SDF
architectures can be found in [17]. Generally, SDF FFTs are preferred to SDC ones,
due to the larger data memory in SDC FFT architectures.

Fig. 16 64-Point radix-4 SDF FFT architecture

Hardware Architectures for the Fast Fourier Transform 637

Fig. 17 16-Point radix-2 DIF SC FFT architecture

Fig. 18 Data management of the 16-point radix-2 DIF SC FFT

The third type of serial FFT architectures is SC [32]. Figure 17 shows a 16-point
DIF serial commutator FFT. It uses circuits for bit-dimension permutation of serial
data, which were described in Sect. 3.3.

The SC FFT is based on the idea of placing in consecutive clock cycles pairs of
data that must be processed in the butterflies. Figure 18 shows the data management
of the SC FFT in Fig. 17. The last column in Fig. 18 shows the frequencies k of
X[k]. The rest of the numbers represent the data index I according to the definition
in Fig. 2. The order of arrival to each FFT stage is from top to bottom. Therefore,
x[0] and x[8] are the first and second inputs to the first stage, respectively. Butterflies
operate on consecutive data. This allows for calculating the butterflies in two clock
cycles, which halves the hardware complexity with respect to SDF FFTs. Note that
the architecture in Fig. 17 uses half-butterflies (1/2 R2) instead of (R2). Rotators
are also calculated in two clock cycles and its hardware is halved. The shuffling
circuits in Fig. 17 delay three, one, and seven clock cycles, respectively. This can be
observed in Fig. 18, where data that are exchanged are separated these numbers of
clock cycles at the corresponding stages. Further details are shown in [32].

638 M. Garrido et al.

Table 3 Comparison of pipelined serial FFT architectures

Area Performance

Pipelined Complex Complex Complex Latency Throughput

architecture rotators adders sample memory (cycles) (samples/cycle)

Radix-2
SDF [45]

2(log4 N − 1) 4(log4 N) N N 1

SDF
Radix-2 [109]

log4 N − 1 2(log4 N) 4N/3 4N/3 1

SDF
Radix-4 [19, 86]

log4 N − 1 8(log4 N) N N 1

SDF
Radix-22 [45]

log4 N − 1 4(log4 N) N N 1

SDF
Split-radix [110]

log4 N − 1 4(log4 N) N N 1

SDC
Radix-2 [9, 10]

2(log4 N − 1) 2(log4 N) 3N/2 3N/2 1

SDC
Radix-2 [70]

2(log4 N − 1) 2(log4 N) 3N/2 3N/2 1

SDC Radix-4 [4] log4 N − 1 3(log4 N) 2N N 1

SDC-SDF
Radix-2 [100]

log4 N − 1 2(log4 N)+ 1 3N/2 3N/2 1

SC Radix-2 [32] log4 N − 1 2(log4 N) N N 1

Table 3 compares serial pipelined N-point FFT architectures. The table shows
the trade-off between area and performance. Area is measured in terms of the
number of complex rotators, adders and memory addresses, whereas performance
is represented by throughput and latency. The throughput is 1 sample per clock
cycle for all the architectures, which makes them comparable in terms of hardware
resources.

As can be observed in the table, the order of magnitude of all parameters is the
same for all architectures. The number of rotators and adders has order O(logN)

and the memory has order O(N). For large FFTs, the data memory takes up most of
the area of the circuit, so it is preferable to use an architecture with a small memory.
For small N , most of the FFT area is due to rotators, whose area is always larger
than the area of the adders.

4.4.2 Parallel Pipelined FFT Architectures

This section discusses parallel FFT architectures, i.e., MDF and MDC. These
architectures are characterized by their high throughputs. They can process P

parallel samples in continuous flow and achieve a throughput of Th = P · fclk,
reaching rates of GSamples/s.

MDF FFT architectures [13, 14, 62, 64, 68, 69, 94, 99, 102, 107] consists of
multiple SDF paths in parallel. Thus, they work in a similar way as SDF FFT

Hardware Architectures for the Fast Fourier Transform 639

Fig. 19 16-Point 2-parallel radix-2 DIF MDC FFT architecture

Fig. 20 16-Point 4-parallel radix-22 MDC FFT

architectures. The only difference is that the parallel SDF paths are interconnected
either at some intermediate stages [102] or in the last stages.

MDC FFT architectures [1, 25, 29, 31, 36, 45, 51, 58, 86, 108] forward data to
the next stage instead of feeding it back to the buffer of the same stage. Figure 19
shows a 16-point 2-parallel radix-2 DIF MDC FFT architecture. It consists of radix-
2 butterflies, rotators and shuffling circuits for serial-parallel permutations. This
architecture processes 2 samples per clock cycle in a continuous flow.

Higher throughput is achieved by increasing the parallelization. Figure 20 shows
a 16-point 4-parallel radix-22 feedforward architecture. This architecture processes
4 samples per clock cycle in a continuous flow.

Table 4 compares parallel pipelined FFT hardware architectures. The architec-
tures are classified into 4-parallel and 8-parallel ones. The table includes the number
of adders and rotators. W16 and W8 rotators are separated from general rotators due
to its lower complexity. The number of complex adders is related to the architecture
type: MDC FFTs have 100% utilization of butterflies and usually require less adders
than MDF FFTs. The amount and complexity of the rotators depend on the radix
and on the FFT size. Radices-24 and 23 are usually the best options. They achieve
the least number of general rotators with some overhead of W16 and W8 rotators.
New approaches focus on reducing the amount rotators in parallel pipelined FFT
architectures even further [31]. Finally, for most parallel pipelined FFT architectures
the total data memory size is N − P .

640 M. Garrido et al.

Table 4 Comparison of parallel pipelined FFT architectures

Area

Pipelined Complex Rotators
architecture adders General W16 W8

4-Parallel architectures

R2
MDC, [36]

4(log2 N)+ 4 2(log2 N)− 4 0 0

R4
MDC, [86]

4(log2 N) 3�(log2 N)/2� − 3 0 0

R4
MDC, [108]

4(log2 N) 3�(log2 N)/2� − 3 0 0

R22

MDC, [29]
4(log2 N) 3�(log2 N)/2� − 3 0 0

R23

MDC, [29]
4(log2 N) 4�(log2 N)/3� − 4 0 2�(log2 N)/3�

R24

MDF, [99]
4(log2 N) 4�((log2 N)− 2)/4� − 1 4�((log2 N)− 2)/4� (2)a

R24

MDF, [68]
8(log2 N) 4�(log2 N)/4� − 4 4�(log2 N)/4� (1)b

R24

MDF, [14]
8(log2 N) 4�(log2 N)/4� − 4 4�(log2 N)/4� (1)b

R24

MDC, [29]
4(log2 N) 4�(log2 N)/4� − 4 3�(log2 N)/4� (2)b

8-Parallel architectures

R2
MDC, [56]

8(log2 N) 4(log2 N)− 8 0 0

R2
MDF, [102]

16(log2 N) 4(log2 N)− 8 0 0

R22

MDC, [29]
8(log2 N) 6�(log2 N)/2� − 6 0 0

R8
MDC, [86]

8(log2 N) 7�(log2 N)/3� − 7 0 2�(log2 N)/3�

R23

MDC, [29]
8(log2 N) 7�(log2 N)/3� − 7 0 2�(log2 N)/3�

R24

MDF, [99]
8(log2 N) 8�((log2 N)− 3)/4� − 1 8�((log2 N)− 3)/4� 2+(4)c

R24

MDF, [94]
16(log2 N) 8�(log2 N)/4� − 8 8�(log2 N)/4� (2)b

R24

MDC, [29]
8(log2 N) 8�(log2 N)/4� − 8 6�(log2 N)/4� (2)b

a Additional W8 rotators required only when mod((log2 N)− 2, 4) = 3
b Additional W8 rotators required only when mod((log2 N), 4) = 3
c Additional W8 rotators required only when mod((log2 N)− 3, 4) = 3

Hardware Architectures for the Fast Fourier Transform 641

5 Bit Reversal for FFT Architectures

The outputs of FFT hardware architectures are generally provided in bit-reversed
order. The bit reversal algorithm [37] is used to sort them out.

5.1 The Bit Reversal Algorithm

The bit reversal of N = 2n indexed data is an algorithm that reorders the data
according to a reversing of the bits of the index [37]. This means that any sample
with index I ≡ bn−1 . . . b1b0 moves to the place BR(I) ≡ b0b1 . . . bn−1. Note
that the bit reversal is an inversion operation, i.e., BR(x) = BR−1(x). Therefore,
if data are in natural order, the bit reversal algorithm obtains them in bit-reversed
order and vice versa. For instance, the bit reversal of (0, 1, 2, 3, 4, 5, 6, 7) is
(0, 4, 2, 6, 1, 5, 3, 7) and the bit reversal of the latter set is the former.

5.2 Bit Reversal for Serial Data

For a hardware circuit that receives a series of N data in bit-reversed order, the bit
reversal of the data is calculated by the permutation:

σ(un−1 . . . u1u0) = u0u1 . . . un−1. (40)

A first option to calculate the bit reversal of a series of data is to use a double
buffering strategy [9, 59]. This consists of 2 memories of size N where even and odd
FFT output sequences are written alternatively in the memories. The bit reversal
can also be calculated using a single memory of size N . This is achieved by
generating the memory address in natural and bit-reversed order, alternatively for
even an odd sequences [7]. For SDC FFT architectures, the output reordering can be
calculated by using two memories of N/2 addresses [9, 70]. Alternatively, the output
reordering circuit can be integrated with the last stage of the FFT architecture [9, 10].

The optimum solution in terms of memory/delays for the bit reversal of serial
data [28] consists of using a series of j = �n/2� − 1 circuits for serial-serial bit-
dimension permutations. Each of them carries out a permutation of the bits xj and
xn−1−j , which requires a buffer of length

L = 2n−1−i − 2i . (41)

By adding the buffer lengths, the total number of delays for even n is

(N − 1)2, (42)

642 M. Garrido et al.

and for odd n it is

(√
2N − 1

)(√N

2
− 1

)
. (43)

5.3 Bit Reversal for Parallel Data

For parallel data, the bit reversal permutation is the same as for serial data, with the
difference that the p less significant bits are parallel dimensions. As for serial data,
some solutions are based on using memories [50, 108] and other ones are based on
using buffers [12].

The optimum solution in terms of memory/delays for the bit reversal of parallel
data [12] uses circuits for serial-serial permutations and parallel-parallel permuta-
tion. As in the bit reversal of serial data, these circuits are used to interchange bits xj
and xn−1−j for j = �n/2� − 1. Assuming that p < n/2, a serial-serial permutation
is carried out when 0 ≤ j < p and a serial-parallel one when p ≤ j ≤ �n/2� − 1.
As a result, the total numbers of delays for even n is

D(σ) = N − 2
√
N + P, (44)

and for odd n it is

D(σ) = N −√2N −
√

N

2
+ P. (45)

6 Conclusions

More than 50 years after the first FFT algorithms were proposed, the design of
FFT hardware architectures is still an active research field that involves multiple
research topics. They include the study and selection of FFT algorithms, the design
of rotators in hardware, the design of new FFT architectures and the data shuffling,
including the bit reversal algorithm. Nowadays, new FFT algorithms as well as
new representations for these algorithms are explored. The most common FFT
algorithms are radix-2k, and there is an increasing interest in non-power-of-two
FFTs. The area in FFT architectures is reduced by implementing rotators as shift-
and-add operations. Most approaches are based on simplifying a complex multiplier
or on the CORDIC algorithm. New FFT hardware architectures that achieve fully
utilization of butterflies and reduction of the number of rotators and their complexity
have been proposed during the last years. Likewise, the optimum circuits for bit
reversal have been proposed recently, and the research on shuffling circuits for the
FFT is still an open research field.

Hardware Architectures for the Fast Fourier Transform 643

References

1. Ahmed, T., Garrido, M., Gustafsson, O.: A 512-point 8-parallel pipelined feedforward FFT
for WPAN. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 981–984 (2011)

2. Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 191–200. ACM (1998)

3. Argüello, F., Bruguera, J., Doallo, R., Zapata, E.: Parallel architecture for fast transforms with
trigonometric kernel. IEEE Trans. Parallel Distrib. Syst. 5(10), 1091–1099 (1994)

4. Bi, G., Jones, E.: A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust.,
Speech, Signal Process. 37(12), 1982–1985 (1989)

5. Boullis, N., Tisserand, A.: Some optimizations of hardware multiplication by constant
matrices. IEEE Trans. Comput. 54(10), 1271–1282 (2005)

6. Burrus, C., Eschenbacher, P.: An in-place, in-order prime factor FFT algorithm. Proc. IEEE
Int. Symp. Circuits Syst. 29(4), 806–817 (1981)

7. Chakraborty, T.S., Chakrabarti, S.: On output reorder buffer design of bit reversed pipelined
continuous data FFT architecture. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 1132–
1135. IEEE (2008)

8. Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform
using sum-of-powers-of-two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–
325 (2002)

9. Chang, Y.N.: An efficient VLSI architecture for normal I/O order pipeline FFT design. IEEE
Trans. Circuits Syst. II 55(12), 1234–1238 (2008)

10. Chang, Y.N.: Design of an 8192-point sequential I/O FFT chip. In: Proc. World Congress
Eng. Comp. Science, vol. II (2012)

11. Chen, J., Hu, J., Lee, S., Sobelman, G.E.: Hardware efficient mixed radix-25/16/9 FFT for
LTE systems. IEEE Trans. VLSI Syst. 23(2), 221–229 (2015)

12. Cheng, C., Yu, F.: An optimum architecture for continuous-flow parallel bit reversal. IEEE
Signal Process. Lett. 22(12), 2334–2338 (2015)

13. Cho, S.I., Kang, K.M.: A low-complexity 128-point mixed-radix FFT processor for MB-
OFDM UWB systems. ETRI J. 32(1), 1–10 (2010)

14. Cho, S.I., Kang, K.M., Choi, S.S.: Implementation of 128-point fast Fourier transform
processor for UWB systems. In: Proc. Int. Wireless Comm. Mobile Comp. Conf., pp. 210–
213 (2008)

15. Cohen, D.: Simplified control of FFT hardware. IEEE Trans. Acoust., Speech, Signal Process.
24(6), 577–579 (1976)

16. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Math. Comput. 19, 297–301 (1965)

17. Cortés, A., Vélez, I., Sevillano, J.F.: Radix rk FFTs: Matricial representation and SDC/SDF
pipeline implementation. IEEE Trans. Signal Process. 57(7), 2824–2839 (2009)

18. Dempster, A.G., Macleod, M.D.: Multiplication by two integers using the minimum number
of adders. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1814–1817 (2005)

19. Despain, A.M.: Fourier transform computers using CORDIC iterations. IEEE Trans. Comput.
C-23, 993–1001 (1974)

20. Duhamel, P., Hollmann, H.: ’Split radix’ FFT algorithm. Electron. Lett. 20(1), 14–16 (1984)
21. Edelman, A., Heller, S., Johnsson, L.: Index transformation algorithms in a linear algebra

framework. IEEE Trans. Parallel Distrib. Syst. 5(12), 1302–1309 (1994)
22. Fraser, D.: Array permutation by index-digit permutation. J. Assoc. Comp. Machinery (ACM)

23(2), 298–309 (1976)
23. Garrido, M.: Efficient hardware architectures for the computation of the FFT and other related

signal processing algorithms in real time. Ph.D. thesis, Universidad Politécnica de Madrid
(2009)

24. Garrido, M.: A new representation of FFT algorithms using triangular matrices. IEEE Trans.
Circuits Syst. I 63(10), 1737–1745 (2016)

644 M. Garrido et al.

25. Garrido, M., Acevedo, M., Ehliar, A., Gustafsson, O.: Challenging the limits of FFT
performance on FPGAs. In: Int. Symp. Integrated Circuits, pp. 172–175 (2014)

26. Garrido, M., Andersson, R., Qureshi, F., Gustafsson, O.: Multiplierless unity-gain SDF FFTs.
IEEE Trans. VLSI Syst. 24(9), 3003–3007 (2016)

27. Garrido, M., Grajal, J.: Efficient memoryless CORDIC for FFT computation. In: Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 113–116 (2007)

28. Garrido, M., Grajal, J., Gustafsson, O.: Optimum circuits for bit reversal. IEEE Trans. Circuits
Syst. II 58(10), 657–661 (2011)

29. Garrido, M., Grajal, J., Sánchez, M.A., Gustafsson, O.: Pipelined radix-2k feedforward FFT
architectures. IEEE Trans. VLSI Syst. 21(1), 23–32 (2013)

30. Garrido, M., Gustafsson, O., Grajal, J.: Accurate rotations based on coefficient scaling. IEEE
Trans. Circuits Syst. II 58(10), 662–666 (2011)

31. Garrido, M., Huang, S.J., Chen, S.G.: Feedforward FFT hardware architectures based on
rotator allocation. IEEE Trans. Circuits Syst. I 65(2), 581–592 (2018)

32. Garrido, M., Huang, S.J., Chen, S.G., Gustafsson, O.: The serial commutator (SC) FFT. IEEE
Trans. Circuits Syst. II 63(10), 974–978 (2016)

33. Garrido, M., Källström, P., Kumm, M., Gustafsson, O.: CORDIC II: A new improved
CORDIC algorithm. IEEE Trans. Circuits Syst. II 63(2), 186–190 (2016)

34. Garrido, M., Qureshi, F., Gustafsson, O.: Low-complexity multiplierless constant rotators
based on combined coefficient selection and shift-and-add implementation (CCSSI). IEEE
Trans. Circuits Syst. I 61(7), 2002–2012 (2014)

35. Garrido, M., Sánchez, M., López-Vallejo, M., Grajal, J.: A 4096-point radix-4 memory-based
FFT using DSP slices. IEEE Trans. VLSI Syst. 25(1), 375–379 (2017)

36. Glittas, A.X., Sellathurai, M., Lakshminarayanan, G.: A normal I/O order radix-2 FFT
architecture to process twin data streams for MIMO. IEEE Trans. VLSI Syst. 24(6), 2402–
2406 (2016)

37. Gold, B., Rader, C.M.: Digital Processing of Signals. New York: McGraw Hill (1969)
38. Good, I.J.: The interaction algorithm and practical Fourier analysis. J. Royal Statistical

Society B 20(2), 361–372 (1958)
39. Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithm and the role of the tensor

product. IEEE Trans. Signal Process. 40(12), 2921–2930 (1992)
40. Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication

problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100. IEEE (2007)
41. Gustafsson, O.: On lifting-based fixed-point complex multiplications and rotations. In: Proc.

IEEE Symp. Comput. Arithmetic (2017)
42. Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified

design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(2), 225–251
(2006)

43. Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high
precision constant multiplication. IEEE Signal Processing Letters 17(2), 173–176 (2010)

44. Gustafsson, O., Wanhammar, L.: Arithmetic. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer
(2018)

45. He, S., Torkelson, M.: Design and implementation of a 1024-point pipeline FFT processor.
pp. 131–134 (1998)

46. Hsiao, C.F., Chen, Y., Lee, C.Y.: A generalized mixed-radix algorithm for memory-based FFT
processors. IEEE Trans. Circuits Syst. II 57(1), 26–30 (2010)

47. Hsiao, S.F., Lee, C.H., Cheng, Y.C., Lee, A.: Designs of angle-rotation in digital frequency
synthesizer/mixer using multi-stage architectures. In: Proc. Asilomar Conf. Signals Syst.
Comput., pp. 2181–2185 (2011)

48. Hu, Y., Naganathan, S.: An angle recoding method for CORDIC algorithm implementation.
IEEE Trans. Comput. 42(1), 99–102 (1993)

49. Huang, S.J., Chen, S.G.: A high-throughput radix-16 FFT processor with parallel and normal
input/output ordering for IEEE 802.15.3c systems. IEEE Trans. Circuits Syst. I 59(8), 1752–
1765 (2012)

Hardware Architectures for the Fast Fourier Transform 645

50. Huang, S.J., Chen, S.G., Garrido, M., Jou, S.J.: Continuous-flow parallel bit-reversal circuit
for MDF and MDC FFT architectures. IEEE Trans. Circuits Syst. I 61(10), 2869–2877 (2014)

51. Jang, J.K., Kim, M.G., Sunwoo, M.H.: Efficient scheduling scheme for eight-parallel MDC
FFT processor. In: Proc. Int. SoC Design Conf., pp. 277–278 (2015)

52. Järvinen, T.: Systematic methods for designing stride permutation interconnections. Ph.D.
thesis, Tampere Univ. of Technology (2004)

53. Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array
processors. In: Proc. IEEE Int. Applicat.-Specific Syst. Arch. Processors Conf., pp. 376–386
(2004)

54. Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array
processors. J. VLSI Signal Process. Syst. 49(1), 51–71 (2007)

55. Jo, B.G., Sunwoo, M.H.: New continuous-flow mixed-radix (CFMR) FFT processor using
novel in-place strategy. IEEE Trans. Circuits Syst. I 52(5), 911–919 (2005)

56. Johnston, J.A.: Parallel pipeline fast Fourier transformer. In: IEE Proc. F Comm. Radar Signal
Process., vol. 130, pp. 564–572 (1983)

57. Källström, P., Garrido, M., Gustafsson, O.: Low-complexity rotators for the FFT using base-3
signed stages. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 519–522 (2012)

58. Kim, M.G., Shin, S.K., Sunwoo, M.H.: New parallel MDC FFT processor with efficient
scheduling scheme. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 667–670 (2014)

59. Kristensen, F., Nilsson, P., Olsson, A.: Flexible baseband transmitter for OFDM. In: Proc.
IASTED Conf. Circuits Signals Syst., pp. 356–361 (2003)

60. Kumm, M., Hardieck, M., Zipf, P.: Optimization of constant matrix multiplication with low
power and high throughput. IEEE Transactions on Computers PP(99), 1–1 (2017)

61. Lee, H.Y., Park, I.C.: Balanced binary-tree decomposition for area-efficient pipelined FFT
processing. IEEE Trans. Circuits Syst. I 54(4), 889–900 (2007)

62. Lee, J., Lee, H., in Cho, S., Choi, S.S.: A high-speed, low-complexity radix-24 FFT processor
for MB-OFDM UWB systems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 210–213 (2006)

63. Li, C.C., Chen, S.G.: A radix-4 redundant CORDIC algorithm with fast on-line variable scale
factor compensation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, pp.
639–642 (1997)

64. Li, N., van der Meijs, N.: A radix 22 based parallel pipeline FFT processor for MB-OFDM
UWB system. In: Proc. IEEE Int. SOC Conf., pp. 383–386 (2009)

65. Li, S., Xu, H., Fan, W., Chen, Y., Zeng, X.: A 128/256-point pipeline FFT/IFFT processor for
MIMO OFDM system IEEE 802.16e. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1488–
1491 (2010)

66. Lin, C.H., Wu, A.Y.: Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm and
architecture for high-performance vector rotational DSP applications. IEEE Trans. Circuits
Syst. I 52(11), 2385–2396 (2005)

67. Lin, Y.W., Lee, C.Y.: Design of an FFT/IFFT processor for MIMO OFDM systems. IEEE
Trans. Circuits Syst. I 54(4), 807–815 (2007)

68. Liu, H., Lee, H.: A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor
for MIMO-OFDM systems. In: Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 834–837
(2008)

69. Liu, L., Ren, J., Wang, X., Ye, F.: Design of low-power, 1GS/s throughput FFT processor for
MIMO-OFDM UWB communication system. In: Proc. IEEE Int. Symp. Circuits Syst., pp.
2594–2597 (2007)

70. Liu, X., Yu, F., Wang, Z.: A pipelined architecture for normal I/O order FFT. Journal of
Zhejiang University - Science C 12(1), 76–82 (2011)

71. Ma, Y., Wanhammar, L.: A hardware efficient control of memory addressing for high-
performance FFT processors. IEEE Trans. Signal Process. 48(3), 917–921 (2000)

72. Ma, Z.G., Yin, X.B., Yu, F.: A novel memory-based FFT architecture for real-valued signals
based on a radix-2 decimation-in-frequency algorithm. IEEE Trans. Circuits Syst. II 62(9),
876–880 (2015)

646 M. Garrido et al.

73. Macleod, M.D.: Multiplierless implementation of rotators and FFTs. EURASIP J. Appl.
Signal Process. 2005(17), 2903–2910 (2005)

74. Majumdar, M., Parhi, K.K.: Design of data format converters using two-dimensional register
allocation. IEEE Trans. Circuits Syst. II 45(4), 504–508 (1998)

75. Meher, P.K., Park, S.Y.: CORDIC designs for fixed angle of rotation. IEEE Trans. VLSI Syst.
21(2), 217–228 (2013)

76. Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC:
Algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907
(2009)

77. Möller, K., Kumm, M., Garrido, M., Zipf, P.: Optimal shift reassignment in reconfigurable
constant multiplication circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.
(2017). Accepted for publication

78. Oh, J.Y., Lim, M.S.: New radix-2 to the 4th power pipeline FFT processor. IEICE Trans.
Electron. E88-C(8), 1740–1746 (2005)

79. Paeth, A.W.: A fast algorithm for general raster rotation. In: Proc. Graphics Interface, pp.
77–81 (1986)

80. Parhi, K.K.: Systematic synthesis of DSP data format converters using life-time analysis and
forward-backward register allocation. IEEE Trans. Circuits Syst. II 39(7), 423–440 (1992)

81. Park, S.Y., Yu, Y.J.: Fixed-point analysis and parameter selections of MSR-CORDIC with
applications to FFT designs. IEEE Trans. Signal Process. 60(12), 6245–6256 (2012)

82. Püschel, M., Milder, P.A., Hoe, J.C.: Permuting streaming data using RAMs. J. ACM 56(2),
10:1–10:34 (2009)

83. Qureshi, F., Gustafsson, O.: Generation of all radix-2 fast Fourier transform algorithms using
binary trees. In: Proc. Europ. Conf. Circuit Theory Design, pp. 677–680 (2011)

84. Qureshi, F., Gustafsson, O.: Low-complexity constant multiplication based on trigonometric
identities with applications to FFTs. IEICE Trans. Fundamentals E94-A(11), 324–326 (2011)

85. Reisis, D., Vlassopoulos, N.: Conflict-free parallel memory accessing techniques for FFT
architectures. IEEE Trans. Circuits Syst. I 55(11), 3438–3447 (2008)

86. Sánchez, M., Garrido, M., López, M., Grajal, J.: Implementing FFT-based digital channelized
receivers on FPGA platforms. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1567–1585 (2008)

87. Serre, F., Holenstein, T., Püschel, M.: Optimal circuits for streamed linear permutations using
RAM. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 215–223.
ACM (2016)

88. Shih, X.Y., Liu, Y.Q., Chou, H.R.: 48-mode reconfigurable design of SDF FFT hardware
architecture using radix-32 and radix-23 design approaches. IEEE Trans. Circuits Syst. I
64(6), 1456–1467 (2017)

89. Shukla, R., Ray, K.: Low latency hybrid CORDIC algorithm. IEEE Trans. Comput. 63(12),
3066–3078 (2014)

90. Stone, H.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. C-20(2), 153–
161 (1971)

91. Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor
for sine and cosine computation. IEEE Trans. Comput. 40(9), 989–995 (1991)

92. Takala, J., Järvinen, T.: Stride Permutation Access In Interleaved Memory Systems. Domain-
Specific Processors: Systems, Architectures, Modeling, and Simulation, S. Bhattacharyya, E.
Deprettere and J. Teich. CRC Press (2003)

93. Takala, J., Jarvinen, T., Sorokin, H.: Conflict-free parallel memory access scheme for FFT
processors. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 4, pp. 524–527 (2003)

94. Tang, S.N., Tsai, J.W., Chang, T.Y.: A 2.4-GS/s FFT processor for OFDM-based WPAN
applications. IEEE Trans. Circuits Syst. II 57(6), 451–455 (2010)

95. Tsai, P.Y., Lin, C.Y.: A generalized conflict-free memory addressing scheme for continuous-
flow parallel-processing FFT processors with rescheduling. IEEE Trans. VLSI Syst. 19(12),
2290–2302 (2011)

96. Tummeltshammer, P., Hoe, J.C., Püschel, M.: Time-multiplexed multiple-constant multipli-
cation. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 26(9), 1551–1563 (2007)

Hardware Architectures for the Fast Fourier Transform 647

97. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electronic
Computing EC-8, 330–334 (1959)

98. Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Trans.
Algorithms 3, 1–39 (2007)

99. Wang, J., Xiong, C., Zhang, K., Wei, J.: A mixed-decimation MDF architecture for radix- 2k

parallel FFT. IEEE Trans. VLSI Syst. 24(1), 67–78 (2016)
100. Wang, Z., Liu, X., He, B., Yu, F.: A combined SDC-SDF architecture for normal I/O pipelined

radix-2 FFT. IEEE Trans. VLSI Syst. 23(5), 973–977 (2015)
101. Wenzler, A., Luder, E.: New structures for complex multipliers and their noise analysis. In:

Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1432–1435 (1995)
102. Wold, E., Despain, A.: Pipeline and parallel-pipeline FFT processors for VLSI implementa-

tions. IEEE Trans. Comput. C-33(5), 414–426 (1984)
103. Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and

architecture. IEEE Trans. Circuits Syst. II 48(6), 548–561 (2001)
104. Wu, C.S., Wu, A.Y., Lin, C.H.: A high-performance/low-latency vector rotational CORDIC

architecture based on extended elementary angle set and trellis-based searching schemes.
IEEE Trans. Circuits Syst. II 50(9), 589–601 (2003)

105. Xia, K.F., Wu, B., Xiong, T., Ye, T.C.: A memory-based FFT processor design with
generalized efficient conflict-free address schemes. IEEE Trans. VLSI Syst. 25(6), 1919–
1929 (2017)

106. Xing, Q., Ma, Z., Xu, Y.: A novel conflict-free parallel memory access scheme for FFT
processors. IEEE Trans. Circuits Syst. II (2017)

107. Xudong, W., Yu, L.: Special-purpose computer for 64-point FFT based on FPGA. In: Proc.
Int. Conf. Wireless Comm. Signal Process., pp. 1–3 (2009)

108. Yang, K.J., Tsai, S.H., Chuang, G.: MDC FFT/IFFT processor with variable length for
MIMO-OFDM systems. IEEE Trans. VLSI Syst. 21(4), 720–731 (2013)

109. Yang, L., Zhang, K., Liu, H., Huang, J., Huang, S.: An efficient locally pipelined FFT
processor. IEEE Trans. Circuits Syst. II 53(7), 585–589 (2006)

110. Yeh, W.C., Jen, C.W.: High-speed and low-power split-radix FFT. IEEE Trans. Signal
Process. 51(3), 864–874 (2003)

111. Yu, C., Yen, M.H.: Area-efficient 128- to 2048/1536-point pipeline FFT processor for LTE
and mobile WiMAX systems. IEEE Trans. VLSI Syst. 23(9), 1793–1800 (2015)

112. Zheng, W., Li, K.: Split radix algorithm for length 6m DFT. IEEE Signal Process. Lett. 20(7),
713–716 (2013)

Programmable Architectures
for Histogram of Oriented Gradients
Processing

Colm Kelly, Roger Woods, Moslem Amiri, Fahad Siddiqui,
and Karen Rafferty

Abstract There is an increasing demand for high performance image processing
platforms based on field programmable gate array (FPGA). The Histogram of
Orientated Gradients (HOG) algorithm is a feature descriptor algorithm used
in object detection for many security applications. The chapter examines the
implementation of this key algorithm using an FPGA-based soft-core architecture
approach. Firstly, the HOG algorithm is described and its performance profiled
from a computation and bandwidth perspective. Then the IPPro soft-core processor
architecture is introduced and a number of mapping strategies are covered. A HOG
implementation is demonstrated on a Zynq platform, resulting in a design operating
at 15.36 fps; this compares favorably with the performance and resources of hand-
crafted VHDL code.

1 Introduction

Image processing techniques have long existed in industrial, commercial and
military domains to name but a few. As sensor resolution and frame rate have
dramatically increased, manufacturing costs have fallen to such a level that complete
high performance, image processing systems have become commonplace. Modern
image processing algorithms are often very computationally demanding and con-
sequently have very high performance requirements. Such systems can be found
in anywhere from relatively inexpensive children’s toys to 3D magnetic resonance

C. Kelly
Thales Air Defence, Belfast, UK
e-mail: Colm.Kelly@uk.thalesgroup.com

R. Woods (�) · F. Siddiqui · K. Rafferty
Queen’s University of Belfast, Belfast, UK
e-mail: r.woods@qub.ac.uk; f.siddiqui@qub.ac.uk; k.rafferty@qub.ac.uk

M. Amiri
University of Bristol, Bristol, UK
e-mail: ma17215@bristol.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_18

649

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_18&domain=pdf
mailto:Colm.Kelly@uk.thalesgroup.com
mailto:r.woods@qub.ac.uk
mailto:f.siddiqui@qub.ac.uk
mailto:k.rafferty@qub.ac.uk
mailto:ma17215@bristol.ac.uk
https://doi.org/10.1007/978-3-319-91734-4_18

650 C. Kelly et al.

Fig. 1 CMOS image sensor pixel and CPU transistor count [6]

imaging systems in hospitals to smart cameras (chapter “Distributed Smart Cameras
and Distributed Computer Vision”) and have been one of the enablers for Industry
4.0. This chapter should be read in conjunction with other chapters in this book
which cover the design of architectures for such systems such as light field displays
(chapter “Signal Processing Methods for Light Field Displays”).

Transistor miniaturisation has enabled CMOS sensor manufacturers to increase
the density of the crystallized silicon elements that make up the individual pixel
sensors on a single silicon die. Thankfully, sensor and processor densities have
increased in tandem as shown in Fig. 1. With HD resolutions now commonplace,
there is a demand for real-time, low cost, low power, versatile, embedded image pro-
cessing platforms with increased computation rates. Such systems are particularly
demanding at the front end of the system where large frame sizes of 8.3 M pixels
for ultra-high density are delivered at 60 fps. Stereo vision (chapter “Architectures
for Stereo Vision”) and video coding (chapters “High Dynamic Range Video
Coding” and “MPEG Reconfigurable Video Coding”) represent key examples of
such challenging systems.

The Graphics Processing Unit (GPU), the multimedia extended central process-
ing unit (MMX CPU) and the multimedia specific digital signal processor (DSP)
[10] have now emerged as platforms for implementing image processing systems.
The field programmable gate array (FPGA) [1] represents a compromise between
the low power consumption of the application specific integrated circuit (ASIC)
and the programmability of such processors [12, 16]. Moreover, recent FPGA
devices offer processing resources in the form of the ARM processors [8] as well as
programmable logic.

A major limitation of FPGAs though, is the need to learn specialized hardware
design (HDLs) languages, although this is being addressed by high level synthesis
tools such as Vivado HLS and Intel FPGA SDK for OpenCL. Intellectual property
(IP) blocks approaches such as System Generator for DSP from Xilinx [4] and
HDL Coder from MathWorks [5] have emerged to try to satisfy this requirement.
However, one of the remaining challenges is the time to perform the place and

Programmable Architectures for Histogram of Oriented Gradients Processing 651

route process which occurs at the end of the design space exploration phase
where the estimated performance is translated into real performance. An alternative
approach is to employ predesigned soft-core processors which simply need to be
programmed. The aim is to provide a software design route, whilst still offering
FPGA performance associated with conventional synthesis routes. It is believed that
this work is the first to implement the HOG descriptor using a soft-core processor
orientated FPGA framework, providing performance in a truly programmable
manner [18].

1.1 Chapter Breakdown

The chapter is organized as follows. The HOG algorithm is introduced in Sect. 2 and
is profiled in order to reveal the processing and data communications requirements.
Section 3 introduces the IPPro architecture and shows how it effectively utilizes
the dedicated FPGA resources. The text also categorizes the algorithm in terms
of processing requirements and shows how it suits a soft-core implementation
approach. The mapping of the HOG algorithm onto a multicore implementation is
then given in Sect. 4 and followed by a detailed analysis of the performance (Sect. 5),
highlighting the limitation of the IPPro instruction set. A number of optimisations
are then presented in Sect. 6 with the aim of overcoming these limitations and
followed by conclusions in Sect. 7.

2 HOG Algorithm

Dalal and Triggs [17] illustrate that the human form can be characterized rather well
by the distribution of local intensity gradients or edge directions. Their algorithm
converts the pixel intensity information to gradient information, as illustrated by the
image of gradients for the pedestrian’s heel (Fig. 2). Gradients have both magnitude
and direction.

For this example and in most instances in the literature, the detection window is
fixed at 64× 128 pixels and is divided up into small 8 × 8 pixel spatial regions or
cells. Each cell generates a histogram of gradient directions (edge orientations) over
the 64 pixels of the cell as shown in Fig. 3.

The algorithm shown in Fig. 3 comprises six stages. In the Normalize Gamma
and color stage, the camera image is normalized for human vision and luminosity
values are extracted from the RGB values. The gradient of each pixel relative to
its surrounding pixels is calculated in the Compute Gradients stage. A 1D kernel
[1 0 −1] is convolved in the x- and then y-axis to produce the respective gradients,
Gx and Gy .

652 C. Kelly et al.

Fig. 2 Image example of the
HOG algorithm. (a) Image of
intensities. (b) Image of
gradients [19]

The Weighted vote into spatial and orientated cells stage requires the calculation
of the magnitude of each x and y gradient pair where magnitude, Mxy , is given as√
G2

x +G2
y . The angle of the vector M × y is then used to allocate the value of

M × y for each pixel into one of nine bins, each spanning 20° between 0° and 180°.
Over an 8× 8 pixel cell, a single 9-element vector is produced which is referred to
as the histogram of orientated gradients or HOG.

In the Normalisation over overlapping spatial blocks stage, blocks are generated
by locally normalising groups of four cells i.e. 2 × 2 cells, in order to improve
the invariance to illumination and shadowing; a L2 normalisation technique is
employed. The resultant block vector has 36 elements.

Collation of the blocks over the full detection window (7 × 15 blocks) is
carried out in the 5th stage, Collect HOGs over detection window to produce HOG
descriptors. These HOG descriptors are the concatenation of the normalized 36
element vectors produced in the 4th stage. The new 3780 (7 × 15 × 36) element
vector is called a feature descriptor, f v.

In the final stage, an off-line pre-trained support vector machine (SVM) classifier
receives the 3780 element vectors and multiplies them with set weights generating
a window score s:

s =
n=3780∑
i=1

(f vi · wi)+ b. (1)

Presence or absence of a human in the detection window is represented by
the sign of s whereas the level of confidence of the detection is measured by the
magnitude.

Programmable Architectures for Histogram of Oriented Gradients Processing 653

F
ig

.3
H

O
G

da
ta

de
pe

nd
en

ci
es

as
pe

r
D

al
al

an
d

T
ri

gg
s

im
pl

em
en

ta
ti

on
[1

7]

654 C. Kelly et al.

2.1 Profiling HOG

The data bandwidth between each of the algorithm functions was calculated by
generating a profile of the data flowing through the entire algorithm. The results
of the analysis on the HOG algorithm are illustrated in Fig. 4. It shows that the most
intensive calculations are performed in the Compute Gradients and Weighted Vote
into Spatial and Orientation Cells blocks, so their acceleration would provide the
largest processing performance gain. The algorithm reduces the data transmission
needs from 1.5 Gbps (at the camera output) to 30 bps (at the output of the SVM
module); this is important in remote surveillance applications where long range RF
communications have very low bandwidth and minimal energy levels.

Figure 4 also indicates that computation hotspots are to be found between the 2nd
and 3rd blocks where a peak bandwidth of 1990 Mbps is required. Conventional
software approaches struggle to achieve real-time implementations with these
computational hotspots; thus, the HOG algorithm remained the preserve of high
performance computing systems but now it has been realized in real-time FPGA
implementations [20, 21, 24]. These fixed implementations are, however, created
using hand written HDL which is a time consuming process requiring very specialist
knowledge and experience.

The lower part of Fig. 4 outlines the IPPro accelerator concept. The ‘Compute
Gradients’ and ‘Weighted vote into Spatial and orientation cells’ functions is off-
loaded to the IPPro processing arrays before the results are passed back to the host
ARM processor to complete the remainder of the algorithm processing.

3 IPPro Introduction

The IPPro is a 16-bit, signed fixed-point, 5-stage, balanced pipelined RISC archi-
tecture that exploits the FPGA dedicated DSP resource, in this case a Xilinx
DSP48E1, and provides balance among performance, latency and efficient resource
utilization [22]. The architecture here is modified to support the mapping of dataflow
graphs by replacing the previously memory-mapped, data memory by stream-
based, blocking input/output first in, first out FIFOs that support data transfer
(Fig. 5). The in-order pipeline simplifies the compiler development compared to
out-of-order architectures, supports the identified execution and memory access
patterns and can be used as a coarse-grained processing core. The IPPro has the
following memory areas: a register file of size 32 × 16-bits to store pixels and
intermediate results and; a kernel memory of size 32 × 16-bits to store the kernel
coefficients, constant values and input/output FIFOs to stream pixel data in and out
of IPPro.

The programming methodology is based on the CAL dataflow programming
language [11] which is detailed in chapter “MPEG Reconfigurable Video Coding”.
It employs a reprogrammable model comprising multicore processors supporting

Programmable Architectures for Histogram of Oriented Gradients Processing 655

F
ig

.4
O

ri
gi

na
la

nd
ne

w
de

fin
it

io
n

(i
nc

lu
di

ng
IP

Pr
o

ac
ce

le
ra

ti
on

)
of

H
O

G
al

go
ri

th
m

an
no

ta
te

d
w

it
h

in
te

r-
fu

nc
ti

on
da

ta
ra

te
s

an
d

th
ei

r
ch

ar
ac

te
ri

st
ic

s
[1

7]

656 C. Kelly et al.

F
ig

.5
B

lo
ck

di
ag

ra
m

sh
ow

in
g

de
ta

il
ed

da
ta

pa
th

of
IP

Pr
o

Programmable Architectures for Histogram of Oriented Gradients Processing 657

single-input, multiple-output (SIMD) operation and an associated inter-processor
communication methodology. A dataflow model allows algorithms to be realized
as actors with specific firing rules that are mapped into directed graphs where the
nodes represent computations and arcs represent the movement of data. Combining
actors with a set of connections between them allows the construction of a network
where communication is made using infinite size, FIFO components.

Table 1 outlines the relationship between programmable abstraction and the
addressing modes, along with some supported instructions for the IPPro architec-
ture, facilitating programmable implementation of point and area image processing
algorithms. The “stream access” reads a stream of pixels from the input FIFO using a
GET instruction and allows processing either with constant values (Kernel Memory-
FIFO) or neighbouring pixel dependent values (Register File-FIFO or Register
File-Register File). The processed stream is then written to the output FIFO using
the PUSH instruction. IPPro supports arithmetic, logical, branch and data handling
instructions. The presented instruction set was optimized after profiling use-cases
presented in [22, 23].

Table 2 shows how the input/output operands of addressing modes of Table 1 are
encoded and used by the “Instruction Decoder” (ID) to control the IPPro datapath

Table 1 Relationship of addressing modes, programmable abstraction and instruction set of IPPro

Programmable
Addressing mode abstraction Supported instructions

FIFO handling Stream access get, push

Register file-FIFO Stream and randomly
accessed data

addrf, subrf, mulrf, andrf,
orrf, minrf, maxrf etc.

Register file-register file Randomly accessed data str, add, sub, mul,
mulacc, muladd, and,
min, max etc.

Kernel memory-FIFO Stream and fixed values addkm, subkm, mulkm,
muladdkm, minkm,
maxkm etc.

Table 2 Instruction frame structure

Addressing 34-Bit IPPro instruction encoding
modes 33 to 31 30 to 26 25 to 21 20 to 16 15 to 11 10 to 6 5 to 0

Register File- INSTR_TYPE OPCODE RD RB 00000 00000 000000

FIFO RD RB 00000 RC 000000

Register File- INSTR_TYPE OPCODE RD RB RA RC 000000

Register File RD RB RA 00000 000000

Kernel INSTR_TYPE OPCODE RD Kn 00000 RC 000000

Memory- RD Kn 00000 00000 000000

FIFO 00000 Kn 16-bits value

FIFO INSTR_TYPE OPCODE RD 00000 00000 00000 000000

00000 Kn 00000 00000 000000

Branch/Jump INSTR_TYPE OPCODE 00000 00000 16-bit address

658 C. Kelly et al.

to execute the instruction. INSTR_TYPE is a 3-bit field that allows differentiation
between addressing modes. OPCODE is a 5-bit field that defines what operation
shall be executed on data operands. The terms. RA, RB, RC, Kn and RD are 5-bit
fields which define source and destination data operands located in Register File
and Kernel Memory; RA, RB, RC are always source registers, RD is always a
destination register and Kn represents that data operand should be fetched from
Kernel Memory instead of Register file. In some cases, there are operations required
for better accuracy, e.g. incorporating a coprocessor block such as a divider (see
later).

IPPro supports branch instructions to support control flow execution patterns as
they are commonly used to implement conditional statements and loops. IPPro has
four flags (zero, equal, greater than and sign) that are generated from the DSP48E1
pattern detector. It compares the input operands or output results and sets/resets the
PATTERNDETECT (PD) bit. Branch instructions are handled by branch controller
and branch handler as shown in Fig. 5. The IPPro was coded in Verilog HDL
and synthesized using Xilinx Vivado v2015.4 design suite giving a clock rate of
337 MHz which delivers 1.6–3.3 times higher operating frequency than comparative
processors.

4 HOG Deployment on IPPro

The IPPro System functions as the computational stage between the video source,
e.g. the surveillance thermal or day-time camera and the distribution of the pro-
cessed video data to a host over a network. For this example, a Xilinx Zedboard™
was used with images from the onboard SD memory card in lieu of an actual camera
source and fed directly into the DDR and stored as frames. The ARM Cortex A9
host processor manages the flow of data from the frame buffer to the programmable
fabric that accommodates the IPPro cores.

4.1 Algorithm Partitioning

The mapping to the IPPro began with a functional breakdown of the algorithm as a
Simulink model. The initial mapping used the partitioning of Dalal and Triggs [17]
but was modified to facilitate the reuse of already computed gradient, absolute
gradient and magnitude data (Fig. 6). The additional data is passed between the
two IPPro functional blocks, giving an increase in required bandwidth from 1990 to
4976 Mbps. As this is to be implemented within the FPGA fabric where several Tbps
of bandwidth are available, it is more beneficial to trade bandwidth for reduction in
computation time. The algorithm segments are then further broken down into IPPro
instructions. The IPPro core Program Memory (PM) code is generated to produce an

Programmable Architectures for Histogram of Oriented Gradients Processing 659

Fig. 6 Mapping of accelerated Dalal and Triggs functions to IPPro cores

efficient ratio of read/write to ALU instructions whilst maximizing the quantity of
input data to be processed. Partitioning of the input image data is such that smaller
blocks and their computation fit within the IPPro core registers.

The FPGA’s limited memory encourages reuse of intermediate results. In order to
establish the highest throughput, PMs were coded using different decompositions.
A limited number of configurations were explored and the configuration with the
highest throughput of 175 frames per second (fps) was chosen.

Temporal parallelism is exploited by the reuse of local data in the IPPro core
registers. For example, during exploration, it was found that the Pixel Gradients
function could be appended with the Magnitude (M × y) function, thus saving
costly additional load and store of the Gradient values, as the IPPro core already
had these pixel intensities loaded with gradients stored in its register file. Within
the IPPro local memory, there were enough unused register locations to store the
results. This increased the throughput by 6% which in real terms for this 90-core
IPPro implementation, is a increase to 10.6 fps for a 1920× 1080 pixel frame.

The following mathematical optimization was also incorporated when calculat-
ing the gradient values Gx = [−1, 0, 1] and Gy = [−1, 0, 1]T ; as the gradient
calculation kernel values use only −1, 0 and 1 as factors, we only need one
subtraction instruction. Research in [24] and [20] has already shown that these
optimizations have negligible effect on the accuracy of the algorithm. Using the
example data of Fig. 3, Gx and Gy are calculated as moderately positive values of
167 and 129 respectively, indicating that the light to dark gradients are in both the
left to right and top to bottom directions in almost equal amounts (Fig. 7).

The next stage is that of binning which allocates each of the derived pixel gradient
magnitudes to one of the nine available bins as shown in the lower left corner of
Fig. 3. The tangent for each input pixels Gx,Gy is normally evaluated to determine
to which bin in Fig. 8 that the respective Mxy belongs. As tan θ is symmetrical about
the Gy axis, Bin 1 magnitudes shall capture all θ values between 0–20° and 180–
200°, Bin 2 magnitudes shall capture all θ values between 20–40° and 200–220° and
so on.

660 C. Kelly et al.

F
ig

.7
G

ra
di

en
tfi

lt
er

co
de

op
ti

m
is

at
io

n

Programmable Architectures for Histogram of Oriented Gradients Processing 661

Fig. 8 Gradient magnitude quadrant evaluation

Rather than perform a trigonometric calculation to determine to which 20° bin
the magnitude belongs, the M×y values are first assigned to one of four quadrants as
shown in Fig. 8. A series of comparisons are then run to check if the angle is greater
than a predefined threshold [19]. Cell histograms are generated by accumulating
Mxy value of each pixel at the appropriate bin for that pixel over a cell.

4.2 Instruction Mapping and Scheduling on a Single IPPro

The approach for mapping into the IPPro is summarized in Fig. 9. The design flow
starts with an initial functional partition and is then explored iteratively. The IPPro
approach favours algorithms with deterministic behaviour due to its considerably
minimized control mechanisms. As the register size is tightly constrained, it is
necessary to establish whether or not it is more efficient to heavily process small
amounts of data (complex PM) or lightly process large amounts of data (simple
PM). Complex PMs result in longer instruction lengths and reduce the granularity
of the high-level functional blocks which reduces the ability to explore the mapping
across multiple IPPro cores.

The next step is the translation of the image processing functions to the IPPro
instruction set. A key objective is to reduce the no operation (NOP) instructions
by interleaving the sub-tasks within the functional blocks. Sub-tasks begin when
sufficient registers are loaded; the remaining input data for subsequent sub-tasks
is loaded by paying attention to the pipeline delays during sub-tasks. Interleaving
of IPPro processors is also employed in a multi-IPPro core implementation such
that scheduling of each of the processors is initialized serially; this reduces the
bandwidth requirements on the higher level memory accesses.

The final stage of the process involves mapping the generated PMs onto the
available hardware. With a single IPPro core, there are two approaches. The first
relies upon each of the PMs carrying out tasks that are not data-dependent, and thus
events are scheduled to execute sequentially on a small volume of data. If, however,
each functional stage is dependent on a group or entire frame of results from the
current PM, then the second approach is adopted to perform the function across

662 C. Kelly et al.

Fig. 9 Key features in algorithm to IPPro mapping and scheduling process

the entire frame, producing intermediate results which are stored in the higher level
memory. The subsequent PM then retrieves the data from the high level memory
and executes the next stage of dependent processing from the entire frame or block
of intermediate results. Whilst this process is very similar to the traditional mapping
of functions, an emphasis is put on maximizing the utilization of DSP48E1s whilst
minimizing the memory accesses overhead.

4.3 Instruction Mapping and Scheduling on Multiple IPPro

Initially, the mapping of the HOG algorithm onto a single core was explored. The
performance of an array of cores which utilizes the parallelism offered through
FPGA implementation, is now considered. The same IPPro PM code and functional
decomposition as highlighted earlier in this section is used, but spatial and temporal
parallelism are now also considered (Fig. 10). Mapping involves allocating the
number of processing steps to processor elements and generating a schedule. In
the instance of one processor element, hardware reuse is employed whereas as in the
multicore case, parallelism is exploited by duplicating the functionality across single

Programmable Architectures for Histogram of Oriented Gradients Processing 663

Fig. 10 HOG architecture for single-IPPro (top) and multi-IPPro (bottom)

IPPro cores as illustrated in Fig. 10. During the manycore IPPro implementation,
data is streamed so careful scheduling and packing of the PM is essential to
balance the computation phases and avoid blocking. For now, this is achieved in
a deterministic manner by inserting NOP instructions into the PM code.

4.4 Results Generation: Initial Architecture

Two versions of the functional blocks were explored, a hand-coded VHDL descrip-
tion and an IPPro implementation. Both designs were coded in and taken through,
Xilinx ISE 14.6 Place and Route (PAR) tools with the results recorded in Table 3.
In each case, the target platform was the programmable fabric within the Zynq 7020
used in the Diligent Zedboard™ Zynq-7000 development board. After place and
route, the single IPPro core operated at 337 MHz for both functions (PMs) and the
hand coded implementation operated at 288 MHz for the Gradients and Magnitude
function and at 164 MHz for the Binning and Cell Histogram. The metric “fps per
1k Lookup Tables (LUT)” is created to allow fair comparison per resource between
approaches and is quoted in Table 3. The frame rate of 4.9 fps for the single IPPro
corresponds to 204 ms to compute the frame.

664 C. Kelly et al.

Table 3 Algorithm resource usage on a single IPPro versus a hand coded approach for HOG
functions as standalone units

Single IPPro Hand coded

Frame HD fps/ Frame HD fps/
Function Resource type Usage rate 1K LUT Usage rate 1K LUT

Gradient LUTS 140 422

and DSPs 1 4.9 35 0 139 329

magnitude BRAMs 0 0

Binning LUTS 140 1463

and cell DSPs 1 3.2 23 0 74.4 54.3

histogram BRAMs 0 0

The PMs for the Gradients and Magnitude function required 199 instructions to
generate the values for 6 output pixels and for the Binning and Cell Histogram,
251 instructions are needed to generate the values for 5 output pixels; the data
was verified on the Diligent Zedboard™ Zynq-7000 development board. For the
architecture in Fig. 10, it is possible to achieve a maximum throughput of 175 fps at
a 1920× 1080 pixel (HD) resolution. This architecture uses 90 IPPro cores and can
be implemented on the smallest Xilinx 7 Series FPGA (XC7A35TCPG236) which
has 90 DSP48E1 blocks available. A resource comparable, 16 core IPPro solution
(16×140 LUTs) is compared against a hand coded VHDL solution (requiring 1885
LUTs). The total processing time per frame is 65.1 ms for IPPro versus 19.78 ms for
the hand coded design equivalent to frame rates of 15.36 and 50.56 fps, respectively.

Although the multicore IPPro design achieves just under half of the performance
of the hand coded solution, it was achieved in a matter of days as opposed to weeks.
The speed and high degree of re-programmability possible with an IPPro solution
allows the designer to more rapidly explore the design space with much greater
flexibility.

5 Profiling of Initial HOG Implementation

Detailed profiling of the HOG algorithm is performed by observing the number of
instructions for all phases of the HOG algorithm and highlights the impact of a
limited IPPro instruction set on the overall system performance, and of the potential
of using a coprocessor. For accurate comparison against our existing analysis,
the throughput of the entire IPPro system design is required to match that of the
throughput achieved by the 90 core design (see Fig. 10). This involves apportioning
the cores as follows:

• Compute Gradient function—36 IPPro cores
• Weighted Vote into Spatial and Orientation cells function—54 IPPro Cores

The IPPro code was manually compiled from the standard IPPro Instruction Set
Architecture (ISA) [22]. The initial approach was to read all of the input variables

Programmable Architectures for Histogram of Oriented Gradients Processing 665

once, at the start of a program, and then produce the results in one group, at the
end of the program. The newly profiled code is structured to read in only enough
input variables to initialize the first calculations. This allows logical and arithmetic
instructions to begin to execute, some of which require wait states due to the
datapath which feature as NOPs. Where possible, these NOPs are replaced by read
and write operations hence improving efficiency; this is a function that an automated
compiler would employ. Similarly, the expectation was to remove the NOPs which
are used to balance branching sections of the code. Unfortunately on simulation, it
was found that this was not possible as in this instance, the branch was not taken
and the READ or WRITE instructions would not be executed. This restructured
code is now analysed and profiled for each function separately. The results are then
summarized to show their contribution to the overall signal processing effort.

5.1 Normalize Gamma and Color

This step of the datapath in the image processing chain corrects linear characteristics
of the sensor within the camera such that they align better with the human eye’s
perception of light intensities. In the instance of a digital camera when twice the
number of photons strike the sensor, the generated signal is doubled; however, for
our eyes, doubling the amount of light is only perceived as being slightly brighter.
The outcome is that our vision can operate over a larger range of luminance which
is required in the outdoors.

This non-linear relationship is approximated by taking the square root of the
incoming pixels. If a large enough LUT is available, then the square root function
can be avoided. In this instance, the 8-bit input pixel values are mapped to 16-bit
locations yielding 256 possible results; thus a relatively small, 4096-bit (256× 16-
bit) LUT is required. The most time efficient solution is to use the pixel value to
address the available LUT which contains the precomputed square root values from
0 to 255; this then requires one clock per input pixel.

Should the square root function be executed in native IPPro instructions and
not by a bespoke LUT for each pixel, the IPPro would require of the order
of 160 instructions to calculate each result. Later in this section, we detail the
number of cycles required for the division and square root functions using native
IPPro instructions; these account for the 160 instructions through shifts, compares,
additions and loop control.

With this approximation, the square root function in native IPPro instructions is
no longer a major overhead; it decreases the time taken for the Normalize Gamma
and color function by a factor of 160. For this study, the Normalize Gamma and
color function is performed by a LUT stored in a readily available BRAM within
the ZYNQ device.

666 C. Kelly et al.

5.2 Compute Gradients

The x and y gradients of the pixel of interest are generated by means of convolution
where the x-axis gradient is given by, Gx = [1, 0 − 1] and the y-axis gradient by
Gy = [1, 0,−1]T . On examination of the matrices, it can be seen that they can be
implemented by a single subtraction rather than three multiplication and an addition
instructions. This simplification of the arithmetic reduces the Compute Gradients
function down to a simple subtraction of the pixel values north and south, or east
and west of the central pixel of interest.

The Gradient Magnitude Mxy of two vectors x and y is calculated by a variation

of the Pythagoras’ theorem and in our case, Mxy =
√
G2

x +G2
y , is approximated as

Mxy ≈ |Gx | + |Gy | [2]. As Mxy is only used as a scaling factor and the error scales
linearly, the approximation error is negligible. Should Mxy be calculated using the
ideal method, two multiplication, one addition and a square root instruction are
required. Once again, if we approximate that the square root instruction takes 160
instructions, a total of 163 instructions are required versus the 19 instructions for
the approximation (9 per absolute and 1 addition). This approximation is 8.6 times
more efficient considering the number of instructions. After computing both the x-
axis and y-axis gradients, the absolute values of the gradients are calculated in order
to approximate the magnitude values.

For a 16 input pixel window as shown in Fig. 11, each IPPro core executes a
single iteration of the Compute Gradient PM code, generating 30 outputs:

• 6 * Gx : Gradient in x-axis
• 6 * Gy : Gradient in y-axis
• 6 * gx : Absolute value of gradient in x-axis
• 6 * gy : Absolute value of gradient in y-axis
• 6 * Mxy : Magnitude of the gradient for pixel of interest

The number of pixels of interest calculated per loop of the related PM is only
limited by the amount of registers available to store the calculated results at the end
of the program loop. In this instance, 32 registers are available. As each pixel of
interest generates 5 items of data, only 6 pixels of interest are analysed and reported
per program loop.

Fig. 11 Gradient calculation using simple coefficients

Programmable Architectures for Histogram of Oriented Gradients Processing 667

Fig. 12 Gradient magnitude quadrant evaluation algorithm

5.3 Weighted Vote into Spatial and Orientation Cells

The absolute gradient values Gx and Gy calculated in the previous stage are
used as inputs to the Mxy quadrant evaluation logic of this stage and involved in
determining to which quadrant the Mxy belongs (as illustrated in Fig. 8). When
profiling, it is important to consider that each of the four equations of Fig. 8 is fully
evaluated in order to maintain an overall balanced program. Whilst this makes the
program deterministic in terms of execution time, it comes at the cost of increased
instructions per loop. The IPPro system currently cannot handle variable length
loops which are often presented by non-deterministic code. Such an adaptation
would require complex control mechanisms which would act to both increase the
resource usage and reduce the clock frequency. This overhead is not desired as the
majority of image processing functions are deterministic.

To aid the translation of the logic equations described in Fig. 8 into IPPro
instructions, a flow graph is constructed as shown in Fig. 12. The evaluation of
values for Gx and Gy point towards two main branches which place the magnitude
into bin group 1, 2, 3, 4 or 5 (Quadrant 1 or 3), or into bin group 5, 6, 7, 8 or 9

668 C. Kelly et al.

(Quadrant 2 or 4). the values, |Gx | and |Gy |; thus, these can be used to establish
which bin within the appropriate quadrant that the magnitude should be assigned
to by evaluating five equations. Each of the two branches performs the same five
evaluations.

Rather than evaluating a tangent function for each Mxy , the algorithm makes
use of the post synthesis evaluated values of tan 20°, 40°, 60°and 80° to determine
to which bin the magnitude of gradient belongs. Knowing Mxy’s precise angular
position in the bin is not important, only its bin location. Note that two major
branching possibilities for binning exist, but only one will be ever taken; however,
the PM includes all the branch eventualities and has 229 instructions. The output
from this functional section is the data for 128 histograms for one detection window,
where each histogram describes the gradient magnitude profile for a single cell.

5.4 Normalize over Overlapping Spatial Blocks

Using a sliding window, the 128 histograms generated by the previous function are
taken to normalize each cell with its surrounding three cells in that spatial block,
as shown in Fig. 13. When the initial 9 × 16-bit histogram Bn is generated for an
8× 8-pixel cell, Bn is then combined with the three surrounding cells of that block
to make a single 36× 16-bit histogram bv. This is then normalized to produce bn.

Normalisation is done using the L2 norm which helps to reduce noisy data to a
linear approximation and is achieved in the following two steps;

bn
′ = bv√

|bv|22 + e

then bn = bn
′√∣∣bn′∣∣22 + e

.

Here the 16-bit datapath is configured for 10-bit integer data and 6-bit fractional
data (1024 maximum and 0.015625 minimum); hence, all input data must be
scaled up.

In the instance of the initial IPPro configuration there are 32 register locations.
As a result, the normalisation can only be realized by performing it in three separate
PMs, hence each block histogram requires three iterations of this PM to achieve
the cell of interest normalisation against its three surrounding neighbours. One cell
histogram consists of 9× 16-bit register values, therefore it is not possible to store
the entire block histogram (36 × 16-bit; 4 cells) in one IPPro core. Once again,
in this profile, the IPPro is afforded 160 native IPPro instructions to process each
DIV instruction. This segmentation of the function is necessary but results in an
inefficient implementation.

Programmable Architectures for Histogram of Oriented Gradients Processing 669

F
ig

.1
3

N
or

m
al

is
at

io
n

of
a

ce
ll

hi
st

og
ra

m
w

it
h

it
s

su
rr

ou
nd

in
g

th
re

e
ce

ll
hi

st
og

ra
m

s

670 C. Kelly et al.

5.5 Collect HOGs over Detection Window

The prior Normalisation over overlapping spatial blocks group of calculations is
executed 105 times per detection window producing a single vector of 3780(105 ∗
36)× 16-bit elements per detection window (64× 128 pixels).

A single 1920× 1080 pixel HD frame contains (round up 8.43 to 9 hence 30*9)
270 detection windows, thus the Normalisation over overlapping spatial blocks
calculation is executed 28,350 (105*270) times per HD frame. Note, however,
that the dependency of this implementation of the HOG algorithm is limited to a
detection window, so it is not necessary to calculate the entire HD frame at one time;
the process can be passed across the HD frame one detection window at a time.

There is no specific calculation required to achieve this algorithm step other than
looping the previous three steps. For this reason, the profile is set as zero effort
at the host of the IPPro System (in this case the ARM processor in the ZYNQ
fabric) controls the higher level memory management of the data generated from
the previous stage.

5.6 Linear SVM

The HOG algorithm then applies the 3780× 16-bit vector which describes a single
detection window to the SVM. The SVM is trained offline with a known dataset to
establish the required coefficients. The SVM is then configured with these preset
coefficients in order to determine the likelihood of whether or not a pedestrian is
present in the detection window. This training normally takes place in an external
environment such as MATLAB but was not carried out in this study as it was not
deemed relevant to the HOG algorithm execution profiling.

In the SVM, the 3780 coefficients are multiplied with the detection window’s
3780× 16-bit vectors and compared against fixed thresholds. The outcome of these
comparisons generates a confidence rating on whether or not the detection window
contains a human form or not.

5.7 Summary of HOG Profiling

The cumulative number of profiled instructions illustrated in Fig. 14 is 2,597,976.
These instructions generate the HOG descriptors required to represent a single
detection window. To generate HOG descriptors for a complete high definition (HD)
frame, 701M IPPro instructions are required using the initial architecture.

The input data is 8-bit. In our example, the most efficient way to achieve the first
functional block, Normalize Gamma and color function, is to use a look up table
(256× 8-bits in capacity) as it requires a square root function. As this is at the front
end of the algorithm, there is no communications penalty for breaking in or out from

Programmable Architectures for Histogram of Oriented Gradients Processing 671

0

0.5

1

1.5

2 ALU- Other

ALU- Div Attributed

NOP

Read /Write

ALU- SQRT Attributed

Normalise Gamma and
Colour

Compute Gradients

N
um

be
r

of
 In

st
ru

ct
io

ns
 -

 M
ill

io
ns

Weighted vote into
spatial and orientation

cells

Normalise over
overlapping spatial

blocks

Collect HOGs over
detection window

Linear SVM

Fig. 14 Instruction profile of HOG implementation on IPPro

the IPPro datapath. For this reason, no instructions are reported in Fig. 14 for this
function. Collecting HOGs over the detection window simply requires structuring
of the data located in the BRAM. This task involves rearrangement of large datasets
and is more suited to execution by the host ARM as it has access to larger memories.
Similarly, whilst the histogram data is in higher level memory, we choose not
to return the data to the soft-cores to execute the SVN as the communications
delay incurred will outweigh any potential speed-up. Neither of these functions are
computationally demanding and do not warrant being transferred to the IPPro for
acceleration.

It must be noted that 77.3% of the total HOG implementation IPPro instructions
belong to the Normalize overlapping spatial blocks function. More specifically,
72.2% of the total IPPro instructions belong to either the division or square root
operations. The Compute gradients and Weighted vote into spatial orientation
cells require 9.1% and 11.2% respectively of the total IPPro instruction count.
This identifies the division and square root operations as being the computational
bottleneck in the implementation and suggests that targeting these operations shall
achieve the greatest positive impact on the performance.

6 IPPro Optimisations

In this section, the three optimisations are detailed and with reference to a single
detection window, as this is considered to be the fundamental element in HOG and
can be used to tile any frame size.

672 C. Kelly et al.

6.1 Register Size

The mapping strategy of Fig. 9 aims to reduce the transfer of data in and out of the
core registers, whilst reserving adequate register locations to execute intermediate
calculations before forwarding processed results to the next functional stage. This
increases the utilization for processing over data transfer. Whilst the soft-core would
benefit from larger local registers, this would have a negative impact on the FPGA
clock rate. Current mid-range FPGAs provide 5–15 Mb of on-chip memory which
does not permit storage of a full 33 Mb HD frame.

DDR transfers should ideally only occur at the start and end of the algorithm
datapath. Unfortunately, as we can see from Fig. 3, some HOG functions require a
large number of pixels. The initial IPPro 32× 16-bit register configuration can only
read blocks of 16 input pixels as 5 data values are generated for each processed
input pixel during the Compute Gradients function (gradient convolution needs
surrounding pixels to the pixel of interest). The limit is bounded by the IPPro core
register size. A maximum of 6 pixels of interest (6 pixels × 5 = 30 data points)
generating 30 values can be stored during a single PM loop as the register file size
is limited to 32, hence the limitation of storage prior to output.

In the optimized IPPro core, functionality and instructions have been added to
allow run-time read and write capability to the under-utilized 32 × 16-bit kernel
registers by the ALU. This enables the generation of a maximum of 12 pixels of
interest (12 pixels × 5 = 60 data points) as opposed to only 6 pixels of interest
using a 32 location register file per PM loop. The increase in register size increases
data reuse in the Compute Gradients function by reducing the total instructions per
detection window for this function by 4% from 242,176 to 232,544. The revised
architecture whilst producing the same output data required for a detection window,
now achieves this in less instructions as a consequence of increasing the read/write
to ALU ratio through better data reuse.

In the Normalize function, the cell of interest is normalized with its three
surrounding cells by splitting into three consecutive, identical loops, one per
surrounding cell due to the limitation of the IPPro register size. To store a block (4
cells), the histogram needs 4×9×16-bit register locations. The existing IPPro core
cannot support this function within one core as the algorithm requires a minimum of
36 register locations. With the optimized core having access to 64 register locations,
the Normalize function can be executed in a single core. More significantly, in the
Normalize as opposed to the Compute Gradients function, an increase from 32 to
64 register locations is required to provide random access to the existing 32 × 16-
bit kernel locations; this reduces the instructions for this function by 35% from
2,051,280 to 1,333,920 instructions.

In both the Normalize and Compute Gradients functions, the addition of read
and write access to the Kernel resisters increases IPPro core efficiency through both
data reuse and the reduction of read and writes instructions without the need for any
additional register resource.

Programmable Architectures for Histogram of Oriented Gradients Processing 673

6.2 Mapping Strategy, Input Data Pattern

When mapping the HOG algorithm to IPPro, all valid permutations of input data
patterns were explored; this allowed us to arrive at the most efficient core in terms
of data processing i.e. the most efficient use of the limited number of registers,
REG. This is specific to windowing operations only as these generally occur with
an overlapping behaviour where a chosen pixel of interest uses a limited number
of pixels in the area of interest. According to this concept, the Number of Outputs
per Filter Window (NOFW) is given by REG divided by the number of required
registers, FR, and represents the main optimization target.

The next step is to estimate register usage by considering the window function as
well as input image size. The image size is important as the aspect ratio will define
the amount of surplus computation executed in generating “wasted” pixels that are
required to be read, computed and stored due to the overlapping behaviour and pixel
packet processing of the algorithm mapping into the IPPro. Given an X × Y input
window of pixels where most windowing operations use overlapping elements, an
overlapping constant Ov is an important feature. The input window height, HI ,
and width, WI , define the input pixel pattern, whereas the processed pixels and the
output pattern height, HO , and width, WO , define the output.

HI = HO + (Ov × 2) (2)

WI = WO + (Ov × 2) (3)

where WO’s and HO’s maximum number is defined by the term, NOFW , as

NOFW = HO ×WO. (4)

Then the main aim becomes to find the optimum HO and WO considering the
input window size and the register use:

Optimum Read Window =
{⌊

X

WO

⌋}
∗
{

Y

HO

}
. (5)

The pixel wastage can be defined as the rounding error which is calculated as
shown in (6) and (7). The most optimum result for efficient register usage and
execution time can be achieved by choosing the least wastage where the smallest
rounding errors should be chosen by interchanging WO and HO values, if the
result minimizes �X and �Y as below:

�X =
{

X

WO
−
⌊

X

WO

⌋}
(6)

674 C. Kelly et al.

Table 4 Instruction profile for Compute Gradient function for all patterns

Input pattern Instructions PM’s per detection window Instructions per
x-Axis y-Axis Reads per PM x-Axis y-Axis detection window

14 3 38 350 5.33 128 268,800

3 14 38 350 64 10.67 246,400

8 4 28 340 10.67 64 239,360

4 8 28 340 32 21.33 239,360

6 5 26 338 16 42.67 232,544

5 6 26 338 21.33 32 237,952

�Y =
{

Y

WO
−
⌊

Y

WO

⌋}
. (7)

With the new 64× 16-bit IPPro register configuration, it is possible to generate
a maximum of 60 output data values from the 12 input pixels of interest for the
Compute Gradients task. Only six possible combinations of input pattern achieve
this maximum output and are detailed in Table 4.

In this instance, the Compute Gradients function can have a worst case pattern
requiring 268,800 instructions or a best case pattern requiring 232,544 instructions
per detection window. Conscious pattern choice has the potential to reduce the
instruction count by 13.5% in this function without any architecture changes or
additional resource usage.

6.3 Coprocessor Development

Earlier, it was established that only two of the six functional blocks of the HOG
algorithm could be implemented when using the existing native IPPro instructions
to explicitly translate the HOG algorithm from mathematical expressions into IPPro
instructions. This is primarily due to the absence of division and square root
instructions in the IPPro ISA. With slight alterations to the IPPro datapath detailed
later in this section, long hand methods of division and square root are possible
using the existing IPPro instructions. Our profiling, however, shows that they would
be very time consuming and therefore not practical.

From a bespoke logic perspective, the non-restoring division algorithm [13] is
the fastest and less complex of the radix-2 division algorithms [15]. As this supports
our requirement of retaining a high throughput yet simple architecture, the non-
restoring algorithm was chosen for our implementation. Variants such as SRT [14],
Newton-Raphson, Gold Schmitt and CORDIC were examined and found to result
in FPGA designs with slower clock rates and requiring resources in excess of the
simple shift architecture based on the non-restoring algorithm [3].

The logic describing the non-restoring divider is easily achieved in the FPGA
[3]. In the IPPro methodology, our datapath and register widths are constrained

Programmable Architectures for Histogram of Oriented Gradients Processing 675

Fig. 15 Division algorithm using bespoke 32-bit register

to allow predictability and higher throughput. Prior to our profiling, two methods
were considered for incorporating division in IPPro native instructions using this
datapath.

The first practical method requires the addition of a 32-bit register to facilitate
the left shift otherwise a single 16-bit division would require 151 instructions. This
could be formed by a real-time copy of the top two registers R30 and R31 (Fig. 15),
but would require the entire datapath to become 32-bit wide. Such an increase in
the interconnect for the datapath would both significantly reduce the operational
frequency and increase the resource usage.

The second practical method uses the existing 16-bit registers and datapath and
requires 167 instructions, 16 more than the version requiring the addition of a 32-
bit register as a consequence of the additional write into the second 16-bit register.
We conclude that by using the current DSP48E1 on its own, it is not possible to
significantly reduce the number of clock cycles required to execute a 16-bit division
or square root function.

676 C. Kelly et al.

In the profiling exercise, a compromise between the two solutions offering 151
and 167 instructions of 160 instructions per division and square root function is
used for all profiling calculations. As identified in the profiling instance of the HOG
algorithm in Fig. 14, 79% of the total processing time is attributed to the Normalize
over Overlapping Spatial Blocks operation and 70+% of the total algorithm time is
spent on division. As the most significant contributor to instructions per detection
window, the division function is the prime candidate for acceleration by means of
bespoke logic. It is acknowledged that the square root operation is similar to division
and can be implemented by similar logic, thus there is the opportunity for hardware
sharing in a multifunctional coprocessor. In this study, the focus is solely on the
division operation as it is the most influential.

6.4 Implementation of Coprocessor

The approach chosen has been to implement the division as a coprocessor in order
to provide a speedup. Two architectural approaches have been considered, one that
incorporates a single coprocessor shared temporally by an array of IPPro cores and
the other where a single coprocessor is assigned to each IPPro core creating spatial
parallelism (see Fig. 16). In both cases, a non-restoring integer, radix-2 divider
which operates on 16-bit signed data was chosen as it provided a lightweight, fast
implementation for small bit widths such as our 16-bit datapath.

For wider datapaths e.g. 32-bit and 64-bit, the SRT algorithm which requires
a lookup table or an approximation algorithm such as Newton Raphson or Gold
Schmidt, provides better performance at further FPGA resources expense but in the
instance of 16-bit data they do not [3]. CORDIC dividers were also implemented but
they too were found to require more LUTs than non-restoring methods when simple
integer results were required. On a Xilinx Virtex 7 [7], the 16-bit Cordic divider
required 117 LUTs with a maximum operating frequency, Fmax , of 275 MHz.

Fig. 16 Serial and parallel coprocessor topology. (a) Serial coprocessor. (b) Parallel coprocessor

Programmable Architectures for Histogram of Oriented Gradients Processing 677

Table 5 LogiCore Divider implementation performance

Clock cycles per division Latency clocks LUTs Fmax (MHz) Divisions/s

1 18 463 328 328M

4 9 228 264 66M

4 4 385 125 31.25M

8 19 146 267 33.4M

6.4.1 Serial Coprocessor (Temporal Parallelism)

The main advantage of using a serial coprocessor is that any core can implement
division at any time, whereas the parallel coprocessor needs to be shared and needs
careful scheduling. Sharing the coprocessor does, however, potentially provide
better utilization for longer periods of time, making more efficient use of LUTs.
The LogiCore Divider (v3.0) [9] was implemented as it does not require an
AXI bus interface and provides a simple parallel interface primarily consisting of
DIVIDEND, DIVISOR, QUOTIENT, FRACTIONAL buses along with the required
control lines. This IP achieves Radix-2 integer division using only LUTs. Four
configurations detailed in Table 5 were considered and implemented.

High throughput of the serial architecture comes with disadvantages; in particular
where single spurious divisions are required, a high penalty of 18 instructions cycle
latency is experienced. As this type of coprocessor is highly pipelined, a larger
footprint of 463 LUTs is required. In order to service many IPPro cores, a high
coprocessor fan-out is required which impacts the overall clock speed. The 328 MHz
result in Table 5 refers to the speed of the LogiCore v3.0 Divider when placed and
routed in isolation and not connected to an array of 9 cores. Connecting the divider
to 9 cores further reduces the Fmax .

Results recorded in Table 5 show that higher division throughput for the Logicore
divider is proportional to resource utilization (LUTs). This is due to the high level
of pipelining required to achieve more divisions per clock. The 1 clock cycle per
division configuration is ideal for algorithms with sustained division requirements
but the high latency will be very inefficient when division is spurious and only
occasional.

6.4.2 Parallel Coprocessor

The main advantage of a parallel divider topology is local computation and therefore
minimal penalty for data transportation. Here the scheduler effort is light and there
is no possibility of inter-core contention as there is with a serial divider. The parallel
coprocessor also has a small footprint, namely 55 LUTs per IPPro core (89 LUTs
with control and interfacing logic) which is just slightly greater than one ninth of the
footprint of the serial coprocessor without interface and control logic. The parallel
divider also has a higher frequency, Fmax , than the 9 IPPro core divider.

678 C. Kelly et al.

Unfortunately, these advantages are challenged by the fact that the divider is not
pipelined and requires 20 instructions cycles per division. Unlike the serial divider
logic which will potentially be employed regularly during a typical algorithm
execution by an array of cycling IPPro cores, the logic which makes up the
parallel divider will be dormant for longer durations. This is an inefficient use of
the resources should the design be challenged by logic resource, thus driving the
decision to exclude the coprocessor from cores with no division requirement.

6.4.3 Architecture Choice

Whilst this latter option was not implemented, consideration was given to how
streamlined version of the IPPro core could be used to execute only the instructions
required for division. This solution frees up the main IPPro during division, but costs
160 cycles of latency. It is estimated that by removing the unused decode and control
logic, a footprint of 180 LUTs is achievable. Combining the latency and excessive
footprint issues makes this unviable. If the overall impact on resources is considered
for an array consisting of 9 IPPro cores and coprocessor(s) arranged similar to that
shown in Fig. 16, then the overall LUT footprint is calculated as per Fig. 17.

An 8% difference in the total LUT resource is not deemed significant enough to
influence choosing serial over parallel implementation. The coprocessor architecture
choice influences the overall algorithm implementation performance due to the
overhead of interconnection and scheduling. For the normalization function in
HOG, the serial processor both requires division at the same instance and also for
the majority of the processing time within that functional block without stalling
the IPPro Cores for considerable periods. Whilst a serial coprocessor has very high
standalone potential in the instance of HOG, it will be impossible due to the required
concurrent access. This can be considered to be a general case for most parallelized
image processing algorithms hence ruling out a serial coprocessor.

Fig. 17 Total cost of Divider architectures

Programmable Architectures for Histogram of Oriented Gradients Processing 679

Fig. 18 Parallel coprocessor interface ports definition

Whilst the Parallel coprocessor has not the ability to reduce the instruction count
to 1 where in the extreme cases the Serial coprocessor can, it still reduces the
instruction count per division function to 16 plus the overhead of the interface.
This is a significant reduction from the initial 160 instructions required when using
native IPPro instructions. In conclusion, for ease of integration into a potential
compiler and scheduling system and also due to the compactness of the Parallel
implementation, IPPro shall utilize the Parallel Architecture.

6.4.4 IPPro Coprocessor Interface Design

A small compact multifunctional (division and square root) coprocessor was
connected to each IPPro core. Two control signals are required; STRTC (Start
coprocessor) and FUNCN (coprocessor function) as detailed in Fig. 18.

The interaction between the coprocessor and IPPro core is as follows and
illustrated in Fig. 19;

1. Program memory decodes an instruction specific to the coprocessor (DIV).
2. IPPro core control logic asserts the STRTC signal and sets the FUNCN signal to

the appropriate state depending on the function. For a dual function coprocessor,
this only needs to be a binary signal.

680 C. Kelly et al.

Fig. 19 Parallel coprocessor interface ports definition

3. Coprocessor copies the data in R30 and R31 into its local memory.
4. Coprocessor acts on the data.
5. Result is returned to IPPro core back into R30 after a known number of states.

The following must be observed during operation;

• Program code must be structured so that the operands targeted at the coprocessor
are written (or copied) to R30 and R31 and the code is such that it expects the
returned result at R30 after a predefined number of instructions.

• Deterministic coprocessor functionality, branching or interrupts do not happen
within the coprocessor execution.

• Concurrent parallel code executing on the IPPro main core is not dependent on
the coprocessor result (which can only be valid after a defined wait period).

6.4.5 Summary of Coprocessor Impact

In addition to reducing the instruction count for division from 160 to 19 instructions,
a coprocessor solution also allows the main IPPro core to continue operation in
the background. Furthermore, the division is available in the coprocessor FIFO
for up to 16 cycles after the first division result is delivered, hence giving the
scheduler greater freedom to efficiently organize the fine grained tasks of the
algorithm. Unfortunately, this cannot be exploited in the HOG algorithm as all
division instructions have to be calculated sequentially, but it should be useful in
other algorithms with different arithmetic patterns.

Using a coprocessor to off load the division effort of the Normalize over Overlap-
ping Spatial function shows that our preferred parallel coprocessor implementation
reduces the associated IPPro Core instructions by 82% from 1,344,420 to 246,120
for a single detection window. This reduction assumes the previous optimisation of

Programmable Architectures for Histogram of Oriented Gradients Processing 681

Table 6 Divider coprocessor resource and power

Core parameters Energy power

IPPro core implementation LUTS DSPs Clock (MHz) Latency Energy (nJ)

Non-coprocessor 368 1 337 183 4.3

With parallel coprocessor 457 1 337 18 0.6

increasing the registers to 64× 16-bit has already been incorporated. This saving is
attributed to the introduction of the coprocessor at the cost of 89 LUTs per core as
shown in Table 6.

In order to maintain the 175 fps that was achieved by the initial 54 + 36
core acceleration of the Compute Gradients and Weighted vote into spatial and
orientation cells functions (detailed in Sect. 3) either 26 accelerated IPPro cores or
101 standard IPPro cores are required. The ability of the coprocessor to significantly
improve the throughput for minimal resource increase widens the system architect’s
design space in a positive manner.

7 Conclusions

The design and implementation of a HOG using a lean, FPGA-based soft-core called
IPPro is presented. It is shown how a performance of 15.3 fps can be achieved
using a multicore processor implementation which compares high favorably with
handcrafted VHDL code. A detailed profiling of the implementation is then carried
out, showing that a number of optimisations in terms of increased register file
size, profiling of the input data to remove data redundancy and introduction of an
arithmetic coprocessor can act to considerably improve performance.

Acknowledgements This work has been undertaken in collaboration with Heriot-Watt University
in a project funded by the Engineering and Physical Science Research Council (EPSRC) through
the EP/K009583/1 grant. Colm Kelly has received support from Thales Air Defence.

References

1. Woods R, McAllister J, Lightbody G and Yi Y (2017) FPGA-based Implementation of Signal
Processing Systems. 2nd edn. Wiley, UK.

2. Jain R, Kasturi R and Schunck B G (1995) Machine Vision. McGraw-Hill, Inc.
3. Deschamps J P, Sutter G D and Cantó E. (2012) Guide to FPGA Implementation of Arithmetic

Functions. Springer.
4. Xilinx Inc. (2016) System Generator for DSP. Available via http://www.xilinx.com. Cited 29

April 2017.
5. MathWorks (2016) HDL Coder. Available via http://uk.mathworks.com/products/hdl-coder/

index.html. Cited 29 April 2017.

http://www.xilinx.com
http://uk.mathworks.com/products/hdl-coder/index.html
http://uk.mathworks.com/products/hdl-coder/index.html

682 C. Kelly et al.

6. McKinsey and Company (2012) McKinsey on Semiconductors. Available via http://www.
mckinsey.com. Cited 29 April 2017.

7. Xilinx Inc. (2015) DS183: Viretx-7 and XT FPGAs Data Sheet: DC and AC Switching
Characteristics. Available via http://www.xilinx.com. Cited 29 April 2017.

8. ARM Ltd. ARM7TDMI Technical Reference Manual (ARM DDI 0029G). Available via http://
www.atmel.com. Cited 29 April 2017.

9. Xilinx Inc. (2011) LogiCORE IP Divider Generator v3.0. Available via http://www.xilinx.com.
Cited 29 April 2017.

10. Texas Instruments (2010) TMS3206678 Rev.E. Available via http://www.ti.com. Cited 29 April
2017.

11. Eker J and Janneck J (2003) CAL language report. University of California at Berkeley
Technical Report UCB/ERL M, (3).

12. Blair C, Robertson N M and Hume D (2013) Characterizing a Heterogeneous System for
Person Detection in Video Using Histograms of Oriented Gradients: Power Versus Speed
Versus Accuracy. IEEE Journal on Emerging and Selected Topics in Circuits and Systems.
3(2), 1236–247.

13. Oberman S F and Flynn M (1997) Division algorithms and implementations. IEEE Transac-
tions on Computers, 46(8), 833–854.

14. Robertson J E (1958) A New Class of Digital Division Methods. IRE Transactions on
Electronic Computers, EC-7(3), 218–222.

15. Macii E, Paliouras V and Koufopavlou O (2004) Power Aware Dividers in FPGA. Proc. of
Power and Timing Modeling, Optimization and Simulation, 574–584.

16. Thomas D B, Howes L and Luk W (2009) A Comparison of CPUs, GPUs, FPGAs, and
Massively Parallel Processor Arrays for Random Number Generation. Proc. of ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 63–72.

17. Dalal N and Triggs B (2005) Histograms of oriented gradients for human detection. Proc. of
IEEE Conference on Computer Vision and Pattern Recognition, 886–893.

18. Hahnle M, Saxen F, Hisung M, Brunsmann U and Doll K (2013) FPGA-Based Real-Time
Pedestrian Detection on High-Resolution Images. Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, 629–635.

19. Bauer S, Brunsmann U and Schlotterbeck-Macht S (2009) FPGA Implementation of a HOG-
based Pedestrian Recognition System. Proc. of IMPC-Workshop, Karlsruhe.

20. Xie S, Li Y, Jia Z and Ju L (2013) Binarization based implementation for real-time human
detection. Proc. of International Conference on Field-Programmable Technology, 1–4.

21. Kadota R, Sugano H, Hiromoto M, Ochi H, Miyamoto R and Nakamura Y (2009) Hardware
Architecture for HOG Feature Extraction. Proc. of International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, 1330–1333.

22. Siddiqui F M, Russell M, Bardak B, Woods R and Rafferty K (2014) IPPro: FPGA based image
processing processor. Proc. of IEEE Workshop on Signal Processing Systems, 1–6.

23. Kelly C, Siddiqui F M, Bardak B and Woods R (2014) Histogram of oriented gradients front
end processing: an FPGA based processor approach. Proc. of IEEE Workshop on Signal
Processing Systems, 1–6.

24. Negi K, Dohi K, Shibata Y and Oguri K (2011) Deep pipelined one-chip FPGA implementation
of a real-time image-based human detection algorithm. Proc. of International Conference on
Field-Programmable Technology, 1–8.

http://www.mckinsey.com
http://www.mckinsey.com
http://www.xilinx.com
http://www.atmel.com
http://www.atmel.com
http://www.xilinx.com
http://www.ti.com

Part III
Design Methods and Tools

Methods and Tools for Mapping Process
Networks onto Multi-Processor
Systems-On-Chip

Iuliana Bacivarov, Wolfgang Haid, Kai Huang, and Lothar Thiele

Abstract Applications based on the Kahn process network (KPN) model of
computation are determinate, modular, and based on FIFO communication for
inter-process communication. While these properties allow KPN applications to
efficiently execute on multi-processor systems-on-chip (MPSoC), they also enable
the automation of the design process. This chapter focuses on the second aspect
and gives an overview of methods for automating the design process of KPN appli-
cations implemented on MPSoCs. Whereas previous chapters mainly introduced
techniques that apply to restricted classes of process networks, this overview will be
dealing with general Kahn process networks.

1 Introduction

Multi-processor system-on-chip (MPSoC) is one of the most promising and solid
paradigm for implementing embedded systems for signal processing in communi-
cation, medical, and multi-media applications. MPSoC platforms are heterogeneous
by nature as they use multiple computation, communication, memory, and periph-
eral resources. They allow the parallel execution of (multiple) applications and,
at the same time, they offer the flexibility to optimize performance, energy
consumption, or cost of the system. Nevertheless, to optimize an MPSoC in the
presence of tight time-to-market and budget constraints, a systematic design flow is
required.

To deal with this challenge, Kienhuis et al. [1] suggested to structure the design
flow in a certain manner, now commonly referred to as the Y-chart approach. It is
a systematic methodology for selecting an embedded system implementation from
a set of alternatives, a process often denoted as design space exploration. One key
idea underlying this approach is to explicitly separate application and architecture

I. Bacivarov · W. Haid · K. Huang · L. Thiele (�)
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: wolfgang.haid@tik.ee.ethz.ch; huangk36@mail.sysu.edu.cn; thiele@ethz.ch

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_19

685

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_19&domain=pdf
mailto:wolfgang.haid@tik.ee.ethz.ch
mailto:huangk36@mail.sysu.edu.cn
mailto:thiele@ethz.ch
https://doi.org/10.1007/978-3-319-91734-4_19

686 I. Bacivarov et al.

performance
analysis

design space
exploration

synthesis

application
specification

mapping
specification

architecture
specification

Fig. 1 Y-chart approach for designing MPSoC

specifications. A separate mapping specification describes how the application
is spatially (binding) and temporally (scheduling) executed on the architecture.
Design space exploration is then performed by iteratively analyzing and optimizing
the application, the structure of the underlying (hardware) architecture as well as
candidate mappings, as shown in Fig. 1.

Many design flows implementing the Y-chart approach have been proposed. For
a review, see [2]. These flows have in common that they impose a set of system-level
concepts to facilitate design space exploration, such as the use of a formal model of
computation, providing restrictions on the set of scheduling policies, and relying
on modular specifications. For instance, the application may be formally specified
as a data flow model, a synchronous model, or a discrete event model, in order to
enable automated performance analysis. In a similar way, resource sharing policies
may be limited to an event-triggered or a time-triggered policy, to prune the design
space. Finally, using modular system-level specifications will enable quick system
modifications concerning the application, architecture, and mapping.

In the context of (array) signal processing applications executing on MPSoC,
the Kahn process network (KPN) model of computation [3] is frequently used.
Assuming a network of autonomous, concurrently executing processes that commu-
nicate point-to-point via unbounded FIFO channels, the KPN model has additional
favorable properties. The KPN model is determinate, i.e. the functional behavior
is independent on the scheduling of processes. The inter-process communication
via FIFO channels using blocking read semantics can be efficiently implemented
either in software, hardware, or in heterogeneous HW/SW systems. Computation
and control are completely distributed, requiring no global synchronization, com-
munication, or memory. The resulting modularity allows applications to be scaled
easily and opens up many degrees of freedom for implementing a system.

Methods and Tools for Mapping Process Networks onto MPSoC 687

Due to these properties, the KPN model of computation is “compatible” with
the Y-chart approach and has led to numerous design flows. Although they share the
same model of computation, these design flows consider different design objectives,
they focus on different aspects, and leverage different properties of the KPN model
or one of its subclasses. In this chapter, an overview of KPN-based design flows is
given, emphasizing both, similarities and differences in these flows. The following
section reviews existing design flows and the way they relate to the Y-chart.
Afterwards, a closer look at individual steps in the design flow is taken and several
methods to tackle them are presented. Finally, for exemplification, a specific design
flow is considered in detail.

2 KPN Design Flows for Multiprocessor Systems

Several design flows based on the Y-chart approach and the KPN model have
been developed. Table 1 shows a (non-exhaustive) list of design flows targeted
at the implementation of KPN applications on MPSoC platforms. In addition to
the listed design flows, there are other approaches related to the KPN model with
different aims. Ptolemy [4] and Metropolis [5] allow the analysis and simulation of
applications specified as KPNs, among other models of computation. However, they
are targeted more towards hardware/software codesign and in particular towards the
system synthesis and verification. The design space exploration is not the main focus
of these frameworks. The Mathworks Real-Time Workshop [6] and the National
Instruments LabVIEW Microprocessor SDK [7] target the implementation of signal
processing applications on single-processor systems. SystemCoDesigner [8] and
PeaCE [9] are HW/SW codesign flows based on a model of computation that
combines the KPN model with finite state machines, see Ref. [10]. Note that even
though the focus of this chapter is on the design flows for MPSoC listed in Table 1,
many of the presented ideas also apply to the other mentioned design flows.

Generally, KPN design flows for MPSoCs respect the four design phases of the
Y-chart: system specification, performance analysis, design space exploration, and
system synthesis, as shown in Fig. 1.

Based on these four phases, the design process can be described as follows:
The starting point of the design flow is a parallelized KPN specification of the
application. In this specification, the coarse-grain data and functional parallelism of
the application is made explicit. Fine-grained word or instruction-level parallelism
can effectively be handled by today’s compilers. Usually, the KPN is manually
specified by the programmer. There are, however, also tools available that allow
deriving a KPN from sequential programs, such as the Compaan [19] and pn [20]
tools. KPN design flows usually provide a functional simulation capability that
enables the execution of KPN specification on a standard single-processor machine
in a multi-tasking environment. Due to the determinacy of KPNs, the timing-
independent functionality of the application can be validated this way.

688 I. Bacivarov et al.

Table 1 KPN design flows for MPSoCs

Design flow Web page

Artemis [11] http://daedalus.liacs.nl

Distributed operation layer (DOL) [12] http://www.tik.ee.ethz.ch/~shapes/dol.html

Embedded system-level platform
synthesis and application mapping
(ESPAM) [13]

http://daedalus.liacs.nl

Koski [14] Not available online

Multiapplication and multiprocessor
synthesis (MAMPS) [15]

http://www.es.ele.tue.nl/mamps

Open dataflow (OpenDF) [16] http://opendf.sourceforge.net

Software/hardware integration medium
(SHIM) [17]

Not available online

StreamIt [18] http://www.cag.lcs.mit.edu/streamit

Second, the architecture needs to be specified. This is frequently done in
form of a system-level specification describing the architectural resources, such as
processors, memories, interconnects, and I/O devices. This specification can either
describe a fixed MPSoC or the template of a configurable MPSoC platform. In both
cases, the architecture specification needs to contain all the information required for
design space exploration and performance analysis. In the case of a configurable
platform, the architecture specification is also the basis for the synthesis of the
final target platform later in the design flow. Hence, it needs to contain information
required by the RTL synthesis tool, such as references to VHDL or Verilog code of
hardware components, complete IP blocks, and configuration files.

The application and architecture specification phase is followed by defining a
mapping of the application onto the architecture. In this step, processes are bound
to processors and channels are bound to communication paths containing memories
and interconnects. In addition, the scheduling and arbitration policies for shared
resources are defined.

Usually, the final mapping is the result of a design space exploration, which
is done based on the system performance analysis. The methods applied for
performance analysis range from simple back-of-the-envelope calculations to for-
mal analysis methods, simulations, and measurements. In KPN design flows,
performance analysis during design space exploration is possible and is usually done
at a rather high level of abstraction. As shown in the next section, different methods
targeted towards KPN applications have been proposed in this context that achieve
high accuracy within short analysis times. Being able to defer the use of simulation
or measurements until late in the design cycle is one of the key advantages of KPN
design flows.

After manual or automated design space exploration, the system is finally
implemented by making use of appropriate synthesis techniques. For this purpose,
KPN design flows feature powerful synthesis tools that implement a system based
on the application, architecture, and mapping specification in software, hardware,

http://daedalus.liacs.nl
http://www.tik.ee.ethz.ch/~shapes/dol.html
http://daedalus.liacs.nl
http://www.es.ele.tue.nl/mamps
http://opendf.sourceforge.net
http://www.cag.lcs.mit.edu/streamit

Methods and Tools for Mapping Process Networks onto MPSoC 689

Table 2 Case studies that use some of the design flows from Table 1

Case study Target Performance Exploration

Design flow application platform analysis method

Artemis [21] Motion-JPEG
encoder

Molen architecture on
Xilinx Virtex-II Pro FPGA

Trace-driven
simulation

Evolutionary
algorithm

DOL [12] MPEG-2
decoder

Atmel DIOPSIS 940 Real-time
analytic model

Evolutionary
algorithm

ESPAM [13] Motion-JPEG
encoder

Multi-MicroBlaze on
Xilinx Virtex-II Pro FPGA

Measurement Exhaustive
search

Koski [14] WLAN terminal Multi-NIOS on Altera
Stratix-II FPGA

High-level
simulation

Simulated
annealing

MAMPS [15] H263 and JPEG
decoders

Multi-MicroBlaze on
Xilinx Virtex-II Pro FPGA

High-level
simulation

Dedicated
heuristic

OpenDF [22] MPEG-4 SP
decoder

FPGA (no particular type
specified)

Not applicable Not applicable

SHIM [23] JPEG decoder Sony/Toshiba/IBM Cell BE Not applicable Not applicable

StreamIt [18] 12 streaming
applications

RAW architecture SDF analytic
model

Simulated
annealing

or both hardware and software. Clearly, this is a key advantage of KPN design
flows because the pitfalls of implementing a parallel system, such as hardware-
software interface generation, deadlocks, starvation, and data races are handled in
an automated way.

The design flows listed in Table 1 implement this basic Y-chart approach in
different ways: On the one hand, the methods that are applied in each of the four
phases differ between the design flows, as discussed in the next section. On the
other hand, the scope (set of optimization variables) of design space exploration is
different. Basically, one can distinguish between software design flows, where the
target platform is fixed, and hardware/software co-design flows, where a template
of a target platform is given and the instantiation of a specific platform is part of
the design space exploration. This is shown in Table 2 where a few case studies
are summarized that have been performed using the design flows listed in Table 1.
DOL, SHIM, and StreamIt assume fixed hardware platforms, whereas the scope of
the other design flows encompasses the implementation of the target platform on
FPGAs.

3 Methods

KPN design flows attempt to assist a system designer in implementing an applica-
tion as a hardware/software system by offering support for several activities such as:

690 I. Bacivarov et al.

• system specification,
• system synthesis,
• performance analysis, and
• design space exploration.

For each of these activities, methods have been proposed that differ in goal, scope,
degree of automation, and complexity. In the previous chapters, mainly methods for
subclasses of KPNs have been discussed. In this chapter, we give an overview of
methods that are applicable to general KPNs in the context of MPSoCs. For each of
the activities mentioned above, we discuss the challenges and proposed solutions.

3.1 System Specification

Developing applications that run correctly and efficiently on MPSoCs is chal-
lenging. The difficulty consists in finding an appropriate level of abstraction that
balances the conflicting goals of (a) developing applications in a productive manner
and of (b) enabling efficient automated implementation. While productivity is
usually achieved by programming at a high abstraction level, efficiency is usually
achieved by optimizing code at a low abstraction level. Many case studies provide
evidence that for streaming applications, the KPN model of computation achieves a
good trade-off between these two goals. On the one hand, streaming applications
can often naturally be modeled as a KPN which promotes productivity. On the
other hand, runtime environments have been developed that efficiently implement
processes and channels.

Specifically, the KPN model can be seen as a coordination model [24] which
considers the programming of a distributed system as the combination of two
distinct activities: the actual computing part comprising a number of processes
involved in manipulating data and a coordination part reflecting the communication
and cooperation between processes. The coordination model allows reuse of
components because the application programmer can easily build new algorithms
by a new composition of existing processes. Furthermore the coordination model
allows applications to be ported to different target architectures because usually
only the glue-code that implements the coordination part is architecture dependent.

Due to these reasons, KPN applications are usually specified in a way that reflects
the coordination model. Two different approaches can be distinguished, namely
specification using a host as well as a coordination language, and specification
using a domain-specific language. When using distinguished host and coordination
languages, the KPN processes are specified in a host language (often in C or C++)
whereas the coordination part is specified separately using a coordination language
(often in XML or UML). This is, for instance, the approach taken in the Artemis
and DOL design flows, where C and XML are used. When using a domain-specific
language, computation and coordination are expressed in a single language that
provides constructs for both parts. OpenDF and StreamIt, for instance, are based
on domain-specific languages.

Methods and Tools for Mapping Process Networks onto MPSoC 691

In both cases, applications are usually expressed based on the principles of
encapsulation and explicit concurrency: Each process completely encapsulates its
own state together with the code that operates on it and operates independently
from other processes in the system, except for the data dependencies that are made
explicit by channels. This allows for modular, scalable, and platform-independent
application specifications.

System specification for KPNs is thus different from two other frequently
used approaches for MPSoC software development, namely specification based
on a board support package and specification based on a high-level application
programming interface (API). When developing an application based on the board
support package that is usually shipped with an MPSoC, the abstraction level is
rather low. The focus is thus often on correctly implementing an application using
low-level primitives for initialization, communication, or synchronization, rather
than on optimizing an application. When using a high-level API the designer
is relieved from dealing with low-level details (provided that the API has been
ported to the target MPSoC). Compared to the KPN based approach, however,
automatically optimizing programs written using a high-level API, such as MPI or
OpenMP, is more difficult: Due to the lack of an underlying model of computation,
the basis for automatically analyzing and optimizing a program is essentially
missing.

3.2 System Synthesis

The Y-chart approach opens a gap between the system-level specification and the
actual implementation of the design, sometimes referred to as the implementation
gap. The challenge in bridging this gap is to preserve the KPN semantics on the
one hand and achieve the desired performance on the other hand. Also, the pitfalls
of parallel programming, such as deadlocks, starvation, and data races need to be
handled. This is the task of system synthesis.

Different approaches for the synthesis of KPNs for software, hardware, and in
combined hardware/software platforms have been proposed. The target architec-
tures have been comprised of single-processors, multi-processors, and FPGAs. In all
cases, system synthesis deals with the implementation of processes and channels as
well as the arbitration of resources in case that processes and channels are mapped
to shared resources. If not all parameters of an implementation are fixed before
synthesis, the remaining degrees of freedom need to be exploited during system
synthesis. In that case, system synthesis is often considered as an optimization
problem where frequently considered optimization goals are the minimization of
code size, the minimization of buffer requirements, or finding the schedules that
minimize delays and maximize system throughput.

While many of these problems can be solved only for restricted subclasses, a few
observations apply to general KPNs:

692 I. Bacivarov et al.

• First, KPN applications can be efficiently implemented on architectures with
different processor, interconnect, and memory configurations, as shown in
Table 2. As an example, KPN applications can be implemented on distributed
memory (message-passing) architectures as well as shared memory architectures.
The FIFO communication can be implemented using dedicated hardware FIFOs
or buses, but also more complex communication topologies, such as hierarchical
buses or networks-on-chip.

• Second, KPN applications can be executed in a purely data-driven manner based
on their determinacy. This means that resources can operate independently from
each other without any global synchronization. Pair-wise synchronization is
only needed between processes that are directly connected by channels. From
another perspective, this means that KPN applications can be scheduled with
any scheduling policy that prevents deadlocks, i.e., preemptive, non-preemptive,
or cooperative scheduling could be used. Due to these very relaxed require-
ments, KPN applications can usually be implemented easily on top of existing
(real-time) operating systems. On the other hand, implementing a runtime-
environment for a new platform from scratch is also possible because not many
services need to be provided by the runtime-environment.

• Third, KPN applications can be easily partitioned into processes running in hard-
ware and processes running in software. This is due to the parallel specification
of the KPN application on the one hand, and due to the simple interaction of
processes over FIFO channels on the other hand which facilitates the synthesis
of the HW/SW interface.

The observations above indicate that synthesizing a KPN is conceptually not
a very difficult task. Implementing a KPN based on a multi-processor operating
system, for instance, is rather simple: Processes can be implemented as operating
system processes or threads, and channels can be implemented using existing inter-
process communication schemes. The difficulties in KPN synthesis origin from opti-
mizing an implementation by minimizing the overhead for FIFO communication
and the runtime environment. This can be achieved by considering low-level details
of an implementation, for instance by efficiently using the hardware communication
infrastructure (e.g. DMA engines) or by efficiently using the memory hierarchy
(e.g. caches or scratchpad memories). On the other hand, optimizations can also
be done at a high level, for instance, by (automatically) adjusting the granularity
and topology of a KPN to the target architecture. This includes the replication of
processes to increase the parallelism in a KPN or the merging of processes to reduce
inter-process communication. We refrain from giving further details here and refer
to the previous chapters for details on applicable techniques.

Finally, a further problem needs to be considered in the synthesis of KPNs:
The denotational semantics of the Kahn model is based on FIFO channels with
unbounded capacity. Since unbounded channels cannot be realized in physical
implementations, however, KPNs need to be transformed in a way that allows for an
implementation on channels with finite capacity. It can be shown that an operational
semantics of KPNs based on channels with finite capacity matches the denotational

Methods and Tools for Mapping Process Networks onto MPSoC 693

semantics when artificial deadlocks can be avoided. An artificial deadlock is a
deadlock caused by one or more channels having insufficient capacity. Due to the
Turing-completeness of KPNs, it is in general not possible to determine sufficient
channel sizes at design time, however. One possibility to deal with this situation
are runtime approaches that detect and resolve artificial deadlocks during execution
[25]. Another possibility is to restrict the communication behavior of the processes
such that the channels become amenable to analysis at design time.

3.3 Performance Analysis

During the design process, a designer is typically faced with questions such as
whether the timing properties of a certain design will meet the design requirements,
what architectural element will act as a bottleneck, or what the memory require-
ments will be. Consequently, one of the major challenges in the design process is
to quantitatively analyze specific characteristics of a system, such as end-to-end
delays, buffer requirements, throughput, energy consumption, or temperature rises
due to application activities. We refer to this analysis as performance analysis.

The performance analysis of KPNs executing on MPSoCs poses a major
challenge due to multiple and heterogeneous hardware resources, the distributed
execution of the application, and the interaction of computation and communication
on shared resources. To deal with these challenges, multiple methods have been
successfully used in the context of KPN design flows. These methods differ in
accuracy, evaluation time, set-up effort, and scope.

In Fig. 2, the scope of different performance analysis methods is compared.
Leftmost, the interval of values for a performance metric as occurring in the

performance
metric

worst
case

best
case

real system measurement WCET/BCET
analysis

probabilistic
analysissimulation

Fig. 2 Scope of different performance analysis methods for MPSoC

694 I. Bacivarov et al.

real system is shown. This performance metric could be the end-to-end delay
of a system, the utilization of a computation or communication resource, or the
occupation of a channel buffer, for instance. Different performance analysis methods
now differ regarding the values that can be obtained.

When taking measurements of the real system, the measured values only
represent a subset of all possible values. Most likely, due to insufficient coverage of
corner cases and the limited number of measurement samples, the interval bounds
can only be estimated based on the measurements. This observation applies to
simulation as well. Best-case and worst-case analysis methods take a different
approach by providing safe results about the interval bounds, i.e. upper and lower
bounds on the worst-case and best-case behavior, respectively. On the other hand,
usually not all parts of a system can be accurately modeled. In that case, (safe)
optimistic and pessimistic assumptions need to be made, leading to bounds on
system performance measures that are not tight. Finally, also probabilistic methods
are used to provide quantitative statements about system behavior. In the following,
we take a closer look at simulation and best-case/worst-case analysis due to their
frequent application in KPN design flows.

Simulation is presumably the most frequently used method for performance
analysis. This is reflected by the availability of a wide range of simulation tools that
are applicable to different levels of abstraction. The most accurate but also slowest
class are cycle-accurate simulators. Instruction-accurate simulators (also referred to
as instruction-set simulators or virtual platforms) provide a good trade-off between
speed and accuracy which allows entire MPSoCs to be modeled and simulated. An
example is the so-called full system simulator of the Cell Broadband Engine which
also allows switching between different simulation modes with different accuracies
[26]. Besides performance analysis, virtual platforms can also be used for software
development and debugging. For this purpose, the full system simulator of the Cell
Broadband Engine provides a fast, purely functional simulation mode in which
timing is not considered.

At higher levels of abstraction, also other kinds of simulation are used for
performance analysis. One example is trace-based simulation in the Artemis
design flow [11] or in DOL [27], for instance. In trace-based simulation, first an
untimed execution trace of the application is recorded that contains computation
and communication events of processes and channels. Based on an architecture
description, the mapping of the application onto the architecture, and estimates
about the time to process events, this trace is refined towards timing behavior. This
technique allows designers to estimate the system performance. Depending on the
level of detail in the trace and the modeling of the execution platform, estimation
errors of less than 5% have been reported with a significantly reduced simulation
time compared to instruction-accurate simulation.

For the design of hard real-time systems, worst-case guarantees on the system
timing need to be given. As stated above, worst-case bounds are difficult to obtain
from simulation due to insufficient corner case coverage and often prohibitively
long execution times of a simulation run. Therefore, analytic methods appear to

Methods and Tools for Mapping Process Networks onto MPSoC 695

be a promising method for providing worst-case guarantees even in the case of
complex and large-scale MPSoC implementations. Prominent methods for analytic
performance analysis are listed in the following.

• Holistic Methods: Holistic analysis is a collection of techniques for the analysis
of distributed systems. The principle is to extend concepts of classical single-
processor scheduling theory to distributed systems, integrating the analysis of
computation and communication resource scheduling. Several holistic analysis
techniques have been aggregated in the modeling and analysis suite for real-time
applications (MAST) [28].

• Compositional Performance Analysis Methods: The basic idea of compositional
performance analysis methods is to construct an analysis model of small com-
ponents and propagate timing information between these components. Typical
components model the execution of processes on a processor, the transmission
of data packets on interconnects, or traffic shapers. Timing information is
described by event models, such as periodic, periodic with jitter and bursts,
or more general models in terms of arrival curves. Prominent methods of
compositional performance analysis are modular performance analysis (MPA)
[29] and symbolic timing analysis for systems (SymTA/S) [30]. Both methods
support a rich set of scheduling policies, such as preemptive and non-preemptive
fixed priority scheduling, earliest deadline first scheduling, or time division
multiple access. MPA is used in the DOL design flow, for instance.

• Automata Based Analysis: Performance analysis of MPSoCs has also been
tackled using state-based formalisms. One example are timed automata [31]: The
approach is to model a system as a network of interacting timed automata and
formally verify its behavior by means of reachability analysis using the Uppaal
model checker [32].

A comparison of these performance analysis methods is provided in [33]. Note that
beside being suited for the analysis of real-time systems, analytic models are often
used as the basis for performing system optimization, such as scheduling parameter
optimization [34] or robustness optimization [35].

Finally, one can observe that none of the methods shown in Fig. 2 can fulfill
all the requirements concerning accuracy, scope, and set-up effort. Therefore,
combinations of the different methods have been proposed: Simulation has been
coupled with native execution on the target platform to reduce simulation time
[36, 37]. Different analytic methods have been coupled to broaden the analysis scope
[38, 39]. Subsystems in simulation have been replaced by analytic models to reduce
simulation time and eliminate the need to generate a detailed simulation model of
a component [40]. In these efforts, the modularity of KPNs is often leveraged by
using the FIFO channels as the interface between the different performance analysis
methods.

696 I. Bacivarov et al.

programmable hardware

configurable hardware

binding
scheduling

source transformations

algorithmic transformations

Multi-Processor System Design Space

Application Architecture

Mapping

Fig. 3 Application, architecture, and mapping design space

3.4 Design Space Exploration

Designers of MPSoCs face a large design space due to the combinatorial explosion
related to the available degrees of freedom. At several points in the design flow
and at various levels of abstraction, they need to decide between design alternatives.
Specifically, the design space of MPSoCs can be roughly divided into three domains:
the application design space, the architecture design space, and the mapping design
space. These three domains can be further split up, as shown in Fig. 3.

Exploration of the application design space can be split up into two main kinds of
transformations, namely algorithmic and source transformations. Algorithmic trans-
formations make explicit the coarse-grained parallelism in a sequential application
by transforming it into a KPN. Given a KPN application, source transformations
split and merge processes to trade-off parallelism and communication overhead.

Exploration of the architecture design space attempts to find an optimized
architecture for a given application. The goal is to instantiate programmable and
(re-)configurable hardware components that allow an efficient implementation of an
application.

Exploration of the mapping design space is the last step in the design space
exploration. Given a KPN application and an architecture, processes and channels
of the KPN are bound to processors and interconnects in the architecture, and
scheduling policies are defined on shared communication or computation resources.

Usually, design space exploration is a multi-objective optimization problem.
The goal is thus to find a set of Pareto-optimal designs which represent solutions
with different trade-offs between the optimization goals such as performance, cost,
energy consumption, or peak temperature. The final choice is left to the designer
who needs to decide which of the Pareto-optimal designs to implement or to refine
to the next level of abstraction.

Methods and Tools for Mapping Process Networks onto MPSoC 697

Available approaches to the exploration of design spaces can be characterized
as follows. Gries [41] presents a more detailed survey of automated design space
exploration and performance analysis in different design flows.

• Manual Exploration: The selection of design points is done by the designer.
When taking this approach, the advantage of using a KPN design flow lies in
efficient performance analysis and automated synthesis of selected designs.

• Exhaustive Search: All design points in a specified region of the design parame-
ters are evaluated. Very often, this approach is combined with local optimization
in one or several design parameters in order to reduce the size of the design
space. Due to the availability of fast performance analysis techniques for KPNs,
exhaustive search is a realistic option if the design space is limited (or can be
pruned) to roughly a few thousand designs.

• Reduction to Single Objective: For design space exploration with multiple
conflicting criteria, there are several approaches available that reduce the problem
to a single criterion optimization. For example, manual or exhaustive sampling
is done in one (or several) directions of the search space and a constraint
optimization, e.g. iterative improvement or analytic methods is done in the other.
One may also combine the various objectives to a single criterion by means of a
weighted sum where the weights express the preferences of the designer.

• Black-box Randomized Search: The design space is sampled and searched via a
black-box optimization approach, i.e. new design points are generated based on
the information gathered so far and by defining an appropriate neighborhood
function (variation operator). The properties of these new design points are
estimated which increases the available information about the design space.
Examples of sampling and search strategies are Pareto simulated annealing,
Pareto tabu search, or evolutionary multi-objective optimization. These black box
optimization methods are often combined with local search methods that opti-
mize certain design parameters or structures. This approach is most frequently
used in KPN design flows, as illustrated in Table 2.

• Problem-Dependent Approaches: In addition to the above methods, one can find
also a close integration of the exploration with a problem-dependent performance
analysis of implementations. This approach is often used in design flows that
are based on subclasses of KPNs. The StreamIt and MAMPS design flow, for
instance, are based on SDF (Synchronous Data Flow) graphs and use adopted
techniques for design space exploration, see Ref. [42].

4 Specification, Synthesis, Analysis, and Optimization in
DOL

Until now, this chapter introduced KPN design flows and the corresponding main
design activities. This section will provide additional technical details by means
of a concrete example of a typical design flow: the Distributed Operation Layer

698 I. Bacivarov et al.

(DOL) [12, 43]. The underlying concepts for system specification, synthesis,
performance analysis, and design space exploration will be considered, as well
as a few typical experimental results for the size of the implementation, the
runtime, and accuracy of the applied methods. DOL is currently being extended
towards scenario-based design flow [44], and supports the design, optimization, and
simultaneous execution of multiple dynamic applications on a MPSoC starting with
a similar programming model as [45]. However, this section does not discuss these
extensions, focusing on the typical design flow for single Kahn process networks.

4.1 Distributed Operation Layer

The distributed operation layer (DOL) [12, 43] is a platform independent MPSoC
design flow based on the Kahn process network (KPN) model of computation [3]
and targeted at real-time multimedia and (array) signal processing applications.

The DOL design cycle, as shown in Fig. 4, follows the Y-chart approach in
which the application specification is platform-independent and needs to be related
to a concrete architecture by means of an explicit mapping. As usual, the design
starts with the specification of the application and architecture (and sometimes
even a mapping). Then, code for the functional simulation of the application is
automatically generated for testing and debugging the parallel application code with
standard debugging tools on a standard PC/workstation.

application
specification
(XML & C)

mapping
specification

(XML)

architecture
specification

(XML)

functional
simulation
generation

simulation on
workstation

system
synthesis

simulation on
virtual platform /

execution on
physical platform

evaluation on
workstation

analysis
model

generation

perform
ance data

ca
lib

ra
tio

n
w

ith
 p

er
fo

rm
an

ce
 d

at
a

te
st

 a
nd

 d
eb

ug

design space exploration

Fig. 4 Overview of the DOL design flow

Methods and Tools for Mapping Process Networks onto MPSoC 699

Once the application is functionally correct, it can be mapped onto the target
architecture. Based on the architecture and the mapping specification, the system
is synthesized by generating the corresponding binaries. Note that, here, system
synthesis refers to software synthesis only as the architecture specification is
considered to be unaltered during the exploration phase. Then, the synthesis
involves the generation of the mapping-dependent source code for processors, the
compilation, and the linking to platform specific libraries as well as to the run-time
environment. Generated binaries can either be executed on a simulator of the target
platform or on the real MPSoC. Both, the functional and the low-level simulation
provide performance figures that will enrich the application specification. This
information will be used in later phases for the calibration of the analysis model.

The design flow described so far is typical for MPSoC design and very similar
to the other design flows listed in Table 1 and explained in the previous chapters.
What is different in DOL is its focus on the design and analysis of real-time
signal processing applications. To this end, an analytic worst-/best-case performance
analysis method has been embedded into the design flow. Besides enabling the
analysis of real-time systems, using an analytic method for performance analysis
facilitates rapid design space exploration due to short analysis times. The resulting
performance data are embedded in a design space exploration loop in search of the
optimal mapping.

4.2 System Specification

For designing the specification format of an MPSoC, one has to consider three
criteria. First, the specification format should be expressive enough to represent
the class of envisioned applications, i.e. (real-time) signal processing applications.
Second, the specification should facilitate automation of system synthesis and
analysis. The third criterion is the possibility of mapping an application in different
ways onto an architecture. In the DOL framework, these criteria are met by
specifying the application as a Kahn Process Network [3] and by specifying the
application independently of architecture.

When designing parallel applications irrespective of architectures, an important
feature is the ability to specify different topologies of the process network with
different degrees of parallelism. For this reason, the KPN coordination part is kept
separately (described in XML) from the source code of the individual processes
(described in C/C++), see Fig. 5. Similar hybrid XML/C formats are employed by
other frameworks as well (e.g. in Artemis [11], ESPAM [13], and MAMPS [15]).

While the syntax of the XML file is specified using an XML schema, the C code
is based on a simple API. As shown in Fig. 5, this API basically consists of four
functions, two of which concern computation, namely INIT and FIRE, and two
of which concern communication inside the FIRE procedure, namely READ and
WRITE:

700 I. Bacivarov et al.

Fig. 5 Kahn process network model. Left: XML description of the process network structure.
Right top: example of a process network. Right bottom: C code of individual processes

• INIT contains the code that is executed once at start-up to initialize a process.
• FIRE contains the code that is repeatedly called by the scheduler.
• READ implements the blocking read from a FIFO channel.
• WRITE implements the blocking write to a FIFO channel.

A similar API is defined by Y-API [46], for instance, a library for specifying and
executing Kahn process networks.

The architecture model in DOL is an abstract representation of the underlying
execution platform. Its purpose is to determine at a system-level the consequences
of the application mapping. This abstract architecture models the topology (i.e.
the set of processors and communication paths between processors) and includes
performance figures of the underlying platform useful for performance analysis,
e.g. the clock frequency and throughput of architectural resources. The architecture
model is a structural description that does not express the functional behavior, and
which is specified in XML, similar to the application model. This XML architecture
representation is not specific to DOL, but also encountered in other frameworks,
such as Artemis and MAMPS.

The application model is brought in correspondence to the architecture model by
a mapping (see Fig. 6) which can be either established manually by an experienced
designer or generated automatically by design space exploration. This mapping
fixes the allocation of hardware resources, the binding of the application elements
onto these resources, and the scheduling on shared resources. For the mapping
specification, once more, the XML format is used. The mapping XML serves as
intermediate format and interface between tools, i.e. the design space exploration
tool generates a mapping XML as an output, which is the input for the software
synthesis tool.

The application XML, the architecture XML, and the mapping XML are the
basis for the following DOL synthesis steps, i.e. for the functional simulation and
the implementation of the final MPSoC, but also for the generation of the analytic
performance analysis model (see Fig. 4).

Methods and Tools for Mapping Process Networks onto MPSoC 701

mapping

p1 p2 p4

p3

c1

c3 c4

c2

processor1

shared mem.

processor2

bus

prog.
mem.

data
mem.

prog.
mem.

data
mem.

01: <binding name="b_p1" type="computation">
02: <process name="p1"/>
03: <processor name="processor1"/>
04: </binding>
...
16: <binding name="b_c2" type="communication">
17: <sw_channel name="c2"/>
18: <writepath name="dmem1_bus_shm"/>
19: <readpath name="shm_bus_dmem2"/>
20: </binding>
...
30: <schedule name="sched1" type="fixedpriority">
31: <resource name="processor1"/>
32: <origin name="p1">
33: < configuration name="priority" value="0"/>
34:
35: <origin name="p2">
36: <configuration name="priority" value="1"/>
37: </origin>
38: </schedule>

</origin>

Fig. 6 Mapping of a Kahn process network onto a two-processors architecture and an example of
a corresponding mapping XML file

4.3 System Synthesis

Similar to other frameworks, an application specified in DOL cannot be directly
executed by just compiling the provided source code of the processes. A synthesis
step is required that generates the “glue code” implementing the processes and
channels, the bootstrapping and the scheduling of the application. Specifically,
synthesis is done first for a standard PC/workstation to support the functional
verification and debugging of the application (in which case it should be rather
termed functional simulation generation) and second for the target MPSoC (which
is properly known as system synthesis). However, due to similarities, the two steps
are treated together in the following subsections as facets of system synthesis in
the DOL design flow. Note that when the behavior of a part of an application can
be restricted to a subclass of KPN, the general approach described below could
be combined with one of the corresponding synthesis techniques described in the
previous chapters.

4.3.1 Functional Simulation Generation

The purpose of providing a functional simulation that can be executed on a standard
PC/workstation is to provide the application developer with a convenient approach
to test and debug the application. Specifically, functional bugs within the application
can be exposed and debugged by running a functional simulation on a standard PC
and using standard debugging tools, e.g. the GNU debugger gdb.

702 I. Bacivarov et al.

A second role of the functional simulation is to obtain architecture-independent
application parameters for performance analysis, such as the amount of data
transferred between processes or the number of activations of processes. These
parameters can easily be obtained from functional simulation by monitoring the
calls of the READ, WRITE, and FIRE methods. By back-annotating these parame-
ters to the application specification as shown in Fig. 4, they can be referred to during
performance analysis, as explained later in this section.

Using the DOL design flow, a functional simulation can be automatically
generated according to the application specification: For each process, an execution
thread is instantiated. To implement software channels, inter-thread communication
channels are used. The execution of the application is then controlled by a simple
data-driven scheduler. Since Kahn process networks are determinate, this is a viable
possibility because the scheduling does not influence the input/output behavior of
the application.

In DOL, the functional simulation is based on the SystemC library. Therefore,
processes can be implemented as user-space threads which incurs less runtime
overhead compared to using an operating system thread library, such as the pthread
library. Figure 7 shows the software architecture of the functional simulation based
on SystemC: Each Kahn process is embedded into a SystemC thread, whereas each
Kahn software channel is implemented as a SystemC channel. Moreover, the main
file that bootstraps the process network and implements the scheduler to coordinate
the quasi-parallel execution of processes is generated automatically as well.

Another frequently chosen library is the pthreads library. On multicore multipro-
cessors where single operating system threads can be executed on different cores, a
functional simulation based on pthreads can even achieve a speed-up compared to
the sequential version of the application. In [47], speeds-ups of more than 3 have
been reported for executing applications specified in SHIM on a quad-core Intel
Xeon processor.

fire()fire() fire()

scheduler

sc-thread sc-threadwrite() read() sc-thread

sc-channel sc-channel

sc-portsc-portsc-portsc-port

Fig. 7 Software architecture of the functional simulation of a KPN application based on SystemC

Methods and Tools for Mapping Process Networks onto MPSoC 703

4.3.2 Software Synthesis

After the application has been functionally verified by functional simulation, it is
ported to the target platform. This requires an architecture dependent runtime envi-
ronment in which the application is executed. The role of the runtime environment
is to hide architectural details of the MPSoC platform by providing a set of high-
level services enabling the execution of an application on the platform, such as
task scheduling, inter-process communication, or inter-processor communication.
Depending on the target platform, developing (parts of) the runtime environment
might be necessary to create the basis for software synthesis.

In case of the DOL design flow, different hardware MPSoC platforms are
supported:

• Cell Broadband Engine [48]: MPSoC consisting of a PowerPC-based Power
Processor Element and eight DSP-like Synergistic Processing Elements inter-
connected via a ring bus.

• Atmel Diopsis 940 [49]: tile-based MPSoC, where a single tile is composed of
an ARM9 processor and a DSP interconnected by an AMBA bus; up to eight tiles
are interconnected via a network-on-chip.

• MPARM [50]: Homogeneous MPSoC consisting of identical ARM7 processors
connected by an AMBA bus.

• Intel SCC [51]: Many-core homogeneous architecture with 48 cores organized in
24 tiles, each tile embedding two cores. Tiles are connected via a mesh on-chip
network, and each tile has also a message passing buffer.

Figure 8 depicts a block diagram of the MPARM architecture. Software synthesis
for MPARM is based on the RTEMS (Real-Time Executive for Multi-processor
Systems) [52] operating system. Basic services provided by RTEMS are the
scheduling of processes, device drivers for inter-process communication, and device
drivers for system input/output. Based on these services, it is rather simple to
bootstrap and execute a process network. As an example, Listing 1 illustrates parts
of the code for bootstrapping a process network based on the RTEMS API. Software
synthesis for the Cell Broadband Engine is described in [53] in the context of the
DOL design flow, and in [23] in the context of the SHIM design flow, for instance.

Fig. 8 Block diagram of the MPARM architecture

704 I. Bacivarov et al.

Listing 1 shows parts of a main file for a producer-consumer type application
running on MPARM. In lines 1–2, memory is allocated for the local data of the
producer and consumer processes. In lines 5–8, two tasks are created for the
processes by allocating a task control block, by assigning a task name and a task
ID, by allocating a stack, and by setting initial attributes like the task priority and
the task mode. Lines 10–11 show the creation of a message queue. In lines 13–17,
the rtems_task_start directive puts the tasks into the ready state, enabling the
scheduler to execute them. Finally, the initialization tasks deletes itself (line 19).

Listing 1 RTEMS initialization task in which two tasks are bootstrapped to run a producer and
consumer process of a process network

1 p roduce r_ w r a p pe r ← m al l oc (s i z e o f (RtemsProcessWrapper)) ;
2 consumer_wrapper ← m al l oc (s i z e o f (RtemsProcessWrapper)) ;
3

4 for (j ← 0 ; j < 2 ; j ++) {
5 s t a t u s ← r t e m s _ t a s k _ c r e a t e (j + 1 , 128 ,
6 RTEMS_MINIMUM_STACK_SIZE , RTEMS_DEFAULT_MODES,
7 RTEMS_DEFAULT_ATTRIBUTES , &(t a s k _ i d [j])) ;
8 }
9

10 s t a t u s ← r t e m s _ m e s s a g e _ q u e u e _ c r e a t e (1 , 10 , 1 ,
11 RTEMS_DEFAULT_ATTRIBUTES , &queue_ i d [0]) ;
12

13 s t a t u s ← r t e m s _ t a s k _ s t a r t (t a s k _ i d [1] , p r o d u c e r _ t a s k ,
14 (r t e m s _ t a s k _ a r g u m e n t) p roduce r_ w r a p p e r) ;
15

16 s t a t u s ← r t e m s _ t a s k _ s t a r t (t a s k _ i d [2] , consumer_ta sk ,
17 (r t e m s _ t a s k _ a r g u m e n t) consumer_wrapper) ;
18

19 r t e m s _ t a s k _ d e l e t e (RTEMS_SELF) ;
20 }

For all the mentioned platforms, the main challenge is to provide an efficient
FIFO channel implementation that allows overlapping computation and communi-
cation in order to reduce the runtime overhead as much as possible. Aspects that
play an important role in this context are the size and location of channel buffers,
the efficient use of DMA controllers for data transfers between processors, and the
minimization of synchronization messages.

4.4 Performance Analysis

The DOL design flow is targeted towards the design of real-time multi-media
and signal processing applications. These systems must meet real-time constraints,
which means that not only the correctness and performance of a system are of major

Methods and Tools for Mapping Process Networks onto MPSoC 705

concern but also the timeliness of the computed results. Typical questions in this
context are:

• What is the response time to certain events? Is this response time within the
required real-time limits?

• Can the system accept additional load and still meet the quality-of-service and
real-time constraints?

• Is a system schedulable, that is, are all real-time constraints met?

To be able to answer these questions, a suitable combination of system design and
performance analysis is required. To this end, it is essential that the architecture,
application, and runtime-environment of a system are amenable to formal analysis,
because simulation or measurements are not able to provide guarantees about timing
properties. On the other hand, performance analysis methods with a reasonable
scope and accuracy need to be employed such that effects occurring in the system
implementation can be faithfully modeled. For MPSoC applications, this includes
the modeling of heterogeneous resources and their sharing, the modeling of complex
timing behavior arising from variable execution demands and interference on shared
resources, or the modeling of different processing semantics.

Many approaches have been proposed to solve this problem, see [54] for
an overview. Frequently used approaches are time-triggered and synchronous
approaches, for instance. In purely time-triggered approaches, such as the time-
triggered architecture [55] or Giotto [56], processing time of resources is allocated
to tasks in fixed time slots. This fixed allocation facilitates analysis, but dimension-
ing of the slots turns out to be difficult for varying workloads. For instance, using
the worst-case workload for setting the slot sizes might lead to over-dimensioned
systems. Purely synchronous approaches implemented in synchronous languages,
such as Esterel, Lustre, and Signal, rely on a global clock that divides the execution
of a system into a sequence of atomic processing steps [57]. While synchronous
approaches are successfully used for single-processor systems, applying them to
MPSoCs is difficult because MPSoCs are usually split up into different (asyn-
chronous) clock domains such that the synchronous assumption does not hold.

The approach taken in DOL relies on using compositional performance analysis
where a system is modeled as a set of processing components that interact via
event streams. This is a good match for MPSoCs as well as for KPNs. Contrary
to other approaches, the approach is rather flexible in that it is not limited to a
certain system architecture, scheduling policy, or execution semantics. Specifically,
Modular Performance Analysis (MPA) is integrated into the DOL design flow. In the
following, the basic concepts of MPA are reviewed. Afterwards, it is summarized
how MPA is integrated into the DOL design flow.

4.4.1 Modular Performance Analysis (MPA)

MPA [29, 58] is an analytical approach for the analysis of real-time systems. It is
based on real-time calculus [59] which has its foundations in network calculus, a

706 I. Bacivarov et al.

p1 p2 p4

processor1
(fixed priority)

processor2
(fixed priority)

bus (TDMA)

p3

FP TDMA FP

23 34 3

4

2

1
1

2

out

23 3

344

processor1 processor2bus

2

4

23

34

4

1

Fig. 9 MPA model of a system with two processors connected by a bus on which a KPN with
four processes is executing. In the MPA model, horizontal edges represent event streams whereas
vertical edges represent resource streams

method for worst-case analysis of communication networks [60, 61]. With MPA,
hard upper and lower bound for performance metrics of a distributed real-time
system can be computed. As shown in Fig. 9, the performance model of a system
is decomposed into a network of abstract processing components that model the
computation and communication in a system. These processing components are
connected by abstract event streams that model the timing properties of the data
streams flowing through the system. Finally, resources are modeled by resource
streams that model the availability of processing resources to computation and
communication tasks. Different scheduling policies can be modeled by differently
connecting processing components and resource streams. As an example, Fig. 9
illustrates fixed priority (FP) scheduling on processors and time-division multiple-
access (TDMA) scheduling on the bus.

The processing components modeling computation and communication are
characterized by the worst-case/best-case execution demand and the minimal and
maximal token size, respectively. Event streams are characterized by so-called
arrival curves and resource streams by service curves. Summarizing, these abstrac-
tions allow the modeling of computation and communication on heterogeneous
resources in a unified manner.

Based on these abstractions, the system is analyzed by consecutive propagation
of event streams between components. Depending on the mapping of processing
components to a resource and its scheduling/arbitration, the timing properties of the
streams change. System properties such as resource utilization, system throughput,
end-to-end delays, or buffer sizes can be derived this way. Tool support for actually
performing the analysis is provided by a freely available Matlab toolbox [62] that
implements the underlying algebraic operations.

Methods and Tools for Mapping Process Networks onto MPSoC 707

4.4.2 Integration of MPA into the DOL Design Flow

It has been mentioned that the goal of system synthesis is to bridge the imple-
mentation gap, that is, to refine a high-level system specification into an actual
system implementation. Similarly, there is an “abstraction gap” between an MPA
model and the implementation: The execution of sequential processes on a processor
is modeled by an abstract processing component, the availability of resources is
abstracted by service curves, and the dataflow through the systems by arrival curves.
Bridging this abstraction gap, that is, creating an analysis model that correctly
models the implementation is a non-trivial task. On the one hand, the high-level
system specification is conceptually similar to the analysis model but does not
contain all the parameters required to generate an MPA model, such as best-
case/worst-case task execution times or token sizes. The implementation, on the
other hand, implicitly contains this information, but extracting the information is
not straightforward.

In the DOL design flow, the abstraction gap is bridged by analysis model
generation and calibration. In model generation, the high-level system specification
is translated into a corresponding MPA model. In model calibration, the required
model parameters are obtained. In both steps, the modular structure of the applica-
tion and architecture specification is leveraged. The basic approach is depicted in
Fig. 10. The analysis model generation represents a branch in the design flow that
is parallel to the system synthesis. The analysis model calibration makes use of this
feature later on in order to build a database with necessary performance data for the
formal model. In the following, the basic approach is described. Further details are
provided in [63].

The goal of model generation is to translate the high-level application, architec-
ture, and mapping specification into a corresponding MPA model implemented as
a Matlab script. Due to the modular specification of the application that is made
explicit in the process network XML description, this is straightforward: Each

Fig. 10 Analysis model
generation and calibration in
the DOL flow system

specification

imple-
mentation

runtime
behavior

analysis
model

model
calibration

synthesis &
compilation

performance
prediction

simulation,
observation

model
generation

708 I. Bacivarov et al.

process is simply modeled as an abstract processing component. Similarly, the
communication channels between processes are modeled as abstract communication
components and connected to the processing components according to the topology
of the KPN.

The aim of model calibration is to obtain the quantities to parameterize the
generated model such that it correctly models the implementation. Basically, three
different types of parameters can be distinguished:

• First, there are the application parameters that are architecture and timing
independent. An example is the minimal and maximal size of tokens transmitted
over each channel.

• Second, there are the parameters that depend only on the architecture and the run-
time environment. Examples are the throughput of the different communication
resources or the context switch time of the runtime environment.

• Third, there are the application parameters that depend on the architecture
and the mapping. Basically, whenever the architecture or mapping changes,
new parameters need to be determined. An example is the worst-case/best-case
execution time of a process on a processor.

Depending on the parameter type, there are different ways to obtain them. Timing
independent parameters can be obtained from the functional simulation, due to the
determinism of KPN applications. Architecture dependent parameters need to be
obtained once a new hardware architecture or runtime environment is employed for
realizing a system. The parameters of the third category, i.e. application parameters
that depend on the architecture and the mapping, are more difficult to determine.
Similar to system-level performance analysis, different methods for worst-case/best-
case execution time analysis have been proposed, for instance [64]. In the DOL
design flow, timed simulation on a virtual platform is employed. Note that compared
to formal methods, this approach is not suitable for the calibration of hard real-
time system models unless complete coverage of corner cases is exhibited in the
calibration simulation runs. One can observe that similar approaches are taken in
other design flows. In the Artemis design flow, for instance, model generation and
calibration is used to create a model for trace-based simulation [65].

Finally, the DOL framework have been extended with capabilities for worst-case
thermal analysis, as nowadays providing guarantees on maximum temperature is
as important as functional correctness and timeliness. Aware of the performance-
temperature correlation, DOL is optimizing the system design with respect to
both worst-case performance and worst-case temperature, analyzed in the same
MPA framework. The basic worst-case peak temperature analysis method in MPA
for a single processor under a broad range of uncertainties in terms of task
execution times, task invocation periods, and jitter in task arrivals is described
in [66]. Extensions are then proposed in [67] for analysis of MPSoC platforms by
considering both the self-heating of the processor and the heat transfer between
neighboring processors. In the same manner as it is done for timing, thermal
analysis models are automatically generated from the same set of specifications as
used for software synthesis. To increase the model accuracy, both analysis models

Methods and Tools for Mapping Process Networks onto MPSoC 709

are calibrated with data corresponding to real system parameters obtained in an
automatic manner, prior to design space exploration. The calibration tool-chain for
the thermal model is described in [68].

4.5 Design Space Exploration

The final piece of the DOL flow is design space exploration, built on top of analysis
and synthesis tools to find an optimal mapping. In general, the problem of optimally
mapping an application to a heterogeneous distributed architecture is known to be
NP-complete. Even for systems of modest complexity, one thus needs to resort to
heuristics to solve the problem. In addition, the mapping problem is usually multi-
objective such that there is no single optimal solution but a set of Pareto-optimal
solutions constituting a so-called Pareto-front.

In DOL, the aim of the design space exploration is to compute the set of Pareto-
optimal solutions representing different trade-offs in the design space. Based on the
(approximated) Pareto-front, the designer chooses the final solution to implement.
Therefore, the mapping problem is specified as a multi-objective optimization
problem.

Formally, a multi-objective optimization problem is defined on the decision space
X which contains all possible design decisions, i.e. architectures, applications and
mappings. To each implementation x ∈ X there is associated an objective vector f
in the objective space Z that consists of n objectives f = (f1, . . . , fn) which should
be minimized (or maximized). An order relation≤ is defined on the objective space
Z, which induces a preference relation / on the decision space X: x1 / x2 ⇔
f (x1) ≤ f (x2), for x1, x2 ∈ X. In other words, for the mapping problem for
instance, if mapping x1 is better (minimal) in all objectives than mapping x2, the
optimization algorithm will “preferentially” select mapping x1.

The design search space, symbolized with � , is the set of all subsets of X,
i.e. it includes all possible solution sets A ⊆ X. The final goal is to determine
an optimal element of � , i.e. an optimal subset of all possible implementations
X. This subset should reflect all trade-offs induced by the multiple objectives. The
preference relation / on X that has been defined above can now be used to define a
corresponding set preference relation, symbolized with �, on the search space � .

This set preference relation provides the information on the basis of which two
candidate Pareto sets can be compared: A � B ⇔ ∀b ∈ B, ∃ a ∈ A : a / b.
This property reflects the concept of Pareto-dominance: A design point dominates
another one if it is equal or better in all criteria and strictly better in at least one.
Moreover, the search in the design space will be pursued until a good Pareto-optimal
set approximation A ∈ � is found.

In DOL, evolutionary algorithms are used to solve the mapping optimization
problem. Evolutionary algorithms find solutions to a given problem by iterating
two main steps [69]: (1) selection of promising candidates, based on an a-priori
evaluation of candidate solutions and (2) generation of new candidates by variation

710 I. Bacivarov et al.

of previously selected candidates. The principle of the selection in evolutionary
multi-objective optimization is sketched in Algorithm 1. For a complete description,
we refer to [70]. The starting point is a randomly generated population P ∈ � of
size m. During optimization, a heuristic mutation operator based on selection and
variation generates another set P ′ ∈ � , which is wanted to be better than P in
the context of the predefined set preference relation �, i.e. P ′ � P . Finally, P is
replaced by P ′, if the later is preferable to the former (i.e., P ′ � P), or P it remains
unchanged in the opposite case.

Algorithm 1 Main optimization function

1: randomly choose A ∈ � 2 generate initial set P of size m
2: set P ← A

3:
4: while termination criterion not fulfilled do 2 main optimization loop
5: P ′ ← heuristicSetMutation(P)

6: if P ′ � P then
7: P ← P ′
8: end if
9: end while

10: return P

Algorithm 2 Heuristic set mutation function

1: function HEURISTICSETMUTATION(()P)
2: generate {r1, . . . , rk} ∈ X based on P

3: P ′ ← P ∪ {r1, . . . , rk}
4: while |P ′| > m do
5: choose p ∈ P ′ with f itness(p) = mina∈P {f itness(a)}
6: P ′ ← P ′ \ {p}
7: end while
8: return P ′
9: end function

The heuristic set mutation operator is detailed in Algorithm 2. First, k new
solutions are created based on P , after an appropriate selection and variation
operation. While the variation is problem-specific, the selection is independent of
the problem, using either an uniform random selection or a fitness-based selection.
Then, the k new solutions are added to P , resulting in a set P ′ of size m + k. P ′ is
iteratively truncated to size m by removing the solutions with worst fitness values.
Note that the fitness values are associated in a performance evaluation process, i.e.,
in DOL we use the MPA framework as described in Sect. 4.4.

While the selection algorithm described is domain independent, specific methods
are used to include domain specific knowledge into the search process and select
“best” solutions among a population. These are the domain representation (i.e.,
the system mapping), the evaluation of designs (i.e., the MPA analysis), and the
variation of a population of solutions by mutation and cross-over operations.

Methods and Tools for Mapping Process Networks onto MPSoC 711

architecture
XML

application
XML

performance
analysis
(MPA)

mapping
generation & variation

performance
metrics

Matlab EXPO

Matlab script

mapping
XML

EA

PISA
Interface

evolutionary
algorithm
(SPEA2)

internal system
representation

Fig. 11 Design space exploration in the DOL framework

Although standard variation schemes exist for mutation and crossover, their
implementation is strongly dependent on system properties. The mutation generates
a local neighborhood of selected design points. In the DOL context, the mutation
affects the mapping solutions; for instance, different mappings can be generated
with different bindings of processes onto processors. The crossover recombines two
selected solutions to generate a new one. Note that during mutation or crossover,
infeasible (mapping) solutions can be generated. In this situation, a repair strategy
is invoked, which, in conformity with the evolutionary algorithm principle, attempts
to maintain a high diversity in the population. An example could be the rerouting
of inter-process communication, when during re-mapping a process was bound to a
new location.

In DOL, the design space exploration framework includes several tools, as
shown in Fig. 11. In particular, the EXPO [71] tool is the central module of
the framework. As underlying multi-objective search algorithm, Strength Pareto
Evolutionary Algorithm (SPEA2) [72] is used that communicates with EXPO via
the PISA [73] interface. Similarly, the design space exploration framework in
Artemis [11] is also based on PISA and SPEA2.

Using the frameworks of EXPO and PISA relieves the designer from imple-
menting those parts of the design space exploration that are independent of the
actual optimization problem. For example, the selection may be handled inside the
multi-objective optimizer SPEA2. The designer just needs to focus on the problem
specific parts, that is, the generation, variation, and evaluation of solutions. The
implementation of problem specific parts starts with the specification, where the
application and architecture (and later on, the mapping) are automatically extracted
from the corresponding XML files and represented in the design space exploration
framework. Then, candidate mappings are inspected (as described above) based on
the provided variation methods. Finally, during design space exploration, the objec-
tive values of all candidate mappings are computed by generating the corresponding
Matlab MPA scripts and interfacing Matlab for their evaluation. In DOL, all these

712 I. Bacivarov et al.

operations are automatically parameterized using the application and architecture
specification. Note that the approach described above is a heuristic search procedure.
Therefore, it does not guarantee the optimality of the final solution, i.e., the final
set of solutions. However, in our experiments we have identified that after several
design space exploration cycles, the found solutions are close to optimal even for
large problem complexities.

4.6 Results of the DOL Framework

In this section, a few results are highlighted that have been obtained by applying
the DOL design flow described above. Specifically, the design and analysis of a
Motion-JPEG (MJPEG) decoder [74] running on MPARM [50] is considered. For
the execution of the system, we used a 31-frame input bitstream encoded using the
QVGA (320×240) YUV 444 format.

The MJPEG decoder decompresses a sequence of frames by applying JPEG
decompression to each frame. Because of the inherent parallelism in the MJPEG
algorithm, the decoding is done in a pipeline with five stages, each stage being
implemented as a Kahn process. The first and last stages are the splitting of streams
into frames (ss) and the merging of frames back to streams (ms). The variable
length decoding and the splitting of frames into macroblocks form the second stage
(sf). The zigzag scan, inverse quantization and the inverse discrete cosine transform
form the third (zii), while combining macroblocks back to frames forms the fourth
stage (mf).

Using the design space exploration framework of DOL based on the PISA
interface and SPEA2, one can compute the Pareto optimal mappings of the MJPEG
application onto an MPARM system with a variable number of processors. The
mapping has been optimized in conformity with two design objectives: (1) end-to-
end delay in the system computed as the result of MPA analysis, which is an upper
bound of the actual end-to-end delay and (2) the cost of the system evaluated as
a sum of costs associated with the used processors, memories, and the bus. In the
experiments, a population size of 60 individuals has been chosen and the algorithm
has been executed for 50 generations. These parameters generally depend on the
complexity of the problem to solve. The obtained Pareto front is shown in Fig. 12,
consisting of six mapping solutions onto a different number of processors. The
search in this design space took about 2 h.

For illustration purposes only, we employ a simple configuration with a small
number of processes that can be mapped in different ways onto the architecture and
can communicate via different hardware communication paths. However, a more
efficient implementation can be obtained if the same application is specified with
a scalable number of processes processing data in parallel. This would enlarge
the parallelism of the design but also the dimensionality of the design space. A
more complex design space exploration with the DOL framework is shown in [12],
where a scaled version of an MPEG-2 decoder has been mapped onto a tile-based
heterogeneous architecture.

Methods and Tools for Mapping Process Networks onto MPSoC 713

Fig. 12 Pareto optimal solutions resulted after the design space exploration (screenshot of the
EXPO tool)

Other KPN flows, like Sesame in the Artemis project [11] that use exactly the
same optimization frameworks of PISA and SPEA2, report comparable parameters
and results for the design space exploration. However, their design space exploration
is considerably shorter, i.e. 5 s for a design with eight processes, because they use
a much simpler additive performance model. Of course, for larger problem sizes all
the parameters will scale and the design space exploration can take much longer if
more accurate analysis methods, like MPA or simulation, are used. However, this is
an acceptable cost since designers are exploring the entire design space only once.

In the remainder of this section, a mapping of the MJPEG application onto a
3-tile MPARM system, that is, three ARM processors interconnected via a shared
AMBA bus, is considered. The resulting MPA model is shown in Fig. 13.

To evaluate the efficiency of the design flow (i.e., the time spent in obtaining
results), Table 3 lists the durations of the different design steps for performance
analysis of the different design solutions. Several conclusions can be drawn:

• Automated software synthesis can be done fast. Actually, most of the time
required to generate the functional simulation or the binaries for the target
platform is required to compile the generated source code rather than to generate
this code.

• The table shows that timed simulation on the virtual platform is the most time-
consuming step in the design flow. Minimization of simulation time is thus
paramount and actually possible in a systematic design flow, as has been shown
above. Conversely, simulation time can become a major bottleneck in MPSoC
design when following a less systematic design flow requiring many design
iterations involving timed simulation.

• The generation and analysis of a system’s MPA model is a matter of seconds.
Note that similar times have been reported for alternative performance analysis

714 I. Bacivarov et al.

FP

ss

1

2

ms

3

4

mf

sf zii

5

6

7

8

FP

ss

1

2

ms

3

4

mf

sf zii

5

6

7

8

FP

ARM1 ARM2 ARM3

TDMA

shared bus

FP

Fig. 13 MPA model of MJPEG application mapped onto a 3-tile MPARM platform. Px are the
five processes of the MJPEG decoding pipeline that communicate via the Cy software channels

Table 3 Duration of different design steps in the MJPEG design, measured on a 1.86 GHz Intel
Pentium Mobile machine with 1 GB of RAM

Step Duration (s)

Model calibration (one-time effort) Functional simulation
generation

42

Functional simulation 3.6

Synthesis (generation of
binary)

4

Simulation on MPARM 13,550

Log-file analysis and
back-annotation

12

Model generation 1

Performance analysis based on generated model 2.5

The simulations were executed to decode a 31-frame input bitstream encoded using the QVGA
(320×240) YUV 444 format

methods like trace-based simulation in the Artemis design flow, for instance.
While further reducing this time is desirable, it is a reasonable time frame for
performance analysis within a design space exploration loop.

• The one-time calibration to obtain the parameters for the MPA model takes
several seconds albeit being completely automated. Extracting these parameters
manually would be a major effort.

Methods and Tools for Mapping Process Networks onto MPSoC 715

In order to evaluate the accuracy of MPA estimations, the performance bounds
computed with MPA are compared to actual (average-case behavior) quantities
observed during system simulation. The differences are in a range of 10–20%, which
is typical for a compositional performance analysis. Differences in the same range
have been observed for several systems in [33], for instance. There are two main
reasons for these differences. First, several operators in the formal performance
analysis do not yield tight bounds. Second, the simulation of a complex system
in general cannot determine the actual worst-case and best-case behavior. The
simulations on the system level do not use exhaustive test patterns and do not cover
all possible corner cases in the interference through joint resources.

Moreover, to illustrate the connection between the worst-case chip temperature
and worst-case latency, we represent eight selected mapping configurations of the
MJPEG decoder application together with their worst-case chip temperature and
worst-case latency calculated in MPA (Fig. 14). Interesting here is the effect of
the physical placement that cannot be ignored anymore. So even if the mapping is
already defined, the system designer might still optimize the system (i.e., reduce the
temperature) by selecting an appropriate physical placement. This is highlighted by
solution pairs where only the placement of the processing components has changed
but temperature differences of 8 K can still appear [75].

Finally, the DOL framework itself is evaluated in terms of code size of the
prototype implementation. The DOL design flow and the associated tools are
implemented in Java. To give an indication about the size of the implementation,
Table 4 shows the code size of different parts of the design flow (excluding the
plug-ins for design space exploration and thermal analysis). One can see that apart
from the tool-internal representations of the system specification, the largest part
is the MPA code generator for performance analysis. The software synthesizers
and the monitoring for the MPA model calibration are comparatively small. Similar
observations can be made for other design flows, as well.

Split-
stream

ARM 1
a c e

b d f

Merge-
stream

De-
code

A
R

M
 3

Split-
frame

A
R

M
 2

Merge-
frame

Split-
stream

ARM 2

Merge-
stream

De-
code

A
R

M
 3

Split-
frame

A
R

M
 1

Merge-
frame

Split-
stream

ARM 1

Merge-
stream

De-
code

A
R

M
 3

Split-
frame

Merge-
frame

ARM 2

Split-
stream

ARM 1

Merge-
stream

De-
code

A
R

M
 2

Split-
frame

Merge-
frame

ARM 1

Split-
stream

ARM 1

Merge-
stream

De-
code

ARM 3
Split-
frame

ARM 2

Merge-
frame

Split-
stream

ARM 1

Merge-
stream

De-
code

ARM 3
Split-
frame

ARM 2

Merge-
frame

Fig. 14 Worst-case latency versus worst-case peak temperature for similar bindings but different
placements, of an MJPEG decoder evaluated on MPARM platform [50]. (a) T*=342.2 K, l*=11.7 s.
(b) T*=350.6 K, l*=11.7 s. (c) T*=359.9 K, l*=3.1 s. (d) T*=358.2 K, l*=3.1 s. (e) T*=364.5 K,
l*=2.4 s. (f) T*=365.0 K, l*=2.4 s

716 I. Bacivarov et al.

Table 4 Java code size of different parts of the DOL design flow

Part of design flow Lines of code

DOL representation of system
specifications

6200

Functional simulation generator 4100

MPARM code generator 2100

MPA Matlab code generator 5000

Log-file analysis of functional and timed
simulation

1200

5 Concluding Remarks

The mapping of process networks onto multi-processor systems requires a sys-
tematic and automated design methodology. This chapter provides an overview
over different existing methods and tools, which are all starting from a general
Kahn process network (KPN) model of computation and are implementing the
established Y-chart approach. Due to fundamental properties of the Kahn model,
many problems in the design process can be solved in an automated manner.
Thus, the system specification, synthesis, performance analysis, and design space
exploration can be implemented in a fully automated way.

After an overview over all these activities, this chapter provides a practical illus-
tration of their implementation in the distributed operation layer (DOL) framework.
The design steps followed by DOL are somewhat common to all the KPN flows.
What is typical to the DOL framework is the embedding of an accurate formal
performance analysis model into the design flow. This presents a clear advantage
over the standard simulation-based approaches employed for performance analysis,
which typically take more time to execute than a formal model and cannot offer
guarantees for (hard) real-time signal-processing applications, due to the incomplete
coverage of the design space.

Another key point is the need for a scalable design flow which allows to design
large and complex MPSOC systems, which can clearly be noticed from Table 2. As
soon as we are faced with more complex MPSoCs, this forthcoming difficulty needs
to be considered in all steps of the design trajectory. In particular, it will have an
impact at the system-level, where basic design decisions are taken. In this sense, the
Kahn model and design methods based on it are promising candidates due to the
modular system specification. It offers a great potential for compositional (and fast)
performance analysis and design space exploration. By taking a closer look at the
DOL framework, it can be observed that it features a specification format that can
easily be scaled (i.e. provided by the XML and C basis), it includes a compositional
formal performance analysis in the design, and the optimization is done with the
support of modular tools such as EXPO and PISA. These features provide the basis
for scalable mappings and mapping optimizations.

Methods and Tools for Mapping Process Networks onto MPSoC 717

References

1. B. Kienhuis, E. Deprettere, K. Vissers, P. van der Wolf, in Proc. Int’l Conf. on Application-
Specific Systems, Architectures and Processors (ASAP) (Washington, DC, USA, 1997), pp.
338–349

2. D. Densmore, A. Sangiovanni-Vincentelli, R. Passerone, IEEE Design & Test of Computers
23(5), 359 (2006)

3. G. Kahn, in Proc. IFIP Congress (Stockholm, Sweden, 1974), pp. 471–475
4. Ptolemy Web Site. http://ptolemy.eecs.berkeley.edu
5. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,

Computer 36(4), 45 (2003). http://dx.doi.org/10.1109/MC.2003.1193228
6. MathWorks Real-Time Workshop. http://www.mathworks.com/products/rtw/
7. NI LabVIEW Microprocessor SDK. http://www.ni.com/labview/microprocessor_sdk.htm
8. J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, M. Meredith,

ACM Trans. on Design Automation of Electronic Systems 14(1), 1:1 (2009)
9. S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, Y.P. Joo, ACM Trans. on Design Automation of

Electronic Systems 12(3), 1 (2007)
10. J. Falk, J. Keinert, C. Haubelt, J. Teich, C. Zebelein, Integrated modeling using finite state

machines and dataflow graphs. second edition (Springer, 2012)
11. A.D. Pimentel, C. Erbas, S. Polstra, IEEE Trans. on Computers 55(2), 99 (2006)
12. L. Thiele, I. Bacivarov, W. Haid, K. Huang, in Proc. Int’l Conf. on Application of Concurrency

to System Design (ACSD) (Bratislava, Slovak Republic, 2007), pp. 29–40
13. H. Nikolov, T. Stefanov, E. Deprettere, IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 27(3), 542 (2008)
14. T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T.D. Hämäläinen, ACM Trans.

on Embedded Computing Systems 5(2), 281 (2006)
15. A. Kumar, S. Fernando, Y. Ha, B. Mesman, H. Corporaal, ACM Trans. on Design Automation

of Electronic Systems 31(3), 40:1 (2008)
16. S.S. Bhattacharyya, G. Brebner, J.W. Janneck, J. Eker, C. von Platen, M. Mattavelli, M. Raulet,

in First Swedish Workshop on Multi-Core Computing (MCC) (Uppsala, Sweden, 2008)
17. S.A. Edwards, O. Tardieu, IEEE Trans. on VLSI Systems 14(8), 854 (2006)
18. M.I. Gordon, W. Thies, S. Amarasinghe, in Proc. Int’l Conf. on Architectural Support for

Programming Languages and Operating Systems (ASPLOS) (San Jose, CA, USA, 2006), pp.
151–162

19. B. Kienhuis, E. Rijpkema, E. Deprettere, in Proc. of the Int’l Workshop on Hardware/Software
Codesign (CODES) (San Diego, CA, USA, 2000), pp. 13–17

20. S. Verdoolaege, H. Nikolov, T. Stefanov, EURASIP Journal on Embedded Systems 2007 (2007)
21. A.D. Pimentel, Int. J. Embedded Systems 3(3), 181 (2008)
22. J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier, M. Wipliez, M. Raulet, in IEEE Workshop

on Signal Processing Systems (SiPS) (Washington, D.C., USA, 2008), pp. 287–292
23. N. Vasudevan, S.A. Edwards, in Proc. ACM Symposium on Applied Computing (SAC)

(Honolulu, HI, USA, 2009), pp. 1626–1631
24. D. Gelernter, N. Carriero, Commun. ACM 35(2), 97 (1992)
25. T.M. Parks, Bounded Scheduling of Process Networks. Ph.D. thesis, University of California,

Berkeley (1995)
26. IBM SDK for Multicore Acceleration. http://www-128.ibm.com/developerworks/power/cell/
27. K. Huang, I. Bacivarov, J. Liu, W. Haid, in IEEE Symposium on Industrial Embedded Systems

(SIES) (IEEE, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2009), pp. 74–81
28. M. González Harbour, J.J. Gutiérrez García, J.C. Palencia Gutiérrez, J.M. Drake Moyano, in

Proc. Euromicro Conference on Real-Time Systems (Delft, The Netherlands, 2001), pp. 125–
134

29. S. Chakraborty, S. Künzli, L. Thiele, in Proc. Design, Automation and Test in Europe (DATE)
(Munich, Germany, 2003), pp. 190–195

http://ptolemy.eecs.berkeley.edu
http://dx.doi.org/10.1109/MC.2003.1193228
http://www.mathworks.com/products/rtw/
http://www.ni.com/labview/microprocessor_sdk.htm
http://www-128.ibm.com/developerworks/power/cell/

718 I. Bacivarov et al.

30. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst, IEE Proceedings Computers
and Digital Techniques 152(2), 148 (2005)

31. R. Alur, D.L. Dill, Theoretical Computer Science 126(2), 183 (1994)
32. M. Hendriks, M. Verhoef, in Workshop on Parallel and Distributed Real-Time Systems

(Rhodes, Greece, 2006)
33. S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. Henia, R. Racu, R. Ernst,

M. González Harbour, in Proc. Int’l Conf. on Embedded Software (EMSOFT) (Salzburg,
Austria, 2007), pp. 193–202. http://doi.acm.org/10.1145/1289927.1289959

34. E. Wandeler, L. Thiele, in Proc. Asia and South Pacific Conf. on Design Automation (ASP-
DAC) (Yokohama, Japan, 2006), pp. 479–484

35. A. Hamann, R. Racu, R. Ernst, in Proc. Real Time and Embedded Technology and Applications
Symposium (RTAS) (Bellevue, WA, United States, 2007), pp. 269–280

36. S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, H. Meyr, in Proc. Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS) (Salzburg, Austria, 2007),
pp. 75–80

37. I. Bacivarov, A. Bouchhima, S. Yoo, A.A. Jerraya, International Journal of Embedded Systems
(IJES) 1(1/2), 103 (2005). http://dx.doi.org/10.1504/IJES.2005.008812

38. S. Schliecker, S. Stein, R. Ernst, in Proc. Design, Automation and Test in Europe (DATE)
(2007), pp. 273–278

39. S. Künzli, A. Hamann, R. Ernst, L. Thiele, in Proc. Int’l Conf. on Hardware/Software Codesign
and System Synthesis (CODES/ISSS) (Salzburg, Austria, 2007), pp. 63–68

40. S. Künzli, F. Poletti, L. Benini, L. Thiele, in Proc. Design, Automation and Test in Europe
(DATE) (2006), pp. 236–241

41. M. Gries, Integration, the VLSI Journal 38(2), 131 (2004)
42. S. Ha, H. Oh, Decidable dataflow models for signal processing: Synchronous dataflow and its

extensions. second edition (Springer, 2012)
43. K. Huang, W. Haid, I. Bacivarov, M. Keller, L. Thiele, ACM Transactions in Embedded

Computing Systems (TECS) (2012)
44. Distributed application layer. http://www.tik.ee.ethz.ch/~euretile
45. M. Geilen, T. Basten, Kahn process networks and a reactive extension. second edition

(Springer, 2012)
46. E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.Y. Brunel, W.M. Kruijtzer,

P. Lieverse, K.A. Vissers, in Proc. Design Automation Conference (DAC) (Los Angeles, CA,
USA, 2000), pp. 402–405

47. S.A. Edwards, N. Vadudevan, O. Tardieu, in Proc. Design, Automation and Test in Europe
(DATE) (Munich, Germany, 2008), pp. 1498–1503

48. D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P.M.
Harvey, H.P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham,
J. Pille, S. Posluszny, M. Riley, D.L. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel,
D. Wendel, K. Yazawa, IEEE Journal of Solid-State Circuits 41(1), 179 (2006)

49. P.S. Paolucci, A.A. Jerraya, R. Leupers, L. Thiele, P. Vicini, in Proc. Int’l Conf. on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS) (Seoul, South Korea, 2006),
pp. 167–172

50. L. Benini, D. Bertozzi, B. Alessandro, F. Menichelli, M. Olivieri, The Journal of VLSI Signal
Processing 41, 169 (2005). https://doi.org/10.1007/s11265-005-6648-1

51. T.G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal,
N. Borkar, G. Ruhl, S. Dighe, in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (IEEE Computer Society,
Washington, DC, USA, 2010), SC ’10, pp. 1–11. https://doi.org/10.1109/SC.2010.53.

52. RTEMS Home Page. http://www.rtems.com
53. W. Haid, L. Schor, K. Huang, I. Bacivarov, L. Thiele, in Proc. IEEE Workshop on Embedded

Systems for Real-Time Multimedia (ESTIMedia) (Grenoble, France, 2009), pp. 35–44
54. S. Edwards, L. Lavagno, E.A. Lee, A. Sangiovanni-Vincentelli, Proceedings of the IEEE 85(3),

366 (1997)

http://doi.acm.org/10.1145/1289927.1289959
http://dx.doi.org/10.1504/IJES.2005.008812
http://www.tik.ee.ethz.ch/~euretile
https://doi.org/10.1007/s11265-005-6648-1
https://doi.org/10.1109/SC.2010.53
http://www.rtems.com

Methods and Tools for Mapping Process Networks onto MPSoC 719

55. H. Kopetz, G. Bauer, Proceedings of the IEEE 91(1), 112 (2003)
56. T.A. Henzinger, B. Horowitz, C.M. Kirsch, Proceedings of the IEEE 91(1), 84 (2003)
57. A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, R. De Simone,

Proceedings of the IEEE 91(1), 64 (2003)
58. E. Wandeler, L. Thiele, M. Verhoef, P. Lieverse, Int’l Journal on Software Tools for Technology

Transfer (STTT) 8(6), 649 (2006)
59. L. Thiele, S. Chakraborty, M. Naedele, in Proc. Int’l Symposium on Circuits and Systems

(ISCAS), vol. 4 (Geneva, Switzerland, 2000), vol. 4, pp. 101–104
60. R.L. Cruz, IEEE Trans. Inf. Theory 37(1), 114 (1991)
61. J.Y. Le Boudec, P. Thiran, Network Calculus — A Theory of Deterministic Queuing Systems

for the Internet, Lecture Notes in Computer Science, vol. 2050 (Springer Verlag, 2001)
62. E. Wandeler, L. Thiele. Real-Time Calculus (RTC) Toolbox. http://www.mpa.ethz.ch/

Rtctoolbox (2006).
63. W. Haid, M. Keller, K. Huang, I. Bacivarov, L. Thiele, in Proc. Int’l Conf. on Systems,

Architectures, Modeling and Simulation (IC-SAMOS) (Samos, Greece, 2009), pp. 92–99
64. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,

C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
P. Stenström, ACM Trans. on Embedded Computing Systems 7(3), 36:1 (2008)

65. A.D. Pimentel, M. Thompson, S. Polstra, C. Erbas, Journal of Signal Processing Systems 50(2),
99 (2008)

66. D. Rai, H. Yang, I. Bacivarov, J.J. Chen, L. Thiele, (DATE11, Grenoble, France, 2011)
67. L. Schor, I. Bacivarov, H. Yang, L. Thiele, in Proc. IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS) (IEEE Computer, Beijing, China, 2012)
68. L. Thiele, L. Schor, H. Yang, I. Bacivarov, in Proc. Design Automation Conference (DAC)

(ACM, San Diego, California, USA, 2011), pp. 268–273
69. E. Zitzler, L. Thiele, IEEE Trans. on Evolutionary Computation 3(4), 257 (1999)
70. E. Zitzler, L. Thiele, J. Bader, in Conf. on Parallel Problem Solving From Nature (PPSN)

(Dortmund, Germany, 2008), pp. 847–858
71. L. Thiele, S. Chakraborty, M. Gries, S. Künzli, in Proc. Design Automation Conference (DAC)

(New Orleans, LA, USA, 2002), pp. 880–885
72. E. Zitzler, M. Laumanns, L. Thiele, in Proc. Evolutionary Methods for Design, Optimisation,

and Control (EUROGEN) (Athens, Greece, 2001), pp. 95–100
73. S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, in Int’l Conf. on Evolutionary Multi-Criterion

Optimization (EMO) (Faro, Portugal, 2003), pp. 494–508
74. G.K. Wallace, IEEE Trans. on Consumer Electronics 38(1), 18 (1992). https://doi.org/10.1109/

30.125072
75. P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee, Q. Xu, L. Huang,

(CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan., 2011)

http://www.mpa.ethz.ch/Rtctoolbox
http://www.mpa.ethz.ch/Rtctoolbox
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/30.125072

Intermediate Representations
for Simulation and Implementation

Jerker Bengtsson

Abstract Simulation and implementation of DSP systems is often a challenge
due to their complex dynamic behaviour and requirements on non functional
properties. This chapter presents examples of high-level intermediate representa-
tions for implementation of design tools for parallel DSP platforms, considering
modeling of non constant behaviour of programs; specialized models of com-
putation; scheduling strategies; heterogeneous and hierarchical specifications of
systems; and implementing performance analysis for design space exploration and
optimization of assignments during a development process. Examples from different
intermediate representations that are representative for explored techniques for
simulation and implementation are presented. The basic structure and the usage of
these representations are demonstrated with examples.

1 The Role of Intermediate Representations

An intermediate representation (IR) is an abstraction between the source language
and the executable code for a certain target machine. In early days of compiler
development, IRs were introduced to be able to create modular and retargetable
implementations of compilers. A modular designed compiler makes it possible to
build new back ends for an existing front end, which enables compilation portability
of a source language to a different machine. Similarly, it is easier to build a new front
end for translation of a different source language, and produce machine code using
an existing back end. When designing an IR, the general goal is that it should be
independent of details given in a particular source language and should commit to as
little as possible of details describing the target machine. In a typical compile flow,
the front end translates the source language, performs optimization with respect

J. Bengtsson (�)
Saab Group, Stockholm, Sweden
e-mail: jerker.bengtsson@saabgroup.se

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_20

721

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_20&domain=pdf
mailto:jerker.bengtsson@saabgroup.se
https://doi.org/10.1007/978-3-319-91734-4_20

722 J. Bengtsson

to source language aspects and maps the program to the IR. The back end then
performs target related optimization and generates binary code for the target.

1.1 Forms of Representations

The form of an IR can be different dependently on how it is intended to be utilized.
The minimum requirement is that is should capture all information needed to
correctly execute the original program. It can for example be a data structure (or
more typically a complex set of structures), or in the form of a language, or even
an executable model. Data structure representations are commonly used in well
known compiler frameworks like GCC and LLVM. Alternatively to development
and compilation of applications written in C or Java, there are other forms
of intermediate representations that are suitable for coarse-grained models of
computation. Examples of such models are synchronous dataflow (SDF) and cyclo-
static dataflow (CSDF). Besides that such models of computation constitute a good
match with signal processing applications, they provide a highly suitable application
representation for compilation of code to parallel hardware. Moreover, as will be
explored with examples in this chapter, such well defined models enables automated
analysis of static as well as dynamic execution properties.

1.2 Representation for Parallel and Distributed Hardware

Compared to compiling programs for general purpose processors, mapping digital
signal processing (DSP) applications on parallel hardware, e.g. reconfigurable
processors [6] and multicores [14], involves several complex steps including
scheduling, synchronization and communication. Furthermore, DSP applications
are typically associated with constraints of non-functional character. Some examples
of such constraints are requirements on timing and power-efficiency. One classical
problem is execution time analysis, which requires analysis techniques that consider
variable computation and communication times. One complication is that execution
times for the different components of a parallel program often are dependent on the
current state of the system (i.e. the state of the hardware, the program and the I/O).
The cost, e.g. in execution time, for some particular operation typically includes
both a static cost and a dynamically varying cost. A static cost of an operation is a
cost that is independent of at which time the particular operation is executed. For
example, the cost for a processor to execute n arithmetical or logical instructions. A
dynamic cost of an operation is a cost that is dependent on at which point in time
the operation is executed. For example, such a cost can be a read or write blocking
time when multiple cores are concurrently using shared resources (e.g. transactions
over an interconnection network or writing to or reading from a global memory).

Intermediate Representations for Simulation and Implementation 723

For multi-objective implementation and optimization of DSP software, the IR
constitutes an important source for analysis and optimization. The process of
mapping an application to a parallel target is often divided into several steps. The
number of steps and the task performed at each step might be dependent on the
target machine architecture and the choice of strategy used for implementation.
Considering multiprocessor and multicore targets, the mapping (scheduling) process
is typically performed in three steps:

1. assigning tasks to processors (assignment),
2. determining the execution order of tasks assigned to each processor (ordering),
3. determining when each task should be executed (timing).

These steps can independently be performed at either compile-time or at runtime,
which results in different scheduling strategies. The fundamental goal of scheduling
is to find a schedule of the program that optimizes execution with respect to some
performance measure. Often it is the architecture of the target hardware and the
specific domain of application that determines how efficiently a certain strategy
can be implemented. Table 1 shows four different classes of classical scheduling
strategies using the taxonomy given by Lee and Ha [13]. This taxonomy does
not provide any exact bounds between all possible scheduling strategies, but it
demonstrates different typical combinations of compile time or run time decision
making in the scheduling process.

The scheduling strategy is in particular important to consider when analyzing
non functional-properties of a program’s execution, e.g. execution times and power
consumption. Naturally, the accuracy of a simulated program execution at the level
of the IR is dependent on how well the IR models the execution behavior (e.g.
tasks execution order, communication and timing of tasks) on the targeted hardware
platform. One of the more popular and efficient scheduling strategies for the DSP
domain is the self-timed scheduling strategy, in which processor assignment and
task ordering is determined at compile-time, see Table 1. One of the advantages
with self-timed scheduling is that execution times of the program does not have to
be precisely known. Self-timed scheduling is therefore also considered to be robust
since small variations in execution times will not affect the functional correctness
of the execution [12].

Table 1 Scheduling
taxonomy

Strategy Assignment Ordering Timing

Fully dynamic Run Run Run

Static-assignment Compile Run Run

Self-timed Compile Compile Run

Fully static Compile Compile Compile

Four examples on different classes of scheduling strate-
gies. Scheduling decisions that are made at compile time
are denoted compile and scheduling decisions that are
made during run time are denoted run

724 J. Bengtsson

A schedule of a program executed in parallel is typically modeled using
graph-theoretic models. One example of such graph model is the inter processor
communication graph (IPC graph) Gipc [18]. IPC graphs are used to co-model
both computation and communication and does not assume execution using global
program synchronization. Furthermore, as will be presented further on in this
chapter, timing models can be added to IPC graphs to enable analysis of dynamic
execution properties. Many implementations of intermediate representations for
multiprocessor and multicore systems target the self-timed execution scheduling
strategy.

The rest of this chapter will present examples, consisting of four different but
fairly closely related types of intermediate representations, which demonstrates
of state-of-the-art techniques for representation, and in particular, simulation and
analysis of parallel systems. This includes both untimed and timed intermediate
representations. Untimed representations are introduced in Sect. 2. Two concrete
examples of such well known representations—the system property intervals (SPI)
and the FunState representation are presented. The SPI representation enables
representation of changing properties of programs, such as for example variable
execution times. The FunState representation is an enhancement of the SPI, which
unlike SPI, include more powerful means for representing different scheduling
strategies.

Unlike untimed representations, timed representations include a notion of system
time. Introducing the notion of system time enables representation, simulation and
analysis of dynamic processing costs. In Sect. 3, timed representations for dynamic
simulation and analysis of non-functional properties are presented. Two examples of
such closely related intermediate representations are introduced—job configuration
networks and timed configuration graphs (TCFG).

2 Untimed Representations

There are a number of representations developed for synthesis and analysis of
parallel systems. This section introduces two examples of such closely related
representations and how they are used. The first example, System Property Intervals
(SPI), is a representation that uses the concept of constraints intervals to model
non constant behavior of a system, for example variable execution times of tasks.
The second example, FunState, is based on the concept of functions and state
machines, which enables representation of different scheduling strategies. Thus, SPI
and FunState are closely related and are both examples of representations which can
be used for static (untimed) analysis of systems.

Intermediate Representations for Simulation and Implementation 725

2.1 Representation of System Property Intervals

The System Property Intervals (SPI) is developed to represent and simulate the
internal design of heterogeneous systems [5]. SPI is an untimed representation
which can be used for static timing analysis of a system. The abstract behavior
of a system can be described by means of processes communicating via channels,
see Fig. 1. Each process is associated with a set of parameter intervals that abstractly
represent the dynamic behavior of the system, which are of importance for analysis
of a particular behavioral aspect of the application. Some typical examples are
communication behavior, rules for activation of tasks and latency for different
resources. The values of the parameters are constrained by intervals in the form
of minimum and maximum bounds (hence the name system property intervals). As
an example, execution time is one parameter that is often not constant. It can be
specified by means of a best case (lower bound) and an worst case (upper bound).

An SPI model is formally a graph G = (P,C,E) where

• P is the set of process nodes,
• C = Q ∪ R is the set of channel nodes, and
• E = (P × C) ∪ (C × P) is the set of edges.

A channel C is represented either as a FIFO (first in first out) queue q ∈ Q

or as a register r ∈ R. Processes are data driven, which means that a process is
activated when all its input required for execution is available. To be able to derive
rules for when processes are activated it is necessary to know the amount of data
communicated. The communication in a graph is specified by assigning data rates
for each input and output channel for all processes. The data rate specifies how many
tokens that are produced or consumed through a channel during a process activation
interval. A token is an abstraction for the type of data communicated on a particular
channel.

Each process is associated with a set of input and output data rate constraining
intervals; one constraining interval for each of the input and output channels respec-
tively. An input data rate constraining interval is specified as Rc = [rc,min, rc,max],
where c denotes the specific input channel, rc,min the minimum data rate and rc,max

the maximum data rate. Similar to the input data rate intervals, each output channel
is associated with an output data rate constraining interval Sc = [sc,min, sc,max].
Note that the rate constraining intervals only specifies the maximum and minimum
possible rates for a channel when execution is simulated.

Fig. 1 Simple SPI model
graph. Process nodes are
denoted P and channel nodes
are denoted C P1 P3

P2
C1 C3

C2

726 J. Bengtsson

Similarly to the specification of data rate intervals, each process is associated
with a latency constraint interval. The latency constraint interval for a process p

is described as Latp = [latp,min, latp,max]. The activation time tact is the time
when all data is available and the process is activated. The starting time tstart is the
time when input data has been read and the process starts its execution. Finally, the
completion time tcomp is the time when output data has been written and the process
stops its execution. Thus, the execution time for the kth execution of process p can
easily be calculated as tcomp,p(k)− tstart,p(k). Obviously, the result must be within
the interval given by Latp in order to satisfy the requirements on maximum latency
for the process in question.

2.1.1 Specification of Process Mode Changes

For more complex applications it is desirable to be able describe different execution
modes of processes. For example, a process might configure its next execution
dependently on its current data input. This kind of process mode change can be
managed using a combination of a process mode, a mode tag and an activation
function specification. A process mode mp is abstractly described by means of a
latency interval Latp, an input data rate interval Rc and an output rate data interval
Sc, for each of its input and output channels respectively. Each process can now be
associated with a non-empty, finite set of process modes Mp = mp,1, . . . ,mp,np ,
where np is the number of modes for the process.

Considering the SPI graph in Fig. 2, where process P1 has i modes, process P2
has j modes and process P3 has only one mode. The process modes for this graph
is then described by

mP1,i = ([latP1,min(i), latP1,max(i)], [rC3,min(i), rC3,max(i)],
[sC1,min(i), sC1,max(i)])

mP2,j = ([latP2,min(j), latP2,max(j)], [rC1,min(j), rC1,max(j)],
[sC2,min(j), sC2,max(j)])

mP3,1 = ([latP3,min(1), latP3,max(1)], [rC2,min(1), rC2,max(1)],
[sC3,min(1), sC3,max(1)])

Fig. 2 Simple SPI graph
with three processes. Process
P1 has i modes, process P2
has j modes and process P3
has only one mode

P1 P3

P2C1 C2

C3

Intermediate Representations for Simulation and Implementation 727

P2
C1 C3

C2

C2.tag = 1 → C2.tag = 2
C2.tag = 2 → C2.tag = 1

Fig. 3 An SPI model graph to the left in the figure and its associated mode tag production rules
to the right. If the mode tag on channel 2 has the value 1, then a mode tag with the value of 2 is
produced on channel 2. Similarly, if the mode tag has the value 2, then a mode tag with value 1 is
produced on channel 2

Note that process P1 would have i process mode descriptions and process P2 would
have j descriptions. For simplicity, here only the mode descriptions for the ith and
j th mode, of process P1 and P2 respectively, are shown. Process P3 has only one
mode, thus only one mode description is required.

In many cases the execution mode of a process to be activated is determined by
the content of the input data. That is, the input data for next execution has to be
inspected. This dynamic mode change behavior is represented by mode tags and
so called activation functions. Each process is associated with a set of mode tag
production rules T Pp. Each of the mode tag production rules maps a specific input
mode tag to a specific output mode tag tpp : Ip → Op, see Fig. 3. Ip is a finite
set of possible input mode tag patterns and Op is the finite set of possible output
mode tag patterns. An input mode tag pattern is a tuple having one entry for each
input channel of a process. Similarly, an output mode tag pattern is a tuple having
one entry for each output channel.

The role of the activation functions is to select next execution mode of a process
based on the current input mode tag pattern. An activation function is a finite set
of rules σ which each maps to a mode Mσ ∈ Mp. A rule is evaluated by means of
a function of the number of available input tokens (c.num) and the first available
input tag of some input channels of the process (c.tag). A process is only activated
if and only if there is any rules σ evaluated to a ‘true’ value. To specify the cyclo-
static mode change for process P2 in Fig. 3, the set of rules are σ = {σ1, σ2}, where
σ1 : (c2.tag = 1) → mP2,1 and σ2 : (c2.tag = 2) → mP2,2. Here the modes
are activated on the basis of mode tags only while the number of input tokens on
channel C1 is omitted.

2.1.2 Specification of Latency Constraints

Latency constraints can be specified for paths of channels and processes. The
latency constraint is the allowed time interval for which tokens are allowed to be
communicated within on the path. A path latency constraint is a labeled path in

728 J. Bengtsson

P1 P3

P2C1 C2

C3

Fig. 4 Example of a specification of a cyclic latency path that starts and ends at process P1. The
dashed edges constitute the path path = (C1, C2, C3)

the model graph. A path latency constraint involving n processes is described in
the form (p1 → c1 → p2 . . . → cn−1 → pn). Process p1 is the origin sending
process and process pn is the destination receiving process. A latency path including
n processes is connected through n − 1 channels. Such a path can be described
in short form as path = (c1, . . . , cn). Similarly to process latencies and channel
data rates, path latency constraints are specified by means of intervals. A latency
constraint interval is given by LCpath = [tlat,min, tlat,max].

Figure 4 shows an example of an SPI graph with a cyclic latency path originating
and ending at process P1. The latency constraint for this path is given by LCpath =
[Tmin, Tmax].

2.1.3 Concluding Remarks on System Property Intervals

SPI models are very powerful in the sense that it is possible to describe het-
erogeneous compositions of models of computation. However, representations
in the form of arbitrarily specified process networks graphs is most often not
suitable for analysis. Instead, the typical usage of a representation like SPI is to
start from reduced specifications of one or several more decidable sub-classes of
process networks. For example parameterized synchronous dataflow (PSDF), cyclo
static dataflow (CSDF) or synchronous dataflow (SDF). For these more restricted
models there exists well-known and proven analysis techniques. Research has been
demonstrated how CSDF graphs can be transformed (unfolded) to homogeneous
synchronous dataflow (HSDF) graphs, which then can be mapped using the SPI
representation. Further, path latency constraints for such models can be analyzed
using integer linear programming techniques. Necessary and sufficient conditions
for restricting SPI graphs to CSDF behavior, as well as algorithms for unfolding
CSDF graphs and latency path constraints can be found in [19]. There are also
other representations which similarly to SPI uses mixed communication of control
information and data. Two examples are Huss’ co-design model CDM [4] and Eles’
conditional process graph [7].

Intermediate Representations for Simulation and Implementation 729

2.2 Representation of Functions Driven by State Machines

One limitation with the previously described representation (SPI) is that it is
not possible to represent scheduling strategies. The FunState representation is
a later enhancement of SPI, which also enables verification and representation
of scheduling strategies, as was discussed in Sect. 1. In difference to the SPI
representation, FunState models flow of data in separate from flow of control. As
was shown by examples, the execution of processes in the SPI representation were
autonomously controlled in pure data flow style. A significant difference to SPI
is that a FunState model is a model of functions driven by a network global state
machine. Furthermore, hierarchical FunState networks and state machines can be
represented. This section will describe the basics of the FunState representation,
including some basic examples on how the enhancements can be used to represent
different scheduling strategies.

2.2.1 Describing an Application in FunState

A FunState graph is a bipartite graph G = (F, S,E) where F is the set of functions
(corresponding to processes in SPI), S is a set of storage units (corresponding to
channels in SPI), and E is a set of directed edges. No edges are connecting two
storage units or two functions.

Figure 5 show an example of a FunState model. The upper part of the figure
shows the network of functions (f1, f2, f3) and its storage units (q1, q2, q3, q4),
each initialized with 1, 2, 0, 3 tokens respectively. The lower part shows the finite
state machine, which in this case for simplicity has only one state and three possible
transitions. Note that the number of states is not identical to the number of functions
in the network. Similarly to the SPI representation, there are two types of storage
units: queues and registers. A queue is FIFO ordered and its length is unbounded.

Fig. 5 The figure shows an
example of a simple FunState
graph. The upper part shows
the network of functions and
its storage units. The lower
part shows the finite state
machine, here having one
state and three possible
transitions. The number of
initial tokens in the storage
units are represented by filled
dots. No filled dots in a
storage unit means zero initial
tokens

f2

f3

f1
q1
q2

q2 # ≥ 4 ^ q4 # ≥ 3/ f1 q1 # ≥ 1/ f2

q3 # ≥ 2/ f3

q3 q4

730 J. Bengtsson

Registers are arrays of pairs (address, value). A register is denoted r and the value
of a register is denoted r$n where n is the id of the register. The number of tokens
available in a queue is denoted q# and q$i denotes the value of the i’th token in a
queue. The number of tokens and their values is a part of the system state. Similarly,
registers are denoted r and their values are denoted r$1, r$2 . . . , r$n. However,
unlike queues, register values are constants.

Functions f ∈ F operates on tokens and values. Each input and output of a func-
tion is associated with a variable, which denotes the number of tokens consumed
(ci) or produced (pi) on input and output channels respectively. Production and
consumption rates are specified by non negative integer values. A variable evaluates
to either a constant value or a random process value. Figure 6 shows a function
(f3) that consumes c tokens from the queue q1 and 3 tokens from the register r1. It
produces some number in the interval [1, 4] of tokens to queue q2 and p tokens to
register r2.

State machines are used to specify activation of functions and states of a system.
Transitions between states are specified by means of conditions and actions, see
Fig. 7. It is possible to specify conditions only concerning the number of tokens
in some queue, for example q# > u where u some variable. Conditions can also
concern the value of some queued token, like for example q$2 < 1.5. An action
specifies the function that should be activated if the transition is to be taken, see
Fig. 7.

When the execution of a FunState model is started the current state of the system
(xc) is always reset to its initial state (x0). Further, all queues and register values are
pre-loaded with initial tokens (queues) and values (registers). During execution of
the model the following steps are repeatedly followed in order:

1. Evaluation of conditions: All conditions specified for transitions possible from
the current state are evaluated.

f3

q1 q2

r1 r2

[1,4]

p

c

3

Fig. 6 Example of a function f communicating via queues q and registers r . Consumption and
production rates can be specified as constants (input rate 3 from r1), variables (input rate c from q1
and output rate p to r2) or by means of a random interval (output rate [1, 4] to q2)

condition action

(q # ≥ 3) ^ (q$2 < 1.5)/ f1, f2

Fig. 7 Example of a specification of conditions and actions for state transitions. The activation of
function f1 and function f2 is made only if q contains 3 or more tokens and if the value of the
second token in q is less than 1.5

Intermediate Representations for Simulation and Implementation 731

2. Check possible progress of system: If no transitions is evaluated to be enabled
the execution is stopped.

3. State machine reactions: One non-deterministic chosen state transition (from
the set of enabled transitions where the current state is the source) is chosen. All
functions related to the actions associated with the transition is activated.

4. Fire functions: All functions that have been activated are executed in non-
deterministic order. When a functions is being executed, tokens and values are
removed from input queues and registers and tokens and values are added to
output queues and registers respectively.

The basic model of FunState further allow construction of hierarchical models
including both components and state machines. The semantics of hierarchical
FunState models is out of the scope of this chapter and is not presented here.
Furthermore, the underlying computational model of FunState can be described
and analyzed using both static graph representation and dynamic state transition
diagrams [19]. There is also extensions of FunState, including timed functions,
representation of timing constraints and timing properties [20].

2.2.2 Examples of Representation of Different Models of Computation

In difference to its successor SPI, FunState enables representation of different input
specifications (heterogeneous combinations of different models of computation).
Communicating finite state machines are asynchronously operating finite state
machines (FSMs) that communicates via FIFO ordered queues. Figure 8 shows an
example of a simple communicating finite state machine model. The FSM M1 of
component C1 can send a value to the queue q whenever it makes a transition. The
transitions of the FSM M2 can then be guarded using predicates on the value of the
first element in q .

Figure 9 shows another example in which a SDF program is represented. The
actors in the SDF program is in FunState represented by functions. The channels
(the edges in the SDF graph) are represented by a queue and two edges (one input, a
queue and one output). The number of tokens in the FunState queues are initialized
according to the number of initial tokens on the corresponding SDF channels. Each

C1 C2

C C1

/C2
/C1

C2

M2M1

f1
1 1 f2

0
q

Fig. 8 Hierarchical FunState model representing a small communicating finite state machine. The
highest level, shown to the left in the figure, represents FSM M1 and FSM M2 by means of two
abstract components C1 and C2. To the right, the specification for the components C1 and C2

732 J. Bengtsson

f2

f3

f1
q1
q2

q3 q4

/C1

/C3

/C2

12

4 2
3

21

3

f1

C C1

q2 # ≥ 4 ^ q4 # ≥ 3/ f1

Fig. 9 A synchronous dataflow graph to the left in the figure and a hierarchical FunState
representation using local control to the right. Sub model C1 of the complete model C is shown
rightmost in the figure. The state machine will make a transition to f1 when there is three tokens
available on q4 and four tokens available on q2

f2

f1

C1

(2,4)

(1,3)

2

4

1

3

o1i1

i1 # ≥ 1/ f1

i1 # ≥ 3/ f2

Fig. 10 A CSDF model represented in FunState. The state machine has two states, one for each
actor mode, which controls the cyclic mode transitions for the CSDF actor. The initial state is here
represented by the left node in the state machine (bottom of the figure)

component of C contains a function and an FSM, which has one state and one
transition. The condition for the transition corresponds to the consumption rates for
all input edges of the dataflow actor and the action is to activate firing of the actor.

In difference to SDF, CSDF enables periodical changes of production and
consumption rates. The graph to the left in Fig. 10 shows a CSDF actor. In the
FunState representation, to the right in the figure, the CSDF actor is represented
using two functions (f1, f2). The state machine cycles through the different actor
states following the at compile time specified sequence of input token rates for the
CSDF graph.

The last example demonstrates representation of boolean (BDF) and dynamic
dataflow (DDF) programs. BDF and DDF are two extensions of SDF, which both
enables specification of data dependent dataflow. Figure 11 show switch and select
actors in BDF. A select actor is used to select which input of i1 and i2 that should
be transferred to the output when the actor is fired. The actor is activated when

Intermediate Representations for Simulation and Implementation 733

there is a true or false value (c$1 ∈ true, f alse) available on the control channel c.
Similarly, the switch actor transfer the output from input i to either of output o1 or
o2 dependently on the value of the control channel c (c$ ∈ true, f alse).

Figure 12 shows a FunState representation of the switch and select actors from
Fig. 11. The conditions for the state transitions of the select actor is defined as:

c1 : i1# ≥ 1 ∧ c# ≥ 1 ∧ c$1 = true

c2 : i2# ≥ 1 ∧ c# ≥ 1 ∧ c$1 = f alse

Similarly, the conditions for the state transitions of the switch actor is defined as:

c3 : i# ≥ 1∧ c# ≥ 1 ∧ c$1 = true

c4 : i# ≥ 1∧ c# ≥ 1 ∧ c$1 = f alse

Figure 13 shows a non-deterministic merge DDF actor and its FunState represen-
tation. The merge actor is activated for firing when there is at least one token present
on either of the two input channels (i1, i2).

cc

o o1 o2

i1 i2 i

Fig. 11 A select actor to the left in the figure and a switch actor to the right. The switch and select
actors chooses its input (output) dependently on the boolean value on the control channel c

f1

f2

1 1/c f

c

f1

f2

i1

i2

o
c

i

o2

o1

2 2/c f

3 1/c f

4 2/c f

switchselect

Fig. 12 Switch and select actors represented in FunState

734 J. Bengtsson

Fig. 13 A non-deterministic
merge actor in DDF and its
representation in FunState f1

f2

i1

i2

o

select

c

o

i1 i2

i1 # ≥ 1/ f1
i2 # ≥ 1/ f2

2/ f 3/ f

3/ f 2/ f
1/ f3/ f

C

/u s

C

/u t

2/ f

3/ ,f u
1/ f

/ s

3/ f

/ t

Fig. 14 Two different representations of the same static schedule. The representation to the left
shows a straightforward representation of the static schedule. The representation to the right shows
another representation of the same schedule but using AND compositions of FunState sub models

2.2.3 Representation of Schedules

FunState allow representation of scheduling strategies. As an example of this,
consider the SDF program that was shown in Fig. 5. Only the state machine
need to be replaced to specify an exact static schedule for this graph. A peri-
odic single processor schedule for the actors f1, f2, f3 in the SDF graph is
(f2, f3, f1, f2, f3, f3). Figure 14 shows two different possible representations when
implementing this schedule using a static scheduling strategy. The representation to
the left is a straightforward implementation, using a state machine with a state and a
transition following the order of this specific schedule. However, the sub-sequence
(f2, f3) occurs twice in the schedule. This redundancy is taken into account in the
corresponding representation to the right, where AND composition between parallel
state machines are used.

Intermediate Representations for Simulation and Implementation 735

2.3 Concluding Remarks on Untimed Representations

Similarly to FunState, many other representations that separate data and control flow
have been proposed. Some examples are SDL [17], codesign finite state machines
(CFSMs) [1], combining synchronous dataflow with finite state machines (FSMs)
[10, 15]. However, in comparison to FunState, many of these other approaches
are limited in terms of composition, since control and data flow cannot be mixed
arbitrarily in the hierarchical levels. More recent and promising work is the actor
machine [11]. The actor machine is an abstract machine model for representation of
dataflow actors. It has been demonstrated that it facilitates representation necessary
for more complex (in terms of non-static) dataflow applications [3].

3 Timed Representations

Most embedded DSP applications have real-time constraints. To provide qualitative
automated mappings with respect to performance and timing requirements, the
intermediate representation must be amenable to timing analysis. This requires
models representing both scheduling strategies as well as the timing properties of
the target hardware. This section will present examples of timed representations
and of how a machines timing properties can be modeled. The first representation
example introduces timing models for analysis of inter processor communication
(IPC) graphs. The second representation example includes a timing model and a
machine model for a certain class of multi- and manycore processors (arrays of
processing tiles).

3.1 Job Configuration Networks

In real-time analysis applications are typically modeled as a set of real-time jobs.
A job in this context is considered as a task graph for a complete application. The
SDF model of computation is very suitable for specification and real-time analysis
of DSP applications. A job configuration network is one proposed executable
intermediate representation that can be implemented using process networks [16].
Processes represent processors (cores) and channels represent communication
between processors.

3.1.1 Implementation of a Job Configuration Network

Similar to the SPI and FunState representations, job configuration networks are
suitably implemented using process networks, see [8]. Process networks provides

736 J. Bengtsson

a good base for functional representation of parallel program execution on multi-
processors and multicores. Construction of a job configuration network starts from
a homogeneous synchronous dataflow (HSDF) graph that describes the application.
Then the HSDF graph is partitioned and mapped onto the job configuration network.
Each actor in the HSDF graph is assumed to be annotated with execution times in
the form of real numbers. The execution time can be a fixed value, the worst case
execution time, or a variable number. A job configuration network can be described
by a directed graph. The nodes of the graph are processes (denoted P), which each
is assigned a subset of the mapped HSDF application graph. Thus, each process
represents a processing tile and the set of computation actors mapped on it. Note that
the term computation actor is here used to denote an actor that is a part of the HSDF
application graph. Other types of actors are also inserted to model communication.

Channels connect actors mapped on different processes. A channel in the job
configuration network models unidirectional communication by means of an input
buffer, a data connection, a flow-control mechanism and an output buffer. Data from
the input buffer (located at the sending side) is pumped through the data connection
and is stored in the output buffer (at the receiving side). The flow-control mechanism
watches the state of the output buffer in order to prevent overflow. A channel input
buffer is associated with a counter counting the number of free places (credits) in
the buffer at the output side. Whenever a token is placed on the input of a channel,
the credit counter is decremented. The channel is blocked for writing whenever this
counter reaches zero. Every time the receiving process removes a token from the
channel, a credit is generated and sent back to the sender, and the credit counter is
incremented. The time elapsed from departure of a token at the sending side, to the
arrival of a token at the receiving side constitutes the data propagation delay. The
data propagation delay is denoted δD . Correspondingly, the time for transferring
a credit from the receiving side to the sending side is denoted δC . In the job
configuration network, channels are implemented using specific transfer processes
(denoted T). A transfer process implements the delayed transfer of tokens from the
input buffer to the output buffer according to δD and δC .

3.2 IPC Graphs

In order to analyze timing properties such as job throughput, execution time and
buffer sizing, the job configuration network is transformed into an IPC graph.
An IPC graph models the execution of a job on a parallel processor and can be
extended with timing models to be amenable for timing analysis. In difference to
the application graph (HSDF), and the job configuration network (Process network),
the IPC graph contains two kinds of edges: data edges and sequence edges. Data
edges represents data dependencies between actors. The sequence edges represents
constraints on execution order. No data is transferred on the sequence edges. The
sequence edges are used to enforce some specific sequencing of actors. For each
individual processing resource and the network, the sequence edges are used to

Intermediate Representations for Simulation and Implementation 737

Fig. 15 A simple send
receive application in the
form of an HSDF graph is
shown to the left (a). An IPC
graph of the same send
receive application is shown
to the right (b). Actors P1 and
P2 are sending data to the
receiving actor C. Two write
actors (W1,W2) models the
write operations of the
sending actors (P1, P2).
Furthermore, two read actors
R1, R2 models the required
read operations of the
receiving actor C

P1
5

C
16

P1
5

P2
5

W2
1

W1
1

C
16

R1
1

R2
1P1

5

a

b

create cyclic execution paths when analyzing the timing properties of the graph. In
addition to the computation actors specified by the application graph, the IPC graph
contains data copy actors (read and write actors). The data copy actors represent
data transaction between local memories and global memory.

IPC graphs can be implemented by means of an HSDF graph. Every process
and every channel of the job configuration graph can separately be translated into
an HSDF model (IPC sub graph), which then are assembled together to form
the complete IPC graph for the application. Processes are modeled by means of
processor cycles as illustrated by Fig. 15. It includes computation actors (P1, P2, C),
write actors (W1 and W2) and read actors (R1 and R2) which performs the read and
write operations on the channels.

Figure 16 shows two examples of a buffer model. The first example, (a), is buffer
of size 2 without transfer delay. The dashed actors are mapped on processes that
reads and writes to the channel. The edges drawn from the left to the right are
data edges which models data dependencies. The edges drawn from right to left are
sequence edges modeling the flow-control mechanism. The position of the sequence
edges and the number of initial tokens on each edge are dependent on the size of the
buffer. The sum of produced tokens in the graph can never exceed two. The second
example, (b), shows a buffer with transfer delay and buffer size of 9. The transfer
delay is implemented by splitting the data and sequence edges and inserting a delay
actor in between. Delay actors on data edges are annotated with a delay of δD and
delay actors on sequence edges are annotated with a delay of δC .

738 J. Bengtsson

i=1

i=0

i=2

j=1

j=0

j=2

i=1

i=0

i=2

j=1

j=0

j=2

δC

δD

δC

δD

δC

δD

a b

Fig. 16 Two examples of buffer models mapped on an IPC graph. The graph to the left (a)
implements a buffer of size 2 without transfer delay. Since there is only one initial credit on the
outgoing edges from j = 1 and j = 2 respectively, actor i = 0 will block until there are new
credits on the sequence edges. Similarly, the graph to the right (b) implements a buffer of size 9
with transfer delays (δC , δD). Each one of the sequence edges, from right to left, have three initial
credits. Thus only three iterations (nine data tokens produced) are possible until new credits have
been placed on the sequence edges

3.2.1 Timing Analysis of IPC Graphs

Figure 17 shows the final IPC graph, implemented by means of an HSDF model,
for the small producer consumer job shown in Fig. 15. The timing models for the
IPC graph assume self-timed execution and that multiple iterations of the graph
are allowed to overlap during execution. For IPC graphs with actors annotated
with constant (worst-case) execution times it is possible to obtain measures on the
worst-case throughput and lateness of the represented job. However, there is a set of
restrictions the IPC graph must comply to:

1. The graph must be strongly connected. For any two actors in the graph, there
must exist a directed cycle that contains both actors.

2. The graph must enforce first-in-first-out token production order. The output of
actors must be produced in order with the actors starting order.

The second restriction is necessary when actors have variable execution times.
Consider the case that the execution time of iteration i+1 of an actor is less than the
execution time for iteration i. Then the token output of instance i + 1 can overtake
the output of instance i. This restriction can be enforced by the usage of initial
tokens on actors cycles. For each actor in the graph, it must be part of at least one
cycle that has only one initial token. This restriction is enforced in the example in
Fig. 15, where each actor belongs to a processor cycle and every cycle has only one
initial token.

Intermediate Representations for Simulation and Implementation 739

A simple cycle in the graph is a cyclic path that cannot contain any actor more
than once. The edges of cycle can be either data edges or sequence edges. The cycle
weight is the sum of the execution times for the actors in the cycle, which is a
constant value since the actors execution times are constant. The cycle mean is the
cycle weight divided by the sum of all initial tokens on the edges of the cycle. The
cycle in the graph that has the largest cycle mean is said to be the critical cycle.
The critical cycle constitutes the slowest part of the graph and it is the cycle that
constrains the speed of computation for the whole graph.

The timing analysis demonstrated in this section makes use of three important
properties of such HSDF graphs: monotonicity, periodicity and boundedness:

Periodicity For self-timed execution of an IPC graph (HSDF) G(V,E) with fixed
execution times, the periodicity is:

s(v, k + N) = s(v, k) + p × N; v ∈ V, k ≥ K (1)

where the iteration interval p is the maximum cycle mean (MCM), k is the iteration
index, s(v, k) is the starting time of actor v, K is the number of iterations required
before the self-timed execution enters the “periodic regime”, and N is the number
of iterations in one period. With a periodic regime, it is meant that every actor is
guaranteed to start exactly N firings within any half-closed interval of length p×N .
Thus, by finding the actors starting times s(v, k) during one period, it is possible to
characterize the periodic execution of the IPC graph. If this information is available,
it is also possible to obtain a measure of the graphs lateness.

Lateness The lateness σ of a graph is

σ = maxv∈V (maxk=n..n+N−1(s(v, k)− p × k + t (v))) (2)

where t (v) is the fixed execution time of actor v and n is an arbitrary integer n ≥ K .
The lateness (maximum latency) is a measure on how late iteration k of the IPC
graph, starting from time p × k, can finish.

Boundedness The upper bound on the completion time of I iterations of the IPC
graph (HSDF) is given by

HSDF − BOUND(I) = p × (I − 1)+ σ (3)

As mentioned, the value of the iteration interval p can be found by computing the
MCM (the maximum critical mean) of the IPC graph. To compute the lateness σ , it
is necessary to have a sample of the starting times s(v, k). This means that also that
K and N have to be known. Furthermore, in case I < K , the HSDF− BOUND(I)

can be found through simulating I iterations of the graph [16].
The example in Fig. 17 shows the result after translating the configuration

network for the producer—consumer example in Fig. 15 to an IPC graph. There
are rules for how to position the backward edges and how to set the number of

740 J. Bengtsson

Fig. 17 Complete IPC graph
for the send receive example
in Fig. 15 P1

5

P2
5

W2
1

W1
1

C
16

R1
1

R2
1

T2
4

T1
4

δD1
0,2

δD2
0,2

δC1
0,3

δC1
0,3

initial tokens on these edges, but they will not be discussed further here [16]. The
cycle (P1,W1, P2,W2) represents the computation of the actors mapped on the first
processing tile. Similarly, the cycle (R1, R2, C) represents the actor C mapped on
the second processing tile. The transfer actors (T1 and T2) and the delay actors
(δD1, δD2, δC1, δC2) represent the channel connection between the two processing
tiles.

The IPC graph in Fig. 17 is amenable for timing analysis. The average iteration
intervalp (MCM) can be determined by finding the critical cycle in the graph. In this
case, the cycle R1, δC1, T2, δD2, R2, C is critical, resulting in an iteration interval of
22.5 time units. One way to improve the performance is to modify the size of the
channels output buffer. The size of the output buffer can be increased by adding
extra initial tokens. If the buffer size is increased from 2 to 3, there will be one extra
token on edge (R1, T2). This will reduce the cycle mean. The new critical cycle will
be (R1, R2, C). Note that the structure of the graph has not been changed.

One severe limitation with Job Configuration Networks is that the HSDF appli-
cation graph tend to grow undesirable in terms of size and evaluation complexity
for more complex dataflow applications. Another more recent approach that can be
taken for more complex applications is to use max+ analysis [9]. The max+ analysis
is based on linear-system theory and rely on SDF graphs and an FSM to represent
more dynamic application scenarios.

Intermediate Representations for Simulation and Implementation 741

3.3 Timed Configuration Graphs

If the goal were just to abstract away processor specific details, the intermediate
representation could very well be a fairly simple graph data structure. However, in
order to be able to analyze non-functional properties for a certain mapping of a
graph, there is a need also to represent both time and the dynamic behaviour of the
hardware. Timed configurations graphs (TCFGs) are closely related to job config-
urations networks. This section presents how TCFGs are constructed to represent
programs mapped on tiled parallel processors. TCFGs can easily be implemented
using a hierarchical heterogeneous model consisting of process networks and SDF.
Programs are specified using a multi-rate SDF graph. The processing resources
are implemented abstractly using process networks. Furthermore, a machine model
is used to describe computational resources and performance of the processor
target [2].

3.4 Set of Models

A program is specified using a multi-rate SDF graph. Each actor in the SDF graph
is assumed to be associated with a tuple

< rp, rm,Rs, Rr >

where

• rp is the worst case execution time, in number of operations.
• rm is the requirement on memory, in words.
• Rs = [rs1, rs2, . . . , rsn] is a sequence where rsi is the number of words produced

on output channel i each firing.
• Rr = [rr1, rr2, . . . , rrm] is a sequence where rrj is the number of words consumed

on input channel j each firing.

Scheduling algorithms require cost estimates in order to find a qualitative mapping
with respect to some optimization objective. For communication resources on
parallel processors, the cost typically comprise a static cost for sending and
receiving data and a dynamic cost determined by the resource location, the amount
of data to be communicated and the current state of the processor. Thus, the accuracy
of the cost estimates depends on how well the dynamic overhead associated with
communication, synchronization and when accessing off-chip resources can be
captured.

The machine model presented here can be used to represent a certain class of
array structured multi processors and multi cores. The term processing tile is here
used to refer to one core or processor in such an architecture. The machine model
comprises a set of parameters describing the computational resources and a set of

742 J. Bengtsson

abstract performance functions, which describe the performance of computations,
communication and memory transactions. The processing tiles are assumed to
be tightly coupled via a mesh network. Each tile is assumed to have individual
instruction sequencing capability. Memory transactions between tile private and
shared memory is managed in software. The resources of such an abstract tile
architecture can be described using two tuples, M and F . M consists of a set of
parameters describing the resources:

M =< (x, y), p, bg, gw, gr , o, so, sl , c, hl, rl, ro >

where

• (x, y) is the number of rows and columns of cores.
• p is the processing power (instruction throughput) of each core, in operations

per clock cycle.
• bg is global memory bandwidth, in words per clock cycle
• gw is the penalty for global memory write, in words per clock cycle
• gr is the penalty for global memory read, in words per clock cycle
• o is software overhead for initiation of a network transfer, in clock cycles
• so is core send occupancy, in clock cycles, when sending a message.
• sl is the latency for a sent message to reach the network, in clock cycles
• c is the bandwidth of each interconnection link, in words per clock cycle.
• hl is network hop latency, in clock cycles.
• rl is the latency from network to receiving core, in clock cycles.
• ro is core receive occupancy, in clock cycles, when receiving a message

F is a set of abstract common functions describing the performance of compu-
tations, global memory transactions and local communication as functions of the
resources M:

F(M) =< tp, ts , tr , tc, tgw, tgr >

where

• tp is a function evaluating the time to compute a sequence of instructions
• ts is a function evaluating the core occupancy when sending a data stream
• tr is a function evaluating the core occupancy when receiving a data stream
• tc is a function evaluating network propagation delay for a data stream
• tgw is a function evaluating the time for writing a stream to global memory
• tgr is a function evaluating the time for reading a stream from global memory

The first step when modeling a specific processor target is to set the values of the
parameters of M . The second step is to define the performance functions F(M).

Intermediate Representations for Simulation and Implementation 743

3.4.1 Modeling a Tiled 16 Cores Processor

In this section it is demonstrated how the machine model can be configured in order
to model an array structured parallel processor. It is assumed that the processor has
16 (4 × 4) programmable tiles. Each tile includes a single-issue core and private
data and instruction memory. The tiles are tightly interconnected via a dimension-
ordered (x-y), wormhole-routed network. Shared memory consist of four off-chip,
individually addressed memory banks located off-chip. Transactions between tile-
local and shared memory are programmed in the software, using message-passing
via the on-chip interconnection network. The parameters for a processor with this
configuration are can be specified with following parameter setup:

M =< (4, 4), 1, 1, 1, 6, 2, 5, 1, 1, 1, 1, 3 >

The core instruction throughput is p operations per clock cycle. Thus, for a single-
issue core p = 1. The memory bank consisting of four shared off-chip DRAMs
are connected to four separate I/O ports. The DRAMs can be accessed concurrently,
each having a bandwidth of bg = 1 words per clock cycle. The latency penalty for
a DRAM write is gw = 1 cycle and for a read the latency is gr = 6 cycles. The
overhead for a initiating network transfer includes sending a header and possibly an
address (when addressing any of the off-chip memories). The software overhead for
this initiation is here set to o = 2. The on-chip networks are assumed to be register
mapped, meaning that after a message header has been sent, the network can be
treated as destination or source operand of an instruction. Ideally, this means that
the receive and send occupancy is zero. In practice, when multiple input and output
channels are merged and physically mapped on a single network link, data needs to
be buffered locally. Here a send and receive occupancy of so = 2 and ro = 2 will
be assumed. Note that this occupancy then also include the overhead for the data to
be read from and written to local memory. The network hop-latency is set to hl = 1
cycles per router hop and the link bandwidth is assumed to be c = 1. Furthermore,
the send and receive latency is one clock cycle when injecting and extracting data
to and from the network: sl = 1 and rl = 1.

After configuring the parameters of the machine model, the next step is to specify
the performance functions F(M):

Compute The time required to process the fire code of an SDF actor on a
processing tile can be defined as

tp(rp, p) =
⌈
rp

p

⌉

which is a function of the requested number of operations rp (worst-case execution
time associated with each actor) and the core instruction throughput p ∈ M . To
rp all instructions except those related to network send and receive operations are
counted.

744 J. Bengtsson

Send The time required for a processing tile to issue a network send operation can
be defined as

ts(Rs, o, so) =
⌈

Rs

f ramesize

⌉
× o + Rs × so

Here send is defined to be a function of the requested amount of words to be sent, Rs ,
the software overhead o ∈ M when initiating a network transfer, and a possible send
occupancy so ∈ M . The framesize is a processor specific parameter that specifies
the maximum length, in words, of a message. Thus, the first term of ts captures the
software overhead for the number of messages required to send the complete stream
of data. For connected nodes in the SDF graph that are mapped on the same core,
it is also possible to choose to represent channels mapped in local memory. In that
case ts is set to zero.

Receive Similar to send, the time required for a processing tile to issue a network
receive operation can be defined as

tr (Rr , o, ro) =
⌈

Rr

f ramesize

⌉
× o + Rr × ro

Network Propagation Modeling communication accurately is difficult: at the one
hand high accuracy requires the use of a low machine abstraction level. At the other,
the machine abstraction implemented by the model should be abstract enough to
be able to model different processor targets. For simplicity, here it will be assumed
that network communication is collision free. The network propagation time here
consists of a possible network injection and extraction latency at the source and
destination and the propagation time for one router hop on the network. The network
propagation time with these assumptions can be defined as

tc(Rs, xs, ys, xd, yd, sl , hl, rl) =
sl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)+ rl

Network injection and extraction latency are captured by sl and rl respectively.
Further, the propagation time depends on the network hop latency hl and the number
of network hops d(xs, ys, xd , yd), which is a distance function of the source and
destination coordinates. Routing turns add an extra cost of one clock cycle. This is
captured by the value of nturns(xs, ys, xd, yd) which, similar to d , is a function of
the source and destination coordinates.

Shared Memory Read Each memory bank in the shared memory is assumed to be
individually controlled by a memory controller. Reading from the shared memory
bank requires first one send operation (the overhead which is captured by ts), in

Intermediate Representations for Simulation and Implementation 745

order to configure the memory controller and set the address of memory to be read.
The second step is to issue a receive operation to receive the memory contents on
that address. The propagation time when receiving a stream of data from shared
memory at a processing tile is here defined as

tgr(rl, xs, ys, xd, yd, hl) =
rl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)

Memory read latency is not included in this expression. This needs to be
accounted for in a memory model that has to be included in the intermediate
representation.

Shared Memory Write Like the memory read operation, writing to global mem-
ory requires two send operations: one for configuring the memory controller (set
write mode and address) and one for sending the data to be stored. The time required
for streaming data from the sending core to global memory is evaluated by

tgw(sl, xs, ys, xd , yd, hl) =
sl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)

Like in shared memory read function, the memory write latency is included in
the memory model that has to be included in the intermediate representation.

3.5 Construction of Timed Configuration Graphs

A timed configuration graph GA
M(V,E) represents a synchronous dataflow program

A (with annotations < rp, rm,Rs, Rr > as described in Sect. 3.4), mapped on
an abstract machine < M,M(F) >. V is the set of nodes and E is the set of
edges. There are two types of nodes in the graph: processor nodes, vp , and memory
nodes, vb . A processor node represents a set of SDF sub-graphs of A mapped on a
processing tile. Memory nodes represent buffers mapped in shared memory. The set
of edges, E, represents the configuration for the on-chip network.

When constructing a timed configuration graph, GA
M(V,E), the SDF graph A is

first clustered into sub-graphs. Each SDF sub-graph is then assigned to a processing
tile in M during the scheduling step. The edges of the SDF graph that end up inside
a node of type vp will be implemented using local memory, so they do not appear
as top level (visible) edges in GA

M . The edges of the SDF that reach between pairs
of nodes not belonging to the same SDF sub-graphs can be mapped in two different
ways:

746 J. Bengtsson

A

B C

E

D

3B 3C

E3D

6A
2

4

20

40

1 1

20 20
5

15

3

9

120

120

120

120

1515

12
12

9 9

Fig. 18 The graph to the right is one possible graph GA
M for the application graph A to the left

1. as a network connection between the two processing tiles; such a connection is
represented by an edge;

2. as a buffer in global memory. In this case, a memory node is introduced.

When GA
M has been completely constructed, each vp, vb ∈ V and e ∈ E

has been assigned costs for computation, communication and memory read and
writes, respectively. The costs are calculated using the parameters of M and the
performance functions F(M) (Sect. 3.4). These costs comprise the static part of
the costs, relative to the current time and the current state of the system, when
computing the total cost for executing an application.

The graph to the left in Fig. 18 shows a simple multi-rate SDF graph (A). The
graph to the right in the figure, shows one possible TCFG for this same SDF graph
(GA

M). One static actor firing schedule for A in this example is 6a3b3c3de3. Thus,
actor a fires six times, actors b, c and d fire three times, and actor e one time.
The firing of this schedule is repeated indefinitely. Thus, no runtime scheduling
supervision is required since static code can be generated. The feedback channel
from actor c to actor b is buffered in core local memory. The edge from actor a
to actor d is a buffer in shared (off-chip) memory and the others are mapped as
point-to-point connections on the network. The integer values represent the send
and receive rates of the channels (rs and rr), before and after A has been clustered
and transformed to GA

M , respectively. Note that these values in GA
M are the values in

A multiplied by the number of times an actor fires, as given by the firing schedule.

3.5.1 Abstract Interpretation of TCFGs

Dynamic analysis of a timed configuration graph can be performed using abstract
interpretation techniques. An interpreter can be implemented by very simple
means using process networks. This section will briefly demonstrate how such an
interpreter can be implemented using process networks.

Intermediate Representations for Simulation and Implementation 747

The implementation of timed configuration graphs demonstrated here comprise a
heterogeneous and hierarchical dataflow model. The top level is a process network.
Nodes representing processing tiles are implemented using specific processor actors
(processes), and memory nodes are implemented using specific memory actors
(processes). The SDF program, provided as input to the tool, is transformed to a
distributed (clustered) SDF model, where each cluster is embedded in a processor
actor. The edges connecting the clusters in the distributed SDF graph are cut
and replaced by process networks channels, which represent the inter processor
communication. However, apart from this temporary cut, the SDF model is still
intact.

There are different possible approaches for analysis of the dynamic behavior
of a dataflow model. One is to let the model calculate resource and timing
properties on itself during execution of the model. Another is to generate an abstract
representation of the model. However, using abstract interpretation does not require
modification of the underlying modeling architecture used. The timed configuration
graph and the abstract interpreter can be added on top of an existing modeling
infrastructure. Furthermore, the approach of using abstract representation of the
mapped SDF graph is likely more beneficial in terms of modeling performance.

Program Abstraction The firing for each SDF actor is abstracted by means of a
sequence, S, consisting of receive, compute and send operations:

S = tr1, tr2 . . . trn, tp, ts1, ts2, . . . , tsm

The abstract operations have been bound to static costs computed using the
machine model M and the defined performance functionsF(M), as was exemplified
in Sect. 3.4.

Time There is no notion of global time in a process network. Each of the top level
vertices of GA

M (processing tiles and memories) is implemented by an individual
process. Each of the processor processes has a local clock, t . The clock, t , is stepped
by means of (not equal) time segments. The length of a time segment corresponds
to the static cost bound to a certain operation in S and possibly a dynamic cost
(blocking time) when issuing send or receive operations addressed to other cores or
shared memories.

Processing Tiles and Memory A processor process (processing tile) implements a
state machine. For each processor process that is firing, the current state is evaluated
and then stored in the history. The history is a chronologically ordered list describing
the state evolution from time t = 0.

Memory processes, vm, models competing memory transactions by the first come
first served policy. A read or write latency is added to the current time of a read or
write operation.

States For each processor process it is recorded during which segments of time
computations and communication operations were issued. For each process, the

748 J. Bengtsson

current state maps to a state type ∈ StateSet , a start time, tstart , and a stop time,
tstop. The state of a vertex is a tuple

state =< type, tstart , tstop >

The StateSet defines the set of possible state types:

StateSet = {receive, compute, send, receiveMem, sendMem}

The value of tstart is the start of the time segment corresponding to the currently
processed operation, and tstop is the end of the time segment. For all states, time tstop
corresponds to tstart + �, where � includes the static cost bound to the particular
operation. For send, receive, receiveMem and sendMem � also possibly includes a
dynamic cost (blocking time) while issuing the operations.

Clock Synchronization The timed configuration graph is synchronized by means
of discrete events. Send and receive are blocking operations. A read operation blocks
until data are available on the edge, and a write operation blocks until the edge is
free for writing. During a time segment, only one message can be sent over an
edge. Synchronization of time between communicating processes requires two way
communication. Thus, each edge in the mapped SDF graph is represented by a pair
of oppositely directed edges in the implementation of GA

M .

Network Propagation Time Channels perform no computation. Therefore delay
actors are used to account for propagation times over edges. The delay actor adds
the edge weight (corresponding to tc ∈ F(M)), that has been assigned to each top
level edge during the construction of GA

M .

Program Interpretation The core interpreter makes state transitions depending on
the current operation, the associated static cost of the operation and whether send
and receive operations block or not (the dynamic cost). A state generating function
takes timing parameters as input and returns next state ∈ StateT ypes.

In this example implementation of the TCFG, the network is modeled on
a relatively high level, at which communication is represented using point-to-
point channels. Thus, the model does not capture message concurrency and buffer
capacity of the network. This is one example of design trade-off made to keep
the network abstraction at a high level for reasons of modeling performance and
a higher generality of hardware representation. These are however problems that
can be solved, but at the price of a lower level of implementation of the intermediate
representation.

Intermediate Representations for Simulation and Implementation 749

4 Chapter Summary

Implementation of DSP applications on parallel hardware is a complex task typically
involving several design constraints. Many DSP systems are embedded real-time
systems, which includes non-functional constraints such as for example timing.
The problem of finding the best fitted parallel implementation of a program—
with respect to the available processor resources and the design constraints—is
a non-trivial implementation task. This chapter has presented useful techniques
and different important aspects of intermediate representations aimed for not only
representation, but also simulation and evaluation of systems, as well as for
implementation in design and development tools. The SPI representation discussed
in Sect. 2.1 allows representation of variable execution properties of programs, but
does not provide means powerful enough for representation of scheduling strategies.
In Sect. 2.2, it was discussed how scheduling strategies could be implemented in
the IR using the FunState representation as example. Section 3.1 presented job
configuration networks, which unlike SPI and FunState, is a timed executable
representation that enables dynamic analysis and simulation. Finally, the concept of
timed configuration graphs (TCFGs) (Sect. 3.3) was presented. TCFGs are similar to
job configuration networks and have been designed to enable dynamic analysis and
evaluate the execution of multi-rate SDF graphs on parallel processors by executing
the IR.

References

1. Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone, C.,
Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B.: Hardware-software co-
design of embedded systems: the POLIS approach. Kluwer Academic Publishers, Norwell,
MA, USA (1997)

2. Bengtsson, J., Svensson, B.: Manycore performance analysis using timed configuration graphs.
In: IEEE International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, pp. 108–117. Samos, Greece (2009)

3. Cedersjo, G.: Efficient Software Implementation of Stream Programs. PhD Dissertation,
Department of Computer Science, Lund University (2017)

4. Bossung, W., Huss, S.A., Klaus, S.: High-level embedded system specifications based on
process activation conditions. VLSI Signal Processing Systems 21(3), 277–291 (1999).

5. Cieslok, F., Teich, J.: Timing analysis of process models with uncertain behaviour. Tech. rep.,
Computer Engineering Laboratory (DATE), University of Paderborn (2000)

6. De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array architectures.
In: S.S. Bhattacharyya, E.F., Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal
Processing Systems, third edn. Springer, New York (2018). https://doi.org/10.1007/978-3-319-
91734-4_12

7. Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P.: Scheduling of conditional process graphs
for the synthesis of embedded systems. Design, Automation and Test in Europe Conference
and Exhibition pp. 132–139 (1998).

https://doi.org/10.1007/978-3-319-91734-4_12
https://doi.org/10.1007/978-3-319-91734-4_12

750 J. Bengtsson

8. Geilen, M., Basten, T.: Kahn process networks and a reactive extension. In: S.S. Bhattacharyya,
E.F., Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third
edn. Springer, New York (2018). https://doi.org/10.1007/978-3-319-91734-4_24

9. Geilen, M., Stuijk, S.: Worst-case Performance Analysis of Synchronous Dataflow Scenarios.
In: Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pp. 125–134. Scottsdale, Arizona, USA (2010).

10. Grotker, T., Schoenen, R., Meyr, H.: PCC: a modeling technique for mixed control/data flow
systems. In: Proceedings of the 1997 European conference on Design and Test, pp. 482–486.
IEEE Computer Society, Washington, DC, USA (1997)

11. Janneck, J.W.: A machine model for dataflow actors and its applications In: Signals, Systems
and Computers (ASILOMAR), Conference Record of the Forty Fifth Asilomar Conference on,
pp. 756–760, IEEE, Pacific Grove, CA, USA (2011).

12. Lee, E.A., Goe, E.E., Heine, H., Ho, W.H., Bhattacharyya, S., Bier, J.C., Guntvedt, E.:
GABRIEL: a design environment for programmable DSPs. In: Proceedings of the 26th
ACM/IEEE Design Automation Conference, pp. 141–146. ACM, New York, NY, USA (1989).

13. Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time DSP. In: Proc of the IEEE
Global Telecommunications Conference, vol. 2, pp. 1279–1283 (1989).

14. Leupers, R., Aguilar, M.A., Castrillon, J., Sheng, W.: Software compilation techniques for
heterogeneous embedded multi-core systems. In: S.S. Bhattacharyya, E.F., Deprettere, R.
Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer, New
York (2018). https://doi.org/10.1007/978-3-319-91734-4_28

15. Pankert, M., Mauss, O., Ritz, S., Meyr, H.: Dynamic data flow and control flow in high level
dsp code synthesis. In: IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 2, pp. 449–452. Adelaide, SA, Australia (1994)

16. Poplavko, P., Basten, T., Bekooij, M.J.G., Meerbergen, J.V.V., Mesman, B.: Task-level timing
models for guaranteed performance in multiprocessor networks-on-chip. In: Proceedings of the
International Conference on Compilers, Architecture, and Synthesis of Embedded Systems, pp.
63–72 (2003)

17. Smith, J.R.W., Reed, R.: Telecommunications Systems Engineering Using SDL. Elsevier
Science Inc., New York, NY, USA (1989)

18. Sriram, S., Lee, E.A.: Determining the order of processor transactions in statically scheduled
multiprocessors. VLSI Signal Processing Systems. 15(3), 207–220 (1997).

19. Thiele, L., Strehl, K., Ziegenbein, D., Ernst, R., Teich, J.: FunState – an internal design
representation for codesign. In: ICCAD ’99: Proceedings of the 1999 IEEE/ACM international
conference on Computer-aided design, pp. 558–565. IEEE Press, Piscataway, NJ, USA (1999)

20. Thiele, L., Teich, J., Naedele, M., Strehl, K., Ziegenbein, D.: SCF - state machine controlled
flow diagrams. Tech. Rep. TIK-33, Computer Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich (1998)

https://doi.org/10.1007/978-3-319-91734-4_24
https://doi.org/10.1007/978-3-319-91734-4_28

Throughput Analysis of Dataflow Graphs

Robert de Groote

Abstract Static dataflow graphs such as those presented in earlier chapters are
attractive from a performance point of view, as the rate at which data is processed
can be assessed beforehand. Assessing this performance involves analysing the
dependency structure and the timings of the different nodes. This chapter describes
different ways to approach this problem, and provides a mathematical basis from
which these approaches follow. Methods for efficiently analysing the throughput
are given, for single-rate (or homogeneous) graphs, synchronous dataflow graphs,
and cyclo-static dataflow graphs.

1 Introduction

An attractive property of the various decidable dataflow models such as synchronous
dataflow (SDF) and cyclo-static dataflow (CSDF) that are discussed in [24], is that
they can be analysed statically. That is, periodic schedules for these models can be
computed beforehand, and thus the rate at which data is processed can be assessed.
To illustrate this, consider the SDF graph modelling a voice-band modem, taken
from the seminal paper [28], and shown below in Fig. 1. Here, data is processed from
left to right: input data is filtered by the front-end (FILT) and Hilbert (HIL) filters,
processed by an adaptive equalizer (EQ), phase locked loop (PLL), and eventually
decoded (DECO) and output. For the graph, a schedule can be constructed. Although
the schedule dictates an order in which the actors fire, it does not imply timing
of these firings, because the actors do not have an associated time. By providing
an upper bound on the execution time of each actor firing (a so-called worst-case
execution time), a lower bound on the maximum firing rate of each actor can be
computed. As such, real-time guarantees with respect to timing can be given: a
guaranteed lower bound on the rate at which data is processed permits designers of

R. de Groote (�)
University of Twente, Faculty of EEMCS, Enschede, The Netherlands
e-mail: robert.degroote@utwente.nl

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_21

751

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_21&domain=pdf
mailto:robert.degroote@utwente.nl
https://doi.org/10.1007/978-3-319-91734-4_21

752 R. de Groote

FILT HIL EQ PLL DECI DECO
1 8 2 4 2 2 2 2

11

2 2

2

2

2

2
2

2

Fig. 1 An SDF graph model for a voice-band modem, taken from [28]

signal processing systems to ascertain whether the system is capable of processing
the data at a given rate. This processing rate is called throughput.

Throughput is a general term that applies to systems that produce something
in response to some input, such as communication networks. The throughput of a
system says something about the maximum rate at which outputs can be produced
(put through the system), and can be measured by providing a high load to the
system. That is, throughput is the rate at which output is produced if input is always
readily available.

For an SDF graph model of a signal processing system, the word throughput
relates to the maximum rate at which nodes in the graph can fire. Throughput of
a graph is limited by its cycles, such as the cycle connecting EQ, PLL and the
multiplication (×) actor in Fig. 1: because it takes time for a token to process through
a cycle, each cycle limits the speed at which tokens may move through the graph.
Interconnected cycles synchronise on the “slowest” cycle. Throughput analysis of
dataflow graphs thus resorts to finding a graph’s bottleneck cycles.

The key to understanding throughput analysis is rooted in self-timed sched-
ules [30]. In a self-timed schedule, every actor fires as soon as sufficient data is
available. After some time, a self-timed schedule reaches a phase in which the firing
times form a complex but periodic pattern [20, 21]. The throughput of an actor is
equal to the average rate at which an actor fires in this periodic pattern.

This chapter provides both a theoretical background on throughput analysis,
using the more general framework of max-plus algebra, and a practical guide to
how synchronous dataflow graphs may be efficiently analysed for their (maximum)
throughput. Rather than giving an in-depth overview of max-plus algebra, we limit
the treatment of this subject to its most relevant concepts required for a deeper
understanding of the different methods.

This chapter is organized into two main parts. In the first part, we introduce
throughput analysis of homogeneous SDF (HSDF) graphs. Key concepts in this first
part are maximum cycle ratio and strictly periodic schedules. Several algorithms
for analysing the throughput of an HSDF graph are available. We discuss their
principles, and briefly describe three different approaches and their properties.

The second part of the chapter focuses on the analysis of more complex graphs:
SDF and CSDF graphs. It gives two approaches for analysing the throughput of

Throughput Analysis of Dataflow Graphs 753

CSDF graphs, building on the principles that underlie the analysis of HSDF graphs.
Key concepts used in the second part are single-rate approximations, unfolding
transformations, and execution state.

2 Terminology

The analysis of throughput is concerned with temporal aspects of dataflow graphs.
That is, for throughput analysis we abstract from the functional semantics (e.g.
the values of data tokens and the computations performed by actors) of dataflow
graphs, and restrict our attention to those properties that impact the times at which
firings take place. The view that we adopt in this chapter regards dataflow graphs
as (mathematical) structures where constraints are imposed on the timing of certain
events. This requires some terminology, which we introduce in this section. For the
sake of consistency, we adopt the terms and notation introduced in earlier chapters,
and avoid different interpretations of primary concepts as much as possible.

2.1 Synchronous and Cyclo-Static Dataflow Graphs

In the taxonomy of HSDF, SDF and CSDF, the latter is the most general. We
therefore choose to provide the widest terminology, i.e. for CSDF, such that it
applies to each of three classes.

A CSDF graph is a directed graph, where the edges are referred to as channels,
and nodes as actors [6, 28]. Actors represent functional units that perform computa-
tions, by consuming data from incoming channels and producing data onto outgoing
channels. These computations take time: each actor v has a periodic execution time
sequence, denoted τv , where τv(k) denotes the time associated with the k-th firing.

Each channel vw has an integer number of tokens, denoted δvw. Furthermore,
with each channel are associated two periodic sequences: a production rate
sequence, denoted ρ+vw, which specifies the number of tokens produced onto vw

by consecutive firings of v. Similarly, the consumption rate sequence, denoted ρ−vw,
specifies the number of tokens consumed from vw by firings of w. We denote with
ρ+vw(k) and ρ−vw(m) the number of tokens respectively produced onto vw by the k-
th firing of v, and consumed from vw by the m-th firing of w. Also, we denote the
number of tokens produced onto wv (consumed from uv) in a single period of actor
v by σ+vw (σ−uv).

An actor v can fire as soon as sufficiently many tokens are present on each of
its incoming channels, as specified by their consumption rates. An actor that can
fire is said to be enabled. The period of an actor is determined by the periods
of the (periodic) sequences associated with that actor, through production and
consumption rate sequences bound to incoming and outgoing channels, and by the

754 R. de Groote

actor’s execution time sequence. We write ϕv to denote the period of an actor v. An
actor with a period of n is said to have n phases.

An SDF graph is a CSDF graph where each sequence has a period of one.
For an SDF graph, we therefore omit the parameter of τ, ρ+ and ρ−. Finally, a
homogeneous SDF (HSDF) graph is an SDF graph in which each channel has a
production and consumption rate of one.

2.1.1 Auto-Concurrency and Ordering of Firings

If sufficient tokens are available, a CSDF actor can start multiple firings simul-
taneously (note that the consumption (and production) of tokens from a channel
is instantaneous). This is called auto-concurrency [21]. If each firing takes the
same amount of time, as is the case for SDF graphs, then firings that have started
simultaneously also complete simultaneously. Self-loops (i.e. cycles consisting
of a single channel) are commonly used to explicitly limit the degree of auto-
concurrency.

For CSDF actors, execution times vary cyclically, and thus a firing that has started
later may be ready to produce its output tokens before earlier firings have completed.
From a functional perspective, this means that the relationship between input and
output values communicated over connected channels depends on the timing of
the actors connecting the channels. This would break what is called functional
determinacy [29]: if we regard the CSDF actors as mapping a stream of input values
to a stream of output values, then this mapping should be independent of timing.

To ensure functional determinacy, several solutions are possible. The original
semantics of CSDF, as presented in [6, 18], implicitly assumes that each actor has
a self-loop, i.e. a channel with rates set to one and a single token. Such a self-loop
prevents the actor to start multiple concurrent executions. This implicit assumption,
however, unnecessarily limits the expressiveness of CSDF graphs. It breaks the
taxonomy that is implied by the generalisation of production and consumption rate
scalars to sequences, as offered by CSDF: any SDF graph that has auto-concurrent
actors is, under the original definition of [6], not a CSDF graph.

Another solution is to relax the original CSDF restriction, by assuming an
implicit self-loop only for those actors that have differing execution times [35, 42],
which restores the taxonomy. In this chapter, we allow auto-concurrent actors to
be included in a CSDF graph, regardless of their execution time sequences, and
enforce functionally determinate execution by including dedicated constraints on the
times at which actors may complete their firings, following [15]. These constraints
essentially ensure that a firing delays the production of its output tokens until all
firings that have started earlier have produced their output tokens (no such delay is
necessary for SDF actors as all firings take the same amount of time).

Throughput Analysis of Dataflow Graphs 755

2.1.2 Structural Invariants

The repetition vector of a CSDF graph (see [24]) is an example of a structural
invariant. It is a vector that depends solely on the structure (topology and produc-
tion/consumption rates) of the graph, not on the number of tokens in the graph.
The repetition vector, which we shall, for the sake of consistency, denote q , is
the smallest non-zero integer vector such that the following balance equations are
satisfied [6, 24, 28]:

qv
σ+vw
ϕv

= qw
σ−vw
ϕw

,

with the restriction that the repetition vector entry qv of each actor is an integer
multiple of its period ϕv [6]. A CSDF graph that admits a repetition vector is said to
be consistent.

Vector q gives rise to the notion of a graph iteration: in a single graph iteration,
actor v fires precisely qv times. Note that for CSDF graph, the repetition vector
entries are not necessarily relatively prime (for SDF graphs, they are).

As a dual to the repetition vector, a consistent CSDF graph has a second structural
invariant, which is associated with channels rather than actors [16, 40]. This is the
minimal integer vector s, with an entry for each channel, such that the following
flow conservation equations hold for each pair of incoming and outgoing channels,
uv and vw, of an actor v:

suv
σ−uv
ϕv

= svw
σ+vw
ϕv

,

Vector s is sometimes named a P-flow [11, 40]. We refer to vector s as the graph’s
normalization vector, following the naming used in [5, 16].

The normalization vector associates every channel vw in the graph with a weight
svw, such that, when multiplying the production and consumption rate of that
channel, as well as its number of initial tokens, by svw, all the (production and
consumption) rates associated with a single actor are invariant of the channel. As
a consequence, the number of tokens on a cycle, weighted by the normalization
vector, is invariant of the number of firings that each actor has completed [31, 40].

From the repetition and normalization vector, a third structural invariant can be
derived [11, 16]. If we multiply the production and consumption rate of each channel
by the associated entry in the normalization vector, then in a single graph iteration,
the number of tokens produced onto (and consumed from) each channel is the
same. This follows from the fact that through the normalization, firings effectively
leave the number of tokens that reside on a cycle unchanged, plus the fact that in a
single iteration, the number of tokens produced onto a channel equals the number
of tokens consumed from it. We refer to this channel-invariant number of tokens as
the modulus of the graph, denoted N. In Sect. 4 we shall see how the modulus and

756 R. de Groote

v w

〈2, 0〉
2

〈2, 1〉

〈1, 2〉 〈1, 1〉
〈1, 1〉

1
〈1, 1〉

τv = 〈2, 3〉 τw = 〈2, 2〉

Fig. 2 An example of a consistent CSDF graph

normalization vector are used to compute strictly periodic schedules for SDF and
CSDF graphs.

To illustrate the different structural invariants, consider the CSDF graph depicted
in Fig. 2. Each of the two actors in the graph has a period of two: ϕv = ϕw = 2. The
graph is consistent; its repetition vector is given by qv = 4 and qw = 6. In a single
graph iteration, actor v completes two, and actor w three of its periods. This means
that in a single iteration, v produces a total of six tokens onto channel vw, and four
onto the self-loop vv. Furthermore, actor w consumes six tokens from channel vw,
and produces six tokens onto wv. The smallest integer vector s that satisfies the flow
conservation equations is given by svv = 3 and svw = swv = 2. If we apply these
weights to their associated channels, then in a single iteration, on each channel 12
tokens are transferred from producer to consumer. As a result, the modulus of the
graph is 12.

2.1.3 Self-timed Execution and Throughput

In a dataflow graph, execution is data-driven: an actor may fire as soon as it is
enabled. In a self-timed execution of the graph, each actor fires as soon as it is
enabled.

In a consistent SDF graph, a self-timed execution eventually settles in a repetitive
pattern, called its periodic phase [20]. In the periodic phase (of a self-timed
execution), each actor fires at a constant average rate. The ratio between the
(constant) rates at which two different actors fire is given by their repetition vector
entries.

The throughput of a consistent CSDF graph is equal to the average number of
graph iterations completed per time unit, in a self-timed execution. Formally, if
we let tv(k) denote the time at which an actor v completes its k-th firing, then the
throughput T h of the graph satisfies:

T h = lim
k→∞

qvk

tv(k)
.

In general, the self-timed execution of an arbitrary dataflow graph does not
immediately enter the periodic phase [20]. The phase that precedes the periodic

Throughput Analysis of Dataflow Graphs 757

phase is referred to as the transient phase [20, 25]. The transient phase may be very
long; only very pessimistic bounds for the length of the transient phase exist [25].

Apart from reaching a periodic phase, there are two other cases to consider when
simulating a self-timed execution of an SDF graph. First of all, the graph may
deadlock: a token distribution is reached for which no actor is enabled. Second,
the number of tokens on some channel in the graph may accumulate indefinitely.
This can be due to either inconsistency, or to the fact that the graph is not strongly
connected [21].

In the remainder of the chapter, we assume that CSDF graphs are both strongly
connected and consistent. The throughput of a graph that is not strongly connected
can be obtained by taking the minimum of the throughputs of each of the graph’s
strongly connected components [21].

2.2 Max-plus Algebra

The algebraic properties of the operators max and+ resemble those of (respectively)
addition and multiplication in conventional algebra [12]. This allows techniques that
are known for (the analysis of) systems in conventional algebra to be applied to
systems in max-plus algebra. To emphasise these similarities, operations ⊗ and ⊕
are commonly defined as follows, where ⊗ has priority over⊕:

x ⊕ y =max (x, y) , (1)

x ⊗ y =x + y. (2)

The properties of these operators are similar to their counterparts, + and × in
conventional algebra: they are associative and commutative, and ⊗ distributes
over ⊕ [12, 25]. The respective max-plus counterparts of one and zero, which, in
conventional algebra, are the unit elements of multiplication and addition, are 0 and
−∞:

x ⊕−∞ = max(x,−∞) = x,

x ⊗ 0 = x + 0 = x.

Following convention, we denote−∞ by ε.
The operators max and + generalise naturally to vectors and matrices. The

element in row i and column j of matrix A is denoted aij , or, alternatively, [A]ij .
We denote the sum C of two matrices A and B by C = A⊕ B, with C defined as:

cij = aij ⊕ bij . (3)

The product of matrices A and B is defined as

758 R. de Groote

[A⊗ B]ij =
m⊕

k=1

aik ⊗ bkj , (4)

where
⊕

denotes max-plus summation, analogous to the summation symbol ! in
conventional algebra.

Finally, the k-th power of a square matrix A is denoted A⊗k , and is recursively
defined for k ∈ N by:

A⊗0 = E(n) (5)

A⊗k = A⊗ A⊗k−1, (6)

where E is the zero matrix, i.e., the matrix where every element equals ε.
A relevant and well-known equation in conventional algebra is the following:

Av = λv.

As we shall see later, the notion of self-timed schedule, which is a key notion in
performance analysis, can be regarded as the max-plus counterpart of eigenvalues
and eigenvectors in conventional algebra.

3 Maximum Cycle Ratio Analysis

The throughput of a (C)SDF graph is defined as the average number of graph
iterations completed per time unit. Computation of the throughput of a CSDF
graph is analogous to computing its inverse—the average time per completed graph
iteration, iteration bound [26] or cycle time. For HSDF graphs, work on computing
this cycle time dates back to as early as 1968, where the term maximum cycle ratio
was introduced in a seminal paper by Raymond Reiter [36]. The cycle ratio of a
cycle in an HSDF graph (Reiter referred to the particular graphs as computation
graphs) is the ratio between the total execution time associated with the cycle, and
the number of tokens in the cycle. Formally:

λ(C) =
∑

vw∈C τv∑
e∈C δe

. (7)

The maximum cycle ratio is the maximum of all cycle ratios, taken over all simple
cycles in the graph. Reiter did not give an efficient algorithm to compute the
maximum cycle ratio of a graph, but several algorithms were developed later. For
an overview, see [13].

Throughput Analysis of Dataflow Graphs 759

In this section, we characterize the maximum cycle ratio both graphically and
algebraically. We limit the scope of the analysis to HSDF graphs, and return to the
analysis of SDF and CSDF graphs later.

The constraints imposed by HSDF channels on firing times can be represented
mathematically using max-plus algebra. As we shall see, the maximum cycle ratio
of the HSDF graph is equivalent to the eigenvalue of the corresponding max-
plus system. Furthermore, the eigenvector of the max-plus system corresponds
to a strictly periodic self-timed schedule of the HSDF graph. This mathematical
characterization helps identifying the differences in the various approaches to
throughput analysis, which we discuss later in Sect. 6.

3.1 Max-plus Characterization

The structure of an HSDF graph imposes an ordering on the times at which actors
can fire: the time at which an actor may start (or complete) a certain firing depends
on the times at which upstream actors complete their firings. Each channel vw in
an HSDF graph thus imposes a constraint on the firing times of w, expressed in the
firing times of v. If we let tv(k) denote the time at which an actor v starts its k-th
firing, then these constraints have the form:

tw(k) ≥ tv(k − δvw)+ τv(k − δvw). (8)

In words, this states that actor w can not start its k-th firing before actor v has
completed (at least) k − δvc firings, which occurs τv time units after v has started
the last of these firings.

An actor w has a constraint of the above form for every incoming channel. The
time that w can start its k-th firing must satisfy each of these constraints, which is
captured by taking the maximum over all right-hand-sides of (8). Using max-plus
algebra, this is expressed by:

tw(k) ≥
⊕
vw∈G

tv(k − δvw)⊗ τv(k − δvw). (9)

As such, an HSDF graph can be represented as a set of constraints, one for each
actor, formulated in max-plus algebra. If we assume that actors fire as soon as they
are enabled, then the inequality in (8) is replaced by an equality sign. Using matrices
and vectors for the sake of a compact notation, the set of constraints of an HSDF
graph can be expressed as the following system of recurrences:

t (k) =
⊕
m∈Z

Am ⊗ t (k −m). (10)

760 R. de Groote

Fig. 3 An example HSDF
graph

a,1

b,3

c,5

d,9

Here t (k) is a vector of the k-th actor firing (start) times, with an entry for each
actor in the graph. Matrices Am can be regarded as distance matrices restricted to
those edges that have precisely m tokens: entry (j, i) in matrix Am corresponds to
the presence of an edge ij having m tokens. Matrices Am are square matrices, with
number of rows and columns equal to the number of actors in the HSDF graph. Note
that the above definition allows for channels to have a negative number of tokens.

As an example, consider the HSDF graph shown in Fig. 3. There are four actors
in the graph, so the corresponding max-plus system consists of four recurrent
equations:

ta(k) = ta(k − 1)⊗ 1⊕ tb(k)⊗ 3⊕ tc(k − 1)⊗ 5,

tb(k) = ta(k − 1)⊗ 1,

tc(k) = ta(k − 1)⊗ 1⊕ tb(k − 1)⊗ 3⊕ td(k − 1)⊗ 9,

td(k) = tb(k − 1)⊗ 3.

(11)

For a non-deadlocked HSDF graph, the max-plus system can be written as a so-
called first-order recurrence relation [12, 25]. In a first-order recurrence relation, the
dependencies between consecutive firings is captured in a single matrix. This means
that the k-th firing times can be computed from the (k − 1)-th firing times through
a max-plus algebraic matrix multiplication. System (11), for example, can be
written as:

t (k) =

⎡
⎢⎢⎣

4 ε 5 ε

1 ε ε ε

1 3 ε 9
ε 3 ε ε

⎤
⎥⎥⎦⊗ t (k − 1) (12)

The max-plus system (11) thus gives the times at which the k-th firing of each
HSDF actor takes place, given the previous few actor firing times, and firing each
actor as soon as it is enabled. By iteratively evaluating the recurrence (11), or
applying (12), starting with an arbitrary vector t (1) (we choose to let the first
firing be labelled one, not zero), we can thus simulate a self-timed execution. If, for
example, we choose to let the first firings of the three actors take place at ta(1) = 0,
and tb(1) = tc(1) = 1 and td(1) = 2, then the self-timed schedule is:

Throughput Analysis of Dataflow Graphs 761

t (1)=

⎡
⎢⎢⎢⎢⎢⎣

0

1

1

2

⎤
⎥⎥⎥⎥⎥⎦

t (2)=

⎡
⎢⎢⎢⎢⎢⎣

6

1

11

4

⎤
⎥⎥⎥⎥⎥⎦

t (3)=

⎡
⎢⎢⎢⎢⎢⎣

16

7

13

4

⎤
⎥⎥⎥⎥⎥⎦

t (4)=

⎡
⎢⎢⎢⎢⎢⎣

20

17

17

10

⎤
⎥⎥⎥⎥⎥⎦

t (5)=

⎡
⎢⎢⎢⎢⎢⎣

24

21

21

20

⎤
⎥⎥⎥⎥⎥⎦

t (6)=

⎡
⎢⎢⎢⎢⎢⎣

28

25

29

24

⎤
⎥⎥⎥⎥⎥⎦

t (7)=

⎡
⎢⎢⎢⎢⎢⎣

34

29

33

28

⎤
⎥⎥⎥⎥⎥⎦

The process of repeatedly compute the next firing times from the previous
firing times is the algebraic analogue of a self-timed execution [12, 21, 25].
After a finite number of firings, any self-timed execution will enter a periodic
phase [12, 21, 25]. In the periodic phase, each actor fires in an N-periodic pattern,
i.e., t (k) = t (k − N) ⊗ c for some N ∈ N and c ∈ R. Since the throughput
of an HSDF graph is defined as the (average) number of firings in the periodic
phase of a self-timed execution, the periodic phase thus implicitly gives the graph’s
throughput.

Every strongly connected HSDF graph admits a strictly periodic schedule [25,
32]. That is, a schedule for which the time between two consecutive firings of an
actor is constant. Given the analogy between matrix-vector multiplication in max-
plus algebra on the one hand, and performing a self-timed execution of an HSDF
graph on the other hand, the problem of finding a strictly periodic schedule can thus
be formulated as the problem of finding an eigenvalue λ and eigenvector v:

A⊗ v = λ⊗ v.

The eigenvalue λ of matrix A is equal to the maximum cycle ratio of the
corresponding HSDF graph [25]. The eigenvector, v, corresponds to the (initial)
firing times from which actors immediately enter a strictly periodic schedule.
Various algorithms for computing λ are available, of which the following section
presents three.

3.2 Computing the Maximum Cycle Ratio

There are various methods for computing the maximum cycle ratio. An excellent
overview and comparison is given in [13]. In this section, we describe three methods
that often appear in literature.

3.2.1 The Power Method

The power method is a general method for computing the eigenvalue and eigen-
vector of a matrix. It consists of iteratively computing and normalizing vector
vk+1 = Avk , until vk+1 converges to an eigenvector of A. The method generalizes
naturally to max-plus algebra, and as such can be used to compute the maximum
cycle ratio of an HSDF graph [25].

762 R. de Groote

In fact, the method was demonstrated in the evolution of the self-timed schedule
for the example graph of Fig. 3. We repeatedly compute vectors t (1), t (2), . . . using
the recurrence (10), until we have:

t (k + c) = A⊗c ⊗ t (k) = t (k)⊗ d.

The eigenvalue is then given by λ = d
c

[12, 25]. Applying this to the example
HSDF graph, continuing the vector sequence following from the initial vector t =
[0, 1, 1, 2]T that we explored earlier, we obtain the sequence:

t (4)=

⎡
⎢⎢⎢⎢⎢⎣

20

17

17

10

⎤
⎥⎥⎥⎥⎥⎦

t (5)=

⎡
⎢⎢⎢⎢⎢⎣

24

21

21

20

⎤
⎥⎥⎥⎥⎥⎦

t (6)=

⎡
⎢⎢⎢⎢⎢⎣

28

25

29

24

⎤
⎥⎥⎥⎥⎥⎦

t (7)=

⎡
⎢⎢⎢⎢⎢⎣

34

29

33

28

⎤
⎥⎥⎥⎥⎥⎦

t (8)=

⎡
⎢⎢⎢⎢⎢⎣

38

35

37

32

⎤
⎥⎥⎥⎥⎥⎦

t (9)=

⎡
⎢⎢⎢⎢⎢⎣

42

39

41

38

⎤
⎥⎥⎥⎥⎥⎦

t (10)=

⎡
⎢⎢⎢⎢⎢⎣

46

43

47

42

⎤
⎥⎥⎥⎥⎥⎦

The ninth firings take place 18 time units after the fifth firings, and the tenth
firings take place 18 time units after the sixth firings. This means that we have found
a 4-periodic solution:

A⊗4 ⊗ t (5) = 18⊗ t (5).

The eigenvalue is thus equal to 18/4 = 41/2, which is equal to the maximum cycle
ratio of the graph of Fig. 3, attained by cycle abdca. The period that we have found
by exploring the self-timed schedule is not strictly periodic: the times between two
consecutive firings of the same actor varies between four and six time units. An
eigenvector can be obtained from the periodic phase by taking the max-plus sum of
the time-shifted vectors that make up the periodic phase [25]:

v =
c−1⊕
j=0

λ⊗j ⊗ t (k + c − j + 1). (13)

To obtain a strictly periodic schedule for the HSDF graph of Fig. 3, we thus compute
the max-plus sum of the terms t (8), t (7)⊗ λ, t (6)⊗ λ⊗2, and t (5)⊗ λ⊗3:

v =

⎡
⎢⎢⎣

37 1
2

34 1
2

34 1
2

33 1
2

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣

37

34

38

33

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣

38 1
2

33 1
2

37 1
2

32 1
2

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣

38

35

37

32

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

38 1
2

35

38

33 1
2

⎤
⎥⎥⎦ .

Since any scalar multiple of an eigenvector is again an eigenvector, adding (or
subtracting) a constant from each of the eigenvector’s entries (both of which is
a multiplication in max-plus algebra) yields another eigenvector. In other words,
we can subtract 331/2 from each entry of the above eigenvector v, and obtain a

Throughput Analysis of Dataflow Graphs 763

schedule in which all actors start their firings at a non-negative time instant. This
final eigenvector is given by va = 5, vb = 11/2, vc = 41/2, and vd = 0.

3.2.2 Policy Iteration

The policy iteration method, also known as Howard’s method for computing the
maximum cycle ratio of a marked graph is described in [10]. A more accessible
version can be found in [25]. A policy corresponds to a strictly periodic schedule.
That is, a schedule in which the k-th firing time of an actor v is given by tv(k) =
tv(1)+ (k − 1)λ.

A policy thus assigns to every actor an initial firing time, and schedules the actors
to fire in a strictly periodic fashion, every λ time units. Parameter λ is chosen to be
the cycle ratio of an arbitrary cycle. This means that λ may be too optimistic: it
is based on a local throughput, of a single cycle, but this throughput may not be
admissible for the whole graph. If the schedule is not admissible, then there will be
a violation of the constraints associated with the channels. If no such violation is
detected, then the schedule is admissible and the maximum cycle ratio is given by
the parameter λ [10, 25].

Policy iteration thus iteratively selects a cycle, and uses the cycle ratio of that
cycle as its next guess for the firing period. Violation of constraints can be detected
by solving a single-source longest paths problem using for instance the Bellman-
Ford algorithm [3]. If the firing period is infeasible, then the graph has a cycle with
positive weight, the cycle ratio of which is used as the next guess for the firing
period. As such, the algorithm is guaranteed to find the cycle that attains maximum
cycle ratio. It may, however, examine many simple cycles before it terminates; the
number of simple cycles in a graph is, in the worst-case, exponential in the size of
the graph.

An application of Howard’s policy iteration algorithm to the example graph of
Fig. 3 is shown in Fig. 4a, b. In these graphs, the weights associated with each edge
is the minimum time that must separate the start times of the source and sink of
that edge. Note that for edges with tokens, these weights change if the parameter λ
changes.

If we initially choose cycle aca as a first guess of the critical cycle, then we find
a schedule in which actors must fire every 6/2 = 3 time units. This means that, for
instance, actor b starts its k-th firing 2 time units before actor a has started its k-th
firing, and that actor c and d start their k-th firings simultaneously, which violates
the constraint tc(k) ≥ td(k − 1)+ 9. The schedule is thus found to be inadmissible,
and we next substitute channel dc for ac to find a policy based on cycle abdca,
shown in Fig. 4b.

The schedule based on cycle abdca is admissible, and thus this cycle attains
maximum cycle ratio, which is 18/4. Note that the initial firing times found (indicated
in the figure) are identical to those found in the previous section by the power
algorithm.

764 R. de Groote

a,1

b,3

c,5

d,9

3-2

0

-2

0

2

6

-17

ta = 2

tb = 0

tc = 0

td = 0

a,1

b,3

c,5

d,9

3-31⁄2
-11⁄2

-31⁄2

-11⁄2

1⁄2

41⁄2

-31⁄2

ta = 1/2

tb = −3

tc = 0

td = −41/2
a b

Fig. 4 (a) Infeasible policy based on cycle aca with λ = 3. (b) Feasible policy based on cycle
abdca with λ = 41/2

3.2.3 Parametric Paths

A third approach to computing the maximum cycle ratio is similar to the policy
iteration discussed earlier, in the sense that it too regards the problem as finding a
feasible strictly periodic schedule. Of the three methods discussed in this section,
this method is the only one that is strongly polynomial. That is, the number of steps
necessary to compute the maximum cycle ratio is bounded by a polynomial in the
size (number of nodes and edges) of the graph.

Similar to the policy iteration approach, the approach uses a weighted graph to
represent the scheduling constraints. An edge e in the graph now has an associated
weight function, ye, which maps cycle time parameter λ to a weight: ye(λ) = we −
δeλ. The (global) parameter λ is admissible if longest paths are well-defined, i.e.,
if the graph has no cycle of positive weight. If every cycle has a positive non-zero
number of tokens, then an admissible parameter is bound to exist: one can choose λ

such that every weight function maps to a non-positive value.
The key difference with the policy iteration approach lies in the update of

the parameter λ. In contrast with policy iteration, where the subsequently used
value for the parameter is based on an arbitrary positive cycle in the graph, this
approach employs a parametric longest paths tree to bound the maximum number
of parameter changes.

Once an admissible value for λ is found, the algorithm proceeds to iteratively
decrease λ, changing the parametric weights of all edges. At each step, the algorithm
applies the smallest decrease of λ, and updates the longest parametric paths tree.

An illustration of this approach to finding the maximum cycle ratio of the graph
of Fig. 3 is shown in Fig. 5a–c. A feasible initial value for the parameter λ can be
obtained by taking the sum of the execution times of all actors in the graph, which
is 18. Any cycle (with at least one token) will have a cycle ratio that is at most this
initial value. Choosing λ = 18 results in the longest paths tree, rooted in actor a,
shown in Fig. 5a.

Throughput Analysis of Dataflow Graphs 765

a,1

b,3

c,5

d,9

3-17

-15

-17

-15

-13

-9

-17

ta = 0

tb = −17

tc = −17

td = −32

a,1

b,3

c,5

d,9

3-8

-6

-8

-6

-4

0

-8

ta = 0

tb = −8

tc = −14

td = −14

a,1

b,3

c,5

d,9

3-31⁄2
-11⁄2

-31⁄2

-11⁄2

1⁄2

41⁄2

-31⁄2

ta = 0

tb = −31/2

tc = −1/2

td = −5

a b

c

Fig. 5 (a) Longest paths tree, with indicated edge weights, rooted in a for λ = 18. (b) Longest
paths tree for λ = 9. (c) Longest paths tree for λ = 41/2

The longest paths tree does not change for λ > 9. For λ < 9, path bdc is longer
than path bc, so the tree is updated into the one shown in Fig. 5b. Decreasing λ

further will require a next change in the longest paths tree at λ = 41/2, at which
point a longer distance to actor a is found, through path abdca. Since this path is a
cycle, its cycle ratio is the maximum cycle ratio of the graph, equal to 41/2. Similar
to the policy iteration approach, the longest distances indicated in the figure denote
the initial firing times of a strictly periodic schedule.

There are different ways to implement this approach. An efficient implementation
maintains the different values of λ for which the parametric paths tree changes
locally, and updates these values as the parameter changes. These so-called keys
can be kept either for every edge or for every node. The algorithm of Karp and Orlin
maintains edge keys and uses a binary heap to keep the keys ordered, resulting
in an algorithm with a worst-case complexity of O(nm log(n)) [27], on a graph
with n nodes and m edges. In the approach described by Young, Tarjan and Orlin
in [43], node keys are maintained in a Fibonacci heap, yielding a complexity of
O(nm + n2 log(n)) [43]. Implementations of these two algorithms, as well as a
comparison of their performance, can be found in [13].

766 R. de Groote

3.3 Discussion

As we shall see in the following sections, more complex graphs such as SDF or
CSDF graphs add another layer of complexity to throughput analysis. For these
graphs, the fact that, for channels or actors, the rate at which tokens are produced
differs from the rate at which they are consumed, implies that a strictly periodic
schedule is not necessarily optimal [9]. Consequently, for these graphs the runtime
of throughput analysis is not polynomially bounded in the size of the graph.
However, the methods described in this section can be generalised to serve as a
basis for these more complex graphs. In order to do so, several transformations
can be applied to cyclo-static graphs to simplify their analysis. The next section
describes these transformations in more detail.

4 Single-Rate Approximations

In the previous section we saw how an HSDF graph can be analysed for its
throughput, by computing the graph’s maximum cycle ratio. For more complex
graphs such as SDF and CSDF, this analysis can not be applied right away. This is
due to the fact that the constraints associated with channels in an HSDF graph do not
translate to equally simple constraints for channels in an SDF or CSDF graph. In this
section, we generalize the approach that we took in the previous section to SDF and
CSDF graphs. That is, we again characterize the constraints imposed by channels
on actor firing times in max-plus algebra. As we shall see, unlike HSDF channels,
the constraints imposed by SDF channels on the k-th firing of an actor depends on
k. It is however possible to perform series of approximations and transformation on
these constraints, such that they again become independent on k. We describe two of
these procedures, which effectively transform the CSDF graph into an HSDF graph.
We refer to the obtained HSDF graph as single-rate approximations.

The transformations that we describe in this section is are approximations, which
means that schedules that satisfy the constraints of the CSDF graph may not be
valid for a single-rate approximation (and vice versa). An analysis of the pessimistic
single-rate approximation yields a strictly periodic schedule that is guaranteed to be
admissible for the approximated CSDF graph.

4.1 Characterization of CSDF Constraints

Each channel in a CSDF graph constrains the times at which the channel’s consumer
can fire, through the rate sequences and tokens associated with the channel. This
constraint can be expressed as a relation between the number of producing and
consuming firings, similar to the constraints that we derived for HSDF channels in

Throughput Analysis of Dataflow Graphs 767

the previous section. Each producing and consuming firing changes the number of
tokens on the channel. This can be expressed by letting �vw(i, j) denote the number
of tokens on vw after i producing and j consuming firings, as follows, where we
allow the number of firings of an actor to be negative, for the sake of abstraction:

�vw(i, j) = δvw −
0∑

l=i+1

ρ+vw(l)+
i∑

l=1

ρ+vw(l)+
0∑

l=j+1

ρ−vw(l)−
j∑

l=1

ρ−vw(l). (14)

Here, we regard a negative number of firings as having an opposite effect with
regard to token production or consumption. That is, a negative number of producing
firings causes tokens to be “consumed” from (rather than produced onto) outgoing
channels, and “produced” onto incoming channels.

We can now express the relation between producing and consuming firings in
terms of the number of tokens that are on the channel. An actor can not start its
next firing if there are insufficient tokens available on its incoming channels. Stated
differently, an actor can complete its next firing if, after that firing, a non-negative
number of tokens is left on each incoming channel. This is expressed formally as
the following minimum1:

πvw(k) = min {m ∈ Z|�vw(m, k) ≥ 0} , (15)

where πvw(k) gives the number of producing firings of actor v that must precede k

consuming firings of actor w. We refer to function πvw as the predecessor function
associated with channel vw. Note that the predecessor function can equally be
written as a maximum [16].

The predecessor function implicitly defines which schedules are feasible for a
CSDF graph. If we let tw(k) denote the time at which actor w starts its k-th firing,
then an admissible schedule must satisfy the following constraints for each channel
vw in the graph:

tw(k) ≥ tv (πvw(k))+ τv (πvw(k)) . (16)

An obvious property of π is that it is non-decreasing, i.e. if k ≥ m, then πvw(k) ≥
πvw(m). This is a result of the fact that firing an actor never results in the removal
of tokens from its outgoing channels. Also, the average slope of πvw follows from
the fact that every qv producing firings must be matched by qw consuming firings.
Hence, the slope of πvw is equal to qv

qw
.

The predecessor function can attain negative values: if there are many initial
tokens on a channel, then it may be the case that producing firings can be “reversed”
without disabling the first consuming firing. For example, consider the predecessor
function depicted in Fig. 6b, associated with the CSDF channel ab of Fig. 6a. If there

1The notation min{k ∈ S|P (k)} denotes the minimum value of the set S that satisfy the predicate P .

768 R. de Groote

a

b

〈2, 0, 1〉

d

〈3, 1〉

1 2 3 4 5 6 7 8 9
-2

0

2

4

6

8

10

12

14

16

k

πab(k)

d = 3
d = 5

a

b

Fig. 6 (a) Channel. (b) Function

are three tokens initially present on channel ab, then no producing firings are needed
to start the first firing of actor b. We thus have (for d = 3) πab(1) = 0. In case there
are five initial tokens, then two firings (corresponding to the second and third phase)
of a can be undone, reducing the number of tokens on ab, by one, from five to four.
These four tokens are still sufficient to start the first two firings of a. Hence, for
d = 5, πab(1) = −2.

4.2 Transforming the CSDF Constraints

The predecessor function πvw(k) gives the minimum number of producing firings of
v that enable the k-th consuming firing of w. One may safely replace πvw(k) in (16)
with an upper bound π̂vw(k) for which π̂vw(k) ≥ πvw(k) for all k. Such an upper
bound is a safe in that it may overestimate but never underestimate the number of
producing firings necessary to enable a given firing. By choosing π̂vw(k) to have
the form π̂vw(k) = k − c, which is precisely the predecessor function of an HSDF
channel with c tokens, each CSDF channel can be replaced by an HSDF channel,
transforming the CSDF graph into an approximating HSDF graph.

The key problem with the above approach is that the slopes of πvw(k) and the
desired upper bound π̂vw(k) are different, which means that π̂vw(k) = k− c can not
be an upper bound of πvw(k). In this section, we shall see how one can overcome
this problem through a sequence of scaling steps and obtain an approximating HSDF
graph, the admissible schedules of which map to admissible schedules for the CSDF
graph.

Throughput Analysis of Dataflow Graphs 769

a b
〈1, 2〉 〈1, 1〉

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

k

γab(k) = 2
3k + 2

3

γab(k) = 2
3ka

b

Fig. 7 (a) Example CSDF channel. (b) Linear bounds on the predecessor function of (a)

A tight upper linear bound γ̂vw on the predecessor function πvw is constructed
by choosing an appropriate slope and intercept. The slope must be equal to the
(average) slope of πvw, and the intercept of γ̂vw must be such that the minimum
error between the predecessor function and γ̂vw is zero. This is achieved by the
following upper linear bound γ̂:

γ̂vw(k) = qv

qw
k −min

m∈Z

{
qv

qw
m− πvw(m)

}
. (17)

Note that analogously, a lower linear bound γ̌vw is obtained by replacing the min
operator by max. A predecessor function and its linear bounds is shown in Fig. 7.

4.2.1 Changing Counting Units

The linear bound of (17) does not have the desired form π̂vw(k) = k − c. We
obtain this form by an appropriate scaling of both the domain and co-domain2 of γ̂.
Downscaling the domain of γ̂vw by a factor of qw, and the co-domain by a factor
qv , gives

1

qv
γ̂vw (kqw) = k −min

m∈Z

{
m

qw
− πvw(m)

qv

}
. (18)

2Scaling the domain of a function f (k) by a factor s gives the function g(k) = f
(
k
s

)
. Scaling the

co-domain of f (k) by s gives the function h(k) = sf (k).

770 R. de Groote

These two transformed functions are translations, but not integer: they map an
integer to a rational, as the intercept (the term min{. . .}) is not integer. As such, they
can not be translated to HSDF predecessor functions, as this implies a non-integral
number of tokens. Since qv and qw both divide the modulus N of the graph, scaling
the intercept by N results in the desired upper bound:

π̂vw(k) = N
qv

γ̂vw

(
k
qw

N
)
= k −Nmin

m∈Z

{
m

qw
− πvw(m)

qv

}
. (19)

Every CSDF channel can now be transformed into an approximating HSDF
channel, by using the fact that predecessor function π̂vw(k) = k − c corresponds to
an HSDF channel with δvw = c. Combined with a straightforward approximation
of a CSDF actor v by an HSDF actor that has as execution time the maximum of the
execution time sequence of v, a CSDF graph can thus be approximated by an HSDF
graph.

Analogous to the derivation of a conservative (or pessimistic) approximation of
a CSDF graph, one may apply the method outlined above to derive a transformed
lower linear bound on predecessor functions, resulting in an optimistic approxima-
tion. The above approximation of a CSDF graph by two HSDF graphs is formalized
in Algorithm 1. Through appropriate application of modular arithmetic, the intercept
of the HSDF predecessor function γ̂vw in (19) can be computed in time proportional
to the product of ϕv and ϕw (see lines 11 and 12 in Algorithm 1).

Algorithm 1 Transforms a CSDF graph into optimistic and pessimistic single-rate
approximations

input : A consistent CSDF graph G, with flow normalisation vector s.
output: An optimistic and pessimistic single-rate approximation of G.

1 Hopt ←− emptygraph
2 Hpess ←− emptygraph
3 foreach actor v in G do
4 Add actor v̂ to Hpess
5 Add actor v̌ to Hopt

6 τv̂ ←− maxϕv
i=1 τv(i)

7 τv̌ ←− minϕv
i=1 τv(i)

8 foreach channel vw in G do
9 Add HSDF channel v̂ŵ to Hpess

10 Add HSDF channel v̌w̌ to Hopt
11 gvw ← gcd(σ+vw, σ−vw)
12 δv̂ŵ ←− svw min i<ϕv

j<ϕw

{
gvw

⌈
�vw(i,j)+1

gvw

⌉
− (i+1)σ+vw

ϕv
+ jσ−vw

ϕw

}

13 δv̌w̌ ←− svw max i<ϕv
j<ϕw

{
gvw

⌊
�vw(i,j)

gvw

⌋
− iσ+vw

ϕv
+ jσ−vw

ϕw

}

14 return Hopt,Hpess

Throughput Analysis of Dataflow Graphs 771

a b c

〈1, 2〉 〈1, 1〉

〈2, 0〉2
〈2, 1〉

〈1, 2〉 〈2, 1〉

〈2, 1〉3
〈1, 2〉

〈1, 1〉

1

〈1, 1〉

Ta = 〈2, 3〉 Tb = 〈2, 2〉 Tc = 〈3, 4〉

a,2 b̌,2 c,3

18 12

9 a,3 ˆˆ b,2 c,4

-6

9

-6

12

9ˇ ˇ

a

b c

ˆ

Fig. 8 (a) Example CSDF graph. (b) Optimistic single-rate approximation of the CSDF graph of
(a), using Algorithm 1. (c) Pessimistic single-rate approximation of the CSDF graph of (a), using
Algorithm 1

As an example, Fig. 8b, c show the two HSDF graphs obtained by applying
Algorithm 1 to the CSDF graph of Fig. 8a. A consequence of the (pessimistic)
approximation is that the number of tokens placed on an HSDF channel may be
negative. This indicates that a producer must first complete several firings before the
first firing of the corresponding consumer is enabled. For example, actor â in Fig. 8c
must fire seven times in order to enable the first firing of actor b̂. The following
section provides more details on the precise relation between firings in the CSDF
graph and its approximations.

4.3 Computing Strictly Periodic Schedules

The scaling that we performed above, using the modulus as scaling factor, is
analogous to multiplying the number of tokens, on each channel in an HSDF graph,
with the same factor. This means that the cycle ratio of each cycle (and thus the
maximum cycle ratio of the graph) is scaled down by a factor of N. As we shall see
below, the throughput computed from an HSDF graph that is constructed from the
transformed predecessor functions must be scaled by N, to obtain a bound on the
throughput of the original CSDF graph.

The single-rate approximations of a CSDF graph are HSDF graphs, and, as such,
have a strictly periodic schedule that is optimal. These HSDF schedules are related
to admissible CSDF schedules, in the sense that every schedule that is admissible
for the pessimistic approximation can be translated to one that is admissible for the
CSDF graph. Likewise, every schedule that is admissible for the CSDF graph can be
translated to one that is admissible for the optimistic approximation. This translation
is essentially a periodic sampling of actor firings, with a different sampling period
for each actor.

772 R. de Groote

In this section, we describe this translation, from a schedule that is admissible
for the pessimistic approximation, to one that is admissible for the CSDF graph.
For this, we need a correspondence between the firings of actors in the CSDF
graph and its single-rate approximations. This correspondence follows from the
construction of the single-rate approximations. Recall that two scaling steps were
performed in order to change the linear bounds on the predecessor function to the
integer functions of (19). The first scaling step essentially changed the counting
units from individual firings to completed iterations, and the second step changed
the unit at which these iterations are counted, increasing the resolution by a factor
equal to the modulus of the graph. As a result, the number of firings of an actor in
the single-rate approximation that corresponds to a single firing, of the same actor
in the approximated CSDF graph, is given by the ratio of the modulus of the graph
and the repetition vector entry of that actor. This means that if the firing times of v̂
are given by tv̂(k), then firing times sv(k) are given by the mapping:

sv(k) = tv̂

(N
qv

k

)
. (20)

In other words, the strictly periodic schedule of the (pessimistic) single-rate
approximation is mapped to a strictly periodic schedule for the CSDF graph. In
the latter, each actor fires in a strictly periodic fashion, but each actor has its own
firing period. Such a strictly periodic schedule is generally not optimal; higher firing
rates may be attained by deviating from the strictly periodic schedule. This means
that the (maximum) rate at which actors can fire in the pessimistic approximation
translates to a minimum throughput of the CSDF graph.

As an example, we shall compute a periodic schedule for the CSDF graph given
in Fig. 8a. An analysis of the pessimistic single-rate approximation of the graph
(shown in Fig. 8c) gives that its critical cycle is aba, which attains the maximum
cycle ratio of 5

3 . The schedule for the single-rate approximation follows from
assigning actor b (or c) a start time of t = 0, which leads to respective start times
of actors a and c of t = −13 and t = 12. Shifting these start times 13 time units
forward gives the following strictly periodic self-timed schedule:

ta(k) = 0+ 5

3
(k − 1) ,

tb(k) = 13+ 5

3
(k − 1) ,

tc(k) = 25+ 5

3
(k − 1) .

In order to map the above schedule from the single-rate approximation to the
CSDF graph, we must compute how many HSDF actor firings make up a single
CSDF actor firing. The modulusN of the CSDF graph is 36, and its repetition vector
is given by qa = 4, and qb = qc = 6. To construct an admissible schedule from the

Throughput Analysis of Dataflow Graphs 773

a a a ab b b b bc
c

c c

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

Fig. 9 A strictly periodic schedule for the CSDF graph of Fig. 8a, derived using maximum cycle
ratio analysis of the single-rate approximation shown in Fig. 8c

schedule of the single-rate approximation, we must thus take every ninth firing of
actor a, and every sixth firing of actors b and c. The CSDF schedule follows from
the HSDF schedule using mapping (20):

sa(k) = ta(9k) = 13
1

3
+ 15(k − 1),

sb(k) = tb(6k) = 21
1

3
+ 10(k − 1),

sc(k) = tc(6k) = 33
1

3
+ 10(k − 1).

If we again shift the start times of each of the CSDF actors, backwards in time,
such that actor a starts its first firing at t = 0, then a thus fires every 15 time units,
at t = 0, 15, 30, Actors b and c have the same firing period, which is ten, and
start their first firing at respectively t = 8 and t = 10. The resulting schedule is
depicted in Fig. 9. Note that each actor fires in a strictly periodic fashion, although
the periods differ.

4.4 Discussion

This section provides a general view of several different existing approaches that
all aim to achieve the same result. Shared by these existing approaches is their goal
to simplify the throughput analysis of SDF and CSDF graphs, at the expense of a
loss in accuracy. Here we briefly discuss different treatments of the same idea, and
highlight their similarities and/or differences.

Rather than scheduling actor firings, one can also choose to describe the times at
which individual tokens are produced onto and consumed from channels. In fact, for
HSDF graphs, strictly periodic schedules for actor firings and token consumptions
can be used interchangeably, as each actor firing corresponds to the consumption
of a single token from each of its incoming channels. By assuming strictly periodic
token productions or consumptions, as is done in [41, 42] and, more recently, [7],
we obtain similar approximations as those shown earlier in this section. The quality
of such a token-based approximation may differ from the quality of the actor-based
approximation described here. For details, we refer the interested reader to [14].

774 R. de Groote

The single-rate approximations constructed using Algorithm 1 are convenient
in the sense that they are HSDF graphs. As such, they may be analysed by
existing efficient algorithms such as those for computing maximum cycle ratio.
Alternatively, the linear bounds on the predecessor function can be used to specify
linear constraints between the firing times of actors [41, 42]. These linear constraints
can be used to formulate the problem of computing a strictly periodic self-timed
schedule as a linear program, which can be solved using a dedicated solver.

The process of transforming the predecessor function of a CSDF channel in a
predecessor function of an approximating HSDF channel, through the construction
of linear bounds and scaling, described in this section, is not the only way to obtain
single-rate approximations. Approaches that are similar but use different strategies
are described in [4, 5, 7, 8] and [9].

Finally, given the importance of periodic schedules in the analysis of hard
real-time systems, several approaches to the construction of periodic schedules
for acyclic SDF and CSDF graphs have been developed by the real-time systems
community. For more details, we refer the interested reader to [1, 2, 23, 34].

For some live graphs, no strictly periodic schedule exists. That is, for these
graphs the pessimistic single-rate approximation has one or more tokenless cycles,
or cycles with a negative number of tokens. Consequently, the approximations do
not have a finite maximum cycle ratio, and thus no strictly periodic schedule can be
constructed. Characteristic for these graphs is that they are “close to deadlock”.
In the following section, we shall see how periodic (but not necessarily strictly
periodic) schedules for these graphs can be constructed after applying an unfolding
transformation to the graph.

5 Unfolding Actor Firings

In the previous section, we have seen how strictly periodic schedules can be
computed for SDF and CSDF graphs. There are graphs, however, that are live but
do not admit a strictly periodic schedule. This is best illustrated with an example.
The SDF graph (consisting of a single cycle) depicted in Fig. 10a is live. This is
easily verified by a short self-timed execution: the six tokens on channel ab are all
consumed by actor b and again produced onto channel bc. Each actor subsequently
consumes all six tokens on its sole incoming channel, completing as many firings as
make up a single iteration in parallel. After actor d has taken its turn, a full graph
iteration is completed and thus the graph is live. Clearly, actors do not fire in a
strictly periodic fashion in this schedule, as some of their firings start in parallel.

Although the SDF graph is live, its (pessimistic) single-rate approximation given
in Fig. 10b has an undefined throughput, as the total number of tokens in the cycle
equals zero. Consequently, it is not possible to define a strictly periodic schedule
for the graph. However, if we distinguish between odd and even firings of actor b
by treating them as two groups of consecutive firings of respective actors b1 and b2,
then we can construct a schedule that is strictly periodic, as illustrated in Fig. 10c.

Throughput Analysis of Dataflow Graphs 775

a b

cd

2 6 3

3

2

23

3

2
a b

cd

5

-2

-1

-2

b b

b b

c c c

c c c

d d

d d

a a

a a a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

a b

c

Fig. 10 (a) An example live SDF graph (b) The (pessimistic) single-rate approximation of (a). (c)
Periodic schedule for the graph of (a): actors a, c and d fire strictly periodically, whereas actor b
fires according to a 2-periodic schedule

In the depicted schedule, actors a, b, c and d start their first firing respectively at
times 0, 1, 10, 15.

In this section, we show how the above example generalizes into a systematic
approach to explicitly distinguish between consecutive firings of an actor, by
unfolding these actors. This approach involves two steps, which combined transform
a dataflow graph into a larger graph: a relabelling of actors, and transformation of
channels.

5.1 Multi-Rate Equivalents

Similar to the transformation of an SDF graph into an equivalent HSDF graph,
which is often referred to as the former’s single-rate equivalent, the transformation
of a CSDF graph into an equivalent SDF graph, which is called its multi-rate
equivalent, involves the creation of a number of copies of each CSDF actor. Where
in a single-rate equivalent the number of copies is equal to the number of firings that
make up a single graph iteration, each CSDF actor is represented by as many copies
in the multi-rate equivalent as it has phases [15].

In the example above, we constructed a schedule that is strictly periodic if we
distinguish between the even and odd firings of actor b. If we consider even and odd
firings of actor b as distinct phases then the graph of Fig. 10a changes into a CSDF

776 R. de Groote

graph. The strictly periodic schedule then applies to the multi-rate equivalent of this
CSDF graph.

Each (multi-rate) actor vi in the multi-rate equivalent corresponds to phase i of
actor v in the CSDF graph. The k-th firing of multi-rate actor vi corresponds to
firing i + (k − 1)ϕv of CSDF actor v. Note that this means that the first (i.e., k = 1)
firing of vi corresponds to the i-th firing of v. The execution time, τvi , of multi-rate
actor vi , is a constant, equal to the execution time associated with the i-th phase of
v: τvi = τv(i).

The relation between a multi-rate actor vi and corresponding cyclo-static actor v
can be used to transform the predecessor function associated with CSDF channels
to the predecessor functions associated with multi-rate channels. Production and
consumption rates readily follow from this transformation: if CSDF actor v fires
qv times in a single iteration of the CSDF graph, then actor vi (i.e., the actor
representing the i-th phase of the CSDF graph) fires qv/ϕv times in a single
iteration of the multi-rate equivalent. For the balance equations to hold, this means
that the rate associated with each channel connected to vi must be equal to the
sum of a single period of the corresponding rate sequence of the CSDF channel
connected to v.

If we consider the case where only a single CSDF actor v is unfolded, then the
predecessor functions of incoming channels of v are related to those of incoming
channels of the multi-rate actors vi that represent the phases of v. For incoming
channels of vi , the predecessor function for a channel uvi is obtained simply by
transforming the domain of πuv , using the mapping between firings of cyclo-static
and multi-rate actors [15]:

πuvi (k) = πuv (i + (k − 1)ϕv) . (21)

For outgoing channels of multi-rate actors, the co-domain of the CSDF predeces-
sor function needs to be transformed, which is slightly more involved. To understand
this transformation, note that πvw(k) gives a lower bound on the number of firings
of actor v that must have completed before the k-th firing of w can start. In the
multi-rate equivalent, actor w has ϕv incoming channels viw, with each associated
predecessor function implying a (possibly different) lower bound on the number of
firings of v. The required number of firings of v that satisfies all these lower bounds
is given by their maximum, which gives the following relation between πvw and
πviw [15]:

πvw(k) = max
i

{
i + (πviw(k)− 1)ϕv

}
. (22)

If we expand both sides of the above equations using the definition of the
predecessor function given earlier as (15), then the number of tokens on each
incoming channel uvi , and outgoing channel viw can be solved for [15]:

Throughput Analysis of Dataflow Graphs 777

a b

cd

2 6 〈3, 3〉

〈3, 3〉

2

23

3

2 a

b1

b2

cd

2
9 6

2
6 6

6

2

6

3

2

23

3

2

a b

Fig. 11 (a) Graph of Fig. 10a, in which actor b has two distinct phases. (b) Multi-rate equivalent
of (b)

δuvi = δuv +
ϕv∑

j=i+1

ρ−uv(j) δviw = δvw +
i−1∑
j=1

ρ+vw(j).

Figure 11b depicts the result of applying the transformation to actor b in Fig. 10a.
One obtains the schedule depicted earlier in Fig. 10c by computing a strictly periodic
schedule, from the single-rate approximation of the multi-rate equivalent shown in
Fig. 11b.

5.2 A General Transformation

When using the procedure outlined above to unfold each (C)SDF actor as many
times as it fires in a single graph iteration (i.e., actor v is unfolded into qv copies),
then essentially an HSDF graph is obtained, as each multi-rate actor will have a
repetition vector entry of one. In fact, a true HSDF graph (i.e., all rates are one) is
obtained by a rate-normalization procedure, where the tokens and rates of a channel
vw are divided by the greatest common divisor of ρ+vw and ρ−vw [17, 31]. In this
view, the transformation of a CSDF graph into its multi-rate equivalent is a general
transformation that may be used to transform a graph into its single-rate equivalent
as a special case.

An important difference between this approach to constructing a single-rate
equivalent on the one hand, and existing approaches such as described in [28],
is the number of channels in the single-rate equivalent. The number of channels
in the multi-rate equivalent of a CSDF graph depends on the number of phases
of the CSDF actors: using the transformation outlined above, a CSDF channel
vw is represented by ϕvϕw multi-rate channels. As such, the number of HSDF
channels in a single-rate equivalent constructed in this way becomes very large,
as each CSDF channel vw is represented by qvqw HSDF channels. Several of these
channels may however be identified as redundant in terms of the constraints that
they impose [15, 38]. These redundant channels can safely be pruned from the graph,

778 R. de Groote

a b c
1 〈1,1〉 〈1,2〉 3

a1

a2

b1

b2

c1

a b

Fig. 12 (a) CSDF path. (b) Single-rate equivalent

without introducing more scheduling freedom into the graph. An example is given
in Fig. 12b: the single-rate equivalent is obtained by unfolding every actor according
to its repetition vector entry, after which each channel is transformed to an HSDF
channel by applying the rate-normalization mentioned earlier. The dashed channels
in the single-rate equivalent are redundant, which is reflected by the constraints they
impose. For example, because b2 starts its k-th firing no sooner than b1 does, the
completion of the k-th firing of actor b2 is sufficient for actor c1 to start its k-th
firing, and thus channel b1c1 can safely be omitted. The same reasoning applies to
the other dashed channels.

The identification of redundant HSDF channels can be generalised to SDF
channels [14]. This gives a transformation, from CSDF, to a sparser multi-rate
equivalent, which avoids creating redundant channels rather than pruning them. This
transformation is listed as Algorithm 2.

Algorithm 2 Transforms a CSDF graph into its multi-rate equivalent, from which
redundant channels are pruned

input : A CSDF graph G.
output: An equivalent SDF graph H with

∑
v∈G ϕv actors.

1 H←− emptygraph
2 foreach actor v in G do
3 for i = 1 to ϕv do
4 Add actor vi to H
5 τvi ←− τv(i)

6 foreach channel vw in G do
7 for j = 1 to ϕw do
8 for i = 1 to ϕv do
9 gvw ← gcd(σ+vw, σ−vw)

10 cmin ←−
⌊
�vw(i,j)+σ−vw

gvw

⌋

11 cmax ←−
⌊
�vw(i−1,j)+σ−vw

gvw

⌋
12 if cmin > cmax then
13 Add channel viwj to H
14 ρ+viwj

←− σ+vw
15 ρ−viwj

←− σ−vw
16 δviwj

←− δvw +∑i−1
l=1 ρ

+
vw(l)+

∑ϕw
l=j+1 ρ

−
vw(l)

17 return H

Throughput Analysis of Dataflow Graphs 779

5.3 Discussion

The transformation of a CSDF graph into its multi-rate equivalent can be seen as
an unfolding transformation, in which successive firings of an actor are explicitly
represented by individual actors. An unfolding transformation for HSDF graphs is
presented in [33], where several iterations of the HSDF graph are represented. The
transformation of Algorithm 2 generalizes this transformation, such that it applies
to CSDF graphs as well.

Note that the construction of a multi-rate equivalent does not require the targeted
CSDF graph to be consistent. An inconsistent CSDF graph simply results in an
inconsistent multi-rate equivalent. Also, consistent subgraphs can perfectly well
be unfolded into their single-rate equivalent, leaving the remainder of the graph
unchanged.

Finally, we remark that the notion of equivalence between a CSDF graph and
its multi-rate equivalent is a different notion than discussed in [35] and [24], where
an equivalent SDF actor is constructed from a CSDF actor by fusing together its
phases into a single phase. This difference is best illustrated by the fact that the
fusing operation can introduce deadlock, whereas the multi-rate equivalent of a
CSDF graph can only be deadlocked if the CSDF graph is, too. In the fusing
transformation, equivalence is viewed from a functional perspective: data that
is processed sequentially by the different phases of a CSDF actor, is processed
monolithically by the SDF actor. Although actors in the multi-rate equivalent of
a CSDF graph do produce and consume as many tokens as their corresponding
CSDF actors do in a single period, the extra tokens added to the channels ensure
equivalence in terms of the schedules that both graphs admit.

6 Throughput Analysis

The previous two sections have provided the tools necessary to generalise the
throughput analysis of HSDF graphs towards more complex graphs such as SDF and
CSDF graphs. This section describes two approaches for the throughput analysis of
CSDF graphs. The first approach is similar to the power method described earlier in
Sect. 3. That is, we simulate a self-timed execution of the graph, and keep track of
the firing times of the completed iterations, until we detect a periodic firing pattern.
This method was first described in [20] and [22], and is referred to as state-space
exploration.

The second approach is an iterative one. Starting from a strictly periodic schedule
with sub-optimal throughput, we iteratively apply the unfolding transformation of
Sect. 5 until we find a periodic schedule that is optimal. Every unfolding trans-
formation allows for a greater scheduling complexity, but increases the achievable
throughput monotonically as well.

780 R. de Groote

Both methods have their advantages and disadvantages, which we shall explore
and illustrate in Sect. 6.3.

6.1 State-Space Exploration

In Sect. 3 we described the power method for computing the eigenvalue and
eigenvector of a max-plus matrix. When applied to an HSDF graph, the power
method essentially performs a simulation of a self-timed execution: each actor
fires as soon as it is enabled. After a finite number of firings, a periodic phase is
entered, in which actors fire periodically (but not necessarily strictly periodically).
The periodic phase is detected by examining the history of firings.

This approach can not be applied directly to a CSDF graph, since each actor fires
at a different rate (the ratios of these rates are given by the graph’s repetition vector).
Consequently, the check for periodicity must treat graph iterations as a whole. One
way to achieve this is by applying the power method to the CSDF graph’s single-rate
equivalent. However, the latter may be very large, prohibiting an efficient analysis.

Rather than representing each firing that occurs in a single iteration explicitly by
means of constructing the single-rate equivalent, we may also choose for an implicit
representation [20]. Such an implicit representation exploits the fact that the (initial)
token distribution of the graph, together with all remaining firing times of active
firings, determine the times at which subsequent actor firings take place. In this
view, the token distribution plus, for each actor, the multiset (or bag) of time units
that current firings still need to complete, together form the state of the graph [20].

With the above implicit representation of actor firing times in the form of a graph
state, the state-space is explored by simulating a self-timed execution. Periodicity is
now checked for by comparing states, which only needs to be performed once per
iteration.

Similar to the power method, this method is bound to complete in a finite number
of steps, having found either a periodic phase, or a deadlock. As an example, we
compute the throughput of the SDF graph of Fig. 13 by exploring its state-space.
Initially, only one actor is enabled: actor a can start a single firing, leaving three
tokens on channel ba. The initial state for the exploration thus consists of the token
distribution δba = δcb = 3, and δaa = δab = δbc = 0, and the single active firing of
a, with a remaining execution time of two time units.

a,2 b,3 c
2 1

1
62

1 〈2, 1〉

〈2, 1〉
311

1
1

Tc = 〈3, 4〉

Fig. 13 Example CSDF graph, with repetition vector: qa = 3, qb = 6, and qc = 4, normalization
vector s with sab = sba = sbc = scb = 2 and saa = 4. The modulus N of the graph equals 12

Throughput Analysis of Dataflow Graphs 781

Table 1 State-space of a self-timed execution of the CSDF graph of Fig. 13

Firings Tokens Firings Tokens

t a b c δab δba δaa δcb t a b c δab δba δaa δcb

0 {2} ∅ ∅ 0 4 0 3 20 ∅ {1, 3, 3} ∅ 3 0 1 0

2 {2} {3, 3} ∅ 0 2 0 1 21 ∅ {2, 2} {4} 3 1 1 0

4 {2} {1, 1, 3} ∅ 1 0 0 0 23 {2} ∅ {2, 3} 3 1 0 0

5 {1} {2} {3} 1 2 0 0 25 ∅ {3} {1} 4 1 1 0

6 {2} {1} {2} 3 0 0 0 26 ∅ {2, 3, 3} ∅ 2 1 1 0

7 {1} ∅ {1, 4} 3 1 0 0 28 {2} {1, 1} {4} 2 0 0 0

8 ∅ {3, 3} {3} 3 1 1 0 29 {1} ∅ {3, 3} 2 2 0 0

11 {2} {3} {3} 2 1 0 0 30 {2} ∅ {2, 2} 4 0 0 0

13 ∅ {1} {1} 4 1 1 0 32 ∅ {3, 3, 3} ∅ 3 0 1 0

14 {2} {3, 3} {4} 2 0 0 0 35 {2} ∅ {4, 4} 3 1 0 0

16 ∅ {1, 1} {2} 4 0 1 0 37 ∅ ∅ {2, 2} 5 1 1 0

17 {2} ∅ {1, 3} 4 0 0 0 39 ∅ {3, 3, 3} ∅ 2 1 1 0

18 {1} {3} {2} 3 0 0 0 42 {2} ∅ {4, 4} 2 2 0 0

19 ∅ {2} {1} 5 0 1 0 44 {2} ∅ {2, 2} 4 0 0 0

After 21 steps, at t = 30, the state-space enters a periodic phase in which a single graph iteration
is completed every 14 time units

During the self-timed execution of the graph, tokens produced onto channels bc
are consumed immediately. As a result, all states in the exploration have δbc = 0.
The explored state space is listed in Table 1, where the column for δbc is omitted,
given that δbc = 0. After 21 simulation steps, a state is repeated: at t = 30, there
is a single active firing of actor a, and two active firings of c, all of which require
two more time units to complete. Channel ab has four tokens at t = 30, the other
channels have no tokens. Six simulation steps later, at t = 44, the same state is
reached, and thus the self-timed execution has entered a periodic phase.

The throughput of the graph can now be obtained from the periodic phase: in
the periodic phase, a single graph iteration is completed every 14 time units. The
throughput of the graph is thus 1

14 .

6.2 Incremental Unfolding

The state-space exploration detailed above stops as soon as either a periodic phase
is found, or no actor is enabled (i.e., a deadlock is found). This process may take a
considerable amount of time, particularly if the transient phase is long. Especially
for graphs that have long graph iterations, the analysis may require too much time.
In [9], the analysis was reported to require more than a single day of computation
time on several (complex) CSDF graphs.

782 R. de Groote

a,2 b,3 c,3

12 7

4 a,2 b,3 c,4

-2

12

-1

5

4

a b

Fig. 14 (a) Optimistic single-rate approximation of Fig. 13. (b) Pessimistic single-rate approxi-
mation of Fig. 13

Rather than computing the throughput of a CSDF graph exactly, as is done in the
state-space exploration approach, we can approximate it by analysing the graph’s
(pessimistic) single-rate approximation. As shown earlier in Sect. 4, the throughput
of the single-rate approximation provides a lower bound on the throughput of
the CSDF graph. The quality of the approximation, however, may be poor (see
Sect. 4). By applying the unfolding transformation of Sect. 5, the approximation
can be further improved. This gives rise to an iterative approach to computing the
throughput: in each step, the CSDF cycle that corresponds to the critical cycle of
the single-rate approximation is unfolded, using Algorithm 2, into its single-rate
equivalent, leading to a larger graph with a tighter approximation.

This approach of incrementally unfolding the graph terminates when the critical
cycle of the single-rate approximation corresponds to a CSDF cycle in which all
actors have the same repetition vector. It may, however, be stopped earlier, if, for
example, the upper and lower bounds on throughput are close enough.

To illustrate this incremental approach, we apply it to the CSDF graph of Fig. 13.
As a first step, we construct its single-rate approximations by applying Algorithm 1.
The optimistic and pessimistic approximations are shown in Fig. 14a, b.

For both HSDF graphs, maximum cycle ratio is attained by cycle bcb. The
optimistic approximation has maximum cycle ratio of 6/7, whereas the maximum
cycle ratio of the pessimistic approximation is more than twice as high: 7/4.
Multiplication by the modulus of the CSDF graph, which is 12, gives that the
throughput of the CSDF graph lies between 7/72 and 1/21. These bounds are relatively
far apart: if we choose the lower bound of 1/21, then the maximum error of this
estimation is 49%.

In order to improve these bounds on throughput, we unfold the critical cycle bcb

into its single-rate equivalent, using Algorithm 2. This results in the larger graph
shown in Fig. 15a, of which the pessimistic single-rate approximation is shown
in Fig. 15b. The latter has maximum cycle ratio of 7/3, which is attained by cycle
b3c2b3. Since the unfolded graph has modulusN = 6, this translates to a throughput
of 1/14; the same as found by state-space exploration.

Throughput Analysis of Dataflow Graphs 783

a

b1

b2

b3

c1

c2

2

2

3

2 1 3

2

3

3 2

3

3

6
2

3 2

3

3

53

34
3

35
3

1
1

1
a

b1

b2

b3

c1

c2

1

-1

4

3

3

3

2

a b

Fig. 15 (a) SDF graph equivalent to the CSDF graph of Fig. 13, obtained by unfolding cycle bcb.
Execution times are omitted. (b) The pessimistic single-rate approximation of (a), with maximum
cycle ratio of 7/3 attained by cycle b3c2b3

a,1 b,3 c,4
2m 2m − 1

2m − 1
2m(2m − 1)

2m

1 2

2
21

a,2 b,3

p p + 1

p + 1
2p

p

a b

Fig. 16 (a) SDF graph, 5m− 1 firings per iteration. (b) SDF cycle

6.3 Comparing the Two Approaches

Each of the two approaches described in the previous two sections has its advan-
tages and disadvantages. State-space exploration is straightforward and simple to
implement, however since a single graph iteration may consist of a huge number
of actor firings, its runtime may not scale well in the size of the graph. Incremental
unfolding, on the other hand, focuses its attention on those parts of the graph that
potentially form performance bottlenecks. This means that it is not the size of a full
graph iteration that determines the size of the graph that is eventually analysed, but
rather the length of an iteration of a subgraph.

To illustrate both the effectiveness and difficulties of the two methods, consider
Fig. 16a, b. In these figures, some properties have been parameterized to show the
effect on the two methods. In the first graph, the length of a graph iteration depends
on the parameter p. If we assume that p is prime, then the larger p, the larger the
length of an iteration. This directly affects the runtime of state-space exploration.
Incremental unfolding, on the other hand, chooses cycle bcb as the critical cycle.
After unfolding this cycle, the incremental analysis stops since cycle aba is not
critical.

In the other graph, the opposite conclusion is drawn. When applying an
incremental analysis, the full graph is unfolded to its single-rate equivalent. The

784 R. de Groote

size of this equivalent HSDF graph depends on p. When exploring the state-space
of this graph, the unfolding is avoided.

To summarize the above comparison: for large graphs with large iterations,
incremental analysis is likely to be more efficient if the size of the final graph is
relatively small. In these cases, exploration of the (periodic) state-space might well
consume too much time. The efficiency of the two methods depends largely on the
size of the graph that would eventually be unfolded in the incremental approach.

6.4 Discussion

This chapter focuses primarily on throughput analysis of SDF and CSDF graphs.
For more complex graphs such as scenario-aware dataflow graphs (SADF) graphs,
see [19, 37].

The throughput of a graph is limited by its cycles. These cycles often arise due to
the modelling of buffer capacities using reverse edges (i.e. backpressure). A problem
that is closely related to throughput analysis is that of buffer capacity optimization:
rather than computing the throughput of a graph with given buffer capacities, the
goal is to minimize the (total) buffer capacity such that a certain throughput is
still attained. For a more in-depth study of this subject, we encourage the reader
to read [39] and [22].

References

1. Mohamed Bamakhrama and Todor Stefanov. Hard-real-time scheduling of data-dependent
tasks in embedded streaming applications. In Proceedings of the ninth ACM international
conference on Embedded software, pages 195–204. ACM, 2011.

2. Mohamed Bamakhrama and Todor Stefanov. On the hard-real-time scheduling of embedded
streaming applications. Design Automation for Embedded Systems, 17(2):221–249, 2013.

3. Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90,
1958.

4. Mohamed Benazouz, Olivier Marchetti, Alix Munier-Kordon, and Thierry Michel. A new
method for minimizing buffer sizes for Cyclo-Static Dataflow graphs. In 8th IEEE Workshop
on Embedded Systems for Real-Time Multimedia, pages 11–20. IEEE, Oct 2010.

5. Mohamed Benazouz, Alix Munier-Kordon, Thomas Hujsa, and Bruno Bodin. Liveness
evaluation of a cyclo-static DataFlow graph. In Proceedings of the 50th Annual Design
Automation Conference on - DAC ’13, page 1, New York, New York, USA, May 2013. ACM
Press.

6. G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-Static dataflow. IEEE
Transactions on Signal Processing, 44(2):397–408, 1996.

7. B. Bodin, A. Munier-Kordon, and B.D. de Dinechin. K-periodic schedules for evaluating the
maximum throughput of a synchronous dataflow graph. In Proceedings of the International
Conference on Embedded Computer Systems (SAMOS), pages 152–159, July 2012.

8. Bruno Bodin, Alix Munier-Kordon, and Benoit Dupont de Dinechin. Periodic schedules for
Cyclo-Static Dataflow. In Proceedings of the 11th IEEE Symposium on Embedded Systems for
Real-time Multimedia, pages 105–114. IEEE, October 2013.

Throughput Analysis of Dataflow Graphs 785

9. Bruno Bodin, Alix Munier-Kordon, and Benoît Dupont de Dinechin. Optimal and fast
throughput evaluation of csdf. In Proceedings of the 53rd Annual Design Automation
Conference, page 160. ACM, 2016.

10. Jean Cochet-terrasson, Guy Cohen, Stéphane Gaubert, Michael Mc Gettrick, and Jean-Pierre
Quadrat. Numerical Computation of Spectral Elements in Max-Plus Algebra. In Proceedings
of the IFAC Conference on System Structure and Control, July 1998.

11. G. Cohen, S. Gaubert, and Jean-Pierre Quadrat. Timed-event graphs with multipliers and
homogeneous min-plus systems. IEEE Transactions on Automatic Control, 43(9):1296–1302,
1998.

12. Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchronization and linearity: an
algebra for discrete event systems. Wiley New York, 1992.

13. Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algorithms.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 9(4):385–418,
2004.

14. Robert de Groote. On the Analysis of Synchronous Dataflow Graphs: a System-theoretic
Perspective. PhD thesis, University of Twente, the Netherlands, February 2016.

15. Robert de Groote, Philip K. F. Hölzenspies, Jan Kuper, and Gerard J. M. Smit. Multi-
rate Equivalents of Cyclo-Static Synchronous Dataflow Graphs. In Proceedings of the 14th
International Conference on Application of Concurrency to System Design (ACSD), pages 62–
71. IEEE Computer Society, June 2014.

16. Robert de Groote, Philip K. F. Hölzenspies, Jan Kuper, and Gerard J. M. Smit. Single-Rate
Approximations of Cyclo-Static Synchronous Dataflow Graphs. In Proceedings of the 17th
International Workshop on Software and Compilers for Embedded Systems (SCOPES), pages
11–20, June 2014.

17. Robert de Groote, Jan Kuper, Hajo Broersma, and Gerard J.M. Smit. Max-Plus Algebraic
Throughput Analysis of Synchronous Dataflow Graphs. In Proceedings of the 38th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pages 29–38. IEEE,
September 2012.

18. M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow: model and
implementation. In Proceedings of the 28th Asilomar Conference on Signals, Systems and
Computers, volume 1, pages 503–507. IEEE Comput. Soc. Press, 1994.

19. Marc Geilen. Synchronous dataflow scenarios. ACM Transactions on Embedded Computing
Systems, 10(2):1–31, December 2010.

20. A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R. Mousavi, A. J. M.
Moonen, and M. J. G. Bekooij. Throughput Analysis of Synchronous Data Flow Graphs. In
Proceedings of the 6th International Conference on Application of Concurrency to System
Design (ACSD), pages 25–36. IEEE, 2006.

21. A.H. Ghamarian, M. Geilen, T. Basten, B. Theelen, M.R. Mousavi, and S. Stuijk. Liveness
and boundedness of synchronous data flow graphs. In Proceedings of the 6th conference on
Formal Methods in Computer Aided Design (FMCAD), pages 68–75. IEEE, November 2006.

22. Amir Hossein Ghamarian. Timing analysis of synchronous data flow graphs. PhD thesis,
Eindhoven University of Technology, The Netherlands, July 2008.

23. Steve Goddard. On the Management of Latency in the synthesis of real-time signal processing
systems from processing graphs. PhD thesis, University of North Carolina at Chapel Hill, 1998.

24. S. Ha and H. Oh. Decidable signal processing dataflow graphs. In S. S. Bhattacharyya,
E. F. Deprettere, R. Leupers, and J. Takala, editors, Handbook of Signal Processing Systems.
Springer, third edition, 2018.

25. B. Heidergott, Geert Jan Olsder, and Jacob van der Woude. Max Plus at Work: modeling and
analysis of synchronized systems. Princeton University Press, 2006.

26. K. Ito and K.K. Parhi. Determining the iteration bounds of single-rate and multi-rate data-flow
graphs. In Proceedings of the 1994 Asia Pacific Conference on Circuits and Systems, pages
163–168. IEEE, 1994.

27. Richard M. Karp and James B. Orlin. Parametric shortest path algorithms with an application
to cyclic staffing. Discrete Applied Mathematics, 3(1):37–45, February 1981.

786 R. de Groote

28. E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

29. E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773–
801, May 1995.

30. R. Leupers, M. A. Aguilar, J. Castrillon, and W. Sheng. Software compilation techniques
for heterogeneous embedded multi-core systems. In S. S. Bhattacharyya, E. F. Deprettere,
R. Leupers, and J. Takala, editors, Handbook of Signal Processing Systems. Springer, third
edition, 2018.

31. Olivier Marchetti and Alix Munier-Kordon. Minimizing Place Capacities of Weighted Event
Graphs for Enforcing Liveness. Discrete Event Dynamic Systems, 18(1):91, 2008.

32. Orlando Moreira and Henk Corporaal. Scheduling Real-Time Streaming Applications onto
an Embedded Multiprocessor, volume 24 of Embedded Systems. Springer International
Publishing, Cham, 2014.

33. K.K. Parhi. Algorithm transformation techniques for concurrent processors. Proceedings of
the IEEE, 77(12):1879–1895, 1989.

34. T.M. Parks and E.A. Lee. Non-preemptive real-time scheduling of dataflow systems. In
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference
on, volume 5, pages 3235–3238. IEEE, 1995.

35. T.M. Parks, J.L. Pino, and E.A. Lee. A Comparison of Synchronous and Cyclo-static Dataflow.
In Proceedings of the 29th Asilomar Conference on Signals, Systems and Computers, volume 1,
pages 204–210. IEEE Comput. Soc. Press, 1995.

36. Raymond Reiter. Scheduling Parallel Computations. Journal of the ACM, 15(4):590–599,
October 1968.

37. Firew Siyoum, Marc Geilen, Orlando Moreira, and Henk Corporaal. Worst-case through-
put analysis of real-time dynamic streaming applications. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthe-
sis - CODES+ISSS ’12, page 463, New York, New York, USA, October 2012. ACM Press.

38. Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multiprocessors: Scheduling
and Synchronization. CRC Press, February 2009.

39. Sander Stuijk, Marc Geilen, and Twan Basten. Throughput-Buffering Trade-Off Exploration
for Cyclo-Static and Synchronous Dataflow Graphs. IEEE Transactions on Computers,
57(10):1331–1345, October 2008.

40. Enrique Teruel, Piotr Chrzastowski-Wachtel, José Manuel Colom, and Manuel Silva. On
Weighted T-Systems. Application and Theory of Petri Nets, pages 348–367, June 1992.

41. Maarten Wiggers, Marco Bekooij, Pierre Jansen, and Gerard Smit. Efficient computation of
buffer capacities for multi-rate real-time systems with back-pressure. In Proceedings of the 4th
international conference on Hardware/software codesign and system synthesis - CODES+ISSS
’06, page 10, New York, New York, USA, 2006. ACM Press.

42. M.H. Wiggers, M.J.G. Bekooij, and G.J.M. Smit. Efficient Computation of Buffer Capacities
for Cyclo-Static Dataflow Graphs. In Proceedings of the 44th ACM/IEEE Design Automation
Conference (DAC), pages 658–663. IEEE, 2007.

43. Neal E. Young, Robert E. Tarjant, and James B. Orlin. Faster parametric shortest path and
minimum-balance algorithms. Networks, 21(2):205–221, mar 1991.

Dataflow Modeling for Reconfigurable
Signal Processing Systems

Karol Desnos and Francesca Palumbo

Abstract Nowadays, adaptive signal processing systems have become a reality.
Their development has been mainly driven by the need of satisfying diverging
constraints and changeable user needs, like resolution and throughput versus energy
consumption. System runtime tuning, based on constraints/conditions variations,
can be effectively achieved by adopting reconfigurable computing infrastructures.
These latter could be implemented either at the hardware or at the software level,
but in any case their management and subsequent implementation is not trivial.
In this chapter we present how dataflow models properties, as predictability and
analyzability, can ease the development of reconfigurable signal processing systems,
leading designers from modelling to physical system deployment.

1 Reconfigurable Signal Processing Systems

For many years, the design of a signal processing system was mostly driven by
performance requirements. Hence, design effort was mainly focused on optimizing
the throughput and latency of the designed system, while satisfying constraints of
reliability and quality of service, and minimizing the system production cost. In
this context, a strong predictability of system behavior is essential, especially when
designing safety-critical real-time systems. Many compile-time methodologies,
computer-aided design tools, and static MoCs, such as the decidable dataflow
MoCs [26], have been created to assist system designers in reaching these goals.

In recent years, the ever increasing complexity of signal processing systems
has lead to the emergence of new design challenges. In particular, modern signal
processing systems no longer offer a fixed throughput and latency, specifically

K. Desnos (�)
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
e-mail: kdesnos@insa-rennes.fr

F. Palumbo
Universita degli Studi di Sassari, Sassari, Italy
e-mail: fpalumbo@uniss.it

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_22

787

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_22&domain=pdf
mailto:kdesnos@insa-rennes.fr
mailto:fpalumbo@uniss.it
https://doi.org/10.1007/978-3-319-91734-4_22

788 K. Desnos and F. Palumbo

tuned to satisfy all timing constraints in the most demanding scenarios from
the system specification. Instead, modern systems must now dynamically adapt
their behavior on-the-fly to satisfy strongly varying workloads and performance
objectives, while optimizing new design goals such as minimizing use of shared
computational resources, or minimizing power consumption. These variations of
the workload and performance objectives may be induced by functional and non-
functional requirements of the system. An example of system with strongly varying
functional requirements is the computing system managing a base station of the
Long-Term Evolution (LTE) telecommunication network. Every millisecond, the
bandwidth allocated for up to 100 active users connected to the managed antenna
may change [50], with a strong impact on the amount and nature of computations
performed by the system. An embedded video decoding system that lowers the
quality of its output in order to augment battery life is an example of varying non-
functional requirement [48, 55]. As presented in [64], increasing the dynamism of a
signal processing often results in a partial loss of predictability, making it difficult,
and sometimes impossible, to guarantee the real-time performance or the reliability
(e.g. deadlock freedom) of a system.

The purpose of reconfigurable signal processing systems is to offer a carefully
balanced trade-off between system predictability and adaptivity. This trade-off
between diverging properties is essential to meet classical constraints of system per-
formance and reliability while satisfying varying requirements of modern system.
To offer a trade-off between predictability and adaptivity, reconfigurable systems
rely both on design-time analysis and optimization of system behavior, that make it
possible to predict the system behavior, and on runtime management technique that
enable system adaptation.

The objective of this chapter is to present how the analyzability of dataflow
MoCs can be exploited to ease the development of reconfigurable signal processing
systems. The chapter structure is briefly summarized as follows: Sect. 2 presents
how reconfigurable systems can be efficiently modeled with dedicated dataflow
MoCs, and Sects. 3 and 4 presents how software and hardware techniques, respec-
tively, can be used to implement reconfigurable applications efficiently. In more
details, Sect. 2 formally introduces the concept of reconfigurable dataflow MoCs
and discusses its key differences with decidable and dynamic classes of dataflow
MoCs. This concept is illustrated through the semantics of several reconfigurable
dataflow MoCs. In Sect. 3, software implementation techniques supporting the
execution of reconfigurable dataflow application are presented. This section covers
a wide range of software implementation techniques, spanning from compile-time
optimizations to runtime management system for reconfigurable applications. Then,
Sect. 4 presents a summary on reconfigurable computing systems, where both coarse
grained and fine grained reconfiguration paradigm are addressed describing how
dataflow MoCs may help in mapping and managing this kind of highly flexible
computing systems.

Dataflow Modeling for Reconfigurable Signal Processing Systems 789

2 Reconfigurable Dataflow Models

The high abstraction level of dataflow MoCs makes them popular models for
specifying complex signal processing applications [26]. By exposing coarse-grain
computational kernels,1 the actors, and data dependencies between them, the First-
In First-Out queues (FIFOs), the dataflow semantics eases the specification of
parallel applications, and provides necessary formalism for many verification and
optimization techniques for the design of signal processing systems.

The expressiveness of a MoC defines the range of applications behavior this
MoC can describe. The expressiveness of a dataflow MoC is directly related to its
firing rules, which are used to specify how and when actors produce and consume
data tokens on connected FIFOs. Dataflow MoCs can be sorted into three classes
depending on their expressiveness:

• Decidable dataflow MoCs [26]: all production and consumption rates are fixed
at compile-time, either as fixed scalar, or with periodic variations. The key
characteristics of decidable dataflow graphs is that, through an analysis of data
rates, it is possible to derive a schedule of finite length at compile-time.

• Dynamic dataflow MoCs [64]: production and consumption rates can change
non-deterministically at each actor firing, making these models Turing-complete
ones. Hence, for most dynamic dataflow MoCs, schedulability, deadlock-
freedom, real-time properties, and memory boundedness of application graphs
can be verified neither at compile-time, nor at runtime. In some dynamic dataflow
MoCs, this lack of analyzability is partially alleviated through specialization of
the model semantics.

• Reconfigurable dataflow MoCs: production and consumption rates can be
reconfigured (i.e. changed) non-deterministically at restricted points in appli-
cation execution. These MoCs are sometimes also called parametric dataflow
MoCs [11]. This restriction limits the expressiveness of reconfigurable dataflow
models, but makes it possible to verify application properties, like schedulability,
either at compile-time or at runtime, after a reconfiguration occurred.

The following subsections formally introduce the reconfiguration semantics
behind reconfigurable dataflow MoCs, and shows how it benefits model analyzabil-
ity through the presentation of several reconfigurable dataflow MoCs. Implementa-
tion optimization techniques taking advantage of the reconfiguration semantics are
presented in Sects. 3 and 4.

1Kernels are usually intended as subparts of an application providing a specific computation. In
a perspective hardware implementation, the computationally intensive ones are the part of the
application that are normally delegated to specific accelerators.

790 K. Desnos and F. Palumbo

2.1 Reconfiguration Semantics

The reconfiguration semantics behind reconfigurable dataflow MoCs is a mathe-
matical model that makes it possible to detect potentially unsafe reconfigurations
of an application graph [44]. A reconfiguration is said to be unsafe if it may result
in an unwanted and undetected state of the application, such as a deadlock or an
inconsistence in production and consumption rates.

The reconfiguration semantics for dataflow MoCs is based on the definition of
hierarchical actors, parameters, and quiescent points. The reconfiguration semantics
can be implemented by any dataflow MoC with atomic actor firings. This assump-
tion guarantees the applicability of the reconfiguration semantics to a broad range
of dataflow MoCs, including decidable [26], multi-dimensional [33], and some
dynamic dataflow MoCs [64].

Formally, a hierarchical graph is defined as a set of actors A. An actor a ∈ A

can either be an atomic actor, an actor whose internal behavior is specified with
host code, or a hierarchical actor, an actor whose internal behavior is specified
with a subset of actors Aa ⊂ A. The top-level graph itself is considered as a
hierarchical actor with no parent, and that contains all other actors in A. Each
actor a is associated to a dedicated set of parameters Pa , that can influence both
its production and consumption rates, and the computations it performs. At any
point in execution time, each parameter p ∈ P (= ⋃a∈A Pa) is associated to a
value given by a valuation function: val(p) whose type (e.g. integer, real, boolean,
...) depends on the underlying model semantics. The value val(p) of a parameter
may be independent, or may depend on the value of one or several other parameters
in P . The transitive relation q depends on p, between two parameters p �= q , is
noted p � q . Reconfiguration occurs when the value of an independent parameter
is modified during the execution of the application.

Figure 1 shows an example of graph specified with a synthetic dataflow MoC
implementing the reconfiguration semantics. Figure 1a illustrates the semantics,
which is then used to build up the example in Fig. 1b. The graph of Fig. 1b consists
of five actors, including one hierarchical actor h that contains two atomic actors C

and D. Each consumption and production rate is defined by a dedicated parameter
whose valuation function is specified as an expression written next to the graph. In
this graph, p, s, and t are independent parameters and all other parameters have
dependencies; as for example p � r .

Reconfiguration semantics models as a quiescent point the state of an actor
between two firings. Like actor firings, the set of quiescent points Qa of an actor
a is ordered in time according to a transitive precedence relation. Since firings of
actors contained in a hierarchical subgraph cannot span over multiple firings of their
enclosing actor, when a hierarchical actor is quiescent, all actors contained in its
hierarchy must also be. A graphical representation of quiescent points for the graph
of Fig. 1 is presented in Fig. 2.

Dataflow Modeling for Reconfigurable Signal Processing Systems 791

FIFO

Hierarchical
actor

Atomic
actorA

Port
and ratey

a b

h

A Bhp q wv

r utsC

p:= 6
q:= p/2
r:= q
t:= 2
s:= 4
u:= t
v:= s
w:= 2*t

D

Fig. 1 Synthetic dataflow MoC implementing the reconfiguration semantics. (a) Semantics. (b)
Graph and current valuation of parameters

Top-level
A
h
B
C
D

Fig. 2 Abstract representation of the quiescent points for the graph of Fig. 1. Vertical lines
represent quiescent points of actors. Dotpoint arrows represent actor firings and define a partial
ordering of quiescent points

The reconfiguration semantics requires reconfigurations of any independent
parameter p ∈ P to happen only during a quiescent points q ∈ Q(= ⋃a∈AQa)

at execution time. The set of parameters reconfigured during a quiescent point q is
noted: R(q) ⊆ P .

When using a dataflow MoC implementing the reconfiguration semantics, a
compile-time analysis of parameters and quiescent points of an application graph
can be used to verify model-specific reconfiguration safety requirements [44].
Safety requirements of a dataflow MoC are expressed as statements in the form
“Parameter p is constant over firings of actor a”. Formally:

Definition 1 Parameter p is constant over firings of actor c if and only if ∀a ∈
A,∀q ∈ Qa,∀r ∈ R(q), r � p⇒ q ∈ Qc.

For example, in the SDF MoC, decidability can be expressed as the following
safety requirement: all parameters are required to be constant over firings of the
top-level actor.

In [11], Bouakaz et al. present a Survey of dataflow MoCs adopting the
reconfiguration semantics. Next sections present examples of MoCs implementing
the reconfiguration semantics.

792 K. Desnos and F. Palumbo

2.2 Reconfigurable Dataflow Models

2.2.1 Hierarchy-Based Reconfigurable Dataflow Meta-Models

The purpose of a dataflow meta-model is to bring new elements to the semantics of a
base dataflow MoC in order to increase its modeling capabilities. The Parameterized
and Interfaced Dataflow Meta-Model (PiMM) [17] and Parameterized Dataflow [8]
are two dataflow meta-models with similar purpose: bring hierarchical graph com-
position and safe reconfiguration features to any decidable dataflow MoC that has a
well-defined notion of graph iteration and repetition vector, such as SDF and Cyclo-
Static Dataflow (CSDF) [26], or Multi-Dimensional SDF (MDSDF) [33]. A base
dataflow MoC whose semantics is enriched with PiMM or with the parameterized
dataflow meta-model is renamed with prefixesπ - and P-, respectively. For example,
πSDF and Parameterized SDF (PSDF) are the reconfigurable generalizations of the
decidable SDF MoC.

In PiMM and parameterized dataflow meta-models, safe reconfiguration is
expressed as a local synchrony requirement [8]. Intuitively, local synchrony requires
the repetition vector of the subgraph of a hierarchical actor to be configured at the
beginning of the execution of this subgraph, and to remain constant throughout a
complete graph iteration, corresponding to a firing of the parent actor. Hence, in
locally synchronous hierarchical subgraph, all parameters influencing production
and consumption rates of actors must remain constant over the firing of their parent
actor. Formally, with Sc, the set of direct child actors of a hierarchical actor c ∈ A,
where direct child means that ∀h ∈ Sc, d ∈ Sh ⇒ d /∈ Sc.

Definition 2 Subgraph Sc of actor c ∈ A, is locally synchronous if and only if:
∀a ∈ Sc, ∀p ∈ Pa , the requirement “p is constant over firings of c” is verified.

The semantics of PiMM, which is an evolution of the parameterized dataflow
semantics, is illustrated in Fig. 3. An example of πSDF graph is given in Fig. 4.

In PiMM, graph compositionality is supported by hierarchical actors, as defined
in the reconfiguration semantics, and by data interfaces. The purpose of interface-

PiMM semantics

Configuration
input interface

Configuration
input port

Locally static
parameter

Parameter
dependency

P

Parameterization
semantics

Configuration
output port
Configurable
parameter

Configuration
actor

P

A

Reconfiguration
semantics

Delay and
number of
tokens

FIFO

ActorA
Port
and rate3

x4

SDF
semantics

Hierarchy
semantics

Data input
interface
Data output
interface

Hierarchical
actor

ou
t

in

h

Fig. 3 Semantics of the Parameterized and Interfaced Dataflow Meta-Model (PiMM)

Dataflow Modeling for Reconfigurable Signal Processing Systems 793

Converge Channel
Decoding

max
CBsPerUENbUE

Config
NbUE m

ac
sy

m
bo

ls Converge

KeepCurrent
Tones

Config
NbCB N

bC
B

sy
m
bo

ls PerUE
Process.

Bit
Process.

Turbo
Dec.

CRC
Check

si
nk

si
nk

NbCB

maxCBsPerUE NbCB 1 1 1 1

1

MaxCBsPerUE*NbUE MaxCBsPerUE

EUbN 11

1

1

NbCB

Fig. 4 Example ofπ SDF graph. Bit processing algorithm of the Physical Uplink Shared Channel
(PUSCH) decoding of the LTE telecommunication standard [17]

based hierarchy [52] is to insulate the nested levels of hierarchy in terms of graph
consistence analysis. To do so, data interfaces automatically duplicate and discard
data tokens if, during a subgraph iteration, the number of tokens exchanged on
FIFOs connected to interfaces is greater than the number of token produced on the
corresponding data ports of the parent actor.

The parameterization semantics of PiMM consists of parameters and parameter
dependencies as new graph elements, and configuration input ports and interfaces
as new actor attributes. The value associated to a parameter of a graph is propagated
through explicit parameter dependencies to other parameters and to actors. In the
πSDF MoC, it is possible to disable all firings of an actor by setting all its
production and consumption rates to zero. As illustrated in Fig. 4, parameter values
can be propagated through multiple levels of hierarchy using a configuration input
port on a hierarchical actor and a corresponding configuration input interface in the
associated subgraph.

The reconfiguration semantics of PiMM is based on actors with special firing
rules, called configuration actors. When fired, reconfiguration actors are the only
actors allowed to dynamically change the value of a parameter in their graph. As a
counterpart for this special ability, reconfiguration actors must be fired exactly once
per firing of their parent actor, before any non-configuration actor of their subgraph.
This restriction is essential to ensure the safe reconfiguration of the subgraph to
which configuration actors belong. To be strictly compliant with Definition 2,
configuration actors and other actors of a subgraph can be considered as two separate
subgraphs, executed one after the other.

794 K. Desnos and F. Palumbo

The local synchrony requirement of the πSDF MoC naturally enforces the
predictability of the model. After firing all configuration actors of a subgraph,
all parameters values, and hence all actor production and consumption rates of
this subgraph, are known and will remain fixed for a complete subgraph iteration.
Runtime analyses and optimization techniques can be used to compute the repetition
vector of the subgraph, to optimize the mapping and scheduling of actors, to allocate
the memory, or to verify that future real-time deadlines will be met. An important
benefit of this predictability is the support for data-parallelism which is often lost
in dynamic dataflow MoCs. Data parallelism consists in starting several firings of
the same actor in parallel if enough data tokens are available. Data-parallelism is
supported only if the next sequence of firing rates is know a priori, as is the case in
πSDF graphs. In dynamic dataflow MoCs [64], the firing rules of an actor generally
depend on its internal state after completion of its previous firing. This internal
dependency between actor firings forces their sequential execution, thus preventing
data parallelism.

Figure 4 presents a πSDF specification of the bit processing algorithm of the
Physical Uplink Shared Channel (PUSCH) decoding which is part of the LTE
telecommunication standard. The LTE PUSCH decoding is executed in the physical
layer of an LTE base station (eNodeB). It consists of receiving multiplexed data
from several User Equipments (UEs), decoding it and transmitting it to upper layers
of the LTE standard. Because the number of UEs connected to an eNodeB and
the rate for each UE can change every millisecond, the bit processing of PUSCH
decoding is inherently dynamic and cannot be modeled with static MoCs such as
SDF. Further details on this application, and specification using the parameterized
dataflow meta-model, can be found in [50].

Compile-time and light-weight runtime scheduling technique for executing
πSDF and PSDF graphs, are presented in Sect. 3. Combination of the parameter-
ized dataflow semantics and the CSDF MoC is studied in [32] for the design of
software-defined radio applications.

2.2.2 Statically Analyzable Reconfigurable Dataflow Models

SPDF and Boolean Parametric Dataflow (BPDF) are non-hierarchical reconfig-
urable generalizations of the SDF MoC that emphasize static model analyzability.
In particular, the semantics of the SPDF and BPDF MoCs make it possible to verify
safe reconfiguration requirements and to guarantee graph consistency and liveness
at compile time. In πSDF and PSDF, although local synchrony can be checked at
compile time, consistency and liveness of a subgraph can only be verified at runtime,
after configuration of all the parameters contained in this subgraph.

In the SPDF MoC semantics, symbolic parameters P with integer values
in N

∗ are used for parameterization. Special actors, called modifiers, have the
ability to dynamically change the value of a symbolic parameter. To ensure safe
reconfiguration, a modifier m ∈ A will set a new value for a parameter p ∈ P

with a pre-defined change period α ∈ N
∗. In practice, this means that the value of

Dataflow Modeling for Reconfigurable Signal Processing Systems 795

Fig. 5 Example of
Schedulable Parametric
Dataflow (SPDF) graph

1 12p3 C
set

q[2p]

set
p[1]

A F

1 12pqq E

4p
2p

6
91

B

D

3

p will be changed every α firings of m. In an SPDF graph, as shown in Fig. 5, the
annotation “set p[α]” is used to denote that an actor is a modifier of parameter p,
with change period α. Change periods, and production and consumption rates of
actors are specified with products

∏n
i=0 ei , where ei is either an integer in N

∗, or a
symbolic parameter p ∈ P .

Using balance equations of actor production and consumption rates, similar to
those used for SDF graphs [26], graph consistency can be verified, and a symbolic
repetition vector can be computed. The basic operation used to find the symbolic
repetition vector of an SPDF graph is the computation of the Greatest Common
Divisor (GCD) of the numbers of data tokens produced and consumed on each
FIFO of the graph. Using this GCD, the numbers of repetition of the producer
and consumer actors, relatively to each other, can be deducted by dividing the
rates of the actors by this GCD. For example, in the graph of Fig. 5, the GCD of
the FIFO between actor D and E is gcdDE = gcd(q, 2pq) = q , which means
that actor E will be executed rateD/gcdDE = 2pq/q = 2p times for each
rateE/gcdDE = q/q = 1 execution of actor D. Using this principle, an algorithm
detailed in [22] can be used to compute the parametric number of repetition of all
actors in an SPDF graph. Using this algorithm on the SPDF graph of Fig. 5, the
following symbolic repetition vector is obtained: A3B6pC9D12pE6F , where Xa

means that actor X is fired a times per iteration of the graph. Notation #X is used
to denote the repetition count of an actor X ∈ A. Similarly, liveness (i.e. deadlock-
freedom) of graphs can be verified statically with an analysis of cyclic data-paths
inspired from SDF graph techniques.

Reconfiguration safety in SPDF graphs is based on the notion of parameter
influence region. The influence region R(x) of a parameter x is the set of: a) FIFOs
whose rates depend on x, b) actors connected to these FIFOs, and c) actors whose
numbers of repetitions depend on x. For example in Fig. 5, R(q) comprises FIFO

DE and actors D and E; and R(p) comprises the whole graph except actor F and
FIFOs connected to it.

Two safe reconfiguration requirements are used in SPDF: data and period safety.
Intuitively, data safety requires that the region R(p) influenced by a parameter p ∈
P comes back to an initial state, in terms of the number of data-tokens on FIFOs,
between each reconfiguration of p. In other words, data safety requires the (virtual)
subgraph composed by R(p) to complete a kind of local iteration and be quiescent
when a reconfiguration of a parameters influencing it occurs. Formally, data safety

796 K. Desnos and F. Palumbo

requires that ∀p ∈ P , with modifier m ∈ A and change period α, all actors a ∈ R(p)

have a repetition count #a such that gcd(#a, #m/α) = #m/α (i.e. #a is a multiple of
#m/α). For example in Fig. 5, with actor E ∈ R(q) and modifier B annotated “set
q[2p]”, actor E is data safe since #E = 6 is a multiple of #B/2p = 6p/2p = 3.

Period safety restricts how often a parameter q can be reconfigured by its
modifier m if #m itself depends on a parameter p. In this case, period safety ensures
that q is reconfigured at least as often as the start of a new iteration of the subgraph
formed by R(p). Formally, ∀p, q ∈ P with modifiers mp and mq , change period αp

and αq , and #mq depending on p, period safety requires #mq/αq to be a multiple
of #mp/αp . If this condition is not met, reconfiguration of q may happen in the
middle of an iteration of the subgraph formed by R(p), when it is not quiescent.
For example, in Fig. 5, repetition count #B = 6p of the emitter of q depends on p,
but its change period is safe since #B/2p = 3 is a multiple of #A/1 = 3. With the
period of q set to 3p instead, the graph would remain data safe but would no longer
be period safe, as #B/3p = 2 is not a multiple of #A/1 = 3. A consistent, data and
period safe SPDF graph will always be schedulable in bounded memory [22].

The semantics of the BPDF MoC is closely related to the one of the SPDF MoC,
and provides the same advantages in terms of static graph analyzability [6]. The
main difference between the two MoCs is that reconfigurable integer parameters
of SPDF are replaced with reconfigurable boolean parameters in BPDF. Through
combinational logic expressions, these boolean parameters are used to change the
BPDF graph topology, by enabling and disabling FIFOs. This feature is equivalent
to setting data rates to 0 in the SPDF and πSDF MoCs.

Examples of SPDF and BPDF graphs of multimedia, signal processing, and
software defined radio applications can be found in [6, 16, 22]. Compilation
techniques for deploying SPDF graphs onto multi and many-core architecture will
be presented in Sect. 3.

2.3 Dynamic Dataflow MoCs and Reconfigurability

In dynamic dataflow MoCs, as presented in [64], production and consumption rates
of actors may change dynamically at each firing, depending on the firing rules
specified for each actor. In most dynamic dataflow MoCs, the semantics include
elements to specify explicitly the internal firing rules of each actor. A common
way to characterize firing rules of a dynamic actor is to model its internal state
with a Finite State Machine (FSM), or a similar model like a Markov chain, and
to associate each FSM state with pre-defined production and consumption rates for
each data port. These FSMs can be specified either explicitly by the application
designer, using a dedicated language, as in the Scenario-Aware Dataflow (SADF)
and Core-Functional Dataflow (CFDF) MoCs [40, 64], or implicitly in the language
describing the internal behavior of actors, as in frameworks based on the CAL Actor
Language (CAL) [13, 21, 67].

Dataflow Modeling for Reconfigurable Signal Processing Systems 797

32x32
0;1;32*32

16x16
0;1;16*16

Recv
1;0;0

MB32
0;32²;32²

MB16
0;16²;16²

Cnfg
1;0;0

VLC Q-1 DCT-1
cfg

mb
bits cfg

mbombo mbimbi
cfg

a

cb

Fig. 6 Dynamic dataflow graph inspired by the residual decoding of a video decoder. (a) Dynamic
dataflow graph. (b) FSM of the VLC actor. Prod./Cons. rates for each state are expressed in the
following order bits;cfg;mbo. (c) FSM of the Q−1 and DCT−1 actors. Prod./Cons. rates for
each state are expressed in the following order cfg;mbi;mbo

An example of dynamic dataflow graph with associated FSMs is presented in
Fig. 6. This graph represents the residual decoding of macro-blocs of pixels in a
video decoding application. The semantics used for the FSMs presented in Fig. 6b,
c is similar to the one of the CFDF MoC. Each state of the FSMs is associated with
an integer production and consumption rate for each port of the corresponding actor.
When enough data tokens are available on the input FIFOs according to the current
actor state, the actor is fired and one state transition is traversed, thus deciding the
next firing rule.

In the graph of Fig. 6, the Variable Length Code (VLC) actor is responsible
for decoding the information corresponding to each macroblock (i.e. square of
pixel) from the input bitstream. To do so, the VLC actor reads the input bitstream
bit-by-bit in the Recv state, and fills an internal buffer. When enough bits have
been received, the VLC actor detects it, and goes to the 16×16 or 32×32 state,
depending on the dynamically detected macroblock size. In the 16×16 or 32×32
states, the VLC actor produces a configuration data-tokens on its cfg port, and
quantized macroblock coefficients on its mb port. The configuration data-token is
received by the dequantizer actor Q−1 and the inverse discrete cosine transform
actor DCT−1, which successively process the quantized macroblock coefficients
in the state corresponding to the dynamically detected macroblock size: 16×16 or
32×32.

Although dynamic dataflow MoCs inherently lack the predictability that charac-
terize reconfigurable dataflow MoCs, several techniques make it possible to increase
the predictability of a dynamic dataflow graph in order to enable a reconfigurable
behavior. The common point between these techniques, is that they exploit the
actor behavioral information specified with FSMs in order to make parts of the

798 K. Desnos and F. Palumbo

application reconfigurable. Two different approaches are presented hereafter: in
Sect. 2.3.1 classification techniques are used to identify reconfigurable behavior
in application graphs specified with existing dynamic MoCs, and in Sect. 2.3.2,
semantics of dynamic dataflow MoCs is extended to ease specification of recon-
figurable behavior within dynamic applications. Further hardware reconfigurable
implementation techniques based on dynamic dataflow MoCs are introduced in
Sect. 4.

2.3.1 Classification of Dynamic Dataflow Graphs

The basic principle of classification techniques for dynamic dataflow graphs is
to analyze the internal FSM of one or more actors in order to identify patterns
that correspond to statically decidable behaviors. Here, a pattern designates a
sequence of firings of one or more actors that, when started, will always be
executed deterministically when running the application, despite the theoretical non-
deterministic dynamism of the dataflow MoC.

In the example of Fig. 6, an analysis technique can detect two sequences of actor
firings, corresponding to the processing of a macroblock of size 16×16 and 32×32,
respectively. The first sequence is triggered when the VLC actor fires in the 16×16
state, which will always be followed by two firings of each of the Q−1 and DCT−1

actors, in the Cnfg and MB16 states. The second sequence is similar for the 32×32
configuration.

In [13], Boutellier et al. propose a technique to analyze a network of actors
specified with CAL, and detect static sequences of actor firings in their FSMs. Once
detected, each alternative sequence of actor firings is transformed into an equivalent
SDF subgraph. Similarly to what is done in reconfigurable dataflow MoCs, SDF
subgraphs are connected using switch/select actors capable of triggering dynam-
ically an iteration of a selected SDF subgraph. As shown in [13], application
performance can be substantially improved by exploiting the predictability of SDF
subgraphs to decrease the overhead of dynamic scheduling of actor firings.

In [21], Ersfolk et al. introduce a technique to characterize dynamic actor by
identifying the control tokens of the application. A control token is defined as a data
token whose value is used in actor code to dynamically decide which firing rule
will be validated for the next actor firing. For example, in Fig. 6, the data tokens
exchanged on the cfg ports are control tokens, as they decide the next firing rules
for the Q−1 and DCT−1 actors. Once a control token is identified, the data and
control path influencing its value is backtracked both through graph FIFOs and by
applying an instruction-level dependency analysis to actor CAL code. By analyzing
the datapath of control tokens, complex relations between firing rules of different
actors can be revealed. As in the previous technique, these relations between firing
rules of dynamic actors can be exploited to transform some part of a dynamic
dataflow graph into an equivalent reconfigurable graph.

Dataflow Modeling for Reconfigurable Signal Processing Systems 799

There exist several other techniques whose purpose is to detect reconfigurable
or static behavior from a dynamic dataflow description. In [67], a set of rules
are specified to classify the behavior of individual actors as static, cyclo-static,
quasi-static, time-dependent (i.e. non-deterministic), and dynamic. These rules can
be verified either by analyzing the firing rules of an actor, or by using abstract
interpretation which allows verifying these rules for all possible actor states [67].
In [20], another technique based on model-checking is used to detect statically
schedulable actions in a dynamic dataflow graph.

2.3.2 Reconfigurable Semantics for Dynamic Dataflow MoC

Parameterized Set of Modes (PSM) is an extension of the CFDF MoC which
brings parameterization semantics on top of the dynamic semantics of the CFDF
model [40]. The purpose of the PSM-CFDF MoC is to improve the analyzability
of FSMs in a network of actors by explicitly specifying graph-level parameters that
influence the dynamic dataflow behavior of one or more actors.

In the PSM-CFDF semantics, an actor a ∈ A is associated to an FSM where each
state, called a mode, corresponds to a fixed consumption and production rate. The
set of all modes of an actor a is noted Ma . Each time a mode ma ∈ Ma of an actor
a is fired, it selects the mode that will be used for the next firing of a. The mode
selected for the next firing of an actor a depends on the parameter values, called a
configuration, of a set of parameters Param(a) specified at graph-level. The set of
all valid configurations for an actor a is noted DOMAIN(a).

Figure 7 presents an example of PSM-CFDF graph modeling part of the
Orthogonal Frequency-Division Multiplexing (OFDM) demodulation of an LTE
receiver, inspired by Dardaillon et al. [16] and Pelcat et al. [50]. Parameter M

takes value in {1, 2} and is used to switch the application behavior between a low-
power mode M = 1, where a 5 MHz bandwidth is received with QPSK modulation,
and a high-throughput mode M = 2, where a 10 MHz bandwidth is received with
16QAM modulation. Parameter B takes integer values between 1 and Bmax , and
is used to control the vectorization of computation, i.e. the number of data tokens
buffered in order to be processed in a single firing of actors. In low-power mode
(resp. high-throughput mode), the FFT actor processes 512 (resp. 1024) samples
and outputs symbols for 300 (resp. 600) subcarriers, each of which is then decoded
by the Demap actor, using QPSK (resp. 16QAM) modulation, and producing 600
(resp. 2400) bits of data. As presented in Fig. 7b, c, the fully connected FSMs of the
two actors each contain 2 ∗ Bmax modes.

Building on the graph-level parameterization semantics, the basic idea of PSM-
CFDF is to gather actor modes into groups of modes with similar properties
(e.g. dataflow rates, mapping, ...) for a subsequent analysis or optimization of the
application. These groups of modes are called the Parameterized Set of Modes
(PSM) of an actor. Formally, a PSM of an actor a is defined as ρ = (S, C, f),
where S ⊂ Ma is a subset of the modes of a, C ⊂ DOMAIN(a) is a subset of
the configurations of a, and f : C → S is a function giving the current mode in

800 K. Desnos and F. Palumbo

5MHz
M=1,B=2

10MHz
M=2,B=2

5MHz
M=1,B=1

10MHz
M=2,B=1

5MHz
M=1,B=Bmax

10MHz
M=2,B=Bmax

QPSK
M=1,B=2

16QAM
M=2,B=2

QPSK
M=1,B=1

16QAM
M=2,B=1

QPSK
M=1,B=Bmax

16QAM
M=2,B=Bmax

512MB FFT B Demap300MB 2MB

a

b c

Fig. 7 PSM-CFDF graph of an OFDM demodulator used in LTE standard [16, 40, 50]. (a) PSM-
CFDF graph. (b) Partial FSM of the FFT actor. (c) Partial FSM of the Demap actor

Fig. 8 Transition graph for
the PSM-CFDF actors of
Fig. 7

ρ1
M=1,B=1..Bmax

ρ2
M=2,B=1..Bmax

S depending on the current configuration in C. The set of all PSMs of an actor a,
noted PSM(a), must cover all modes of a; formally

⋃
ρ∈PSM(a) ρ.S = Ma . PSM(a)

can be represented as a graph, called transition graph, whose vertices are the PSMs
of the actor, and whose edges represent possible transitions from a PSM to another,
as originally specified in the actor FSM.

PSMs of an actor can be specified explicitly by the application developer, but can
also be deduced automatically from an analysis of the parameterized PSM-CFDF
graph, or from execution traces [40]. Figure 8 presents the transition graph created
for the FSMs in Fig. 7b, c, assuming that values of parameters B and M are changed
simultaneously when no data-token is present on FIFOs of the graph of Fig. 7. This
transition graph contains two PSMs ρ1 and ρ2, gathering modes for M = 1 and
M = 2 respectively.

A smart grouping of actor modes into PSMs can be used to produce a transition
graph where each PSM corresponds to a static schedule of actor firings [40, 54].
For example in Fig. 8, each of the two PSMs corresponds to a static scheduling of
the PSM-CFDF graph, with FFT1Demap300 for ρ1, and FFT1Demap600 for ρ2,
regardless of the value of parameter B. In such a case, changing the active PSM
triggers a reconfiguration of the application that switches between pre-computed
static schedules, which considerably reduces the workload of the application
scheduler.

Smart PSM grouping can efficiently address many optimization objectives,
such as maximizing application performance on heterogeneous platforms [40],
or minimizing the allocated memory footprint for the execution of a dynamic
graph [54].

Dataflow Modeling for Reconfigurable Signal Processing Systems 801

3 Software Implementation Techniques for Reconfigurable
Dataflow Specifications

As shown in previous section, dataflow MoCs can efficiently capture the coarse-
grain reconfigurable behavior of a signal processing system. From the dataflow
perspective, a reconfigurable behavior can be modeled as an explicit lightweight
control-flow enabling predictable and possibly parameterized sequences of actor
firings. A reconfigurable dataflow behavior can either be explicitly specified by the
system developer using specialized dataflow MoCs, or be extracted automatically
from a more dynamic system specification.

To execute a dataflow graph, a set of techniques must be developed to implement
the theoretical MoC semantics and execution rules within diverse hardware and
software environments. Implementation techniques are commonly responsible for
mapping and scheduling actor firings onto available processing elements and for
allocating memory and communication resources. Depending on the predictability
of the implemented dataflow MoC, these implementation techniques can be part of
the compilation process, or part of a runtime manager or operating system [37].

This section presents a set of software implementation techniques for dataflow
specifications that exhibit a reconfigurable behavior. By taking advantage of the
reconfigurable behavior of applications, the presented techniques optimize systems
in terms of performance, resource usage, or energy footprint. Implementation
techniques responsible for translating dataflow specifications with reconfigurable
behavior into synthesizable hardware implementations are presented in Sect. 4.
A more general description of software compilation techniques for other parallel
programming models is presented in chapter [39].

3.1 Compile-Time Parameterized Quasi-Static Scheduling

In general, dynamic and reconfigurable dataflow MoCs are non-decidable models.
Hence, contrary to decidable dataflow MoCs [26], it is not possible to determine at
compile time a fixed sequence of actor firings (i.e. a schedule) that will be repeated
indefinitely to execute a reconfigurable dataflow graph.

A quasi-static schedule of a dataflow graph, is a schedule where as many
scheduling decisions as possible are made at compile time and only a few data-
dependent decisions are left for the runtime manager. The purpose of quasi-static
scheduling is generally to increase application performance by relieving the runtime
manager from most of its scheduling computations overhead [9, 12].

In practice, a quasi-static schedule derived from a dataflow graph with a
reconfigurable behavior is expressed as a parameterized looped schedule [9, 35].
Formally, a parameterized looped schedule S is noted S = (I1I2...In)

λ where λ is
an integer repetition count whose expression may depend on parameter values, and
instruction Ii represents either the firing of an actor a ∈ A, or a nested parameterized

802 K. Desnos and F. Palumbo

i A a B o
g = gcd(a,b)
x = i× (b/g)
y = o×(a/g)

x G y

repeat b/g times {
fire A;
}
repeat a/g times {
fire B;
}

b

a b c d

Fig. 9 Basic grouping operation used to build a quasi-static schedule. (a) Original pair of actors.
(b) Equations. (c) Resulting actor. (d) Pseudo-code for G

looped schedule. The set of instructions I1I2 . . . In of a parameterized looped
schedule S is called the body of S. For example, A(B(CD)2E)p is a parameterized
loop schedule with two nested loops, where actor A is executed once, followed by p

executions of the sequence of actor firings (BCDCDE). A quasi-schedule is valid
only if all loop iteration counts remain constant throughout firing of their associated
body. When building a quasi-static schedule from a reconfigurable dataflow graph,
validity of the schedule is usually enforced by the safe reconfiguration requirement
of the dataflow graph (see Sect. 2.1).

An algorithm to build a quasi-static schedule from a PSDF (or πSDF) graph
is given in [9]. This algorithm, called Parameterized Acyclic Pairwise Grouping
of Adjacent Nodes (P-AGPAN), is an extension of a scheduling algorithm for SDF
graphs whose purpose is to build a schedule minimizing both code size and memory
footprint allocated for FIFOs. The basic operation of the P-AGPAN algorithm,
illustrated in Fig. 9, is to select a pair of actors connected with a FIFO, and to replace
them with a composite actor whose internal behavior is defined with a parameterized
looped schedule. For example, the pair of actors A and B from the graph of
Fig. 9a can be replaced with the composite actor G presented in Fig. 9c. Using
equations from Fig. 9b, the internal behavior of actor G can be represented with the
following parameterized looped schedule: Ab/gBa/g. Pseudo-code corresponding to
the internal behavior of the composite actor G is presented in Fig. 9d.

Applying the P-AGPAN algorithm to a PSDF or a πSDF (sub)graph consists of
iteratively selecting a pair of actors and applying the pairwise grouping operation,
until all actors of the considered subgraph are merged. The order in which pair of
actors are selected for grouping influences code size and memory requirements of
the generated quasi-static schedule. To minimize code size and memory require-
ments [9], priority is given to actor pairs connected with:

1. a single-rate FIFO (i.e. a FIFO with equal but possibly parameterized production
and consumption rates),

2. a FIFO associated to constant rates,
3. a FIFO associated with parameterized rates whose gcd can be computed statically.

If a subgraph contains non-connected actors, as is the case with configuration
actors and other actors of a πSDF graph, then these actors are added to the quasi-
static schedule in the execution order imposed by the execution rules of the MoC.
The P-AGPAN algorithm is applied in a bottom-up approach to all subgraphs of an
application, starting from the innermost subgraph up to the top-level graph.

Dataflow Modeling for Reconfigurable Signal Processing Systems 803

A M

B1 v h1 1
Mv M

C w

D

1

1

M w w E 1 1 F 1 1 G 1 w I 1

v

/* top -level graph */
fire A; // Sets v
fire B;
repeat v times{

/* h */
fire C; // Sets w
repeat w times{

fire D;
fire E;
fire F;
fire G;

}
fire I;

}

Grouped actor pair: Schedule: Simplified schedule:
1. D & E → D1E1 → DE
2. F & G → F 1G1 → FG
3. (DE) & (FG) → (DE)1(FG)1 → DEFG
4. (DEFG) & I → (DEFG)wI1 → (DEFG)wI

5. C & ((DEFGI)wI) → C1((DEFGI)wI)1 → C(DEFGI)wI = h
6. B & h → B1hv → Bhv = B(C(DEFGI)wI)v

7. A & Bhv → A1(Bhv)1 → ABhv = AB(C(DEFGI)wI)v

a b

c

Fig. 10 Quasi-static scheduling for the LTEπ SDF graph of Fig. 4. (a) Simplified π SDF graph
with 1-letter actor names. (b) Quasi-static pseudo-code. (c) Step-by-step construction of the quasi-
static schedule using algorithm from [9]

Figure 10 illustrates the application of the P-AGPAN algorithm to the LTE
πSDF graph from Fig. 4. Figure 10a presents a simplified version of the πSDF
graph with 1-letter actor and parameter names. Figure 10c details the step-by-
step execution of the P-AGPAN algorithm for this πSDF graph. The first column
of Fig. 10c presents the pair of actors selected for grouping at each step, the
second column presents the internal parameterized looped schedule of the resulting
composite actor, and the last column present the same schedule with simplified
notations. Steps 1 to 5 correspond to the application of the P-AGPAN algorithm
to the hierarchical subgraph of actor h, and steps 6 and 7 to the top-level graph.
The pseudo-code corresponding to the quasi-static schedule AB(C(DEFGI)wI)v

is presented in Fig. 10b.
An algorithm for building a quasi-static schedule for a SPDF graph is given

in [22]. Briefly, this algorithm first consists of computing the symbolic repetition
vector of an SPDF graph, and then finding an ordering of all parameters pi such
that #M(pi+1)

α(pi+1)
= fi · #M(pi)

α(pi)
, where: #M(pi) is the repetition count of the emitter

of pi , α(pi) is its change period, and, finally, fi a parametric expression. Once this
order is established, the quasi-static schedule is obtained by ignoring FIFOs with
delays, and constructing a schedule of actors in topological order, where each actor
X is written: (((Xf ′N+1)f

′
N) . . .)f

′
1 , where f ′i are expressions depending on the N

804 K. Desnos and F. Palumbo

parameters used and modified by X [22]. In the constructed quasi-static schedule,
which is not a parameterized loop schedule, each parenthesis corresponds to a
new value of the parameters used or set by the actor. For example, the quasi-static
schedule for the SPDF graph of Fig. 5 with explicit set and get of parameter values is
(A; set p)3(get p; (B2p; set q))3(get p;C3)3(get p; (get q;D4p))3(get p; (get q;
E2))3F (where all 1 exponent were omitted). An equivalent parameterized looped
schedule can be obtained by factorizing parenthesis with equivalent exponents and
matching set/get: ((AB2pC3(D4pE2))3F .

Further works on quasi-static scheduling include a technique for dynamic
dataflow graphs that exhibit reconfigurable behavior [12]. This technique consists of
pre-computing a multicore schedule for static subparts identified in the application.
The static multicore schedules are then triggered dynamically at runtime. Another
interesting work on quasi-static scheduling is presented in [35], where compact
representation of parameterized looped schedules is studied to speed-up execution
of quasi-static schedules, and reduce their memory footprints.

3.2 Multicore Runtime for πSDFs Graphs

As presented in previous section, analysis techniques can be used to make schedul-
ing decisions at compile-time for dataflow graphs with a reconfigurable behavior.
Nevertheless, since reconfigurable dataflow MoCs are inherently non-decidable,
executing them still requires making some deployment decisions, like mapping or
memory allocation, at runtime. For example, when executing a quasi-static schedule,
although the parameterized execution order of actor firings is known, these firings
still need to be mapped on the cores of an architecture, and memory still need to
be dynamically allocated for the FIFOs whose number and sizes are only known
when a reconfiguration occurs. Another important task to perform at runtime is
the verification that values dynamically assigned to parameters constitute a valid
configuration for the application [8, 17].

A first way to provide runtime support to a reconfigurable dataflow graph is to
use implementation techniques supporting dynamic dataflow MoCs [64]. The main
drawback with this approach is that it does not exploit the runtime predictability
of a reconfigurable MoC to make smart decisions. For example, a commonly used
strategy for executing a dynamic dataflow graph is to implement each actor as an
independent process that checks the content of its input and output FIFOs to decide
whether it should start a new firing. Because of this limited knowledge of the graph
topology and state, actors will waste a lot of processor time and memory bandwidth
only to check, often unsuccessfully, their firing rules [13, 20].

In reconfigurable dataflow MoCs, predictability is achieved by exposing the
parameterizable firing rules of actors as part of the graph-level semantics (Sect. 2).
Building on this semantics, a runtime manager can exploit the predictability of
reconfigurable graphs to make smart mapping, scheduling, and memory allocation
decisions dynamically.

Dataflow Modeling for Reconfigurable Signal Processing Systems 805

Developer

PiSDF
Graph

Actor
Code Heterogeneous

MPSoC

Jobs

Jobs

Jobs

Params

Timings

Data

Data

Pool of
data FIFOs

Slave

Slave

Master

SPIDER
Runtime

Application
Specification

PREESM
Framework

Fig. 11 Overview of the SPIDER runtime workflow and structure [29, 51]

SPIDER (Synchronous Parameterized and Interfaced Dataflow Embedded Run-
time) is a Real-Time Operating System (RTOS) whose purpose is to manage the
execution of πSDF graphs on heterogeneous Multiprocessor Systems-on-Chips
(MPSoCs) [29]. As presented in Fig. 11, πSDF graphs and source code associated
to actors, generally coded in C language, are designed by the application developer
using the Parallel Real-time Embedded Executives Scheduling Method (PREESM)
rapid prototyping framework [51]. The internal structure of the SPIDER runtime, is
based on master and slave processes where a master process acts as the “brain” of
the system, and distributes computations to all the slave processes. In heterogeneous
architectures, the master process is generally running on a general purpose processor
and slave processes are distributed on multiple types of processing elements, such as
general purpose processors, digital signal processors, and hardware accelerators. As
shown in Fig. 11, the communications and synchronizations between the master and
slave processes are supported by a set of FIFO queues with dedicated functionality.
FollowingπSDF execution rules, the master process maps and schedules each actor
firing individually on the different processes, slave or master, by sending so-called
job descriptors to them through dedicated job queues. A job descriptor is a structure
embedding a function pointer corresponding to the fired actor, the parameters values
for its firing, and references to shared data queues where it will consume and
produce data-tokens. When a job corresponding to a configuration actor is executed
by a slave or master process, it sends new parameter values to the master process
through a dedicated parameter queue. Optionally, a timing queue may be used to
send execution time of all completed jobs to the master process, for profiling and
monitoring purposes.

Figure 12 illustrates how SPIDER dynamically manages the execution of a
πSDF graph on a multicore architecture. The input πSDF graph considered in
this example is depicted in Fig. 12a, b illustrates an intermediate graph resulting
from graph tranformations applied at runtime by the SPIDER runtime, prior to
mapping and scheduling operation. The Gantt diagram corresponding to an iteration
of this graph on 2 cores is presented in Fig. 12c. The master process of the SPIDER

runtime is called at the beginning of the execution, in order to map and schedule
the ConfigSize configuration actor that is, at this point, the only executable actor

806 K. Desnos and F. Palumbo

size
Config

Size

FilterRead
Image ezis4 ezis

Display
4

nb
SetNB
Slices

size/nb
Kernel

size/nb

size=2
Config

Size

Read
Image 2 2

Display
4

nb1=1
SetNB
Slices1

2
Kernel1

22 2

Filter1

2 2

nb2=2
SetNB
Slices2

1
Kernel2.1

12 2

Filter2

Kernel2.2
1

Core1

Core2

Master
SPIDER

Config
Size

Master
SPIDER

Read
Image

SetNb
Slices2

SetNb
Slices1

Master
SPIDER

Kernel1 Kernel2.2

Kernel2.1

Display

1

4

a b

c

Fig. 12 Deployment process of the SPIDER runtime. (a) Input π SDF graph. (b) Intermediate
single-rate graph. (c) Gantt diagram of one iteration of theπ SDF graph with SPIDER

according to πSDF execution rules. When executed, the ConfigSize actor sets a
new value for parameter size triggering a reconfiguration, and a second call to
the master process. Using the new value of the size parameter, the master process
computes the repetition vector of the top-level graph and applies a single-rate graph
transformation in order to expose its data-parallelism. With size = 2, the single-rate
transformation duplicates the Filter actor to make the data-parallelism of its two
firings explicit. At this step, memory can be allocated for all FIFOs of the top-level
graph, and the ReadImage actor can be scheduled. Concurrently to the execution
of the ReadImage actor, the master process continues its execution to manage the
execution of the two instances of the Filter hierarchical actor. The master process
manages separately the two subgraphs of the Filter actors, and schedules a firing of
the SetNBSlices configuration actor for each of them. During the third and final call
to the master process, a new configuration of each of the two subgraphs is taken into
account to compute their respective repetition vectors, to perform the single-rate
graph transformation on them, to allocate all FIFOs in memory, and to schedule all
remaining actor firings. The single-rate graph of Fig. 12b is the executed graph for
parameter values size = 2, nb1 = 1, and nb2 = 2.

Compared to implementation strategies with no global management of applica-
tions, using a runtime manager to control the execution of a reconfigurable graph has
an overhead on application performance. Indeed, such runtime manager requires
processor time to compute repetition vectors, to perform graph transformations,
and to map and schedule actor firings. Nevertheless, as presented in [28, 29], even
with large reconfigurable graphs with several hundreds of actors, this overhead is
largely compensated by the efficiency of the scheduling decisions, and generally
outperforms dynamic deployment strategies with no global manager.

Dataflow Modeling for Reconfigurable Signal Processing Systems 807

Front-end

Developer

Reduced
SPDF
Graph

Actor
Code

Heterogeneous
MPSoCApplication

Specification

PaDaF
(C++)

CLang Reduced
PaDaF
(LLVM IR)

SPDF
Graph

(PaDaF IR)

Actor
+ annota-

tions
(LLVM IR)

Execution

Analysis

Link Full
PaDaF

(PaDaF IR)
Check buffer

Map/Schedule

Codegen (ASM)

Back-end

Fig. 13 Overview of the compilation flow for SPDF graphs [16]

3.3 Compilation Flow for SPDF Graphs

A compilation framework for deploying reconfigurable applications specified with
the SPDF MoC onto heterogeneous MPSoCs is presented in [16]. This development
flow for SPDF graphs differs from the flow based on the runtime manager presented
in the previous section in that it shifts most of the deployment decisions to the
compilation framework. In particular, in the SPDF compilation flow, actors are
manually mapped on the cores by the application designer, and actor firings are
quasi-statically scheduled based on a compile-time analysis of the graph and the
behavior of actors. An overview of the different stages of the SPDF compilation
flow, adopting the elements presented in Chapter [39], is illustrated in Fig. 13.

In the SPDF compilation flow, the specifications of both the SPDF graph and
the internal behavior of actors are based on a hierarchy of specialized C++ classes
called Parametric Dataflow Format (PaDaF). Figure 14 illustrates the syntax used
to specify part of an LTE application with PaDaF [16]. The SPDF graph presented
in Fig. 14a contains a parameterizable number Nb of FFT actors, each processing
1024 samples received from an antenna. Results of the FFT actors are then
transmitted to a MIMO actor, which sets a new value for parameter p at each
firing, and produces a reconfigurable number of data tokens towards the Sink actor.
As shown in the C++ description of the LTE graph in Fig. 14b, PaDaF allows
the description of SPDF graphs using for-loop constructs. Hence, the PaDaF

syntax specifies SPDF graphs in a reduced format where a statically parameterizable
number of actors and FIFOs may be instantiated and connected together. This
syntax is similar to the SigmaC programming language used for the specification
of decidable CSDF graphs [25]. The PaDaF code corresponding to the MIMO
actor is presented in Fig. 14c. As can be seen in this example, actor specification
is based on a hierarchy of C++ classes used to specify actors (Actor class),
their data ports (PortIn/PortOut classes), and their parameters (ParamOut
class). As in graph descriptions, control code can be used to specify a statically
parameterizable number of data ports when specifying an SPDF actor with PaDaF.
The internal computations performed by an actor at each firing are specified in its
unique compute() function.

808 K. Desnos and F. Palumbo

1024 FFT1

1024 FFT2

1024 FFTNb

set
p[1]

MIMO 57p Sink4200
4200
4200

57
Fft fft[NB_ANT];
Mimo mimo;
Sink sink;
for(i=0; i<NB_ANT; i++){

fft[i].out <= mimo.in[i];
}
sink.in <= mimo.out

class Mimo : public Actor {
std::vector <PortIn <int >*> Iin;
PortOut <int > Iout;
ParamOut p;
int nbAnt
Mimo(int nb): p(1), out(p*57) {

nbAnt = nb;
for(int i=0; i<nb; i++){

Iin[i] = new PortIn <int >(4200);
}

}
void compute ();

}

600

600

600

a b

c

Fig. 14 Partial LTE application specification with PaDaF (from [16]). (a) SPDF graph. (b) PaDaF

graph description. (c) PaDaF Mimo actor code

The steps composing the compilation flow presented in Fig. 13 are sorted into
two groups, the front-end and the back-end, presented hereafter.

• Front-end: The first steps of the SPDF compilation flow, called the front-end,
are architecture-independent operations responsible for exposing coarse and fine
grain properties of the application.

– Clang: The first step of the front-end is to compile the graph and the
actor PaDaF specifications of an application into an LLVM Intermediate
Representation (IR) using the Clang compiler [36].

– Execution: In a second step, the produced LLVM IR corresponding to the
reduced graph description is executed in order to build the complete SPDF
graph, where a parameterizable number of actors are instantiated.

– Analysis: In the third step of the front-end, executed in parallel with the
second, the LLVM IR corresponding to the internal behavior of actors is
analyzed in order to detect and annotate the instructions responsible for
pushing and popping data into the FIFOs connected to each actor.

– Link: In the last step of the front-end, a full PaDaF IR of the application is
obtained by linking the complete SPDF graph with annotated actor code, as
detailed in [16].

• Back-end: The latter steps of the compilation flow, called the back-end, are
responsible for deploying the application on a specified heterogeneous architec-
ture.

Dataflow Modeling for Reconfigurable Signal Processing Systems 809

– Map/Schedule: Although mapping of the actors is currently manually spec-
ified by the application developer, the back-end is still responsible for
producing a quasi-static schedule of actor firings for each core.

– Check buffer: An analysis of the proposed mapping and scheduling is also
used to check that the memory capacity of the targeted platforms are not
exceeded.

– Codegen (Assembly (ASM))Finally, the annotated internal data access patterns
of actors exposed in the PaDaF IR are used in the code generation step in
order to generate calls to on-chip communication primitives, and to produce
efficiently pipelined ASM code.

The efficiency of this SPDF compilation flow is demonstrated in [16] for the
deployment of several Software Defined Radio (SDR) applications on a domain-
specific MPSoCs. The performance of the synthesized software for evaluated SDR
applications is shown to be equivalent to handwritten code.

3.4 Software Reconfiguration for Dynamic Dataflow Graphs

Applications specified with dynamic dataflow MoCs do not, in general, exhibit a
safe reconfigurable behavior as defined in Sect. 2.1. Hence, software implementation
techniques presented in previous sections that exploit the compile-time and runtime
predictability of reconfigurable behavior can not, in general, be applied to dynamic
dataflow graphs. This section presents how a design flow integrating reconfigurable
software components can be used to improve the implementation of dynamic
dataflow graphs. Here, a software component designates an application independent
piece of software supporting the execution of a dynamic dataflow graph by manag-
ing and monitoring its deployment onto a target architecture. Reconfigurability of
these software components comes from their capability to change their deployment
strategies at runtime in order to impact a performance indicator (e.g. latency, energy
consumption, . . .), in a controlled and predictable way.

Figure 15 presents an overview of an energy-aware design flow, proposed in [55],
for video decoding applications specified with dynamic dataflow graphs. The design
flow is composed of three main parts:

1. a modular specification of the application based on a dynamic dataflow
MoC [64],

2. reconfigurable software components controlling the energy of the deployed
application

3. a hardware platform embedding energy and performance sensors

RVC-CAL [10] is a language standardized by the Motion Picture Expert Group
(MPEG) committee to specify video decoders. In RVC-CAL, a set of widely used
video decoding basic building blocks, like discrete cosine transforms, variable
length coding algorithms, or deblocking filters, can be composed into a network

810 K. Desnos and F. Palumbo

RVC-CAL
Standard

Video
Decoding
Building
Blocks

Video
Decoder
Networks

Compose

JADE
(Just-in-time Adaptive Decoder Engine)

Reconfiguration
Engine

Hardware
Platform

Just-In-Time
Compilation

Energy
Manager MonitorTrigger

Perf.
Counter
Battery
Level

FeedSelect

Input
Bitstream

Decoded
Video

Fig. 15 Overview of an energy-aware design flow for dynamic dataflow graphs [55]

in order to specify a complete video decoder. Network specified with RVC-CAL

implements the Dataflow Process Network (DPN) semantics [38], which is a non-
deterministic model close to the CFDF MoC. RVC-CAL descriptions of several video
decoders with diverse computational complexity are used as inputs of the design
flow presented in Fig. 15.

The Just-in-time Adaptive Decoder Engine (JADE), which constitutes the second
stage of the design flow presented in Fig. 15, is a software component built with
LLVM [24]. The main purpose of JADE is to manage on-the-fly the execution of
platform-independent RVC-CAL networks onto various hardware platforms. To do
so, JADE translates a selected network of RVC-CAL actors into the LLVM IR, and
feeds it to the just-in-time LLVM compiler and interpreter for the targeted platform.

The energy manager that was integrated within JADE in [55] is the key recon-
figurable software component of the design flow presented in Fig. 15. The first
objective of the energy manager is to monitor the execution of the application on the
targeted platform in order to build an energy model of its energy consumption [55].
Monitoring of the application is achieved by automatically inserting calls to
instrumentation functions reading performance monitoring counters of the targeted
platform. Using the energy model built from monitoring information, the energy
manager is able to estimate precisely the energy consumption of the different video
decoders at its disposition. The second responsibility of the energy manager is to
control the energy consumption of the system by triggering reconfigurations of the
currently executed network. A typical scenario for reconfiguration occurs when the
energy manager estimates that the remaining battery charge is insufficient to finish
decoding a video stream of known length. In such a scenario, the energy manager
may trigger a reconfiguration to a different network with lower computational
complexity and lower quality, but which will reduce energy consumption. Practical
evaluation of this energy-aware design flow [55] shows the efficiency of this
approach on the latest HEVC video standard.

Further work on the use of software reconfiguration techniques for implementing
dynamic dataflow MoCs is presented in [68]. In this work, a low-cost monitoring of
the execution all actors of a DPN is used to obtain statistics on their execution time.
Using this monitoring information, a runtime manager may trigger a reconfiguration
of the mapping of the different actors on the different Processing Element (PE) of
the targeted architecture.

Dataflow Modeling for Reconfigurable Signal Processing Systems 811

Fig. 16 Overview of the classical computing spectrum: performance versus flexibility

4 Dataflow-Based Techniques for Hardware Reconfigurable
Computing Platforms

Flexibility and adaptivity of a signal processing system at the hardware level may
be achieved by means of reconfigurable computing. In recent years, reconfigurable
computing has become a popular hardware design paradigm for accelerating a wide
variety of applications. Hardware reconfiguration is commonly used as a way to
enable kernel execution over specialized and optimized circuits, retaining much of
the flexibility of a software solution.

Figure 16 depicts a very general overview of the classical computing spectrum,
whose extremes are represented by Central Processing Units (CPUs)—generic
and extremely flexible—and Application Specific Integrated Circuits (ASICs)—
dedicated, non programmable, circuits customized and highly optimized for a given
functionality. CPUs are capable of executing any type of code their compilers
can translate into machine code, with average performance and very limited
optimization capabilities. The flexibility of CPUs comes at the expense of—medium
to highly—complex hardware micro-architectures requiring a significant amount of
silicon area for their implementation to be able to serve a complete instruction set. In
ASIC designs, resources are minimized since the architecture is forged accordingly
to the native execution flow of the implemented application, while operating
frequency, throughput and energy consumption may be optimized according to the
given constraints. A counterpart of this highly optimized design is that ASICs are
not flexible at all, as their hardwired datapath can execute no other function than the
one they are meant for. Reconfigurable computing infrastructures lays in between,
representing an appealing option since they are capable of guaranteeing a trade-off
among the aforementioned extremes. In practice, reconfigurable hardware allows
customizing the execution infrastructure by allowing runtime (re-)programmability
of datapaths to implement application-specific datapaths, thus providing flexibility.
Switching and programmability capabilities determine the type of implementable
reconfiguration that, as discussed hereafter, can take place at different granularities.

Studies on the subject of reconfigurable hardware dates back to nineties and
have been surveyed in several different works along time [15, 27, 34, 62, 63,
65]. Reconfigurable hardware guarantees different degrees of flexibility, being
(re-)programmable over a given set of functionalities, but still offering specialization
advantages. Nevertheless, as in any specialized design, programmability design does

812 K. Desnos and F. Palumbo

not come for free: it requires the programmers to have a deep knowledge and
understanding of the architectural details. This drawback traditionally limited the
wide usage of reconfigurable computing systems. Field Programmable Gate Array
(FPGA) platforms, for example, were typically considered merely as development
boards for prototyping activities, rather than an actual target.

The main purpose of this section is to understand how dataflow-based speci-
fications and design flows can be used to facilitate the design of reconfigurable
computing infrastructures. Before that a bit of terminology has to be introduced.
Different types of classification of reconfigurable computing systems are available.
We will refer hereafter mainly to coarse grained (CG) and fine grained (FG)
reconfigurable platforms. These two types of architectures differ for the size of the
hardware blocks that are reconfigured.

• Coarse Grained (CG) reconfigurable computing systems involve a fixed set
of—often programmable—Processing Elements (PEs) connected by means of
dedicated routing blocks [15]. The basic idea behind these systems is to
maximize resource re-use among different target applications. PEs are managed
in a time multiplexed manner to serve different functionalities at different
execution instants. The number of interchangeable scenarios is typically fixed
and at runtime the system can switch from one execution to another.

• Fine Grained (FG) reconfigurable computing systems can execute a theoretically
infinite number of different functions, since programmability takes place at the
single bit level. An example of this kind of platforms is provided by FPGAs
that are programmable both at design time and at runtime. Change of context
while executing requires the support of partial dynamic reconfiguration [2, 66],
meaning that part of the executed bitstream is re-loaded with a previously
generated configuration(s) stored on a dedicated memory accessed from a
configuration module.

4.1 Dataflow-Driven Coarse Grained Reconfiguration

Coarse grained reconfigurable systems, as already said, rely on the execution of a
set of different applications on the same hardware substrate, typically composed
of several PEs that are highly re-usable to implement various target specifications.
CG reconfiguration strategies can be adopted both on ASIC and FPGA technologies
and, being extremely modular, the instantiated PEs can be deeply optimized.

As shown in Fig. 17, the set of PEs used in a CG reconfigurable systems, can be
homogeneous, which means that all PEs are identical computing blocks, or hetero-
geneous, which means that PEs are application specific, not identical, computing
blocks. Moreover, the computing fabric may not necessarily be composed of a
regular infrastructure, i.e. the communication backbone will include as many links
as needed and will not be based on a fully connected grid infrastructure as in array-
based systems. PEs are normally not constrained in terms of computing granularity:

Dataflow Modeling for Reconfigurable Signal Processing Systems 813

HOMOGENOUS HETEROGENEOUS

ALU ALU

ALU ALU

REGULAR, FULLY
CONNECTED,

INTERCONNECT

ALU ALU

ALU ALU

CUSTOMIZED
INTERCONNECT

SUB ADD

ADD MEM

REGULAR, FULLY
CONNECTED,

INTERCONNECT

SUB ADD

ADD MEM

CUSTOMIZED
INTERCONNECT

RE
G

U
LA

R
BA

CK
BO

N
E

CG ARRAY OF
HOMOGENEOUS PE

CG ARRAY OF
HETEROGENEOUS PE

IR
RE

G
U

LA
R

BA
CK

BO
N

E

FULLY CUSTOMIZED
RECONFIGURABLE DATAPATH

CUSTOMIZED DATAPATH
WITH HOMOGENEOUS PE

Fig. 17 CG reconfigurable architectures: classification

they can range from a simple ALU to a complex discrete cosine transform in a Video
Codec platform. The work of Beaumin et al. on multi-context accelerator [5] can be
considered as a first attempt to combine dataflow specifications and reconfigurable
computing concepts. In the RVC-CAL context, Beaumin et al. [5] propose a
reconfigurable co-processor in charge of executing different Dataflow Process
Network (DPN). The design of the reconfigurable co-processor is based on a set
of heterogeneous PEs, called network units, where each of network unit is capable
of executing a different kernel represented by means of DPN. Each network unit
instantiates as many processing units as needed to implement the CAL actors in
a given input DPN; these processing units communicates together by means of
communication channels, provided in hardware as FIFO queues. An example of
network unit is depicted in Fig. 18. Each network unit is configurable at design time
so that each processing unit can be customized to execute different actors, as well
as the interconnection among them. Indeed, the interconnection infrastructure needs
to enable every processing unit to be connected to every FIFO, which is achieved by
leveraging on a full mesh infrastructure configured for every CAL network deployed
on the co-processor. This type of reconfigurable architecture can be classified among
the CG reconfigurable one, where the network units are the PEs. Moreover, it may
be considered heterogeneous since different numbers of processing units and FIFOs

814 K. Desnos and F. Palumbo

A B C

HOST PROCESSOR

NU_1

NU_N
CC: Communica�on Controller

NU: Network Unit
PU: Processing Unit

CC

CO-PROCESSOR

MAPPING

FULL MESH

MESH
CONTROLLER

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

PU

PU

PU

PU

NETWORK UNIT

Fig. 18 Dataflow process network based co-processor [5]

can be included in the instantiated network units, according to the DPNs that they
respectively implement, and each processing unit can be specialized to implement a
different datapath, according to the actor mapped over it.

The more a CG reconfigurable system is customized to fit application needs,
avoiding any extra PEs and unnecessary connections and adopting heterogeneous
PEs, the more it is possible to maximize its efficiency in terms of power, resources
usage and performance. On the other hand, besides design and debug issues,2 the
adoption of CG reconfigurable heterogeneous and irregular platforms is limited
by the fact that mapping is not so straightforward. Research efforts have been
undertaken to automate the application mapping process [3]. Dimensioning the
underlying hardware substrate and efficiently mapping several applications over it
are key challenges that can be addressed by combining the dataflow models to the
CG reconfigurable approach.

4.1.1 Heterogeneous Coarse-Grained and Runtime Reconfigurable
Architectures

To address the mapping problem, one possibility is provided by datapath merging
(DPM) techniques, whose primary goal is to minimize the number of PEs and
communication links integrated into a CG reconfigurable datapath. Given different
input datapaths, described as dataflow graphs, DPM combines the graphs into a
unique specification with minimal nodes and connections. Exploiting a graph-based
formalism favours resource re-use, both in terms of hardware modules (representing
the different nodes of the given specification) and interconnects (representing the
edges among the nodes). The outcome of this procedure is a reconfigurable datapath
graph that can be synthesized in hardware according to a one-to-one mapping
between graph nodes and hardware modules.

2As for any highly specialized system designers are required to define all the micro-architecture at
Register Transfer Level (RTL). All the details about the functionality-set to be implemented have
to be known and a lot of effort is spent in coding and debugging.

Dataflow Modeling for Reconfigurable Signal Processing Systems 815

* +

&

<<

* +

<<

* +

&

<<

* +

&

<<

G1 G2 G' G
a1 a2 a3

a4

a5

b1 b2

b3

a1/b1 a2/b2 a3/-

a4/-

a5/b3 a5/b3

a1/b1 a3/b2a2/-

a4/-

multiplexer
demultiplexer

+++

Fig. 19 The datapath merging problem [60]

Figure 19, from the work of Souza et al. [60], provides an example of DPM
among two input graphs, G1 and G2. G and G′ represent two possible solutions
of the DPM problem, where the switching elements, that allows to share resources
among G1 and G2, are indicated as multiplexers and demultiplexers. Resources are
minimized both in G and G′, as they present the same number of nodes and both
map the couples a1/b1 and a5/b3 over the same resources, but they have a different
amount of edges. In G edges are minimized since there is one more shared resource
that couples a3/b2 and, in turn, allows sharing the link between a3/b2 and a5/b3 to
connect the a3 to a5 (see G1) and b2 to b3 (see G2).

In the literature, several heuristic methods have been proposed to solve the
DPM problem. Moreano et al. [43] solve it as a maximum clique problem over a
compatibility graph. Nodes are compatible if they can be implemented by the same
hardware resource. The graph gives a full overview of the compatibility among
different possible mappings between the edges of the given input specifications.
Solving the maximum clique problem for the compatibility graph leads to one (or
more) mapping(s) capable of maximizing both resources and edges sharing that, in
turn, means minimizing the PEs and the interconnections necessary to implement a
datapath executing different input graph-based specifications. Two input graphs at a
time are merged so, having N input specifications implies to solve the DPM problem
N-1 times. The DPM problem is NP-complete, and it is currently impossible to find
an optimal solution with a polynomial complexity algorithm.

A polynomial time heuristic algorithm is adopted to solve it in [4]. Another
approach, proposed by Huang et al. in [31], solves the DPM problem using a
bipartite matching heuristic method. Two graphs at a time are considered and all the
possible mappings are weighted according to the number of sharable connections,
then maximum weights drive a certain merging solution.

In the RVC-CAL context, Palumbo et al. used DPM techniques [46] to create
runtime reconfigurable CG substrates, to be used as stand-alone reconfigurable
systems [58] or within application-specific accelerators [57]. In those works the
combination of the dataflow models and the CG reconfigurable design paradigm
is quite straightforward: each actor is mapped over a single and atomic PE, and
multiple input dataflows are combined together over the same substrate adopting a
DPM approach. In this way different input specifications share, where convenient,

816 K. Desnos and F. Palumbo

A B C

D E C

A
G C

F

SB: Switching BoxInput DPN: aplha, beta, gamma

GAMMA

BETA

ALPHA

A

F

D

SB

E

B

G

SB G

CONFIGURATION MANAGER

FIFO

FIFO

FIFO

FIFO

RUN TIME CG RECONFIGURABLE DATAPATH

SB CFIFO

Fig. 20 Dataflow to CG reconfigurable substrate [46]

common PEs that are accessed through programmable switching elements, named
switching boxes (SBs). SBs are placed at the crossroads among different paths
of data, forking or joining the execution flow of the different input networks.
Figure 20 provides an example of the CG reconfigurable datapath that may be
created leveraging on such an approach. Three different input specifications are
mapped over the same substrate that is capable of executing them one at a time, by
switching from one configuration to another. The configuration manager drives the
SBs according to the requested execution. This type of reconfigurable architecture
is a CG one by definition and the constituting PEs, whose granularity depends
on the actors in the given input specifications, are heterogeneous. To facilitate
the automatic definition of such an architecture, starting from RVC-CAL DPN
input specifications, it is possible to rely on the RVC-CAL compliant design flow
presented in [58]—and depicted in Fig. 21. In this design flow, an set of tools is
adopted to compose, optimize and synthesize the RTL description of the runtime
reconfigurable system. The CG reconfigurable datapath is assembled using the
following tools:

• the Multi-Dataflow Composer tool [47, 49]—capable of creating a multi-
functional high level description of a CG reconfigurable system applying
datapath merging techniques on a set of input DPNs specifications

• Xronos [7]—capable of providing High Level Synthesis (see Sect. 4.2) from
CAL to RTL of each single actor of the given input DPN

• TURNUS [14]—capable of optimizing the system, by means of high-level
profiling, to provide the optimal FIFO sizing (in the multi-dataflow case worst
case sizing is assigned).

RVC-CAL compliant reconfigurable architectures, assembled as in [58], can be
used as the CG reconfigurable processing core of a co-processing unit, as the one
presented in Fig. 21 [57].

A DPM-based technique has been used also in a recent work of Edwards et
al. [19]. They use the concept of compositional hardware circuits and exploit
Kahn Networks to merge and implement in hardware different dataflow networks
(Fig. 22).

Dataflow Modeling for Reconfigurable Signal Processing Systems 817

.xdf

IR

FRONT END

BACK END

CAL Actors
Library

O
RC

C

FRONT END

BACK END

M
DC mul�-flow

IR

C++ Java

HDL Comp
Library

Communic.
Protocol

Coarse-Grained HDL
Pla�orm

TURNUS XRONOS

WEIGHTS

BUFFER
SIZING

Fig. 21 Design environment for RVC-CAL compliant CG reconfigurable architectures [58]

HOST PROCESSOR

CC: Communica�on Controller
LOCAL MEM: Local Memory
CONF REG: Configura�on Registers Bank
FSM: Finite State Machine
CG RECONF CORE: Coarse Grained

Reconfigurable Datapath

CC

CO-PROCESSOR

LOCAL
MEM

CONF
REG

FSM

CG
RECONF

CORE

A

F

D

SB

E

B

G

SB G

CONFIGURATION MANAGER

FIFO

FIFO

FIFO

FIFO

RUNTIME CG RECONFIGURABLE DATAPATH

SB CFIFO

D E C
BETA

A B C
ALPHA A

G C
F

GAMMA

MDC

Fig. 22 Multi-Dataflow Composer (MDC) based reconfigurable co-processor [57]

4.1.2 Coarse-Grained and Runtime Reconfigurable Arrays

Another type of coarse-grain reconfigurable architecture combines a host processor
controller with an array of PEs. These PEs, which are typically small and simple
like ALUs, are connected together in the array with some local memories. CG
reconfigurable arrays are commonly used for efficient implementations of streaming
systems [1, 18, 41]. These architectures often exploit imperative programming
approaches to map and control the flow of data. The examples hereafter demonstrate
how dataflow models can be exploited for the same purposes.

WaveScalar, presented by Swanson et al. in [61], is a dataflow-based reconfig-
urable architecture that contains a pool of PEs, to which are dynamically assigned

818 K. Desnos and F. Palumbo

instructions: the WaveCache loads instructions from memory and assigns them to
PEs for execution. While instruction scheduling is dynamic and out-of-order, the
reference application is described as a dataflow graph. Basically, the WaveScalar
compiler translates the input imperative programs into a dataflow description, used
as the target code. WaveScalar does not implement dataflow-driven reconfiguration,
but it is certainly one of the first attempts to combine dataflow models with the CG
reconfigurable paradigm.

Galanis et al. have exploited a dataflow-based approach to map different func-
tionalities over the proposed reconfigurable computing array in [23]. In their work
the host processor is connected to a co-processing unit, implemented by means of
a reconfigurable datapath, where: (1) PEs are an ALU and a multiplier that can
take operands from other nodes or from a register bank; and (2) the interconnection
among PEs is a full crossbar (or a fat-tree network if scalability issues may arise).
Sub-graphs of the parts of the application to be accelerated are mapped over the
reconfigurable datapath and the control is generated by an embedded FPGA, which
support the overall control flow.

Niedermeier et al. [45], targeting streaming applications, exploited dataflow
principles for controlling the flow of data and configuring PEs of their CG
architecture. In particular, they configure each PE, including memory blocks, by
means of a finite state machine, whose stages are defined as dataflow actors with
input and output token patterns. Digital Signal Processing (DSP) applications are
particularly suitable to be implemented using such an approach.

Huang et al. [30] adopted dataflow-based control in order to manage complex
scheduling situations throughout the propagation of control tokens along with
the data to be processed. Such a self control strategy allows to relax mapping
and management issues, leveraging on a distributed approach and on a dynamic
dataflow control, getting rid of static scheduling. In this way, complex scheduling
situations due to latency variations (e.g. when a memory access occurs) are handled
transparently with token propagation.

4.2 Fine-Grained Dataflow-Driven Reconfiguration

Bit-level reconfigurability, traditionally required designers to have a deep knowl-
edge of the hardware design flow and hardware description languages. In the last
few years, High Level Synthesis (HLS) approaches became popular; they are meant
to speed up both hardware and software design process [42]. In particular, from
the hardware perspective, one of their advantages is relieving designers from the
definition of the RTL description of the system and its components.

A popular commercial HLS synthesizer is Vivado3 from Xilinx, which accel-
erates IP creation by enabling C, C++ and System C specifications to be directly

3https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

Dataflow Modeling for Reconfigurable Signal Processing Systems 819

T
A
S
K

1

Hot-swappable
Hardware modules

(HSHMs)

Partial configurations

T
A
S
K

1

T
A
S
K

2

T
A
S
K

N

FPGA

Base Module

Static configuration

+

+

+

=

=

=

FPGA

HSHMs
&

Base Module

Full configurations

FPGA

T
A
S
K

2

FPGA
FPGA

T
A
S
K

2

T
A
S
K

N

FPGA

Fig. 23 Spatial and temporal partitioning of an application in a FPGA exploiting DPR [53]

implemented into Xilinx programmable devices without the need to manually create
the RTL description. Similarly, but based on dataflow approaches, Xronos [7] and
the Caph compiler [59] are meant to provide dataflow-to-hardware generation.
Xronos, which has been developed within RVC-CAL context where dataflow
networks expressed using the CAL language based on the DPN MoC, is an evolution
of the CAL2HDL framework and the work done in [56]. One of the limitation of
Xronos is that it generates a target dependent descriptions implementable only on
Xilinx FPGA boards. This limitation is not true for the Caph approach that provides
target independent RTL descriptions of dataflow compliant systems, which can be
implemented both on ASIC and on FPGA.

Dynamic partial reconfiguration (DPR)4 is defined as the ability to modify, at
runtime and while the system is executing, blocks/slots of logic by downloading
partial bit files. The remaining logic, i.e. those slots where reconfiguration is not
applied, keeps running its execution without any interruption. As depicted in Fig. 23,
DSP applications may take advantage of DPR, changing tasks in the pipeline
while keeping the overall system functional. In this context, the dataflow paradigm
is used to address the problem of ensuring that reconfiguration is performed
at a convenient time, minimizing its impact on execution latency and memory
footprint. By capturing, at compile-time, the application execution in terms of
actors exchanging tokens along communications edges, dataflow networks provide
a clear definition of dependences. On top of that, their predictability property,
enforced by the semantics and execution rules (see Sect. 2.1), can be exploited

4https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.
html.

https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html

820 K. Desnos and F. Palumbo

to manage in advance slots reconfiguration order. In particular, Piat et al. in [53]
extended static dataflow description with additional properties to provide compile-
time analysis of the DPR influence on the system, to be able to assess early in the
design stage DPR time slots and memory requirements. To manage network based
reconfiguration, the Parameterized SDF (PSDF) MoC is adopted, since it is capable
of representing dynamic behaviors at network level. Network parameters impact
on scheduling/partitioning and memory footprint changes and, therefore, perfectly
matches the DPR needs that requires:

• To evaluate buffering requirements on DPR actor inputs—all the incoming edges
of the DPR actor are analyzed and the memory cost of the input path is evaluated.

• To manage slots reconfiguration—a dedicated DPR layer is modelled aside the
basic dataflow schedule to represent the reconfiguration instant for each DPR
actor, either based on user defined reconfiguration scheme or on network tokens
in the case of PSDF model.

In conclusion, as described in this Sect. 4, dataflow specifications may facilitate
both mapping and synthesis of coarse and fine grained reconfigurable computing
infrastructure to be used in the signal processing domain.

Acknowledgements This work was partially supported by the CERBERO (Cross-layer modEl-
based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid
envirOnments) Horizon 2020 Project, funded by the European Union Commission under Grant
732105.

References

1. Advanced Computer Architecture Group - University of California: Morphosys research
project. http://gram.eng.uci.edu/morphosys/

2. Altera: Increasing Design Functionality with Partial and Dynamic Reconfiguration in 28-nm
FPGAs (2010)

3. Ansaloni, G., Tanimura, K., Pozzi, L., Dutt, N.: Integrated kernel partitioning and scheduling
for coarse-grained reconfigurable arrays. IEEE Trans. on CAD of Integrated Circuits and
Systems 31(12), 1803–1816 (2012). http://dx.doi.org/10.1109/TCAD.2012.2209886

4. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem 1. Algorithmica
29(4), 610–637 (2001)

5. Beaumin, C., Sentieys, O., Casseau, E., Carer, A.: A coarse-grain reconfigurable hardware
architecture for rvc-cal-based design. In: Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on, pp. 152–159 (2010). https://doi.org/10.1109/DASIP.
2010.5706259

6. Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: Bpdf: A statically analyzable dataflow model
with integer and boolean parameters. In: Proceedings of the Eleventh ACM International
Conference on Embedded Software, p. 3. IEEE Press (2013)

7. Bezati, E., Mattavelli, M., Janneck, J.: High-Level Synthesis of Dataflow Programs for Signal
Processing Systems. In: 8th International Symposium on Image and Signal Processing and
Analysis (ISPA 2013) (2013)

8. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for dsp systems. Signal
Processing, IEEE Transactions on (2001). https://doi.org/10.1109/78.950795

http://gram.eng.uci.edu/morphosys/
http://dx.doi.org/10.1109/TCAD.2012.2209886
https://doi.org/10.1109/DASIP.2010.5706259
https://doi.org/10.1109/DASIP.2010.5706259
https://doi.org/10.1109/78.950795

Dataflow Modeling for Reconfigurable Signal Processing Systems 821

9. Bhattacharya, B., Bhattacharyya, S.S.: Quasi-static scheduling of reconfigurable dataflow
graphs for dsp systems. In: Proceedings 11th International Workshop on Rapid System Pro-
totyping. RSP 2000. Shortening the Path from Specification to Prototype (Cat. No.PR00668),
pp. 84–89 (2000). https://doi.org/10.1109/IWRSP.2000.855200

10. Bhattacharyya, S.S., Eker, J., Janneck, J.W., Lucarz, C., Mattavelli, M., Raulet, M.: Overview
of the mpeg reconfigurable video coding framework. Journal of Signal Processing Systems
63(2), 251–263 (2011)

11. Bouakaz, A., Fradet, P., Girault, A.: A survey of parametric dataflow models of computation.
ACM Trans. Des. Autom. Electron. Syst. 22(2), 38:1–38:25 (2017). https://doi.org/10.1145/
2999539. http://doi.acm.org.rproxy.insa-rennes.fr/10.1145/2999539

12. Boutellier, J., Lucarz, C., Lafond, S., Gomez, V.M., Mattavelli, M.: Quasi-static scheduling
of cal actor networks for reconfigurable video coding. Journal of Signal Processing Systems
63(2), 191–202 (2011). http://dx.doi.org/10.1007/s11265-009-0389-5

13. Boutellier, J., Sadhanala, V., Lucarz, C., Brisk, P., Mattavelli, M.: Scheduling of dataflow
models within the reconfigurable video coding framework. In: 2008 IEEE Workshop on Signal
Processing Systems, pp. 182–187 (2008). https://doi.org/10.1109/SIPS.2008.4671759

14. Casale-Brunet, S., Bezati, E., Mattavelli, M., Canale, M., Janneck, J.W.: Execution trace graph
analysis of dataflow programs: Bounded buffer scheduling and deadlock recovery using model
predictive control. In: Design and Architectures for Signal and Image Processing (DASIP),
2014 Conference on, pp. 1–6 (2014). https://doi.org/10.1109/DASIP.2014.7115623

15. Compton, K., Hauck, S.: Reconfigurable computing: A survey of systems and software. ACM
Comput. Surv. 34(2), 171–210 (2002). http://doi.acm.org/10.1145/508352.508353

16. Dardaillon, M., Marquet, K., Risset, T., Martin, J., Charles, H.P.: A new compilation flow
for software-defined radio applications on heterogeneous mpsocs. ACM Transactions on
Architecture and Code Optimization (TACO) 13(2), 19 (2016)

17. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: Pimm: Parameterized and
interfaced dataflow meta-model for mpsocs runtime reconfiguration. In: Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International Confer-
ence on, pp. 41–48. IEEE (2013)

18. Dongwook Lee Manhwee Jo, K.H.K.C.: FloRA: Coarse-grained reconfigurable architecture
with floating-point operation capability. In: International Conference on Field-Programmable
Technology (2009)

19. Edwards, S.A., Townsend, R., Kim, M.A.: Compositional dataflow circuits. In: Proceedings
of the 15th ACM-IEEE International Conference on Formal Methods and Models for System
Design, MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017, pp. 175–184
(2017). http://doi.acm.org/10.1145/3127041.3127055

20. Ersfolk, J., Roquier, G., Jokhio, F., Lilius, J., Mattavelli, M.: Scheduling of dynamic dataflow
programs with model checking. In: Signal Processing Systems (SiPS), 2011 IEEE Workshop
on, pp. 37–42. IEEE (2011)

21. Ersfolk, J., Roquier, G., Lilius, J., Mattavelli, M.: Modeling control tokens for composition
of cal actors. In: Design and Architectures for Signal and Image Processing (DASIP), 2013
Conference on, pp. 71–78 (2013)

22. Fradet, P., Girault, A., Poplavko, P.: Spdf: A schedulable parametric data-flow moc. In: 2012
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 769–774. IEEE
(2012)

23. Galanis, M.D., Dimitroulakos, G., Tragoudas, S., Goutis, C.E.: Speedups in embedded systems
with a high-performance coprocessor datapath. ACM Trans. Design Autom. Electr. Syst. 12(3),
35:1–35:22 (2007). http://doi.acm.org/10.1145/1255456.1255472

24. Gorin, J., Wipliez, M., Prêteux, F., Raulet, M.: Llvm-based and scalable mpeg-rvc decoder.
Journal of Real-Time Image Processing 6(1), 59–70 (2011)

25. Goubier, T., Sirdey, R., Louise, S., David, V.: σc: A programming model and language for
embedded manycores. In: International Conference on Algorithms and Architectures for
Parallel Processing, pp. 385–394. Springer (2011)

https://doi.org/10.1109/IWRSP.2000.855200
https://doi.org/10.1145/2999539
https://doi.org/10.1145/2999539
http://doi.acm.org.rproxy.insa-rennes.fr/10.1145/2999539
http://dx.doi.org/10.1007/s11265-009-0389-5
https://doi.org/10.1109/SIPS.2008.4671759
https://doi.org/10.1109/DASIP.2014.7115623
http://doi.acm.org/10.1145/508352.508353
http://doi.acm.org/10.1145/3127041.3127055
http://doi.acm.org/10.1145/1255456.1255472

822 K. Desnos and F. Palumbo

26. Ha, S., Oh, H.: Decidable signal processing dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

27. Hartenstein, R.W.: Coarse grain reconfigurable architecture (embedded tutorial). In: Pro-
ceedings of ASP-DAC 2001, Asia and South Pacific Design Automation Conference 2001,
January 30-February 2, 2001, Yokohama, Japan, pp. 564–570 (2001). http://doi.acm.org/10.
1145/370155.370535

28. Heulot, J., Boutellier, J., Pelcat, M., Nezan, J.F., Aridhi, S.: Applying the adaptive hybrid flow-
shop scheduling method to schedule a 3gpp lte physical layer algorithm onto many-core digital
signal processors. In: 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-
2013), pp. 123–129 (2013). https://doi.org/10.1109/AHS.2013.6604235

29. Heulot, J., Pelcat, M., Desnos, K., Nezan, J.F., Aridhi, S.: Spider: A synchronous parameterized
and interfaced dataflow-based rtos for multicore dsps. In: 2014 6th European Embedded
Design in Education and Research Conference (EDERC), pp. 167–171 (2014). https://doi.
org/10.1109/EDERC.2014.6924381

30. Huang, Y., Ienne, P., Temam, O., Chen, Y., Wu, C.: Elastic cgras. In: Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pp.
171–180. ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2435264.2435296

31. Huang, Z., Malik, S.: Managing dynamic reconfiguration overhead in systems-on-a-chip design
using reconfigurable datapaths and optimized interconnection networks. In: Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’01, pp. 735–. IEEE Press,
Piscataway, NJ, USA (2001). http://dl.acm.org/citation.cfm?id=367072.367934

32. Kee, H., Shen, C.C., Bhattacharyya, S.S., Wong, I., Rao, Y., Kornerup, J.: Mapping parame-
terized cyclo-static dataflow graphs onto configurable hardware. Journal of Signal Processing
Systems (2012)

33. Keinert, J., Deprettere, E.F.: Multidimensional dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn.
Springer (2013)

34. Kenneth Pocek Russell Tessier, A.D.: Birth and adolescence of reconfigurable computing:
a survey of the first 20 years of field-programmable custom computing machines. Field-
Programmable Custom Computing Machines, Annual IEEE Symposium on 00(undefined),
1–17 (2013). doi.ieeecomputersociety.org/10.1109/FPGA.2013.6882273

35. Ko, M.Y., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S.S., Kienhuis, B., Deprettere,
E.F.: Parameterized looped schedules for compact representation of execution sequences in
dsp hardware and software implementation. IEEE Transactions on Signal Processing 55(6),
3126–3138 (2007)

36. Lattner, C.: Llvm and clang: Advancing compiler technology. Proc. of FOSDEM (2011)
37. Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time dsp. In: Global

Telecommunications Conference and Exhibition’Communications Technology for the 1990s
and Beyond’(GLOBECOM), 1989. IEEE, pp. 1279–1283. IEEE (1989)

38. Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE 83(5), 773–801
(1995)

39. Leupers, R., Aguilar, M.A., Castrillon, J., Sheng, W.: Software compilation techniques
for heterogeneous embedded multi-core systems. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

40. Lin, S., Wang, L.H., Vosoughi, A., Cavallaro, J.R., Juntti, M., Boutellier, J., Silvén, O.,
Valkama, M., Bhattacharyya, S.S.: Parameterized sets of dataflow modes and their application
to implementation of cognitive radio systems. Journal of Signal Processing Systems 80(1),
3–18 (2015). http://dx.doi.org/10.1007/s11265-014-0938-4

41. Liu, L., Wang, D., Zhu, M., Wang, Y., Yin, S., Cao, P., Yang, J., Wei, S.: An energy-efficient
coarse-grained reconfigurable processing unit for multiple-standard video decoding. IEEE
Trans. Multimedia 17(10), 1706–1720 (2015)

42. Martin, G., Smith, G.: High-level synthesis: Past, present, and future. IEEE Design & Test of
Computers 26(4), 18–25 (2009). http://dx.doi.org/10.1109/MDT.2009.83

http://doi.acm.org/10.1145/370155.370535
http://doi.acm.org/10.1145/370155.370535
https://doi.org/10.1109/AHS.2013.6604235
https://doi.org/10.1109/EDERC.2014.6924381
https://doi.org/10.1109/EDERC.2014.6924381
http://doi.acm.org/10.1145/2435264.2435296
http://dl.acm.org/citation.cfm?id=367072.367934
doi.ieeecomputersociety.org/10.1109/FPGA.2013.6882273
http://dx.doi.org/10.1007/s11265-014-0938-4
http://dx.doi.org/10.1109/MDT.2009.83

Dataflow Modeling for Reconfigurable Signal Processing Systems 823

43. Moreano, N., Araujo, G., Huang, Z., Malik, S.: Datapath merging and interconnection sharing
for reconfigurable architectures. In: System Synthesis, 2002. 15th International Symposium
on, pp. 38–43 (2002)

44. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: MEMOCODE
(2004). https://doi.org/10.1109/MEMCOD.2004.1459852

45. Niedermeier, A., Kuper, J., Smit, G.: Dataflow-based reconfigurable architecture for streaming
applications. In: System on Chip (SoC), 2012 International Symposium on, pp. 1–4 (2012).
https://doi.org/10.1109/ISSoC.2012.6376365

46. Palumbo, F., Carta, N., Pani, D., Meloni, P., Raffo, L.: The multi-dataflow composer tool:
generation of on-the-fly reconfigurable platforms. Journal of real-time image processing 9(1),
233–249 (2014)

47. Palumbo, F., Carta, N., Pani, D., Meloni, P., Raffo, L.: The multi-dataflow composer tool:
generation of on-the-fly reconfigurable platforms. Journal of real-time image processing 9(1),
233–249 (2014)

48. Palumbo, F., Sau, C., Evangelista, D., Meloni, P., Pelcat, M., Raffo, L.: Runtime energy versus
quality tuning in motion compensation filters for hevc. IFAC-PapersOnLine 49(25), 145–152
(2016)

49. Palumbo, F., Sau, C., Fanni, T., Meloni, P., Raffo, L.: Dataflow-based design of coarse-grained
reconfigurable platforms. In: Signal Processing Systems (SiPS), 2016 IEEE International
Workshop on, pp. 127–129. IEEE (2016)

50. Pelcat, M., Aridhi, S., Piat, J., Nezan, J.F.: Physical layer multi-core prototyping: a dataflow-
based approach for LTE eNodeB, vol. 171. Springer Science & Business Media (2012)

51. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A dataflow-based
rapid prototyping framework for simplifying multicore dsp programming. In: Education and
Research Conference (EDERC), 2014 6th European Embedded Design in, pp. 36–40 (2014).
https://doi.org/10.1109/EDERC.2014.6924354

52. Piat, J., Bhattacharyya, S., Raulet, M.: Interface-based hierarchy for synchronous data-flow
graphs. In: SiPS Proceedings (2009). https://doi.org/10.1109/SIPS.2009.5336240

53. Piat, J., Crenne, J.: Modeling dynamic partial reconfiguration in the dataflow paradigm. In:
2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE (2014)

54. Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized
scheduling of dynamic dataflow applications. In: Proceedings of the 46th Annual Design
Automation Conference, pp. 923–926. ACM (2009)

55. Ren, R., Juarez, E., Sanz, C., Raulet, M., Pescador, F.: Energy-aware decoder management:
a case study on rvc-cal specification based on just-in-time adaptive decoder engine. IEEE
Transactions on Consumer Electronics 60(3), 499–507 (2014). https://doi.org/10.1109/TCE.
2014.6937336

56. Roquier, G., Bezati, E., Thavot, R., Mattavelli, M.: Hardware/software co-design of dataflow
programs for reconfigurable hardware and multi-core platforms. In: 2011 Conference on
Design and Architectures for Signal and Image Processing, DASIP 2011, Tampere, Finland,
November 2–4, 2011, pp. 171–177 (2011). http://dx.doi.org/10.1109/DASIP.2011.6136875

57. Sau, C., Fanni, L., Meloni, P., Raffo, L., Palumbo, F.: Reconfigurable coprocessors synthesis
in the mpeg-rvc domain. In: ReConFigurable Computing and FPGAs (ReConFig), 2015
International Conference on, pp. 1–8. IEEE (2015)

58. Sau, C., Meloni, P., Raffo, L., Palumbo, F., Bezati, E., Casale-Brunet, S., Mattavelli, M.:
Automated design flow for multi-functional dataflow-based platforms. Journal of Signal
Processing Systems 85(1), 143–165 (2016)

59. Sérot, J., Berry, F.: High-level dataflow programming for reconfigurable computing. In:
Proceedings of the 2014 International Symposium on Computer Architecture and High
Performance Computing Workshop, SBAC-PADW ’14, pp. 72–77. IEEE Computer Society,
Washington, DC, USA (2014). http://dx.doi.org/10.1109/SBAC-PADW.2014.18

60. Souza, C.C.d., Lima, A.M., Araujo, G., Moreano, N.B.: The datapath merging problem
in reconfigurable systems: Complexity, dual bounds and heuristic evaluation. J. Exp.
Algorithmics 10 (2005). http://doi.acm.org/10.1145/1064546.1180613

https://doi.org/10.1109/MEMCOD.2004.1459852
https://doi.org/10.1109/ISSoC.2012.6376365
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1109/SIPS.2009.5336240
https://doi.org/10.1109/TCE.2014.6937336
https://doi.org/10.1109/TCE.2014.6937336
http://dx.doi.org/10.1109/DASIP.2011.6136875
http://dx.doi.org/10.1109/SBAC-PADW.2014.18
http://doi.acm.org/10.1145/1064546.1180613

824 K. Desnos and F. Palumbo

61. Swanson, S., Schwerin, A., Mercaldi, M., Petersen, A., Putnam, A., Michelson, K., Oskin, M.,
Eggers, S.J.: The wavescalar architecture. ACM Trans. Comput. Syst. 25(2), 4:1–4:54 (2007).
http://doi.acm.org/10.1145/1233307.1233308

62. Tessier, R., Burleson, W.: Reconfigurable computing for digital signal processing: A survey.
VLSI Signal Processing 28(1–2), 7–27 (2001). http://dx.doi.org/10.1023/A:1008155020711

63. Tessier, R., Pocek, K.L., DeHon, A.: Reconfigurable computing architectures. Proceedings of
the IEEE 103(3), 332–354 (2015). http://dx.doi.org/10.1109/JPROC.2014.2386883

64. Theelen, B.D., Deprettere, E.F., Bhattacharyya, S.S.: Dynamic dataflow graphs. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

65. Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architectures in the
past 25 years: Overview and classification. In: International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation, SAMOS 2016, Agios Konstantinos,
Samos Island, Greece, July 17–21, 2016, pp. 235–244 (2016). http://dx.doi.org/10.1109/
SAMOS.2016.7818353

66. Xilinx: Partial Reconfiguration User Guide (2012)
67. Yviquel, H., Casseau, E., Wipliez, M., Gorin, J., Raulet, M.: Classification-based optimization

of dynamic dataflow programs. In: Advancing Embedded Systems and Real-Time Communi-
cations with Emerging Technologies, pp. 282–301. IGI Global (2014)

68. Yviquel, H., Sanchez, A., Mickaël, R., Casseau, E.: Technical Report: Multicore Runtime
for Dynamic Dataflow Video Decoders. Technical report, IETR/INSA Rennes; IRISA, Inria
Rennes (2017). https://hal.archives-ouvertes.fr/hal-01503378

http://doi.acm.org/10.1145/1233307.1233308
http://dx.doi.org/10.1023/A:1008155020711
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/SAMOS.2016.7818353
http://dx.doi.org/10.1109/SAMOS.2016.7818353
https://hal.archives-ouvertes.fr/hal-01503378

Integrated Modeling Using Finite State
Machines and Dataflow Graphs

Joachim Falk, Kai Neubauer, Christian Haubelt, Christian Zebelein,
and Jürgen Teich

Abstract In this chapter, different application modeling approaches based on the
integration of finite state machines with dataflow models are reviewed. Many well-
known Models of Computation (MoC) that are used in design methodologies
to generate optimized hardware/software implementations from a model-based
specification turn out to be special cases thereof. A particular focus is put on the
analyzability of these models with respect to schedulability and the generation of
efficient schedule implementations. Here, newest results on clustering methods for
model refinement and schedule optimization by means of quasi-static scheduling
are presented.

1 Intro

Dataflow graphs are widely accepted for modeling DSP algorithms, e.g., multimedia
and signal processing applications. For static Dataflow Graphs (DFGs), efficient
techniques for analyzing liveness, boundedness and throughput properties do exist.
However, modeling complex multimedia applications using only static dataflow
models is a challenging task. Often, dynamic dataflow models are applied that are
able to also model control flow. Indeed, these turn out to be a good fit for multimedia
and signal processing applications. However, the introduction of control flow in
dynamic dataflow actors has lead to problems concerning adequate information

J. Falk · J. Teich
University of Erlangen-Nuremberg, Hardware-Software-Co-Design, Erlangen, Germany
e-mail: joachim.falk@fau.de; jurgen.teich@fau.de

K. Neubauer · C. Haubelt (�)
University of Rostock, Applied Microelectronics and Computer Engineering,
Rostock-Warnemünde, Germany
e-mail: kai.neubauer@uni-rostock.de; christian.haubelt@uni-rostock.de

C. Zebelein
Valeo Siemens eAutomotive Germany GmbH, Erlangen, Germany
e-mail: christian.zebelein.jv@valeo-siemens.com

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_23

825

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_23&domain=pdf
mailto:joachim.falk@fau.de
mailto:jurgen.teich@fau.de
mailto:kai.neubauer@uni-rostock.de
mailto:christian.haubelt@uni-rostock.de
mailto:christian.zebelein.jv@valeo-siemens.com
https://doi.org/10.1007/978-3-319-91734-4_23

826 J. Falk et al.

extraction from these models to serve as a basis for the analysis of the previously
mentioned properties. Hence, neither static nor dynamic DFGs seem to be the
best choice to establish a design methodology upon it. As an alternative, different
modeling approaches integrating FSMs with DFGs have been proposed in the past.
However, this often comes with the drawback of decreased analysis capabilities.
Nevertheless, several successful academic system-level design methodologies have
emerged recently based on such integrated modeling approaches.

In this chapter, we will present different integrated modeling approaches
(cf. Sect. 2). Next, in Sect. 3, various ways to represent schedules for DFGs will
be discussed. Section 4 is devoted to the problem of clustering subgraphs of static
actors and computing Quasi-Static Schedules (QSSs) for these clusters to improve
scheduling efficiency. Subsequently, the computations of QSSs will be generalized
to DFGs with bounded channel capacities in Sect. 5. Finally, in Sect. 6, we recap the
important points of this chapter.

2 Modeling Approaches

In this section, we will discuss modeling approaches combining DFGs with
FSMs. Starting with the recapitulation of some fundamental dataflow models like
Synchronous Dataflow (SDF) [26] and Dynamic Dataflow (DDF), the *charts
(pronounced “star charts”) [21] formalism is introduced. The *charts formalism
was one of the first integrated modeling approaches implemented in the Ptolemy
project [11]. Later on, Extended Codesign Finite State Machines (ECFSMs) [31]
and SystemC Models of Computation (SysteMoC) [13] will be discussed.

2.1 Dataflow Graphs

DFGs are directed graphs of nodes (actors) and edges (channels). Actors have a
notion of firing that is an atomic computation that consumes a number of tokens
from each incoming edge (input channel) and produces a number of tokens on each
outgoing edge (output channel). More formally, a DFG is given as follows:

Definition 1 (DFG) A DFG is a directed graph g = (A,C), where the set of
vertices A represents the actors and the set of edges C ⊆ A × A represents the
channels. Additionally, a delay function delay : C → V∗ is given.1 It assigns to

1The ‘*’-operator is used to denote Kleene closure of a value set. It generates the set of all possible
finite sequences of values from a value set, that is X∗ = ∪n ∈ N0 : Xn. As is customary, N0 =
{0, 1, 2, 3, . . .} denotes the set of non-negative integers.

Integrated Modeling Using Finite State Machines and Dataflow Graphs 827

each channel (asrc, asnk) = c ∈ C a (possibly empty) sequence of initial tokens.2

The set V is the set of data values which can be carried by a token.

Moreover, if a DFG has limited channel capacities, then the function size : C →
N ∪ {∞ } is used to specify this.3 In the following, it is assumed that all channels
have unlimited capacities if not otherwise mentioned.

In SDF [26] graphs, the firing of an actor is an atomic computation that
consumes a fixed number of tokens from each incoming edge and produces a fixed
number of tokens on each outgoing edge. One subclass of SDF [26] graphs are
Homogeneous Synchronous Dataflow (HSDF) graphs, where each actor exactly
consumes and produces a single token from each incoming and on each outgoing
edge, respectively. Edges are conceptionally unbounded First In First Out (FIFO)
queues representing a possibly infinite stream of data. The consumption and
production rates can be used to unambiguously define a so-called iteration, which
is a firing sequence that returns the queues to their original state. The number of
firings of each actor in an iteration may be found by solving the balance equation
ηai prod(ai, aj) = ηaj cons(ai, aj) where the edge (ai, aj) is directed from actor
ai to actor aj . Moreover, prod(ai, aj) is the number of tokens produced by actor ai
onto this particular edge, whereas cons(ai, aj) is the number of tokens consumed
by actor aj . ηai and ηaj denote the number of actor firings of actor ai and aj ,
respectively, to return the edge (ai, aj) to its original state. Beside the trivial solution
ηai = ηaj = 0, one is typically interested in a minimal, but non-zero vector of actor
firings. Considering a network of |A| actors with |C| channels, there will be |C|
equations with |A| unknowns. For connected graphs, there exists either the only
solution ηa = 0,∀a ∈ A or a unique smallest solution, called the repetition vector
ηrep = (ηa1, ηa2 , . . . ηa|A|), with ηa > 0,∀a ∈ A. A more thorough treatment of
the SDF Model of Computation (MoC) can be found in chapter “Decidable Signal
Processing Dataflow Graphs” [22].

In DDF, actors consume and produce a variable number of tokens on each firing.
It is assumed that a DDF actor must assert, prior to any firing, the required number
of tokens on each input. If the requirements are met, the DDF actor can fire. A
detailed discussion of the DDF MoC can be found in chapter “Dynamic Dataflow
Graphs” [33].

2.2 *charts

One of the first modeling approaches integrating FSMs with dataflow models is
*charts (pronounced “star charts”) [21]. The concurrency model in *charts is not
restricted to be dataflow: Other choices are discrete event models or synchronous/re-

2In some dataflow models that abstract from token values, the delay function may only return a
non-negative integer that denotes the number of initial tokens on the channel. In such a context,
the number of initial tokens may also be called the delay of a channel.
3As is customary, N = {1, 2, 3, . . .} denotes the set of positive integers.

828 J. Falk et al.

active models. However, in the scope of this chapter, we will limit our discussion to
the FSM/dataflow integration.

We start by formally defining deterministic finite state machines:

Definition 2 (FSM) A deterministic FSM is a five tuple (Q,!,Δ, σ, q0), where
Q is a finite set of states, ! is a set of symbols denoting the possible inputs, Δ is
a set of symbols denoting possible outputs, σ : Q × ! → Q × Δ is the transition
mapping function, and q0 ∈ Q is the initial state.

In one reaction, an FSM changes from its current state qsrc ∈ Q given an input
symbol κ ∈ ! to a unique next state qdst ∈ Q and outputs the output symbol δ ∈ Δ,
where (qdst, δ) = σ(qsrc, κ). Given a sequence of input symbols, an FSM performs
a sequence of reactions starting in its initial state q0. Thereby, a sequence of output
symbols in Δ is produced.

FSMs are often represented by state transition diagrams. In a state transition
diagram, vertices correspond to states and edges model state transitions, see Fig. 1.
Edges are labeled by guard/action pairs, where guard ∈ ! specifies the input
symbol triggering the corresponding state transition and action ∈ Δ specifies the
output symbol to be produced by the FSM reaction. The edge without source state
points to the initial state.

One reaction of the FSM consists in taking a single enabled state transition.
An enabled state transition is an outgoing transition from the current state where
the guard matches the current input symbol. Thereby, the FSM changes to the
destination state of the transition and produces the output symbol specified by the
action.

The *charts approach allows nesting of DFGs and FSMs by allowing the
refinement of a dataflow actor via FSMs and allowing an FSM state to be refined
via a DFG. We first discuss how FSMs are used to refine dataflow actors.

2.2.1 Refining Dataflow Actors via FSMs

To use an FSM as a refinement for a dataflow actor, the consumption and production
rates have to be determined from the FSM for the refined actor. However, the
derivation of the consumption and production rates depends on the MoC of the DFG
containing the actor. The tokens on the channels connected to the refined dataflow
actor are mapped to the input alphabet ! of the refining FSM. In the guards of the
corresponding FSM, we will use the notation i[n] to refer to the value, e.g., Booleans
for the examples given in Figs. 1 and 2, of the nth token on the channel connected
to the input port i. In the action of the FSM, we will use the notation o[n] = v to
give the value v of the nth token to be produced on the channel connected to the
output port o. Each i[n] has a symbol subdomain !i,n associated with it and the
cross product of these subdomains form the input alphabet to the FSM. The same
is true for o[n] and the output alphabet Δ, thus perfectly matching the FSM model
of Definition 2. In each reaction of the FSM, the corresponding action might emit a
symbol from the output alphabet of the FSM, which can be used to derive a token
value to be produced on each outgoing edge of the actor.

Integrated Modeling Using Finite State Machines and Dataflow Graphs 829

i1[0]

i 2
[0

]/
o 1

[0
]=

f

i2[0]

¬i2[0]/o1[0] = i1[1]
q1

q2

q0a1 a2

o1

i1

i2

a3

FSMDDF

Fig. 1 Refinement of a DDF actor by an FSM in *charts

t/o2[0] = i3[0]∧ i3[1]
i1[0]/o1[0] = t

¬i
1[
0]

/o
1[
0]

=
f

t/o1[0] = i2[0]

q0q1q0

a2

a1
a1

a2FSMFSM
SDF

2
1

1
11

i1

i2

o1 i3 o2

Fig. 2 Refinement of SDF actors by FSMs in *charts

FSM in Dynamic Dataflow [11] If an FSM is used to define the firing semantics
of a DDF actor, then each state of the FSM is associated with a number of tokens
that will be consumed by the next firing of the actor. The semantics is as follows:
For a given state q of the FSM, the number of consumed tokens is determined by
examining each outgoing transition of the state. For each input port i of the actor,
the maximum index n is determined with which the input port i occurs in any of the
transitions leaving the state q . If an input port i does not occur in any transition, an
index of −1 is assumed for this port. Then, for the given state q the consumption
rate for each input port i is the maximum index n incremented by one. Note that this
derivation of the consumption rates implicitly produces actors which are continuous
in Kahn’s sense [24]. An introduction to Kahn Process Networks (KPNs) can be
found in chapter “Kahn Process Networks and a Reactive Extension” [19].

To illustrate the above concept, consider state q0 in the FSM depicted in Fig. 1
refining the dynamic actor a2. In this case, regardless if the transition to q1 or q2 is
taken, the actor will consume exactly two tokens from i1 and one token from i2.

FSM in Synchronous Dataflow [11] When an FSM refines an SDF actor, it must
externally obey SDF semantics, i.e., the actor must consume and produce a fixed
number of tokens upon each firing.

Consider Fig. 2 as an example. The shown SDF model consists of two actors
connected by a single edge. The minimal repetition vector is ηa1 = 2 and ηa2 = 1.
Since the edge (a1, a2) contains no initial tokens, each iteration consists of two
firings of actor a1 before actor a2 is fired once. First, actor a1 fires if at least one
token is available on each input edge. After the second firing of actor a1, actor a2 is
enabled.

830 J. Falk et al.

We now consider the description of SDF actors by FSMs. In the simplest case, the
consumption and production rate of each state of the FSM are equal. Then, the FSM
can be used unmodified as an SDF actor where the consumption and production rate
of the actor are rates which hold in each state of the FSM. An example of such an
FSM can be seen for the refinement of the SDF actor a2 in Fig. 2. The FSM neatly
corresponds to the SDF model consuming two tokens and producing one token in
each reaction.

However, the FSM describing the firing semantics of actor a1 in Fig. 2 does
not correspond to the simple case. In this case, the consumption and production
rates of the refined SDF actor are defined as the maximum of the consumption and
production rates of each state of the FSM. If consumed tokens are not present in
the guards leaving a state, they are simply ignored. If values of produced tokens are
not specified in the action of an enabled state transition, the values are interpreted
as ε values indicating the absence of values. Note that even an ε value produces
a token in the enclosing DFG. This solution is a little unsatisfactory and indeed
there is another approach to handle this case. The FSM can be embedded into a
heterochronous dataflow graph.

FSM in Heterochronous Dataflow The idea of Heterochronous Dataflow (HDF)
is similar to parameterized dataflow modeling [5], that is, dynamic behavior is
allowed and is represented via FSMs. However, all FSMs in the heterochronous
dataflow graph are forced to only change state once the heterochronous dataflow
graph has executed a full iteration. This constraint ensures that the consumption and
production rates of the HDF actor does not change while the HDF graph executes its
iteration. However, after the iteration is finished, the HDF actors are free to update
their state leading to new consumption and production rates for the HDF actors
in the system. With these new consumption and production rates, a new balance
equation is solved and a new repetition vector calculated which is executed in the
next iteration. For the duration of this next iteration, all HDF actors have to keep
their consumption and production rates unmodified.

Let us consider again Fig. 2. But now instead of an SDF domain, we use an HDF
domain. In the case that actor a1 is in state q0, to execute a full iteration of the HDF
graph, the actor a1 is executed twice—consuming two tokens from i1—and the actor
a2 is executed exactly once. Note that while actor a1 is executed, it remains in state
q0 regardless of the value i1[0] of the first token on input port i1. After the full
iteration of the SDF graph has finished, the FSM of actor a1 may change its state to
q1 depending on the value i1[0] of the first token on input port i1. In the case that
actor a1 is now in state q1, a full iteration of the HDF graph corresponds again to
the actor firing sequence 〈a1, a1, a2〉. However, two tokens from input port i2 will be
consumed and none from i1. After the full iteration of the SDF graph has finished,
the FSM of actor a1 will change its state to q0.

Integrated Modeling Using Finite State Machines and Dataflow Graphs 831

2.2.2 Refining FSM States via Dataflow Graphs

Previously, we have seen how an FSM can be used to refine a dataflow actor. On
the opposite side, an FSM can be used to coordinate between multiple DFGs. This
coordination is achieved by refining FSM states by DFGs. The DFG is composed
into a single actor which is executed if the FSM is in the refined state. To refine a
state by a DFG, a notion of iteration is necessary as the execution of one reaction
of the FSM has to terminate. An iteration has been chosen as a natural boundary to
stop the execution of the embedded DFG. However, the existence of a finite iteration
is undecidable for general DFGs. Hence, the application of refinements of states to
DFGs is restricted in *charts to certain subclasses of dataflow, e.g., SDF [26] and
Cyclo-Static Dataflow (CSDF) [7] graphs, which provide such a notion of iteration
naturally. Moreover, combining the actors in a subgraph of a DFG into a single
actor, which will execute an iteration for the subgraph, is not always possible. The
problem is treated in detail in Sect. 4.

As an example, consider Fig. 3a, which is taken from [21]. The FSM of actor a1
consists of two states q0 and q1. If the current state of the FSM is not refined, e.g., q0,
the FSM reacts like an ordinary FSM. State q1 is refined by an SDF graph consisting
of two actors a2 and a3 which are connected by a single edge. The minimal repetition
vector may be determined as ηa2 = 2, ηa3 = 1, i.e., the repetition vector is satisfied
by two firings of actor a2 followed by one firing of actor a3 implementing one
iteration of the SDF graph. Assuming the above behavior, the SDF graph can be
substituted by a single SDF actor as shown in Fig. 3b. If a DFG refines a state of an
FSM, the firing rules of the DFG are exported to the environment of the FSM, i.e., if
the FSM is in the state which is refined by the DFG, then for a reaction of the FSM
exactly as many tokens will be required as for the execution of the iteration of the
embedded DFG.

After the embedded DFG has finished its iteration, the FSM will execute a
transition. If the FSM is embedded in the DDF or SDF domain, then the FSM

i1[0]∧ i1[1]∧ i1[2]∧ i1[3]/o2[0] = i1[0]∨ i1[3]

i2[0]∧ i2[1]

i1[0]∧ i1[1]∧ i1[2]∧ i1[3]/o2[0] = i1[0]∨ i1[3]

i2[0]∧ i2[1]
q1q0 q1q0

a2
1

o1

i1

i2

2

1

a3

i3 o2
2 2

SDF

a1FSM a1FSM

ag2,3i1
4

2

i2

o2
2

SDF

(a) (b)

Fig. 3 (a) SDF graph refining a state. (b) SDF graph is substituted by a single SDF actor

832 J. Falk et al.

executes a transition after the corresponding DFG has finished its iteration. If the
FSM is embedded in the HDF domain, then this transition is delayed until all parent
graphs have finished their iteration.

Assuming that FSM a1 is in state q1, the FSM is not embedded in an HDF
graph, and the tokens i2[0] and i2[1] have both the presence value (note that tokens
carrying ε values are still tokens and not absence of tokens), then the next activation
of actor a1 will execute the embedded SDF graph for one iteration followed by a
state transition to state q0.

2.3 Extended Codesign Finite State Machines

The Extended Codesign Finite State Machine (ECFSM) MoC has been presented
in [31]. As will be seen, the original Codesign Finite State Machine (CFSM) MoC
used in POLIS [3] is a special case of the ECFSM MoC. Both models, however, are
refinements of the Abstract Codesign Finite State Machine (ACFSM) Model, also
presented in [31].

In this section, we will therefore first introduce the ACFSM Model of Compu-
tation, followed by the discussion of the refinement step which transforms a given
ACFSM into an ECFSM. An ACFSM is a formal model consisting of a network
of FSMs (in the following called actors) connected via unbounded FIFO channels.
Tokens (also called events) are transmitted across the channels carrying data values
of some data type. Figure 4 shows an example of such a dataflow network consisting
of several ACFSMs.

Briefly, a single ACFSM consists of an FSM controlling the communication
behavior of the actor, transforming a finite sequence of input tokens into a finite
sequence of output tokens.

In order to formally describe the behavior of a single ACFSM, we will first look
at the behavior of the Filter actor from Fig. 4. Its task is to filter a sequence
of pixels from the Producer actor by multiplying all pixels of a frame by a
coefficient (provided by the Controller actor). At the beginning of each frame,
the Producer actor writes two tokens onto the output out containing the number
of lines per frame and the number of pixels per line, respectively. These two values

Producer

Controller

Filter Consumer

in

coeff

out

out

coeff

in

Fig. 4 DFG of the filter example: The ACFSMs (Producer, Controller, Filter and
Consumer) are connected via FIFO channels. The Filter actor has two inputs (in and coeff)
from which tokens are consumed and one output (out) onto which tokens are produced

Integrated Modeling Using Finite State Machines and Dataflow Graphs 833

1 module Filter {
2 input byte in, coeff;
3 output byte out;
4 i n t nLines, nPix, line, pix;
5 byte b;
6 f o re v e r {
7 (nLines, nPix) = read(in, 2);
8 b = read(coeff, 1);
9 f o r(line = 0; line < nLines; ++line) {

10 i f (p re s e n t(coeff, 1))
11 b = read(coeff, 1);
12 f o r(pix = 0; pix < nPix; ++pix) {
13 w r i t e(out, read(in, 1) * b, 1);
14 }
15 }
16 }
17 }

Fig. 5 Behavior of the Filter actor shown in Fig. 4

are read by the Filter actor from the input in, whereas the initial multiplication
coefficient is read from the input coeff. For each line, the coefficient values may
change, depending on whether or not a token is available on the input coeff.
Subsequently, the filtered pixels are written onto output out.

The behavior of the Filter actor can be represented by C-like pseudocode as
shown in Fig. 5. There exist three primitives which can be used in order to access
the FIFO channels connected to the inputs and outputs of the actor: read(in,
n) and write(out, data, n) consume and produce n tokens from input in
and output out, respectively. Note that whereas read blocks until enough tokens
are available, write never blocks, as the FIFO channels are unbounded. The third
primitive present(in, n) returns true if at least n tokens are available on the
input in.

In order to transform the Filter pseudocode into an ACFSM, we will now
discuss the formal definition of an ACFSM:

Definition 3 (ACFSM) An ACFSM is a triple a = (I,O, T) consisting of a finite
set of inputs I = {i1, i2, . . . , in}, a finite set of outputs O = {o1, o2, . . . , om}, and
a finite set of transitions T . In the following, we will use i[n] to indicate the token
on the nth position on the FIFO channel connected to input i ∈ I (as seen from
the ACFSM). Analogously, we will use o[m] to indicate the token produced by a
transition onto the mth position on the FIFO channel connected to output o ∈ O .

Definition 4 A transition of an ACFSM is a tuple T = (req, cons, prod, fguard,

faction): The input enabling rate req : I → N0 maps each input i ∈ I to the number
of tokens which must be available on the channel connected to i in order to enable
the transition. The input consumption rate cons : I → N0 ∪ {ALL} specifies for
each input i ∈ I the number of tokens which will be consumed from the channel
connected to i when the transition is executed. Specifying cons(i) = ALL for a

834 J. Falk et al.

given input i resets the channel connected to i, i.e., all tokens currently stored in
the channel are consumed. Otherwise, a transition is not allowed to consume more
tokens than requested, i.e., cons(i) ≤ req(i). Analogously, the output production
rate prod : O → N0 specifies for each output o ∈ O the number of tokens which
will be produced on the channel connected to o when the transition is executed. The
guard function fguard is a Boolean-valued expression over the values of the tokens
required on the inputs, i.e., {i[n] | i ∈ I∧0 ≤ n < req(i)}. Note that only if both the
input enabling rate req and the guard function fguard are satisfied, a transition can
be executed. Finally, the action function faction determines the values of the tokens
which are to be produced on the outputs, i.e., {o[m] | o ∈ O ∧ 0 ≤ m < prod(o)},
when the transition is executed.

Moreover, ACFSMs cannot have explicit state variables. Nevertheless, these can
be modeled by state feedback channels, i.e., by an input/output pair of an ACFSM
which is connected to the same channel containing a certain state variable. If a
transition wants to update the state variable, it must consume the token containing
the old value, and produce a token containing the new value.

The execution semantics of an ACFSM can be described as follows: Initially, an
ACFSM is idle, i.e., waiting for input tokens. An ACFSM is ready if at least one
transition t ∈ T is enabled, i.e., if both the input consumption rate t . req and the
guard function t .fguard are satisfied. Subsequently, a single enabled transition t will
be chosen, transitioning the ACFSM into the executing state. During the executing
state, the ACFSM atomically consumes tokens from the inputs according to t . cons,
performs the action function t .faction, and produces tokens on the outputs according
to t . prod.

It should be noted that due to the non-blocking reads which can be implemented
by ACFSMs, they are not continuous in Kahn’s sense [24], i.e., the arrival of tokens
at different times may change the behavior of the DFG.

In [31], the authors claim that “ACFSM transitions [. . .] can be conditioned to
the absence of an event over a signal”. In principle, there are two possibilities how
this could be modeled:

• Provide a special syntax for the input enabling rate such that also checks for
empty channels can be expressed. However, the input enabling rate as given
in Definition 4 only permits the expression of minimum conditions. Therefore,
an input i with req(i) = 0 could lead to the execution of the corresponding
transition even if the channel connected to i is not empty.

• Specify priorities for the transitions of an ACFSM such that transitions requiring
more tokens can have a higher priority than transitions requiring less tokens.
However, in the original paper [31] it is also stated that “if several transitions
can be executed [. . .], the ACFSM is non-deterministic and can execute any
of the matching transitions”, i.e., there seems to be no concept of priorities for
transitions.

For example, lines 10–11 in Fig. 5 cannot be adequately modeled without
checking for the absence of tokens: One transition is needed which checks if at

Integrated Modeling Using Finite State Machines and Dataflow Graphs 835

least one token is available on input coeff, i.e., req(coeff) = 1. However, as we
do not want to block execution if there is no token available, a second transition
is needed with req(coeff) = 0. As discussed above, the second transition could
be executed even if the corresponding channel is not empty. Without the means of
expressing a check for an empty channel, we can only assume that the first transition
has a higher priority than the second, allowing us to check for the absence of a new
multiplication coefficient.

The behavior of the Filter actor given in Fig. 5 can be transformed into
an ACFSM as follows: First, feedback channels are added for the state variables
nLines, nPix, line, pix and b. Additionally, a feedback channel is needed for
storing the current state of the ACFSM, state. The corresponding input/output
pairs will be named accordingly, resulting in

• the set of inputs I = {in, coeff, nLines, nPix, line, pix, b, state} and
• the set of outputs O = {out, nLines, nPix, line, pix, b, state}.
We assume that an initial token with a value of 0 is placed on each state feedback
channel.

The resulting transitions are shown in Table 1. For example, the first transition
can be enabled if two tokens are available on input in, one token on coeff,
and one token on each input connected to a state feedback channel (except
pix). Additionally, the current state of the ACFSM must be the initial state, i.e.,
the value of the (single) token on input state must represent the initial state,
i.e., state[0] = 0. If these requirements are satisfied, the transition will be
executed, and the specified output tokens produced: For example, the value of the
first token consumed from input in is used to produce the single token on output
nLines. Note that the value of the current state is set to 1, allowing other transitions
to be executed.

In conclusion, ACFSMs specify the topology of the DFG and the functional
behavior of each module. However, the communication over unbounded channels
with FIFO semantics needs to be refined in order to be implementable with a finite
amount of resources. This refinement from infinite-sized queues to implementable
finite-sized queues is exactly the transformation from an Abstract CFSM into an
Extended CFSM, and will be briefly discussed in the following.

Write operations carried out by the transitions of an ACFSM are always non-
blocking, as the corresponding channels have an infinite capacity. For a given
finite-sized channel, however, if write operations should be non-blocking and the
channel in question is full, new data arriving on the channel will overwrite old
data stored in the channel. If this behavior is not desired, different approaches
may be applied. First, it is often sufficient to increase the channel’s capacity. This
approach fails, however, if the average production rate of the producer is greater
then the average consumption rate of the consumer. In general, calculating sufficient
channel capacities is undecidable. Therefore, ECFSMs introduce blocking behavior
to prevent data loss. Finally, traditional CFSMs are a special case of ECFSMs, where
all channels have a capacity of one.

836 J. Falk et al.

Table 1 Corresponding ACFSM of the Filter actor shown in Fig. 5 consisting of six
transitions

(req(i), cons(i))/fguard prod(o)/faction

in coeff nLines nPix line pix b state out nLines nPix line pix b state

2 1 1 1 1 0 1 1 0 1 1 1 0 1 1

state[0] = 0

nLines[0] ⇐ in[0]
nPix[0] ⇐ in[1]
line[0] ⇐ 0

b[0] ⇐ coeff[0]
state[0] ⇐ 1

0 0 (1,0) 0 (1,0) 0 0 1 0 0 0 0 0 0 1

state[0] = 1 ∧ line[0] = nLines[0] state[0] ⇐ 0

0 1 (1,0) 0 (1,0) 1 1 1 0 0 0 0 1 1 1

state[0] = 1 ∧ line[0] < nLines[0]
b[0] ⇐ coeff[0]

pix[0] ⇐ 0

state[0] ⇐ 2

0 0 (1,0) 0 (1,0) 1 0 1 0 0 0 0 1 0 1

state[0] = 1 ∧ line[0] < nLines[0]
pix[0] ⇐ 0

state[0] ⇐ 2

0 0 0 (1,0) 1 (1,0) 0 1 0 0 0 1 0 0 1

state[0] = 2 ∧ pix[0] = nPix[0]
line[0] ⇐ line[0] + 1

state[0] ⇐ 1

1 0 0 (1,0) 0 1 (1,0) (1,0) 1 0 0 0 1 0 0

state[0] = 2 ∧ pix[0] < nPix[0]
out[0] ⇐ in[0] ∗ b[0]
pix[0] ⇐ pix[0] + 1

In order to adequately model the multiplication coefficient update (Lines 10–11 in Fig. 5),
we assume that the transitions are assigned priorities according to their ordering, with higher
priorities first. Note also that for reasons of readability, cons(i) is omitted if req(i) = cons(i).

2.4 SysteMoC

SysteMoC [13] extends the notion of ECFSM by actor states and hierarchy
(see Sect. 3 for details). At a glance, the notation extends conventional dataflow
models by finite state machines controlling the consumption and production of
tokens by actors. SysteMoC itself is an extension library for SystemC [2], which
is itself a C++ class library. In the following, we will introduce how DFGs are
composed from SysteMoC actors. The vertices of the graph correspond to actors,
that are more formally defined below:

Integrated Modeling Using Finite State Machines and Dataflow Graphs 837

fcheck fcopyApprox fcopyStorefcopyInput

#i2 ≥ 1∧#o2 ≥ 1∧ fcheck/ fcopyApprox

#i2 ≥ 1∧#o1 ≥ 1∧¬ fcheck/ fcopyInput

#i1 ≥ 1∧#o1 ≥ 1/ fcopyStore qloopqstart

O
ut
pu

tp
or
ts
a 2

.O
=

{o
1,
o 2

}

o1

o2i2

i1

In
pu

tp
or
ts
a 2

.I
=

{i 1
,i
2}

Actor FSM a2.R

Functionality a2.Ffunc

a2|SqrLoop

Fig. 6 Visual representation of a SqrLoop actor a2 as used in the network graph gsqr displayed
in Fig. 7. The SqrLoop actor is composed of input ports I and output ports O, its functionality
Ffunc, and the actor FSM R determining the communication behavior of the actor. The input
predicate #ix ≥ n and the output predicate #oy ≥ m on a transition, respectively, test the
availability of at least n tokens on the actor input port ix and at least m free places on the actor
output port oy

Definition 5 (Actor) An actor is a tuple a = (I,O,Factions,Fguards,R) containing
actor ports partitioned into the set of actor input ports I and actor output ports O ,
the actor functionality Ffunc = Factions∪Fguards partitioned into a set of actions and
a set of guards, as well as the actor FSM R.4

In contrast to ECFSMs, SysteMoC actors can also have a functionality state
that can only be manipulated by the actions faction ∈ Factions and used—but not
updated—by the guards fguard ∈ Fguards. Finally, the actor FSM state contained
in R, as known from ECFSMs, is fully controlled by the actor FSM and cannot
be manipulated by the evaluation of actions or guards. This distinction enables
the mathematical expression of the separation of the actor data manipulation
calculating the token values produced, e.g., fcopyApprox as shown in Fig. 6, and the
communication behavior controlling the amount of tokens consumed and produced.
More intuitively, one can think of the state of the actor functionality as state variables
of the actor, which are primarily modified by the data path of the actor modeled by
actions, e.g., fcopyApprox ∈ Factions.

Furthermore, we have extended the well-known DFG definition given in Defini-
tion 1 with a notion of ports, i.e., channels no longer connect only actors but actor
ports as depicted in Fig. 7. We will call such an extended representation a network
graph, formally defined below:

4Note that in contrast to previous editions of this handbook, the separation of functionality into
actions and guards has been explicitly introduced in the definition.

838 J. Falk et al.

a1|Src

a5|Sink

o1
c1

i 1
a2|SqrLoop

o 1

c2

i 2 o 1
i 1o 1

c 3 c 4

c5

i 2o 2

i1 c6

Network graph gsqr

gsqr|SqrRoot
Newton square root approximation

Approximation
Loop BodyLoop Check

Approximation

A
ct
or

a 3
g s

qr
.A

P
(c

3)
=

(
,(
n
))

Actor output port o2 ∈ a4.OActor input port i1 ∈ a5.I

C
ha
nn
el
c 6

∈
g s

qr
.C a3|Approx

a4|Dup

i1

o2

Fig. 7 The network graphs displayed above implement Newton’s iterative algorithm for calculat-
ing the square roots of an infinite input sequence of numbers generated by the Src actor a1. The
square root values are generated by Newton’s iterative algorithm SqrLoop actor a2 for the error
bound checking and a3–a4 to perform an approximation step. After satisfying the error bound, the
result is transported to the Sink actor a5

Definition 6 (Network Graph) A network graph is a directed graph gn = (A,C)

containing a set of actors A and a set of channels C ⊆ A.O × A.I .5 Furthermore,
we require that each actor port p ∈ A.I∪A.O is connected to exactly one channel c.

The execution of a SysteMoC model can be divided into three phases: (i)
checking for enabled transitions for each actor, i.e., sufficient tokens and free places
on input and output ports and guard functions evaluating to true, (ii) selecting
and executing one enabled transition per actor, and (iii) consuming and producing
tokens as specified by the transition. Note that step (iii) might enable new transitions.
Hence, SysteMoC is similar in this regard to ECFSMs where actors are blocked as
long as the output buffers cannot store the results. More formally, the actor FSM is
defined as follows:

Definition 7 (Actor FSM) The actor FSM of an actor is a tuple R = (T , Q, q0)

containing a set of transitions T , a set of states Q and an initial state q0 ∈ Q.

5We use the ‘.’-operator, e.g., a.I , for member access of tuples whose members have been
explicitly named in their definition, e.g., member I of actor a ∈ A from Definition 5. Moreover,
this member access operator has a trivial extension to sets of tuples, e.g., A.I = ⋃ a∈Aa.I , which
is also used throughout this document.

Integrated Modeling Using Finite State Machines and Dataflow Graphs 839

Furthermore, a transition is specified by a tuple t = (qsrc, k, faction, qdst) ∈ T

containing source (qsrc) and destination (qdst) of the transition, a transition guard k

that must evaluate to true if the transition is taken, and an action faction ∈ Factions
from the actor functionality that is executed if the transition is taken.6

Here, we assume that the transition guard k is a logical conjunction of (i) an
input/output guard kio that checks the availability of tokens and free places on the
input and output ports of the actor and (ii) a functionality guard that is allowed to
be an arbitrary Boolean expression consisting of guard functions, e.g., ¬fcheck as
seen in Fig. 6. The input/output guard kio must be a logical conjunction that can
only contain input predicates (#ix ≥ n) and output predicates (#oy ≥ m), e.g.,
#i1 ≥ 1 ∧ #o1 ≥ 1. Thus, the enabling rate req of a transition can be derived
from the input/output guard kio contained in the transition guard k. Moreover, input
consumption rate and the output production rate can be derived from the number
of tokens consumed and produced by the action of a transition. Furthermore, a
transition is not allowed to consume more tokens than requested, i.e., cons(i) ≤
req(i), or produce more tokens than reserved, i.e., prod(o) ≤ req(o). Finally,
if not otherwise stated, it is assumed that the action of a transition produces and
consumed exactly as many tokens as requested, i.e., cons(i) = req(i) ∀i ∈ I and
prod(o) = req(o) ∀o ∈ O .

2.5 Further Approaches

A number of further approaches exist that integrate finite state machines into the
modeling of dataflow graphs.

Enable-Invoke Dataflow (EIDF) [30] derives its name from the requirement that
each actor is separated into an enable function ν and an invoke function κ . Those
functions are responsible for testing if enough tokens are available on the input
channels for enabling the invoke function which in turn represents the actor firing.
In order to allow modeling a dynamic behavior, both enable and invoke functions
are dependent on modes of the DFG that are represented by an FSM.

The California Actor Language (CAL) [11] is a programming language which
was first designed to describe actors and their behavior only. Later on, the language
was extended to allow the specification of DFGs containing these actors (see also
chapter “MPEG Reconfigurable Video Coding” [27]).

Scenario-Aware Dataflow (SADF) was first developed by Theelen et al. [34]
to model dynamic aspects of streaming applications that originate from different
modes of operation (scenarios). While static Synchronous Dataflow (SDF) is highly
analyzable with respect to liveness, boundedness and throughput properties but

6Notice that the enabling rate req as well as the input consumption rate and the output production
rate functions cons and prod are no longer explicitly given but can be derived from the transition
guard and the action, respectively.

840 J. Falk et al.

lacks support of any form of dynamism, Kahn Process Networks (KPN) [24] allow
modeling of many dynamic aspects but lack from undecidability of correctness
and performance evaluation in the general case. SADF fills the gap between
the aforementioned approaches. Internally, each scenario is modeled as an SDF
graph. Dynamism is supported through the definition of modes of operation. The
FSM-Based SADF (FSM–SADF) graph consists of a set of scenarios and a non-
deterministic scenario (FSM) [20]. The FSM represents the possible order in which
the active scenarios can occur.

Detailed descriptions of EIDF, CAL, and FSM–SADF are given in chapter
“Dynamic Dataflow Graphs” [33].

3 Scheduling Dataflow Graphs

When implementing dataflow MoCs on multi-processor architectures, it is necessary
to not only determine actor mappings (see chapter “Methods and Tools for
Mapping Process Networks onto Multi-Processor Systems-on-Chip” [1]) but also
the execution order of actor firings. To this end, novel techniques for representing
such schedules within dataflow graphs are discussed in this section.

3.1 Modeling Static-Order Schedules

Synchronous Dataflow Graphs (SDFGs) are predestined for modeling of streaming
applications present in digital signal processing and multimedia systems. Such static
models offer high analyzability in terms of timing (i.e. throughput and latency)
and memory (i.e. buffer size) requirements (see chapter “Throughput Analysis of
Dataflow Graphs” [10]). However, as embedded systems rely increasingly on multi-
processor architectures, additional constraints like inter-processor communication
complicate analysis techniques in contrast to single-processor architectures. For
such multi-processor systems, usually Periodic Static-Order Schedules (PSOSs) are
constructed for each processor. Instead of the specific start times of each actor as
determined by fully static schedules, PSOSs specify the order of actor firings for
each processor individually. In the following, two techniques will be presented that
model PSOSs into SDFGs, consequently allowing utilizing standard timing and
memory usage analysis techniques on schedule-extended SDFGs.

The first technique [4] requires a conversion of an SDFG into a homogeneous
SDFG (HSDFG) where all production and consumption rates equal to one. Given a
PSOS s = 〈a0, a1, . . . , an〉, for each pair of adjacent actors (ai, ai+1) in the PSOS,
a channel is added to the HSDFG. Finally, an additional channel with one initial
token is placed between the last and first (an, a0) actor in the PSOS. Exemplary,
consider the SDFG in Fig. 8 with four actors A = {a0, a1, a2, a3} and three
channels C = {c0, c1, c2} [9]. The equivalent HSDFG is given in Fig. 9 (without

Integrated Modeling Using Finite State Machines and Dataflow Graphs 841

Fig. 8 Example SDFG [9]
a0 a1 a2 a3

6
c0

3
c1

3
c2

a01 a11 a12 a13 a14 a15 a31 a32 a33 a16 a34 a35 a36

a21 a22•

•

a01 a11 a12 a13 a14 a15 a31 a32 a33 a16 a34 a35 a36

a21 a22

Fig. 9 SDFG from Fig. 8 converted into an HSDFG (black edges) and extended with scheduling
decisions (blue edges) with the technique from [4]

blue edges) and consists of 15 actors as well as 18 channels. Assume the subsets
of actors {a0, a2} and {a1, a3} to be mapped onto processors CPU1 and CPU2,
respectively and corresponding PSOSs to be constructed as s0 = 〈a0(a2)

2〉 and
s1 = 〈(a1)

5(a3)
3a1(a3)

3〉. The blue edges in Fig. 9 show the additional channels,
that are added to guaranty the sequential order specified in schedules s0 and s1.
Initial tokens are placed on the channels between the second firing of a2 and the
first firing of a0 (cf. s0) and sixth firing of a3 and the first firing of a1 (cf. s1).

Whenever a conversion into an HSDFG is needed for a code generation step,
this technique can be used with only a small overhead. However, as the run times of
many SDFG timing and memory analysis methods depend heavily on the graph size,
the potentially exponential growth converting an SDFG to an HSDFG may become a
problem for large graphs. For example, the buffer analysis of an H.263 decoder [32]
requires less than 1 ms when directly applied to the SDFG (four actors) and more
than 1330 ms when applied to an equivalent HSDFG (200 actors) [9]. Furthermore,
buffer sizing techniques often fail to determine minimal buffer sizes when applied
to HSDFGs.

Therefore, a different approach is proposed in [9]. Here, no conversion into an
HSDFG is necessary and consequently the increase in size of the schedule-extended
SDFG is minimized. The technique is called Decision State Modeling (DSM) and
consists of three steps necessary to integrate PSOSs into an SDFG. As shown
in Fig. 10 for the running example, only four additional actors and twelve additional
channels have to be added in order to construct the schedule-extended graph.

First, auto-concurrency edges (red) are added that prevent simultaneous execu-
tion of equal actors when sufficient token were available on the inputs to allow firing
the actor two or more times. Second, inter-iteration edges (blue) prevent activated
actors of the next iteration from firing until the given PSOS has finished one period.
As seen in Fig. 10, between the last al and first af actor of a PSOS si , an additional
actor ai−end and two channels ci−pre = (al, ai−end) and ci−pro = (ai−end , af)
are added. Production and consumption rates as well as initial tokens are derived
from the quantity of corresponding actors (i.e. CNT (a)) in the PSOS such that
the production and consumption rate equal to prod(ai−end) = CNT (af) and

842 J. Falk et al.

a0 a1 a2 a3

a0-end a1-end

a1- 6

a1- 9

6
c0

3
c1

3
c2

c1-pre
6

•6
c1-pro 6c0-pre

2

•c0-pro

• c1-a1 6

6

c1-a3 6

6 •
3

c1-a3
9

6

•
5 c1-a1

9

6

cSE-0

• cSE-1 • cSE-2•
cSE-3

•

Auto-concurrency

Inter-iteration execution
Decision states w w

ww

w

w

Fig. 10 Modeling the PSOSs s0 and s1 within the SDFG from Fig. 8 using Decision State
Modeling [9, Fig. 3]

cons(ai−end) = CNT (al), respectively. The number of initial tokens is determined
analogously: init (ci−pro) = CNT (af). Note that, the inter-iteration edges have
the same purpose as the additional edges in Fig. 9. Last, decision states have to
be determined and treated. Basically, a decision state is a state of the SDFG in
which more than one actor is activated and thus is able to fire. In order to prevent
an execution order other than specified in the PSOS, additional actors and edges
are added that steer the selection of the actor of choice. In Fig. 10, these additional
elements are depicted in green. For example, consider PSOS s1. The five initial
tokens in channel c1− a1ω9 allow firing of a1 exactly five times. Subsequently, actor
a1−ω6 can be executed which in turn activates the execution of a3. After firing three
times, actor a1−ω9 is executed and a1 can fire one final time. For a more detailed
description on how to construct the decision states, refer to [9].

3.2 Quasi-Static and Dynamic Schedule Modeling

While Decision State Modeling (cf. Sect. 3.1) offers an efficient way to model
PSOSs within SDFGs, it cannot be used to represent scheduling decisions for
dynamic applications (i.e. dataflow graphs where a PSOS cannot be created).
To this end, a technique is presented in [37] that permits modeling schedules
for such dataflow graphs. In fact, it can be used to represent the whole model-
based transformation from a behavioral description into a partitioned and scheduled
implementation. The design flow is depicted exemplary in Fig. 11 [38] which will
be detailed in the following section.

The idea behind the technique is an extension of dataflow actors through guarded
actions with a static communication behavior which allows a hierarchical actor
description. Basically, an actor can be defined hierarchically and may contain a set
of child actors A and a set of transitions T represented as an FSM. In order to model
several aspects of the design flow, actors are organized into three different types such
that simple actors as defined in Definition 5 have no child actors whereas actors

Integrated Modeling Using Finite State Machines and Dataflow Graphs 843

App. DFG Part. DFG Sched. DFG
Mapping SchedulingSpecification Synthesis

a1 a2 a3 a4

r1 r2

a1 a2 a3 a4

r1 r2

a1 a2 a3 a4

a1

a2

a3

a4

Fig. 11 Design flow for modeling dynamic schedules with the technique of [38]

with child actors are called clusters. Depending on the set of transitions T , clusters
are in turn partitioned into structural (T = ∅) and functional (T �= ∅) clusters.
Actors are used to model the functionality of the application as shown in Fig. 11
“App. DFG” whereas structural clusters are used to model mapping decisions
without any behavioral description (cf. “Part. DFG” in Fig. 11). Finally, functional
clusters include schedules into partitioned applications as shown in “Sched. DFG”
in Fig. 11. We will see how such schedules may be described by the FSMs.

3.2.1 Actor Execution Model

In the following, the representation of mapping and scheduling decisions is dis-
cussed in detail. First, actors are considered which represent the functionality of the
application. Unlike clusters, they are not composed of child actors and thus do not
require the scheduling mechanism of the full cluster model.

The actor FSM (cf. Definition 7) of an actor can be used in conjunction with
actions faction ∈ Factions and guard functions fguard ∈ Fguards to model dynamic
dataflow behavior. To this end, a guard function evaluates to true whenever a
transition of the current actor state qcur is activated. Subsequently, the corresponding
action function is executed and actor state switches to the successor state qdst . A
guard function must not consume or produce any token from the connected channels
nor change internal state variables. On the other hand, action functions are allowed
to produce and consume tokens as well as change internal states. In the model, action
functions are restricted to static communication behavior. That is, the production
(prod) and consumption (cons) rates derived from kio of a transition t ∈ T are
fixed and specify the number of tokens produced and consumed when excuting the
corresponding action function.

The process of executing a transition consists of two steps. In the evaluation
phase, an actor is checked whether it is enabled or not. That is, a transition t

is enabled whenever the current actor mode qcur corresponds to transitions mode
t .qsrc, the transition guard t .k evaluates to true, and sufficient tokens and space
are available on the input and output ports, respectively. The execution phase
initiates the actual firing by calling the action function. As a consequence, tokens are
consumed from the input and produced on the output ports as specified by cons and

844 J. Falk et al.

prod respectively, and state variables may be modified. After the execution phase,
the current actor mode qcur changes to t .qdst .

3.2.2 Cluster Execution Model

As indicated in the outline, clusters are introduced to model several aspects in the
design flow implementing dataflow graphs. Namely, they can represent mapping
and scheduling decisions directly in the graph. In addition to actors, clusters are
hierarchically composed of child elements that can be actors and again clusters and
contain additional channels that connect child elements. Formally, they are defined
as follows.

Definition 8 (Cluster) A cluster is a graph gγ = (I,O,A,C,Factions,Fguards,R)

containing cluster ports partitioned into cluster input ports I ⊆ A.I and cluster
output ports O ⊆ A.O , a set of child actors A, a set of channels C ⊆ A.O × A.I ,
the cluster functionality Ffunc = Factions ∪ Fguards partitioned into a set of actions
and a set of guards, as well as the cluster FSM R.

Note that a cluster with an empty set of child actors A (and thus an empty set of
channels C), results in an actor as specified in Definition 5. In consideration of
representing scheduling decisions, the cluster FSM R is defined as follows.

Definition 9 (Cluster FSM) A cluster FSM R = (Qγ, q0, T) is a tuple consisting
of a set of states Q, an initial state q0, and a set of transitions. A transition is again a
tuple T 4 t = (qsrc, k,F, qdst ,≺, r) consisting of a source qsrc and destination qdst
state of the transition, a transition guard k, a set of actions F ⊆ Factions ∪ P(A.T),
a strict partial order “≺” over F, and a flag r ∈ {true, f alse} which determines
if token and space availability checks should be performed by transitions of child
actors for ports bound to channels of the cluster.7

A partial order fi ≺ fj specifies that action fi ∈ F has to be executed before
action fj ∈ F can be activated. As the set of functions F is composed of action
function fa ∈ Factions and child transitions A.T , evaluation and execution phase
differ in contrast to actor transitions. Whenever f ∈ Factions is an action function,
it is processed analogously to actor transitions. However, if f ∈ P(A.T) is a set of
child transitions, a single transition has to be selected and executed. For the latter
case, the evaluation phase becomes more complex and is outlined below.

In the first step of the evaluation phase, as discussed for actor transitions,
the current actor mode qcur is checked if it conforms to the mode t .qsrc in
which transition t is active. In difference to actor transitions, however, cluster
transitions consist of a set of actions. Hence, in order to perform token and space
availability checks as explained for actor transitions, values of cons and prod must

7The definition of a cluster FSM (Definition 9) has been extended compared to previous editions
to allow for the representation of more general schedules within the cluster FSM.

Integrated Modeling Using Finite State Machines and Dataflow Graphs 845

be accumulated first for all actions in F, i.e. prod(F, p) = ∑f∈F prod(f, p)
and cons(F, p) = ∑f∈F cons(f, p). While production and consumption rates of
action functions are statically defined by the user, for a transition set f ∈ P(A.T) it
is unclear at compile time which transactions are executed at run time. In order
to keep a static communication behavior, the modeling approach requires that
all transitions in f have the same consumption and production rates w.r.t. the
ports of the composite actor. Formally, this is ensured by the following constraint:
∀ti , tj ∈ f : ∀p ∈ I : cons(ti .F, p) = cons(tj .F, p) ∧ ∀p ∈ O : prod(ti .F, p) =
prod(tj .F, p). Note that if F contains only a single action function fa ∈ Factions,
the cluster transition conforms to an actor transition.

The flag r of a cluster transition determines if space and token availability checks
have to be performed by transitions of child actors. It can only be set to f alse if
it is statically known that enough tokens are available on all ports of child actor
transitions. Otherwise, it has to be set to true.

After space and token availability checks have been performed, the transition
guards have to be evaluated. If they return true, the evaluation phase for the set
of actions without predecessor F′ = {fj ∈ F | �fi ∈ F : fi ≺ fj } is started.
Obviously, for the subset of action functions fa ∈ F′ ∩ Factions this is already done
by evaluating the guard function of the clusters. However, child actor transitions
have to be evaluated as explained above, resulting in a recursive evaluation. If each
action f ∈ F′ evaluates to true, the composite actor is activated.

Finally, in the execution phase, the actions t .F of a transition t are executed
according to the partial order specified by “≺”. As in the evaluation phase only
actions without predecessors have been evaluated, actions with predecessors are
evaluated as soon as all predecessor actions have been executed. After the execution
phase, the current actor mode qcur is set to t .qdst .

3.2.3 Scheduling Examples

The first example in Fig. 12 implements a quasi-static schedule (QSS). In short,
a QSS is a schedule in which most scheduling decisions can be made statically at

App CPU1

a1 a2 a3 a4

S1,1 S1,2

c3 c4 c5

〈a1,a2,a3〉

〈a4〉

CPU2

a5 a6 a7 a8

S2,1 S2,2 S2,3

c6 c7 c8

〈a5〉 〈a6〉

〈a7,a8〉

c1 c2

Fig. 12 Quasi-Static Scheduling (QSS) example

846 J. Falk et al.

App CPU1

a1 a2 a3 a4

f1,1 f1,2 f1,3

c3 c4 c5

t1,2t1,1

t1,3

CPU2

a5 a6 a7 a8

f2,1 f2,2 f2,3

c6 c7 c8

t2,2t2,1

t2,3

c1 c2

Fig. 13 Dynamic Scheduling example

compile time but some have to be decided by the run-time environment. Considering
CPU1, it consists of two partial PSOSs S1,1 and S1,2, one for each transition that can
be described by two transitions according to Def. 9 as

t1,1 = (q0, k
io
1,1 ∧ ktrue, {a1, a2, a3}, q1, {a1 ≺ a2 ≺ a3}, f alse) and

t1,2 = (q1, k
io
1,2 ∧ ktrue, {a4}, q0,∅, f alse).

At the beginning, the current actor mode qcur is equal to q0 and thus space and
token availability checks have to be performed for PSOS S1,1 according to kio1,1,
which return true. As a1-a3 represent static actors, token and space availability
checks are unnecessary for child actors (i.e. r = f alse). The transition guard
ktrue always evaluates to true. Thus, transition t1,1 is activated and a1-a3 are
executed sequentially as specified by “≺”. The remaining schedules are evaluated
analogously.

Figure 13 implements a dynamic schedule. Child actors having the same
communication behavior w.r.t. composite ports are grouped (e.g. actors a5 and a8).
The resulting transitions for CPU2 are outlined below:

t2,1 = (q0, k
io
2,1 ∧ ktrue, {a5, a8}, q0,∅, true)

t2,2 = (q0, k
io
2,2 ∧ ktrue, {a6}, q0,∅, true)

t2,3 = (q0, k
io
2,1 ∧ ktrue, {a7}, q0,∅, true).

After evaluating the current actor mode, space and token checks, and the guard
function, in contrast to the QSS scheduling scheme, token and space availability
checks have to be performed for child actors (i.e. r = true). For example, if
transition t2,1 is activated, one transition of child actors a5 or a8 is selected according
to space and token availability checks for the corresponding child actor transitions.

As the last example, consider Fig. 14 representing the partially-ordered transi-
tions schedule (POTS) Spar = {a1 ≺ a2 ≺ a3 ≺ a4, a5 ≺ a6 ≺ a7 ≺ a8, a1 ≺
a6, a7 ≺ a4}. In contrast to the QSS schedule, the partial PSOSs are split after and
before inter-processor communication occurs. However, the transition order is given

Integrated Modeling Using Finite State Machines and Dataflow Graphs 847

App

t1,1 ≺ t1,2 ≺ t1,3,
t2,1 ≺ t2,2 ≺ t2,3,
t1,1 ≺ t2,2 ≺ t1,3

CPU1

a1 a2 a3 a4

S1,1 S1,2 S1,3

c3 c4 c5

t1,1 t1,2

t1,3

CPU2

a5 a6 a7 a8

S2,1 S2,2 S2,3

c6 c7 c8

t2,1 t2,2

t2,3

c1 c2

Fig. 14 Partially-ordered Transitions Scheduling (POTS) example

Fig. 15 Example of the DFG
aγ1,2 containing a cluster gγ1,2

with two SDF actors a1 and
a2 (green) connected to a
cluster environment
consisting of the sole Kahn
actor aenv (yellow)

2 3 62

2i2
o1i1cin,1

c1→2

coutcin,2

gg 1,2
a1 a2

aenv

within the “App” cluster and thus token and space availability can be guaranteed
statically (i.e. r = f alse). That is, a transition can directly be executed as soon as
all predecessors have been executed without the need for checking the availability
of tokens.

4 Exploiting Static MoCs for Scheduling

Generating program code from a DFG for microprocessor target requires a schedul-
ing strategy for the actors mapped to this microprocessor. Static scheduling [6, 23]
can be used for models with limited expressiveness, e.g., SDF and CSDF DFGs.
However, real-world designs also contain dynamic actors, e.g., as seen in Fig. 15
where two static actors a1 and a2 are connected to the dynamic actor aenv.
Unfortunately, existing algorithms [26, 29] might result in infeasible schedules or
greatly restrict the clustering design space by considering only SDF subgraphs
that can be clustered into monolithic SDF actors without introducing deadlocks.
To exemplify, consider converting the cluster gγ1,2 into an SDF actor. This would
deadlock the DFG gex1 as neither the environment actor aenv could fire (no tokens
on its input channel cout) nor the SDF actor that would have been derived from gγ1,2

(insufficient tokens, i.e., only 2 instead of the 6 required, on its input channels cin,1
and cin,2).

848 J. Falk et al.

0 Time axis [abstract time units] 74 t

C
PU

1

a1 a1aenva1aenva 2 a 2

a 1
.k
io ..
.

a 2
.k
io ..
.

a e
nv

.k
io ..
.

a 1
.k
io ..
.

a 2
.k
io ..
.

a e
nv

.k
io ..
.

a 1
.k
io ..
.

a 2
.k
io ..
.

0 Time axis [abstract time units] 65 t

C
PU

1

f〈a1,a1,a2〉aenvaenvf〈a1,a2〉

a g
1,
2.
ki
o ..
.

a e
nv

.k
io ..
.

a g
1,
2.
ki
o ..
.

a e
nv

.k
io ..
.

a g
1,
2.
ki
o ..
.

a

b

Fig. 16 Depicted above are two Gantt charts that could be encountered during scheduling of the
DFG gex1 on the single resource CPU1. Here, white boxes represent scheduling overhead that
is encountered during the check if an actor can be fired. Conversely, the colored, i.e., green and
yellow, boxes represent the actual useful computational payload of the actors a1, a2, and aenv. (a)
Dynamic scheduling of the DFG. (b) Schedule overhead reduction due to employing a QSS

4.1 Scheduling Overhead

The most basic scheduling strategy is to postpone all scheduling decisions to run
time, e.g., performing dynamic scheduling as depicted in Fig. 16a, with the resulting
significant scheduling overhead and, hence, a reduced system performance. How-
ever, this strategy is suboptimal if it is known that some of the actors exhibit regular
communication behavior like SDF and CSDF actors. The scheduling overhead
problem can be mended by coding the actions of an actor at an appropriate level
of granularity, i.e., combining as much functionality into one action such that the
computation costs dominate the scheduling overhead, i.e., as is done in Fig. 16b
where the composite actor aγ1,2 has the two actions f〈a1,a2〉 and f〈a1,a1,a2〉 that
combine the actor firings a1 and a2 as well as the actor firings a1, a1, and a2,
respectively.

However, as can be seen in Fig. 17, the appropriate level of granularity is depen-
dent on the underlying architecture on which a DFG is scheduled for execution.
Thus, if the distribution of actors to resources itself is part of the synthesis step—
as it is in the case of design space exploration—an appropriate level of granularity
can no longer be chosen in advance by the designer. Hence, computing QSSs must
become part of the synthesis flow and should not be performed in advance. In the
following section, we will demonstrate how QSSs can be derived for a cluster as
given by Definition 8 and the derived schedule represented by a cluster FSM as
defined in Definition 9.

4.2 Cluster FSM Computation for QSS

The key idea for producing a deadlock-free QSS is to assume the so-called “worst
case” environment for the cluster. This is the case when each output port o ∈ gγ.O

Integrated Modeling Using Finite State Machines and Dataflow Graphs 849

t0 Time axis [abstract time units] 60

C
PU

1
C
PU

2

a 2 a 2a1 a1 a1

aenv aenv

CPU1 idling

CPU2 idling CPU2 idling

a 1
.k
io ..
.

a 2
.k
io ..
.

a 1
.k
io ..
.

a 2
.k
io ..
.

a 1
.k
io ..
.

a 2
.k
io ..
.

a e
nv

.k
io ..
.

a e
nv

.k
io ..
.

61Time axis [abstract time units]0 t

C
PU

1
C
PU

2

f〈a1,a2〉 f〈a1,a1,a2〉

aenv aenv CPU2 idling

CPU1 idling

CPU2 idling

a g
1,
2.
ki
o ..
.

a g
1,
2.
ki
o ..
.

a e
nv

.k
io ..
.

a e
nv

.k
io ..
.

a

b

Fig. 17 Here, two Gantt charts demonstrate that quasi-static scheduling might trade scheduling
efficiency, e.g., less overall computation in (b) as compared to (a), for increased latency, e.g.,
as seen for the second firing of actor a1 that is delayed in (b) as compared to (a). Moreover,
as exemplified above, this increased latency might also reduce the overall system throughput if
multiple computational resources are available for execution of the DFG, e.g., the processors CPU1
and CPU2. (a) Dynamic scheduling of the DFG. (b) Example that a QSS may not always increase
the system throughput

is part of a feedback loop to each input port i ∈ gγ.I and any produced token on
an output port o ∈ gγ .O is needed for the activation of an actor a ∈ gγ .A in the
same cluster through these feedback loops, e.g., as seen in Fig. 15. In particular,
postponing the production of an output token results in a deadlock of the entire
system. Thus, the cluster states q ∈ Qγ ⊂ N0

gγ .A are states of the cluster where
a maximal number of output tokens have been produced from consumption of a
minimal number of input tokens.8 For the cluster gγ1,2 , these states can be seen
in Fig. 18. Briefly, the cluster state space is derived by starting with the initial state
space set { q0 } that contains the initial state q0 = (0, 0) that denotes that neither
the actor a1 nor the actor a2 have fired previously. Next, for each cluster output
port, e.g., only the port o1 in case of the cluster gγ1,2 , we demand successively more
tokens on this port until the encountered cluster state q exceeds the repetition vector
of the cluster, e.g., η

rep
γ1,2 = (3, 2) for cluster gγ1,2 . For this purpose, we repeat the

following three steps until the repetition vector of the cluster is exceeded: (i) To
require the minimal number of input tokens, we search for the minimal number of
actor firings that satisfy the production of one more token on the selected output port.
Subsequently, (ii) to maximize the number of produced output tokens, we prohibit

8The initial state q0 might be an exception to this observation as the cluster might have an initial
state where tokens can be produced without consuming additional inputs. In contrast to previous
editions of this handbook and to ease the visualization, these cluster states are represented by
the number of firings of each actor in the cluster instead of the number of tokens consumed and
produced on each of cluster input and output ports. Both representations are equivalent and can be
transformed into each other.

850 J. Falk et al.

2 3 62

2

2 3 62

2

2 3 62

2

genv genv genv

i2
o1i1

i2
o1i1

i2
o1i1

c1→2 c1→2 c1→2

Demand one more token on o1 Demand one more token on o1
t1

f〈a1,a2〉

t2

f〈a1,a1,a2〉

f〈a1,a1,a2〉

gg1,2 gg1,2 gg1,2

q0 q1 q2
= (0,0) = (1,1) = (3,2)

q ≥h rep
g 1,2 = (3,2)

a1 a2 a1 a2 a1 a2

Fig. 18 Computing the cluster state space for the cluster gγ1,2

any more token consumptions on the cluster input ports and try to fire as many actors
as is still possible under this constraints. Finally, (iii) we add the resulting state to the
cluster state space. To exemplify, consider cluster gγ1,2 , start state q0, and output port
o1. One more token on o1 necessitates firing of actor a2, which in turn demands the
firing of actor a1. No further firings are possible without consuming more inputs.
Hence, we add q1 = (1, 1) to the cluster state space. Next, we again require one
more token and, thus, fire the actor sequence 〈a1, a1, a2〉. As previously, no further
firings are possible without consuming more inputs and, thus, we add q2 = (3, 2)
to the cluster state space. This terminates the loop.

To continue, we exploit the observation that for each cluster state that exceeds
the repetition vector of the cluster, there exists an equivalent cluster state that does
not exceed the vector that can be derived by successively subtracting the repetition
vector, e.g., the equivalent state to q2 is q0. Thus, the cluster state space is finite
if for all cluster outputs the produced output tokens eventually depend on tokens
consumed on all cluster input ports. More formally, this means that there is a
directed path in the cluster from each cluster input port to each cluster output port.

Finally, we derive the transitions of the cluster FSM by inserting transitions
between each pair of cluster states that do not bypass another cluster state, e.g.,
if there would be another state q0′ = (1, 0) in Fig. 18, then transition t1 would be
replaced by a transition from q0 to q′0and a transition from q0′ to q1. For a more
formal explanation of this condition and the algorithm to derive the cluster FSM,
we refer the interested reader to [12, 14].

Integrated Modeling Using Finite State Machines and Dataflow Graphs 851

5 Quasi-Static Scheduling in the Presence of Bounded
Channels

The QSS methodology presented in Sect. 4.2 does assume FIFOs with unbounded
capacities. Hence, it is unsuitable for code generation for embedded system targets
supporting only static memory allocation where FIFOs have to be preallocated with
a fixed capacity.

To exemplify the problem, we consider Figs. 19 and 20. Here, the DFG gex1 is
depicted without QSS (see Fig. 19) and with QSS for the cluster gγ1,2 (see Fig. 20).
Moreover, the FIFO channels have been given channel capacities as depicted by the
square boxes on the edges (channels) connecting the three actors. As can be seen
by contrasting Figs. 19c and 20c, simply using the QSS previously computed for
gγ1,2 without any modification to the capacities of the adjacent channels can cause
deadlocks, e.g., here do to the inability of the composite actor aγ1,2 to fill channel
c1→2 to capacity. In the examples used here, the cluster environment is represented
by a single actor named aenv. In reality, however, it represents the arbitrary complex
subgraph of the DFG g that represents the DFG without its contained cluster.

5.1 Channel Capacity Adjustment Problem

Based on a QSS given as a cluster FSM (cf. Definition 9)—that is applicable to refine
a DFG with unbounded channel capacities—we will define the formal problem
of channel capacity adjustment that has to be solved in order to make the same
QSS applicable for platforms only supporting DFGs with fixed channel capacities.
For the work at hand, we assume that such a cluster FSM is computed for each
cluster by methods known from literature [14, 16–18, 29, 35, 36]. Note that the
determination of limited channel capacities that do not introduce any deadlock for
a KPN is in general undecidable [8, 28]. Moreover, the channel capacities for the

2 3 62

2i2
o1i1cin,1

c1→2

coutcin,2

gg1,2
a1 a2

aenv

2 3 62

2i2
o1i1cin,1

c1→2

coutcin,2

gg 1,2
a1 a2

aenv

2 3 62

2i2
o1i1cin,1

c1→2

coutcin,2

gg1,2
a1 a2

aenv

a b c

Fig. 19 Given above is the DFG gex1 with the cluster gγ1,2 that contains the two SDF (green)
actors a1 and a2. The cluster environment contains the Kahn actor aenv (yellow) that for the first
three actor firings is assumed to not consume anything and produce two tokens each on the channels
cin,1 and cin,2. The three steps from (a) to (c) depict a sequence of actor firings that fills all FIFO
channels to capacity. (a) Initial state. (b) After actor firing sequence 〈a1, a2〉. (c) After additional
actor firings 〈aenv, a1, aenv, a1, aenv〉

852 J. Falk et al.

2 3 62

2i2
o1i1

c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

ag1,2

q0 q1

a1 a2

aenv

2 3 62

2i2
o1i1

c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

ag1,2

q0 q1

a1 a2

aenv

2 3 62

2i2
o1i1

c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

ag1,2

q0 q1

a1 a2

aenv

Fig. 20 Given above is the refined DFG g̃ex1 that results from replacing the cluster gγ1,2 with the
composite actor aγ1,2 implementing a QSS for the cluster. However, the refined graph cannot mirror
the behavior of the original graph shown in Fig. 19. In particular, a deadlock/channel capacity
overflow results in (c) while trying to reproduce the three firings of the actor aenv from Fig. 19c.
(a) Initial state; Current state of R is q0 (gray). (b) After firing action f〈a1,a2〉; State change to q1
(gray). (c) Trying to reproduce the actor firings from Fig. 19c

FIFO channels connected to the cluster input and output ports of a cluster cannot be
used unmodified from the original unrefined DFG for the refined DFG containing
composite actors that implement a QSS. Thus, the channel capacities of the cluster
input and output channels cannot be recomputed from scratch, but must be derived
by computing an adjustment [12, 15] for the worst case that enlarges the channel
capacities of the cluster input and output channels of the original unrefined DFG,
e.g., the channel capacities size(cin,1), size(cin,2), and size(cout) might have to be
increased in order to make the refinement of the DFG gex1 into the DFG g̃ex1 via
application of a QSS for the actors a1 and a2 feasible. More formally, this can be
defined as follows:

Definition 10 (FIFO Channel Capacity Adjustment Vector) The FIFO channel
capacity adjustment vector adj ∈ N0

|I∪O|9 specifies a sufficient increase in channel
capacities for each cluster input and output channel such that given any deadlock
free DFG g exhibiting KPN semantics and containing the cluster gγ , then replacing
the cluster with its corresponding composite actor aγ and increasing the channel
capacities of the channels connected to this composite actor by the amount given by
the adjustment vector results in a refined DFG g̃ that is also free of any deadlock.

For the cluster gγ1,2 shown in Fig. 20, the adjustment vector is gγ1,2 .adj = (ncin,1 ,

ncin,2 , ncout) = (4, 4, 0). Application of this adjustment vector to resolve the
deadlock results in the DFG g̃ex1

′ shown in Fig. 21.

9In the following, we will drop the ‘gγ .’-prefix from various notations when the cluster is clear
from context, e.g., I instead of gγ .I .

Integrated Modeling Using Finite State Machines and Dataflow Graphs 853

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

aenv

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

aenv

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

aenv

a b c

Fig. 21 Refined DFG g̃ex1
′ after channel adjustments to the adjacent channels of the composite

actor aγ1,2 have been applied. (a) Initial state with adjusted channel capacities. (b) After firing
action f〈a1,a2〉. (c) After actor firing sequence 〈aenv, aenv, aenv〉

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

gγ1,2
a1 a2

aNDFenv

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

gγ1,2
a1 a2

aNDFenv

NDF

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

gγ1,2
a1 a2

aNDFenv

a b c

Fig. 22 Given above is the DFG gex2 with the cluster gγ1,2 that contains the two SDF actors a1 and
a2 (green). The cluster environment contains the NDF actor aNDF

env (red) that in each firing forwards
one token from the input channel to one of the output channels. If both output channels have at
least one free place available, then one of them is randomly selected. (a) Initial state. (b) Four
firings of aNDF

env enable actor a1. (c) After firing of actor a1

The strategy to enlarge the channel capacities of channels adjacent to a composite
actor is applicable for DFGs where the increase in channel capacity will never
introduce deadlocks. DFGs only containing Kahn actors, i.e., actors that do not
change their behavior depending on when tokens or free places appear on their
input or output channels, have this property. However, as soon as Non-determinate
Dataflow (NDF) [25] is considered, this property no longer holds. To exemplify, we
consider the identical cluster gγ1,2 in a different cluster environment, i.e., the DFG
gex2 shown in Fig. 22 containing an NDF environment actor aNDF

env (red).
The three steps from Fig. 22a–c depict a sequence of actor firings that enable one

firing of the actor a1. The actor a1 will be enabled no matter in which order actor
aNDF

env selects the output channels for token forwarding as both channels cin,1 and
cin,2 need to be filled to capacity before actor a1 can fire. However, if the channel
capacity of cin,1 or cin,2 is enlarged sufficiently – as is the case in Fig. 23, then the

854 J. Falk et al.

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

aNDFenv

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

aNDFenv

2 3 62
2i2

o1i1
c1→2

coutcin,2

cin,1

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

aNDFenv

a b c

Fig. 23 Depicted above is the refined DFG g̃ex2
′ that has been obtained by substituting the cluster

gγ1,2 by its composite actor aγ1,2 and applying the channel adjustments to the adjacent channels
of the composite actor aγ1,2 . However, in this case, the increase in the channel capacities of the
channels cin,1 and cin,2 does introduce an artificial deadlock into g̃ex2

′. (a) Initial state. (b) After
four firings of aenv. (c) Deadlock after two more firings of aenv

NDF actor aNDF
env might distribute the six tokens from cout to the channels cin,1 and

cin,2 in such a way that actor a1 will not be enabled. Thus, resulting in the deadlock
depicted in Fig. 23c.

5.2 Channel Capacity Adjustment Algorithm

In the following, the reasons for the introduction of artificial deadlocks due to
limited channel capacities will be detailed and a FIFO channel capacity adjustment
algorithm [12, 15] will be introduced. This adjustment algorithm ensures that cluster
refinement will not introduce an artificial deadlock into the refined DFG if the
original unrefined DFG is a KPN. Note that the presented algorithm does not require
any knowledge—indeed, the key aspect of the problem at hand is exactly the lack of
such knowledge—of the cluster environment. Nevertheless, for illustration purposes,
cluster environments will be modeled by SDF or CSDF actors in the examples
presented in this section.

In general, a QSS ensures that there are no artificial deadlocks caused by missing
tokens on feedback loops from the cluster output ports to the cluster input ports.
If the channel capacities are limited, however, clustering might introduce artificial
deadlocks due to back pressure. Back pressure induced deadlock denotes the fact
that there exists a (reverse) feedback loop of channels and actors where all actors in
the loop cannot fire because free places are missing on their output ports connected
to the channels contained in the loop. Three reasons can be identified for the
introduction of artificial deadlocks due to limited capacities. These reasons are
caused by back pressure from

Integrated Modeling Using Finite State Machines and Dataflow Graphs 855

3

3

(0,0,3,3)

(3,3,0,0) 3

i1

i2

c5→3

cin,1

cin,2

c3→4
gγ3,4,5
a3 a4

a5

aenv

3

3

(0,0,3,3)

(3,3,0,0) 3

i2

i1

c5→3

cin,1

cin,2

c3→4
q0 t1

#i1 ≥ 3∧#i2 ≥ 3/
f〈a3,a3,a5,a3,a4〉

aγ3,4,5
a3 a4

a5

aenv

a b

Fig. 24 Here, the DFG gex3 is used to generalize the input-to-input back pressure problem to
multiple input ports. (a) Original unrefined DFG gex3 with its cluster gγ3,4,5 . (b) Refined DFG g̃ex3

containing the composite actor aγ3,4,5

(A) missing free places on feedback loops from one cluster input port to another
cluster input port, i.e., input-to-input back pressure, and

(B) missing free places on feedback loops from one cluster output port to another
cluster output port, i.e., output-to-output back pressure.

(C) missing free places on feedback loops from the cluster input ports to the cluster
output ports, i.e., input-to-output back pressure,

First, in Sects. 5.2.1 and 5.2.2, the solutions given by the channel capacity
adjustments adji2i and adjo2o for the reasons (A) and (B) will be discussed. Then,
in Sect. 5.2.3, we will discuss the channel capacity adjustments adji2o required to
solve reason (C) concerned with deadlocks due to back pressure from a cluster input
port to a cluster output port.

5.2.1 Input-to-Input Back Pressure

To exemplify, we will use the DFG gex3 shown in Fig. 24 that exhibits the input-to-
input back pressure problem in isolation. That is to say, input-to-output and output-
to-output back pressure do not pose a problem for this example as the cluster gγ3,4,5

has no output ports.
In the following, we will present a critical scenario that leads to an artificial

deadlock due to reason (A). As can be seen in Fig. 24a, the cluster environment
aenv tries to produce six tokens onto the cluster input channel cin,2 by producing
two batches of three tokens each. In the unrefined case, there are sufficient channel
capacities inside the cluster to facilitate the consumption of six tokens from the
cluster input channel cin,2, i.e., fire actor a5 once, consuming the first batch of three
tokens from cluster input channel cin,2, fire actor a3 once, consuming one of the
initial tokens provided in the cluster input channel cin,1, and fire actor a5 once more,
consuming the second batch of three tokens from cluster input channel cin,2.

On the other hand, after gγ3,4,5 has been refined into the composite actor aγ3,4,5

(see Fig. 24b), the transition t1 requires three tokens on the cluster input ports i1 and
i2 before it can be taken. Moreover, as the cluster environment aenv does not provide
any additional tokens on the cluster input channel cin,1, the transition t1 cannot be
taken. Hence, assuming that the channel capacity of the cluster input channel cin,2
is still four tokens, an artificial deadlock results due to reason (A). To compensate,

856 J. Falk et al.

3

3
3

genv

i1

i2

c5→3

c3→4
gγ3,4,5
a3 a4

a5

3

3
3

genv

i1

i2

c5→3

c3→4
gγ3,4,5
a3 a4

a5

3

3
3

genv

i1

i2

c5→3

c3→4
gγ3,4,5
a3 a4

a5

a b c

Fig. 25 In the above given example, a cluster environment genv that provides an infinite number
of tokens is assumed. For illustration purpose, seven tokens are chosen for each cluster input port.
Three situations distinguished by their corresponding state of the cluster are shown. The original
situation (q0) is given in (a). The situation (qdyn,1) where the cluster consumes the maximal number
of tokens (here two tokens) from input port i1 while still not activating transition t1 is given in (b).
Conversely, the situation (qdyn,2) where the cluster consumes the maximal number of tokens (here
six tokens) from input port i2 while still not activating transition t1 is shown in (c)

the channel capacities must be adjusted as follows:

g̃ex3 . size(cin,1) = gex3 . size(cin,1)+ ncin,1 = 3+ 2 = 5
g̃ex3 . size(cin,2) = gex3 . size(cin,2)+ ncin,2 = 4+ 6 = 10

These adjustments correspond to the number of tokens that can be consumed
by the cluster on its two different input ports while still consuming less tokens on
both input ports than would be necessary to activate the transition t1. For a better
depiction of the number of consumed tokens, we start from the situation as shown
in Fig. 25a. As can be seen in Fig. 25c, the cluster gγ3,4,5 can consume up to six
tokens on its input port i2 (fire actor a3 once and actor a5 twice) without enabling
the transition t1. Thus, the channel capacity of the cluster input channel cin,2 must be
increased by six tokens, i.e., ncin,2 = 6. Consumption of more than six tokens would
require nine tokens on input port i2 and four tokens on input port i1. Hence, enabling
the input/output guard kio = #i1 ≥ 3 ∧ #i2 ≥ 3 of the transition t1. An equivalent
observation (see Fig. 25b) can be made for the input port i1, which can consume up
to two tokens without enabling the transition t1. For a more formal definition of the
adji2i function, we refer the reader to [12, 15].

5.2.2 Output-to-Output Back Pressure

The problem of output-to-output back pressure can even occur if the cluster is a
pure source for the DFG. We will use this to consider the problem in isolation by
analyzing the output-to-output back pressure problem for the cluster gγ7,4,6 shown
in Fig. 26. As this cluster has no input ports, input-to-output and input-to-input back
pressure does not occur.

As in the previous case, we will start with the description of a critical scenario
for the output-to-output back pressure problem in the DFG gex4 . In this scenario, the

Integrated Modeling Using Finite State Machines and Dataflow Graphs 857

3 (3,3,0,0)

(0,0,3,3)

o1

o2

c6→7

c4→6

cout,1

cout,2

gγ7,4,6a4

a7

aenv

a6
3 (3,3,0,0)

(0,0,3,3)

o1

o2

c6→7

c4→6

cout,1

cout,2

q0 t1

#o1 ≥ 3∧#o2 ≥ 3/
f〈a4,a6,a7,a6,a7,a6,a7〉

aγ7,4,6 a4

a7

aenv

a6

a b

Fig. 26 For illustration of how we generalize the solution of the output-to-output pack pressure
problem from one to multiple output ports the above given DFG gex4 is employed. (a) Original
unrefined DFG gex4 with its cluster gγ7,4,6 . (b) Refined DFG g̃ex4 containing the composite actor
aγ7,4,6

cluster environment aenv pulls six tokens from the cluster output channel cout,1 by
twice consuming three tokens from the channel. This can be accommodated by the
unrefined DFG gex4 by firing both actors a6 and a7 once, a consumption of the first
batch of three tokens by the cluster environment aenv, three more firings of actor a6,
and the consumption of the second batch of three tokens by the cluster environment
aenv. After this sequence of actor firings, the channel c6→7 is filled to capacity.

On the other hand, the composite actor aγ7,4,6 is always producing the maximum
number of output tokens, thus always producing all tokens remaining in channel
c6→7 to the cluster output channel cout,2. Hence, assuming that the channel capacity
of the cluster output channel cin,2 is still three tokens, an artificial deadlock results
due to reason (B). To compensate, the channel capacities must be adjusted as
follows:

g̃ex4 . size(cout,1) = gex4 . size(cout,1)+ ncout,1 = 3+ 2 = 5
g̃ex4 . size(cout,2) = gex4 . size(cout,2)+ ncout,2 = 3+ 5 = 8

To compute these adjustment values, we determine for the transition t1 and each
output port the maximal number of token productions that can be undone10 on this
port while still not having undone all produced tokens of transition t1. To enable a
graphical illustration of undoing token productions, we assume the original situation
given in Fig. 27a where the cluster environment has consumed seven tokens from
each cluster output port.

As can be seen in Fig. 27c, five token productions can be undone on the cluster
output port o2 while still allowing the production of at least one token that would
also have been produced by the transition t1, e.g., the token produced by the first
firing of actor a6 of the transition t1. Hence, the channel capacity of the cluster

10In reality, the cluster will not undo any actor firing and this should be thought of as delayed
production of tokens by a dynamically scheduled cluster in contrast to a composite actor
implementing a QSS. A QSS is required to always produce the maximal number of output tokens
from a minimal number of input tokens and, hence, will never delay the production of tokens on
its output ports.

858 J. Falk et al.

3
genv

o2

o1

c6→7

c4→6

gγ7,4,6a4

a7

a6
3

genv

o2

o1

c6→7

c4→6

gγ7,4,6a4

a7

a6
3

genv

o2

o1

c6→7

c4→6

gγ7,4,6a4

a7

a6

a b c

Fig. 27 To illustrate the undoing of actor firings of the cluster gγ7,4,6 , we assume the situation
in (a) where the cluster environment genv has consumed seven tokens provided on each cluster
output port. Moreover, two situations resulting from undoing actor firings starting from (a) are
shown in (b) and (c). These situations correspond to the dynamic cluster states qdyn,1 and qdyn,2,
respectively. In particular, state qdyn,1 corresponds to the situation where the cluster has undone
the maximal number of token productions (here two tokens) on the output port o1 while still not
having undone all produced tokens of transition t1. Likewise, state qdyn,2 has undone the maximal
number of token productions (here five tokens) on the output port o2

output channel cout,2 has been increased by five tokens, i.e., ncout,2 = 5. An
equivalent observation (see Fig. 27b) can be made for the output port o1. In this case,
two firings of the actor a6 can be undone while still producing at least one token,
i.e., the token produced by the first firing of actor a6. Thus, the channel capacity of
the cluster output channel cout,1 has been increased by two tokens, i.e., ncout,1 = 2.
If the first firing of actor a6 is also undone, then the three firings of actor a7 have
also to be reversed. Hence, all of the tokens produced by the transition t1 have been
undone. For a more formal definition of the adjo2o function, we refer the reader
to [12, 15].

5.2.3 Input-to-Output Back Pressure

While reasons (A) and (B) can occur even if the composite actor is only a sink or
source actor, reason (C) can only occur if the cluster has both inputs and outputs. To
exemplify, we again consider DFG g̃ex1 with its cluster gγ1,2 and analyse it in detail.
In Fig. 20, a scenario is presented that is deadlocking due to reasons (A) and (C).
Obviously (see Fig. 19), when the unrefined DFG gex1 is dynamically scheduled, the
specified FIFO channel capacities are sufficient. After this scenario has finished, all
channels cin,1, cin,2, cout, and c1→2 are filled to capacity.

Note that the cluster state space may contain more than one state and that the
cluster environment is not aware of the current state of a cluster. Moreover, a
deadlock-free execution of the DFG must be guaranteed for each state. Thus, the
analyses of the required channel capacity adjustments given by the three functions
adji2o, adji2i and adjo2o are performed for each state of the cluster state space
and a pointwise maximum of the adjustments required by the individual states is
computed. For this purpose, the notation max X is used to denote the pointwise
maximum of a set of vectors, e.g., max{ (1, 0), (0, 1) } = (1, 1). As an example, the

Integrated Modeling Using Finite State Machines and Dataflow Graphs 859

Table 2 The three parts of the channel capacity adjustments for the cluster gγ1,2

adjo2o(q) adji2i(q) adji2o(q, (0))
(ncout) (ncin,1 , ncin,2) (ncin,1 , ncin,2)

q = q0 (0) (0, 0) (2, 2)

q = q1 (0) (2, 2) (4, 4)

max{ . . . | q ∈ Qγ } (0) (2, 2) (4, 4)

results of the three different analyses for the cluster gγ1,2 are given in Table 2. Given
these three adjustment functions for gγ1,2 , the FIFO channel capacity adjustment
vector gγ1,2 .adj can be computed as follows:

πO(adj) = max{ adjo2o(q) | q ∈ Qγ } (1)

ni2i = max{ adji2i(q) | q ∈ Qγ } (2)

ni2o = max{ adji2o(q, πO(adj)) | q ∈ Qγ } (3)

πI (adj) =
{

max{ni2i,ni2o } if O �= ∅
ni2i otherwise

(4)

First, in Eq. (1), the output-to-output back pressure problem is considered. As can
be seen in Table 2, reason (B) is not a problem for the cluster gγ1,2 , i.e., adjo2o(q) =
(0) ∀q ∈ Qγ . This can be easily deduced as reason (B) appears when a transition
can be partially undone from the perspective of tokens production by a transition.
However, both transitions in Fig. 20 have only a single output actor firing and, thus,
there is no possibility for a partial undo from the perspective of token production.

Next, in Eq. (2), the input-to-input back pressure problem is considered. Reason
(A) appears when the cluster can consume tokens but no transition is enabled from
the perspective of consuming tokens. Considering gγ1,2 again, we notice that it can
only consume tokens if actor a1 is fired. In state q0 the outgoing transition contains
a single firing of a1 and, thus, there is no input-to-input back pressure problem for
state q0, i.e., adji2i(q0) = (0, 0). However, in state q1, the sole outgoing transitions
contains two firings of a1 and, thus, the cluster gγ1,2 can consume tokens without
enabling this transition by firing actor a1 only once. To compensate, the channel
capacities of the two input channels cin,1 and cin,2 must be increased by two free
places each, i.e., adji2i(q1) = (2, 2). However (see Fig. 20c), this is still insufficient
to prevent artificial deadlock due to reason (C).

Subsequently, in Eq. (3), the input-to-output back pressure problem is handled.
This problem only appears if the cluster has both input as well as output ports.
Here, the fact that the cluster output channel capacities will be enlarged by the
vector specified by πO(adj)—not the case for cluster gγ1,2 where πO(adj) = (0)—
can be used to minimize the required adjustments on the cluster input channels. To
compute adji2o, a cluster state qdyn ∈ Q

dyn
γ that could have been encountered during

dynamic scheduling of the cluster is searched for. This cluster state qdyn must have
the property that it stores a local maximum of tokens inside the cluster. The number

860 J. Falk et al.

2 3 62
2

genv

i2
o1i1

c1→2

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2 2 3 62
2

genv

i2
o1i1

c1→2

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2 2 3 62
2

genv

i2
o1i1

c1→2

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q0 q1

a1 a2

a b c

Fig. 28 Analysis of the input-to-output back pressure problem starting from cluster state q0. (a)
Original situation in cluster state q0. (b) Dynamic cluster state qdyn,1 reachable by firing actor a1
once. (c) Dynamic cluster state qdyn,2 reachable by undoing one firings of the actor a2

2 3 62
2

genv

i2
o1i1

c1→2

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q1q0

a1 a2 2 3 62
2

genv

i2
o1i1

c1→2

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q1q0

a1 a2 2 3 62
2

genv

i2
o1i1

c1→2

#o1 ≥ 6/ f〈a1,a1,a2〉
#i1 ≥ 4∧#i2 ≥ 4∧

#i1 ≥ 2∧#i2 ≥ 2∧
#o1 ≥ 6/ f〈a1,a2〉

aγ1,2

q1q0

a1 a2

a b c

Fig. 29 Analysis of the input-to-output back pressure problem starting from cluster state q1. (a)
Original situation in cluster state q1. (b) Dynamic cluster state qdyn,1 reachable by firing actor a1
twice. (c) Dynamic cluster state qdyn,2 reachable by undoing one firing of the actor a2

of tokens stored inside a cluster is maximized by starting from the cluster state
q ∈ Qγ consuming tokens from the cluster inputs and undoing the production of
produced tokens on the cluster output ports. In case of cluster gγ1,2 , the state where a
local—even a global—maximum of tokens is stored inside the cluster is given when
the channel c1→2 is filled to capacity. The two cluster states q0 and q1 of cluster
gγ1,2 are analysed in Figs. 28 and 29, respectively.

As can be seen in Fig. 28, two dynamic cluster states qdyn,1 and qdyn,2 of a
local—or even global—maximum token storage are derived from the original state
q0. The first dynamic cluster state qdyn,1 (see Fig. 28b) is reached from the original
state q0 by firing actor a1 once, thus consuming two tokens from each of the input
ports i1 and i2, i.e., adji2o(q0, (0)) = (2, 2). The second dynamic cluster state qdyn,2

Integrated Modeling Using Finite State Machines and Dataflow Graphs 861

(see Fig. 28c) is reachable by undoing one firing of the actor a2, thus undoing the
production of six tokens from port o1, i.e., adji2o(q0, (6)) = (0, 0). Both situations
represent local maxima of stored tokens inside gγ1,2 as no additional tokens can be
stored in the cluster without also removing some tokens from the cluster.

The same analysis (see Fig. 29) must also be performed starting from cluster
state q1. Here, we have adji2o(q1, (0)) = (4, 4) or alternatively adji2o(q1, (6)) =
(0, 0). As we do not enlarge the output channels, the values from adji2o(q0, (0)) =
(2, 2) and adji2o(q1, (0)) = (4, 4) have been selected to solve the input-to-output
back pressure problem. Thus, the values for adji2o in Table 2 are explained and
the updated channel capacities given below can be computed according to Eqs. (1)
to (4). Finally, the channels can be adjusted as follows leading to the refined system
shown in Fig. 21.

g̃ex1 . size(cin,1) = gex1 . size(cin,1)+ πi1(gγ1,2 .adj)= 2+ 4 = 6
g̃ex1 . size(cin,2) = gex1 . size(cin,1)+ πi2(gγ1,2 .adj)= 2+ 4 = 6
g̃ex1 . size(cout) = gex1 . size(cin,2)+ πo1(gγ1,2 .adj)= 6+ 0 = 6

For a more formal definition of the adji2o function, we again refer the reader
to [12, 15].

6 Conclusions

The complexity of many applications requires dataflow modeling approaches to
reflect their dynamic behavior. Still, these applications very often contain large isles
of static actors, which are amenable to compile-time analysis. In this chapter, we
presented several models of computation, which are able to integrate static dataflow
with a dynamic dataflow environment while still preserving the analyzability of the
static parts of a given dataflow graph. The incorporation of finite state machines
has proven invaluable for the coordination between the static and the dynamic parts
within DFGs. Apart from introducing and comparing recent modeling approaches
that are combining dataflow models with FSMs, we present results on quasi-static
scheduling, which reduces the scheduling overhead when mapping networks of
dataflow actors to modern multiprocessor, i.e., MPSoC targets. It is also shown that
such scheduling decisions may be presented as well by FSMs. Moreover, quasi-
static scheduling may be incorporated as a model transformation to reflect structural
and mapping decisions at design time in order to optimize for throughput, or to
minimize buffering requirements.

862 J. Falk et al.

References

1. Bacivarov, I., Haid, W., Huang, K., Thiele, L.: Methods and tools for mapping process networks
onto multi-processor systems-on-chip. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,
J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

2. Baird, M. (ed.): IEEE Standard 1666–2005 SystemC Language Reference Manual. IEEE
Standards Association, New Jersey, USA (2005)

3. Balarin, F., Giusto, P., Jurecska, A., Passerone, C., Sentovich, E., Tabbara, B., Chiodo, M.,
Hsieh, H., Lavagno, L., Sangiovanni-Vincentelli, A., Suzuki, K.: Hardware-Software Co-
Design of Embedded Systems: The POLIS Approach. Kluwer Academic Publishers (1997)

4. Bambha, N., Kianzad, V., Khandelia, M., Bhattacharyya, S.S.: Intermediate representations for
design automation of multiprocessor dsp systems. Design Automation for Embedded Systems
7(4), 307–323 (2002). https://doi.org/10.1023/A:1020307222052

5. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP systems. Signal
Processing, IEEE Transactions on 49(10), 2408–2421 (2001)

6. Bhattacharyya, S.S., Buck, J.T., Ha, S., Lee, E.A.: Generating Compact Code from Dataflow
Specifications of Multirate Signal Processing Algorithms. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 42(3), 138–150 (1995)

7. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cyclo-Static Dataflow. IEEE
Transaction on Signal Processing 44(2), 397–408 (1996)

8. Buck, J.T.: Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token
Flow Model. Tech. rep., Dept. of EECS, UC Berkeley, Berkeley, CA 94720, U.S.A. (1993).
Technical Report UCB/ERL 93/69, Ph.D dissertation

9. Damavandpeyma, M., Stuijk, S., Basten, T., Geilen, M., Corporaal, H.: Modeling static-order
schedules in synchronous dataflow graphs. In: Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 775–780. EDA Consortium (2012)

10. de Groote, R.: Throughput analysis of dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

11. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE 91(1),
127–144 (2003)

12. Falk, J.: A Clustering-Based MPSoC Design Flow for Data Flow-Oriented Applications. Dr.
Hut, Sternstr. 18, München, Germany (2015). Dissertation, Computer Science Department,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

13. Falk, J., Haubelt, C., Teich, J.: Efficient Representation and Simulation of Model-Based
Designs in SystemC. In: Proc. Forum on Specification & Design Languages, FDL’06, pp.
129–134 (2006)

14. Falk, J., Keinert, J., Haubelt, C., Teich, J., Bhattacharyya, S.S.: A Generalized Static Data Flow
Clustering Algorithm for MPSoC Scheduling of Multimedia Applications. In: Proc. 8th ACM
international conference on Embedded software, EMSOFT’08, pp. 189–198. ACM, New York,
NY, USA (2008). http://doi.acm.org/10.1145/1450058.1450084

15. Falk, J., Schwarzer, T., Glaß, M., Teich, J., Haubelt, C.: Quasi-Static Scheduling of Data Flow
Graphs in the Presence of Limited Channel Capacities. In: Proc. of the 13th IEEE Symposium
on Embedded Systems for Real-time Multimedia, ESTIMEDIA’15, p. 10 (2015)

16. Falk, J., Zebelein, C., Haubelt, C., Teich, J.: A Rule-Based Static Dataflow Clustering
Algorithm for Efficient Embedded Software Synthesis. In: Proc. Design, Automation and Test
in Europe, DATE’11, pp. 521–526. IEEE (2011)

17. Falk, J., Zebelein, C., Haubelt, C., Teich, J.: A Rule-Based Quasi-Static Scheduling Approach
for Static Islands in Dynamic Dataflow Graphs. ACM Trans. Embedded Comput. Syst. 12(3),
74:1–74:31 (2013)

18. Falk, J., Zebelein, C., Keinert, J., Haubelt, C., Teich, J., Bhattacharyya, S.S.: Analysis of
SystemC Actor Networks for Efficient Synthesis. ACM Trans. Embedded Comput. Syst. 10(2),
18:1–18:34 (2011). http://doi.acm.org/10.1145/1880050.1880054

https://doi.org/10.1023/A:1020307222052
http://doi.acm.org/10.1145/1450058.1450084
http://doi.acm.org/10.1145/1880050.1880054

Integrated Modeling Using Finite State Machines and Dataflow Graphs 863

19. Geilen, M., Basten, T.: Kahn process networks and a reactive extension. In: S.S. Bhattacharyya,
E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

20. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow scenarios.
In: Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pp. 125–134. ACM (2010)

21. Girault, A., Lee, B., Lee, E.: Hierarchical finite state machines with multiple concurrency
models. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
18(6), 742–760 (1999)

22. Ha, S., Oh, H.: Decidable signal processing dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

23. Hsu, C.J., Bhattacharyya, S.S.: Cycle-Breaking Techniques for Scheduling Synchronous
Dataflow Graphs. Tech. Rep. UMIACS-TR-2007-12, Institute for Advanced Computer Studies,
University of Maryland at College Park (2007). URL http://hdl.handle.net/1903/4328

24. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: IFIP Congress,
pp. 471–475 (1974)

25. Kosinski, P.R.: A Straightforward Denotational Semantics for Non-determinate Data Flow
Programs. In: Proc. 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL’78, pp. 214–221. ACM, New York, NY, USA (1978). https://doi.org/10.
1145/512760.512783

26. Lee, E.A., Messerschmitt, D.G.: Synchronous Data Flow. Proc. of the IEEE 75(9), 1235–1245
(1987)

27. Mattavelli, M., Janneck, J.W., Raulet, M.: MPEG reconfigurable video coding. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

28. Parks, T.M.: Bounded Scheduling of Process Networks. Tech. rep., Dept. of EECS, UC
Berkeley, Berkeley, CA 94720, U.S.A. (1995). URL http://www.eecs.berkeley.edu/Pubs/
TechRpts/1995/2926.html. Technical Report UCB/ERL M95/105, Ph.D dissertation

29. Pino, J.L., Bhattacharyya, S.S., Lee, E.: A Hierarchical Multiprocessor Scheduling System for
DSP Applications. In: Proc. Asilomar Conference on Signals, Systems, and Computers, vol. 1,
pp. 122–126 (1995). http://dx.doi.org/10.1109/ACSSC.1995.540525

30. Plishker, W., Sane, N., Kiemb, M., Bhattacharyya, S.S.: Heterogeneous design in functional
DIF. In: Proceedings of the 8th international workshop on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS ’08, pp. 157–166. Springer-Verlag, Berlin,
Heidelberg (2008)

31. Sangiovanni-Vincentelli, A.L., Sgroi, M., Lavagno, L.: Formal models for communication-
based design. In: Proceedings of the 11th International Conference on Concurrency Theory,
CONCUR ’00, pp. 29–47. Springer-Verlag, London, UK (2000)

32. Stuijk, S., Geilen, M., Basten, T.: Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Transactions on Computers 57(10), 1331–1345
(2008). https://doi.org/10.1109/TC.2008.58

33. Theelen, B.D., Deprettere, E.F., Bhattacharyya, S.S.: Dynamic dataflow graphs. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

34. Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.: A
scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In: Proceedings of International Conference on Formal Methods and Models for
Co-Design, pp. 185–194 (2006). https://doi.org/10.1109/MEMCOD.2006.1695924

35. Tripakis, S., Bui, D.N., Geilen, M., Rodiers, B., Lee, E.A.: Compositionality in Synchronous
Data Flow: Modular Code Generation from Hierarchical SDF Graphs. ACM Trans. Embedded
Comput. Syst. 12(3), 83:1–83:26 (2013). http://dx.doi.org/10.1145/2442116.2442133

http://hdl.handle.net/1903/4328
https://doi.org/10.1145/512760.512783
https://doi.org/10.1145/512760.512783
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html
http://dx.doi.org/10.1109/ACSSC.1995.540525
https://doi.org/10.1109/TC.2008.58
https://doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1145/2442116.2442133

864 J. Falk et al.

36. Tripakis, S., Bui, D.N., Rodiers, B., Lee, E.A.: Compositionality in Synchronous Data Flow:
Modular Code Generation from Hierarchical SDF Graphs. In: J. Sztipanovits, R. Rajkumar
(eds.) ACM/IEEE 1st International Conference on Cyber-Physical Systems, ICCPS’10, p. 199.
ACM (2010). https://doi.org/10.1145/1795194.1795223

37. Zebelein, C., Haubelt, C., Falk, J., Schwarzer, T., Teich, J.: Representing mapping and schedul-
ing decisions within dataflow graphs. In: Proceedings of the 2013 Forum on specification and
Design Languages (FDL), pp. 1–8 (2013)

38. Zebelein, C., Haubelt, C., Falk, J., Teich, J.: Model-based representation of schedules for
dataflow graphs. In: 16. Workshop Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV 2013), pp. 105–116 (2013)

https://doi.org/10.1145/1795194.1795223

Kahn Process Networks and a Reactive
Extension

Marc Geilen and Twan Basten

Abstract Kahn and MacQueen have introduced a generic class of determinate
asynchronous data-flow applications, called Kahn Process Networks (KPNs) with
an elegant mathematical model and semantics in terms of Scott-continuous func-
tions on data streams together with an implementation model of independent
asynchronous sequential programs communicating through FIFO buffers with
blocking read and non-blocking write operations. The two are related by the Kahn
Principle which states that a realization according to the implementation model
behaves as predicted by the mathematical function. Additional steps are required
to arrive at an actual implementation of a KPN to take care of scheduling of
independent processes on a single processor and to manage communication buffers.
Because of the expressiveness of the KPN model, buffer sizes and schedules cannot
be determined at design time in general and require dynamic run-time system
support. Constraints are discussed that need to be placed on such system support so
as to maintain the Kahn Principle. We then discuss a possible extension of the KPN
model to include the possibility for sporadic, reactive behavior which is not possible
in the standard model. The extended model is called Reactive Process Networks.
We introduce its semantics, look at analyzability and at more constrained data-flow
models combined with reactive behavior.

M. Geilen (�)
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: m.c.w.geilen@tue.nl

T. Basten
Embedded Systems Innovation by TNO and Eindhoven University of Technology, Eindhoven,
The Netherlands
e-mail: a.a.basten@tue.nl

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_24

865

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_24&domain=pdf
mailto:m.c.w.geilen@tue.nl
mailto:a.a.basten@tue.nl
https://doi.org/10.1007/978-3-319-91734-4_24

866 M. Geilen and T. Basten

1 Introduction

1.1 Motivation

Process networks are a popular model to express behavior of data-flow and
streaming nature. This includes audio, video and 3D multimedia applications such
as encoding and decoding of MPEG video streams. Using process networks, an
application is modeled as a collection of concurrent processes communicating
streams of data through FIFO channels. Process networks make task-level par-
allelism and communication explicit, have a simple semantics, are compositional
and allow for efficient implementations without time-consuming synchronizations.
There are several variants of process networks. One of the most general forms are
Kahn process networks [34, 35], where the nodes are arbitrary sequential programs,
that communicate only via channels of the process network with blocking read
and non-blocking write operations. Although harder to analyze than more restricted
models, such as Synchronous Data Flow networks [30, 39, 64], the added flexibility
makes KPNs a popular programming model. Where synchronous data-flow models
can be statically scheduled at compile time, KPNs must be scheduled dynamically
in general, because their expressive power does not allow them to be statically
analyzed. A run-time system is required to schedule the execution of processes and
to manage memory usage for the channels. On a heterogeneous implementation
platform, a KPN may be distributed over several components with individual
scheduling and memory management domains. In this case, the execution of the
process network has to be coordinated in a distributed fashion.

A process network is determinate if its input/output behavior can be expressed as
a function. Kahn Process Networks represent the largest class of determinate data-
flow process networks if we compare them based on the input/output functions they
can express. The model abstracts from temporal behavior and focuses on functional
input/output behavior of a network of parallel processes.

In this chapter we discuss the syntax and operational semantics of the model, a
denotational semantics and the Kahn Principle, which relates them. The denotational
semantics of KPNs of [34] is attractive from a mathematical point of view, because
of its abstractness and compositionality. In a realization of a process network,
FIFO sizes and contents play an important role and are influenced by a run-time
environment that governs the execution of the network. It is for this reason that
we present a simple operational semantics of process networks, similar to [21, 56].
We study and prove properties of the resulting transition system and we illustrate
a simple proof of the Kahn Principle. Not because these are new results, but we
believe that they provide insight in the fundamental properties and limitation of the
Kahn model. We look at methods and requirements for implementation of Kahn
Process Networks and we look at possible extensions of Kahn Process Networks, in
particular with the ability to express reactive behavior.

Kahn Process Networks and a Reactive Extension 867

1.2 Example

Figure 1 shows an example of a Kahn Process Network. It consists of four processes
which compute deterministic functions. Processes have inputs and outputs. A KPN
has unbounded FIFO channels connecting an output of a process to an input of a
process. Unconnected channels represent inputs or outputs of the KPN. The network
in Fig. 1 has no inputs and one output (dk). The process Add repeatedly reads one
integer number from each input (ck and fk , k ≥ 0) and writes the sum of both
numbers to its output (ak = ck + fk). The processes Delay n first write the value n

to their output and subsequently start copying their input to their output. The fourth
process, Split, copies its input to three separate outputs, ck = dk = ek = bk . If
the network executes, Delay0 and Delay1 write respectively a value 0 and 1 to
their outputs. The value 1 is copied by the Split actor giving d0 = 1. Now the Add
process has the values 0 and 1 on its inputs, adds them up and writes the value 1 to
its output. This value is copied again by Delay1 and Split and the value 1 (= d1)
is produced again on the output. It is easy to see that dk = ak−1 for k ≥ 1 and
fk = dk−1 = ak−2 for k ≥ 2. Thus, dk = dk−1 + dk−2 with d0 = d1 = 1
and the recurrence equation corresponds to the Fibonacci sequence which the KPN
produces on its output.

A more practical example of a KPN is shown in Fig. 2. It shows a part of a
pipeline of a JPEG decoder. Input stream to the network is a stream of compressed
data, the Variable Length Decoder function turns it into a stream of macro-blocks
of 8 by 8 pixels. Those blocks are subsequently passed through three functions
transforming those blocks, undoing the quantization, the zig-zag reordering of data
and the discrete cosine transformation respectively. The corresponding mathemat-
ical functions are in practice specified by code as illustrated for the Inverse Zig
Zag function (see Sect. 6). In this case the function is an infinite loop because the
function operates block by block on a stream of blocks. It uses a read operation
to read a macro block from its input in, then does some processing on it and at the
end uses a write operation to write the result to its output.

dk

ck

fk

ak bk

ekDelay0

Delay1 SplitAdd

Fig. 1 Example: a Kahn Process Network computing the Fibonacci sequence

868 M. Geilen and T. Basten

Fig. 2 KPN of JPEG decoder

1.3 Preliminaries

We introduce some mathematical notation and preliminaries. We assume the reader
is familiar with the concept of a complete partial order (CPO) (see for instance [17]).
We use (X,6) to denote a CPO on the set X with partial order relation 6 ⊆ X×X

to denote the corresponding partial order relation. We use 7D to denote the least
upper bound of a directed subset D of X. For convenience, we assume a universal,
countable, set Chan of channels and for every channel c ∈ Chan a corresponding
finite channel alphabet !c. We use ! to denote the union of all channel alphabets,
and A∗ (Aω) to denote the set of all finite (and infinite) strings over alphabet A and
A∗,ω = A∗ ∪ Aω. 6 denotes the prefix relation on strings (a complete partial order,
see for instance [17]). If σ and τ are strings, σ finite, then σ · τ denotes the usual
concatenation of the strings. If σ 6 τ , and σ is finite, then τ − σ denotes the string
τ without its prefix σ .

A history of a channel denotes the sequence of data elements communicated
along a channel [53], for instance the sequence of Fibonacci numbers. A history h

of a set C of channels is a mapping from channels c ∈ C to strings over !c. The
set of all histories of C is denoted as H(C). If h ∈ H(C) and D ⊆ C, then h|D
denotes the history obtained from h by restricting the domain to D. If h1 is a history
of C1 and h2 is a history of C2, we write h1 6 h2 if C1 ⊆ C2 and for every c ∈ C1,
h1(c) 6 h2(c). The set of histories together with the relation 6 on histories form
a complete partial order with as bottom element the empty history ∅. If h1 6 h2,
then h2 − h1 denotes the history which maps a channel c ∈ C1 to h2(c) − h1(c).
Histories h1 and h2 are called consistent if they share an upper bound, i.e., if there
exists some history h3 such that h1 6 h3 and h2 6 h3. If h1, h2 ∈ H(C), then the
concatenation h1 ·h2 is the history such that h1 ·h2(c) = h1(c) ·h2(c) for all c ∈ C.
A history is called finite if it maps every channel in its domain to a finite string and
only a finite number of channels to a non-empty string. A finite history is a finite
element of the CPO of histories. (Recall from [17] that an element k ∈ X of a CPO
(X,6) is a finite element if for every chain D ⊆ X, if k 6 7D then there is some
d ∈ D such that k 6 d .)

Kahn Process Networks and a Reactive Extension 869

In this chapter we frequently use functions f : X → X on some CPO (X,6)
that are monotone. This means that applying the function to ordered elements of the
CPO yields again ordered elements: if x ⊆ y, then f (x) 6 f (y). (Scott-) continuity
is another common property of a function on a CPO. It states that the function
preserves least upper bounds. A function is Scott-continuous iff f (7D) = 7{f (d) |
d ∈ D}.

2 Denotational Semantics

We discuss the formal definition of the semantics, i.e., the behavior, of a KPN.
Traditionally, the focus is on the functional input/output behavior of the network,
abstracting from the timing. More precisely, we are interested in a function relating
the output produced by the network to the input provided to the network. For the
JPEG decoder for instance, the sequence of decoded output blocks is a function
of the compressed input data. We first concentrate on a denotational semantics,
focusing on what input/output relation a KPN computes and later, in Sect. 3 on an
operational semantics, which also captures how that output is computed.

The denotational semantics of KPNs [34] defines the behavior of a KPN as
a Scott-continuous input/output function on the input or output stream histories.
Assuming that the (Scott-continuous) input/output functions of the individual
processes are known, then the input/output function of the KPN as a whole can be
defined as the least fixed-point of a collection of equations specifying the relations
between channel histories based on the processes. For the JPEG example, the overall
function is straightforwardly obtained by function composition. A more challenging
situation arises when there is feedback, such as in the Fibonacci example.

A KPN process with m inputs and n outputs is a Scott-continuous function f :
(!∗,ω)m → (!∗,ω)n. This implies that such a process is monotone: if i 6 j then
f (i) 6 f (j); when additional input is provided, additional output may be produced,
but existing output cannot be changed.

Because processes may exhibit memory (the current output may depend on input
from the past), the function is defined in terms of the sequences representing the
entire input history of the channel.

The functions of the individual processes of the Fibonacci example can be
defined as follows. Delayn : N∗,ω → N

∗,ω; i ∈ N
∗,ω; n ∈ {0, 1}:

Delayn(i) = n · i (1)

Add : (N∗,ω)2 → N
∗,ω is defined inductively by the following equations (i, j ∈

N
∗,ω; x, y ∈ N, ε is the empty sequence):

⎧⎨
⎩

Add(i, ε) = ε

Add(ε, i) = ε

Add(x · i, y · j) = (x + y) · Add(i, j)
(2)

870 M. Geilen and T. Basten

The FIFO channels in a KPN connect output streams of processes to input
streams of other processes, creating relationships between the functions of the
processes. In the example, the streams a, b, c, d , e and f are governed by the joint
equations of the processes:

⎧⎪⎪⎨
⎪⎪⎩

b = Delay1(a)
f = Delay0(e)
a = Add(c, f)

c = b, d = b, e = b

(3)

One can show that this set of equations has a single, unique, solution, namely the
Fibonacci numbers, for its output sequence d .

In general, the semantics of a KPN are defined in a similar way as illustrated for
the Fibonacci example above. In [34], Kahn presented the denotational semantics of
process networks as the solution to a set of equations that capture the input/output
relations of the individual processes and the way they are connected in the network.
These equations are called the network equations.

A KPN consists of a set P of processes and a set S of streams, partitioned into
inputs I , outputs O and internal channels C.

The processes p, with inputs Ip and outputs Op, that constitute the network
are described by (Scott-continuous) functions fp : H(Ip) → H(Op) that map
input histories to output histories of the processes. The network as a whole can
be described as a function, defined by Kahn’s network equations as follows. For
h ∈ H(C ∪ I ∪ O) to be a valid history describing a behavior of the whole KPN
(by describing the data communicated on each of its channels), it must satisfy the
network equations derived from the processes p ∈ P :

h|Op = fp(h|Ip)for allp ∈ P

It simply expresses that if we take from h the channels that are the inputs and outputs
of p, then these must be related corresponding to the function fp.

To characterize the behavior of the KPN as a function f that maps an input
history i to a history of all channels (including the output channels, which we are
after) in the KPN, f : H(I)→ H(I∪C∪O), we can derive the following equations
(substituting f (i) for h and adding an equation for the input channels).

{
f (i)|I = i

f (i)|Op = fp(f (i)|Ip)for allp ∈ P
(4)

Note that every internal or output channel of the KPN is an output channel of one
of the processes of the KPN. Hence, all channels are defined by these equations.
Equation (4) is a recursive equation and in general, there may be many functions
f that satisfy this equation, but only one that corresponds to an actual behavior
respecting causality (one where, intuitively speaking, symbols are produced before
they are consumed). The causal solution is the smallest function f that satisfies the

Kahn Process Networks and a Reactive Extension 871

Table 1 Kleene iteration of the Fibonacci example

k 0 1 2 3 4 5 6 7 8 9 10 11 12

a(k) ε ε ε 1 1 1 1.2 1.2 1.2 1.2.3 1.2.3 1.2.3 1.2.3.5

b(k) ε 1 1 1 1.1 1.1 1.1 1.1.2 1.1.2 1.1.2 1.1.2.3 1.1.2.3 1.1.2.3

c(k) ε ε 1 1 1 1.1 1.1 1.1 1.1.2 1.1.2 1.1.2 1.1.2.3 1.1.2.3

d(k) ε ε 1 1 1 1.1 1.1 1.1 1.1.2 1.1.2 1.1.2 1.1.2.3 1.1.2.3

e(k) ε ε 1 1 1 1.1 1.1 1.1 1.1.2 1.1.2 1.1.2 1.1.2.3 1.1.2.3

f (k) ε 0 0 0.1 0.1 0.1 0.1.1 0.1.1 0.1.1 0.1.1.2 0.1.1.2 0.1.1.2 0.1.1.2.3

network equations. Technically, this solution can be obtained as the least fixed-point
of an appropriate functional. From Eq. (4) we derive the functional

Φ : (H(I)→ H(I ∪ C ∪O))→ (H(I)→ H(I ∪ C ∪O))

defined as (compare Eq. (4)):

{
Φ(f)(i)|I = i

Φ(f)(i)|Op = fp(f (i)|Ip)for allp ∈ P
(5)

Clearly, a fixed-point of Φ satisfies Eq. (4). Moreover, Φ is a continuous
function on a CPO and according to Kleene’s fixed-point theorem [17] it has
a least-fixed point, the limit of the ascending Kleene chain (Kleene iteration),⊔ {Φk(hε) | k ≥ 0}, where hε denotes the empty history associating an empty
string with every channel.Therefore, Kleene iteration provides a way to construc-
tively compute the network behavior, by updating the output of a process whenever
its input has changed. If this procedure is repeated, then either it stops and the
complete output has been computed or it continues forever and the infinite output
equals the limit of the sequence of outputs computed during the procedure. Kleene
iteration for the Fibonacci example (up to 12 steps, although the process continues
ad infinitum) is shown in Table 1 and illustrates how it converges to the infinite
Fibonacci sequence.

3 Operational Semantics

The KPN denotational semantics specifies the input/output behavior of a KPN in
an elegant, abstract way as a mathematical function. This description however is
far away from the actual operation or implementation of a KPN. Formal reasoning
about implementations or run-time systems for KPNs can be easier based on
an operational semantics. For instance, the denotational semantics provides no
information to reason about buffer sizes required for the FIFO communication, or
reasoning about potential deadlocks. In this section, we present a compositional
operational semantics to hierarchical KPNs.

872 M. Geilen and T. Basten

d!1

f!
1

f!
1

b!1 b?1
f!
0

c!1 d!1 e!1

f?0 a!1

f!
1 f?0 a!1

f?0 a!1

a?1 b!1 b?1 c!1 d!1 e!1

f?1 a!2

f!
0

f!
0

f!
0

b!1 b?1 c!1 d!1 e!1

d!1

f!
0

e?
1

f!
1

e?
1

e?
1

e?
1

f !
1

f !
1

f!
1

a?1

a?1

b!1

b!1

b?1

b?1

e?
1

e?
1

f!
1

f!
1

c!1

c!1

e?
1

e?
1

e?
1

f!
1

f !
1

f!
1

d!1

d!1

e!1

e!1

e?
1

e?
1

e?
1

f!
1

e?
1

f?1

f?1

a!2

a!2

e?
1

Fig. 3 Operational semantics of the Fibonacci example

3.1 Labeled Transition Systems

3.1.1 Semantics

We give an operational semantics to KPNs in the form of a labeled transition system
(LTS). We use, more specifically, an LTS with an initial state, with designated input
and output actions in the form of reads and writes of symbols on channels, as well
as internal actions. We illustrate this with the LTS of the Fibonacci example (Fig. 3).

Definition 1 (LTS) An LTS is a tuple (S, s0, I,O,Act,−→) consisting of a
(countable) set S of states, an initial state s0 ∈ S, a set I ⊆ Chan of input channels,
a set O ⊆ Chan (disjoint from I) of output channels, a set Act of actions consisting
of input (read) actions {c?a | c ∈ I, a ∈ !c} ⊆ Act, output (write) actions
{c!a | c ∈ O, a ∈ !c} ⊆ Act and (possibly) internal actions (all other actions),
and a labeled transition relation −→ ⊆ S × Act × S describing possible transitions
between states.

Thus, c!a is a write action to channel c with symbol a; c?a models passing of a
symbol from input channel c to the LTS. The initial state in Fig. 3 is indicated with
the larger open circle. From this state, two write actions are possible, b!1 and f !0,
leading to different, new states. We write s1

α−−→ s2 if (s1, α, s2) ∈ −→ and s1
α−−→

if there is some s2 ∈ S such that s1
α−−→ s2.

With a write operation, the symbol on the output channel is determined by
the LTS. With a read operation, the symbol that appears on the input channel is
determined by the environment of the LTS. Therefore, a read operation is modeled
with a set of input actions that provides a transition for every possible symbol of the
alphabet. (Note that the Fibonacci example KPN has no inputs to the network, only
an output d .)

If Act is a set of actions and C ⊆ Chan a set of channels, we write Act|C to
denote {c!a, c?a ∈ Act | c ∈ C}, i.e., actions of Act on channels in C. An execution

Kahn Process Networks and a Reactive Extension 873

σ is a path through the transition system starting from the initial state, a sequence

s0
α0−→ s1

α1−−→ . . . of states si ∈ S and actions αi ∈ Act, such that si
αi−−→ si+1

for all i ≥ 0 (up to the length of the execution). If σ is such an execution, then we
use |σ | ∈ N ∪ {∞} to denote the length of the execution. For k ≤ |σ |, we use σk

to denote the prefix of the execution up to and including state k. If s0
α0−−→ s1

α1−−→
. . .

αn−1−−−−→ sn, we write s0
a−→ sn, where a = α0 · α1 · . . . · αn. From a given

execution σ with actions a = α0 · α1 · . . ., we extract the consumed input and the
produced output on a set D ⊆ Chan of channels as follows. For a channel c ∈ D,
a?c is a (finite or infinite) string over !c that results from projecting a onto read
actions on c. a!c is a (finite or infinite) string over !c that results from projecting a

onto write actions on c. Input history a?D = {(c, a?c) | c ∈ D} and output history
a!D = {(c, a!c) | c ∈ D}.

Furthermore, we use the same notation for executions σ with actions a: σ?c =
a?c, σ !c = a!c, σ?D = a?D and σ !D = a!D. Thus σ?I denotes the input
consumed by the network in execution σ and σ !O denotes the output produced
by the network. The I/O-history h(σ) of an execution σ is σ?I ∪ σ !O . To reason
about the input offered to the network (consumed or not consumed), we say that σ
is an execution with input i : I → !∗,ω if σ?I 6 i (the consumed data is consistent
with i, but need not be all of i). If i 6 j then σ is also an execution with input j .

Executions in general may be only partially completed or they may be unrealistic
or wrong because certain actions are systematically being ignored. To be able to
exclude such executions when necessary, we need the notions of maximality and

fairness. Let σ = s0
α0−−→ s1

α1−−→ . . . be an execution of the LTS.

• (Maximality) Execution σ with input i is called maximal if it does not stop
prematurely, if it is infinite or in its last state only read actions on input channels
from which all input of i has been consumed are possible, i.e., if |σ | = n and
sn

α−−→ then α = c?a for some c ∈ I and a ∈ !c and σ?c = i(c).
• (Fairness) Execution σ is fair with input i if it is finite, or it is infinite and if at

some point an action is enabled, it is eventually executed or disabled (the latter
does not occur for KPNs), i.e.,

– if for some n ∈ N and internal or output action α, sn
α−−→, then there is some

k ≥ n such that αk = α or sk � α;

– if for some n ∈ N, c ∈ I and a ∈ !c, sn
c?a−−−→, and i(c) = (σn?c)aτ for

some τ ∈ !
∗,ω
c , then there is some k ≥ n such that αk = c?a or sk � c?a;

Every finite execution with input i of an LTS can be extended to a fair and maximal
execution with input i. We can describe the externally observable behavior of a
labeled transition system by relating the output actions the LTS produces with the
input actions provided to the network. In general this gives a relation between input
histories and output histories. We restrict the attention to ‘proper’ executions in the
sense that only maximal and fair executions are taken into account.

874 M. Geilen and T. Basten

Definition 2 (Input/Output Relation) The input/output relation IO of an LTS is
the relation {(i, σ !O) | σ is a maximal and fair execution with input i}.

3.1.2 Determinacy

In general, the input/output relation is too abstract to adequately characterize the
behavior of an LTS. If it is non-deterministic, the order in which input is consumed
or output is produced can be relevant (see Sect. 7). Kahn Process Networks do not
exhibit such non-determinism. Transitions are deterministic and if multiple actions
are available at the same time, then they are independent (i.e., they can be executed
in any order with an identical result). This leads to a special type of LTS, which
we call determinate. Recall the LTS in Fig. 3, showing the beginning of the LTS of
the Fibonacci example. Although there are very many different paths, there is only
very limited actual choice in choosing a path from the initial top-left state. Any path
we choose executes exactly the same actions in a slightly modified order caused by
concurrency in the process network. We give a precise definition of this type of LTS
and summarize their properties.

Definition 3 (Determinacy) LTS (S, s0, I,O,Act,−→) is determinate if for any

s, s1, s2 ∈ S, α1, α2 ∈ Act, if s
α1−−→ s1 and s

α2−−→ s2, the following hold:

1. (Determinism) if α1 = α2 is some input or output action, then s1 = s2, i.e.,
executing a particular action has a unique deterministic result;

2. (Confluence) if α1 and α2 are not two input actions on the same channel (i.e.,

instances of the same read operation), then there is some s3 such that s1
α2−−→ s3

and s2
α1−−→ s3. Figure 3 shows many instances of this structure, where if from

some state multiple transitions are possible, the actions that are not chosen remain
enabled and taking them in different orders leads to the same state.

3. (Input Completeness) if α1 = c?a for some c ∈ I , then for every a′ ∈ !c,

s
c?a′−−−→, i.e., input symbols are completely defined by the environment, the LTS

cannot be selective in the choice of symbols it accepts;
4. (Output Uniqueness) if α1 = c!a and α2 = c!a′ for some c ∈ O , then a = a′,

i.e., output symbols are completely determined by the transition system. Here,
the environment cannot be selective in its choice of symbol to receive.

A sequential LTS is a determinate LTS with the additional property that

5. (Sequentiality) if α1 = c*a (* ∈ {!, ?}) (some read or write operation), then
α2 = c*a′ for some a′ ∈ !c and c ∈ I ∪ O , i.e., the LTS accepts at most one
input/output operation at any point in time and no other (for instance internal)
actions.

Although a determinate LTS may have multiple actions enabled at the same
time. The order in which they are taken has no influence on the consumed input
or produced output of the network in a fair and maximal execution. Two different

Kahn Process Networks and a Reactive Extension 875

executions are essentially the same, because the actions of one can be reordered
without changing the input or output histories, to obtain the other execution (they
are equivalent Mazurkiewicz traces).

Proposition 1 The input/output relation of a determinate labeled transition system
is a continuous function.

A detailed proof can be found in [22]. If λ is a labeled transition system, we use
fλ to denote its I/O relation. In particular, if λ is determinate, this is an I/O function.

An important property in process networks is a deadlock condition. We can
define a deadlock as the possibility to reach a state from which no further transitions
are possible, a finite maximal execution. It is usually called a deadlock only if this
is an undesirable situation. An important corollary from the analysis above is that if
a determinate LTS has some execution which leads to a deadlock state, then all of
its executions lead to the same deadlock state. In other words, the deadlock cannot
be avoided by a smarter scheduling strategy, it is inherent to the determinate LTS
specification and as we will see, therefore also holds for KPN.

3.2 Operational Semantics

We can now formalize an operational semantics of a KPN as a determinate LTS.

Definition 4 (Kahn Process Network) A Kahn Process Network is a tuple
(P,C, I,O,Act, {λp | p ∈ P }) that consists of the following elements.

• A finite set P of processes.
• A finite set C ⊆ Chan of internal channels, a finite set I ⊆ Chan of input

channels and a finite set O ⊆ Chan of output channels, all distinct.
• Every constituent process p ∈ P is itself defined by a determinate labeled

transition system λp = (Sp, sp,0, Ip,Op,Actp,
−→
p), with Ip ⊆ I ∪ C and

Op ⊆ O∪C. The sets Actp\(Actp|(Ip∪Op)) of internal actions of the processes
are disjoint.

• The set Act of actions consisting of the actions of the constituent processes:
Act =⋃p∈P Actp.

• For every channel c ∈ C ∪ I , there is exactly one process p ∈ P that reads from
it (c ∈ Ip) and for every channel c ∈ C ∪O , there is exactly one process p ∈ P

that writes to it (c ∈ Op).

To define the operational semantics of a KPN, we need a notion of global state of
the network; this state is composed of the individual states of the processes and the
current contents of the internal channels. A configuration of the process network is
a pair (π, γ) consisting of a process state π and a channel state γ , where

• a process state π : P → S = ⋃p∈P Sp is a function that maps every process
p ∈ P on a local state π(p) ∈ Sp of its transition system;

• a channel state γ : C → !∗ is a history function that maps every internal
channel c ∈ C on a finite string γ (c) over !c.

876 M. Geilen and T. Basten

The set of all configurations is denoted by Confs and there is a designated initial
configuration c0 = (π0, γ0), where π0 maps every process p ∈ P to its initial state
sp,0 and γ0 maps every channel c ∈ C to the empty string ε. We assign to a KPN
κ = (P,C, I,O,Act, {λp | p ∈ P }), an operational semantics in the form of an
LTS (Confs, c0, I,O,Act,−→). The labeled transition relation −→ is inductively
defined by the following five rules (given in Plotkin style [50] inference rules; if the
condition above the rule is satisfied, the conclusion below is also valid). For reading
from and writing to internal channels by processes we have the following two rules
respectively:

π(p)
c?a−−→
p

s, γ (c) = aσ, c ∈ C

(π, γ)
c?a−−→ (π{s/p}, γ {σ/c})

π(p)
c!a−→
p

s, γ (c) = σ, c ∈ C

(π, γ)
c!a−→ (π{s/p}, γ {σ · a/c})

Input channels and output channels are open to the environment:

π(p)
c?a−−→
p

s, c ∈ I

(π, γ)
c?a−−→ (π{s/p}, γ)

π(p)
c!a−→
p

s, c ∈ O

(π, γ)
c!a−→ (π{s/p}, γ)

Individual processes may perform internal actions:

π(p)
α−→
p

s, α /∈ Actp|(Ip ∪Op)

(π, γ)
α−→ (π{s/p}, γ)

This LTS is denoted as �(κ).
The labeled transition system of a KPN is determinate. We check the four

properties of a determinate LTS.

• Determinism follows from determinism of the process that accepts or produces
the input or output action respectively.

• Confluence. If both actions originate from different processes, it can be checked
that they cannot disable each other. If they originate from the same process, it
follows from confluence of that process.

• Input completeness follows immediately from input completeness of the con-
stituent processes.

• Output uniqueness similarly follows directly from output uniqueness of the
process delivering the output.

The LTS of the KPN has the same property (determinacy) as the individual
processes. Therefore, the presented semantics of KPN is compositional, a deter-
minate process network is constructed from individual determinate processes, and
this means it can itself be used as a process in a larger KPN. This way, we can
hierarchically construct larger KPNs. At the lowest level we can start with primitive
processes, for instance sequential processes which are typically implemented by
sequential programs with read and write operations.

Kahn Process Networks and a Reactive Extension 877

If κ is a KPN, then we use fκ to denote the I/O function realized by that KPN.
In the remainder, we assume that (P,C, I,O,Act, {λp | p ∈ P }) is a Kahn Process
Network with LTS (Confs, c0, I,O,Act,−→).

Using the operational semantics of KPN, we can now reason about resources
such as scheduling on processors or buffer capacities for the FIFOs connecting the
processes. We can also determine whether finite buffer capacities are sufficient. In
the Fibonacci example of Fig. 3, there exist executions which require a buffer size
of 2 on channel e, for instance if we take the path according to the upper envelope
of the picture, two write actions occur in the channel e before the first read action.
The path along the bottom envelope of the picture requires only a buffer size of 1
for channel e because the first read occurs before the second write. We have seen
that all paths have the same functional behavior, but they may be different in terms
of the required resources! An execution σ is bounded if there exists a mapping
B : C → N such that at any state (π, γ) of σ , |γ (c)| ≤ B(c) for all c ∈ C. Not
every KPN allows a bounded execution. Some KPNs may have both bounded and
unbounded executions. This is relevant for realizations of KPNs, as discussed in
Sect. 6.

4 The Kahn Principle

The operational semantics given in the previous section is a model closer to a
realization of a KPN than the denotational semantics of Sect. 2. The denotational
semantics defines behavior as the least solution to a set of network equations [34].
The correspondence between both semantics, demonstrating that they are consistent,
is referred to as the Kahn Principle. It was stated convincingly, but without proof,
by Kahn in [34] and was later proved by Faustini [21] for an operational model of
process networks, in [56] for an operational model of concurrent transition systems
and in [44] for an operational characterization using I/O automata. Based on the
operational semantics, a determinate LTS, a functional relation, is obtained between
inputs and outputs. This function is shown to correspond to the least solution of
Kahn’s network equations.

The proof presented here is similar to the proof of the Kahn Principle for
I/O automata of [44]. We reproduce it here in outline, because it illustrates the
connections between denotational and operational semantics and the essential
properties of the KPN model. We first show that if the operational behaviors of
individual processes of the KPN respect their functional specifications, then so does
the KPN as a whole. For an execution σ with input i, we use the notation h(σ, i) to
denote the history identical to h(σ) except for the input channels, which are mapped
according to i, since some of the input of i offered to the network may not (yet)
have been consumed. Thus h(σ, i) is equal to the mapping i ∪ σ !(C ∪ O). We
can derive from an execution of the overall KPN how individual processes have
contributed to that execution. σ |p denotes execution σ projected on process p. If

878 M. Geilen and T. Basten

σ = (π0, γ0)
α0−→ (π1, γ1)

α1−→ (π2, γ2)
α2−→ Then σ |p = πn0(p)

αn0−−→ πn1(p)
αn1−−→ πn2(p)

αn2−−→ . . . where n0, n1 etcetera are such that n0 < n1 < . . . and αn0 ,
αn1 , . . . are precisely the actions from process p.

Lemma 1 If σ is a fair and maximal execution of a KPN with input i and p is a
process of the KPN, then σ |p is a fair and maximal execution of p with input σ !Ip .

Proof That σ |p is an execution of p follows from the fact that if the KPN executes
an action not from p, then the configuration does not change w.r.t. the state of p. If α

does originate from p, then from (π, γ)
α−→ (π ′, γ ′), it follows that π(p)

α−→
p

π ′(p).
Fairness follows from the fact that an enabled read or write operation of the process
induces an enabled action of the KPN. Fairness of the execution σ of the KPN
prescribes that the action is executed at some point in σ and hence also in σ |p.
Similarly, maximality is obtained from maximality of the execution of the network.

Lemma 2 For every fair and maximal execution σ with input i, the history h(σ, i)

satisfies the network equations.

Proof Let σ be a fair and maximal execution with input i. It follows using Lemma 1
that h(σ, i)|Op = fp(h(σ, i)|Ip). Thus, h(σ, i) satisfies the network equations.

Lemma 3 A history corresponding to a fair and maximal execution of the KPN with
input i corresponds to the smallest solution to the network equations with input i.

Proof The history is unique (i.e., independent of the execution) by Proposition 1.
In Lemma 2 we proved that it is a solution to the network equations. We have to
prove that every solution to the network equations is an upper bound of the history
of the execution. Let σ be a fair and maximal execution of the KPN with input
i and let h be any history satisfying the network equations such that h|I = i. It
suffices to prove that h is an upper bound of the history of every finite prefix σ ′ of
the execution, h(σ ′, i) 6 h, proved by induction on the length of the execution. This
is trivial for the empty execution (π0, γ0); we proceed with the induction step. Let
σ ′ = σ ′′ −→ α(πn, γn),

• If α is internal to one of the processes or an input action of one of the processes,
then h(σ ′, i) = h(σ ′′, i) and the result follows by the induction hypothesis.

• If α is an output action of some process p, then by the induction hypothesis,
h(σ ′′, i)|Ip 6 h|Ip. By monotonicity of fp and the fact that h satisfies the
network equations, it follows that fp(h(σ

′′, i)|Ip) 6 fp(h|Ip) = h|Op. By
monotonicity of fp and σ ′′?Ip 6 h(σ ′′, i)|Ip we also have fp(σ

′′?Ip) 6
fp(h(σ

′′, i)|Ip). Combining everything, we then have that h(σ ′, i)|Op 6
fp(σ

′?Ip) = fp(σ
′′?Ip) 6 fp(h(σ

′′, i)|Ip) 6 h|Op. Hence, it follows that
h(σ ′, i) 6 h.

Theorem 1 (Kahn Principle) The I/O relation of a KPN, derived from the oper-
ational semantics is a continuous function which corresponds to the denotational

Kahn Process Networks and a Reactive Extension 879

semantics of the KPN, i.e., to the least fixed point of the functional Φ defined in
Sect. 2.

Proof It follows from Lemma 3 that for every input i, a fair and maximal execution
of the KPN with input i yields the smallest channel history that satisfies the network
equations. The least fixed point of Φ is the function that assigns to any input i

precisely that smallest history.

5 Analyzability Results

Kahn Process Networks are a very expressive model of computation, despite the fact
that it only allows specification of functional, determinate systems. In particular,
compared to more restricted data-flow models such as Synchronous Data Flow or
Cyclo-Static Data Flow [30], it allows that the rates at which a process communi-
cates on its outputs are data dependent. Combined with unlimited storage capacity in
its unbounded FIFO buffers, this makes KPN an expressive model. Expressiveness
is usually in direct conflict with analyzability, the ability to (statically, off-line)
analyze an application for its properties, such as deadlock-freedom (for buffers of
a given, possibly unbounded, capacity), equivalence, minimum throughput (when
adding timing information), static scheduling, and so on.

It is known for instance that the problem to decide for a given KPN (with
unbounded buffer capacities) whether it is deadlock-free is undecidable. The proof
of this fact [13, 49] relies on a reduction from the Halting Problem of Turing
Machines. It is shown that a Boolean Dataflow (BDF) Graph (and therefore also
a Kahn Process Network) can simulate a Universal Turing Machine; in other words
KPN is Turing Complete. This allows the Halting Problem for Turing Machines to
be reduced to deadlock-freedom of KPNs. Because the former is known to be an
undecidable problem, so must the latter problem be undecidable. A sketch of the
translation from Turing Machines to BDF is given in [13].

We can formalize the question for deadlock-free execution in the semantic
framework of this chapter as follows.

Definition 5 (Deadlock) Given a KPN. Is there some input i, such that the KPN
permits a finite, maximal execution with input i?

Note that in this case any maximal execution with input i is finite. Moreover, note
that this does not always indicate a problem. Some KPNs may be designed to have
only finite executions. The boundedness question can be formalized as follows.

Definition 6 (Boundedness) Given a KPN with an input/output function f and
channels C and input channels I . Do there exist finite channel capacities B : C →
N, such that for every input history i, there is an execution σi such that h(σi, i)|O =
f (i) and at any state (π, γ) of σi , |γ (c)| ≤ B(c) for all c ∈ C?

880 M. Geilen and T. Basten

A slightly weaker form of boundedness can also be defined in which for every input
i there is a bounded execution, but there need not necessarily be a single bound for
all input. It would however not be strong enough to guarantee that a deadlock free
implementation with fixed, bounded FIFOs exists to handle all possible inputs. A
corresponding optimization problem, the buffer sizing problem, would be to try to
find minimal such channel capacities. These capacities are not computable however,
because of the undecidability of deadlock-freedom.

In the same way, most non-trivial questions about KPNs are undecidable. What is
the minimum throughput or maximum latency of a given KPN extended with timing
information? What are sufficient FIFO buffer capacities to execute with a guaranteed
minimal throughput? Is a particular channel or process ever used or activated? Some
of these questions have to be answered to arrive at an implementation of a KPN. We
discuss this further in the next section.

6 Implementing Kahn Process Networks

KPNs are a mathematical model of computation with conceptually unbounded FIFO
buffers. KPNs are a very expressive model and we have seen that many of its
properties are not statically decidable. Therefore, in some cases subclasses of KPN
are used as a starting point for an (automated) synthesis trajectory. However, in
many cases the expressiveness of the model is exploited and KPNs are used directly
as the basis for synthesis, or for simulation, in which case conceptually the same
problems need to be solved.

Besides the infinite buffer capacities, another issue to be addressed is that
the semantics involves potentially infinite behaviors. The Fibonacci example if
Fig. 1 represents a network that produces an infinite stream of numbers, the
Fibonacci sequence. A real, physical implementation however will never be able
to produce an infinite sequence in a finite amount of time. A judgement whether
an implementation is correct should be based on its behavior in finite time to be of
practical relevance. Section 9 discusses existing implementations of KPN.

6.1 Implementing Atomic Processes

The semantics of KPN assumes atomic processes which implement elementary
continuous functions. Kahn and MacQueen suggest [35] that the atomic processes
can be implemented with sequential program code which does not use any global
variables shared with other processes and with explicit read and write operations
added for reading symbols from input and writing symbols to output channels. An
example is the code of the Inverse Zig Zag process in Fig. 2.

If several of such processes are required to run on a single processor, then
typically a multi-threaded (light-weight) OS is used which spawns a single thread

Kahn Process Networks and a Reactive Extension 881

for every process. Determinacy of KPN guarantees that synchronization between
these threads is only needed for communication on the FIFOs. When a read
operation is executed on an empty FIFO, the reading process thread should stall
until new symbols are written to the channel. (It is not allowed to do anything else
than wait, because that would break determinacy, since scheduling order may have
an impact on the outcome.) Similarly, if FIFO buffers of limited capacity are used in
the implementation, a writing process thread may need to stall until sufficient space
is available in the channel to complete the write operation. Threads can be, but need
not be, scheduled in a preemptive manner.

6.2 Correctness Criteria

An implementation of a KPN should respect the formal (denotational and oper-
ational) semantics. It is not entirely trivial how to define correctness because
the semantics talks about infinite executions and infinite streams as a convenient
abstraction of streaming computation. However, in the real-world we will never be
able to observe any actual infinitely long executions. We break down correctness of a
KPN implementation into three aspects: soundness, completeness and boundedness.
Soundness is the most basic requirement and it states that the KPN implementation
should never produce any output that contains symbols different from the output
predicted by the semantics, nor should it produce more output than predicted. For
instance, if the semantics says that the Fibonacci KPN produces the outputs: 1, 1,
2, 3, etcetera, then the implementation should not produce: 1, 2, . . . , and the JPEG
decode should not produce any wrongly decoded blocks.

Definition 7 (Soundness) An implementation strategy for KPN is sound if for
every KPN with input/output function f and every behavior the strategy may
produce, if the strategy consumes input i and produces output o, then o 6 f (i).

Secondly, output should be complete. Intuitively this means that the implementa-
tion should produce all output predicted by the semantics. But of course we cannot
expect an implementation to produce an infinite amount of output in a finite amount
of time. However, every individual part (symbol) of the infinite output stream occurs
after a finite amount of output produced before it. Hence, we do require from a good
implementation that every bit of the predicted output is eventually (meaning after
a finite amount of time) produced by the implementation. In other words, if we
sample at finite time intervals the input consumed and output produced by the KPN
implementation as a sequence of finite executions σk , then the limit of that sequence
(its least upper bound) should be the entire infinite execution. If the JPEG decoder
would be used ad infinitum, with an infinite stream of images to be decoded, it
should not come to a complete halt after a finite amount of time.

Definition 8 (Completeness) An implementation strategy for KPN is complete if
for every KPN and for every input i offered to this KPN and for every behavior the

882 M. Geilen and T. Basten

strategy may produce, if it is sampled at regular time intervals tk having produced
the finite executions σk , then σ = ⊔{σk | k ≥ 0} is a maximal and fair execution
with input i that is part of the operational semantics.

In particular, this implies that (a) any new amount of progress is made in a
finite amount of time, and (b) no channels are excluded from making progress
in finite time, there must be no starvation of parts of the network. We illustrate
the importance of this constraint when we discuss run-time scheduling and buffer
management below.

Thirdly, it is important that this is achieved within bounded memory whenever
possible (we know that it is not always possible). This amounts to keeping the FIFOs
bounded, also in (conceptually) infinite computations.

Definition 9 (Boundedness) An implementation strategy for KPN is bounded if
for every KPN and for every input offered to this KPN, if there exists a bounded
execution according to the operational semantics, then this strategy will produce a
bounded execution.

Not every KPN allows for bounded executions. In such a case, the strategy is
allowed to produce an unbounded execution, but rather one should perhaps decide
not to implement such a KPN, although one cannot, in general, automatically decide
whether this will be the case!

6.3 Run-Time Scheduling and Buffer Management

Conceptually, the FIFO communication channels of a KPN have an unbounded
capacity. A realization of a process network has to run within a finite amount of
memory. An unbounded capacity can be mimicked using dynamic allocation of
memory for a write operation, as suggested in [35], but rather than that, it is for
reasons of efficiency better to allocate fixed amounts of memory to channels and
change this amount only sporadically, if necessary. An added advantage of the
fixed capacity of channels is that one can use an execution scheme introduced
by Parks [49], where a write action on a full FIFO channel of limited capacity
blocks until there is room freed up in the FIFO. Note that this behavior can be
modeled within the KPN model using additional channels in opposite directions,
similar to the well-known trick with Synchronous Data Flow graphs [49]. This
importantly demonstrates that this does not impact determinacy of the model. This
gives an efficient mixed form of data-driven and demand-driven scheduling [3, 49],
illustrated in Fig. 4, in which a process can produce output (in a data-driven way)
until the channel it is writing to is full and/or the channel it is consuming from
is empty. Then it blocks and other processes take over, effectively regulating the
relative speeds of different processes. As discussed previously, it is undecidable
in general, how much buffer capacity is needed in every channel [13]. If buffers
are chosen too large, memory is wasted. If buffers are chosen too small, so-called

Kahn Process Networks and a Reactive Extension 883

Fig. 4 Parks’ scheduling method

p q

r

u

s

v

t

w

W

r

W

W

r

W

r

Fig. 5 An artificial deadlock

artificial deadlocks may occur that are not present in the original KPN, when
processes are being permanently blocked because of one or more full channels, an
event which cannot occur in the original KPN. Therefore, a scheduler is needed that
determines the order of execution of processes and manages buffer sizes at run-time.

Figure 5 shows a process network in an artificial deadlock situation. Process w

cannot continue because its input channel to process v is empty; it is blocked on a
read action on the channel to v, denoted by the ‘r’ in the figure. The required input
should be provided by v, but this is in turn waiting for input from u. u is waiting
for q . Process q is blocked, because it is trying to output a token on the full channel
to r; the block on the write action is denoted by a ‘w’. Similarly processes r , s and
t are blocked by a full channel. Only w could start emptying these channels, but
w is blocked. The processes are in artificial deadlock (q , r , s and t would not be
blocked in the original KPN) and can only continue if the capacity of one of the
full channels is increased. Note that a blocked process is dependent on a unique
channel on which it is blocked either for reading or for writing and hence it depends
on a unique other process that is also connected to that channel. This gives rise to
a chain of dependencies and if this chain is cyclic, it is a deadlock. A real (non-
artificial) deadlock, in contrast, is entirely due to the KPN specification and cannot
be avoided by buffer capacity selection. Because the KPN with bounded FIFOs
is also determinate we can conclude that the buffer management is independent
from scheduling; an artificial deadlock, like a real deadlock, cannot be avoided by a
different scheduling (see [24] for more details and a proof.)

Thus, an important aspect of a run-time scheduler for KPNs is dealing with
artificial deadlocks. We can discern different kinds of deadlocks. A process network
is in global deadlock if none of the processes can make progress. In contrast, a local

884 M. Geilen and T. Basten

network in
local deadlock

Fig. 6 A local deadlock

deadlock arises if some of the processes in the network cannot progress and their
further progress cannot be initiated by the rest of the network.

Parks’ strategy [49] for dealing with scheduling, artificial deadlocks and buffer
management is the following procedure. First, select some arbitrary, fixed initial
buffer capacities. Then, execute the KPN, with blocking read and blocking write
operations. If and when a global deadlock occurs and it is an artificial deadlock,
then increase the size of the smallest buffer and continue. (One can try to be more
efficient in the selection of the buffer that needs to be enlarged [3, 24], but this does
not fundamentally change the strategy.) Such a run-time scheduler thus needs to
detect a global deadlock. In a single processor multi-threaded implementation, this
is typically achieved by having a lowest priority thread of execution that becomes
active only when all other threads are blocked, indicating a global deadlock. It then
tests whether the deadlock is artificial and if so, increases the size of a selected
buffer, ultimately enabling one of the blocked processes again. In terms of the
formulated correctness criteria, one can show this method to be sound and bounded,
but not complete.

Proposition 2 The scheduling strategy of [49] for KPNs is sound and bounded, but
not complete.

Proof Soundness is straightforward. The appropriate code is executed and nothing
else. The strategy of selecting the smallest buffer to increase guarantees that after a
finite number of resolved artificial deadlocks, the buffer capacities must have grown
beyond the bounds needed when a bounded execution exists. Incompleteness of the
scheduling strategy follows from the counter example of Fig. 6, discussed below.

The strategy chosen in [3] is in this respect similar to the one of [49] and also
leads to a bounded execution if one exists.

To guarantee the correct output of a network, a run-time scheduler must detect
and respond to artificial deadlocks. Parks proposes to respond to global artificial
deadlocks. In implementations of this strategy [1, 29, 36, 57, 63], global deadlock
detection is realized by detecting that all processes are blocked, some of which
by writing on a full FIFO. Although this guarantees that execution of the process
network never terminates because of an artificial deadlock, it does not guarantee
the production of all output required by the KPN semantics; output may not be

Kahn Process Networks and a Reactive Extension 885

complete. For example, in the network of Fig. 6, if the upper part reaches a local
artificial deadlock, then the lower, independent part is not affected. Processes may
not all come to a halt and the local deadlock is not detected and not resolved. The
upper part may not produce the required output. Such situations exist in realistic
networks. A particular example is the case when multiple KPNs are controlled by a
single run-time scheduler, one entire process network may get stuck in a deadlock.
Hence, to achieve completeness, a deadlock detection scheme has to detect local
deadlocks as well.

It is shown in Sect. 4 that the Kahn Principle hinges on fair scheduling of
processes [11, 34, 56]. Fairness means that all processes that can make progress
should make progress at some point. This is often a tacit but valid assumption if
the underlying realization is truly concurrent, or fairly scheduled. However, in the
context of bounded FIFO channels where processes appear to be inactive while they
are blocked for writing, fairness of a schedule is no longer evident. This issue is
neglected if one responds to global deadlocks only, leading to a discrepancy with
the behavior of the conceptual KPN.

It is proved in [24] and illustrated below, that a perfect scheduler for KPN,
satisfying all three correctness criteria for any KPN cannot exist.

Theorem 2 ([24]) A scheduling strategy for KPNs satisfying soundness, complete-
ness and boundedness does not exist.

The incompleteness of the scheduling method of [49] can have rather severe
consequences, leading to starvation of parts of the network. The way to resolve this
is to not wait until a global deadlock occurs before taking actions, but act (in finite
time) when a local artificial deadlock occurs and resolve it. This is the adaptation
that the strategy proposed by Geilen and Basten [24] makes to the original strategy
of [49].

A problem for an implementation strategy for KPN is posed by the production
of data that is never used. This is illustrated with Fig. 7. Process p writes n data
elements (tokens) on channel c connecting p to process q; after that, it writes tokens
to output channel a forever. q never reads tokens from c and outputs tokens to
channel b forever. If the capacity of c is insufficient for n tokens, then output a
will never be written to unless the capacity of c is increased. q doesn’t halt and
execution according to Parks’ algorithm does not produce output on channel a,
violating completeness, because in the KPN, infinite output is produced on both
channels. The above suggests that a good scheduler should eventually increase the
capacity of channel c so that it can contain all n tokens. However, such a scheduler
fails to correctly schedule another KPN. Consider a process network with the same
structure as the one of Fig. 7, but this time, p continuously writes tokens on output
a, mixed with infinitely many tokens to channel c. q writes infinitely many tokens
to b and reads infinitely many tokens from c, but at a different rate than p writes
tokens to c. Note that a bounded execution exists; a capacity of one token suffices
for channel c. If process p writes to c faster than q reads, channel c may fill up
and the scheduler, not knowing if tokens on channel c will ever be read, decides
to increase channel capacity. A process q exists that always postpones the read

886 M. Geilen and T. Basten

Fig. 7 Non effective network
p

q

c

b

c
w

a

b

an ω

ω

actions until after the scheduler decides to increase the capacity; the execution will
be unbounded, although a bounded execution exists.

The way out of this dilemma taken by Geilen and Basten [24] is to assume that in
a reasonable KPN, every token that is written to a channel, is eventually also read.
Such KPNs are called effective.

The scheduling algorithm is based on the use of blocking write operations to
full channels as in [49]. In order to define local deadlocks, it builds upon the
notion of causal chains as introduced in [3]. Any blocked process depends for its
further progress on a unique other process that must fill or empty the appropriate
channel. These dependencies give rise to chains of dependencies. If such a chain
of dependencies is cyclic, it indicates a local deadlock; no further progress can be
made without external help. In Fig. 5, such a causal chain is indicated by the dashed
ellipse indicating the cyclic mutual dependencies of the processes q , r , s, t , u, v and
w, which form a local deadlock.

The scheduling strategy of [24] is identical to the scheduling strategy of [49]
except that the search for an artificial deadlock does not occur only when the
network is in global deadlock, but the scheduler needs to monitor the process
network for the occurrence of local artificial deadlocks and resolve those in finite
time. The behavior of this scheduling strategy has the following characteristic
property, proved in [24].

Theorem 3 The scheduling strategy of [24] for KPNs is sound, complete and
bounded for effective KPNs.

7 Extensions of KPN

KPN is an expressive model that allows the description of a wide class of data-
flow applications. Its expressiveness leads to undecidability of various elementary
questions about KPNs (Sect. 5). Yet still, there is sometimes the desire to extend the
KPN model with additional features. The most prominent ones are time and events
or reactive behavior. KPN describes the functional behavior of a process network,
but makes no statements about the timing with which these outputs are produced, or
the latency or throughput that can or should be attained. Another important element

Kahn Process Networks and a Reactive Extension 887

on the wish list is the ability to deal with sporadic messages or events. Often both
are added at the same time to save determinacy of the model.

7.1 Events

The desire to deal with sporadic events is illustrated by the addition of the select
statement in the KPN programming library Yapi [36]. This statement allows a
process to see which of a number of input channels has data available and to read
from that channel first. Similarly, [45] describes an extension of the data-flow model
with the ability to probe a channel for the presence or absence of data. While both
extensions clearly enhance the expressiveness of the model, they also destroy the
property of determinacy, of independence of any concrete schedule or scheduling
strategy, the denotational semantics of KPN and the Kahn Principle.

From a theoretical perspective, the essential ingredient to add to KPNs to deal
with sporadic or reactive behavior is a merge process. A merge process has two
inputs and one output and it copies data arriving on any of its inputs to the single
output, in an order which is based on the arrival order of data, for instance in the
order in which they arrive on the inputs. In this case however, the input/output
relation of the process is no longer a function; the same inputs can lead to different
outputs, depending on the order in which they arrive. KPN denotational semantics
captures behavior as continuous input/output functions and thus no longer works. It
has been attempted to capture KPN with merge processes by input/output relations.
It turns out however that this is not possible. This is commonly known as the
Brock-Ackerman anomaly [10]. For non-determinate processes, their input/output
relation does not sufficiently characterize the system’s behavior to use it as a basis
for a semantic framework. The counter example is reproduced in Fig. 8. It has a
‘merge’ process as the only indeterminate (non-KPN) process in the network, a
process ‘first’ which passes on only the first symbol, a process ‘split’ which splits
the stream in two exact copies and a process ‘inc’ which passes on all symbols after
incrementing them by one. The network is provided with the input consisting of
the single symbol 5. The merge process passes it on to its output and the processes

Fig. 8 Brock-Ackerman
counter example (from [10])

888 M. Geilen and T. Basten

‘first’ and ‘split’ pass it on as well. ‘inc’ turns it into 6 and passes it on to ‘merge’.
Operationally speaking, merge now passes the 6 to its output and because the token
6 is causally dependent on the token 5 passing to the output of the merge first, the
only possible output of the merge process is 5·6. On the other hand, the denotational
semantics of the merge process specifies that for the inputs {(5, 6)}, the possible
outputs are {6 ·5, 5 ·6}, but the 6 ·5 is not possible in any causal reality. The causality
information which is necessary for providing a correct semantics to indeterminate
processes is lost in the input/output relation.

Brock and Ackerman showed [10] that I/O relations do not provide a good
semantics for the so-called fair merge [48] that merges streams in such a ways that
all input tokens on either input are eventually produced at the output. Subtly different
and weaker versions of merge processes (but with strictly different expressiveness)
can be defined, fair merge, infinity fair merge, angelic merge, but it was later shown
(see [53] for an overview), that they all suffer the same limitation, that input/output
relations are insufficient. Only merge processes which interleave symbols from
the inputs in a fixed, a priori determined order, for instance alternatingly, are
determinate.

As an alternative to a denotational semantics, a trace-based semantics has been
found to be able to serve as a fully abstract semantics [33], i.e., a semantic model
which contains enough information, but no redundant information to represent
behavior. The use of a totally ordered trace indicates the loss of independence of
scheduling of concurrent processes associated with the introduction of a merge
construct, which is one of the strongest points of KPN. A theoretical analysis of
relational models for indeterminate dataflow models is [62].

7.2 Time

A timed process network model is a model which not only describes the data
transformations of the network, but also the timing of such a process [12, 65]. Such
a model is typically made by labeling symbols on streams with time-stamps or tags
from a particular time domain of choice (for instance non-negative integers or reals)
or, more general, according to the tagged-signal model of [40], allowing for instance
also partially ordered or super-dense time domains common in hardware description
languages [43]. Alternatively, a stream can then be described as a mapping from the
time-domain to the channel alphabet. If this function is total, it may also specify
the absence of data at certain points in time, which can then be deterministically
exploited by processes. Time-stamps may be interpreted as the exact timing of the
production of tokens or as a specification of a deadline for the production.

From a semantics perspective, time-stamps can be exploited to ‘rescue’ the merge
process from indeterminacy and in general to make reactive behavior deterministic.
Using time information, decisions can be taken in a deterministic way, based on the
time-stamps of data, for instance to describe a merge process which merges symbols
in the order in which they arrive (with some deterministic provision, for instance

Kahn Process Networks and a Reactive Extension 889

fixed priority, when tokens arrive at the same time) [12, 43, 65]. Alternative network
equations can be formulated and different fixed-point theorems (such as Banach’s)
can be used to show them to have a unique solution. The (big) price one has to
pay for salvaging determinacy of the model is that it requires a global notion of
synchronized (logical) time, which puts constraints on implementation and requires
additional synchronization.

By adopting such a notion of synchronized global logical time, we end up close
to another end of the spectrum of data-flow languages, the domain of synchronous
languages such as Esterel [6], Signal [4] or Lustre [31], where the execution of
a network needs to be globally synchronized. This can be a strong disadvantage
to a distributed implementation. Later work [5, 14] in the synchronous language
domain searches for conditions to relax the global synchrony constraints towards so-
called GALS (globally asynchronous, locally synchronous) implementations, where
particularly the most costly global synchronization may be eliminated.

8 Reactive Process Networks

The Reactive Process Networks (RPN) model of computation intends to provide
a semantic framework and implementation model for data-flow networks with
sporadic events, in the same way KPN is a reference for determinate data-flow
models of computation. RPN integrates control and event processing with stream
processing in a unifying model of computation with a compositional operational
semantics. The model tries to find a balance in a trade-off between expressiveness,
determinism and predictability, and implementability.

8.1 Introduction

We illustrate the Reactive Process Networks model by looking at the domain of
multimedia applications, working with information streams such as audio, video or
graphics. With modern applications, these streams and their encodings can be very
dynamic. Smart compression, encoding and scalability features make these streams
less regular than they used to be.

Streams are typically parts of larger applications. Other parts of these applica-
tions tend to be control-oriented and event-driven and interact with the streaming
components. Modern (embedded) multimedia applications can often be seen as
instances of the structure depicted in Fig. 9. At the heart of the application,
computationally intensive data operations have to be performed in streams of for
instance pixels, audio samples or video frames. Input and output of these processes
are highly regular patterns of data. These data processing activities can often be
statically analyzed and scheduled on efficient processing units. At a higher level,
modern multimedia streams show a lot of dynamism. Object-based video (de)coders

890 M. Geilen and T. Basten

Fig. 9 Embedding of types of streams

for instance work with dynamic numbers of objects that enter or leave a scene.
Decoding of the individual objects themselves uses the static data processing
functions, but they may need to be added, removed or adapted dynamically, for
instance encoding modes or frame types in MPEG audio or video streams. These
dynamic streams still compute functions and processing is determinate, i.e., the
functional result is independent of the order in which operations are executed. In
turn, the processing of these dynamic data streams is governed by control oriented
components. This may for instance be used to convey user interactions to the
streaming application or to respond to changing network conditions.

The three levels of an application require typical modeling and implementation
techniques. A good candidate for instance to describe static computation kernels
could be Synchronous Data Flow (SDF) [39], discussed in [30]. Dynamic stream
processing can perhaps be best most generally described using KPNs. They
are capable of showing data dependent behavior and dynamic changes in their
processing, but they are still determinate and can be executed fully asynchronously.
If static analyzability is required more restricted dynamic models such as SADF can
be employed [9]. To specify the control dominated parts of an application, there are
many techniques, such as state machines and event-driven software models [20].

RPN defines a model and its formal operational semantics that allows for an
integrated description and analysis of an application consisting of these three
levels of computation. It is a unified model for streaming and control, that is also
hierarchical and compositional. The goal is to be also able to incorporate more
analyzable, less expressive models in the same way SDF fits within the KPN
model, but still combining data-flow and control oriented behavior. For instance,
a combination of SDF with finite state machines such as HDF or SADF [9, 26–
28, 58, 59], which yields analyzable models, would fit within the framework. This
is illustrated in Fig. 10. Vertically, it shows the trade-off between expressiveness
and analyzability, with a border of decidability. Horizontally, it shows streaming vs.
control oriented models.

Figure 11 shows the compositional integration of state machines with process
networks. A process network is a component with stream input(s) (i in Fig. 11a),

Kahn Process Networks and a Reactive Extension 891

Fig. 10 Classification of
models of computation

an
al
yz
ab

le
ex
pr
es
siv

e

i

c

c

b

o

e

f gi o

m n

h k i

(b)(a)

Fig. 11 Mixing state machines with process networks

stream output(s) (o) and event input(s) (e). At any point in time, the network
operates in a mode that implements a particular streaming function, for instance
mode h in Fig. 11a, implemented as the network drawn below it. At some later
time, because of the occurrence of some event a, the function of the network needs
to change to a mode n having a different streaming function. One could think
for instance of a video system where a user changes settings or turns on or off
special image processing features. One could view this as a (not necessarily finite)
state machine where in every state, the network implements a particular function
and external events force the state machine to move from one state to another.
In every state, a particular process network performs operations on data streams.
Similarly, such state machines can be embedded in components of a reactive process
network as shown in Fig. 11b. Events that are communicated to such components

892 M. Geilen and T. Basten

Mode Change

Parameters /
User Interaction

Parameters /
User Interaction

Object-based
rendering

Scene
Graph &
Physics

sg Filter &
Overlay

Mode Change

fr

Control

Dynamic Stream
Processing

Streaming Kernels

Scene
Graphs

Frames

Add/Remove
Object Renderers

...

3D Video

Fig. 12 An interactive 3D game

can be generated from an output port of another component. Process networks
can be hierarchical entities, we would like such a construct to be compositional
and applicable at different levels of a network hierarchy. Note that this is the
conceptual behavior of an RPN, but that does not mean that this is exactly how
it is implemented. In many cases the events cause relatively small changes to the
current streaming function, changing of parameters or activation or deactivation of
individual functions.

8.2 A Reactive Process Network Example

An illustrative example of the type of application we are considering is shown
in Fig. 12. It depicts an imaginary game, which includes modes of 3-dimensional
game play with streaming video based modes. The rendering pipeline, used in the
3D mode, is a dynamic streaming application. Characters or objects may enter or
leave the scene because of player interaction, rendering parameters may be adapted
to achieve the required frame rates based on a performance monitoring feedback
loop. Overlayed graphics (for instance text or scores) may change. This happens

Kahn Process Networks and a Reactive Extension 893

under control of the event-driven game control logic. At the processing core of
the application, the streaming kernels, a lot of intensive pixel based operations
are required to perform the various texture mapping or video filtering operations.
Special hardware or processors may be available to execute these operations, which
can be scheduled off-line, very efficiently.

The model is organized around the two main modes (3D graphics, video). In
these modes, the game dynamics and mode changes are influenced or initiated by
user interaction, game play and performance feedback. This is the control oriented
part of the game depicted as the automaton at the top of Fig. 12. The self-loops on
these states denote changes where the streaming network essentially stays the same,
but its parameters may be changed.

In the 3D graphics mode (enlarged at the bottom of the figure), a scene graph,
describing all entities and their positions in 3D space, is rendered to a 2-dimensional
view on the scene on some output device. The first process communicates the
scene graphs with objects to the rendering component. The rendering component
transforms the scene graphs into 2-dimensional frames. The last process adds 2-
dimensional video processing such as filtering, overlays, and so forth. The output is
shown by the display device.

Notice that the game as a whole has different modes of streaming (3D graphics,
video), but similarly, components in the stream processing part have different
modes or states of streaming execution. The object renderer for instance can be
reconfigured to different modes depending on the number of objects that need to
be rendered (using the event channel nrObj controlled by the scene graph process).
This illustrates the need for a hierarchical, compositional approach to combining
state/event based models with streaming and data-flow based models, as realized by
the RPN model.

8.3 Design Considerations of RPN

We discuss the main concepts that have had an impact on the design of the model of
Reactive Process Networks.

8.3.1 Streams, Events and Time

Streaming applications represent functions or data transformations. They absorb
input and they produce the corresponding output. There is often no inherent notion
of time, except for the ordering of tokens in the individual data streams. (We are
aiming for an untimed model similar to KPN.) Tokens in different streams have
no relation in time, except for causal relationships implicitly defined by the way
processes operate on the tokens. These process networks are ideally determinate,
i.e., the order and time in which processes execute is irrelevant for the functional
result. The output of a process network is completely determined as soon as the

894 M. Geilen and T. Basten

input is known. The actual computation of this output introduces a certain latency
in the reaction. This latency is not part of the functional specification, but merely a
consequence of the computation process. It may be subject to constraints, such as a
maximum latency. Time is sometimes implicitly present in the intention of streams.
A stream may carry for instance, a sequence of samples of an audio signal that are
1/44100th of a second apart, or video frames of which there are 25 or 30 in every
second. Such streams are called periodic. For final realizations, time-related notions
such as throughput, latency and jitter are of course important.

Events, have a somewhat different relationship to time. An event is unpredictable
and the moment when it arrives, in relation to the streams, is significant, but
unknown in advance. In many event-based models, the synchrony hypothesis
applies, which states that the response to an event can be completed before the
following event arrives or is taken into account. This simplifies specifying how
a system responds to events. A classical model for event-based systems are state
machines, where events make it change from one state into another. Prominent
characteristics are non-determinism and a total ordering of events. If events come
from outside and are not predictable a priori, then the system evolves in a non-
deterministic way under the influence of the events, even if the response to a
particular event is deterministic.

Discrete changes due to events are alternated with stable periods of streaming.
Conceptually, a discrete change occurs at a well defined point within the stream.
Because of pipelining implementation of the stream processing however, there is
not necessarily a point in time where the change can be applied instantaneously to
the whole network. A video decoder for instance may be processing video frame
by video frame in a pipelined fashion. A discrete change occurs between two
frames such that the new frames are decoded according to new parameter settings.
However, when the first new frame enters into the pipeline, there are still old frames
in the pipeline ahead of it. The StreamIt language [60], which employs a fairly
synchronized model of streaming, allows a mechanism of delivering asynchronous
messages (events) to processes in accordance with the ‘information wavefront’, i.e.,
in a pipelined fashion. In general, an important aspect of dealing with streaming
computation and events is to coordinate their execution to implement a smooth
transition.

There is a trade-off between predictability and synchronization overhead. Pre-
dictability of processing (non-deterministic) events is improved by added control
over the moment when and the way how the event is processed relative to the
streaming activities. Increased predictability requires more synchronization between
processes and hence additional overhead. Such overhead is undesirable, especially
if events occur only sporadically.

8.3.2 Semantic Model

A denotational semantics is often preferred to capture the intended functionality of
a process network or to define the functional semantics of a system or programming

Kahn Process Networks and a Reactive Extension 895

language implementing process networks, without specifying unnecessary imple-
mentation details. The operational semantics on the other hand allows reasoning
about implementation details, such as artificial deadlocks [24] or required buffer
capacities [3, 8]. For RPN, a denotational semantics in terms of input/output
relations is not possible (Sect. 7) and one based on sequential execution traces is
possible, but hides the parallelism of the model. The detailed operational semantics
of RPN can be found in [25]. In the next section, we discuss the main concepts.

8.3.3 Communicating Events

Processes or actors in data-flow graphs communicate via FIFO channels. We want
to add communication of events and we have to decide what communication
mechanism is used for events. It is often the case that what is perceived by a
lower level process as an event, is considered to be part of streaming by higher
level processes. For instance, a video decoder is decoding a stream of video frames
and header information for every frame is an integral part of the data stream. For
the lower level frame decoder processes, the frame header information is seen as
an event that initializes the component to deal with the specific parameters of the
following frame. For this reason, we use the same infrastructure for communicating
streams also for events. For the sending process, there is no difference at all; at the
receiving side, we distinguish stream input ports and event input ports. The former
are used in ordinary streaming activity; tokens arriving on the latter will trigger
discrete events.

8.4 Operational Semantics of RPN

The operational semantics of reactive process networks associates RPNs with a
corresponding labeled transition system. An RPN, like a KPN, consists of processes,
which may in turn be other RPNs, or primitive processes defined through other
means, such as sequential code segments, and the LTS is constructed composition-
ally, similar to the operational semantics of KPN in Sect. 3. A detailed description
of the operational semantics of RPN can be found in [25]; here we concentrate on
the important concepts.

In general, two different types of things may happen to the network: data can
be streaming through it, or it can encounter events that need to be processed.
The events introduce non-determinism. The result should still be as predictable
as possible. In particular, we want to guarantee that input consumed before the
arrival of a new event will lead to the required output, also if the output has not
been completed when the event arrives. In implementations, this is achieved at the
expense of additional synchronization or coordination. In specific subclasses of the
RPN model, this synchronization may be realized without much overhead. There
are very regular subclasses of RPN, such as the SDF-based models of Scenario

896 M. Geilen and T. Basten

fr!fr1

sg?sg3

fr!fr1

sg?sg3 sg?sg4

fr!fr2 fr!fr2 fr!fr2

sg?sg3 sg?sg4

fr!fr3 fr!fr3

sg?sg5

fr!fr3

sg?sg4 sg?sg5

fr!fr4 fr!fr4

sg?sg5

fr!fr5

maximal

fr!fr1

sg?sg1 sg?sg2

sg?sg2

s1 s1

s2 s2

s3 s3

Fig. 13 Streaming transactions

Aware Data Flow (SADF) [59] or Heterochronous Data Flow (HDF) [28]. SDF
graphs execute periodic behavior, often called iterations. In-between such iterations
is typically a good moment for reconfiguration. In [46] such moments are referred
to as quiescent states, but as explained earlier, in a pipelined execution, such states
may not naturally occur and may need to be enforced by stalling the pipeline.

The operational semantics of RPN models streaming as a sequence of individual
read and write actions of the processes involved in the computation of the output,
comparable to the semantics of KPN of Sect. 3. Since, conceptually, the reaction of
a process network to incoming data is immediately determined, it may not be dis-
turbed by the processing of events. To this end, in RPN semantics, these sequences
of actions resulting from a data input are grouped together and represented as
single, atomic transitions of the labeled transition system. Effectively, this gives
internal actions (i.e., completing the reaction to already received input) priority over
processing of events.

This leads to the concept of so-called streaming transactions, as illustrated
in Fig. 13. The picture on the left shows the states and transitions of a process
network performing individual input and output actions. Input actions are shown
as horizontal arrows, output actions as vertical arrows. Because of pipelining, the
network can perform several input actions before the corresponding output actions
are produced. Events should only be accepted in those states where no internal
or output actions are available. In Fig. 13, these are all states on the lower-left
boundary, such as states s1 and s3. In state s2, some remaining output is still pending
and an event cannot be processed yet. Sequences of actions starting from a state
without enabled output or internal actions and going back to such a state represent
complete reactions of the network to input stimuli. These sequences of actions are
grouped together to form atomic transitions, the streaming transactions, that end in
states where events can safely be processed. For example, the sequence of transitions

Kahn Process Networks and a Reactive Extension 897

Fig. 14 Execution of the 3D game RPN

with thick arrows in the picture from state s1 to s3 forms a streaming transaction;
from the end state, only reading of new input is possible, all received input has been
fully processed. (These states correspond to end-points of maximal executions for
a particular finite input, and closely resemble the quiescent states of [46].) Some of
the possible streaming transactions are shown in the picture on the right. The bold
one corresponds to the bold path on the left. In this new LTS, the state space consist
of only quiescent states.

The streaming transactions of an RPN are determined in two steps. Individual
streaming transactions of the constituent processes are determined as well as the
processing of events by these processes. Executions of these actions are then
taken together to form maximal streaming transactions of the whole network. Such
streaming transactions may not consume input events. However, they may include
occurrences of internal events and hence they can be indeterminate.

Figure 14 shows a part of a possible execution of the 3D game example. The
first transition is a streaming transaction, consisting of streaming actions of the
processes, but also internal events (nrObj(2)). Note that we have abstracted from
internal actions of for instance the rendering component, which might also be visible
in these transactions. The second transition is an event; the player has reached the
end of a level, and the game is reconfigured from 3D mode to the video mode.

Such event transitions of an RPN are directly determined by the reception of
input events, followed by the corresponding network transformation. The RPN
semantics associates with every event an abstract transformation of the network
structure. How such reconfigurations are precisely specified is left up to the concrete
instances of models or languages based on this model. In *charts [28], which can be
seen as an RPN instance, specification is done by direct refinement of FSM states
by data-flow graphs. In SADF [59] actors or processes read control tokens sent to
them by the controlling FSM and adapt or suspend their behavior accordingly.

The behavior of the network as a whole is formed by interleaving transitions of
both kinds as in the example. An RPN thus has a labeled transition system with
executions interleaving events and streaming transactions. In contrast with KPN,
this LTS is indeterminate. With this LTS semantics, an RPN can be directly used as
a process within a larger RPN and this ways supports hierarchical and compositional
specification of RPNs.

898 M. Geilen and T. Basten

8.5 Implementation Issues

The operational semantics of RPN defines the boundaries of the behavior that
correct implementations of RPNs should adhere to. Within these boundaries there
is still some room for making specific implementation decisions, depending on
the application and the context. In this section, we briefly discuss some of these
considerations.

8.5.1 Coordinating Streaming and Events

One of the most powerful aspects of KPNs is that execution can take place fully
asynchronously. Processes need not synchronize and determinacy of the output
is automatically guaranteed. The (deliberate) drawback of the generalization to
RPN is that this advantage is (partially) lost. Before processing an input event,
the streaming input to the network—conceptually—needs to be frozen and all data
must be processed internally. Only when all data has been processed, the event
can be applied and the data-flow can be continued. If implemented in this way,
the pipelining of the data-flow may be disrupted and deadlines could potentially be
missed because of this disruption if the nature of the application doesn’t allow this.

In practice, one can do better for many classes of systems. Instead of processing
an event for the whole process network at once, it may in some cases be possible
to make the changes along with the ‘information flow’. In particular, if the response
of a network to an event is the forwarding of the event to one or more of its sub-
processes, then this forwarding can be synchronized with the flow of data such that
pipelining need not be interrupted. This is done for instance for the asynchronous
messages following the stream wave-front in StreamIt [60].

The discussed operational semantics suggests that events must always be
accepted by any process. In practice, it can be useful to allow a process some
control w.r.t. the moment when events are accepted. For example, to allow it to
accept events only at moments when the corresponding transformation is most easy
to do, because the process is in a well-defined state, e.g. at frame boundaries.

Such an approach can for example be easily implemented if the underlying
process network is an SDF graph that can be statically scheduled. It is then possible
to define a cyclic schedule in such a way that one iteration of the cycle constitutes a
single streaming transaction. Then, a test for newly arrived events can be inserted at
the beginning of the cycle and event transitions can be safely executed.

8.5.2 Deadlock Detection and Resolution

The correct execution of KPNs using bounded FIFO implementations depends on
the run-time environment to deal with artificial deadlock situations (see Sect. 6, [24,
49]). The same situation may arise in reactive process networks. The dependencies

Kahn Process Networks and a Reactive Extension 899

Fig. 15 SADF model of an
MPEG-4 SP decoder

FD MC

VLD IDCT

RC

xxx

may now also include event channels. One can deal with these artificial deadlocks
in a similar manner as for ordinary KPNs. Solving an artificial deadlock may be
needed for completing the maximal transaction before processing an event.

8.6 Analyzable Models Embedded in RPN

KPN is a model of determinate stream processing, but due to its expressiveness
has many undecidable aspects. In practice often Synchronous Data Flow Graphs
(SDF) or Cyclo-Static Data Flow Graphs (CSDF) are used as restricted but
analyzable subsets of KPN. Obviously, as an extension of KPN, RPN also has many
undecidable aspects.

The SADF model of computation uses Synchronous Data Flow graphs as the
streaming model, extended with time according to [55] to capture performance
aspects. For the control aspects, it uses Markov chains which can be seen as finite
state machines decorated with transition probabilities. These probabilities intend to
capture the typical behavior of the application in a particular use case. As such it is
comparable to the earlier Heterochronous Data Flow [28] model which also makes
a combination of SDF and FSMs, but without time and probabilities.

Figure 15 shows an example of an SADF graph of an MPEG-4 Simple Profile
decoder. An input stream is analyzed by the FD (frame detector) process which can
observe the frame type of the next incoming frame. Different frames may employ
a different number of macro blocks. In the figure, this number is denoted by x. For
every given number x, the sub-network of the other processes is an SDF graph with
fixed rates, which allows a static schedule and the performance of which can be
analyzed off-line. For every frame, the frame detector sends an event message to the
rest of the network indicating the proper frame type and the sub-network makes the
necessary changes and invokes the appropriate schedule.

The Markov model of the transitions between frame types can be used to study
the expected performance of the given system [59]. Alternatively, a worst-case
analysis can be done to establish a guaranteed performance using techniques such
as introduced in [23, 26, 51].

Another example of an efficient combination of (restricted structures of) SDF
with events is StreamIt [60] which employs a concept called teleport messaging [61]

900 M. Geilen and T. Basten

for sending sporadic messages along the information wavefront. Upstream actors or
processes can send event messages to downstream actors to arrive at a specified
iteration distance to the iteration at which the first data arrives which is dependent
on the output currently being produced. In this case, the compiler and scheduler can
automatically take care of the required synchronization.

9 Bibliography

Kahn Process Networks have been introduced by Kahn in [34]. Kahn and McQueen
presented a programming/implementation paradigm for KPNs as the behavior of a
model of (sequential) programs reading and writing tokens on channels. The Kahn
Principle, stating that the operational behavior of such an implementation model
conforms to the denotational semantics of [34], was introduced, but not proved, by
Kahn in [34]. It was proved [21, 56] for an operational model of transition systems
and in [44] for I/O automata. The operational semantics in terms of I/O automata is
very much like the semantics in Sect. 3, except that in the I/O-automata semantics,
FIFOs are not modeled explicitly; it is assumed that they are implicit in the transition
system of the processes at the lowest level. This means that the processes will
accept any input at any given time. Composition of networks is then achieved with
synchronous communication. By making channels and their FIFOs more explicit
one can reason about realizations including memory management (FIFO capacities).

KPN is often informally regarded as the upper bound of a hierarchy of data-flow
models, although technically speaking it is not entirely obvious how to compare
data-flow processes based on firing rules with either the denotational or operational
semantics of KPN. The relationship between both types of models is elaborated
in [41].

Scheduling and resource management, possibly in a distributed fashion are
important subjects for realizing KPN implementations or simulators. Scheduling
process networks using statically bounded channels is an important contribution
towards this aim by Parks [49], introducing an algorithm that uses bounded memory
if possible. Based on this scheduling policy, a number of tools and libraries have
been developed for executing KPNs. Yapi [36] is a C++ library for designing
stream-processing applications. Ptolemy II [38] is a framework for codesign
using mixed models of computation. The process-network domain is described
in [29]. The Distributed Process Networks of [63] form the computational back
end of the Jade/PAGIS system for processing digital satellite images. Stevens et
al. [57] covers an implementation of process networks in Java. Allen et al. [1]
is another implementation for digital signal processing. Common among all these
implementations is a multi-threading environment in which processes of the KPN
execute in their own thread of control and channels are allocated a fixed capacity.
Semaphores control access to channels and block the thread when reading from an
empty or writing to a full channel. This raises the possibility of a deadlock when
one or more processes are permanently blocked on full channels. A special thread

Kahn Process Networks and a Reactive Extension 901

(preempted by the other threads) is used to detect a deadlock and initiate a deadlock
resolution procedure when necessary. This essentially realizes the scheduling policy
of [49]. The algorithm of Parks leaves some room for optimization of memory
usage by careful selection of initial channel capacities (using profiling) and clever
selection of channels when the capacity needs to be increased; see [3]. Basten and
Hoogerbrugge [3] also introduces causal chains, also used in this chapter to define
deadlocks.

It is argued in [24] as discussed in Sect. 6 that a run-time scheduler for KPN
should include local deadlock detection. Such deadlock detection has subsequently
been implemented in a number of KPN implementations [2, 18, 32, 47]. To optimize
the process it can be organized in a distributed fashion [2] or in a hierarchical
way [32]. Cheng and Wawrzynek [16] employs deadlock detection techniques for
buffer management in hardware implementations generated from software process
network specifications. Alternatively, one could implement dedicated solutions for
special classes of dynamic process networks that allow for static buffer allocation
solutions. For instance, in [42], filters with data dependent rates are possible, but the
rates are made static in the realization using empty or ‘dummy’ data tokens. Schor
et al. [54] describes a dynamic scheduling environment where process network
applications are scheduled according to dynamic resource variations. Castrillon
et al. [15] presents another run-time for process networks in which the performance
of the communication over an interconnect network is explicitly considered to find
good mappings of processes to processing elements.

The desire to express non-deterministic behavior and event-based communica-
tion has led to additions to pure data-flow models. Examples are the probes of [45]
and [36]. Martin [45] describes an extension of the data-flow model with so-called
probes, the possibility to test whether a channel has data available for reading. This
can be a powerful construct, but it destroys the property of determinacy; the behavior
is no longer independent of the concrete scheduling. This probe construct inspired
the designers of Yapi [36] to introduce the select statement, having the same
disadvantage.

In Ptolemy II [19, 29, 38], a framework is defined to connect multiple models
of computation, including data-flow and event-based ones. The combination of the
reactive and process network domains however, induces too much synchronization
overhead to be directly used for implementation.

Many of the combinations of data-flow and reactive behavior are based on a
combination of the Synchronous Data Flow model together with some form of
reactive behavior [28, 37, 58–60]. The use of an analyzable model such as SDF
is natural because it allows for a predictable and determinate combination. The
reactive part is frequently specified using (hierarchical) state machines. Lee [37]
describes a combination of hierarchical state machines and SDF models, where a
complete iteration of the SDF is taken as an action of the state machine. A state
machine inside an SDF is required to adhere to the SDF firing characteristics.
FunState [58] defines a model, described as ‘functions driven by state machines’,
which deliberately tries to separate functional behavior from control. For FunState,
the control part also extends to the coordination of the processes that form a data-

902 M. Geilen and T. Basten

flow graph and the functions are comparable to separate KPN processes. *charts [28]
separates hierarchical finite state machine models from concurrency models. In
the data-flow domain, a combination of Hierarchical Finite State Machines with
Synchronous Data Flow is presented, called Heterochronous Data Flow (HDF). To
combine the finite state transitions of an FSM with the typically infinite behavior
associated with concurrent models of computations, the infinite behavior is split
into finite pieces. For SDF, separate iterations are used. Similarly, FunState uses
individual functions for that. For KPN inside RPN, we have used complete reactions
in Sect. 8. Scenario Aware Data Flow (SADF) [23, 59] models a system as a
finite state machine (decorated with transition probabilities to a Markov Chain)
of SDF graphs and is similar to HDF, although primarily with the intention to
capture dynamic variation within a determinate execution rather than to capture
indeterminate behavior. SADF focuses less on functional specification, but rather
on performance modeling by including temporal behavior and stochastic abstraction
of the automaton behavior. Moreover, SADF deals explicitly with the effects of
pipelining different iterations of the SDF graphs and the intermediate automaton
transitions. StreamIt [60] employs an SDF-like model of computation. It allows
sending sporadic event between processes in the network by a construct called
teleport messaging [61]. The scheduling and compilation framework automatically
takes care that all data in the pipeline between the sender and receiver is processed
before the message is delivered to the receiving process, similar to the RPN model.
Rai et al. [52] deals with the problem of determining suitable distributed states in a
streaming applications to process events, in their case reconfigurations and process
migrations. A model is provided that describes the timing of bringing the application
into such a stable state.

Bhattacharya and Bhattacharyya [7] describes parameterizable SDF models,
allowing dynamic reconfiguration during run-time. Processes can change their data-
flow behavior depending on parameter settings. In a given SDF configuration, actor
executions are characterized by iterations, which fire sub-processes in a particular
order that returns the internal buffer states in their original configuration. Such a
process can (only) be reconfigured between such iterations and if the data-flow
behavior has changed, a new schedule is determined (at run-time).

Similar to RPN in generality, is an approach of Neuendorffer and Lee [46].
It focuses on reconfiguration as a particular kind of event handling or change of
model parameters. It defines quiescent states as the states where reconfigurations
are allowed. These quiescent states are strongly related to the maximal streaming
transactions. It also proposes to use FIFO (First In First Out) channel communi-
cation also for events or parameters and to divide input ports in streaming input
ports and parameter input ports. In contrast with [46], RPN considers more general
event handling and reconfiguration than changing parameters. It also focuses on
formalizing dependencies between parameters and quiescent points at different
levels of a system hierarchy.

The operational semantics of RPN connects easily to implementations of the
model. This operational semantics is however not fully abstract, i.e., it contains

Kahn Process Networks and a Reactive Extension 903

more details than strictly necessary. Russell [53] discusses fully abstract semantics
of indeterminate data-flow models.

The traditionally separated branch of synchronous data-flow languages such as
Lustre [31] or Signal [4] treat sporadic events in a completely different way. Because
these models are based on a global synchrony hypothesis (all system components
execute conceptually at the pace of a single global clock), absence of an event in
a particular clock cycle is easily, deterministically detected. In this case, sporadic
events do not necessarily lead to a non-deterministic model. The overhead of the
globally synchronous clock may impact efficiency however.

Acknowledgements This work is supported in part by the EC through FP7 IST project 216224,
MNEMEE and by the Netherlands Ministry of Economic Affairs under the Senter TS program in
the Octopus project.

References

1. Allen G, Evans B, Schanbacher D (1998) Real-time sonar beamforming on a UNIX worksta-
tion using process networks and POSIX threads. In: Proc. of the 32nd Asilomar Conference on
Signals, Systems and Computers, IEEE Computer Society, pp 1725–1729

2. Allen G, Zucknick P, Evans B (2007) A distributed deadlock detection and resolution algorithm
for process networks. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, vol 2, pp II–33–II–36, https://doi.org/10.1109/ICASSP.
2007.366165

3. Basten T, Hoogerbrugge J (2001) Efficient execution of process networks. In: Chalmers A,
Mirmehdi M, Muller H (eds) Proc. of Communicating Process Architectures 2001, Bristol,
UK, September 2001, IOS Press, pp 1–14

4. Benveniste A, Guemic PL (1990) Hybrid dynamical systems theory and the signal language.
IEEE Trans Automat Contr 35:535–546

5. Benveniste A, Caillaud B, Carloni LP, Caspi P, Sangiovanni-Vincentelli AL (2008) Composing
heterogeneous reactive systems. ACM Trans Embed Comput Syst 7(4):1–36

6. Berry G, Gonthier G (1992) The Esterel synchronous programming language: Design,
semantics, implementation. Sci Comput Program 19:87–152

7. Bhattacharya B, Bhattacharyya S (2001) Parameterized dataflow modeling for DSP systems.
IEEE Transactions on Signal Processing 49(10):2408–2421

8. Bhattacharyya S, Murthy P, Lee E (1999) Synthesis of embedded software from synchronous
dataflow specifications. J VLSI Signal Process Syst 21(2):151–166

9. Bhattacharyya SS, Deprettere EF, Theelen BD (2013) Dynamic Dataflow Graphs, Springer
New York, New York, NY, pp 905–944. https://doi.org/10.1007/978-1-4614-6859-2_28, URL
http://dx.doi.org/10.1007/978-1-4614-6859-2_28

10. Brock J, Ackerman W (1981) Scenarios: A model of non-determinate computation. In: Díaz J,
Ramos I (eds) Formalization of Programming Concepts, International Colloquium, Peniscola,
Spain, April 19–25, 1981, Proceedings, LNCS Vol. 107, Springer Verlag, Berlin, pp 252–259

11. Brookes S (1998) On the Kahn principle and fair networks. Tech. Rep. CMU-CS-98-156,
School of Computer Science, Carnegie Mellon University

12. Broy M, Dendorfer C (1992) Modelling operating system structures by timed stream pro-
cessing functions. Journal of Functional Programming 2(1):1–21, URL citeseer.nj.nec.com/
broy92modelling.html

13. Buck J (1993) Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. PhD thesis, University of California, EECS Dept., Berkeley, CA

https://doi.org/10.1109/ICASSP.2007.366165
https://doi.org/10.1109/ICASSP.2007.366165
https://doi.org/10.1007/978-1-4614-6859-2_28
http://dx.doi.org/10.1007/978-1-4614-6859-2_28
citeseer.nj.nec.com/broy92modelling.html
citeseer.nj.nec.com/broy92modelling.html

904 M. Geilen and T. Basten

14. Carloni LP, Sangiovanni-Vincentelli AL (2006) A framework for modeling the distributed
deployment of synchronous designs. Form Methods Syst Des 28:93–110

15. Castrillon J, Tretter A, Leupers R, Ascheid G (2012) Communication-aware mapping of
kpn applications onto heterogeneous mpsocs. In: Proceedings of the 49th Annual Design
Automation Conference, ACM, New York, NY, USA, DAC ’12, pp 1266–1271, https://doi.
org/10.1145/2228360.2228597, URL http://doi.acm.org/10.1145/2228360.2228597

16. Cheng S, Wawrzynek J (2016) Synthesis of statically analyzable accelerator networks from
sequential programs. In: Proceedings of the 35th International Conference on Computer-Aided
Design, ACM, New York, NY, USA, ICCAD ’16, pp 126:1–126:8, https://doi.org/10.1145/
2966986.2967077, URL http://doi.acm.org/10.1145/2966986.2967077

17. Davey BA, Priestley HA (1990) Introduction to Lattices and Order. Cambridge University
Press, Cambridge, UK

18. Dulloo J, Marquet P (2004) Design of a real-time scheduler for Kahn Process Networks
on multiprocessor systems. In: Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, PDPTA, pp 271–277

19. Eker J, Janneck J, Lee EA, Liu J, Liu X, Ludvig J, Sachs S, Xiong Y (2003) Taming
heterogeneity - the ptolemy approach. Proceedings of the IEEE 91(1):127–144, URL http://
chess.eecs.berkeley.edu/pubs/488.html

20. Falk J, Haubelt C, Zebelein C, Teich J (2013) Integrated Modeling Using Finite State Machines
and Dataflow Graphs, Springer New York, New York, NY, pp 975–1013. https://doi.org/10.
1007/978-1-4614-6859-2_30, URL http://dx.doi.org/10.1007/978-1-4614-6859-2_30

21. Faustini A (1982) An operational semantics for pure dataflow. In: Nielsen M, Schmidt EM
(eds) Automata, Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12–
16, 1982, Proceedings, LNCS Vol. 140, Springer Verlag, Berlin, pp 212–224

22. Geilen M (2009) An hierarchical compositional operational semantics of Kahn Process
Networks and its Kahn Principle. Tech. rep., Electronic Systems Group, Dept. of Electrical
Engineering, Eindhoven University of Technology

23. Geilen M (2011) Synchronous data flow scenarios. Transactions on Embedded Computing
Systems 10(2):16:1–16:31

24. Geilen M, Basten T (2003) Requirements on the execution of Kahn process networks. In:
Degano P (ed) Proc. Of the 12th European Symposium on Programming, ESOP 2003, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003,
Warsaw, Poland, April 7–11, 2003. LNCS Vol.2618, Springer Verlag, Berlin

25. Geilen M, Basten T (2004) Reactive process networks. In: EMSOFT ’04: Proceedings of the
4th ACM international conference on Embedded software, ACM, New York, NY, USA, pp
137–146, http://doi.acm.org/10.1145/1017753.1017778

26. Geilen M, Stuijk S (2010) Worst-case performance analysis of synchronous dataflow sce-
narios. In: International Conference on Hardware-Software Codesign and System Synthesis,
CODES+ISSS 10, Proc., Scottsdale, Az, USA, 24–29 October, 2010, pp 125–134

27. Geilen M, Falk J, Haubelt C, Basten T, Theelen B, Stuijk S (2017) Performance analysis
of weakly-consistent scenario-aware dataflow graphs. Journal of Signal Processing Systems
87(1):157–175, https://doi.org/10.1007/s11265-016-1193-7, URL http://dx.doi.org/10.1007/
s11265-016-1193-7

28. Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency
models. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems
18(6):742–760

29. Goel M (1998) Process networks in Ptolemy II. Technical Memorandum UCB/ERL No.
M98/69, University of California, EECS Dept., Berkeley, CA

30. Ha S, Oh H (2013) Decidable Dataflow Models for Signal Processing: Synchronous Dataflow
and Its Extensions, Springer New York, New York, NY, pp 1083–1109. https://doi.org/10.1007/
978-1-4614-6859-2_33, URL http://dx.doi.org/10.1007/978-1-4614-6859-2_33

31. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous programming language
LUSTRE. Proceedings of the IEEE 79:1305–1319

https://doi.org/10.1145/2228360.2228597
https://doi.org/10.1145/2228360.2228597
http://doi.acm.org/10.1145/2228360.2228597
https://doi.org/10.1145/2966986.2967077
https://doi.org/10.1145/2966986.2967077
http://doi.acm.org/10.1145/2966986.2967077
http://chess.eecs.berkeley.edu/pubs/488.html
http://chess.eecs.berkeley.edu/pubs/488.html
https://doi.org/10.1007/978-1-4614-6859-2_30
https://doi.org/10.1007/978-1-4614-6859-2_30
http://dx.doi.org/10.1007/978-1-4614-6859-2_30
http://doi.acm.org/10.1145/1017753.1017778
https://doi.org/10.1007/s11265-016-1193-7
http://dx.doi.org/10.1007/s11265-016-1193-7
http://dx.doi.org/10.1007/s11265-016-1193-7
https://doi.org/10.1007/978-1-4614-6859-2_33
https://doi.org/10.1007/978-1-4614-6859-2_33
http://dx.doi.org/10.1007/978-1-4614-6859-2_33

Kahn Process Networks and a Reactive Extension 905

32. Jiang B, Deprettere E, Kienhuis B (2008) Hierarchical run time deadlock detection in process
networks. In: Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pp 239–244,
https://doi.org/10.1109/SIPS.2008.4671769

33. Jonsson B (1989) A fully abstract trace model for dataflow networks. In: POPL ’89:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM, New York, NY, USA, pp 155–165

34. Kahn G (1974) The semantics of a simple language for parallel programming. In: Rosenfeld
J (ed) Information Processing 74: Proceedings of the IFIP Congress 74, Stockholm, Sweden,
August 1974, North-Holland, Amsterdam, Netherlands, pp 471–475

35. Kahn G, MacQueen D (1977) Coroutines and networks of parallel programming. In: Gilchrist
B (ed) Information Processing 77: Proceedings of the IFIP Congress 77, Toronto, Canada,
August 8–12, 1977, North-Holland, pp 993–998

36. Kock, de et al E (2000) YAPI: Application modeling for signal processing systems. In: Proc.
of the 37th. Design Automation Conference, Los Angeles, CA, June 2000, IEEE, pp 402–405

37. Lee B (2000) Specification and design of reactive systems. PhD thesis, Electronics Research
Laboratory, University of California, EECS Dept., Berkeley, CA, memorandum UCB/ERL
M00/29

38. Lee E (2001) Overview of the Ptolemy project. Technical Memorandum UCB/ERL No.
M01/11, University of California, EECS Dept., Berkeley, CA

39. Lee E, Messerschmitt D (1987) Synchronous data flow. IEEE Proceedings 75(9):1235–1245
40. Lee E, Sangiovanni-Vincentelli A (Dec 1998) A framework for comparing models of com-

putation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
17(12):1217–1229, https://doi.org/10.1109/43.736561

41. Lee EA, Matsikoudis E (2007) The Semantics of Dataflow with Firing, Cambridge University
Press. URL http://chess.eecs.berkeley.edu/pubs/428.html, chapter from “From Semantics to
Computer Science: Essays in memory of Gilles Kahn”

42. Li P, Agrawal K, Buhler J, Chamberlain RD (2010) Deadlock avoidance for streaming
computations with filtering. In: Proceedings of the Twenty-second Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, ACM, New York, NY, USA, SPAA
’10, pp 243–252, https://doi.org/10.1145/1810479.1810526, URL http://doi.acm.org/10.1145/
1810479.1810526

43. Liu X, Lee EA (2008) Cpo semantics of timed interactive actor networks. Theor Comput Sci
409(1):110–125, http://dx.doi.org/10.1016/j.tcs.2008.08.044

44. Lynch N, Stark E (1989) A proof of the Kahn principle for Input/Output automata. Information
and Computation 82(1):81–92, URL citeseer.nj.nec.com/lynch89proof.html

45. Martin A (1985) The probe: An addition to communication primitives. Information Processing
Letters 20(3):125–130

46. Neuendorffer S, Lee EA (2004) Hierarchical reconfiguration of dataflow models. In: Proc.
Second ACM-IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2004), IEEE Computer Society Press

47. Olson A, Evans B (2005) Deadlock detection for distributed process networks. In: Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International Confer-
ence on, vol 5, pp v/73–v/76 Vol. 5, https://doi.org/10.1109/ICASSP.2005.1416243

48. Park D (1979) On the semantics of fair parallelism. In: Abstract Software Specifications,
Volume 86 of Lecture Notes in Computer Science, Springer Verlag, Berlin

49. Parks T (1995) Bounded Scheduling of Process Networks. PhD thesis, University of California,
EECS Dept., Berkeley, CA

50. Plotkin G (1981) A structural approach to operational semantics. Tech. Rep. DAIMI FN-19,
Århus University, Computer Science Department, Århus, Denmark

51. Poplavko P, Basten T, van Meerbergen J (2007) Execution-time prediction for dynamic
streaming applications with task-level parallelism. In: DSD ’07: Proceedings of the 10th
Euromicro Conference on Digital System Design Architectures, Methods and Tools, IEEE
Computer Society, Washington, DC, USA, pp 228–235, http://dx.doi.org/10.1109/DSD.2007.
52

https://doi.org/10.1109/SIPS.2008.4671769
https://doi.org/10.1109/43.736561
http://chess.eecs.berkeley.edu/pubs/428.html
https://doi.org/10.1145/1810479.1810526
http://doi.acm.org/10.1145/1810479.1810526
http://doi.acm.org/10.1145/1810479.1810526
http://dx.doi.org/10.1016/j.tcs.2008.08.044
citeseer.nj.nec.com/lynch89proof.html
https://doi.org/10.1109/ICASSP.2005.1416243
http://dx.doi.org/10.1109/DSD.2007.52
http://dx.doi.org/10.1109/DSD.2007.52

906 M. Geilen and T. Basten

52. Rai D, Schor L, Stoimenov N, Thiele L (2013) Distributed stable states for process networks
- algorithm, analysis, and experiments on intel scc. In: 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), pp 1–10

53. Russell J (1989) Full abstraction for nondeterministic dataflow networks. Symposium on
Foundations of Computer Science 0:170–175, http://doi.ieeecomputersociety.org/10.1109/
SFCS.1989.63474

54. Schor L, Bacivarov I, Yang H, Thiele L (2014) Adapnet: Adapting process networks in
response to resource variations. In: Proceedings of the 2014 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, ACM, New York, NY, USA,
CASES ’14, pp 22:1–22:10, https://doi.org/10.1145/2656106.2656112, URL http://doi.acm.
org/10.1145/2656106.2656112

55. Sriram S, Bhattacharyya SS (2000) Embedded Multiprocessors: Scheduling and Synchroniza-
tion. Marcel Dekker, Inc., New York, NY, USA

56. Stark E (1987) Concurrent transition system semantics of process networks. In: Proc. of the
1987 SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Munich,
Germany, January 1987, ACM Press, pp 199–210

57. Stevens R, Wan M, Laramie P, Parks T, Lee E (1997) Implementation of process networks in
Java. Technical Memorandum UCB/ERL No. M97/84, University of California, EECS Dept.,
Berkeley, CA

58. Strehl K, Thiele L, Gries M, Ziegenbein D, Ernst R, Teich J (2001) FunState - an internal
design representation for codesign. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 9(4):524–544, URL citeseer.nj.nec.com/strehl01funstate.html

59. Theelen BD, Geilen M, Basten T, Voeten J, Gheorghita SV, Stuijk S (2006) A scenario-aware
data flow model for combined long-run average and worst-case performance analysis. In:
Proceedings of the Fourth ACM and IEEE International Conference on Formal Methods and
Models for Co-Design 2006 (MEMOCODE ’06), pp 185–194

60. Thies W, Karczmarek M, Amarasinghe S (2002) StreamIt: A language for streaming applica-
tions. In: Horspool RN (ed) Compiler Construction, 11th International Conference, CC 2002,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8–12, 2002, Proceedings, LNCS Vol. 2306, Springer Verlag,
Berlin, pp 179–196

61. Thies W, Karczmarek M, Sermulins J, Rabbah R, Amarasinghe S (2005) Teleport messaging
for distributed stream programs. In: PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, ACM, New York, NY, USA,
pp 224–235, http://doi.acm.org/10.1145/1065944.1065975

62. Thomas T Hildebrandt GW Prakash Panangaden (2004) A relational model of non-
deterministic dataflow. Mathematical Structures in Computer Science pp 613–649

63. Vayssière J, Webb D, Wendelborn A (1999) Distributed process networks. Tech. Rep. TR 99-
03, University of Adelaide, Department of Computer Science, South Australia 5005, Australia

64. Verdoolaege S (2013) Polyhedral Process Networks, Springer New York, New York, NY, pp
1335–1375. https://doi.org/10.1007/978-1-4614-6859-2_41

65. Yates RK (1993) Networks of real-time processes. In: Best E (ed) CONCUR’93: Proc. of the
4th International Conference on Concurrency Theory, Springer Verlag, Berlin, Heidelberg, pp
384–397

http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63474
http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63474
https://doi.org/10.1145/2656106.2656112
http://doi.acm.org/10.1145/2656106.2656112
http://doi.acm.org/10.1145/2656106.2656112
citeseer.nj.nec.com/strehl01funstate.html
http://doi.acm.org/10.1145/1065944.1065975
https://doi.org/10.1007/978-1-4614-6859-2_41

Decidable Signal Processing Dataflow
Graphs

Soonhoi Ha and Hyunok Oh

Abstract Digital signal processing algorithms can be naturally represented by a
dataflow graph where nodes represent function blocks and arcs represent the data
dependency between nodes. Among various dataflow models, decidable dataflow
models have restricted semantics so that we can determine the execution order
of nodes at compile-time and decide if the program has the possibility of buffer
overflow or deadlock. In this chapter, we explain the synchronous dataflow (SDF)
model as the pioneering and representative decidable dataflow model and its
decidability focusing on how the static scheduling decision can be made. Through
static scheduling, we can estimate the performance and resource requirement of an
SDF graph on a multiprocessor system. In addition the cyclo-static dataflow model
and a few other extended models are briefly introduced to show how they overcome
the limitations of the SDF model.

1 Introduction

Digital signal processing (DSP) algorithms are often informally, but intuitively,
described by block diagrams in which a block represents a function block and an arc
or edge represents a dependency between function blocks. While a block diagram
is not a programming model, it resembles a formal dataflow graph in appearance.
Figure 1 shows a block-diagram representation of a simple DSP algorithm, which
can also be regarded as a dataflow graph of the algorithm.

A dataflow graph is a graphical representation of a dataflow model of computa-
tion in which a node, or an actor, represents a function block that can be executed,
or fired, when enough input data are available. An arc is a FIFO channel that delivers

S. Ha (�)
Seoul National University, Seoul, Republic of Korea
e-mail: sha@snu.ac.kr

H. Oh
Hanyang University, Seoul, Republic of Korea
e-mail: hoh@hanyang.ac.kr

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_25

907

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_25&domain=pdf
mailto:sha@snu.ac.kr
mailto:hoh@hanyang.ac.kr
https://doi.org/10.1007/978-3-319-91734-4_25

908 S. Ha and H. Oh

Fig. 1 Dataflow graph of a
simple DSP algorithm

data samples, also called tokens, from an output port of the source node to an input
port of the destination node. If a node has no input port, the node becomes a source
node that is always executable. In DSP algorithms, a source node may represent
an interface block that receives triggering data from an outside source. The “Read”
block in Fig. 1 is a source block that reads audio data samples from an outside
source. A dataflow graph is usually assumed to be executed iteratively as long as the
source blocks produce samples on the output ports.

The dataflow model of computation was first introduced as a parallel program-
ming model for the associated computer architecture called dataflow machines [8].
While the granularity of a node is assumed as fine as a machine instruction in
dataflow machine research, the node granularity can be as large as a well-defined
function block such as a filter or an FFT unit in a DSP algorithm representation. The
main advantage of the dataflow model as a programming model is that it specifies
only the true dependency between nodes, revealing the function-level parallelism
explicitly. There are many ways of executing a dataflow graph as long as data
dependencies between the nodes are preserved. For example, blocks “Filter” and
“Store” in Fig. 1 can be executed in any order after they receive data samples
from the “Read” block. They can be executed concurrently in a parallel processing
system.

To execute a dataflow graph on a target architecture, we have to determine where
and when to execute the nodes, which is called scheduling. Scheduling decision
can be made only at run-time for general dataflow graphs. A dynamic scheduler
monitors the input arcs of each node to check if it is executable, and schedules the
executable nodes on the appropriate processing elements. Thus dynamic scheduling
incurs run-time overhead of managing the ready nodes to schedule in terms of
both space and time. Another concern in executing a dataflow graph is resource
management. While a dataflow graph assumes an infinite FIFO queue on each arc, a
target architecture has a limited size of memory. Dynamic scheduling of nodes may
incur buffer overflow or a deadlock situation if buffers are not carefully managed. A
dataflow graph itself may have errors to induce deadlock or buffer overflow errors. It
is not decidable for a general dataflow program whether it can be executed without
buffer overflow or a deadlock problem.

On the other hand, some dataflow models have restricted semantics so that the
scheduling decision can be made at compile-time. If the execution order of nodes is
determined statically at compile-time, we can decide before running the program if
the program has the possibility of buffer overflow or deadlock. Such dataflow graphs
are called decidable dataflow graphs. More precisely, a dataflow is decidable if and
only if a schedule of which length is finite can be constructed statically. Hence,

Decidable Signal Processing Dataflow Graphs 909

in a decidable dataflow graph, the invocation number of each node is finite and
computable at compile time. The SDF (synchronous dataflow) model proposed by
Lee in [19], is a pioneering decidable model that has been widely used for DSP
algorithm specification in many design environments including Ptolemy [7] and
Grape II [17].

Subsequently, a number of generalizations of the SDF model have been proposed
to extend the expression capability of the SDF model. The most popular extension is
CSDF (cyclo-static dataflow) [5]. Three other extensions that aim to produce better
software synthesis results will also be introduced in this chapter. In this chapter,
we explain these decidable dataflow models and focus on their characteristics of
decidability. For decidable dataflow graphs, the most important issue is to determine
an optimal static schedule with respect to certain objectives since there are numerous
ways to schedule the nodes.

2 SDF (Synchronous Dataflow)

In a dataflow graph, the number of tokens produced (or consumed) per node firing
is called the output (or the input) sample rate of the output (or the input) port. The
simplest dataflow model is the single-rate dataflow (SRDF) in which all sample rates
are unity. When a port may consume or produce multiple tokens, we call it multi-
rate dataflow (MRDF). Among multi-rate dataflow graphs, synchronous dataflow
(SDF) has a restriction that the sample rates of all ports are fixed integer values and
do not vary at run time. Note that the SRDF is called sometimes the homogeneous
SDF.

Figure 2a shows an SDF graph, which has the same topology as Fig. 1, where
each arc is annotated with the number of samples produced and consumed by the
incident nodes. There may be delay samples associated with an arc. The sample
delay is represented as initial samples that are queued on the arc buffer from the
beginning, and denoted as xD where x represents the number of initial samples, as
shown on arc AD in Fig. 2a.

From the sample rate information on each arc, we can determine the relative
execution rate of two end nodes of the arc. In order not to accumulate tokens
unboundedly on an arc, the number of samples produced from the source node
should be equal to the number of samples consumed by the destination node in
the long run. In the example of Fig. 2a, the execution rate of node C should be

a b

Fig. 2 (a) An SDF graph and (b) some periodic schedules for the SDF graph

910 S. Ha and H. Oh

twice as fast as the execution rate of node B on average. Based on this pair-wise
information on the execution rates, we can determine the ratio of execution rates
among all nodes. The resultant ratio of execution rates among nodes A, B, C and D
in Fig. 2a becomes 3:2:4:3.

2.1 Static Analysis

The key analytical property of the SDF model is that the node execution schedule
can be constructed at compile time. The number of executions of node A within a
schedule is called the repetition count x(A) of the node. A valid schedule is a finite
schedule that does not reach deadlock and produces no net change in the number of
samples accumulated on each arc. In a valid schedule, the ratio of repetition counts
is equal to the ratio of execution rates among the nodes so that one iteration of a
valid schedule does not increase the samples queued on all arcs. If there exists a
valid schedule, the SDF graph is said consistent . We represent the repetition counts
of nodes in a consistent SDF graph G by vector qG. For the graph of Fig. 2a,

qG = (x(A), x(B), x(C), x(D)) = (3, 2, 4, 3) (1)

Since an SDF graph imposes only partial ordering constraints between the nodes,
the order of node invocations can be determined in various ways. Figure 2b shows
three possible valid schedules of Fig. 2a graph. In Fig. 2b, each parenthesized term
n(X1X2 . . . Xm) represents n successive executions of the sequence X1X2 . . . Xm,
which is called a looped schedule. If every block appears exactly once in the
schedule such as Σ2 and Σ3 in Fig. 2b, the schedule is called a single appearance
(SA) schedule. An SA-schedule that has no nested loop is called a flat SA-schedule.
Σ3 of Fig. 2b is a flat SA-schedule, while Σ2 is not. Consistency analysis of an
SDF graph is performed by constructing a valid schedule; no valid schedule can be
found for an erroneous SDF graph.

To construct a valid schedule, we first compute the repetition counts of all nodes.
For a given arc e, we denote the source node as src(e) and the destination node as
snk(e). The output sample rate of src(e) onto the arc is denoted as prod(e) and
the input sample rate of snk(e) as cons(e). Then, the following equation, called a
balance equation, should be held for a consistent SDF graph.

x(src(e))prod(e) = x(snk(e))cons(e) f or each e. (2)

We can formulate the balance equations for all arcs compactly with the following
matrix equation.

Γ qT
G = 0 (3)

Decidable Signal Processing Dataflow Graphs 911

a b

Fig. 3 (a) An SDF graph that is sample rate inconsistent and (b) the associated topology matrix

a b

Fig. 4 (a) An SDF graph that is deadlocked, and (b) the modified graph with initial samples on
the feedback arc

where Γ , called the topology matrix of G, is a matrix of which rows are indexed by
the arcs in G and columns are indexed by the nodes in G, An entry of the topology
matrix is defined by

Γ (e,A) =
⎧⎨
⎩

prod(e), if A = src(e)

−cons(e), if A = snk(e)

0, otherwise
(4)

A valid schedule exists only if Eq. (3) has a non-zero solution of repetition vector
qG. Mathematically, this condition is satisfied when the rank of the topology matrix
Γ is n− 1 [19], where n is the number of nodes in G. In case no non-zero solution
exists, the SDF graph is called sample rate inconsistent. Figure 3a shows a simple
SDF graph that is sample rate inconsistent, and its associated topology matrix. Note
that the rank of the topology matrix is 3, not 2.

Sample rate consistency does not guarantee that a valid schedule exists. A sample
rate consistent SDF graph can be deadlocked as illustrated in Fig. 4a if the SDF
graph has a cycle with insufficient amount of initial samples. The repetition vector,
qG = (x(A), x(B), x(C)), is (2,1,2). However, there is no fireable node since all
nodes wait for input samples from each other. So we modify the graph by adding
initial samples on arc CA in Fig. 4b. Suppose that there is an initial sample on arc
CA, or x =1. Then node A is fireable initially. After node A is fired, one sample is
produced and queued into the FIFO channel of arc AB. But the graph is deadlocked
again since no node becomes fireable afterwards. In this example, the minimum
number of initial samples is two in order to rescue the graph from the deadlock
condition.

912 S. Ha and H. Oh

The simplest method to detect deadlock is to construct a static SDF schedule by
simulating the SDF graph as follows:

1. At first, make an empty schedule list that will contain the execution sequence of
nodes, and initialize the set of fireable nodes.

2. Select one of the fireable nodes and put it in the schedule list. If the set of fireable
nodes is empty, exit the procedure.

3. Simulate the execution of the selected node by consuming the input samples from
the input arcs and producing the output samples to the output arcs.

4. Examine each destination node of the output arcs, and add it to the set of fireable
nodes only if it becomes fireable and its execution count during the simulation is
smaller than its repetition count.

5. Go back to step 2 to repeat this procedure.

When we complete this procedure, we can determine if the graph is deadlocked
by examining the schedule list. If there is any node that is scheduled fewer times
than its repetition count in the schedule list, the graph is deadlocked. Otherwise, the
graph is deadlock-free. In summary, an SDF graph is consistent if it is sample rate
consistent and it is deadlock-free. Therefore, the consistency of an SDF graph can
be statically verified by computing the repetition counts of all nodes (sample rate
consistency) and by constructing a static schedule.

2.2 Software Synthesis from SDF Graph

An SDF graph can be used as a graphical representation of a DSP algorithm,
from which target codes are automatically generated. Software synthesis from an
SDF graph includes determination of an appropriate schedule and a coding style
for each dataflow node, both of which affect the memory requirements of the
generated software. One of the main scheduling objectives for software synthesis
is to minimize the total (sum of code and data) memory requirements.

For software synthesis, the kernel code of each node (function block) is assumed
already optimized and provided from a predefined block library. Then the target
software is synthesized by putting the function blocks into the scheduled position
once a schedule is determined. There are two coding styles, inline and function,
depending on how to put a function block into the target code. The former is to
generate an inline code for each node at the scheduled position, and the latter is
to define a separate function that contains the kernel of each node. Figure 5 shows
three programs based on the same schedule Σ2 of Fig. 2b. The first two use the
inline coding style, and the third the function coding style.

If we use function calls, we have to pay, at run-time, the function-call overhead
which can be significant if there are many function blocks of small granularity. If
inlining is used, however, there is a danger of large code size if a node is instantiated
multiple times. For the example of Fig. 2, schedule Σ1 is not adequate for inlining
unlike SA-schedules, Σ2 and Σ3. Figure 5b shows an alternative code that uses

Decidable Signal Processing Dataflow Graphs 913

inlining without a proportional increase of code size to the number of instantiations
of nodes. The basic idea is to make a simple run-time system that executes
the nodes according to the schedule sequence. It pays the run-time overhead of
switch-statements and code overhead for schedule sequence management. Hence
an appropriate coding style should be selected considering the node granularity and
the schedule.

For each schedule, the buffer size requirement can be computed. If we assume
that a separate buffer is allocated on each arc, as is usually the case, the minimum
buffer requirement of an arc becomes the maximum number of samples accumulated
on the arc during an iteration of the schedule. For the example of Fig. 2, we can
compare the buffer size requirements of three schedules as shown in Table 1.

From Table 1, we can observe that the SA schedules usually require larger
buffers while they guarantee the minimum code size for inline code generation. In
multimedia applications, frame-based algorithms are common where the size of a
unit sample may be as large as a video frame or an audio frame. In these applications
minimizing the buffer size is as important as minimizing the code size. In general,
both code size and buffer size should be considered when we construct a memory-
optimal schedule.

Buffering requirements can be reduced if we use buffer sharing. Arc buffers can
be shared if their life-times are not overlapped with each other during an iteration of
the schedule. The life-time of an arc buffer is defined by a set of durations from the

a b c

Fig. 5 Three programs based on the same schedule Σ2 of Fig. 2b

Table 1 Buffer requirements for three schedules of Fig. 2b

Schedule Arc AB Arc AD Arc BC Total

Σ1: ADADBCCADBCC 4 2 2 8

Σ2: 3(AD)2(B2(C)) 6 2 2 10

Σ3: 3A3D2B4C 6 4 4 14

914 S. Ha and H. Oh

source node invocation that starts producing a sample to the buffer to the completion
of the destination node that empties the buffer. Consider schedule Σ1 of Fig. 2. The
buffer life-time of arc BC consists of two durations, {BCC, BCC}, in the schedule.
Since the buffer of arc AD is never empty, the buffer life-time of arc AD is the entire
duration of the schedule. If we remove the initial sample on arc AD, the buffer life-
time of arc AD consists of three durations, {AD, AD, AD}. Then we can share the
two arc buffers of arc AD and arc BC since their life-times are not overlapped. A
more aggressive buffer sharing technique has been developed by separating global
sample buffers and local pointer buffers in case the sample size is large in frame-
based applications [20]. The key idea is to allocate a global buffer whose size is
large enough to store the maximum amount of live samples during an iteration of
the schedule. Each arc is assigned a pointer buffer that stores pointers to the global
buffer.

Code size can also be reduced by sharing the kernel of a function block when
there are multiple instances of the same block [30] in a dataflow graph. Multiple
instances of the same block are regarded as different blocks, and the same kernel,
possibly with different local states, may appear several times in the generated
code. A technique has been proposed to share the same kernel by defining a
shared function. Separate state variables and buffers should be maintained for each
instance, which define the context of each instance. The shared function is called
with the context of an instance as an argument at the scheduled position of the
instance. To decide whether sharing a code block is beneficial or not, the overhead
and the gain of sharing should be compared. If Δ is an overhead that is incurred by
function sharing, R is a code block size, and n is the number of instances of a block,
the decision function for code sharing is summarized as the following inequality:

Δ
(n−1)R < 1.

For more detailed information on the code generation procedure and other issues
related with software synthesis from SDF graphs, refer to [3].

2.3 Static Scheduling Techniques

Static scheduling of an SDF graph is the key technique of static analysis that
checks the consistency of the graph and determines the memory requirement of
the generated code. Since an SDF graph imposes only partial ordering constraints
between the nodes, there exist many valid schedules and finding an optimal schedule
has been actively researched.

2.3.1 Scheduling Techniques for Single Processor Implementations

Since the memory requirement of the automatically synthesized code depends
on the schedule of a given SDF graph, finding an optimal schedule for single
processor implementation has been actively researched. Since the problem of

Decidable Signal Processing Dataflow Graphs 915

finding a schedule with minimum buffer requirement for an acyclic graph is
NP-complete, various heuristic approaches have been proposed. Since a single
appearance schedule guarantees the minimum code size for inline code generation,
a group of researchers have focused on finding a single appearance schedule that
minimizes the buffer size. Bhattacharyya et al. developed two heuristics: APGAN
and RPMC, to find an SA-schedule that minimizes the buffer requirements [4].
Ritz et al. used an ILP formulation to find a flat single appearance schedule that
minimizes the buffer size [26] considering buffer sharing. Since a flat SA-schedule
usually requires more data buffer than a nested SA-schedule, it is not evident which
approach is better between these two approaches.

Another group of researches tries to minimize only the buffer size. Ade et al.
presented an algorithm to determine the smallest possible buffer size for arbitrary
SDF applications [1]. Though their work is mainly targeted for mapping an
SDF application onto a Field Programmable Gate Array (FPGA) in the GRAPE
environment, the computed lower bound on the buffer requirement is applicable to
software synthesis. Govindarajan et al. [9] developed a rate optimal compile time
schedule, which minimizes the buffer requirement by using linear programming
formulation. Since the resultant schedule will not be an SA-schedule in general, a
function coding style should be used to minimize the code size in the generated
code.

No previous work exists that considers all design factors such as coding styles,
buffer sharing, and code sharing. In spite of extensive prior research efforts, finding
an optimal schedule that minimizes the total memory requirement still remains an
open problem, even for single processor implementation.

2.4 Parallel Scheduling of SDF Graphs

Since an SDF graph imposes only partial ordering constraints between the nodes,
it exposes the functional parallelism of an application explicitly, which is a very
desirable feature for multiprocessor implementation. Unlike single processor imple-
mentation where the execution length is independent of scheduling, the execution
length of an application heavily depends on how to parallelize the application. Thus,
the main scheduling objective for multiprocessor implementation is to reduce the
execution length or the throughput of a given SDF graph.

While there are numerous techniques developed for parallel scheduling, they
usually assume a single rate dataflow graph where each node is executed only
once in a single iteration. And they primarily focus on exploiting the functional
parallelism of an application to minimize the length of the schedule, called
makespan. In stream-based applications, however, maximizing the throughput is
more important than minimizing the schedule length. Pipelining is a popular way
of improving the throughput of a dataflow graph. For example Hoang et al. have
proposed a pipelined mapping/scheduling technique based on a list scheduling

916 S. Ha and H. Oh

a b

Fig. 6 (a) An APEG (acyclic precedence expanded graph) of the SDF graph in Fig. 2a, (b) a
parallel scheduling result displayed with a Gantt chart

heuristic [12]. They maximize the throughput of a single rate dataflow graph on
a homogeneous multi-processor architecture.

To apply these techniques to an SDF graph directly, we need to translate an SDF
graph to a single rate task graph, called an APEG (Acyclic Precedence Expanded
Graph) or simply EG (Expanded Graph) [24]. A node of an SDF graph is expanded
to as many nodes in the EG as the repetition counts of the node. As an example,
the corresponding EG of the graph of Fig. 2a is shown in Fig. 6a where nodes
A and D are expanded to three invocations, node B to 2, and node C to four
invocations, respectively. The number of samples communicated through each arc
is unity unless specified otherwise; if an arc is annotated with a non-unity sample
rate, such as an arc between nodes A1 and B2, the arc can be split into as many
uni-rate arcs as the number to make a single-rate dataflow graph. If a node has
any internal state, dependency arcs should be added between node invocations: In
the figure, we assume that nodes A and D have internal states and the dependency
between invocations is represented by dashed arcs. Note that the initial sample on
arc AD is placed on the arc between A3 and D1. Since the initial sample breaks the
execution dependency between A3 and D1 in the same iteration, D1 can be executed
before A3.

After we translate an SDF graph to an APEG, we can apply an existent parallel
scheduling algorithm to schedule an SDF graph on a multiprocessor architecture.
Figure 6b shows a parallel scheduling result with a Gantt chart where the vertical
axis represents the processing elements of the target system and the horizontal axis
represents the elapsed time. There are some issues worth noting in this approach.

First, loop-level data parallelism in an SDF graph is translated into functional
parallelism in the EG. Nodes B and C in Fig. 2a express data-level parallelism since
multiple invocations can be executed in parallel. But all invocations are translated
into separate nodes that can be scheduled independently, ignoring the loop structure,
in the EG. As a result, the same block can appear several times in the schedule,
which may incur significant code size overhead if inline coding style is used. While
it is a reasonable way to exploit the loop-level data parallelism, it may result in a
very expensive solution. Second, the total number of nodes in the EG is the sum

Decidable Signal Processing Dataflow Graphs 917

of all repetition counts of the nodes. A simple SDF graph with non-trivial sample
rate changes may result in a huge EG. Therefore the algorithm complexity of a
parallel scheduling technique should be low enough to scale well as the graph size
increases. Third, multiple invocations of the same node are likely to be mapped to
different processors. If a node has internal states (for instance node D in Fig. 6b), the
internal states should be transferred between invocations, which incurs significant
run-time overhead. And additional code should be inserted to manage the internal
states in the generated code.

Therefore several parallel scheduling techniques have been proposed that work
with the SDF graph directly without APEG translation. A node with internal states
is constrained to be mapped to a single processor. The most popular approach
is to use an evolutionary algorithm such as genetic algorithm and simulated
annealing where node mapping to processors is improved iteratively until no further
improvement can be found, A recent approach considers functional parallelism,
loop-level parallelism, and pipelining simultaneously to minimize the throughput
of the graph [32]. In this work, a node can be mapped to multiple processors if the
kernel code of a coarse grain node has a parallel loop inside.

2.4.1 Scheduling Objectives

Unlike single processor implementation, there is a trade-off between resource
requirements and the throughput performance in multi-processor implementation of
SDF graphs. As more processing elements are used, higher throughput performance
can be achieved if the application has sufficient degree of parallelism to utilize
the processing elements effectively. Buffer sizes also affect the schedule of an
SDF graph.

Figure 7 illustrates how the throughput is affected by the buffer size with the same
node mapping to processors. Figure 2a shows a simple SDF graph that consists of
three nodes whose mapping and execution times are given. In case the buffer size of
an arc is fixed, we can add a feedback arc with the same number of initial tokens as
the buffer size to the SDF graph to explicitly express the buffer size information.
Figure 7b displays the schedule when the buffer size of arc AB is 4. The third
invocation of node A (A3) can be executed after the first invocation of node B (B1)
finishes and the next iteration starts at 5 time unit. If we increase the buffer size of
arc AB from 4 to 6, a better throughput performance is achieved as shown in Fig. 7c.

Stuijk et al. have explored the trade-off and obtained the Pareto-optimal solutions
in terms of the buffer size and the throughput, assuming that there is no constraint
on the number of processors [29]. As long as the throughput constraint is satisfied,
it is better to minimize the resource requirements. This work is extended to consider
other resource constraints in [28] considering the case when multiple SDF graphs
run on a heterogeneous multi-processor system. There is a limitation on the number
of available processors and resource sharing between applications needs to be
considered. Other extensions can be found in a web-site (http://www.es.ele.tue.nl/
sdf3/) that they manage to make the proposed technique open to public under the
name of SDF3 (SDF for Free) [29]. For more details on the throughput analysis of
dataflow graphs, refer to [11].

http://www.es.ele.tue.nl/sdf3/
http://www.es.ele.tue.nl/sdf3/

918 S. Ha and H. Oh

a b c

Fig. 7 (a) A simple SDF graph and its mapping information, (b) and (c) the same SDF graph with
given channel buffer sizes and its parallel scheduling result displayed with a Gantt chart: buffer
size of arc AB is 4 in (b) and 6 in (c)

There is also a trade-off between latency and throughput performance in an SDF
graph. The latency of an SDF graph is defined as the time difference from the latest
finish time to the start time of an iteration. For instance, the latency performance of
schedule in Fig. 7b is 7 time units. Note that the same latency performance can be
obtained by using a single processor. To increase the throughput performance, three
processors are used. In case there are heterogeneous processors, we may want to
minimize the cost or energy consumption. In summary, there are multiple objectives
to consider in parallel scheduling of an SDF graph.

Another important factor to consider in multiprocessor implementation is the
communication delay between two nodes mapped onto different processors. Even
though the schedule diagram shown in Fig. 7 ignores the communication delay, the
destination node cannot be executed immediately after the source node finishes its
execution in reality. Thus it is necessary to model the communication network when
finding a parallel schedule. Since the communication delay depends on the volume
of the data transferred, we need to consider the data size when making a mapping
decision.

2.4.2 Execution Strategies

When constructing a parallel schedule of an SDF graph, we assume that the
execution time of a node on each processing element is known and communication
delay between two nodes is fixed. In practice, however, the execution time of a node
may change and the communication delay usually vary due to resource contention.
How can we handle the dynamic behavior of the application at run-time? There are
four different execution strategies to execute an SDF application at run-time [18]:
fully static, self-timed, static-assignment, and fully dynamic.

In the fully static scheduling, we keep not only the mapping and scheduling
decision made at compile-time but also the timing information. To this end,
the execution time of each node and worst-case communication delay should
be conservatively estimated and the scheduling is constructed based on those

Decidable Signal Processing Dataflow Graphs 919

conservatively estimated information. If a node finishes earlier than the assumed
completion time in the schedule, the run-time scheduler delays the completion of the
node. The rationale of using this strategy is to guarantee the real-time performance
since it will produce the same scheduling result at run time as expected at compile-
time. It is very desirable for hard real-time systems that are willing to pay the price
to guarantee the timing correctness. Since the resource utilization may be severely
degraded, however, it is seldom adopted in casual signal processing systems.

The self-timed scheduling strategy keeps the mapping and execution order
of nodes on each processor, but ignore the timing information while the static
assignment scheduling strategy keeps the mapping information only. Suppose a
static scheduling list O = {o1, o2, . . . , op} is defined for each processor where p

denotes the number of node instances running on the processor in one iteration and
oi indicates a node instance: lower index i of oi means higher priority. In the self-
timed scheduling strategy, the run-time scheduler examines the node instance of the
list sequentially and executes the node if it is fireable. Otherwise, it waits until all
input samples are available even though there are other fireable node instances in the
list, which may decrease the processor utilization. Since it needs to check the firing
condition of only a single node instance, run-time scheduling overhead is little.

On the other hand, we may change the execution order of nodes in the static
assignment strategy. At run-time, node instances can be split into three sets at time
t: F for finished instances, B for blocked instances that have any input arc e such
that cons(e) > b(e) where b(e) means the number of samples on the input arc, and
R for ready node instances where for all input arcs e, cons(e) ≤ b(e). The run-time
scheduler executes a node instance oi such that oi ∈ R and oi has the highest priority
of R. The scheduling information can be used to give priorities to the mapped nodes
in each processor in this strategy.

The fully dynamic scheduling strategy ignores all mapping and scheduling
decisions. The static scheduling result can be used to define the priority of nodes.
A central run-time system maintains the set of unfinished node instances in each
iteration. It finds a fireable node instance with the highest priority in the set and maps
it to an available processor. Even though it may maximize the resource utilization,
the real-time performance can hardly be guaranteed and run-time overhead may
overweigh the benefit of resource utilization.

While most work on multiprocessor implementation of SDF graphs assumes self-
timed scheduling, some recent researches considers static assignment scheduling as
a viable implementation technique of SDF task. A main benefit of static assignment
scheduling over self-timed scheduling is that it may tolerate large variation of node
execution times or communication delays. Since we assume a fixed node execution
time and a fixed communication delay when we make a static schedule, the run-time
behavior may deviate largely from the static schedule. A processor may be idle while
the current scheduled node is waiting for the arrival of input data from the other
processors even though there are other executable nodes. Thus static scheduling
may result in waste of resources while dynamic scheduling changes the execution
order of nodes to increase resource utilization. A key issue for dynamic scheduling
is how to assign priorities to the mapped nodes on each processor. There is a recent

920 S. Ha and H. Oh

work to find an optimal static mapping and priority assignment to minimize the
resource requirement under a throughput constraint [16].

Note that self-timed and static-assignment scheduling strategies do not guarantee
the satisfaction of timing constraints even if the static schedule is constructed based
on the worst case execution time (WCET) of nodes. If the execution time of a
node becomes smaller than its WCET, the order of node firings may vary at run-
time, which may lengthen the total execution time of the application if there is a
shared resource. The node may delay the execution of a node in the critical path by
occupying the shared resource unexpectedly. This behavior is known as “scheduling
anomaly” of multiprocessor scheduling [10]. If other tasks share the processor
with an SDF application, the problem becomes severe. Therefore it is necessary to
devise a technique to conservatively estimate the worst-case run-time performance
of an SDF application when self-timed and static-assignment scheduling strategies
are used.

2.4.3 Scheduling of Multiple SDF Graphs

Most work on parallel scheduling of SDF graphs assumes that an application uses
the system exclusively. Since it becomes more popular to run multiple applications
on a multiprocessor system, we need to consider multi-tasking in parallel scheduling
of SDF graphs. One solution is to statically schedule the multiple tasks up to their
hyper-period that is defined as a least common multiple of all task periods [15].
Since the hyper-period can be huge if the task periods are relatively prime, this
approach is not practical in general. Also this approach requires that the starting
offset of all application are known and fixed.

To avoid these limitations and allow processor sharing between SDF graphs
and conventional real-time tasks, there have been proposed several techniques
that transform dataflow graphs into a set of independent real-time tasks so as to
take advantage of existing real-time scheduling techniques [2, 6, 27]. The basic
philosophy they have in common is that each node of dataflow graphs is transformed
to a periodic (or sporadic) real-time task. A starting offset is introduced to each
transformed task in order to emulate the behavior of data-dependencies in the
original graph. This approach, however, does not utilize the static analyzability of
the SDF model so that it may produce poor resource utilization and excessive buffer
requirement.

Another approach has been recently proposed that preserves the advantages of
static scheduling while allowing arbitrary starting offsets and processor sharing
among multiple SDF graphs [14]. It consists of two phases. In the first phase,
each application is scheduled separately as if it monopolizes the entire system. The
second phase uses a meta-heuristic to find the combination of per-graph schedules
to minimize the resource requirement by processor sharing. It is claimed that this
technique exhibits better resource and buffer efficiency than the transformation
technique.

Decidable Signal Processing Dataflow Graphs 921

2.5 Hardware Synthesis from SDF Graph

While the target architecture is given as a constraint for software synthesis, the
target hardware structure can be synthesized in hardware synthesis from an SDF
graph. Therefore, we can achieve the iteration bound of an SDF graph in theory
(see [22] to find the definition of the iteration bound of a graph) if there is no
limitation on the hardware size. Since there is a trade-off between hardware cost
and the throughput performance, however, architecture design and node scheduling
should be considered simultaneously under given design constraints.

A key issue in hardware synthesis is to preserve the SDF semantics to maintain
the correctness of the graph. In the SDF model, two samples that have the same value
should be distinguished as separate samples while the same value is not identified
as a new event in a hardware logic. So the arrival of an input sample should be
notified somehow. And if a node has more than one input port, the node should
wait until all input ports receive data samples before the node starts execution. It
means that we need some control logic to perform scheduling of the nodes. There
are two types of controllers: distributed controller and centralized controller. In the
centralized control scheme, the execution timing of each node is controlled by a
central scheduler. The execution timing can be determined at compile-time by static
scheduling of the graph. In a distributed scheme, a node is associated with a control
logic that monitors the input queues and triggering the node execution when all
input queues have input samples to fire the node.

For hardware synthesis, a node should be specified by a hardware description
language that will be synthesized by a CAD tool, or by a function block that is
mapped to a pre-defined hardware IP. If an hardware IP is used, interface between
the IP and the rest of the system should be designed carefully. Since the interface
design is a laborious and error-prone task, extensive researches are being performed
on the automatic interface synthesis.

In summary, hardware synthesis from a SDF graph involves the following
problems: architecture and datapath synthesis, controller synthesis, and interface
synthesis. The node granularity in a SDF graph also affects the hardware synthesis
procedure. Various issues in hardware synthesis for a coarse grained graph is
discussed in [13]. For FPGA synthesis from a fine-grained graph, see [31] for
more detailed information.

3 Cyclo-Static Dataflow (CSDF)

The strict restriction of the SDF model, that all sample rates are constant, limits
the expression capability of the model. Figure 8a shows a simple SDF graph that
models a stereo audio processing application where the samples for the left and
right channels are interleaved at the source. The interleaved samples are distributed
by node D to the left (node L) and to the right (node R) channel. In this example, the

922 S. Ha and H. Oh

a b

Fig. 8 (a) An SDF graph where node D is a distributor block and (b) a CSDF graph that shows
the same behavior with a different version of a distributor block

distributor node (node D) waits until two samples are accumulated on its input arc
to produce one sample at each output arc. A more natural implementation would be
to make the distribution node route an input sample to two output ports alternatively
at each arrival. A useful generalization of the SDF model, called the cyclo-static
dataflow (CSDF), makes it possible [5].

In a cyclo-static dataflow graph, the sample rates of an input or output port may
vary in a periodic fashion. Figure 8b shows how the CSDF model can specify the
same application as Fig. 8a. To specify the periodic change of the sample rates, a
tuple rather than an integer is annotated at the output ports of node D’. For instance,
“{1,0}” on arc D’R denotes that the rate change pattern is repeated every other
execution, where the rate is 1 at the first execution, and 0 at the second execution.
Similarly, the periodic sample rate “{0,1}” means that the rate is 0 at every (2n+1)-
th iteration and 1 at the other iterations.

Note that Fig. 8a, b represent the same application in functionality. One firing of
node D in the SDF graph is broken down into two firings of node D’ in the CSDF
graph. Thus we have to split the behavior of node D’ into phases. The number of
phases is determined by the periods of the sample rate patterns of all input and
output ports. In general, we can convert a CSDF graph to an equivalent SDF graph
by merging as many firings of a CSDF node as the number of phases into a single
firing of an equivalent SDF node. For instance, node D’ in the CSDF graph repeats
its behavior every two firings, and the number of phases becomes 2. So an equivalent
SDF node can be constructed by merging two firings of node D’ into one, which is
node D in the SDF model. The sample rates of input and output ports are adjusted
accordingly by summing up the number of samples consumed and produced during
one cycle of periodic behavior.

The CSDF model has a big advantage over the SDF model in that it can reduce
the buffer requirement on the arcs. In the example shown in Fig. 8, the minimum
size of input buffer for node D should be 2 in the SDF model while it is 1 in the
CSDF model.

Decidable Signal Processing Dataflow Graphs 923

3.1 Static Analysis

Since we can construct an equivalent SDF graph, static analysis and scheduling
algorithms developed for SDF are also applicable to CSDF. For formal treatment,
we use vectors to represent the periodic sample rates in CSDF: For an arc e, the
output sample rate vector of src(e) and the input sample rate vector of snk(e) are
denoted by prod(e) and cons(e) in CSDF. Figure 9a shows another CSDF graph
that has non-trivial periodic patterns of sample rates. The sample rate vectors for the
graph become the following:

prod(AC) = (1, 0, 0), cons(AB) = (0, 2),prod(BC) = (0, 1, 0),
prod(AB) = cons(BC) = cons(AC) = (1).

To make an equivalent SDF node for each CSDF node, we have to compute the
repetition period for the phased operation of the CSDF node. First we obtain the
period of the sample rate variation for each port, which is the size of the sample rate
vector. Let dim(v) be the dimension of the sample rate vector v. Then the repetition
period of a CSDF node A, denoted by p(A) becomes the least common multiple
(lcm) value of all dim(v) values for the input and output ports of the node. For the
example of Fig. 9a, the repetition periods become the following:

p(A) = lcm(dim(prod(AB)), dim(prod(AC))) = lcm(3, 1) = 3.
p(B) = lcm(dim(cons(AB)), dim(prod(BC))) = lcm(2, 3) = 6.
p(C) = lcm(dim(cons(AC)), dim(prod(BC))) = lcm(1, 1) = 1.

If p(A) firings of CSDF node A are merged into a single firing, an equivalent
SDF actor A’ is obtained. Hence the equivalent SDF graph is obtained as shown in
Fig. 9b where node B’ is obtained by merging 6 firings of node B in the CSDF graph.
We denote this equivalence relation as B ′ ≈ 6B. For an equivalent SDF node, the
scalar sample rate of a port should be determined. Let σ(v) be the sum of elements
in vector v. The total number of samples produced or consumed on arc e of CSDF
node A per the corresponding SDF node execution is given by p(A)

σ(prod(e))
dim(prod(e)) or

p(A) σ(cons(e))
dim(cons(e)) . So, we can construct a topology matrix for the equivalent SDF

graph as follows:

a b

Fig. 9 (a) A cyclo-static dataflow graph and (b) its corresponding SDF graph

924 S. Ha and H. Oh

Γ (e,A) =

⎧⎪⎨
⎪⎩

p(A)
σ(prod(e))

dim(prod(e)) , if A = src(e)

−p(A) σ(cons(e))
dim(cons(e)) , if A = snk(e)

0, otherwise

(5)

We can check the sample rate consistency with this topology matrix. For the
graph in Fig. 9b, the topology matrix and the repetition vector become:

Γ =
⎛
⎝3 −6 0

1 0 −1
0 2 −1

⎞
⎠

qG = (2, 1, 2)

Since rank of Γ is 2, the CSDF graph is sample rate consistent. Moreover, a valid
schedule includes two invocations of nodes A’ and C, and one invocation of node
B’. This means that a valid CSDF schedule contains 6A, 6B and 2C since A′ ≈ 3A
and B ′ ≈ 6B. The deadlock detection algorithm for an SDF graph in Sect. 2.1 is
applicable for a CSDF graph, which is to construct a static schedule by simulating
the graph.

3.2 Static Scheduling and Buffer Size Reduction

One strategy of scheduling a CSDF graph is to schedule the equivalent SDF graph
and replace the execution of the equivalent node with the multiple invocations of
the original CSDF node. We can obtain the following schedule for the graph in
Fig. 9: Σ1 = 2A′B ′2C = 6A6B2C. Then the minimum buffer requirement on arc
AB becomes 6. We can construct better schedules in terms of buffer requirements
by utilizing the phased operation of a CSDF node. For the case of CSDF graph of
Fig. 9a, we can construct a better schedule as follows.

1. Initially nodes A and B are fireable, so schedule nodes A and B: Σ2 = “AB”.
2. Since node A is the only fireable node, we schedule node A again: Σ2 = “ABA”
3. Now two samples are accumulated on arc AB and the second phased of node B

can start. So schedule node B: Σ2 = “ABAB”.
4. Node C becomes fireable. Schedule node C for the first time: Σ2 = “ABABC”.
5. We can schedule nodes A and B twice: Σ2 = “ABABCABAB”
6. At this moment, only one sample is stored on arc AC and we can fire nodes A and

B. We choose to schedule the fifth invocation of node B to produce one sample
on arc BC. Σ2 = “ABABCABABB”

7. Then, node C becomes fireable. Schedule node C: Σ2 = “ABABCABABBC”
8. Finally we schedule node A twice and node B once to complete one iteration of

the schedule: Σ2 = “ABABCABABBCAAB”

Decidable Signal Processing Dataflow Graphs 925

9. Since schedule Σ2 contains 6A, 6B and 2C, scheduling is finished and no
deadlock is detected.

Schedule Σ2 requires two buffers on arc AB, which is three times better than
schedule Σ1. Generally, as sample rates vary more, the buffer size reduction
becomes more significant. This gain is obtained by splitting the CSDF node into
multiple phases. But we have to pay the overhead of code size since a single
appearance schedule is given up. In general, there are more valid schedules for a
CSDF graph than for the equivalent SDF model. Therefore, discussion on the SDF
scheduling can be applied to the CSDF model, but with increased complexity of
scheduling problems.

3.3 Hierarchical Composition

Another advantage of CSDF is that it offers more opportunities of clustering when
constructing a hierarchical graph. It also allows a seemingly delay-free cycle of
nodes, while no delay-free cycle is allowed in SDF. Figure 10a shows an SDF graph
with four nodes A,B,C and D. All sample rates are unity since no sample rate is
annotated on any arc. The graph can be scheduled without deadlock since there is
an initial delay sample between nodes A and B. One unique valid schedule of this
graph is “BCDA”. Suppose we cluster nodes A and B into an hierarchical node W in
CSDF and W’ in SDF as illustrated in Fig. 10a, b respectively. Since CSDF node W
fires node B at every (2n+1)-th cycle and node A at every 2n-th cycle, the input and
the output sample rate vectors of node W become “{0,1}” and “{1,0}” respectively.

ba

Fig. 10 Clustering of nodes A and B into an hierarchical node in (a) CSDF and (b) in SDF

926 S. Ha and H. Oh

Therefore, the CSDF graph can be scheduled without deadlock and a valid static
schedule is “WCDW” where node B is fired at the first invocation of node W and
node A is fired at the second invocation. On the other hand, SDF node W’ should
execute both nodes A and B when it is fired. Therefore, the SDF graph as shown in
Fig. 10b is deadlocked since nodes W’, D, and C wait for each other.

Clustering of nodes may cause deadlock in SDF even though the original SDF
graph is consistent. On the other hand, a CSDF graph that includes a cyclic loop
without an initial delay can be scheduled without deadlock if the periodic rates
are carefully determined. Therefore, the CSDF model allows more freedom of
hierarchical composition of the graph.

4 Other Decidable Dataflow Models

4.1 FRDF (Fractional Rate Dataflow)

The SDF model does not make any assumption on the data types of samples as
long as the same data types are used between two communicating nodes. To specify
multimedia applications or frame-based signal processing applications, it is natural
to use composite data types such as video frames or network packets. If a composite
data type is assumed, the buffer requirement for a single data sample can be huge,
which amounts to 176 × 144 pixels for a QCIF video frame for instance. Then
reducing the buffer requirement becomes more important than reducing the code
size when we make a schedule.

Figure 11a shows an SDF subgraph of an H.263 encoder algorithm for QCIF
video frames. A QCIF video frame consists of 11 × 9 macroblocks whose size is
16×16 pixels. Node ME that performs motion estimation consumes the current and
the previous frames as inputs. Internally, the ME block divides the current frame
into 99 macroblocks and computes the motion vectors and the pixel differences from
the previous frame. And it produces 99 output samples at once where each output
sample is a macroblock-size data that represents a 16×16 array of pixel differences.
Node EN performs macroblock encoding by consuming one macroblock at a time
and produces one encoded macroblock as its output sample.

This SDF representation is not efficient in terms of buffer requirement and
performance. Since node ME produces 99 macroblock-size samples at once after
consuming a single frame size sample at each invocation, we need a 99-macroblock-

a b

Fig. 11 A subgraph of an H.263 encoder graph (a) in SDF and (b) in FRDF

Decidable Signal Processing Dataflow Graphs 927

Fig. 12 An FRDF graph in which sample types on arc BC and AC are a composite and a primitive
type, respectively

size buffer or a frame-size buffer (99 × 16 × 16 = 176 × 144) to store the
samples on the arc between nodes ME and EN. Moreover node EN cannot start
execution before node ME finishes motion estimation for the whole input frame.
As this example demonstrates, the SDF model has inherent difficulty of efficiently
expressing the mixture of a composite data type and its constituents: a video frame
and macroblocks in this example. A video frame is regarded as a unit of data
sample in integer rate dataflow graphs, and should be broken down into multiple
macroblocks explicitly by consuming extra memory space.

To overcome this difficulty, the fractional rate dataflow (FRDF) model in which a
fractional number of samples can be produced or consumed has been proposed [21].
In FRDF, a fraction number can be used as a sample rate as shown in Fig. 11b where
the input sample rates of node frME is set to 1

99 . The fractional number means that
the input data type of node frME is a macroblock and it corresponds to 1

99 of a
frame data.

Figure 12 shows an FRDF graph where the data type of arc BC is a composite
type as illustrated in the figure and the data type of arc AC is a primitive type such
as integer or float. A fractional sample rate has different meaning for a composite
data type from a primitive type. For a composite data type, the fractional sample rate
really indicates the partial production or consumption of the sample. In the example
graph, one firing of node B fills 1

3 of a sample on arc BC and node C reads the
first half of the sample at every (2n + 1)-th firing and the second half at every 2n-
th firing. Hence, if we consider the execution order of nodes B and C, a schedule
“BBCBC” is valid since 2

3 of a sample is available after node B is fired twice and
node C becomes fireable.

For primitive types, partial production or consumption is not feasible. Then
statistical interpretation is applied for a fractional rate. In the example graph, the
output sample rate of node A is 1

3 on arc AC. This means that node A produces
a single sample every three executions. Similarly node C consumes one sample
every two executions. Note that a fractional rate does not imply at which firings
samples are produced. So node C becomes fireable only after node A is executed
three times. If we are concerned about the execution order of nodes A and C only,
schedule “3A2C” is valid while “2ACAC” is not. Consequently, a valid schedule for
the FRDF graph of Fig. 12 is “3(AB)2C”.

Regardless of the data type, a fractional sample rate p
q

guarantees that p samples
are produced or consumed after q firings of the node. Similar to the CSDF graph, we
can construct an equivalent SDF graph by merging q firings of an FRDF node into

928 S. Ha and H. Oh

an equivalent SDF node that produces or consumes p samples per firing. Therefore,
static analysis techniques for the SDF model can be applied to the FRDF model. For
the analysis of sample rate consistency, however, we can use fractional sample rates
directly in the topology matrix. For the FRDF graph of Fig. 12, the topology matrix
and repetition vector are:

Γ =
⎛
⎝1 −1 0

0 1
3 − 1

2
1
3 0 − 1

2

⎞
⎠

qG = (3, 3, 2)

Since the rank of Γ is 2, the graph is sample rate consistent. Deadlock can be
detected by constructing a static schedule similarly to the SDF case. If there exists
a valid static schedule, the graph is free from deadlock. A static schedule is simply
constructed by inserting a fireable node into the schedule list and simulating its
firing. An FRDF node has different firing conditions depending on the data types
of input ports. An FRDF node is fireable, or executable, if all input arcs satisfy the
following condition depending on the data type:

1. If the data type is primitive, there must be at least as many stored samples as the
numerator value of the fractional sample rate. An integer sample rate is a special
fractional rate whose denominator is 1.

2. If the data type is composite, there must be at least as large a fraction of samples
stored as the fractional input sample rate.

Special care should be taken for a composite type data. If the consumer and the
producer have a different interpretation on the fraction, then a composite type should
be regarded as atomic like a primitive type when the firing condition is examined.
Suppose that for a composite data type of a two-dimensional array, the producer
regards it as an array of row vectors while the consumer regards it as an array of
column vectors as shown in Fig. 13. In this case, the two-dimensional array may not
be regarded as a composite type data. Therefore, schedule “DDUDU” is not valid
while “3D 2U” is.

In general, the FRDF model results in an efficient implementation of a multi-
media application in terms of buffer requirement and performance. Consider the
example in Fig. 11b again. Since node frME uses a macroblock-size sample, the
output arc requires only a single macroblock-size buffer. For each arrival of an input
video frame, node frME is fired 99 times and consumes a macro-block size portion

Fig. 13 If the consumer and the producer have the different access patterns for a composite type
data then the type should be treated as atomic

Decidable Signal Processing Dataflow Graphs 929

Fig. 14 H.263 encoder in FRDF

Fig. 15 An FRDF graph
corresponding to Fig. 9

of the input frame per firing. Since node EN can be fired after each firing of node
frME, shorter latency is experienced when compared with the SDF implementation.
Figure 14 shows a whole H.263 encoding algorithm in FRDF where the sample
types for “current frame” and “previous frame” are video frames. It is worth noting
that the entire previous frame is needed to do motion estimation for each macroblock
of the current frame while the sample rate of the bottom input port of node “Motion
Estimation” is 1

99 . Hence, even though the previous frame is a composite data type,
it should be regarded as atomic. Then node “Motion Estimation” is fireable only
after the entire previous frame is available.

Figure 15 shows an FRDF graph that corresponds with Fig. 9a. Both have the
same equivalent SDF graphs. Similar to the CSDF model, the FRDF model can
reduce the buffer size when compared with the corresponding SDF model. Since
node A∗ produces a single sample and B∗ consumes two samples every other
execution, a valid schedule for the graph is “2A∗ 2B∗ 2A∗ B∗ C B∗ 2A∗ 2B∗ C”.
And the required buffer sizes on arcs A∗B∗ and B∗C∗ are equal to the sizes for the
CSDF graph. The buffer size for arc A∗C is, however, larger than the CSDF graph
since the FRDF model does not know when samples are produced and consumed,
and the schedule for the FRDF model should consider the worst case behavior. For
an output port, the worst case is when output samples are all produced at the last
phase while it is when input samples are all consumed at the first phase for an input
port. Therefore, in the FRDF model, rate p

q
for a primitive data type corresponds

to “{(q − 1)× 0,p}” for an output sample rate and “{p,(q − 1)× 0}” for an input
sample rate in the CSDF model, where “(q− 1)× 0” denotes “0, 0, · · · , 0︸ ︷︷ ︸

q−1

”. Hence,

the CSDF model may generate better schedules than the associated FRDF model
since we can split the node execution into finer granularity of phases at compile-
time scheduling; This is not possible in the FRDF if the date type is primitive. The
expression capability of two models is, however, different. The CSDF model allows
only a periodic pattern to express sample rate variations while the FRDF model

930 S. Ha and H. Oh

has no such restriction as long as the average value is constant during a period. So
the FRDF model has more expression power than the CSDF model since it allows
dynamic behavior of an FRDF node within a period and the periodic pattern can be
regarded as a special case.

4.2 SPDF (Synchronous Piggybacked Dataflow)

The SDF model does not allow communication through a shared global variable
since the access order to the global variable can vary depending on the execution
order of nodes. Suppose a source block produces the frame header in a frame-based
signal processing application that is to be used by several downstream blocks. A
natural way of coding in C is to define a shared data structure that the downstream
blocks access by pointers. But in a dataflow model, such sharing is not allowed. As a
result, redundant copies of data samples are usually introduced in the automatically
generated code from the dataflow model. Such overhead is usually not tolerable
for embedded systems with tight resource and/or timing constraints. To overcome
this limitation, an extended SDF model, called SPDF(Synchronous Piggybacked
Dataflow) is proposed [23], by introducing the notion of “controlled global states”
and by coupling a data sample with a pointer to the controlled global state.

The Synchronous Piggybacked Dataflow (SPDF) model was first proposed to
support frame-based processing, or block-based processing, that frequently occurs
in multimedia applications. In frame-based processing, the system receives input
streams of frames that consist of a frame header and data samples. The frame
header contains information on how to process data samples. So an intuitive
implementation is to store the information in a global data structure, called global
states, and the data processing blocks refer to the global states before processing the
data samples.

Figure 16 shows a simple SPDF graph where node A reads a frame from a
file and produces the header information and the data samples through different
output ports. Suppose that a frame consists of 100 data samples in this example.

“header”

Fig. 16 An example SPDF graph that shows a typical frame-based processing: The Piggyback
block writes the header information to the global state and the downstream blocks refer to the
global state before processing the data samples

Decidable Signal Processing Dataflow Graphs 931

The header information and the data samples are both connected to a special
FRDF(Fractional Rate Dataflow) block, called “Piggyback” block, that has three
parameters: “statename”, “period”, and “offset”. The Piggyback block updates
the global state of “statename” with the received header information periodically
with the specified “period” parameter. It piggybacks a pointer to the global state on
each input data sample before sending it through the output port. Since it needs to
receive the header information in order to update the global state only once per 100
executions, the sample rate of the input port associated with the header information
is set to the fractional value 1

100 , which means that it consumes one sample per 100
executions in the FRDF model. The input port of this fractional rate is called the
“state port” of the Piggyback block. The sample rate of the data port, on the other
hand, is unity.

The “offset” parameter indicates when to update the global state. The Piggyback
block receives as many data samples as the “offset” value before updating the global
state. In this example, the “offset” value is set to its default value, zero, which makes
the Piggyback block consume the header information and update the global state
before it piggybacks the data samples with a pointer to the global state.

Note that the Piggyback block with a fractional rate input port is the only
extension to the SDF model. Since the sample rates of the SPDF graph are all
static, the static analyzability of the SDF model is preserved even after addition
of the Piggyback block. Also, piggybacking of data samples with pointers can
be performed without any run-time overhead by utilizing the static schedule
information of the graph. Suppose that the SDF graph in Fig. 16 has the following
static schedule: “A 100(Piggyback, B, C, DownStream)”. Then the pseudo code of
the automatically generated code associated with the schedule is as follows:

code block of A
for (int i = 0; i < 100, i++) {
if (i == offset_Piggyback)

update the global state header
code block of B
code block of C
if (i == offset_Piggyback)

update the local state of DownSteam block
from the global state information

code block of DownStream
}

Figure 17 shows another example that produces a sinusoidal waveform with
varying amplitude at run-time. The “Singen” block generates a sinusoidal waveform
(N samples per period) of unit amplitude and the “Gain” block amplifies the input
samples by the “gain” parameter of the block. To control the amplitude, the graph
uses a Piggyback block after the “Singen” block. Another source block, “Ramp”,
is connected to the state port of the Piggyback block. The “statename” of the
Piggyback is named “global_gain” and the “gain” parameter of the “Gain” block
is also set to “global_gain”. Then, the “gain” parameter of the “Gain” block is
updated with a global state named by “global_gain” whose value is determined by

932 S. Ha and H. Oh

Ramp

singen

piggyback gain out

state name: g_gain
period = 100
offset = 0

gain: g_gain
1/100

generate sin wave:
100 samples per period

Fig. 17 An SPDF graph that produces a sinusoidal waveform with varying amplitude at run-
time: the “gain” state of the “Gain” block is updated by the “Ramp” block through a global state,
“global_gain”

the “Ramp” block. In this example, the period of the Piggyback block is set to N so
that the amplitude of the sinusoidal waveform is incremented by one every period
as shown in Fig. 17. If we insert two initial samples on the input arc of the “Gain”
block, the “offset” parameter of the Piggyback block should be 2.

Thus the SPDF model provides a safe mechanism to deliver state values
through shared memory instead of message passing. Communication through shared
memory is prohibited in conventional dataflow models since the access order to
the shared memory may vary depending on the schedule. But the SPDF model
gives another solution by observing that the side effect is caused by an implicit
assumption that the global state is assigned a memory location before scheduling
is performed. The SPDF model changes the order: allocate the memory for the
global state after the schedule is made. Since the scheduling decision is made at
compile-time, we know the access order to the variable and the life time of each
global state variable. Suppose that the schedule of Fig. 17 becomes “2(100(Singen)
Ramp Piggyback) 200(Gain Display)”. From the static schedule, we know that we
need to maintain two memory locations for the global state, “global_gain” since the
Piggyback block writes the second value to the global state before the “Gain” reads
the first global state.

Allowing shared memory communication without side effects gives a couple
of significant benefits over conventional dataflow models. First, it can remove the
unnecessary overhead of data copying of message passing communication since
the global state can be shared by multiple blocks. Second, it greatly enhances the
expression capability of the SDF model without breaking the static analyzability. It
provides an explicit mechanism of affecting the internal behavior of a block from
the outside through global states.

Decidable Signal Processing Dataflow Graphs 933

4.3 SSDF (Scalable SDF)

DSP architectures have stringent on-chip memory limits and off-chip memory
access is costly. They also allow vector processing of instructions and arithmetic
pipelining like MAC in order to attain peak performance when the pipelining is
fully utilized. Therefore, when an SDF block operates on primitive-type data and the
granularity is small, it behaves inefficiently. For example, an adder block performs a
single accumulation operation by reading two samples from memory and writing a
sample into memory. It requires large run time overhead of off-chip memory access
for two read and one write operations. In order to achieve efficient implementation,
the scalable synchronous dataflow (SSDF) model is proposed [25]. The SSDF model
has the same semantics as the SDF model except that a node may consume or
produce any integer multiple of the fixed rates per invocation. The actual multiple,
called blocking factor, is determined by a scheduler or an optimizer.

Figure 18a shows the code of an “Add” block in SDF. In SSDF, the code includes
blocking factor Nb that is the number of iterations as shown in Fig. 18b. Since the
function call overhead of “add()” is larger than the accumulation operation, the
SSDF model amortizes the function call overhead by performing Nb accumulations
per function call. When blocking factor Nb is 1, the SSDF graph degenerates to an
SDF graph. Therefore, the SSDF model has the same sample rates as the SDF model
and sample rate inconsistency can be checked using the topology matrix for the SDF
model. Moreover, deadlock is detected by constructing a schedule by setting block
factor Nb = 1. From the static analysis of the degenerated SDF graph, repetition
vector qG can be obtained, assuming Nb is 1 for all blocks. When Nb > 1, the
repetition vector for SSDF becomes NbqG.

A straightforward scheduling technique for an SSDF graph is to increase the
minimal scheduling period by an integer factor Ng where Ng is a global blocking
factor. Each node A of the graph will be invoked Ngx(A) times within one
scheduling period, where x(A) is the repetition count of node A. Increasing Ng

reduces the function call overhead but requires larger buffer memory for graph
execution. For instance, the “Add” node in Fig. 18 consumes Nb samples from each
input port and producesNb output samples, then all three buffers have size Nb while
they have size 1 when the blocking factor is unity. Moreover, the increment of Ng

delays the response time although it does not decrease the throughput.

a b

Fig. 18 Code of an “Add” actor (a) in SDF and (b) in SSDF where Nb is the blocking factor

934 S. Ha and H. Oh

Fig. 19 A graph with feedback loop

Another major obstacle to increase the blocking factor is related with feedback
loops. Vector processing is restricted to the number of initial delays on the feedback
loop. If the number is smaller than Ng , the vector processing capability cannot be
fully utilized. For example, the scheduling result for a graph shown in Fig. 19 is “A
B G C D H E F” when the blocking factor is 1. If blocking factor Ng becomes 5
then the scheduling becomes “5A 5B 5(GCDH) 5E 5F” in which nodes G,C,D and
H are repeated five times sequentially. Therefore, a scheduling algorithm for SSDF
should consider the graph topology to minimize the program code size.

In case feedback loops exist, strongly-connected components are first clustered
into a strong component. A strong component of graph G is defined as a subgraph
F ⊂ G if for all pairs of nodes u, v ∈ F there exist paths puv(from u to v) and
pvu(from v to u). This clustering is performed in a hierarchical fashion until the top
graph does not have any feedback loop. Then, a valid schedule for an SSDF graph
can be constructed using the SDF scheduling algorithms. Each node is scheduled
by applying the global blocking factor Ng . For the SSDF graph in Fig. 19, the top
graph consists of five nodes “A B (CDGH) E F” where nodes C, D, G and H are
merged into a clustered-node. When blocking factor Ng is set to 5, a schedule for
the top graph becomes “5A5B5(clustered-node)5E5F”.

Next, the strong components are scheduled. The blocking factor depends on
the number of initial delay samples on a feedback loop. Let Nl(L) denote the
maximum bound of the blocking factor on feedback loop L. Since feedback loops
can be nested, a feedback loop with the largest maximum bound Nl(L) should be
selected first. Subsequently, feedback loops are selected in a descending order of
Nl(L). Scheduling of the clustered subgraph starts with a node that has many initial
delay samples on its input ports and allows a large blocking factor. When a strong
component “(CDHG)” is scheduled in the SSDF graph, actor G should be fired since
it has an initial delay sample.

For a selected strong component, we schedule the internal nodes as follows,
depending on the number of delays on the feedback loop.

Case 1: Ng is an integer multiple of Nl(L). The scheduling order is repeated
Ng/Nl(L) times using Nb = Nl(L) for the internal nodes. In the example of
Fig. 19, since Nl(L) = 1, Ng = 5, and Ng/Nl(L) is an integer, schedule of
“GCDH” is repeated five times. Moreover, the blocking factor for each node
Nb is 1. Hence, the final schedule is “5A 5B 5(GCDH) 5E 5F”.

Decidable Signal Processing Dataflow Graphs 935

Case 2: Ng ≤ Nl(L). Blocking factor Nb = Ng is applied for all actors in the
strong component. For example, if the number of delay samples increases to
5 in Fig. 19, then blocking factor Nl(L) is 5 which is equal to Ng, and the
schedule becomes “5A 5B (5G 5C 5D 5H) 5E 5F”. Therefore, the blocking
factor can be fully utilized.

Case 3: If Ng > Nl(L) but not an integer multiple. One of two scheduling
strategies can be applied:

1. The schedule for the strong component is repeated Ng times using Nb = 1
internally, which produces the smallest code at the cost of throughput.

2. The schedule is repeated with blocking factor Nb = Nl(L), and then once more
for the remainder to Ng. This improves throughput but also enlarges the code
size.

When Nl(L) = 2 by increasing the number of delay samples to 2, a valid
schedule is “5(GCDH)” if the first strategy is followed or “2(2G 2C 2D 2H)
GCDH” if the second strategy is followed. Consequently, the final schedule
is either “5A5B 5(GCDH) 5E 5F” or “5A 5B 2(2G 2C 2D 2H) GCDH 5E
5F”.

Although the SSDF model is proposed to allow large blocking factors to utilize
vector processing of simple operations in an node, the scheduling algorithm for
SSDF is also applicable to an SDF graph in which every node has an inline style
code specification. Without the modification of the SDF actor, the blocking factor
can be applied to the SDF graph and the SDF schedule. For instance, when block
factor Ng = 3 is applied to Fig. 2, a valid schedule is “9A 9D 6B 12C”. For the given
schedule with the blocking factor, programs can be synthesized as shown in Fig. 5
where each loop value in the codes will be multiplied by blocking factor Ng (=3).

References

1. Ade, M., Lauwereins, R., Peperstraete, J.A.: Implementing dsp applications on heterogeneous
targets using minimal size data buffers. In: Proceedings of RSP’96, pp. 166–172 (1996)

2. Bamakhrama, M., Stefanov, T.: Hard-real-time scheduling of data-dependent tasks in embed-
ded streaming applications. In: Proceedings of the Ninth ACM International Conference on
Embedded Software, EMSOFT ’11, pp. 195–204. ACM, New York, NY, USA (2011). http://
doi.acm.org/10.1145/2038642.2038672

3. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software Synthesis from Dataflow Graphs.
Kluwer Academic Publisher, Norwell MA (1996)

4. Bhattachayya, S.S., Murthy, P.K., Lee, E.A.: Apgan and rpmc: Complementary heuristics for
translating dsp block diagrams into efficient software implementations. In: Journal of Design
Automation for Embedded Systems, vol. 2, pp. 33–60 (1997)

5. Bilsen, G., Engles, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static dataflow. In: IEEE
Trans. Signal Processing, vol. 44, pp. 397–408 (1996)

http://doi.acm.org/10.1145/2038642.2038672
http://doi.acm.org/10.1145/2038642.2038672

936 S. Ha and H. Oh

6. Bodin, B., Kordon, A.M., de Dinechin, B.D.: Periodic schedules for cyclo-static dataflow. In:
The 11th IEEE Symposium on Embedded Systems for Real-time Multimedia, Montreal, QC,
Canada, October 3–4, 2013, pp. 105–114 (2013). http://dx.doi.org/10.1109/ESTIMedia.2013.
6704509

7. Buck, J.T., Ha, S., Lee, E.A., Messerschimitt, D.G.: Ptolemy: A framework for simulating and
prototyping heterogeneous systems. In: Int. Journal of Computer Simulation, special issue on
Simulation Software Development, vol. 4, pp. 155–182 (1994)

8. Dennis, J.B.: Dataflow supercomputers. In: IEEE Computer Magazine, vol. 13 (1980)
9. Govindarajan, R., Gao, G., Desai, P.: Minimizing memory requirements in rate-optimal

schedules. In: Proceedings of the International Conference on Application Specific Array
Processors, pp. 75–86 (1993)

10. Graham, R.L.: Bounds on multiprocessing timing anomalies. In: SIAM Journal on Applied
Mathematics, vol. 17, pp. 416–429 (1969)

11. de Groote, R.: Throughput analysis of dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

12. Hoang, P.D., Rabaey, J.M.: Scheduling of dsp programs onto multiprocessors for maximum
throughput. In: IEEE Transactions on Signal Processing, pp. 2225–2235 (1993)

13. Jung, H., Yang, H., Ha, S.: Optimized rtl code generation from coarse-grain dataflow
specification for fast hw/sw cosynthesis. In: Journal of Signal Processing Systems, vol. 52,
pp. 13–34 (2008)

14. Kang, S.h., Kang, D., Yang, H., Ha, S.: Real-time co-scheduling of multiple dataflow graphs on
multi-processor systems. In: Proceedings of the 53rd Annual Design Automation Conference,
DAC ’16, pp. 159:1–159:6. ACM, New York, NY, USA (2016). http://doi.acm.org/10.1145/
2897937.2898077

15. Kermia, O., Sorel, Y.: A rapid heuristic for scheduling non-preemptive dependent periodic tasks
onto multiprocessor. In: Proceedings of the ISCA 20th International Conference on Parallel
and Distributed Computing Systems, September 24–26, 2007, Las Vegas, Nevada, USA, pp.
1–6 (2007)

16. Kim, J., Shin, T., Ha, S., Oh, H.: Resource minimized static mapping and dynamic scheduling
of sdf graphs. In: ESTIMedia (2011)

17. Lauwereins, R., Engels, M., Peperstraete, J.A., Steegmans, E., Ginderdeuren, J.V.: Grape: A
case tool for digital signal parallel processing. In: IEEE ASSP Magazine, vol. 7, pp. 32–43
(1990)

18. Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time DSP. In: GLOBECOM
’89: IEEE Global Telecommunications Conference and Exhibition. Communications Technol-
ogy for the 1990s and Beyond, vol. 2, pp. 1279–1283. IEEE, Los Alamitos, CA, USA (1989).
http://dx.doi.org/10.1109/GLOCOM.1989.64160

19. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous dataflow programs for
digital signal processing. In: IEEE Transaction on Computer, vol. C-36, pp. 24–35 (1987)

20. Oh, H., Ha, S.: Memory-optimized software synthesis from dataflow program graphs with large
size data samples. In: EURASIP Journal on Applied Signal Processing, vol. 2003, pp. 514–529
(2003)

21. Oh, H., Ha, S.: Fractional rate dataflow model for memory efficient synthesis. In: Journal of
VLSI Signal Processing, vol. 37, pp. 41–51 (2004)

22. Parhi, K.K., Chen, Y.: Signal flow graphs and data flow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn.
Springer (2012)

23. Park, C., Chung, J., Ha, S.: Extended synchronous dataflow for efficient dsp system prototyp-
ing. In: Design Automation for Embedded Systems, vol. 3, pp. 295–322. Kluwer Academic
Publishers (2002)

24. Pino, J., Ha, S., Lee, E.A., Buck, J.T.: Software synthesis for dsp using ptolemy. In: Journal of
VLSI Signal Processing, vol. 9, pp. 7–21 (1995)

25. Ritz, S., Pankert, M., Meyr, H.: High level software synthesis for signal processing systems. In:
Proceedings of the International Conference on Application Specific Array Processors (1992)

http://dx.doi.org/10.1109/ESTIMedia.2013.6704509
http://dx.doi.org/10.1109/ESTIMedia.2013.6704509
http://doi.acm.org/10.1145/2897937.2898077
http://doi.acm.org/10.1145/2897937.2898077
http://dx.doi.org/10.1109/GLOCOM.1989.64160

Decidable Signal Processing Dataflow Graphs 937

26. Ritz, S., Willems, M., Meyr, H.: Scheduling for optimum data memory compaction in block
diagram oriented software synthesis. In: Proceedings of the ICASSP 95 (1995)

27. Spasic, J., Liu, D., Cannella, E., Stefanov, T.: Improved hard real-time scheduling of csdf-
modeled streaming applications. In: Proceedings of the 10th International Conference on
Hardware/Software Codesign and System Synthesis, CODES ’15, pp. 65–74. IEEE Press,
Piscataway, NJ, USA (2015). http://dl.acm.org/citation.cfm?id=2830840.2830848

28. Stuijk, S., Basten, T., Geilen, M.C.W., Coporaal, H.: Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: DAC, pp. 777–782 (2007)

29. Stuijk, S., Geilen, M.C.W., Basten, T.: Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In: DAC, pp. 899–904 (2006)

30. Sung, W., Ha, S.: Memory efficient software synthesis using mixed coding style from dataflow
graph. In: IEEE Transaction on VLSI Systems, vol. 8, pp. 522–526 (2000)

31. Woods, R.: Mapping decidable signal processing graphs into FPGA implementations. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, second edn. Springer (2012)

32. Yang, H., Ha, S.: Pipelined data parallel task mapping/scheduling technique for mpsoc. In:
DATE (Design Automation and Test in Europe) (2009)

http://dl.acm.org/citation.cfm?id=2830840.2830848

Systolic Arrays

Yu Hen Hu and Sun-Yuan Kung

Abstract This chapter reviews the basic ideas of systolic array, its design method-
ologies, and historical development of various hardware implementations. Two
modern applications, namely, motion estimation of video coding and wireless
communication baseband processing are reviewed. The application to accelerating
deep neural networks is also discussed.

1 Introduction

Systolic array [2, 13, 15] is an on-chip multi-processor architecture proposed by
Kung in late 1970s. It is proposed as an architectural solution to the anticipated
on-chip communication bottleneck of modern very large scale integration (VLSI)
technology. A systolic array features a mesh-connected array of identical, simple
processing elements (PE). According to Kung [13], “In a systolic system, data
flows from the computer memory in a rhythmic fashion, passing through many
processing elements before it returns to memory, much as blood circulates to and
from the heart.” As depicted in Fig. 1, a systolic array is often configured into
a linear array, a two-dimensional rectangular mesh array, or sometimes, a two
dimensional hexagonal mesh array. In a systolic array, every PE is connected only
to its nearest neighboring PEs through dedicated, buffered local bus. This localized
interconnects, and regular array configuration allow a systolic array to grow in size
without incurring excessive on-chip global interconnect delays due to long wires.

Several key architectural concerns impacted on the development of systolic
architecture [13]:

Y. H. Hu (�)
University of Wisconsin - Madison, Department of Electrical and Computer Engineering,
Madison, WI, USA
e-mail: yuhen.hu@wisc.edu

S.-Y. Kung
Princeton University, Department of Electrical Engineering, Princeton, NJ, USA
e-mail: kung@princeton.edu

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_26

939

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_26&domain=pdf
mailto:yuhen.hu@wisc.edu
mailto:kung@princeton.edu
https://doi.org/10.1007/978-3-319-91734-4_26

940 Y. H. Hu and S.-Y. Kung

Fig. 1 Common
configurations of systolic
architecture: (a) linear array,
(b) rectangular array, (c)
hexagonal array

a

b

c

1. Simple and regular design—In order to reduce design complexity, design cost,
and to improve testability, fault-tolerance, it is argued that VLSI architecture
should consist of simple modules (cores, PEs, etc) organized in regular arrays.

2. Concurrency and communication—Concurrent computing is essential to achieve
high performance while conserving power. On-chip communication must be
constrained to be local and regular to minimize excessive overhead due to long
wire, long delay and high power consumption.

3. Balanced on-chip computation rate and on/off chip data input/output rate—
moving data on/off chip remains to be a communication bottleneck of modern
VLSI chips. A sensible architecture must balance the demand of on/off chip data
I/O to maximize the utilization of the available computing resources.

Systolic array is proposed to implement application specific computing systems.
Toward this goal, one must map the computing algorithm to a systolic array.
This requirement stimulated two complementary research directions that have
seen numerous significant and fruitful research results. The first research direction
is to reformulate existing computing algorithms, or develop novel computing
algorithms that can be mapped onto a systolic architecture to enjoy the benefit of
systolic computing. The second research direction is to develop a systematic design
methodology that would automate the process of algorithm mapping. In Sect. 2 of
this chapter, we will provide a brief overview of these systolic algorithms that have
been proposed. In Sect. 3, the formal design methodologies developed for automated
systolic array mappings will be reviewed.

Systolic Arrays 941

Systolic array computing was developed based on a globally synchronized, fine-
grained, pipelined timing model. It requires a global clock distribution network
free of clock skew to distribute the clock signal over the entire systolic array.
Recognizing the technical challenge of developing large scale clock distribution
network, Kung et al. [14–16] proposed a self-timed, data flow based wavefront array
processor architecture that promises to alleviate the stringent timing constraint
imposed by the global clock synchronization requirement. In Sect. 4, the wavefront
array architecture and its related design methodology will be discussed.

These architectural features of systolic array have motivated numerous devel-
opments of research and commercial computing architectures. Notable examples
include the WARP and iWARP project at CMU [1, 3, 7, 10]; Transputer™of
INMOS [8, 20, 26, 30]; and TMS 32040 DSP processor of Texas Instruments [27].
In Sect. 5 of this chapter, brief reviews of these systolic-array motivated computing
architectures will be surveyed.

While the notion of systolic array was first proposed three decades ago, its
impacts can be felt vividly today. Modern applications of the concept of systolic
array can be found in field programmable gate array (FPGA) chip architectures,
network-on-chip (NoC) mesh array multi-core architecture. Computation intensive
special purpose architecture such as discrete cosine transform and block motion
estimation algorithms in video coding standards, as well as the QR factorization for
least square filtering in wireless communication standards have been incorporated
in embedded chip designs. These latest real world applications of systolic array
architecture will be discussed in Sect. 6.

2 Systolic Array Computing Algorithms

A systolic array exhibits characteristics of parallelism (in the form of fine-grained
pipelining), regularity, and local communication. A large number of signal process-
ing algorithms, and numerical linear algebra algorithms can be implemented using
systolic arrays.

2.1 Convolution Systolic Array

For example, consider a convolution of two sequences {x[n]} and {h[n]}:

y[n] =
K−1∑
k=0

h[k]x[n− k], 0 ≤ n ≤ N − 1. (1)

A systolic array realization of this algorithm can be shown in Fig. 2 (K = 4). In
Fig. 2a, the block diagram of the systolic array and the pattern of data movement are

942 Y. H. Hu and S.-Y. Kung

h[0] h[1] h[2] h[3]

x1x3x5x7x7

0
y4 - y3 - y2 - y1

h[k]
xin xout = xin

yout = yin + h[k]xinyin

A buffer (delay element)

a

b

Fig. 2 (a) Fully pipelined systolic array for convolution, (b) internal architecture of a single
processing element (PE)

depicted. The block diagram of an individual processing element (PE) is illustrated
in Fig. 2b where a shaded rectangle represents a buffer (delay element) that can be
implemented with a register. The output y[n] begins its evaluation at the upper left
input with initial value 0. When it enters into each PE, the multiply-and-accumulate
(MAC) operation

yout = yin + h[k]xin (2)

will be performed. The systolic array is of the same length as the sequence {h[k];
0 ≤ k ≤ K−1}with each h[k] resides in a register in each PE. The final result {y[n]}
appears at the upper right output port. Every other clock cycle, one output will be
evaluated. The input {x[n]} will be provided from the lower left input port. It will
propagate toward the lower right output port without being modified (xout = xin).
Along the way, it will be properly buffered to keep pace of the evaluation of the
convolution.

2.2 Linear System Solver Systolic Array

Similar to above example, a systolic algorithm is often presented in the form
of a high level block diagram of the systolic array configuration (e.g. Fig. 1)
complemented with labels indicating data movement within the processor array,
and a detailed block diagram explaining the operations performed within an
individual PE.

Systolic Arrays 943

x11 .

.x21 x12

b1 b2 bpbp-1, ...,

x22

x32

x31 x13

x23

x33

x14

x24

x34

y1

y2

y3

. .

.

.

.

.

.

.

.

. .

.

Systolic array for
solving triangular
linear systems

Systolic array for
orthogonal
triangularization

Fig. 3 Systolic array for solving linear systems [13]

Another example given in [13] is shown in Fig. 3. It consists of two systolic arrays
for solving linear systems of equations. One triangular-configured systolic array is
responsible for orthogonal triangulation of a matrix using QR factorization, and the
other linear systolic array is responsible for solving a triangular linear system using
back-substitution. A linear system of equations is represented as

Xb = y.

Using a Jacobi’s rotation method, the first column of the X matrix will enter the
upper-left circular PE where an angle θk is evaluated such that

[
cos θk − sin θk

sin θk cos θk

][
x
(k−1)
11
xk,1

]
=
[
x
(k)
11
0

]
, k = 2, 3, . . . (3)

Clearly, in this circular PE, the operation to be performed will be

θk = − tan−1
(
xk,1/x

(k−1)
11

)
. (4)

944 Y. H. Hu and S.-Y. Kung

This θk then will be propagated to the square PEs to the right of the upper left
circular PE to perform rotation operations

[
cos θk − sin θk

sin θk cos θk

][
x
(k−1)
12 . . . x

(k−1)
1N y

(k−1)
1

x
(k−1)
k2 . . . x

(k−1)
kN y

(k−1)
k

]
=
[
x
(k)
12 . . . x

(k)
1N y

(k)
1

x
(k)
k2 . . . x

(k)
kN y

(k)
k

]
. (5)

The second row of the results of above equation will propagated downward to
the next row in the triangular systolic array repeating what has been performed on
the first row of that array. After N − 1 iterations, the results will be ready within
the triangular array. Note that during this rotation process, the right hand size of
the linear systems of equations y is also subject to the same rotation operation.
Equivalently, these operations taken places at the triangular systolic array amount
to pre-multiply the X matrix with a unitary matrix Q such that QX = U is an upper
triangular matrix, and z = Qy. This yields an upper triangular system Ub = z.

To solve this triangular system of equations, a back-propagation solver algorithm
is used. Specifically, given

Ub =

⎡
⎢⎢⎢⎣
u11 u11 . . . u1N

0 u22 u2N
...

. . .
. . .

...

0 . . . 0 uNN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b1

b2
...

bN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

z1

z2
...

zN

⎤
⎥⎥⎥⎦ = Z. (6)

The algorithm begins by solving uNNbN = zN for bN = zN/uNN . In the systolic
array, uNN are fed from the last (lower right corner) circular PE to the circular PE
of the linear array to the right. The computed bN then will be forwarded to the next
square processor in the upper right direction to be substituted back into the next
equation of

uN−1,N−1bN−1 + uN−1,NbN = zN−1. (7)

In the rectangular PE, the operation performed will be zN−1−uN−1,NbN . The result
then will be fed back to the circular PE to compute bN−1 = (zN−1 − uN−1,NbN)/

uN−1,N−1.

2.3 Sorting Systolic Arrays

Given a sequence {x[n]; 0 ≤ n ≤ N − 1}, the sorting algorithm will output a
sequence {m[n]; 0 ≤ n ≤ N − 1} that is a permutation of the ordering of {x[n]}
such that m[n] ≥ m[n+ 1]. There are many sorting algorithms available. A systolic
array that implements the bubble sort algorithm is presented in Fig. 4.

Each PE in this systolic array will receive data a, b from both left and right sides.
These two inputs will be compared and the maximum of the two will be output to

Systolic Arrays 945

−∞

x[1]
x[2]

-

x[3]
-
-

x[4]
-
-
-

m[4] - m[3] - m[2] - m[1]

c = min{a,b}

b

a

d = max{a,b}

a

b

Fig. 4 (a) A bubble sort systolic array, (b) operation performed within a PE

the right side buffer while the minimum of the two output to the left side buffer. The
input will be loaded into the upper buffer according to specific schedule. The left
most input will be fixed at −∞. It has been shown that systolic arrays of insertion
sort and selection sort can also be derived using similar approach [15].

3 Formal Systolic Array Design Methodology

Due to the regular structure, localized interconnect, and pipelined operations, a for-
mal systolic array design methodology has been proposed that greatly simplified the
systolic array design complexity and opened new avenue to seek optimized systolic
architecture. In order to introduce the formal systolic array design methodology in
this section, a few important representations will be briefly surveyed.

3.1 Loop Representation, Regular Iterative Algorithm (RIA),
and Index Space

Algorithms that are suitable for systolic array implementation must exhibit high
degree of regularity, and require intensive computation. Such an algorithm often
can be represented by a set of nested Do loops of the following general format:

L1: DO i1= p1,q1
L2: DO i2 = p2,q2
...

...

Lm: DO im = pm,qm

946 Y. H. Hu and S.-Y. Kung

H(i1,i2,..., im)
End do
...

End do
Enddo

where {Lm} specify the level of the loop nest, {im} are loop indices, and i =
[i1, i2, · · · , im]T is a m × 1 index vector, representing an index point in a m-
dimensional lattice. {pm, qm} are loop bounds of the mth loop nest. H(i1, i2, . . . , im)

is the loop body and may have different granularity. That is, the loop body could
represent bit-level operations, word-level program statements, or sub-routine level
procedures. Whatever the granularity is, it is assumed that the loop body is to be
executed in a single PE. For convenience, the execution time of a loop body in a PE
will be assumed to be one clock cycle in this chapter. In other words, it is assumed
that the execution of a loop body within a PE cannot be interrupted. All data needed
to execute the loop body must be available before the execution of loop body can
start; and none of the output will be available until the execution of the entire loop
body is completed.

If the loop bounds are all constant, the set of indices corresponding to all
iterations form a rectangular parallelepiped. In general, the loop bounds are
linear (affine) function with integer coefficients of outer loop indices and can be
represented with two inequalities:

p0 ≤ Pi and Pi ≤ q0, (8)

where p0 and q0 are constant integer-valued vectors, and P, Q respectively, are
integer-valued upper triangular coefficient matrices. If P = Q, then the correspond-
ing loop nest can be transformed in the index space such that the transformed
algorithm has constant iteration bounds. Such a nested loop is called a regular nested
loop. If an algorithm is formulated to contain only regular nested loops, it is called
a regular iterative algorithm (RIA).

Consider the convolution algorithm described in Eq. (1) of this chapter. The
mathematical formula can be conveniently expressed with a 2-level loop nest as
shown in Fig. 5.

In this formulation, n and k are loop indices having loop bounds (0, N − 1) and
(0,K − 1) respectively. The loop body H(i) consists of a single statement

y[n] = y[n] + h[k]x[n− k].

Fig. 5 Convolution For n = 0 to N−1,
y[n] = 0;
For k = 0 to K−1,

y[n] = y[n]+h[k]∗x[n−k];
end

end

Systolic Arrays 947

Note that

i =
[
n

k

]
; p0 =

[
0
0

]
≤
[

1 0
0 1

] [
n

k

]
= Pi = Qi ≤

[
N − 1
K − 1

]
= q0. (9)

Hence, this is a RIA.

3.2 Localized and Single Assignment Algorithm Formulation

As demonstrated in Sect. 2, a systolic array is a parallel, distributed computing
platform where each PE will execute identical operations. By connecting PEs with
specific configurations, and providing input data at right timing, a systolic array will
be able to perform data intensive computations in a rhythmic, synchronous fashion.
Therefore, to implement a given algorithm on a systolic array, its formulation
may need to be adjusted. Specifically, since computation takes place at physically
separated PEs, data movement in a systolic algorithm must be explicitly specified.
Moreover, unnecessary algorithm formulation restrictions that may impede the
exploitation of inherent parallelism must be removed. A closer examination of Fig. 5
reveals two potential problems according to above arguments: (1) The variables
y[n], h[k], x[n− k] are one-dimensional arrays while each index vector i = (n, k)

resides in a two-dimensional space. (2) The memory address locations y[n] will be
repeatedly assigned with new values during each k-loop K times before the final
result is evaluated.

Having one-dimensional variable arrays in a two dimensional index space
implies that the same input data will be needed when executing the loop body H(i)
at different iterations (index points). In a systolic array, it is likely that H(i) and
H(j), i �= j may be executed at different PEs. As such, how these variables may
be distributed to different index points where they are needed should be explicitly
specified in the algorithm. Furthermore, a design philosophy that dominates the
development of systolic array is to discourage on-chip global interconnect due to
many potential drawbacks. Hence, the data movement would be restricted to local
communication. Namely passing the data from one PE to one or more of its nearest
neighboring PEs in a systolic array. This restriction may be imposed by limiting the
propagation of such a global variable from one index point to its nearest neighboring
index points. For this purpose, we make the following modification of algorithm
in Fig. 5:

h[k] → h1[n, k] such that h1 [0, k] = h[k], h1 [n, k] = h1[n− 1, k]
x[n] → x1[n, k] such that x1 [n, 0] = x[n], x1 [n, k] = x1[n− 1, k − 1].

Note that the equations for h1 and x1 are chosen based on the fact that h[k] will be
made available for the entire ranges of index n, and x[n− k] will be made available
to all (n′, k′) such that n′ − k′ = n − k. An algorithm with all its variables passing
from one iteration (index point) to its neighboring index point is called a (variable)
localized algorithm.

948 Y. H. Hu and S.-Y. Kung

Fig. 6 Convolution
(localized, single assignment
version)

h1[0,k] = h[k] , k = 0, . . . ,K−1
x1[n,0] = x[n] , n = 0, . . . ,N−1
y1[n,−1] = 0, n = 0,1, . . . ,N−1
n = 0,1,2, . . . ,N−1 and k = 0, . . . ,K−1

y1[n,k] = y1[n,k−1]+ h1[n,k] ∗x1[n,k]
h1[n,k] = h1[n−1,k]
x1[n,k] = x1[n−1,k−1]

y[n] = y1[n,K] , n = 0,1,2, . . . ,N−1

The repeated assignment of different intermediate results of y[n] into the same
memory location will cause an unwanted output dependence relation in the algo-
rithm formulation. Output dependence is a type of false data dependence that would
impede potential parallel execution of a given algorithm. The output dependence
can be removed if the algorithm is formulated to obey a single assignment rule.
That is, every memory address (variable name) will be assigned to a new value
only once during the execution of an algorithm. To remedy, one would create new
memory locations to be assigned to these intermediate results by expanding the one
dimensional array {y[n]} into a two-dimensional array {y1[n, k]}:

y[n] → y1[n, k] such thaty1[n,−1] = 0,

y1[n, k] = y1[n, k − 1] + h1[n, k]x1[n, k],

where the previously localized variables h1 and x1 are used. With above modifica-
tions, algorithm in Fig. 5 is reformulated as shown in Fig. 6.

3.3 Data Dependence and Dependence Graph

An iteration H(j) is dependent on iteration H(i) if H(j) will read from a memory
location whose value is last written during execution of iteration H(i). The corre-
sponding dependence vector d is defined as:

d = j− i.

A matrix D consisting of all dependence vectors of an algorithm is called a
dependence matrix. This inter-iteration dependence relation imposes a partial
ordering on the execution of the iterative loop nest. From algorithm in Fig. 6, three
dependence vectors can be derived:

d1 =
[
n

k

]
−
[

n

k − 1

]
=
[

0
1

]
;

Systolic Arrays 949

Fig. 7 Localized dependence
graph of convolution
algorithm

d2 =
[
n

k

]
−
[
n− 1
k

]
=
[

1
0

]
; (10)

d3 =
[
n

k

]
−
[
n− 1
k − 1

]
=
[

1
1

]
.

In the index space, a lattice point whose coordinates fall within the range of the
loop bounds represents the execution of the loop body of the particular loop index
values. The dependence vectors may be represented by directed arcs starting from
the iteration that produces the data to the iteration where the data is needed. Together
with these index points and directed arcs, one has a dependence graph (DG)
representing the computation tasks required of a localized RIA. The corresponding
DG of the convolution algorithm is depicted in Fig. 7 for K = 5 and N = 7.

The dependence graph in Fig. 7 is shift-invariant in that the dependence vector
structure is identical of each (circled) lattice point of the iteration space. This
regularity and modularity is the key feature of a systolic computing algorithm that
lends itself for efficient systolic array implementation.

Due to the shift invariant nature, a DG of a localized RIA algorithm can be
conveniently represented by the set of indices {i; p0 ≤ Pi ≤ q0} and the dependence
vectors D at each index point.

3.4 Mapping an Algorithm to a Systolic Array

A schedule S : i → t(i) ∈ Z+ is a mapping from each index point i in the index
space R to a positive integer t(i) which dictates when this iteration is to be executed.
An assignment A : i → p(i) is a mapping from each index point i onto a PE index
p(i) where the corresponding iteration will be executed. Given the dependence graph
of a given algorithm, the development of a systolic array implementation amounts
to find a mapping of each index point i in the DG onto (p(i), t(i)).

950 Y. H. Hu and S.-Y. Kung

Toward this goal, two fundamental constraints will be discussed. First, it is
assumed that each PE can only execute one task (loop body) at a time. As such,
a resource constraint must be observed:

Resource Constraints

If t(i) = t(j), i �= j, then p(i) �= p(j); and if p(i) = p(j), i �= j, then t(i) �= t(j).
(11)

In addition, the data dependence also imposes a partial ordering of schedule. This
data dependence constraint can be summarized as follows:

Data Dependence Constraint If index j can be reached from index i by following
the path consisting of one or more dependence vectors, then H(j) should be
scheduled after H(i). That is, if there exists a vector m consisting of non-negative
integers such that

if j = i+ Dm, then s(j) > s(i), (12)

where D is the dependence matrix.
Since a systolic array often assumes a one or two dimensional regular config-

uration (cf. Fig. 1), the PE index p(i) can be associated with the lattice point in a
PE index space just as each loop body in a loop nest is associated with an index
point in the DG. To ensure the resulting systolic array features local inter-processor
communication, the localized dependence vectors in the DG should not require
global communication after the PE assignment i → p(i). A somewhat restrictive
constraint to enforce this requirement would be

Local Mapping Constraint If j− i = dk (a dependence vector), then

‖p(j)− p(i)‖1 ≤ ‖dk‖1. (13)

A number of performance metrics may be defined to compare the merits of different
systolic array implementations. These include

Total Computing Time

TC = max
i,j∈DG

(t(i)− t(j)). (14)

PE Utilization

UPE = NDG/ (TCNPE) , (15)

where NDG is the number of index points in the DG, and NPE is the number of PEs
in the systolic array.

Now we are ready to formally state the systolic array mapping and scheduling
problem:

Systolic Arrays 951

Systolic Array Mapping and Scheduling Problem Given a localized, shift invariant
DG, and a systolic array configuration, find a PE assignment mapping p(i), and a
schedule t(i) such that the performance is optimized, namely, the total computing
time TC is minimized, and the PE utilization UPE is maximized; subject to (1) the
resource constraint, (2) the data dependence constraint, and (3) the local mapping
constraints.

Thus the systolic array implementation is formulated as a discrete constrained
optimization problem. By fully exploiting of the regular (shift invariant) structure
of both the DG and the systolic array, this problem can be further simplified.

3.5 Linear Schedule and Assignment

A linear schedule is an integer-valued scheduling vector s in the index space
such that

t(i) = sT i+ t0 ∈ Z+, (16)

where t0 is a constant integer. The data dependence constraint stipulates that

sT d > 0 for any dependence vector d. (17)

Clearly, all iterations that reside on a hyper-plane perpendicular to s, called
equi-temporal hyperplane must be executed in parallel at different PEs. The equi-
temporal hyperplane is defined as Q = {i | sT i = t(i)− t0, i ∈ DG

}
. According to

the resource constraint, the maximum number of index points in Q determines the
minimum size (number of PEs) of the systolic array.

Assume that the PE index space is a m− 1 dimensional subspace in the iteration
index space. Then the assignment of individual iterations i to a PE index p(i) can be
realized by projecting i onto the PE subspace along an integer-valued assignment
vector a. Define a m× (m−1) integer-valued PE basis matrix P such that PT a = 0,
then a linear PE assignment can be obtained via an affine transformation

p(i) = PT i+ p0. (18)

Combining Eqs. (16) and (18), one has a node mapping procedure:

Node mapping

[
sT

PT

]
i =
[

t(i)
p(i)

]
. (19)

The node mapping procedure can also be extended to a subset of nodes where
external data input and output take places. The same node mapping procedure will
indicate where and when these external data I/O will take place in the systolic array.
This special mapping procedure is also known as I/O mapping.

952 Y. H. Hu and S.-Y. Kung

Different PEs in the systolic array are interconnected by local buses. These buses
are implemented based on the need of passing data from an index point (iteration)
to another as specified by the dependence vectors. Hence, the orientation of these
buses as well as buffers on them can be determined also using P and s:

Arc mapping

[
sT

PT

]
D =

[
τ

e

]
, (20)

where τ is the number of first-in-first-out buffers required on each local bus, and e
is the orientation of the local bus within the PE index space.

Consider two iterations i, j ∈ DG, i �= j. If p(i) = p(j), it implies that

0 = p(i)− p(j) = PT (i− j)⇒ i− j = ka. (21)

The resource constraint (cf. Eq. (11)) stipulates that if p(i) = p(j) i �= j, then
t(i) �= t(j). Hence,

t(i)− t(j) = sT (i− j) = ksT a �= 0. (22)

Example 1 Let us now use the convolution algorithm in Fig. 6 and its corresponding
DG in Fig. 7 as an example and set aT = [1 0], and sT = [1 1]. It is easy to derive
the PE basis matrix PT = [0 1]. Hence, the node mapping becomes

[
sT

PT

] [
n

k

]
=
[

1 1
0 1

] [
n

k

]
=
[
n+ k

k

]
=
[

t(i)
p(i)

]
, 0 ≤ n ≤ 6, 0 ≤ k ≤ min(4, n).

(23)
This implies every (n, k) iterations will be executed at PE #k of the systolic array
and the scheduled execution time slot is n+k. Next, the arc mapping can be found as:

[
sT

PT

]
D =

[
1 1
0 1

] [
1 0 1
0 1 1

]
=
[

1 1 2
0 1 1

]
. (24)

The second row of the right-hand-side (RHS) of Eq. (24) indicates that there are
three local buses. The first one has an entry “0” implies that this is a bus that starts
and ends at the same PE. The other two have an entry “1”, indicating that they are
local buses in the increasing k direction. The first row of the RHS gives the number
of registers required on each local bus to ensure the proper execution ordering is
obeyed. Thus, the first two buses have a single buffer, while the third bus has two
buffers. Note that the external data input {x[n]} are fed into the DG at {(n, 0); 0 ≤
n ≤ 6}, and the final output {y[n]} will be available at {(n,K); 0 ≤ n ≤ 6} where
K = 4. Thus, through I/O mapping, one has

[
sT

PT

] [
n n

0 K

]
=
[

1 1
0 1

] [
n n

0 K

]
=
[
n n+K

0 K

]
. (25)

Systolic Arrays 953

Fig. 8 Linear assignment and schedule of convolution algorithm

This implies that the input x[n] will be fed into the #0 PE of the systolic array at
the nth clock cycle; and the output y[n] will be available at the #K PE at the (n +
K)th clock cycle. The node mapping, arc mapping and I/O mapping are summarized
in Fig. 8.

At the left of Fig. 8, the original DG is overlaid with the equi-temporal hyper-
plane which is depicted by parallel, dotted lines. To the right of Fig. 8 is the systolic
array, its local buses, and the number of buffers (Delays) on each bus. This array is
a more abstract version of what is presented in Fig. 2.

4 Wavefront Array Processors

4.1 Synchronous Versus Asynchronous Global On-Chip
Communication

The original systolic array architecture adopted a globally synchronous communi-
cation model. It is assumed that a global clock signal is available to synchronize
the state transition of every storage elements on chip. However, as predicted by
the Moore’s law, in modern integrated circuits, transistor sizes continue to shrink,

954 Y. H. Hu and S.-Y. Kung

and the number of transistors on a chip continues to increase. These trends make
it more and more difficult to implement globally synchronized clocking scheme
on chip. On the one hand, the wiring propagation delay does not scale down as
transistor feature sizes reduce. As such, the signal propagation delay becomes very
prominent compared to logic gate propagation delay. As on-chip clock frequency
exceeds giga-hertz threshold, adverse impacts of clock skew become more difficult
to compensate. On the other hand, as the number of on-chip transistors increases,
so does the complexity and size of on-chip clock distribution network. The power
consumption required to distribute giga-hertz clock signal synchronously over entire
chip becomes too large to be practical.

In view of the potential difficulties in realizing a globally synchronous clocking
scheme as required by the original systolic array design, a asynchronous array
processor, known as wavefront array processor has been proposed.

4.2 Wavefront Array Processor Architecture

According to [14, 16], a wavefront array is a computing network with the following
features:

• Self-timed, data-driven computation: No global clock is needed, as the computa-
tion is self-timed.

• Regularity, modularity and local interconnection: The array should consist of
modular processing units with regular and (spatially) local interconnections.

• Programmability in wavefront language or data flow graph (DFG): Computing
algorithms implemented on a wavefront array processor may be represented with
a data flow graph. Computation activities will propagate through the processor
array as if a series of wavefronts propagating through the surface of water.

• Pipelinability with linear-rate speed-up: A wavefront array should exhibit a
linear-rate speed-up. With M PEs, a wavefront array promises to achieve an
O(M) speed-up in terms of processing rates.

The major distinction between the wavefront array the systolic array is that there
is no global timing reference in the wavefront array. In the wavefront architecture,
the information transfer is by mutual agreements between a PE and its immediate
neighbors using, say, an asynchronous hand-shaking protocol [14, 16].

4.3 Mapping Algorithms to Wavefront Arrays

In general, there are three formal methodologies for the derivation of wavefront
arrays [15]:

Systolic Arrays 955

1. Map a localized dependence graph directly to a data flow graph (DFG). Here a
DFG is adopted as a formal abstract model for wavefront arrays. A systematical
procedure can be used to map a dependence graph (DG) to a DFG.

2. Convert an signal flow graph into a DFG (and hence a wavefront array), by
properly imposing several key data flow hardware elements.

3. Trace the computational wavefronts and pipeline the fronts through the processor
array. This will be elaborated below.

The notion of computational wavefronts offers a very simple way to design
wavefront computing, which consists of three steps:

1. Decompose an algorithm into an orderly sequence of recursions;
2. Map the recursions onto corresponding computational wavefronts in the array;
3. Pipeline the wavefronts successively through the processor array.

4.4 Example: Wavefront Processing for Matrix Multiplication

The notion of computational wavefronts may be better illustrated by an example of
the matrix multiplication algorithm where A, B, and C, are assumed to be N × N

matrices:

C = A× B. (26)

The topology of the matrix multiplication algorithm can be mapped naturally onto
the square, orthogonal N × N matrix array as depicted in Fig. 9. The computing
network serves as a (data) wave-propagating medium. To be precise, let us examine
the computational wavefront for the first recursion in matrix multiplication. Suppose
that the registers of all the PEs are initially set to zero, that is, Cij (0) = 0. The
elements of A are stored in the memory modules to the left (in columns) and those
of B in the memory modules on the top (in rows). The process starts with PE (1, 1)
which computes:

C11(1) = C11(0)+ a11b11.

The computational activity then propagates to the neighboring PEs (1, 2) and (2, I),
which execute:

C12(1) = C12(0)+ a11b12 and C21(1) = C21(0)+ a21b11.

The next front of activity will be at PEs (3,1), (2,2), and (1,3), thus creating
a computation wavefront traveling down the processor array. This computational
wavefront is similar to optical wavefronts (they both obey Huygens’ principle), since
each processor acts as a secondary source and is responsible for the propagation of
the wavefront. It may be noted that wave propagation implies localized data flow.

956 Y. H. Hu and S.-Y. Kung

Program
Code

Memory

Memory Modules

First Wave
Second Wave

Fron
t
#1

Fron
t
#2

Fron
t

#2
N-1

t=2
t=1

t=3
t=2

t=4
t=3

t=5
t=4

t=6
t=5

t=7
t=6

t=8
t=7

seludo
M

yro
me

M

Fig. 9 Wavefront processing for matrix multiplication [15]

Once the wavefront sweeps through all the cells, the first recursion is over. As the
first wave propagates, we can execute an identical second recursion in parallel by
pipelining a second wavefront immediately after the first one. For example, the (1,
1) processor executes

C11(2) = C11(1)+ a12b21 = a11b11 + a12b21.

Likewise each processor (i, j) will execute (from k = 1 to N)

Cij (k) = Cij (k + 1)+ aikbkj = ai1b1j + ai2b2j + . . .+ aikbkj

and so on.
In the wavefront processing, the pipelining technique is feasible because the

wavefronts of two successive recursions would never intersect. The processors
executing the recursions at any given instant are different, thus any contention
problems are avoided.

Systolic Arrays 957

Note that the successive pipelining of the wavefronts furnishes additional dimen-
sion of concurrency. The separated roles of pipeline and parallel processing also
become evident when we carefully inspect how parallel processing computational
wavefronts are pipelined successively through the processor arrays. Generally
speaking, parallel processing activities always occur at the PEs on the same front,
whereas pipelining activities are perpendicular to the fronts. With reference to the
wavefront processing example in Fig. 9, PEs on the anti-diagonals of the wavefront
array execute in parallel, since each of the PEs process information independently.
On the other hand, pipeline processing takes place along the diagonal direction, in
which the computational wavefronts are piped.

In this example, the wavefront array consists of N ×N processing elements with
regular and local interconnections. Figure 9 shows the first 4×4 processing elements
of the array. The computing network serves as a (data) wave propagating medium.
Hence the hardware has to support pipelining the computational wavefronts as fast
as resource and data availability allow. The (average) time interval T between two
separate wavefronts is determined by the availability of the operands and operators.

4.5 Comparison of Wavefront Arrays Against Systolic Arrays

The main difference between a wavefront array processor and a systolic array lies in
hardware design, e.g., on clock and buffer arrangements, architectural expandability,
pipeline efficiency, programmability in a high-level language, and capability to cope
with time uncertainties in fault-tolerant designs.

As to the synchronization aspect, the clocking scheme is a critical factor for large-
scale array systems, and global synchronization often incurs severe hardware design
burdens in terms of clock skew. The synchronization time delay in systolic arrays
is primarily due to the clock skew which can vary drastically depending on the size
of the array. On the other hand, in the data-driven wavefront array, a global timing
reference is not required, and thus local synchronization suffices. The asynchronous
data-driven model, however, incurs fixed time delay and hardware overhead due to
hand-shaking.

From the perspective of pipelining rate, the data-driven computing in the
wavefront array may improve the pipelinability. This becomes especially helpful
in the case where variable processing times are used in individual PEs. A simulation
study on a recursive least squares minimization computation also reports a speedup
by a factor of almost two, in favor of the wavefront array over a globally clocked
systolic array [4].

In general, a systolic array is useful when the PEs are simple primitive modules,
since the handshaking hardware in a wavefront array would represent a non-
negligible overhead for such applications. On the other hand, a wavefront array is
more applicable when the modules of the PEs are more complex (such as floating-
point multiply-and-add), when synchronization of a large array becomes impractical
or when a reliable computing environment (such as fault tolerance) is essential.

958 Y. H. Hu and S.-Y. Kung

Cell
1

...

Interface
Unit

YCell
2

Cell
n

......Y

WARP Processor Array

Host

X X

Address

Fig. 10 Warp system overview [1]

5 Hardware Implementations of Systolic Array

5.1 Warp and iWARP

Warp [1] is a prototype linear systolic array processor developed at CMU in
mid-1980s. As illustrated in Fig. 10, the Warp array contains 10 identical Warp
cells interconnected as a linear array. It is designed as an attach processor to
a host processor through an interface unit. Each Warp cell has three inter-cell
communication links: one address link and two data links (X and Y). They are
connected to nearest neighboring cells or the interface unit. Each cell contains two
floating point units (one for multiply and one for addition) with corresponding
register files, two local memory banks (2K words each with 32 bits/word) for
resident and temporary data, each communication link also has a 512 words buffer
queue. All these function units are interconnected via a cross-bar switch for intra-
cell communication.

The Warp cell is micro-programmed with horizontal micro-code. Although all
cells will execute the same cell program, broadcasting micro-code to all cells is not
practical and would violate the basic principle of localized communication.

A noticeable feature of the WARP processor array is that its inter-cell communi-
cation is asynchronous. It is argued [1] that the synchronous, fine-grained inter-PE
communication schemes of the original systolic array is too restrictive and is not
suitable for practical implementations. Instead, a hard-ware assisted run-time flow
control scheme together with a relatively large queue size would allow more efficient
inter-cell communication without incurring excessive overheads.

The Warp array uses a specially designed programming language called “W2”.
It explicitly supports communication primitives such as “receive” and “send” to
transfer data between adjacent cells. The program execution at a cell will stall if
either the send or receive statement cannot be realized due to an empty receiving
queue (nothing to receive from) or a full sent queue (nowhere to send to). Thus, the
programmer bears the responsibility of writing a deadlock free parallel program to
run on the Warp processor array.

Systolic Arrays 959

The performance of the Warp processor array is reported as hundreds of times
faster than running the same type of algorithm in a VAX 11/780, a popular mini-
computer at the time of Warp development. The development of the Warp processor
array is significant in that it is the first hardware systolic array implementation.
Lessons learned from this project also motivated the development of iWarp. The
iWarp project [3, 7] was a follow-up project of WARP and started in 1988. The
purpose of this project is to investigate issues involved in building and using high
performance computer systems with powerful communication support. The project
led to the construction of the iWarp machines, jointly developed by Carnegie Mellon
University and Intel Corporation.

As shown in Fig. 11, the basic building block of the iWarp system is a full
custom VLSI component integrating a LIW (long instruction word) microprocessor,
a network interface and a switching node into one single chip of 1.2 cm×1.2 cm
silicon. The iWarp cell consists of a computation agent, a communication agent,
and a local memory. The computation agent includes a 32-bit micro-processor with
96-bit wide instruction words, an integer/logic unit, a floating point multiplier, and
a floating point adder. It runs at a clock speed of 20 MHz. The communication agent
has 4 separate full duplex physical data links capable of transferring data at 40 MB/s.
These data links can be configured into 20 virtual channels. The clock speed of the
communication agent is 40 MHz. Each cell is attached to a local memory sub-system
including up to 4 MB static RAM (random access memory) or/and 16 MB DRAM.
The iWarp system is designed to be configured as a n × m torus array. A typical
system would have 64 cells configured as a 8× 8 torus array and yields 1.2 GFlop/s
peak performance.

The communication agent supports word-level flow control between connecting
cells and transfers messages word by word to implement wormhole routing [19].
Exposing this mechanism to the computation agents allows programs to com-
municate systolically. Moreover, a communication agent can automatically route
messages to the appropriate destination without the intervention of the computation
agent.

5.2 SAXPY Matrix-1

Claimed to be “the first commercial, general-purpose, systolic computer”, Matrix-
1 [6] is a vector array processor developed by the SAXPY computer co. in 1987
for scientific, signal processing applications. It promises 1 GFLOP throughput by
means of 32-fold parallelism, fast (64 ns) pipelined floating-point units, and fast and
flexible local memories.

At system level, a Matrix-1 system (cf. Fig. 12) consists of a system controller,
system memory, and mass storage in addition to the matrix processor. These system
components are interconnected with a high-speed (320 MB/s) bus (S-bus). The
system memory has a maximum capacity of 128 MB. It uses only physical addresses
and hence allows faster access.

960 Y. H. Hu and S.-Y. Kung

Fig. 11 Photograph of a
iWARP chip [3]

System
Controller

Matrix
Processor

System
Memory

Mass Storage
System

Saxpy Interconnect (S-Bus)

Fig. 12 Block diagram of a Matrix-1 system

The Matrix Processor (Fig. 13) is a ring-connected linear array of 8, 16, 24,
or 32 vector processors. Each processor is called a computational zone. All zones
receive the same control and address instructions at each clock cycle. The Matrix
Processor can function in a systolic mode (in which data are transferred from one
zone to the next in a pipelined fashion) or in a block mode (in which all zones
operate simultaneous to execute vector operations). Each zone has a pipelined,
32-bit floating-point multiplier; a pipelined, 32-bit floating-point adder with logic
capabilities, and a 4K-word local memory implemented as a two-way interleaved
zone buffer. These components operate at a clock frequency of 16 MHz. With 32
zones, the maximum computing power would approach 960 MFLOP.

Systolic Arrays 961

Zone 0
memory

Zone 1
memory

Zone 31
memory

...

...

...

...

global data

I/O
and

buffer

to / from
system
memory

Fig. 13 The Matrix Processor Zone architecture of SAXPY Matrix-1 computer

The Matrix-1 employs an application programming interface (API) approach to
interface with the host processor. The user program will be written in C or Fortran
and makes calls to the matrix processor subroutines. Experienced programmers may
also write their own matrix processor subroutines or directly engage assembly level
programming of the matrix processors.

5.3 Transputer

The Transputer (transistor computer) [8, 20, 26, 30] is a microprocessors developed
by Inmos Ltd. in mid-1980s to support parallel processing. The name was selected
to indicate the role the individual Transputers would play: numbers of them would
be used as basic building blocks, just as transistors in integrated circuits.

A most distinct feature of a Transputer chip is that there are four serial links
to communicate with up to four other Transputers simultaneously each at 5, 10, or
20 Mbit/s. The circuitry to drive the links is all on the Transputer chip and only
two wires are needed to connect two Transputers together. The communication
links between processors operate concurrently with the processing unit and can
transfer data simultaneously on all links without the intervention of the CPU.
Supporting the links was additional circuitry that handled scheduling of the traffic
over them. Processes waiting on communications would automatically pause while
the networking circuitry finished its reads or writes. Other processes running on the
transputer would then be given that processing time. These unique properties allow
multiple Transputer chips to be configured easily into various topologies such as
linear or mesh array, or trees to support parallel processing.

962 Y. H. Hu and S.-Y. Kung

Fig. 14 INMOS T805 floating-point processor (http://www.classiccmp.org/transputer/)

Depicted in Fig. 14 is a chip layout picture and a floor plan of Transputer T805. It
has a 32-bit architecture running at 25 MHz clock frequency. It has an IEEE 754 64-
bit on-chip floating point unit, 4 KB on-chip static RAM, and may connect to 4 GB
directly addressable external memory (no virtual memory) at 33 MB/s sustained data
rate. It uses a 5 MHz clock input and runs on a single 5 V power supply.

Transputers were intended to be programmed using the OCCAM programming
language, based on the CSP process calculus. Occam supported concurrency and
channel-based inter-process or inter-processor communication as a fundamental part
of the language. With the parallelism and communications built into the chip and the
language interacting with it directly, writing code for things like device controllers
became a triviality. Implementations of more mainstream programming languages,
such as C, FORTRAN, Ada and Pascal were also later released by both INMOS and
third-party vendors.

5.4 TMS 32040

TMS 32040 [27] is Texas Instruments’ floating point digital signal processor
developed in early 1990. The ’320C40 has six on-chip communication ports for
processor-to-processor communication with no external-glue logic. The commu-
nication ports remove input/output bottlenecks, and the independent smart DMA
coprocessor is able to relieve the CPU input/output burden.

http://www.classiccmp.org/transputer/

Systolic Arrays 963

Each of the six serial communication ports is equipped with a 20M-bytes/s
bidirectional interface, and separate input and output 8-word-deep FIFO buffers.
Direct processor-to-processor connection is supported by automatic arbitration and
handshaking. The DMA coprocessor allows concurrent I/O and CPU processing for
sustained CPU performance.

The processor features single-cycle 40-bit floating-point and 32-bit Integer
multipliers, 512-byte instruction cache, and 8K Bytes of single-cycle dual-access
program or data RAM. It also contains separate internal program, data, and DMA
coprocessor buses for support of massive concurrent input/output (I/O) program and
data throughput.

The TMS 32040 is designed to support general purpose parallel computation with
different configurations. With six bidirectional serial link ports, it would directly
support a hypercube configuration containing up to 26 = 64 processing elements.
It, of course, also can be easily configured to form a linear or two-dimensional
mesh-connected processor array to support systolic computing.

6 Recent Developments and Real World Applications

6.1 Block Motion Estimation

Block motion estimation is a critical computation step in every international
video coding standard, including MPEG-I, MPEG-II, MPEG-IV, H.261, H.263,
and H.264. This algorithm consists of a very simple loop body (sum of absolute
difference) embedded in a six-level nested loop. For real time, high definition video
encoding applications, the motion estimation operation must rely on special purpose
on-chip processor array structures that are heavily influenced by the systolic array
concept.

The notion of block motion estimation is demonstrated in Fig. 15. To the left
of this figure is the current frame which is to be encoded and transmitted from the
encoding end. To the right is the reference frame which has already been transmitted
and reconstructed at the receiver end. The encoder will compute a copy of this
reconstructed reference frame for the purpose of motion estimation. Both the current
frame and the reference frame are divided into macro-blocks as shown with dotted
lines. Now focus on the current block which is the shaded macro-block at the second
row and the fourth column of the current frame. The goal of motion estimation is to
find a matching macro-block in the reference frame, in the vicinity of the location
of the current block such that it resembles the current block in the current frame.
Usually, the current frame and the reference frame are separated by a couple of
frames temporally, and are likely to contain very similar scene. Hence, there exists
high degree of temporal correlation among them. As such, there is high probability
that the current block can find a very similar matching block in the reference frame.
The displacement between the location of the current block and that of the matching

964 Y. H. Hu and S.-Y. Kung

motion
vector

Current block

search area

Reference frameCurrent frame

Fig. 15 Block motion estimation

macro-block is the motion vector of the current block. This is shown to the right
hand side of Fig. 15. By transmitting the motion vector alone to the receiver, a
predicted copy of the current block can be obtained by copying the matching macro-
block from the reference frame. That process is known as motion compensation.

The similarity between the current block in the current frame and corresponding
matching block in the reference frame is measured using a mean of absolute
difference (MAD) criterion:

MAD(m, n) = 1

N2

N−1∑
i=0

N−1∑
j=0

|x(i, j)− y(i +m, j + n)|. (27)

where the size of the macro-block is N pixels by N pixels. x(i, j) is the value
of the (i, j)th pixel of the current frame and y(i + m, j + n) is the value of the
(i + m, j + n)th pixel of the reference frame. MAD(m, n) is the mean absolute
difference value between the current block and the candidate matching block with
a displacement of (m, n),−p ≤ m,n ≤ p, where p is a bounded, pre-set search
range which is usually twice or thrice the size of a macro-block. The motion vector
(MV) of the current block is found as

MV = arg

{
min−p≤m,n≤pMAD(m, n)

}
. (28)

We assume each video frame is partitioned into Nh × Nv macro-blocks. With
Eqs. (27) and (28), one may express the whole frame full-search block matching
motion estimation algorithm as a six-level nested loop as shown in Fig. 16.

The performance requirement for such a motion estimation operation is rather
stringent. Take MPEG-II for example, a typical video frame of 1080p format
contains 1920 × 1080 pixels. With a macro-block size N = 16, one has Nh =
1920/16 = 120, Nv = �1080/16� = 68. Usually, N = 16, and p = N/2.
Since there are 30 frames per second, the number of the sum of absolute difference
operations that need to be performed would be around 30×Nh×Nv× (2p+ 1)2×
N2 ≈ 1.8× 1010 operations/second.

Systolic Arrays 965

Do h = 0 to Nh −1
Do v = 0 to Nv −1

MV(h,v) = (0,0)
Dmin(h,v) = ∞
Do m = −p to p

Do n = −p to p
MAD(m,n) = 0
Do i = h∗N to (h+1)∗N−1

Do j = v∗N to (v+1)∗N−1
MAD(m,n) = MAD(m,n)+ |x(i,j)−y(i+m,j+n)|

End do j
End doi
If Dmin(h,v) > MAD(m,n)

Dmin(h,v) = MAD(m,n)
MV(h,v) = (m,n)

End if
End do n

End do m
End do v

End do h

Fig. 16 Full search block matching motion estimation

Since motion estimation is only part of video encoding operations, an application
specific hardware module would be a desirable implementation option. In view
of the regularity of the loop-nest formulation, and the simplicity of the loop-
body operations (addition/subtraction), a systolic array solution is a natural choice.
Toward this direction, numerous motion estimation processor array structures have
been proposed, including 2D mesh array, 1D linear array, tree-structured array, and
hybrid structures. Some of these realizations focused on the inner 4-level nested loop
formulation of algorithm in Fig. 16 [12, 22], and some took the entire 6-level loop
nest into accounts [5, 11, 31]. An example is shown in Fig. 17. In this configuration,
the search area pixel y is broadcast to each processing elements in the same column;
and current frame pixel x is propagated along the spiral interconnection links. The
constraint of N = 2p is imposed to achieve low input/output pin count. A simple
PE is composed of only two 8-bit adders and a comparator as shown in Fig. 18.

A number of video encoders micro-chips including motion estimation have been
reported over the years. Earlier motion estimation architectures often use some
variants of a pixel-based systolic array to evaluate the MAD operations. Often a
fast search algorithm is used in lieu of the full search algorithm due to speed and
power consumption concerns. One example is a MPEG-IV standard profile encoder
chip reported in [18]. Some chip characteristics are given in Table 1.

As shown in Fig. 19, the motion estimation is carried out with 16 adder tree
(processing units, PU) for sum of absolute difference calculation and the motion
vectors are selected based on these results. A chip micro-graph is depicted in Fig. 20.

966 Y. H. Hu and S.-Y. Kung

MV

x(b,l,k)

MUX
1

PE D PE D PE D PE

D

PE D PE D PE D PE

D

PE D PE D PE D PE

D

PE D PE D PE D PE

MUX
0

y(b,l,k) y(b,l+N-1,k-(N-1))

ctrl1 ctrl20 1

Fig. 17 2-D array with spiral interconnection (N = 4 and p = 2) [31]

MADb

Com

Reg

DFFAD A

MADa

x

y

x

y

Min(MADa,MADb)

Fig. 18 Block diagram of an individual processing element [31]

6.2 Wireless Communication

Systolic array has also found interesting applications in wireless communication
baseband signal processing applications. A typical block diagram of wireless
transceiver baseband processing algorithms is depicted in Fig. 21. It includes
fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT), channel
estimator/equalizer, data interleaver, and channel encoder/decoder, etc.

In [25], a reconfigurable systolic array of CORDIC (Coordinate Rotation Digital
Computer) processing nodes (PN) is proposed to realize the computation intensive

Systolic Arrays 967

Table 1 MPEG-IV motion
estimation chip features [18]

Technology TSMC 0.18 μm, 1P6M CMOS

Supply voltage 1.8 V (Core)/3.3 V (I/O)

Core area 1.78×1.77 mm2

Logic gates 201 K (2-input NAND gate)

SRAMs 4.56 kB

Encoding feature MPEG-4 SP

Search range H[−16,+15.5] V[−16,+15.5]
Operating frequency 9.5 MHz CIF, 28.5 MHz VGA

Power consumption 5 mW (CIF, 9.5 MHz, 1.3 V)

18 mW (VGA, 28.5 MHz, 1.4 V)

CLK_D

CLK_C

CLK_B

CLK_A

Current MB

16 SAD registers

16 SAD registers

16 SAD registers

16 SAD registers

. . .
PU #0

16-PE &
adder tree

Reference pels

Reference vertical pos.

Partial SAD of MB

16 pels from cur.

Current vertical pos.

CLK_D

time

CLK_C
CLK_B
CLK_A

pels 0-15
to Tree#0

pels 1-16
to Tree#1

pels 15-30
to Tree#16

HORIZONTAL 16x DATA SHARING

VERTICAL 4x DATA SHARING

0 1

0 1 2 3 0 1

PE#0 PE#15PE#1 ...

PU #0
16-PE &

adder tree

PU #0
16-PE &

adder tree

31 pels from reference

16 pels from ref.

Fig. 19 Motion estimation architecture [18]

portion of the wireless baseband operations. CORDIC [28, 29] is an arithmetic com-
puting algorithm that has found many interesting signal processing applications [9].
Specifically, it is an efficient architecture to realize unitary rotation operations such
as Jacobi rotation described in Eqs. (3)–(5) in this chapter. With CORDIC, the
rotation angle θ is represented with a weighted sum of a sequence of elementary
angels {a(i); 0 ≤ i ≤ n− 1} where a(i) = tan−1 2−i . That is,

θ =
n−1∑
i=0

μia(i) =
n−1∑
i=0

tan−1 2i , μi ∈ {−1,+1}. (29)

968 Y. H. Hu and S.-Y. Kung

Fig. 20 MPEG-IV encoder
chip die micro-graph [18]

Remove
Cyclic

Extension
FFT

Parallel
to

Serial

De-interleaver
channel equalizer
and error decoder

RF/IF
Receiver

Add
Cyclic

Extension
IFFT

Serial
to

Parallel

Interleaver
and

Error encoder

RF/IF
transmit

Fig. 21 A typical block diagram of wireless transceiver baseband processing

As such, the rotation operation through each elementary angle may be easily
realized with simple shift-and-add operations

[
x(i + 1)
y(i + 1)

]
=
[

cos a(i) −μi sin a(i)

μi sin a(i) cos a(i)

] [
x(i)

y(i)

]
(30)

= k(i)

[
1 −mμi2−i

μi2−i 1

] [
x(i)

y(i)

]

where k(i) = 1/
√

1+ 2−2i .
A block diagram of a 4 × 4 CORDIC reconfigurable systolic array is shown

in Fig. 22. The control unit is a general purpose RISC (reduced instruction set
computer) micro-processor. The PN array employs a data driven (data flow)
paradigm so that globally synchronous clocking is not required. During execution
phase, the address generator provides an address stream to the data memory bank.

Systolic Arrays 969

Fig. 22 CORDIC systolic array [25]

Accessed data is fed from the data memory bank to the PN array and back, via the
memory interface, which adds a context pointer to the data. With the context pointer,
dynamic reconfiguration of the PN array within a single clock cycle becomes
possible.

The PN architecture is depicted in Fig. 23 where two CORDIC processing
elements, two delay processing elements are interconnected via the communication
agent, which also handles external communications with other PNs.

Using this CORDIC reconfiguration systolic array, a minimum mean square error
detector is implemented for an OFDM (orthogonal frequency division modulation)
MIMO (multiple input, multiple output) wireless transceiver. A QR decomposition
recursive least square (QRD-RLS) triangular systolic array is implemented on a
FPGA prototype system and is shown in Fig. 24.

6.3 Deep Neural Network

Since mid-1980s, artificial neural network (ANN), especially multilayer perceptron
(MLP) has attracted many attention for its promise of solving challenging pat-
tern recognition problems such as speech recognition, image object recognition.
However, ANN MLP often requires tremendous amount of computation power
that cannot be offered with the information technology at that time. Even so, the
regular computation requirement of MLP has attracted researchers’ attention to

970 Y. H. Hu and S.-Y. Kung

processing node

CORDIC processing
Element(CPE)

CORDIC processing
Element(CPE)

Delay processing
Element(DPE)

Delay processing
Element(DPE)

co
m

m
un

ic
at

io
n

ag
en

t

T
o/

F
ro

m
ad

ja
ce

nt
 n

od
es

Fig. 23 Processing node architecture [25]

Weight flushing
phase

QR decompostion
phase

D

0
0
1

0
1
0

1
0
0

0
0
0

B

C E

S3’

S2

R33

R23R22

U3

U2

R13R12

H31
H21
H11

H32
H22
H12

H33
H23
H13

y3
y2
y1

R11
–

U1

’

S1’

A

–

–

Fig. 24 QRD-RSL triangular systolic array [25]

develop special purpose hardware platform, leveraging systolic array technology
to accelerate computation. A chapter in this handbook [24] provides an overview of
the algorithmic aspects of DNN. In this section, we focus on applications of systolic
array for a couple of DNN implementations.

The basic computing unit in a DNN is called a McCulloch-Pitts model of neuron.
Referring to Fig. 25a, the ith neuron consists of N inputs forming a N × 1 input
vector x and a single output, called the activation ai . Inside the neuron, a net

Systolic Arrays 971

x0 w0

w0x0

w1x1
wixi + b f

i

wixi + bf
i

w2x2

Input
layer

Hidden
layer

Output
layer

activation
function

output axon

synapse

dendrite

cell body

axon from a neuron

O
ut

pu
ts

In
pu

ts

a

b

Fig. 25 (a) A McCulloch-Pitts neuron model; (b) organization of a feed-forward multi-layer
perceptron network

function ui is evaluated as

ui = wT
i x+ θi, (31)

where wi is a N × 1 weight vector and θi is a scalar bias term. Once ui is evaluated,
it will pass through a nonlinear transformation to form the activation:

ai = f (ui). (32)

A popular choice of the nonlinear transformation is called a sigmoidal function that
has the form

f (u) = 1

1+ exp(−αu) .

Other popular nonlinear transformation functions include the hyperbolic tangent
function, rectified linear unit (ReLU), as well as Max-pooling. When the output
nonlinear function is a threshold function with binary output values of 0 or 1, such
a neuron model is also known as a perceptron.

972 Y. H. Hu and S.-Y. Kung

A neuron can be abstracted as a node in a graph with multiple incoming edges
from external inputs or activations of other neurons, and a single out-going edge
(the activation). By connecting neurons together, a directed network (graph) may be
configured to form a neural network. If the corresponding directed graph model
of a neural network consists of one or more cycles, such a neural network is
called a recurrent neural network. Otherwise, a neural network corresponding to
an acyclic graph is known as a feed-forward network. As illustrated in Fig. 25b,
in a feed-forward network, neurons may be organized into layers based on their
graphic distance from the input (or from the output). A most popular feed-forward
neural network is known as multi-layer perceptron (MLP), despite the fact that
the sigmoidal nonlinearity is used in lieu of the threshold function. A deep neural
network is usually a MLP with large number of layers.

The MLP structure allows a vectorized representation of the computation
performed in such network. Specifically, assume that there are m neurons forming
the th layer. Their activation values form an m× 1 vector y. y is evaluated by

y = f (u) = f (Wx), (33)

where W is a m × N weight matrix, and x represents all inputs to the neurons in
the th layer. For convenience, the bias term may be absorbed as a separate column
of the W matrix and a constant input of value 1 in the x vector. The nonlinearity is
applied element by element to the net function vector u.

A neural network is operated in two different modes: learning (training) and
inferencing (testing). During learning mode, annotated input-output pairs (training
data) are provided to train the weights (including bias) of a neural network so that it
behaves as close to that pre-scribed in the training data as possible. Once a network
is successfully trained, it may be deployed to faciliate inferencing where the trained
weight matrices will be used so that the network can provide outputs to inputs that
are not part of the training data. The operation in Eq. (33) is performed for each layer
of a MLP from input toward the output. This forward pass is performed during the
training phase as well as during the inference phase. In the training phase, a back-
propagation procedure will be performed to update the weights after the forward
pass. In the inference phase, the output will be provided to the user immediately
without further processing. The training phase is often conducted off-line with
large computation resources and long training time (weeks, months or longer).
However, for inference applications such as real time language translation, speech
conversation, short latency becomes a requirement. Thus, most existing systolic
realization of neural networks have been focused on accelerating the inference
process given a trained network (given weights).

In [23], a specific VLSI Neural Signal Processor called the MA-16 is proposed.
Each MA-16 is a custom systolic multiply-accumulate model that performs sixteen
16-bit multiplies concurrently. It uses custom hardware units to realize the activation
function.

Recently, Microsoft reported a Catapult FPGA accelerator card, as shown in
Fig. 26, that leverage a systolic array of processing elements to accelerate evaluation
of deep convolutional neural network (CNN) [21]. Each Catapult card consists of

Systolic Arrays 973

Fig. 26 Catapult FPGA
accelerator card [21]

Fig. 27 Systolic array microarchitecture of Catapult [21]

an Altera(R) Stratix V D5 FPGA chip, 8 GB DDR3 DRAM module, and a PCIe
Gen 3 × 8 bus interface. A systolic array micro-architecture is implemented on
the FPGA. As shown in Fig. 27, the systolic array consists of a m × n rectangular

974 Y. H. Hu and S.-Y. Kung

Fig. 28 Tensor Processing Unit system block diagram [17]

array of function units (FU) that implement the multiply-and-accumulate (MAC)
operation and a simple data forwarding control. The output will be sent to an array
of output buffers (OB), adding to bias values, and then passing through hardware-
implemented non-linear activation functions as desired, and finally passing through
the max-pooling elements (MPE).

The company Google reported [17] a Tensor Processing Unit (TPU) as a
customed systolic array chip for inference processing of a variety of DNNs,
including MLP, Short-Long Term Memory (SLTM), and CNN. A block diagram
of the TPU unit is shown in Fig. 28. The floor plan of the TPU chip is depicted in
Fig. 29. The matrix multiplication unit is implemented by a systolic array. However,
most of the chip area is dedicated to on-chip storage of data and weights. In [17], it
is observed that memory bandwidth is the limiting factor of the overall performance.
The hardware-software design objective is to keep the matrix multiplication array
busy as much as possible. The TPU’s systolic array micro-architecture is depicted
in Fig. 30. It contains 256×256 multiply-and-accumulate units that can perform 8-
bit multiply-and-adds on signed or unsigned integers. The matrix unit produces one
256-element partial sum per clock cycle. The 16-bit products are collected in the
256 32-bit Accumulators below the matrix unit.

Systolic Arrays 975

Fig. 29 Tensor Processing
Unit floor plan [17]

Fig. 30 Systolic array data flow of matrix multiplication unit of the TPU [17]

7 Summary

In this chapter, the historically important systolic array architecture is discussed. The
basic systolic design methodology is reviewed, and the wavefront array processor
architecture has been surveyed. Several existing implementations of systolic array
like parallel computing platforms, including WARP, SAXPY Matrix-1, Transputer,
and TMS320C40 have been briefly reviewed. Real world applications of systolic
arrays to video coding motion estimation and wireless baseband processing have
also been discussed.

976 Y. H. Hu and S.-Y. Kung

References

1. Annaratone, M., Arnould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., and Webb,
J.A.: The WARP computer: Architecture, implementation, and performance. IEEE Trans.
Computers 36, 1523–1538 (1987)

2. Arnould, E., Kung, H., et al.: A systolic array computer. In: Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 10, pp. 232–235 (1985)

3. Borkar, S., Cohn, R., Cox, G., Gross, T., Kung, H.T., Lam, M., Levine, M., Moore, B., Moore,
W., Peterson, C., Susman, J., Sutton, J., Urbanski, J., Webb, J.: Supporting systolic and memory
communication in iwarp. In: Proc. 17th Intl. Symposium on Computer Architecture, pp. 71–80
(1990)

4. Broomhead, D., Harp, J., McWhirter, J., Palmer, K., Roberts, J.: A practical comparison of the
systolic and wavefront array processing architectures. In: Proc. Intl. Conf. Acoustics, Speech,
and Signal Processing, vol. 10, pp. 296–299 (1985)

5. Chen, Y.K., Kung, S.Y.: A systolic methodology with applications to full-search block
matching architectures. J. of VLSI Signal Processing 19(1), 51–77 (1998)

6. Foulser, D.E.: The Saxpy Matrix-1: A general-purpose systolic computer. IEEE Computer 20,
35–43 (1987)

7. Gross, T., O’Hallaron, D.R.: iWarp: Anatomy of a Parallel Computing System. MIT Press,
Boston, MA (1998)

8. Homewood, M., May, D., Shepherd, D., Shepherd, R.: The IMS T800 Transputer. IEEE Micro
7(5), 10–26 (1987)

9. Hu, Y.H.: CORDIC-based VLSI architectures for digital signal processing. IEEE Signal
Processing Magazine 9, 16–35 (1992)

10. iWarp project. URL http://www.cs.cmu.edu/afs/cs/project/iwarp/archive/WWW-pages/iwarp.
html

11. Kittitornkun, S., Hu, Y.: Systolic full-search block matching motion estimation array structure.
IEEE Trans. Circuits Syst. Video Technology 11, 248–251 (2001)

12. Komarek, T., Pirsch, P.: Array architectures for block matching algorithms. IEEE Trans.
Circuits Syst. 26(10), 1301–1308 (1989)

13. Kung, H.T.: Why systolic array. IEEE Computers 15, 37–46 (1982)
14. Kung, S.Y.: On supercomputing with systolic/wavefront array processors. Proc. IEEE 72,

1054–1066 (1984)
15. Kung, S.Y.: VLSI Array Processors. Prentice Hall, Englewood Cliffs, NJ (1988)
16. Kung, S.Y., Arun, K.S., Gal-Ezer, R.J., Bhaskar Rao, D.V.: Wavefront array processor:

Language, architecture, and applications. IEEE Trans. Computer 31(11), 1054–1066 (1982)
17. Jouppi, N. P., et al: In-Datacenter Performance Analysis of a Tensor Processing Unit. IEEE

44th International Symposium on Computer Architecture (ISCA), pp. 1–12, Toronto, Canada,
(2017)

18. Lin, C.P., Tseng, P.C., Chiu, Y.T., Lin, S.S., Cheng, C.C., Fang, H.C., Chao, W.M., Chen,
L.G.: A 5mW MPEG4 SP encoder with 2D bandwidth-sharing motion estimation for mobile
applications. In: Proc. International Solid-State Circuits Conference, pp. 1626–1635. San
Francisco, CA (2006)

19. Ni, L.M., McKinley, P.: A survey of wormhole routing techniques in direct networks. IEEE
Computer 26, 62–76 (1993)

20. Nicoud, J.D., Tyrrell, A.M.: The transputer T414 instruction set. IEEE Micro 9(3), 60–75
(1989)

21. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K. and Chung, E.S.: Toward
accelerating deep learning at scale using specialized hardware in the datacenter. IEEE Hot
Chips 27 Symposium, 1–38 (2015)

22. Pan, S.B., Chae, S., Park, R.: VLSI architectures for block matching algorithm. IEEE Trans.
Circuits Syst. Video Technol. 6(1), 67–73 (1996)

http://www.cs.cmu.edu/afs/cs/project/iwarp/archive/WWW-pages/iwarp.html
http://www.cs.cmu.edu/afs/cs/project/iwarp/archive/WWW-pages/iwarp.html

Systolic Arrays 977

23. Ramacher, U., Beichter, J., Raab, W., Anlauf, J., Bruels, N., Hachmann, U. and Wesseling, M.:
Design of a 1st Generation Neurocomputer. VLSI Design of Neural Networks, Springer US.
(1991)

24. Huttunen, H.: Deep neural networks: A signal processing perspective. In: S.S. Bhattacharyya,
E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third
edn. Springer (2018)

25. Seki, K., Kobori, T., Okello, J., Ikekawa, M.: A cordic-based reconfigrable systolic array
processor for MIMO-OFDM wireless communications. In: Proc. IEEE Workshop on Signal
Processing Systems, pp. 639–644. Shanghai, China (2007)

26. Taylor, R.: Signal processing with occam and the transputer. IEE Proceedings F: Communica-
tions, Radar and Signal Processing 131(6), 610–614 (1984)

27. Texas Instruments: TMS320C40 Digital Signal Processors (1996). URL http://focus.ti.com/
docs/prod/folders/print/tms320c40.html

28. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. on Electronic
Computers EC-8(3), 330–334 (1959)

29. Walther, J.S.: A unified algorithm for elementary functions. In: Spring Joint Computer Conf.
(1971)

30. Whitby-Strevens, C.: Transputers-past, present and future. IEEE Micro 10(6), 16–19, 76–82
(1990)

31. Yeo, H., Hu, Y.: A novel modular systolic array architecture for full-search block matching
motion estimation. IEEE Trans. Circuits Syst. Video Technol. 5(5), 407–416 (1995)

http://focus.ti.com/docs/prod/folders/print/tms320c40.html
http://focus.ti.com/docs/prod/folders/print/tms320c40.html

Compiling for VLIW DSPs

Christoph W. Kessler

Abstract This chapter describes fundamental compiler techniques for VLIW DSP
processors. We begin with a review of VLIW DSP architecture concepts, as far as
relevant for the compiler writer. As a case study, we consider the TI TMS320C6x™
clustered VLIW DSP processor family. We survey the main tasks of VLIW
DSP code generation, discuss instruction selection, cluster assignment, instruction
scheduling and register allocation in some greater detail, and present selected
techniques for these, both heuristic and optimal ones. Some emphasis is put on phase
ordering problems and on phase coupled and integrated code generation techniques.

1 VLIW DSP Architecture Concepts and Resource Modeling

In order to satisfy high performance demands, modern processor architectures
exploit various kinds of parallelism in programs: thread-level parallelism (i.e.,
running multiple program threads in parallel on multi-core and/or hardware-
multithreaded processors), data-level parallelism (i.e., executing the same instruc-
tion or operation on several parts of a long data word or on a vector of multiple
data words together), memory-level parallelism (i.e., overlapping memory access
latency with other, independent computation on the processor), and instruction-level
parallelism (i.e., overlapping the execution of several instructions in time, using
different resources of the processor in parallel at a time).

By pipelined execution of subsequent instructions, a certain amount of instruc-
tion level parallelism (ILP) can already be exploited in ordinary sequential RISC
processors that issue a single instruction at a time. More ILP can often be leveraged
by multiple-issue architectures, where execution of several independent instructions
can be started in parallel, resulting in a higher throughput (instructions per clock
cycle, IPC). The maximum number of instructions that can be issued simultaneously

C. W. Kessler (�)
Department of Computer Science (IDA), Linköping University, Linköping, Sweden
e-mail: christoph.kessler@liu.se

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_27

979

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_27&domain=pdf
mailto:christoph.kessler@liu.se
https://doi.org/10.1007/978-3-319-91734-4_27

980 C. W. Kessler

is called the issue width, denoted by ω. In this chapter, we focus on multiple-issue
instruction-level parallel DSP architectures, i.e., ω > 1.

ILP in programs can either be given explicitly or implicitly. With implicit ILP,
dependences between instructions are implicitly given in the form of register and
memory addresses read and written by instructions in a sequential instruction
stream. It is the task of a run-time (usually hardware) scheduler to identify
instructions that are independent and do not compete for the same resource. Such
instructions could then be issued in parallel to different available functional units
of the processor. Superscalar processors use a hardware scheduler to analyze data
dependences and resource conflicts on-the-fly within a given fixed-size window over
the next instructions in the instruction stream. While convenient for the programmer,
superscalar processors require high energy and silicon overhead for analyzing
dependences and dispatching instructions.

With explicit ILP, the assembler-level programmer or compiler is responsible
to identify independent instructions that should execute in parallel, and group them
together into issue packets (also known as instruction groups e.g. in the Intel Itanium
IA-64 processor, see e.g. [104]). The elementary instructions in an issue packet will
be dispatched simultaneously to different functional units for parallel execution. In
the following, we will consider explicit ILP architectures.

The issue packets do not necessarily correspond one-to-one to the units of
instruction fetch. The processor’s instruction fetch unit usually reads properly
aligned, fixed-sized blocks of bytes from program memory, which contain a fixed
number of elementary instructions, and decodes them together. We refer to these
blocks as fetch packets (also known as instruction bundles in the Itanium IA-64
literature). For instance, a fetch packet for the Itanium IA-64 processor family
contains three instructions, and fetch packets for the TI ’C62x contain eight
instructions.

In the traditional VLIW architectures (see Fig. 1), the issue packets coincide with
the fetch packets; they have a fixed length of L bytes that are L-byte aligned in
instruction (cache) memory, and are called Very Long Instruction Words (VLIWs).
A VLIW contains ω > 1 predefined slots for elementary instructions. Each
instruction slot may be dedicated to a certain kind of instructions or to controlling a

NOP
PC

load

MEMMULT.ADDER

Register file

add

SHIFT

...

Very Long Instruction Word

Functional units

Program memory

...

Fig. 1 A traditional VLIW processor with very long instruction words consisting of four issue
slots, each one controlling one functional unit

Compiling for VLIW DSPs 981

PC
lumdda loadload

...

Program memoryFetch packet

Issue packet

...

Issue packetIssue packet

Fig. 2 Several issue packets may be accommodated within a single fetch packet. Here, the framed
fetch packet contains three issue packets: the first two contain just one elementary instruction each,
while the third one contains two parallel instructions

specific functional unit of the processor. Not all instruction slots have to be used;
unused slots are marked by NOP (no operation) instructions. While decoding is
straightforward, code density can be low if there is not enough ILP to fill most
of the slots; this wastes program memory space and instruction fetch bandwidth.

Instead, most explicit ILP architectures nowadays allow to pack and encode
instructions more flexibly in program memory. An instruction of specific kind may
be placed in several or all possible instruction slots of a fetch packet. Also, a
fetch packet may accommodate several issue packets, as illustrated in Fig. 2; the
boundaries between these may, for instance, be marked by special delimiter bits. The
different issue packets in a fetch packet will be issued subsequently for execution.
The hardware is responsible for extracting the issue packets from a stream of fetch
packets.1 In the DSP domain, the Texas Instruments TI TMS320C6x processor
family [97] uses such a flexible encoding schema, which we will present in Sect. 2.

The existence of multiple individual RISC-like elementary instructions as sepa-
rate slots within an issue packet to express parallel issue is a key feature of VLIW
and EPIC architectures. In contrast, consider dual-MAC (multiply-accumulate)
instructions that are provided in some DSP processors, but encoded as a single
instruction (albeit a very powerful one) in a linear instruction stream. Such
instructions are, by themselves, not based on VLIW but should rather be considered
as a special case of SIMD (single instruction multiple data) instructions. Indeed,
SIMD instructions can occur as elementary instructions in VLIW instruction sets.
Generally, a SIMD instruction applies the same arithmetic or logical operation to
multiple operand data items in parallel. These operand items usually need to reside
in adjacent registers or memory locations to be treated and addressed as single long
data words. Hence, SIMD instructions have only one opcode, while issue packets in
VLIW/EPIC architectures have one opcode per elementary instruction.

The appropriate issue width and the number of parallel functional units for a
VLIW processor design depends, beyond architectural constraints, on the character-
istics of the intended application domain. While the average ILP degree achievable
in general-purpose programs is usually low, it can be significantly higher in the
computational kernels of typical DSP applications. For instance, Gangwar et al. [43]
report for DSPstone and Mediabench benchmark kernels an achievable ILP degree

1Processors that decouple issue packets from fetch packets are commonly also referred to as
Explicitly Parallel Instruction set Computing (EPIC) architectures.

982 C. W. Kessler

of 20 on average for a (clustered) VLIW architecture with 16 ALUs and 8 load-store
units. Moreover, program transformations can be applied to increase exploitable
ILP; we will discuss some of these later in this chapter.

1.1 Resource Modeling

We model instruction issue and resource usage explicitly. An instruction i issued at
time t occupies an issue slot (e.g., a slot in a VLIW) at time t and possibly2 several
resources (such as functional units or buses) at time t or later.

For each instruction type, its required resource reservations relative to the issue
time t are specified in a reservation table [26], a boolean matrix where the entry in
row j and column u indicates if the instruction uses resource u in clock cycle t + j .

If an instruction is issued at a time t , its reservations of resources are committed
to a global resource usage map or table. Two instructions are in conflict with each
other if their resource reservations overlap in the global resource usage map; this is
also known as a structural hazard. See Fig. 3 for an example. In such a case, one of
the two instructions has to be issued at a later time to avoid duplicate reservations
of the same resource.

Non-pipelined resources that have to be reserved for more than 1 clock cycle
in sequence can thus lead to delayed issuing of subsequent instructions that should
use the same resource. The occupation time o(i, j) denotes the minimum distance
in issue time between two (data-independent) instructions i and j that are to be
issued subsequently on the same issue unit and that subscribe to a common resource.
Hence, the occupation time only depends on the instruction types. For instance,
in Fig. 3, o(add,add) = 1. In fact, for most processors, occupation times are
generally 1.

Sets of time slots on one or several physical resources (such as pipeline stages in
functional units or buses) can often be modeled together as a single virtual resource.
This can be done if an analysis of the instruction set shows that, once an instruction
is assigned the earliest one of the resource slots in this subset, no other instruction
could possibly interfere with it in later slots or with other resources in the same
subset.

A processor is called fully pipelined if it can be modeled with virtual resources
such that all occupation times are 1, there are no exposed structural hazards, and
the reservation table for an instruction thus degenerates to a vector over the virtual
resources. On regular VLIW architectures, these virtual resources often correspond
one-to-one to functional units.

2NOP (no operation) instructions only occupy an issue slot but no further resources.

Compiling for VLIW DSPs 983

Time
0
1
2
3

Time
0
1
2
3

mul:

4
5

hazard
at t+5

structuralt+1: ...
t: mul ...
t+2: add

...

add:
unit
issue read read

src1 src2
opndopnd 0

stage
1 0 1 2 3 bus

A L U
stage stage stagestage stage

M U L T I P L I E R

result
write

issue
unit

opnd
src1
read read

src2
opnd 0

stage
1

stage
0

stage
1

stage
2

stage
3

stage
M U L T I P L I E RA L U

write

bus
result

Fig. 3 Left: Example reservation tables for addition and multiplication on a pipelined processor
with an ALU and multiplier unit. Resources such as register file access ports and pipeline stages on
the functional units span the horizontal axis of the reservation tables while time flows downwards.
Time slot 0 represents the issue time. Right: Scheduling an add instruction 2 clock cycles after
a mul instruction would lead to conflicting subscriptions of the result resource (write back to
register file). Here, the issue of add would have to be delayed to, say, time t + 3. If exposed to
the programmer/compiler, a nop instruction could be added before the add to fill the issue slot at
time t+2. Otherwise, the processor will handle the delay automatically by stalling the pipeline for
one cycle

1.2 Latency and Register Write Models

Consider two instructions i1 and i2 where i1 issued at time t1 produces (writes) a
value so that it is available at the beginning of time slot t1 + δw1 in some register
r , which is to be consumed (read) by i2 at time t2 + δr2. The time of writing the
result relative to the issue time, δw1 is called the write latency3 of i1, and δr2 the
read latency of i2. For the earliest possible issue time t2 of i2 we have to preserve
the constraint

t2 ≥ t1 + δw1 − δr2

to make sure that the operand value for i2 is available in the register.
We refer to the minimum difference in issue times induced by data depen-

dence, i.e.,

3For simplicity of presentation, we assume here that write latency and read latency are constants
for each instruction. In general, they may in some cases depend on run-time conditions exposed by
the hardware and vary in an interval between earliest and latest write resp. read latency. See also
our remarks on the LE model further below. For a more detailed latency model, we refer to Rau et
al. [93].

984 C. W. Kessler

write
result
bus

write
result
bus

read
src1
opnd

read
src2
opnd

read
src1
opnd

read
src2
opnd

A L U M U L T I P L I E R
stage stage

0 1 0
stage stage

1 2 3
stage stageunit 2unit 1

Issue Issue

...add R1,... ; read R1data dependence
mul ...,R1 ; write R1
...

6
7

0
1
2
3
4
5

Time

Fig. 4 A read-after-write (flow) data dependence forces the instruction scheduler to await the
latency of 6 clock cycles between the producing and consuming instruction to make sure that the
value written to register R1 is read

 (i1, i2) = δw1 − δr2

as latency between i1 and i2. See Fig. 4 for an illustration. For memory data depen-
dences between store and load instructions, latency is defined accordingly. The
difference (i1, i2)− o(i1, i2) is usually referred to as the delay4 of instruction i1.

Latencies are normally positive, because operations usually read operands early
in their execution and write results just before terminating. For the same reason,
the occupation time usually does not exceed the latency. Only for uncommon
combinations of an early-writing i1 with a late-reading i2, or in the case of
write-after-read dependences, negative latencies could occur, which means that a
successor instruction actually could be issued before its predecessor instruction in
the data dependence graph and still preserve the data dependence. However, this
only applies to the EQ model, which we now explain.

There exist two different latency models with respect to the result register write
time: EQ (for “equal”) and LE (for “less than or equal”). Both models are being
used in VLIW DSP processors. The EQ model specifies that the result register of
an instruction i1 issued at time t1 will be written exactly at the end of time slot
t1 + δw1 − 1, not earlier and not later. Hence, the destination register r only needs
to be reserved from time t1 + δw1 on.

4Note that in some papers and texts, the meanings of the terms delay and latency are reversed.

Compiling for VLIW DSPs 985

In the LE model, t1+ δw1 is an upper bound of the write time, but the write could
happen at any time between issue time t1 and t1 + δw1, depending on hardware-
related issues. In the LE model, the destination register r must hence be reserved
already from the issue time on. The EQ model allows to better utilize the registers,
but the possibility of having several in-flight result values to be written to the same
destination register makes it more difficult to handle interrupts properly.

In some architectures, latency only depends on the instruction type of the source
instruction. If the latency (i, j) is the same for all possible instructions j that may
directly depend on i (e.g., that use the result value written by i) we set (i) = (i, j).
Otherwise, on LE architectures, we could instead set (i) = maxj (i, j), i.e., the
maximum latency to any possible direct successor instruction consuming the output
value of i. The assumption that latency only depends on the source instruction is
then a conservative simplification and may lead in some cases to somewhat longer
register live ranges than necessary.

1.3 Clustered VLIW: Partitioned Register Sets

In VLIW architectures, possibly many instructions may execute in parallel, each
accessing several operand registers and/or producing a result value to be written
to some register. If each instruction should be able to access each register in a
homogenous register set, the demands on the number of parallel read and write
ports to the register set, i.e., on the access bandwidth to the register set, become
extraordinarily high. Register files with many ports have very high silicon area and
energy costs, and even access latency grows.

A solution is to constrain general accessibility and partition the set of functional
units and likewise the register set to form clusters. A cluster consists of a set of
functional units and a local register set, see Fig. 5. Within a cluster, each functional
unit can access each local register. However, the number of accesses to a remote
register is strictly limited, usually to one per clock cycle and cluster. A task for

Register File 1

...

Register File N

Cluster 2

...

...

Cluster 1

...

... ...

...

Register File 2

Cluster N

Interconnection Network

FUFU FU FU FU FU

Fig. 5 Clustered VLIW processor with partitioned register set

986 C. W. Kessler

d=2 delay slots

bnez R17, TARGETLBL
add R13, R14, R15
nop
load R18, R17, R18

t
t+1
t+2
t+3

...

...

t−1

TARGETLBL

delayed conditional branch instruction
sub R17, 1, R17

Fig. 6 A delayed branch with d delay slots takes effect only d clock cycles after the branch was
executed. In this example, we have simple RISC code with a delayed conditional branch at position
t with d = 2 delay slots. The first delay slot at position t + 1 could here be filled with an add
instruction that the branch condition (R17�= 0) does not depend on. For the second delay slot at
position t+2, a nop instruction has been inserted to fill the slot. The subsequent load instruction
at position t + 3 will only execute if the branch was not taken

the programmer (or compiler) is thus to plan in which cluster data should reside at
runtime and on which cluster each operation is to be performed to minimize the loss
of ILP due to the clustering constraints.

1.4 Control Hazards

The pipelined execution of instructions on modern processors, including VLIW
processors, achieves maximum throughput only in the absence of data hazards,
structural hazards, and control hazards. In VLIW processors, these hazards are
exposed to the assembler-level programmer or compiler. Data hazards and structural
hazards have been discussed above.

Control hazards denote the fact that branch instructions may disrupt the linear
fetch-decode-execute pipeline flow. Branch instructions are detected only in the
decoding phase and the branch target may, in the case of conditional branches, be
known even later during execution. If subsequent instructions have been fetched,
decoded and partly executed on the “wrong” control flow branch when the branch
is detected or the branch target is known, the effect of these instructions must be
rolled back and the pipeline must restart from the branch target. This implies a non-
zero delay in execution that may differ depending on the type of branch instruction
(nonconditional branch, conditional branch taken as expected, or conditional branch
not taken as expected). There are basically two possibilities how processors manage
branch delays:

(1) Delayed branch: The branch instruction semantics is re-defined to take its effect
on the program counter only after a certain number d > 0 of delay time slots,
see also Fig. 6 for an example. It is a task for global instruction scheduling (see
Sect. 7) to try filling these d branch delay slots with useful instructions that need
to be executed anyway but do not influence the branch condition. If no other
instructions can be moved to a branch delay slot, it has to be filled with a NOP
instruction as placeholder.

Compiling for VLIW DSPs 987

load R18, R17, R18ELSELBL:
jump NEXTLBL
store R13, R17, R15
bnez R17, ELSELBL
sub R17, 1, R17
...

...NEXTLBL:

load R18, R17, R18[!P1]
store R13, R15[P1]
cmpne R17, 0, P1
sub R17, 1, R17
...

...

Fig. 7 Predication example. Left hand side: a simple RISC code implementing an if-then-else
like computation, using one conditional branch and one unconditional branch instruction (which
are not delayed here, for simplicity). Right hand side: An equivalent predicated code. By the
compare instruction (cmpne), the branch condition (a boolean value) is evaluated and written into a
predicate register, here P1. The subsequent two instructions (a load and a store) are both issued
and executed, but take effect only if their guarding predicate ([P1] and [!P1] respectively)
evaluates to true

(2) Pipeline stall: The entire processor pipeline is frozen until the first instruction
word has been loaded from the branch target. The delay is not explicit in the
program code and may vary depending on the branch instruction type.

In particular, conditional branches have a detrimental effect on processor
throughput. For this reason, hardware features and code generation techniques
that allow to reduce the need for (conditional) branches are important. The most
prominent one is predicated execution: Each instruction takes an additional operand,
a boolean predicate, which may be a constant or a variable in a predicate register.
If the predicate evaluates to true, the instruction executes as usual. If it evaluates
to false, the effect of that instruction is rolled back such that it behaves like a NOP
instruction. Figure 7 gives a simple example for predicated execution.

1.5 Hardware Loops

Many innermost loops in digital signal processing applications have a fixed number
of iterations and a fixed-length loop body consisting of straight-line code. Some
DSP processors therefore support a hardware loop construct. A special hardware
loop setup instruction at the loop entry initializes an iteration count register and also
specifies the number of subsequent instructions that are supposed to form the loop
body. The iteration count register is advanced automatically after every execution of
the loop body; no separate add instruction is necessary for that purpose. A backward
branch instruction from the end to the beginning of the loop body is now no longer
necessary either, as the processor automatically resets its program counter to the
first loop instruction, unless the iteration count has reached its final value, see Fig. 8
for an example. Hardware loops have thus no overhead for loop control per loop
iteration and only a marginal constant loop setup cost. Also, they do not suffer from
control hazards, as the processor hardware knows well ahead of time where and
whether to execute the next backward branch.

988 C. W. Kessler

LOOPLBL:

...

...NEXTLBL:

store R18, R16, R17
bnez R17, LOOPLBL

load R15, R17, R18

add 8192, R17
sub R17, 1, R17

; trip count in R17
...
repeat 2, 8192

...
store R18, R16, LR
load R15, LR, R18

; loop count in LR

2 instructions

Fig. 8 Hardware loop example. Left hand side: A simple RISC code for an ordinary copying
loop, using a conditional branch instruction (bnez) to reiterate if the loop count stored in register
R17 has not reached value 0 yet. Right hand side: The loop has been rewritten using a hardware
loop construct. The repeat instruction sets up a hardware loop consisting of the 2 subsequent
instructions (load, store) and implicitly initializes a special loop count register LR to the loop
trip count (8192). Decrementing LR and branching are implicit by repeat

1.6 Examples of VLIW DSP Processors

In the next section, we will consider the TI ’C6x DSP processor family as a case
study. Other VLIW/EPIC DSP processors include, e.g., the HP Lx/STMicroelec-
tronics ST200, Analog Devices TigerSHARC ADSP-TS20xS [5], NXP (formerly
Philips Semiconductors) TriMedia [86], Qualcomm Hexagon [91] and Recore
Xentium [94].

Due to their relatively low power and silicon area usage, VLIW DSP cores
are also often used in low-power multi- and manycore architectures. For instance,
multiple TI ’C66 DSP cores (and ARM Cortex A15 cores) are aggregated in
the TI KeyStone II multicore system-on-chip architecture. Another example is
Kalray MPPA-256 clustered manycore architecture: it is organized as a distributed
memory architecture with 16 compute clusters connected by a network-on-chip;
each compute cluster contains 16 VLIW (5-issue) DSP compute cores (plus one
system core) sharing 2 MB cluster-local memory, where each compute core has a
peak performance of 2.4GFlops (single precision) at only 600 MHz, amounting to
an accumulated peak performance of 634GFlops at 25 W [28].

2 Case Study: TI ’C6x DSP Processor Family

As a case study, we consider TI ’C6201, a fixed-point digital signal processor (DSP)
of the Texas Instrument’s ’C62x™ / ’C64x™/ ’C66x™/ ’C67x™ family of clustered
VLIW DSPs with the VelociTI™ instruction set. We also shortly mention SIMD
support in ’C64x and floatingpoint support in ’C66x/’C67x; a detailed treatment of
floatingpoint issues is however beyond the scope of this section. Finally, we also
briefly describe TI’s programming models for TI ’C6x DSPs.

Compiling for VLIW DSPs 989

.L2.S2.M2.D2.L1 .S1 .D1

Register file A (A0−A15) Register file B (B0−B15)

.M1

2X

Program cache / Program memory

Data cache / Data memory

1X

Fig. 9 The TI ’C6201 clustered VLIW DSP processor

2.1 TI ’C6201 DSP Processor Architecture

The Texas Instruments TI TMS320C6201™[97] (shorthand: ’C6201) is a high-
performance fixed-point digital signal processor (DSP) clocked at 200 MHz. It is
a clustered VLIW architecture with issue width ω = 8. A block diagram is given in
Fig. 9. The ’C6201 has 128 KB on-chip static RAM, 64 KB for data and 64 KB for
instructions.

The ’C6201 has eight functional units, including two 16-bit multipliers for 32-
bit results (the .M-units) and six 32/40-bit arithmetic-logical units (ALUs), of which
two (the .D-units) are connected to on-chip data cache memory. The ’C62x CPUs
are load-store architectures, i.e., all operands of arithmetic and logical operations
must be constants or reside in registers, but not in memory. The data addressing
(.D) units are used to load data from (data) memory to registers and store register
contents to (data) memory. The load and store instructions exist in variants for 32-
bit, 16-bit and 8-bit data. The two .L units (logical units) mainly provide 32-bit
and 40-bit arithmetic and compare operations and 32-bit logical operations like and,
or, xor. The two .S units (shift units) mainly provide 32-bit arithmetic and logical
operations, 32-bit bit-level operations, 32-bit and 40-bit shifts, and branching. Some
instructions are available on several units. For instance, additions can be done on the
.L units, .S units and .D units.

The ’C62x architecture is fully pipelined. The reservation table of each instruc-
tion5 is a 10 × 1 matrix, consisting of eight slots for the eight functional units and
the two cross paths 1X and 2X (which will be described later) at issue time. In
particular, each instruction execution occupies exactly one of the functional units at

5Exception: For load and store instructions, two more resources are used to model load destination
register resp. store source register access to the two register files, as only one loaded or stored
register can be accessed per register file and clock cycle. Furthermore, load instructions can cause
additional implicit delays (pipeline stalls) by unbalanced access to the internal memory banks (see
later). This effect could likewise be modeled with additional resources representing the different
memory banks. However, this will only be useful for predicting stalls where the alignment of the
accessed memory addresses is statically known.

990 C. W. Kessler

0111011A B C D E F G H0

Fig. 10 A fetch packet for the ’C62x can contain up to eight issue packets, as marked by the
chaining bits. In this example, there are three issue packets: instructions A, B, C issued together,
followed by D, E, F issued together and finally G and H issued together

issue time. Separate slots for modeling instruction issue are thus not required, they
coincide with the slots for the corresponding functional units. The occupation time
is 1 for all instructions.

The ’C62x architecture offers the EQ latency model (there it is called “multiple
assignment”) for non-interruptable code, while the LE model (called “single
assignment”) should be used for interruptable code. Global enabling and disabling
of interrupts is done by changing a flag in the processor’s control status register.

The latency for load instructions is 5 clock cycles, for most arithmetic instruc-
tions it is 1, and for multiply 2 clock cycles. Load and store instructions may
optionally have an address autoincrement or -decrement side effect, which has
latency one.

Each of the two clusters A and B has sixteen 32-bit general purpose registers,
which are connected to four units (including one multiplier and one load-store unit).
The units of Cluster A are called .D1, .M1, .S1 and .L1, those of Cluster B are called
.D2, .M2, .S2 and .L2. All units are fully pipelined (with occupation time 1), i.e., in
principle, a new instruction could be issued to each unit in each clock cycle.

An instruction fetch packet for the ’C62x family is 256 bit wide and is partitioned
into 8 instruction slots of 32 bit each. The least significant bit position of a 32-bit
instruction slot is used as a chaining bit to indicate the limits of issue packets: If the
chaining bit of slot i is 0, the instruction in the following slot (i + 1) belongs to the
next issue packet (see Fig. 10). Technically, issue packets cannot span several fetch
packets.6 Hence, the maximum issue packet size of ω = 8 occurs when all chaining
bits (except perhaps the last one) are set in a fetch packet. As the other extreme, up
to eight issue packets could occur in a fetch packet (if all chaining bits are cleared).
The next fetch packet is not fetched before all issue packets of the previous one have
been dispatched.

As each functional unit can do simple integer operations like addition, the ’C6201
can thus run up to eight integer operations per cycle, which amounts to 1600 MIPS
(million instructions per second).

The ADD2 instruction, which executes on .S units, allows to perform a pair of
16-bit additions in a single clock cycle on the same functional unit, if the 16-bit
operands (and results) each are packed into a common 32-bit register, see Fig. 11.
One of these two 16-bit additions accesses the lower 16 bit (bits 0..15) of the

6Even though ’C62x assembly language allows an issue packet to start in a fetch packet and
continue into the next one, the assembler will automatically create and insert a fresh fetch packet
after the first one, move the pending issue packet there, and fill up the remainder of the first issue
packet with NOP instructions.

Compiling for VLIW DSPs 991

1616+

1631 015 1631 015

1631 015

+ADD2:

Fig. 11 The SIMD instruction ADD2 performs two 16-bit integer additions on the same functional
unit in 1 clock cycle. The 32-bit registers shared by the operands and results are shown as rectangles

registers, the other the higher 16 bit (bits 16..31). No carry is propagated from
the lower to the higher 16-bit addition, which differs from the behavior of the
32-bit ADD instruction and therefore requires the separate opcode ADD2. The
SUB2 instruction, also available on the .S units, works similarly for two 16-bit
subtractions. Other instructions like bitwise AND, bitwise OR, etc. work for 16-
bit operand pairs in the same way as for 32-bit operands and thus do not need a
separate opcode.

Within each cluster, each functional unit can access any register. At most
one instruction per cluster and clock cycle can take one operand from the other
cluster’s register file, for which it needs to reserve the corresponding cross path
(1X for accessing B registers from cluster A, and 2X for the other way), which
is also modeled as a resource for this purpose. Assembler mnemonics encode the
used resources as a suffix to the instruction’s opcode: For instance, ADD.L1 is
an ordinary addition on the .L1 unit using operands from cluster A only, while
ADD.S2X denotes an addition on the .S2 unit that accesses one A register via
the cross path 2X. In total, there are twelve different instructions for addition (not
counting the ADD2 option for 16-bit additions).

It becomes apparent that the problems of resource allocation (including cluster
assignment) and instruction scheduling are not independent but should preferably
be handled together to improve code quality. An example (adapted from Leupers
[70]) is shown in Table 1: A basic block consisting of eight independent load (LDW)
instructions is to be scheduled. The address operands are initially available (i.e.,
live on entry) in registers A0,. . . ,A7 in register file A, the results are expected
to be written to registers B0,. . . ,B7 (i.e., live on exit) in register file B. Load
instructions execute on the cluster containing the address operand register. The result
can be written to either register file. However, only one load or store instruction
can access a register file per clock cycle to write its destination register resp. read
its source register; otherwise, the processor stalls for 1 clock cycle to serialize
the competing accesses. Copying registers between clusters (which occupies the
corresponding cross path) can be done by Move (MV), which is a shorthand for
ADD with one zero operand, and has latency 1. As the processor has 2 load/store
units and load has latency 5, a lower bound for the makespan (the time until all
results are available) is 8 clock cycles; it can be sharpened to 9 clock cycles if we

992 C. W. Kessler

Table 1 (a) schedule generated by an early version of the TI-C compiler (12 cycles) [70]; (b)
optimal schedule generated by OPTIMIST with dynamic programming (9 cycles) [62]

(a) (b)

LDW.D1 *A4,B4 LDW.D1 *A0,A8 ||MV.L2X A1,B8

LDW.D1 *A1,A8 LDW.D2 *B8,B1 || LDW.D1 *A2,A9 ||MV.L2X A3,B10

LDW.D1 *A3,A9 LDW.D2 *B10,B3 || LDW.D1 *A4,A10 ||MV.L2X A5,B12

LDW.D1 *A0,B0 LDW.D2 *B12,B5 || LDW.D1 *A6,A11 ||MV.L2X A7,B14

LDW.D1 *A2,B2 LDW.D2 *B14,B7 ||MV.L2X A8,B0

LDW.D1 *A5,B5 MV.L2X A9,B2

LDW.D1 *A7,A4 MV.L2X A10,B4

LDW.D1 *A6,B6 MV.L2X A11,B6

NOP 1 NOP 1; (last delay slot of LDW to B7)

MV.L2X A8,B1

MV.L2X A9,B3

MV.L2X A4,B7

consider that at least one of the addresses has to be moved early to register file B
to enable parallel computing, which takes one more clock cycle. A naive solution
(a) sequentializes the computation by executing all load instructions on cluster A
only. A more advanced schedule (b) utilizes both load/store units in parallel by
transporting four of the addresses to cluster B as soon as possible, so the loads
can run in parallel. Note also that no implicit pipeline stalls occur as the parallel
load instructions always target different destination register files in their write-back
phase, 5 clock cycles after issue time. Indeed, (b) is an optimal schedule; it was
computed by the dynamic programming algorithm in OPTIMIST [62]. Generally,
there can exist several optimal schedules. For instance, another one for this example
is reported by Leupers [70], which was computed by a simulated annealing based
heuristic.

Branch instructions on the ’C62x, which execute on the .S units, are delayed
branches with a latency of 6 clock cycles, thus 5 delay slots are exposed. If two
branches execute in the same issue packet (on .S1 and .S2 in parallel), control
branches to the target for which the branch condition evaluates to true. This can
be used to realize three-way branches. If both branch conditions evaluate to true, the
behavior is undefined.

All ’C62x instructions can be predicated. The four most significant bits in the
opcode form a condition field, where the first three bits specify the condition register
tested, and the fourth bit specifies whether to test for equality or non-equality of that
register with zero. Registers A1, A2, B0, B1 and B2 can serve as condition registers.
The condition field code 0000 denotes unconditional execution.

Usually, branch targets will be at the beginning of an issue packet. However,
branch targets can be any word address in instruction memory and thereby any
instruction, which may also be in the middle of an issue packet. In that case, the
instructions in that issue packet that appear in the program text before the branch
target address will not take effect (are treated as NOPs).

Compiling for VLIW DSPs 993

byte 1

...

Bank 0

byte 0 2 3 4 5 6 7
1098 11 12 13 14 15

Bank 1 Bank 2 Bank 3

Fig. 12 Interleaved internal data memory with four memory banks, each 16 bit (2 bytes) wide

Most ’C62x processor types use interleaved memory banks for the internal (on-
chip) data memory. In most cases, data memory is organized in four 16-bit wide
memory banks, and byte addresses are mapped cyclically across these (see Fig. 12).
Each bank is single-ported memory, thus only one access is possible per clock
cycle. If two load or store instructions try to access addresses in the same bank
in the same clock cycle, the processor stalls for one cycle to serialize the accesses.
For avoiding such delays, it is useful to know statically the alignment of addresses
to be accessed in parallel, and make sure that these end up in different memory
banks. Note also that load-word (LDW) and store-word (STW) instructions, which
access 32-bit data, access two neighbored banks simultaneously. Word addresses
must be aligned on word boundaries, i.e., the two least significant address bits are
zero. Halfword addresses must be aligned on halfword boundaries.

2.2 SIMD and Floatingpoint Support

All DSPs in the ’C6x family are based on the ’C6x instruction set and have
a two-clustered VLIW architecture with 2 × 4 functional units. TI ’C62x and
’C64x processors are fixed point DSP processors, where the ’C64x processors
have instruction set extensions that include, for instance, further support for SIMD
processing (beyond ADD2, such as four-way 8 bit SIMD addition etc., four-way
16× 16 bit multiply and eight-way 8× 8 bit multiply), further instructions such as
32 × 32 bit multiply and complex multiply, compact (16-bit) instructions that can
be mixed with 32-bit instructions [52], hardware support for software pipelining of
loops, and more (2× 32) registers.

The TI ’C66x and ’C67x DSP processor families also support floatingpoint
computations,7 by providing additional floatingpoint and complex data types,
floatingpoint arithmetic instructions with same occupation time and latency as
their fixed point counterparts, as well as instructions for fast conversion between
fixed point and floatingpoint values. These extensions give more flexibility to the

7’C66x and ’C67x support, for the basic arithmetic instructions, both single-precision and double-
precision floatingpoint variants as defined by the IEEE 754 standard [98]. ’C66x combines the
floatingpoint features of ’C67x with the advanced fixed point features of ’C64x.

994 C. W. Kessler

programmer. Floatingpoint support in a DSP processor is very convenient if an early
prototype code in C or similar high-level language using floatingpoint arithmetics
is already given for a DSP problem at hand: the code can be compiled and executed
as is, and it can be used as a base-line for further code modifications that can
leverage fixed-point/floatingpoint performance trade-offs. Most DSP computations
are, as long as the precision is sufficient, more efficient when implemented using
fixed point computation, while there exist some operations such as calculating
1/x or 1/

√
x that execute faster on a floatingpoint representation. Hence, code

switching considerately between fixed point and floatingpoint computing can lead
to considerable speedups. For instance, TI [99] reports a 6.8x speedup by using
mixed fixed point/single-precision floatingpoint code on ’C66x compared to fixed-
point computation only on ’C64x for a loop calculating normalized values of the
elements in an array of complex numbers, which involves calculating 1/

√
x. ’C66x

can calculate floatingpoint 1/
√
x by a single instruction, while ’C64x needs to

invoke a library function with a software implementation for fixed point 1/
√
x,

which takes multiple clock cycles. For mixed code, fast conversions are essential.
For example, ’C66x provides 2-way SIMD conversion instructions, for converting
two single-precision (32-bit) floatingpoint values stored in registers into two 16-bit
fixed point values stored in registers, or vice versa.

2.3 Programming Models

Beyond the ’C6x assembly language, TI provides three further programming models
for ’C6x processors: (1) ANSI C, (2) C with calls to intrinsic functions that map one-
to-one to ’C6x-specific instructions, such as _add2(), and (3) linear assembly
code, which is RISC-like serial unscheduled code that uses ’C6x instructions,
but assumes no resource conflicts and only unit latencies. In general, the more
processor-specific programming models allow to generate more efficient code.
For instance, for an IIR filter example, TI reports that the software pipeline (see
Sect. 7.2) generated from plain C code has a kernel length of 5 clock cycles, from C
with intrinsics only 4, while the linear assembly optimizer achieves 3 clock cycles
and thus the best throughput [95].

3 VLIW DSP Code Generation Overview

In this section, we give a short overview of the main tasks in code generation
that produce target-specific assembler code from a (mostly) target-independent
intermediate representation of the program. We will consider these tasks and the
main techniques used for them in some more detail in the following sections.

Most modern compilers provide not just one but several intermediate repre-
sentations (IR) of the program module being translated. These representations

Compiling for VLIW DSPs 995

differ in their level of abstraction and degree of language independence and target
independence. High-level representations such as abstract syntax trees follow the
syntactic structure of the programs and represent e.g. loops and array accesses
explicitly, while these constructs are, in low-level representations, lowered to
branches and pointer arithmetics, respectively; such low-level IRs include control
flow graphs, three-address code or quadruple sequences. A compiler supporting sev-
eral different representations allows the different program analyses, optimizations
and transformations to be implemented each on the level that is most appropriate for
it. For instance, common subexpression elimination is best performed on a lower-
level representation because more common subexpressions can be found after array
accesses and other constructs have been lowered.

Code generation usually starts from a low-level intermediate representation (LIR)
of the program. This LIR may be, to some degree, target dependent. For instance,
IR operations for which no equivalent instruction exists on the target (e.g., there is
no division instruction on the ’C62x) are lowered to equivalent sequences of LIR
operations or to calls to corresponding routines in the compiler’s run-time system.

For simple target architectures, the main tasks in code generation include
instruction selection, instruction scheduling and register allocation:

• Instruction selection maps the abstract operations of the IR to equivalent
instructions of the target processor. If we associate fixed resources (functional
units, buses etc.) to be used with each instruction, this also includes the resource
allocation problem. Details will be given in Sect. 4.

• Instruction scheduling arranges instructions in time, usually in order to minimize
the overall execution time, subject to data dependence, control dependence and
resource constraints. In particular, this includes the subproblems of instruction
sequencing, i.e., determining a linear (usually, topological) order of instruc-
tions for scheduling, and code compaction, i.e. determining which independent
instructions to execute in parallel and mapping these to slots in instruction issue
packets and fetch packets. Local, loop-level and global instruction scheduling
methods will be discussed in Sect. 7.

• Register allocation selects which values should, at what time during execution,
reside in some target processor register. If there may not be enough registers
available at a time, some values must be temporarily spilled to memory, which
requires the generation and scheduling of additional spill code in the form of load
and store instructions. Register assignment maps the run-time values that were
allocated a register to a concrete register number, which is a simpler problem
than register allocation. Details will be given in Sect. 6.

Advanced architectures such as clustered ones may require additional tasks in
code generation, in particular cluster assignment and data transfer generation (see
Sect. 5), which may be considered separately or be combined with some of the
above tasks. For instance, cluster assignment for instructions could be considered
part of instruction selection, and cluster assignment for data may be modeled as an
extension of register allocation.

Another task that is typical for DSP processors is that of address code generation
for address generation units (AGUs). AGUs provide auto-increment and auto-

996 C. W. Kessler

decrement functionality as a parallel side effect to ordinary instructions that use
special address registers for accessing data in memory. The AGUs may provide
fixed offset values or offset registers to be used for in-/decrementing. A compiler
could thus assign address registers and select offsets in an attempt to minimize
the amount of residual addressing code that would still be computed with ordinary
processor instructions on the main functional unit. See Section 3.1 in the chapter on
C Compilers and Code Optimizations for DSPs [40] in the previous (second) edition
of this book for further details.

Further code generation problems frequently occurring with VLIW DSPs include
exploiting available SIMD instructions, which can be regarded a subproblem of
instruction selection, and optimizing memory data layout to avoid stalls caused
by memory bank access conflicts. Also here we refer to the above-mentioned
chapter [40], Sects. 3.3 and 3.4, for a discussion of SIMD code generation and
optimization of memory bank assignment, respectively.

4 Instruction Selection and Resource Allocation

The instruction selection problem is often modeled as a pattern matching problem.
For each available instruction of the target processor, the compiler writer describes
its semantics as a pattern consisting of IR operations that is considered equivalent.
Then, the IR is to be covered completely with such patterns, where each IR operation
has to be covered by exactly one pattern node. Some examples are shown in Fig. 13.
As intermediate results corresponding to inner edges of a multi-node pattern are no
longer accessible in registers if that instruction is selected, such a pattern is only
applicable as a cover if no other operations (such as SUB in Fig. 13b) access such
an intermediate result. In other words, all outgoing edges from IR nodes covered by
non-root pattern nodes must be covered by pattern edges.

SUB16

MUL16

ADD32

SUB

MUL
MUL16

MADD

ADD2

ADD16

ADD32

a b c

ADD16
INDIR16

ADD

LDH

Fig. 13 Examples for covering IR nodes (solid circles) and edges (arrows) with patterns (dashed
ovals) corresponding to instructions. (a) The pattern of a multiply-add (MADD) instruction covers
two IR nodes, a 32-bit addition operation being the only consumer of the result of a 16-
bit multiplication operation. (b) Here, covering by the MADD pattern is not applicable as the
intermediate product value is also used by the 16-bit subtraction operation. (c) The pattern of a
2-way 32-bit SIMD-add instruction (ADD2) may cover two independent 16-bit addition operations

Compiling for VLIW DSPs 997

Each pattern is associated with a cost, which is typically its occupation time or
its latency as an a-priori estimation of the instruction’s impact on overall execution
time in the final code (the exact impact will only be known after the remaining
tasks of code generation, in particular instruction scheduling, have been done).
But also other cost metrics, such as register space requirements, are possible. The
optimization goal is then to minimize the accumulated total cost of all covering
patterns, subject to the condition that each IR operation is covered by exactly one
pattern node.

The optimizing pattern matching problem can be solved in various ways. A
common technique, tree parsing, is applicable if the patterns are tree-shaped and
the data flow graph of the current basic block (for instruction selection, we usually
consider one basic block of the input program at a time) is a tree. The patterns are
modeled as tree rewrite rules in a tree grammar describing admissible derivations of
coverings of the input tree. A heuristic solution could be determined by a LR-parser
that selects, in each step of constructing bottom-up a derivation the input tree, in a
greedy way whenever there are several applicable rules (patterns) to choose from
[45]. An optimal solution (i.e., a minimum-cost covering of the tree with respect to
the given costs) can be computed in polynomial time by a dynamic programming
algorithm that keeps track of all possibly optimal coverings in a subtree [1, 41].

Computing a minimum cost covering for a directed acyclic graph (DAG)
is assumed to be NP-complete, but by splitting the DAG into trees processed
separately and forcing the shared nodes’ results to be stored in registers, dynamic-
programming based bottom-up tree pattern matching techniques can still be used
as heuristic methods. Ertl [37] gives an algorithm to check if a given processor
instruction set (i.e., tree grammar) belongs to a special class of architectures
(containing e.g. MIPS and SPARC processors), where the constrained tree pattern
matching always produces optimal coverings for DAGs.

Another way to compute a minimum cost covering, albeit a more expensive one,
is to apply advanced optimization methods such as integer linear programming
[11, 35, 72, 103], partitioned boolean quadratic programming [30] or constraint
programming [56]. This may be an applicable choice if a similar technique is also
used for solving other subtasks, such as register allocation or instruction scheduling,
the basic block and the number of patterns are not too large, and a close integration
between these tasks is desired to produce high-quality code. Furthermore, solving
the problem by such general optimization techniques is by no means restricted
to tree-shaped patterns or tree-shaped IR graphs. In particular, they work well
with complex patterns, such as forest patterns and directed acyclic graph (DAG)
patterns. Forest patterns are non-connected trees of IR operators and can be used,
for instance, to model SIMD instructions, as in Fig. 13c. DAG patterns can model
powerful instructions that imply an internal reuse of common IR subexpressions
or operands, such as autoincrement load and store instructions or memory read-
modify-write instructions. The advanced optimization methods can even handle
cyclic IR structures, such as static single assignment (SSA) representation. Because
covering several IR nodes with a complex pattern corresponds to merging these
nodes, special care has to be taken with forest and DAG patterns to avoid the

998 C. W. Kessler

creation of artificial dependence cycles by the matching, which could lead to
non-schedulable code [29]. For a comprehensive survey and classification of
instruction selection problems and techniques we refer to the recent book by Hjort-
Blindell [55].

Instruction selection can be combined with resource allocation, i.e., the binding
of instructions to executing resources. For some instructions, there may be no
choice: For instance, on ’C62x, a multiply instruction can only be executed on a
.M unit. In case that the same instruction can execute on different functional units,
each with its own cost, latency and resource reservations, one could model these
variants as different instructions that just share the pattern defining the semantics.
Like instruction selection, resource allocation is often done before instruction
scheduling, but a tighter integration with scheduling would be helpful because
resource allocation clearly constrains the scheduler.

A natural extension of this approach is to also model cluster assignment for
instructions as a resource allocation problem, and thus as extended instruction
selection problem. However, cluster allocation has traditionally been treated as a
separate problem; we will discuss it in Sect. 5.

Further target-level optimizations could be modeled as part of instruction
selection. For instance, for special cases of IR patterns there could exist alternative
code sequences that may be faster, shorter, or more appropriate for later phases
in code generation. As an example, an ordinary integer multiplication by 2 can
be implemented in at least three different ways (mutations): by a MUL instruction,
maybe running on a separate multiplier unit, by an ADD instruction, and by a left-
shift (SHL) by one, each having different latency and resource requirements. The
ability to consider such mutations during instruction scheduling increases flexibility
and can thus improve code quality [85].

Another extension of instruction selection concerns the identification of several
independent IR operations with same operator and short operand data types that
could be merged to utilize a SIMD instruction instead.

Also, the selection of short instruction formats to reduce code size can be
considered a subproblem of instruction selection. While beneficial for instruction
fetch bandwidth, short instruction formats constrain the number of operands, the
size of immediate fields or the set of accessible registers, which can have negative
effects on register allocation and instruction scheduling. For the 16-bit compact
instructions of ’C64x, Hahn et al. [52] explore the trade-off between performance
and code size.

5 Cluster Assignment for Clustered VLIW Architectures

Cluster assignment for clustered VLIW architectures can be done at IR level or
at target level. It maps each IR operator or instruction, respectively, to one of the
clusters. Also, variables and temporaries to be held in registers must be mapped to
a register file. Indeed, a value could reside in several register files if appropriate
data transfer instructions are added; this is also an issue of register allocation and
instruction scheduling and typically solved later than instruction cluster assignment

Compiling for VLIW DSPs 999

a

RAa = a(RA1,RA2) || mov RA3,RB3 nop || −−−

RAd = d(RAa) || mov RA4,RB4

nop || −−−

RAe = e(RAa,RAb) || −−−

nop || −−−

RAg = g(RAe,RAf) || −−−

RAa = b(RB3) || −−−

RBc = c(RB4) || mov RBb,RAb

RBf = f(RBb,RBc)|| −−−

nop || mov RBf,RAf

nop || −−−

data transfer
1 reg./cc

Register set RA

Unit A

Register set RB

Unit B

RA1

g

fed

cb

RA2 RB1 RA4RA3

RAb

RBbRAa RBc

RB4RB3

RBf
RAf

RAe

RAg

RAd

Fig. 14 Cluster assignment example. We consider a simple clustered architecture with two
clusters, each with a register set and (for simplicity) one general-purpose functional unit that can
only access local registers as operands. Given is the intermediate representation of a basic block
in the form of a data flow graph. Some cluster assignment has been applied, which maps ingoing
values RA1,. . . ,RA4 to register set RA, value RB1 (shaded) to register set RB, operations a, d,
e and g to unit A, operations b, c and f (shaded) to unit B, and all outgoing values to register
set RA. This cluster assignment implies data transfers between RA and RB along some data flow
edges, which are marked by black dots. We assume that a data transfer takes 1 time step, and that
at most one register value can be transfered per time step and direction, by using a mov instruction
in parallel to a local operation. A possible schedule based on this cluster assignment is also shown.
It has a makespan of 6 time steps; some slots are unused (nop) because no operation is data-ready
at that time. Keeping all data and operations in a single cluster would require at least 7 steps. Note
that the given cluster assignment is not optimal here; for instance, if b were computed on cluster A
instead, the resulting code could be scheduled in 5 time steps

in most compilers, although there exist obvious interdependences. Figure 14 shows
an example of a cluster assignment for a very simple two-cluster architecture,
together with a possible schedule based on this clustering that exhibits the resulting
data transfers and their impact on execution time.

There exist various techniques for cluster assignment for basic blocks. The goal
is to minimize the number of transfer instructions, especially on the critical path(s).
Usually, heuristic solutions are applied.

Ellis [33] gives a heuristic algorithm for cluster assignment called bottom-up
greedy (BUG) for basic blocks and traces (see later) that is applied before instruction
scheduling. Desoli [27] identifies sub-DAGs of the target-level dataflow graph that
are mapped to a cluster as a whole. Gangwar et al. [43] first decompose the target-
level dataflow graph into disjoint chains of nodes connected by dataflow edges. The
nodes of a chain will always be mapped to the same cluster. Chains are grouped
together by a greedy heuristic until there are as many chain groups left as clusters.
Finally, chain groups are heuristically assigned to clusters so that the residual cross-
chaingroup dataflow edges coincide with direct inter-cluster communication links
wherever possible. For many-cluster architectures where no fully connected inter-
cluster communication network is available, the algorithm tries to minimize the
communication distance accordingly, such that communicating chain groups are
preferably mapped to clusters that are close to each other.

1000 C. W. Kessler

Hierarchical partitioning heuristics are used e.g. by Aleta et al. [3] and Chu
et al. [24]. Aleta et al. also consider replication of individual instructions in order to
reduce the amount of communication.

Beg and van Beek [12] use constraint programming to solve the cluster assign-
ment problem optimally for an idealized multi-cluster architecture with unlimited
inter-cluster communication bandwidth.

Usually, cluster assignment precedes instruction scheduling in phase-decoupled
compilers for clustered VLIW DSPs, because the resource allocation for instructions
must be known for scheduling. On the other hand, cluster allocation could benefit
from information about free communication slots in the schedule. The quality of the
resulting code suffers from the separate handling of cluster assignment, instruction
scheduling and register allocation. We will discuss phase-coupled and integrated
code generation approaches for clustered architectures in Sect. 8.

6 Register Allocation and Generalized Spilling

In the low-level IR, all program variables that could be held in a register and all
temporary variables are modeled as symbolic registers, which the register allocator
then maps to the hardware registers, of which only a limited number is available.

A symbolic register s is live at a program point p if s is defined (written) on a
control path from the procedure’s entry point to p, and there exists a program point
q where s is used (read) and s may not be (re-)written on the control path p. . .q .
Hence, s is live at p if it is used in a control flow successor q of p. The live range of
s is the set of program points where s is live. The number of all symbolic registers
live at a program point p is called the register pressure at p.

Live ranges could be defined on the low-level IR (if register allocation is to be
done before instruction selection), but usually, they are defined at target instruction
level, because instruction selection may introduce additional temporary variables
to be kept in registers. If the schedule is given, the live ranges are fixed, which
constrains the register allocator, and generated spill code has to be inserted into
the schedule. If register allocation comes first, some pre-scheduling (sequencing) at
LIR or target level is required to bring the operations/instructions of a basic block
in a linear order that defines the live range boundaries. Early register allocation
constrains the subsequent scheduler, but generated spill code will then be scheduled
and compacted together with the remaining instructions.

Two live ranges interfere if they may overlap. Interfering live ranges cannot share
the same register. The live range interference graph is an undirected graph whose
nodes represent the live ranges of a procedure and edges represent interferences.
Register assignment now means coloring the live range interference graph by
assigning a color (i.e., a specific physical register) to each node such that interfering
nodes have different colors (see Fig. 15 for a simple example). Moreover, the
coloring must not use more colors than the numberK of machine registers available.
Determining if a general graph is colorable with K colors is NP-complete for
K ≥ 3. If a coloring cannot be found, the register allocator must restructure the
program to make the interference graph colorable.

Compiling for VLIW DSPs 1001

i = c+4;

d = c−2;

c = c*i;

s1
s2

fp

s4

s3

load 8(fp),r1
addi r1,#4,r2
store r2,4(fp)
subi r1,#2,r3
store r3,12(fp)
muli r1,r2,r3
store r3,8(fp)

s1
s2

fp

s4

s3

addi s1,#4,s2

subi s1,#2,s3

muli s1,s2,s4
store s4,8(fp) ! c

store s3,12(fp) ! d

store s2,4(fp) ! i

load 8(fp),s1 ! c

Fig. 15 Graph coloring example. For the C example code on the left hand side, equivalent RISC
assembler pseudocode, using symbolic registers s1, s2 etc. and the frame pointer register fp, is
shown next to it. (fp is used in address calculations for stack-allocated local variables, here i, d
and c.) The arrows in the center show how the live ranges for the symbolic registers overlap in
time. To the right, we see the live range interference graph, including a vertex representing fp.
The vertices are colored so that interfering live ranges do not get the same color (physical register).
Here, s3 and s4 are assigned the same color, i.e., they will share a register (r3). The graph
contains a 4-clique, involving live ranges s1, s2, s3 and fp, hence at least 4 physical registers
will be required in spill-free code. Code after register assignment is shown on the right hand side

...=1r...=1s
......

s2 = s1
......

..1r..=....2s..=..

-->

Fig. 16 Coalescing example. In the pseudocode on the left hand side, we assume that the live
ranges (symbolic registers) s1 and s2 do not interfere, i.e., s2 is not accessed before the copy
operation s2 = s1 and s1 not afterwards, such that the live ranges just touch each other at the
copy operation. Right hand side: Coalescing s1 and s2 virtually merges both live ranges into one
by forcing them to use the same physical register r1. The copy operation is eliminated

Chaitin [20] proposed a heuristic for coloring the interference graph with K

colors, where K denotes the number of physical registers available. The algorithm
works iteratively. In each step, it tries to find a node with degree < K , because then
there must be some color available for that node, and removes the node from the
interference graph. If the algorithm cannot find such a node, the program must be
transformed to change the interference graph into a form that allows the algorithm to
continue. Such transformations include coalescing, live range splitting, and spilling
with rematerialization of live ranges. After the algorithm has removed all nodes
from the interference graph, the nodes are colored in reverse order of removal.
The optimistic coloring algorithm by Briggs [16] improves Chaitin’s algorithm by
delaying spilling transformations.

Coalescing is a transformation applicable to copy instructions s2 ← s1, where
the two live ranges s1, s2 do not overlap except at that copy instruction, which
marks the end (last use) of s1 and beginning (write) of s2. Coalescing merges s1
and s2 together to a single live range by renaming all occurrences of s1 to s2, which
forces the register allocator to store them in the same physical register, and the copy
instruction can now be removed. See Fig. 16 for an example.

Long live ranges tend to interfere with many others and thus may make the
interference graph harder to color. As coalescing yields longer live ranges, it should

1002 C. W. Kessler

be applied with care. Conservative coalescing [17] merges live ranges only if the
degree of the merged live range in the interference graph would still be smaller than
the number of physical registers, K .

The reverse of coalescing is live range splitting i.e., insertion of register-to-
register copy operations and renaming of accesses to split a long live range into
several shorter ones. Splitting can make an interference graph colorable without
having to apply spilling; this is often more favorable, as register-to-register copying
is faster and less energy consuming than memory accesses. Live range splitting can
be done considerately with a small number of sub-live-ranges, or aggressively, with
one sub-live-range per access.

Spilling removes a live range as symbolic register, by storing its value in main
memory (or other non-register location). For each writing access, a store instruction
is inserted that saves the value to a memory location (e.g., in the variable’s “home”
location or in a temporary location on the stack), and for each reading access, a
load instruction to a temporary register is inserted. This spill code leads to increased
execution time, energy consumption and code size. In some cases, it could be more
efficient to realize the rematerialization [17] of a spilled value not by an expensive
load from memory, but by recomputing it instead. The choice between several spill
candidates could be made greedily by considering the spill cost for a live range s,
which contains the number of required store and load (or other rematerialization)
instructions (to model the code size penalty), often also weighted by predicted
execution frequencies (to model the performance and energy penalty).

A live range may not have to be spilled everywhere in the program. For instance,
even if a symbolic register has a long live range, it may not be accessed during major
periods in its live range where register pressure is high, for instance during an inner
loop. Such periods are good candidates for partial spilling.

Register allocation can be implemented as a two-step approach [6, 29], where
a global pre-spilling phase is run first to limit the remaining register pressure at
any program point to the available number of physical registers, which makes the
subsequent coloring phase easier.

Coloring-based heuristics are used in many standard compilers. While just-in-
time compilers and dynamic optimizations require fast register allocators such as
linear scan allocators [89, 100], the VLIW DSP domain rather calls for static
compilation with high code quality, which justifies the use of more advanced
register allocation algorithms. The first register allocator based on integer linear
programming was presented by Goodwin and Wilken [47].

Optimal spilling selects just those live ranges for spilling whose accumulated
spill cost is minimal, while making the remaining interference graph colorable.
Optimal selection of spill candidates (pre-spilling) and optimal a-posteriori insertion
of spill code for a given fixed instruction sequence and a given number of available
registers are NP-complete even for basic blocks and have been solved by dynamic
programming or integer linear programming for various special cases of processor
architecture and dependency structure [6, 57, 58, 80]. In most compilers, heuristics
are used that try to estimate the performance penalty of inserted load and store
instructions [13]. More recently, several practical methods based on integer linear

Compiling for VLIW DSPs 1003

programming for general optimal pre-spilling and for optimal coalescing have been
developed, e.g., by Appel and George [6].

Another more recent trend is towards performing register allocation on the SSA
form: For SSA programs, the interference graph belongs to the class of chordal
graphs, which can be K-colored in quadratic time [14, 18, 51]. The generation of
optimal spill code and minimization of copy instructions by coalescing remain NP-
complete problems also for SSA programs. For the problem of optimal coalescing in
spill-free SSA programs, a good heuristic method was proposed by Brisk et al. [18],
and an optimal method based on integer linear programming was given by Grund
and Hack [50]. Ultimate coalescing [19] considers all copy-related live ranges for
coalescing that do not interfere as they hold the same value, as is the case in
SSA-based IRs. For optimal pre-spilling in SSA programs, Ebner [29] models the
problem as a constrained min-cut problem and applies a transformation that yields
a polynomial-time near-optimal algorithm that does not rely on an integer linear
programming solver.

7 Instruction Scheduling

In this section, we review fundamental instruction scheduling methods for VLIW
processors at basic block level, loop level, and global level. We also discuss the
automatic generation of the most time consuming part of instruction schedulers from
a formal description of the processor.

7.1 Local Instruction Scheduling

The control flow graph at the IR level or target level representation of a program is
a graph whose nodes are the IR operations or target instructions, respectively, and
its edges denote possible control flow transitions between nodes.

A basic block is any (maximum-length) sequence of textually consecutive
operations (at IR level) or instructions (at target level) in the program that can be
entered by control flow only via the first and left only via the last operation or
instruction, respectively. Hence, branch targets are always at the entry of a basic
block, and a basic block contains no branches except maybe its last operation or
instruction.

Control flow executes all operations of a basic block from its entry to its
exit. Hence, the data dependences in a basic block form a directed acyclic graph,
the data flow graph of the basic block. This data flow graph defines the partial
execution order that constrains instruction scheduling: The instruction/operation
at the target of a data dependence must not be issued before the latency of the
instruction/operation at the source has elapsed. Leaf nodes in the data flow graph
do not depend on any other node and have therefore no predecessor (within the
basic block), root nodes have no successor node (within the basic block).

1004 C. W. Kessler

A path from a leaf node with maximum accumulated latency over its edges
towards a root node is called a critical path of the basic block; its length is a lower
bound for the makespan of any schedule for the basic block.

Methods for instruction scheduling for basic blocks (i.e., local scheduling) are
simpler than global scheduling methods, because control flow in basic blocks is
straightforward and can be ignored. Only data dependences and resource conflicts
need to be taken into account. Interestingly, most basic blocks in real-world
programs are quite small and consist of only a few instructions. However, program
transformations, such as function inlining, loop unrolling or predication, can yield
considerably larger basic blocks.

Traditionally, heuristic methods have been considered for local instruction sched-
uling, mostly because of fast optimization times. A simple and well-known heuristic
technique is list scheduling.

List scheduling [49] is based on topological sorting of the operations or
instructions in the basic block’s data flow graph, taking the precedence constraints
by data dependences into account and using a heuristic ordering to decide priorities
in the case of multiple possible choices. The algorithm schedules nodes iteratively
and maintains a list of data-ready nodes, the ready list. Initially, it consists of the
leaves of the data flow graph, i.e., those nodes that do not depend on any other and
could be scheduled immediately. The nodes in the ready list are assigned priorities
that could, for instance, be the estimated maximum accumulated latency on any path
from that node to a root of the data flow graph. In each step, list scheduling picks,
in a greedy way, as many highest-priority nodes as possible from the ready list that
fit into the next issue packet and for which resource requirements can be satisfied.
The resource reservations of these issued nodes are then committed to the global
resource usage map, and the issued nodes are removed from the data flow graph.
Some further nodes may now become data ready in the next steps after the latency
after all their predecessors has elapsed. The ready list is accordingly updated, and
the process repeats until all nodes have been scheduled. The above description is
for forward scheduling. Backward scheduling starts with the roots of the data flow
graph and works in an analogous way in reversed topological order.

Another technique is critical path scheduling. First, a critical path in the basic
block is detected; the nodes of that path are removed from the data flow graph and
scheduled in topological order, each in its own issue packet. For the residual data
flow graph, a critical path is determined, and so on, and this process is repeated until
all nodes in the data flow graph have been scheduled. If there is no appropriate free
slot in an issue packet to accommodate a node to be scheduled, a new issue packet
is inserted.

Time-optimal instruction scheduling for basic blocks is NP-complete for almost
any nontrivial target architecture, including most VLIW architectures. For special
combinations of simple target architectures and restricted data flow graph topologies
such as trees, polynomial-time optimal scheduling algorithms are known.

In the last decade, more expensive optimal methods for local instruction schedul-
ing have become more and more popular, driven by (1) the need to generate high-
quality code for embedded applications, (2) the fact that modern computers offer

Compiling for VLIW DSPs 1005

the compiler many more CPU cycles that can be spent on advanced optimizations,
and (3) advances in general optimization problem solver technology, especially for
integer linear programming. For local instruction scheduling on general acyclic
data flow graphs, optimal algorithms based on integer linear programming [11,
36, 61, 73, 102], branch-and-bound [23, 53], constraint logic programming [10]
and dynamic programming [63, 65] have been developed. Also, more expensive
heuristic optimization techniques, such as genetic programming [36, 77, 108] have
been used successfully.

In practice, the scope limitation of instruction scheduling to a single basic
block is too restrictive. Local instruction scheduling techniques are nevertheless
significant, because they are also used in several global scheduling algorithms for
larger acyclic code regions and even in certain cyclic scheduling algorithms, which
we will discuss in Sect. 7.2.

7.2 Modulo Scheduling for Loops

Most DSP programs spend most of their execution time in some (inner) loops.
Efficient loop transformation and loop scheduling techniques are therefore key to
high code quality.

Loop unrolling is a simple transformation that can increase the scope of a local
scheduler (and also other code optimizations) beyond the iteration boundaries,
such that independent instructions from different iterations could be scheduled in
parallel. However, loop unrolling increases code size considerably, which is often
undesirable in embedded applications.

Software pipelining is a technique to overlap the execution of subsequent
loop iterations such that independent instructions from different iterations can be
scheduled in parallel on an instruction-level parallel architecture, without having
to replicate the loop body code as in unrolling. As most scheduling problems
with resource and dependence constraints, (rate-)optimal software pipelining is NP-
complete.

Software pipelining has been researched intensively, both as a high-level loop
transformation (performed in the middle end of a compiler or even as source-
to-source program transformation) and as low-level optimization late in the code
generation process (performed in the back end of a compiler), after instruction
selection with resource allocation has been performed. The former approaches are
independent of particular instructions and functional units to be selected for all
operations in the loop, and thus have to rely on inaccurate cost estimations for
execution time, energy, or register pressure when comparing various alternatives,
while the actual cost will also depend on decisions made late in the code generation
process. The latter approaches are bound to fixed instructions and functional units,
and hence the flexibility of implementing the same abstract operation by a variety
of different target machine instructions, with different resource requirements and
latency behavior, is lost. In either case, optimization opportunities are missed

1006 C. W. Kessler

FOR i FROM 1 TO N DO
A(i);
B(i);
C(i);

END DO

A

B

+1

C

A(1);
FOR i FROM 1 TO N-1 DO

B(i);
C(i) || A(i+1);

END DO
B(N);
C(N);

a b c

Fig. 17 Simple example: (a) Original loop, where A(i), B(i), C(i) denote operations in the loop
body that may compete for common resources, in this example B(i) and C(i), and that may involve
both loop-independent data dependences, here A(i) → B(i) and A(i) → C(i), and loop-carried
data dependences, here B(i) → A(i + 1), see the dependence graph in (b). (c): After software
pipelining

because interdependent problems are solved separately in different compiler phases.
Approaches to integrate software pipelining with other code generation tasks will be
discussed in Sect. 8.

Software pipelining, also called cyclic scheduling, transforms a loop into an
equivalent loop whose body contains operations from different iterations of the
original loop, which may result in faster code on an instruction-level parallel
architecture. For example, the loop in Fig. 17a with data dependence graph in
Fig. 17b can be transformed in the equivalent loop in Fig. 17c, where instructions
C(i) and A(i+1) could now be executed in parallel (||) because they are statically
known to be independent of each other and not to subscribe to the same hardware
resources. This parallel execution was not possible in the original version of the
loop because the code generator usually treats the loop body (a basic block) as
a unit for scheduling and resource allocation, and furthermore separates the code
for C(i) and A(i + 1) by a backward branch to the loop entry. The body of the
transformed loop is called the kernel, the operations before the kernel that “fill” the
pipeline (here A(1)) are called the prologue, and the operations after the kernel that
“drain” the pipeline (here B(N) and C(N)), are called the epilogue of the software-
pipelined loop. Software pipelining thus overlaps in the new kernel the execution
of operations originating from different iterations of the original loop, as far as
permitted by given dependence and resource constraints, in order to solicit more
opportunities for parallel execution on instruction-level parallel architectures, such
as superscalar, VLIW or EPIC processors. Software pipelining can be combined
with loop unrolling.

In their survey of software pipelining methods, Allan et al. [4] divide existing
approaches into two general classes. Based on a lower bound determined by
analyzing dependence distances, latencies, and resource requirements, the modulo
scheduling methods, as introduced by Rau and Glaeser [92] and refined in several
approaches [68, 76], first guess the kernel size (in terms of clock cycles), called
the initiation interval (II), and then fill the instructions of the original loop body
into a modulo reservation table of size II , which produces the new kernel. If no
such modulo schedule could be found for the assumed II , the kernel is enlarged

Compiling for VLIW DSPs 1007

by incrementing II , and the procedure is repeated. The kernel-detection methods,
such as those by Aiken and Nicolau [2] (no resource constraints) and Vegdahl [101],
continuously peel off iterations from the loop and schedule their operations until a
pattern for a steady state emerges, from which the kernel is constructed.

Modulo scheduling starts with an initial initiation interval given by the lower
boundMinII (minimum initiation interval), which is the maximum of the recurren-
ce-based minimum initiation interval (RecMinII) and the resource-based minimum
initiation interval (ResMinII). RecMinII is the maximum accumulated sum of
latencies along any dependence cycle in the dependence graph, divided by the
number of iterations spanned by the dependence cycle. If there is no such cycle,
RecMinII is 0. ResMinII is the maximum accumulated number of reserved slots on
any resource in the loop body.

Modulo scheduling attempts to find a valid modulo schedule by filling all
instructions in the modulo reservation table for the current II value. Priority is
usually given to dependence cycles in decreasing order of accumulated latency
per accumulated distance. If the first attempt fails, most heuristic methods allow
backtracking for a limited number of further attempts. An exhaustive search is
usually not feasible, because of the high problem complexity. Instead, if no attempt
was successful, the II is incremented and the procedure is repeated with a one larger
modulo reservation table. As there exists a trivial upper bound for the II (namely,
the accumulated sum of all latencies in the loop body), this iterative method will
eventually find a modulo schedule.

The main goal of software pipelining is to maximize the throughput by minimiz-
ing II , i.e., rate-optimal software pipelining. Moreover, minimizing the makespan
(the elapsed time between the first instruction issue and last instruction termination)
of a single loop iteration in the modulo scheduled loop is often a secondary
optimization goal, because it directly implies the length of prologue and epilogue
and thereby has an impact on code size (unless special hardware support for rotating
predicate registers allows to represent prologue and epilogue code implicitly with
the predicated kernel code).

Register allocation for software pipelined loops is another challenge. Software
pipelining tends to increase register pressure. If a live range is longer than II cycles,
it will interfere with itself (e.g., with its instance starting in the next iteration of the
kernel) and thus a single register will not be sufficient; special care has to be taken to
access the “right” one at any time. There are two kinds of techniques for such self-
overlapping live ranges: hardware based techniques, such as rotating register sets
and register queues, and software techniques such as modulo variable expansion
[68] and live range splitting [96]. With modulo variable expansion, the kernel is
unrolled and symbolic registers renamed until no live range self-overlaps any more:
If μ denotes the maximum length of a self-overlapping live range, the required
unroll factor is ρ = �μ/II�, and the new initiation interval of the expanded kernel
is II ′ = ρ II . The drawback of modulo variable expansion is increased code size
and increased register need. An alternative approach is to avoid self-overlapping live
ranges a priori by splitting long live ranges on dependence cycles into shorter ones,
by inserting copy instructions.

1008 C. W. Kessler

Optimal methods for software pipelining based on integer linear programming
have been proposed e.g. by Badia et al. [8], Govindarajan et al. [48] and Yang et al.
[106]. Combinations of modulo scheduling with other code generation tasks will be
discussed in Sect. 8.

Software pipelining is often combined with loop unrolling. Especially if the
lower bound MinII is a non-integer value, loop unrolling before software pipelining
can improve throughput. Moreover, loop unrolling reduces loop overhead (at least
on processors that do not have hardware support for zero-overhead loops). The
downside is larger code size.

7.3 Global Instruction Scheduling

Basic blocks are the units of (procedure-)global control flow analysis. The basic
block graph of a program is a directed graph, where the nodes correspond to the
basic blocks and edges show control flow transitions between basic blocks, such as
branches or fall-through transitions to branch targets.

Global instruction scheduling methods consider several basic blocks at a time and
allow to move instructions between basic blocks. The (current) scope of a global
scheduling method is referred to as a region. Regions used for global scheduling
include traces, superblocks, hyperblocks and treegions. Local scheduling methods
are extended to address entire regions. Because the scope is larger, global scheduling
has more flexibility and may generate better code than local scheduling. Program
transformations such as function inlining, loop unrolling or predication can be
applied to additionally increase the size of basic blocks and regions.

The idea of trace scheduling [38] is to make the most frequently executed
control flow paths fast while accepting possible performance degradations along
less frequently used paths. Execution frequencies are assigned to the outgoing edges
at branch instructions based on static predictions or on profile data. A trace is a
linear path (i.e., free of backwards edges and thereby of loops) through the basic
block graph, where, at each basic block Bi in the trace except for the last one, its
successor Bj in the trace is the target of the more frequently executed control flow
edge leaving Bi . Traces may have side entrances and side exits of control flow from
outside the trace. Forward edges are possible, and likewise backwards edges to the
first block in the trace. See Fig. 18 for an example.

Trace scheduling repeatedly identifies a maximum-length trace in the basic block
graph, removes its basic blocks from the graph and schedules the instructions of
the trace with a local scheduling method as if it were a single basic block. As
instructions are moved across a control flow transition, either upwards or down-
wards, correctness of the program must be re-established by inserting compensation
code into the other predecessor or successor block of the original basic block of
that instruction, respectively. Two of the possible cases are shown in Fig. 19. The
insertion of compensation code may lead to considerable code size expansion on
the less frequently executed branches. After the trace has been scheduled, its basic

Compiling for VLIW DSPs 1009

EXIT

ENTRYT5

T3

T1

T4

T6

T2

B7

B8

B10

B11

B12

B13

B14

B15

B9

B1

B2

B3

B4

B5

B6

Fig. 18 Traces (shaded) in a basic block graph, constructed and numbered T1, T2, . . . in order of
decreasing predicted execution frequency. A trace ends at a backwards branch or at a join point
with another trace of higher execution frequency (which thus was constructed earlier). Trace T1
represents the more frequent control path in the inner loop starting at basic block B4

i1

i3

i1

T:

i1

i2

i3

i2’

T:
B: B:

T:

i3

T:
B: B:

i1’

i1

i2

i2

i3i2

a b

Fig. 19 Two of the main cases in trace scheduling where compensation code must be inserted. The
trace T is being compacted. Case (a): Hoisting instruction i2 into the predecessor basic block B

requires inserting a copy i2′ of i2 into the other predecessor block(s). Case (b): Moving instruction
i1 forward across the branch instruction i2 requires inserting a copy i1′ of i1 into the other branch
target basic block

1010 C. W. Kessler

blocks are removed from the basic block graph, the next trace is determined, and
this process is repeated until all basic blocks of the program have been scheduled.

Superblocks [59] are a restricted form of traces that do not contain any branches
into it (except possibly for backwards edges to the first block). This restriction
simplifies the generation of compensation code in trace scheduling. A trace can be
converted into a superblock by replicating its tail parts that are targets of branches
from outside the trace. Tail duplication is a form of generating compensation code
ahead of scheduling, and can likewise increase code size considerably.

While traces and superblocks are linear chains of basic blocks, hyperblocks [78]
are regions in the basic block graph with a common entry block and possibly several
exit blocks, with acyclic internal control flow. Using predication, the different
control flow paths in a hyperblock could be merged to a single superblock.

A treegion [54], also known as extended basic block [81], is an out-tree region
in the basic block graph. There are no side entrances of control flow into a treegion,
except to its root basic block.

Recently, optimal methods for global instruction scheduling on instruction-level
parallel processors have become popular. Winkel used integer linear programming
for optimal global scheduling for Intel IA-64 (Itanium) processors [104] and showed
that it can be used in a production compiler [105]. Malik et al. [79] proposed a
constraint programming approach for optimal scheduling of superblocks.

7.4 Generated Instruction Schedulers

Whenever a forward scheduling algorithm, such as list scheduling, inserts another
data-ready instruction at the end of an already computed partial schedule, it
needs to fit the required resource reservations of the new instruction against the
already committed resource reservations, and likewise obey pending latencies of
predecessor instructions where necessary, in order to derive the earliest possible
issue time for the new instruction relative to the issue time of the last instruction
in the partial schedule. While the impact of dependence predecessors can be
checked quickly, determining that issue time offset is more involved with respect
to the resource reservations. The latter calculation could be done, for instance, by
searching through the partial schedule’s resource usage map, resource by resource.
For advanced scheduling methods that try lots of alternatives, faster methods for
detecting resource conflicts, respectively for computing the issue time offset, are
desirable.

Note that the new instruction’s issue time relative to the currently last instruction
of the partial schedule only depends on the most recent resource reservations, not
the entire partial schedule. Each possible contents of this still relevant, recent part
of the pipeline can be interpreted as a pipeline state, and appending an instruction
will result in a new state and an issue time offset for the new instruction, such that
scheduling can be described as a finite state automaton. The initial state is an empty
pipeline. The set of possible states and the set of possible transitions depend only on
the processor, not on the input program. Hence, once all possible states have been

Compiling for VLIW DSPs 1011

determined and encoded and all possible transitions with their effects on successor
state and issue time have been precomputed once and for all, scheduling can be done
very fast by looking up the issue time offset and the new state in the precomputed
transition table for the current state and inserted instruction.

This automaton-based approach was introduced by Müller [82] and was
improved and extended in several works [9, 31, 90]. The automaton can be generated
automatically from a formal description of the processor’s set of instructions with
their reservation tables. A drawback is that the number of possible states and
transitions can be tremendous, but there exist techniques to reduce the size of the
scheduling automaton, such as standard finite state machine minimization, automata
factoring, and replacement of several physical resources with equivalent contention
behavior by a single virtual resource.

8 Integrated Code Generation for VLIW and Clustered
VLIW

In most compilers, the subproblems of code generation are treated separately
in subsequent phases of the compiler back-end. This is easier from a software
engineering point of view, but often leads to suboptimal results because decisions
made in earlier phases constrain the later phases.

For instance, early instruction scheduling determines the live ranges for a
subsequent register allocator; when the number of physical registers is not sufficient,
spill code must be inserted a-posteriori into the existing schedule, which may
compromise the schedule’s quality. Conversely, early register allocation introduces
additional (“false”) data dependences, which are an artifact caused by the reuse of
registers but constrain the subsequent instruction scheduling phase.

Interdependences exist also between instruction scheduling and instruction selec-
tion. In order to formulate instruction selection as a separate minimum-cost covering
problem, phase-decoupled code generation assigns a fixed, context-independent cost
to each instruction, such as its expected or worst-case execution time. However,
the actual cost also depends on interference with resource occupation and latency
constraints of other instructions, which depends on the schedule. For instance,
a potentially concurrent execution of two independent IR operations will be
prohibited if instructions are selected that require the same resource.

For loops, instruction selection can likewise depend on modulo scheduling and
vice versa; for instance, in the example loop of Fig. 17, there might exist an efficient
instruction covering the chain B(i) −→ A(i + 1) that only is exposed to (local)
instruction selection after software-pipelining the loop as in Fig. 17c.

Even the subdivision of instruction scheduling into separate phases for sequenc-
ing and compaction can have negative effects on schedule quality if instructions
with non-block reservation tables occur [64].

Furthermore, on clustered VLIW processors, concurrent execution may be
possible only if the operands reside in the right register sets at the right time, as

1012 C. W. Kessler

target−level target−level
instruction scheduling

target−level
instruction scheduling

instruction scheduling

IR

IR−level

IR−level

register a
llo

catio
n

IR−level

register a
llo

catio
n

IR−level

IR−level
IR−level

target−level

register a
llo

catio
n

target−level

register a
llo

catio
n

IR−level

target−level

in
stru

ctio
n

 selectio
n

in
stru

ctio
n

 selectio
n

an
d

 reso
u

rce allo
catio

n cluster assignment
target−level

cluster assignment

operation scheduling

operation scheduling
IR−level

operation scheduling

cluster assignment

target−level

target−level

an
d

 reso
u

rce allo
catio

n

IR−level

reg. a
llo

catio
n

reg. a
llo

catio
n

reg. a
llo

catio
n

reg. a
llo

catio
n

in
stru

ctio
n

 selectio
n

in
stru

ctio
n

 selectio
n

instruction scheduling
target−level

operation scheduling

integrated code generation

Target
code

Fig. 20 Phase-decoupled vs. fully integrated code generation for clustered VLIW processors.
Only the four main tasks of code generation are shown: Cluster assignment (red dashed arrows),
instruction selection (brown vertical arrows), instruction scheduling (blue horizontal arrows), and
register allocation (purple arrows in z-direction). While often performed in just this order, many
phase orderings are possible in phase-decoupled code generation, visualized by the paths along
the edges of the four-dimensional hypercube from the processor-independent low-level IR to
final target code. Fully integrated code generation solves all tasks simultaneously as a monolithic
combined optimization problem, thus following the main diagonal (orange thick arrow)

discussed earlier. While instruction scheduling and register allocation need to know
about the cluster assignment of instructions and data, cluster assignment could profit
from knowing about free slots where transfer instructions could be placed, or free
registers where transfered copies could be held. Any phase decoupled approach may
result in bad code quality because the later phases are constrained by decisions made
in the early ones.

Hence, the integration of these subproblems to solve them as a single optimiza-
tion problem, as visualized in Fig. 20, is highly desirable, but unfortunately this
increases the overall complexity of code generation considerably. Despite the recent
improvements in general optimization problem solver technology, this ambitious
approach is limited in scope to basic blocks and loops. Other methods take a
more conservative approach based on a phase-decoupled code generator and make,
heuristically, an early phase aware of possibly different goals of later phases. For
instance, register pressure aware scheduling methods trade less instruction level
parallelism for shorter live ranges in program regions where register pressure is
predicted to be high, which can lead to better register allocation with less spill
code later.

Compiling for VLIW DSPs 1013

8.1 Integrated Code Generation at Basic Block Level

There exist several heuristic approaches that aim at a better integration of instruction
scheduling and register allocation [15, 42, 46, 67]. For the case of clustered VLIW
processors, the heuristic algorithm proposed by Kailas et al. [60] integrates cluster
assignment, register allocation, and instruction scheduling.

Heuristic methods that couple or integrate instruction scheduling and cluster
assignment were proposed by Özer et al. [88], Leupers [71], Chu et al. [24], and
by Nagpal and Srikant [84]. For example, Leupers [71] uses a simulated-annealing
based approach where cluster allocation and instruction scheduling are applied
alternatingly in an iterative optimization loop.

For the computationally intensive kernels of DSP application programs to be used
in an embedded product throughout its lifetime, the manufacturer is often willing to
afford spending a significant amount of time in optimizing the code during the final
compilation. However, there are only a few approaches that have the potential—
given sufficient time and space resources—to compute an optimal solution to an
integrated problem formulation, mostly combining local scheduling and register
allocation [10, 61, 69].

Some of these approaches are also able to partially integrate instruction selection
problems, even though for rather restricted machine models. For instance, Wilson
et al. [103] consider architectures with a single, non-pipelined ALU, two non-
pipelined parallel load/store/move units, and a homogeneous set of general-purpose
registers. Araujo and Malik [7] consider integrated code generation for expression
trees with a machine model where the capacity of each sort of memory resource
(register classes or memory blocks) is either one or infinity, a class that includes, for
instance, the TI C25.

The integrated method adopted in the retargetable framework AVIV [53] for
clustered VLIW architectures builds an extended data flow graph representation of
the basic block that explicitly represents all alternatives for implementation; then, a
branch-and-bound heuristic selects an alternative among all representations that is
optimized for code size.

Chang et al. [21] use integer linear programming for combined instruction
scheduling and register allocation with spill code generation for non-pipelined, non-
clustered multi-issue architectures.

Kessler and Bednarski [63] propose a dynamic programming algorithm for fully
integrated code generation for clustered and non-clustered VLIW architectures at
the basic block level, which was implemented in the retargetable integrated code
generator OPTIMIST. Bednarski and Kessler [11] and Eriksson et al. [34, 36] solve
the problem with integer linear programming; the latter work also gives a heuristic
approach based on a genetic algorithm.

Castañeda-Lozano et al. [19] present a method that works on the (linear) SSA
form and applies constraint programming to integrate register allocation including
ultimate coalescing and spill code optimization with instruction scheduling for non-
clustered VLIW architectures.

1014 C. W. Kessler

8.2 Loop-Level Integrated Code Generation

There exist several heuristic algorithms for modulo scheduling that attempt to
reduce register pressure, such as Hypernode Resource Modulo Scheduling [76]
and Swing Modulo Scheduling [75]. Nyström and Eichenberger [87] couple cluster
assignment and modulo scheduling for clustered VLIW architectures. Codina et
al. [25] give a heuristic method for modulo scheduling integrated with register
allocation and spill code generation for clustered VLIW processors. Zalamea et al.
[107] consider the integration of register pressure aware modulo scheduling with
register allocation, cluster assignment and spilling for clustered VLIW processors
and present an iterative heuristic algorithm with backtracking. Aleta et al. [3] use
a phase-coupled heuristic approach to cluster-assignment and modulo scheduling
that also considers replication of instructions for reduced inter-cluster communi-
cation. Kim and Krall [66] present an iterative heuristic approach that couples
modulo scheduling and cluster assignment heuristics for the ’C64x architecture,
implemented in the LLVM compiler framework. Stotzer and Leiss [96] propose a
preprocessing transformation for modulo scheduling for the ’C6x clustered VLIW
DSP architecture that attempts to reduce self-overlapping cyclic live ranges in a
preprocessing phase and thereby eliminate the need for modulo variable expansion
or rotating register files.

Eisenbeis and Sawaya [32] propose an integer linear programming method for
modulo scheduling integrated with register allocation, which gives optimal results
if the number of schedule slots is fixed. Nagarakatte and Govindarajan [83] provide
an optimal method for integrating register allocation and spill code generation with
modulo scheduling for non-clustered architectures. Eriksson and Kessler [34, 35]
give an integer linear programming method for optimal, fully integrated code
generation for loops, combining modulo scheduling with instruction selection,
cluster assignment, register allocation and spill code generation, for clustered VLIW
architectures.

9 Concluding Remarks

Compilers for VLIW DSP processors need to apply a considerable amount of
advanced optimizations to achieve code quality comparable to hand-written code.
Current advances in general optimization problem solver technology are encourag-
ing, and heuristic techniques developed for standard compilers are being comple-
mented by more aggressive optimizations. For small and medium sized program
parts, even optimal solutions are within reach. Also, most problems in code
generation are strongly interdependent and should be considered together in an
integrated or at least phase-coupled way to avoid poor code quality due to phase
ordering effects. We expect further improvements in optimized and integrated code
generation techniques for VLIW DSPs in the near future.

Compiling for VLIW DSPs 1015

Trademarks C62x, C64x, C66x, C67x, VelociTI, TMS320C62x, KeyStone are
trademarks of Texas Instruments. Hexagon is a trademark of Qualcomm. Itanium
is a trademark of Intel. MPPA is a trademark of Kalray. ST200 is a trademark of
STMicroelectronics. TigerSHARC is a trademark of Analog Devices. TriMedia is a
trademark of NXP. Xentium is a trademark of Recore.

Acknowledgements The author thanks Mattias Eriksson and Dake Liu for discussions and
commenting on a draft of this chapter. The author also thanks Eric Stotzer from Texas Instruments
for interesting discussions about code generation for the TI ’C6x DSP processor family.

This work was funded by Vetenskapsrådet (project Integrated Software Pipelining), SSF
(project DSP platform for emerging telecommunication and multimedia) and by SeRC, Parallel
Software and Data Engineering (www.e-science.se).

References

1. Alfred V. Aho, Mahadevan Ganapathi, and Steven W.K. Tjiang. Code Generation Using Tree
Matching and Dynamic Programming. ACM Transactions on Programming Languages and
Systems, 11(4):491–516, October 1989.

2. Alexander Aiken and Alexandru Nicolau. Optimal loop parallelization. SIGPLAN Notices,
23(7):308–317, July 1988.

3. Alex Aleta, Josep M. Codina, Jesus Sanchez, Antonio Gonzalez, and David Kaeli. AGAMOS:
A graph-based approach to modulo scheduling for clustered microarchitectures. IEEE
Transactions on Computers, 58(6):770–783, June 2009.

4. Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software pipelining.
ACM Computing Surveys, 27(3), September 1995.

5. Analog Devices. TigerSHARC embedded processor ADSP-TS201S. Data sheet, www.
analog.com/en/embedded-processing-dsp/tigersharc, 2006.

6. Andrew W. Appel and Lal George. Optimal Spilling for CISC Machines with Few Registers.
In Proc. ACM conf. on Programming language design and implementation, pages 243–253.
ACM Press, 2001.

7. Guido Araujo and Sharad Malik. Optimal code generation for embedded memory non-
homogeneous register architectures. In Proc. 7th Int. Symposium on System Synthesis, pages
36–41, September 1995.

8. Rosa M. Badia, Fermin Sanchez, and Jordi Cortadella. OSP: Optimal Software Pipelining
with Minimum Register Pressure. Technical Report UPC-DAC-1996-25, DAC Dept.
d’arquitectura de Computadors, Univ. Polytecnica de Catalunya, Barcelona, Campus Nord.
Modul D6, E-08071 Barcelona, Spain, June 1996.

9. Vasanth Bala and Norman Rubin. Efficient instruction scheduling using finite state automata.
In Proc. 28th int. symp. on miocroarchitecture (MICRO-28), pages 46–56. IEEE, 1995.

10. Steven Bashford and Rainer Leupers. Phase-coupled mapping of data flow graphs to irregular
data paths. Design Automation for Embedded Systems (DAES), 4(2/3):119–165, 1999.

11. Andrzej Bednarski and Christoph Kessler. Optimal integrated VLIW code generation with
integer linear programming. In Proc. Int. Euro-Par 2006 Conference. Springer LNCS, August
2006.

12. Mirza Beg and Peter van Beek. A constraint programming approach for instruction
assignment. In Proc. Int. Workshop on Interaction between Compilers and Computer
Architectures (INTERACT-15), pp. 25–34, February 2011.

13. D. Bernstein, M.C. Golumbic, Y. Mansour, R.Y. Pinter, D.Q. Goldin, H. Krawczyk, and
I. Nahshon. Spill code minimization techniques for optimizing compilers. In Proc. Int. Conf.
on Progr. Lang. Design and Implem., pages 258–263, 1989.

www.e-science.se
www.analog.com/en/embedded-processing-dsp/tigersharc
www.analog.com/en/embedded-processing-dsp/tigersharc

1016 C. W. Kessler

14. F. Bouchez, A. Darte, C. Guillon, and F. Rastello. Register allocation: what does the NP-
completeness proof of Chaitin et al. really prove? [. . .]. In Proc. 19th int. workshop on
languages and compilers for parallel computing, New Orleans, November 2006.

15. Thomas S. Brasier, Philip H. Sweany, Steven J. Beaty, and Steve Carr. Craig: A practical
framework for combining instruction scheduling and register assignment. In Proc. Int. Conf.
on Parallel Architectures and Compilation Techniques (PACT’95), 1995.

16. Preston Briggs, Keith Cooper, Ken Kennedy, and Linda Torczon. Coloring heuristics for
register allocation. In Proc. Int. Conf. on Progr. Lang. Design and Implem., pages 275–284,
1989.

17. Preston Briggs, Keith Cooper, and Linda Torczon. Rematerialization. In Proc. Int. Conf. on
Progr. Lang. Design and Implem., pages 311–321, 1992.

18. Philip Brisk, Ajay K. Verma, and Paolo Ienne. Optimistic chordal coloring: a coalescing
heuristic for SSA form programs. Des. Autom. Embed. Syst., 13:115–137, 2009.

19. Roberto Castañeda-Lozano, Mats Carlsson, Gabriel Hjort-Blindell and Christian Schulte.
Combinatorial spill code optimization and ultimate coalescing. In Proc. LCTES’14, pp. 23–
32, June 2014.

20. G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein.
Register allocation via coloring. Computer Languages, 6:47–57, 1981.

21. Chia-Ming Chang, Chien-Ming Chen, and Chung-Ta King. Using integer linear programming
for instruction scheduling and register allocation in multi-issue processors. Computers
Mathematics and Applications, 34(9):1–14, 1997.

22. Chung-Kai Chen, Ling-Hua Tseng, Shih-Chang Chen, Young-Jia Lin, Yi-Ping You, Chia-Han
Lu, and Jenq-Kuen Lee. Enabling compiler flow for embedded VLIW DSP processors with
distributed register files. In Proc. LCTES’07, pages 146–148. ACM, 2007.

23. Hong-Chich Chou and Chung-Ping Chung. An Optimal Instruction Scheduler for Superscalar
Processors. IEEE Trans. on Parallel and Distr. Syst., 6(3):303–313, 1995.

24. Michael Chu, Kevin Fan, and Scott Mahlke. Region-based hierarchical operation partitioning
for multicluster processors. In Proc. Int. Conf. on Progr. Lang. Design and Implem.
(PLDI’03), pp. 300–311, ACM, June 2003.

25. Josep M. Codina, Jesus Sánchez, and Antonio González. A unified modulo scheduling and
register allocation technique for clustered processors. In Proc. PACT-2001, September 2001.

26. Edward S. Davidson, Leonard E. Shar, A. Thampy Thomas, and Janak H. Patel. Effective
control for pipelined computers. In Proc. Spring COMPCON75 Digest of Papers, pages 181–
184. IEEE Computer Society, February 1975.

27. Giuseppe Desoli. Instruction assignment for clustered VLIW DSP compilers: a new approach.
Technical Report HPL-98-13, HP Laboratories Cambridge, February 1998.

28. Benoit Dupont de Dinechin. Kalray MPPA® Massively Parallel Processor Array. Slide set,
Hot Chips 27 Symposium, IEEE, August 2015.

29. Dietmar Ebner. SSA-based code generation techniques for embedded architectures. PhD
thesis, Technische Universität Wien, Vienna, Austria, June 2009.

30. Erik Eckstein, Oliver König, and Bernhard Scholz. Code instruction selection based on SSA-
graphs. In A. Krall, editor, Proc. SCOPES-2003, Springer LNCS 2826, pages 49–65, 2003.

31. Alexandre E. Eichenberger and Edward S. Davidson. A reduced multipipeline machine
description that preserves scheduling constraints. In Proc. Int. Conf. on Progr. Lang. Design
and Implem. (PLDI’96), pages 12–22, New York, NY, USA, 1996. ACM Press.

32. Christine Eisenbeis and Antoine Sawaya. Optimal loop parallelization under register
constraints. In Proc. 6th Workshop on Compilers for Parallel Computers (CPC’96), pages
245–259, December 1996.

33. John Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge, MA, 1986.
34. Mattias Eriksson and Christoph Kessler. Integrated Code Generation for Loops. ACM

Transactions on Embedded Computing Systems 11S(1), Article 19, 24 pages, ACM, June
2012.

35. Mattias Eriksson and Christoph Kessler. Integrated modulo scheduling for clustered VLIW
architectures. In Proc. HiPEAC-2009 High-Performance and Embedded Architecture and
Compilers, Paphos, Cyprus, pages 65–79. Springer LNCS 5409, January 2009.

Compiling for VLIW DSPs 1017

36. Mattias Eriksson, Oskar Skoog, and Christoph Kessler. Optimal vs. heuristic integrated code
generation for clustered VLIW architectures. In Proc. 11th int. workshop on software and
compilers for embedded systems (SCOPES’08). ACM, 2008.

37. M. Anton Ertl. Optimal Code Selection in DAGs. In Proc. Int. Symposium on Principles of
Programming Languages (POPL’99). ACM, 1999.

38. Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Trans. Comput., C–30(7):478–490, July 1981.

39. Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing: a VLIW
approach to architecture, compilers and tools. Elsevier / Morgan Kaufmann, 2005.

40. Björn Franke. C Compilers and Code Optimization for DSPs. In S. S. Bhattacharyya, E. F.
Deprettere, R. Leupers, and J. Takala, eds., Handbook of Signal Processing Systems, Second
Edition, Springer 2012.

41. Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a Simple,
Efficient Code Generator Generator. Letters of Programming Languages and Systems,
1(3):213–226, September 1992.

42. Stefan M. Freudenberger and John C. Ruttenberg. Phase ordering of register allocation and
instruction scheduling. In Code Generation: Concepts, Tools, Techniques [44], pages 146–
170, 1992.

43. Anup Gangwar, M. Balakrishnan, and Anshul Kumar. Impact of intercluster communication
mechanisms on ILP in clustered VLIW architectures. ACM Trans. Des. Autom. Electron.
Syst., 12(1):1, 2007.

44. Robert Giegerich and Susan L. Graham, editors. Code Generation - Concepts, Tools,
Techniques. Springer Workshops in Computing, 1992.

45. R.S. Glanville and S.L. Graham. A New Method for Compiler Code Generation. In Proc. Int.
Symposium on Principles of Programming Languages, pages 231–240, January 1978.

46. James R. Goodman and Wei-Chung Hsu. Code scheduling and register allocation in large
basic blocks. In Proc. ACM Int. Conf. on Supercomputing, pages 442–452. ACM press, July
1988.

47. David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register allocations
using 0–1 integer programming. Softw. Pract. Exper., 26(8):929–965, 1996.

48. R. Govindarajan, Erik Altman, and Guang Gao. A framework for resource-constrained
rate-optimal software pipelining. IEEE Trans. Parallel and Distr. Syst., 7(11):1133–1149,
November 1996.

49. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, November 1966.

50. Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for optimal coalescing. In
Proc. 16th int. conf. on compiler construction, pages 111–125, March 2007.

51. Sebastian Hack and Gerhard Goos. Optimal register allocation for SSA-form programs in
polynomial time. Information Processing Letters, 98:150–155, 2006.

52. Todd Hahn, Eric Stotzer, Dineel Sule, and Mike Asal. Compilation strategies for reducing
code size on a VLIW processor with variable length instructions. In Proc. HiPEAC’08
conference, pages 147–160. Springer LNCS 4917, 2008.

53. Silvina Hanono and Srinivas Devadas. Instruction scheduling, resource allocation, and
scheduling in the AVIV retargetable code generator. In Proc. Design Automation Conf. ACM,
1998.

54. W. A. Havanki. Treegion scheduling for VLIW processors. M.S. thesis, Dept. Electrical and
Computer Engineering, North Carolina State Univ., Raleigh, NC, USA, 1997.

55. Gabriel Hjort-Blindell. Instruction Selection – Principles, Methods, and Applications.
Springer, 2016.

56. Gabriel Hjort-Blindell, Mats Carlsson, Roberto Castaneda-Lozano, and Christian Schulte.
Complete and practical univeral instruction selection. ACM Trans. on Embedded Computing
Systems (TECS), 16(5s), Art. 119, Sep. 2017

57. L.P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation. Journal
of the ACM, 13(1):43–61, January 1966.

1018 C. W. Kessler

58. Wei-Chung Hsu, Charles N. Fischer, and James R. Goodman. On the minimization of
loads/stores in local register allocation. IEEE Trans. Softw. Eng., 15(10):1252–1262, October
1989.

59. Wen-Mei Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter,
Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E.
Haab, John G. Holm, and Daniel M. Lavery. The superblock: an effective technique for
VLIW and superscalar compilation. J. Supercomput., 7(1-2):229–248, 1993.

60. Krishnan Kailas, Kemal Ebcioglu, and Ashok Agrawala. CARS: A new code generation
framework for clustered ILP processors. In Proc. 7th Int. Symp. on High-Performance
Computer Architecture (HPCA’01), pages 133–143. IEEE Computer Society, June 2001.

61. Daniel Kästner. Retargetable Postpass Optimisations by Integer Linear Programming. PhD
thesis, Universität des Saarlandes, Saarbrücken, Germany, 2000.

62. Christoph Kessler and Andrzej Bednarski. Optimal integrated code generation for clustered
VLIW architectures. In Proc. ACM SIGPLAN Conf. on Languages, Compilers and Tools for
Embedded Systems / Software and Compilers for Embedded Systems, LCTES-SCOPES’2002.
ACM, June 2002.

63. Christoph Kessler and Andrzej Bednarski. Optimal integrated code generation for VLIW
architectures. Concurrency and Computation: Practice and Experience, 18:1353–1390, 2006.

64. Christoph Kessler, Andrzej Bednarski, and Mattias Eriksson. Classification and generation of
schedules for VLIW processors. Concurrency and Computation: Practice and Experience,
19:2369–2389, 2007.

65. Christoph W. Keßler. Scheduling Expression DAGs for Minimal Register Need. Computer
Languages, 24(1):33–53, September 1998.

66. Nikolai Kim and Andreas Krall. Integrated modulo scheduling and cluster assignment for TI
TMS320C64x+ architecture. In Proc. 11th Worksh. on Optim. for DSP and Embedded Syst.
(ODES’14), pp. 25–32, ACM, 2014.

67. Tokuzo Kiyohara and John C. Gyllenhaal. Code scheduling for VLIW/superscalar processors
with limited register files. In Proc. 25th int. symp. on miocroarchitecture (MICRO-25). IEEE
CS Press, 1992.

68. Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines.
In Proc. CC’88, pages 318–328, July 1988.

69. Rainer Leupers. Retargetable Code Generation for Digital Signal Processors. Kluwer, 1997.
70. Rainer Leupers. Code Optimization Techniques for Embedded Processors. Kluwer, 2000.
71. Rainer Leupers. Instruction scheduling for clustered VLIW DSPs. In Proc. PACT’00 int.

conference on parallel architectures and compilation. IEEE Computer Society, 2000.
72. Rainer Leupers and Steven Bashford. Graph-based code selection techniques for embedded

processors. ACM TODAES, 5(4):794–814, October 2000.
73. Rainer Leupers and Peter Marwedel. Time-constrained code compaction for DSPs. IEEE

Transactions on VLSI Systems, 5(1):112–122, 1997.
74. Dake Liu. Embedded DSP processor design. Morgan Kaufmann, 2008.
75. Josep Llosa, Antonio Gonzalez, Mateo Valero, and Eduard Ayguade. Swing Modulo

Scheduling: A Lifetime-Sensitive Approach. In Proc. PACT’96 conference, pages 80–86.
IEEE, 1996.

76. Josep Llosa, Mateo Valero, Eduard Ayguade, and Antonio Gonzalez. Hypernode reduction
modulo scheduling. In Proc. 28th int. symp. on miocroarchitecture (MICRO-28), 1995.

77. M. Lorenz and P. Marwedel. Phase coupled code generation for DSPs using a genetic
algorithm. In Proc. conf. on design automation and test in Europe (DATE’04), pages 1270–
1275, 2004.

78. Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bringmann.
Effective compiler support for predicated execution using the hyperblock. In Proc. 25th int.
symp. on microarchitecture (MICRO-25), pages 45–54, December 1992.

79. Abid M. Malik, Michael Chase, Tyrel Russell, and Peter van Beek. An application of
constraint programming to superblock instruction scheduling. In Proc. 14th Int. Conf. on
Principles and Practice of Constraint Programming, pages 97–111, September 2008.

Compiling for VLIW DSPs 1019

80. Waleed M. Meleis and Edward D. Davidson. Dual-issue scheduling with spills for binary
trees. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pages 678 – 686. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

81. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

82. Thomas Müller. Employing finite automata for resource scheduling. In Proc. 26th int. symp.
on microarchitecture (MICRO-26), pages 12–20. IEEE, December 1993.

83. S. G. Nagarakatte and R. Govindarajan. Register allocation and optimal spill code scheduling
in software pipelined loops using 0-1 integer linear programming formulation. In Proc. int.
conf. on compiler construction (CC-2007), pages 126–140. Springer LNCS 4420, 2007.

84. Rahul Nagpal and Y. N. Srikant. Integrated temporal and spatial scheduling for extended
operand clustered VLIW processors. In Proc. 1st conf. on Computing Frontiers, pages 457–
470. ACM Press, 2004.

85. Steven Novack and Alexandru Nicolau. Mutation scheduling: A unified approach to
compiling for fine-grained parallelism. In Proc. Workshop on compilers and languages for
parallel computers (LCPC’94), pages 16–30. Springer LNCS 892, 1994.

86. NXP. Trimedia TM-1000. Data sheet, www.nxp.com, 1998.
87. Erik Nyström and Alexandre E. Eichenberger. Effective cluster assignment for modulo

scheduling. In Proc. 31st annual ACM/IEEE Int. symposium on microarchitecture (MICRO-
31), IEEE CS Press, 1998.

88. Emre Özer, Sanjeev Banerjia, and Thomas M. Conte. Unified assign and schedule: a new
approach to scheduling for clustered register file microarchitectures. In Proc. 31st annual
ACM/IEEE Int. Symposium on Microarchitecture, pages 308–315. IEEE CS Press, 1998.

89. Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Transactions
on Programming Languages and Systems, 21(5), September 1999.

90. Todd A. Proebsting and Christopher W. Fraser. Detecting pipeline structural hazards quickly.
In Proc. 21st symp. on principles of programming languages (POPL’94), pages 280–286.
ACM Press, 1994.

91. Qualcomm Technologies, Inc. Hexagon DSP Processor. Qualcomm Devel-
oper Network, https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor,
last accessed March 2017

92. B. Rau and C. Glaeser. Some scheduling techniques and an easily schedulable horizontal
architecture for high performance scientific computing. In Proc. 14th Annual Workshop on
Microprogramming, pages 183–198, 1981.

93. B. Ramakrishna Rau, Vinod Kathail, and Shail Aditya. Machine-description driven compilers
for EPIC and VLIW processors. Design Automation for Embedded Systems, 4:71–118, 1999.
Appeared also as technical report HPL-98-40 of HP labs, Sep. 1998.

94. Recore Systems. Xentium VLIW DSP IP core. Product brief, http://www.recoresystems.com/
fileadmin/downloads/Product_briefs/2016-1.0_Xentium_Product_Brief.pdf, 2016.

95. Richard Scales. Software development techniques for the TMS320C6201 DSP. Texas
Instruments Application Report SPRA481, www.ti.com, December 1998.

96. Eric J. Stotzer and Ernst L. Leiss. Modulo scheduling without overlapped lifetimes. In Proc.
LCTES-2009, pages 1–10. ACM, June 2009.

97. Texas Instruments, Inc. TMS320C62x DSP CPU and instruction set reference guide.
Document SPRU731A, www.ti.com, 2010.

98. Texas Instruments, Inc. TMS320C66x DSP CPU and instruction set reference guide.
Document SPRUGH7, www.ti.com, Nov. 2010.

99. Texas Instruments, Inc. Optimizing loops on the C66x DSP. Application report SPRABG7,
www.ti.com, Nov. 2010.

100. Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and Speed in Linear-scan
Register Allocation. In Proc. ACM SIGPLAN Conf. on Progr. Lang. Design and Implem.
(PLDI’98), pages 142–151, 1998.

101. Steven R. Vegdahl. A Dynamic-Programming Technique for Compacting Loops. In Proc.
25th annual ACM/IEEE Int. symposium on microarchitecture (MICRO-25), pages 180–188.
IEEE CS Press, 1992.

www.nxp.com
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
http://www.recoresystems.com/fileadmin/downloads/Product_briefs/2016-1.0_Xentium_Product_Brief.pdf
http://www.recoresystems.com/fileadmin/downloads/Product_briefs/2016-1.0_Xentium_Product_Brief.pdf
www.ti.com
www.ti.com
www.ti.com
www.ti.com

1020 C. W. Kessler

102. Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling using integer
programming. In Proc. Int. Conf. on Progr. Lang. Design and Implem. (PLDI’00), pages
121–133, 2000.

103. Tom Wilson, Gary Grewal, Ben Halley, and Dilip Banerji. An integrated approach to
retargetable code generation. In Proc. Int. Symposium on High-Level Synthesis, pages 70–
75, May 1994.

104. Sebastian Winkel. Optimal global instruction scheduling for the Itanium processor architec-
ture. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, September 2004.

105. Sebastian Winkel. Optimal versus heuristic global code scheduling. In Proc. 40th annual
ACM/IEEE Int. symposium on microarchitecture (MICRO-40), pages 43–55, 2007.

106. Hongbo Yang, Ramaswamy Govindarajan, Guang R. Gao, George Cai, and Ziang Hu.
Exploiting schedule slacks for rate-optimal power-minimum software pipelining. In Proc.
Workshop on Compilers and Operating Systems for Low Power (COLP-2002), September
2002.

107. Javier Zalamea, Josep Llosa, Eduard Ayguade, and Mateo Valero. Modulo scheduling with
integrated register spilling for clustered VLIW architectures. In Proc. ACM/IEEE Int. symp.
on microarchitecture (MICRO-34), pages 160–169, 2001.

108. Thomas Zeitlhofer and Bernhard Wess. Operation scheduling for parallel functional units
using genetic algorithms. In Proc. Int. Conf. on ICASSP ’99: Proceedings of the Acoustics,
Speech, and Signal Processing (ICASSP’99), pages 1997–2000. IEEE Computer Society,
1999.

Software Compilation Techniques for
Heterogeneous Embedded Multi-Core
Systems

Rainer Leupers, Miguel Angel Aguilar, Jeronimo Castrillon,
and Weihua Sheng

Abstract The increasing demands of modern embedded systems, such as high-
performance and energy-efficiency, have motivated the use of heterogeneous multi-
core platforms enabled by Multiprocessor System-on-Chips (MPSoCs). To fully
exploit the power of these platforms, new tools are needed to address the increasing
software complexity to achieve a high productivity. An MPSoC compiler is a
tool-chain to tackle the problems of application modeling, platform description,
software parallelization, software distribution and code generation for an efficient
usage of the target platform. This chapter discusses various aspects of compilers for
heterogeneous embedded multi-core systems, using the well-established single-core
C compiler technology as a baseline for comparison. After a brief introduction to the
MPSoC compiler technology, the important ingredients of the compilation process
are explained in detail. Finally, a number of case studies from academia and industry
are presented to illustrate the concepts discussed in this chapter.

1 Introduction

1.1 MPSoCs and MPSoC Compilers

The current design trend in embedded systems show that heterogeneous Multipro-
cessor System-on-Chip (MPSoC) is the most promising way to keep on exploiting

R. Leupers (�) · M. A. Aguilar
Institute for Communication Technologies and Embedded Systems, RWTH Aachen University,
Aachen, Germany
e-mail: leupers@ice.rwth-aachen.de; aguilar@ice.rwth-aachen.de

J. Castrillon
Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
e-mail: jeronimo.castrillon@tu-dresden.de

W. Sheng
Silexica GmbH, Köln, Germany
e-mail: sheng@silexica.com

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_28

1021

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_28&domain=pdf
mailto:leupers@ice.rwth-aachen.de
mailto:aguilar@ice.rwth-aachen.de
mailto:jeronimo.castrillon@tu-dresden.de
mailto:sheng@silexica.com
https://doi.org/10.1007/978-3-319-91734-4_28

1022 R. Leupers et al.

the high level of integration provided by the semiconductor technology and, at the
same time, matching the constraints imposed by the embedded systems market in
terms of performance and power consumption. Looking at today’s smartphones, it is
clear to see that they are integrated with a great number of functions, such as camera,
personal digital assistant applications, voice/data communications and multi-band
wireless standards. Moreover, like many other consumer electronic products, many
non-functional parameters are evenly critical for their successes in the market, e.g.,
energy consumption and form factor. All these requirements need the emergence of
heterogeneous MPSoC architectures. They usually consist of programmable cores
of various types, special hardware accelerators and efficient Networks-on-Chips
(NoCs), to execute a large amount of complex software, in order to catch up with
the next wave of integration.

Compared to high-performance computing systems in supercomputers and com-
puter clusters, embedded computing systems require a different set of constraints
that need to be taken into consideration during the design process:

• Real-time constraints: Real-time performance is key to the embedded devices,
especially in the signal processing domain, such as wireless and multimedia.
Meeting real-time constraints requires not only the hardware being capable
of satisfying the demands of high-performance computations, but also the
predictable behavior of the running applications.

• Energy-efficiency: Most mobile devices are battery powered, therefore, energy-
efficiency is one of the most important factors during the system design.

• Area-efficiency: How to efficiently use the limited chip area becomes critical,
especially for consumer electronics, where portability is a must-to-have.

• Application Domain: Unlike in general-purpose computing, embedded products
usually target at specific market segments, which in turn ask for the specialization
of the system design tailored for specific applications.

With these design criteria, heterogeneous MPSoC architectures are called to
outperform the previous single-core or homogeneous solutions. For a detailed
discussion on the architectures, the readers are referred to Chapter [15]. MPSoC
design methodologies, also referred as Electronic System-Level (ESL) tools, are
growing in importance to tackle the challenge of exploring the exploding design
space brought by the heterogeneity [53]. Many different tools are required for
completing a successful MPSoC design, or a series of MPSoC product generations,
such as the Texas Instruments Keystone family [73]. The MPSoC compiler (or
Multi-Core Compiler) is one important tool among those, which is the main focus
of this chapter.

First of all, what is an MPSoC Compiler? The large majority of the current
compilers are targeted to single-core, and the design and implementation of special
compilers optimized for various core types (RISC, DSP, VLIW, among others)
has been well understood and practiced. Now, the trend moving to MPSoCs
raises the level of complexity of the compilers targeting these platforms. The
problems of application modeling, platform description, software parallelization,
software distribution, and code generation for an efficient usage of these platforms,

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1023

still remain as open issues both in academia and industry [17]. In this chapter,
MPSoC Compiler is defined as the tool-chain to tackle those problems for a given
(pre-)verified MPSoC platform.

It is worth mentioning that this definition of MPSoC compiler is slightly
different from the term software synthesis as it appears in the hardware-software co-
design community [28]. In this context, software synthesis emphasizes that starting
from a single high-level system specification, the tools perform hardware/software
partitioning and automatically synthesize the software part so as to meet the
system performance requirements of the specifications. The flow is also called an
application-driven “top-down” design flow. In contrast, the MPSoC compiler is
used mostly in platform-based design, where the semiconductor suppliers evolve
the MPSoC designs in generations targeting a specific application domain. The
function of an MPSoC compiler is very close to that of a single-core compiler, where
the compiler translates the high-level programming language (e.g., C/C++) into the
machine binary code. The difference is that an MPSoC compiler needs to perform
additional (and more complex) jobs over the single-core one, such as software
parallelization and distribution, as the underlying MPSoC platform is by orders
of magnitude more complex. Although, software synthesis and MPSoC compilers
share some similarities, the major difference is that they exist in the context of
different methodologies, thus focusing on different objectives [18].

The rest of the chapter is organized as follows. Section 1.2 briefly introduces
the challenges of building MPSoC compilers, using a comparison of an MPSoC
compiler to a single-core compiler, followed by Sect. 2, where detailed discussions
are carried out. Finally, Sect. 3 looks into how the challenges are tackled by
presenting case studies of MPSoC compilers from the academia and the industry.

1.2 Challenges of Building MPSoC Compilers

Before the multi-core era, single-core systems have been very successful in creating
a comfortable and convenient programming environment for software developers.
The success is largely due to the fact that the sequential programming model is very
close to the natural way humans think and that it has been taught for decades in basic
engineering courses. Also, the compilers of high-level programming languages
(e.g., C/C++) for single-core are well studied, which hide nearly all hardware details
from the programmers as a holistic tool [34]. User-friendly graphical integrated
development environments (IDEs) like Eclipse [1] and debugging tools like gdb [2]
also contribute to the ecosystem of hardware and software in the single-core era.

The complexity of programming and compiling for MPSoC architectures has
greatly increased compared to single-core. The reasons are manifold and the most
important ones are as follows. On the one hand, MPSoCs inherently ask for
applications being written in parallel programming models so as to efficiently utilize
the hardware resources. Parallel programming (or thinking) has been proven to be
difficult for programmers, despite years of efforts invested in high-performance

1024 R. Leupers et al.

computing. On the other hand, the heterogeneity of MPSoC architectures requires
the compilation process to be ad-hoc. The programming models for different
Processing Elements (PEs) can be different. The granularity of the parallelism might
also vary. The compiler tool-chains can originate from different vendors for PEs.
All those make MPSoC compilation an extremely sophisticated process, which
is most likely not anymore “the holistic compiler” for the end users. Neither the
software tool-chains are fully prepared to handle MPSoCs, nor productive multi-
core debugging solutions are available. The software tool-chains are not yet fully
prepared to well handle MPSoC systems, plus the lack of productive multi-core
debugging solutions.

An MPSoC compiler, as the key tool to enable the power of MPSoCs, is known
to be difficult to build. A brief list of the fundamental challenges is provided below,
with an in-depth discussion in the following Sect. 2.

1. Programming Models: Evidently the transition to parallel programming models
impacts the MPSoC compiler fundamentally.

2. Platform Description: The traditional single-core compiler requires architecture
information, such as the instruction set and latency table in the backend to
perform code generation. In contrast, the MPSoC compiler needs another type
of platform description including further details, such as information about the
PEs and available communication resources. This information is used in multiple
phases of the compilation process beyond the backend.

3. Software Parallelization: While Instruction-Level Parallelism (ILP) is exploited
by single-core compilers, MPSoC compilers focus on a wider variety of forms of
parallelism, which are more coarse-grained.

4. Software Distribution: An MPSoC compiler distributes coarse-grained tasks (or
code blocks), while the single-core compiler performs this at instruction-level.

5. Code generation: It is yet another leaping complexity for the MPSoC compiler
to be able to generate the final binaries for heterogeneous PEs and the NoC
compared to generate the binary for a one-ISA architecture.

2 Foundation Elements of MPSoC Compilers

This section delves into the details of the problems mentioned in the introduction
of this chapter. The discussion is based on the general structure of a single-core
compiler, shown in Fig. 1. The issues that make the tasks of an MPSoC compiler
particularly challenging are highlighted, taking the single-core compiler technology
as a reference.

A single-core compiler is typically divided into three phases: the front end,
the middle end and the back end. The front end checks for the lexical, syntactic
and semantic correctness of the application. Its output is an abstract Intermediate
Representation (IR) of the application, which is suitable for optimizations and for
code generation in the following phases of the compiler. The middle end, sometimes

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1025

Fig. 1 Coarse view of a single-core compiler

Fig. 2 Coarse view of a MPSoC compiler

conceptually included within the front end, performs different analyses on the IR.
These analyses enable several target-independent optimizations that mainly aim
at improving the performance of the posterior generated code. The backend is in
charge of the actual code generation and is divided into phases as well. Typical
backend steps include code selection, register allocation and instruction scheduling.
These steps are machine dependent and therefore require a model of the target
architecture.

MPSoC compilers are also divided into phases in order to manage complexity.
The overall structure of the single-core compiler (in Fig. 1) will suffer some changes
though, as Fig. 2 shows. In general, an MPSoC compiler is also divided into
three phases: software parallelization, software distribution and code generation.
Throughout this section more details about these phases will be provided, to help
understanding the differences between single-core and MPSoC compilers.

2.1 Programming Models

The main entry for any compiler is a representation of an application using a
given programming model, as shown in Fig. 1. A programming model is a bridge
that provides humans access to the resources of the underlying hardware platform.
Designing such a model is a delicate art, in which hardware details are hidden for
the sake of productivity and usually at the cost of performance. In general, the more
details remain hidden, the harder the job of the compiler is to close the performance
gap. In this sense, a given programming model may reduce the work of the compiler

1026 R. Leupers et al.

a

b

c

Fig. 3 FIR implementation on different programming languages. (a) Matlab. (b) C. (c) DSP-C

but will never circumvent using one. Figure 3 shows an implementation of an FIR
filter using different programming languages representing different programming
models. This figure shows an example of the productivity-performance trade-off.
On one extreme, the Matlab implementation (Fig. 3a) features high simplicity
and no information of the underlying platform. The C implementation (Fig. 3b)
provides more information, having types and the memory model visible to the
programmer. On the other extreme, the DSP-C implementation (Fig. 3c) has explicit
memory bank allocation (through the memory qualifiers X and Y) and dedicated data
types (accum, fract). Programming at this level requires more knowledge and
careful thinking, but will probably lead to better performance. Without this explicit
information, a traditional C compiler would need to perform complex memory
disambiguation analysis in order to place the arrays in separate memory banks.

In [11], the authors classify programming models as being either hardware-
centric, application-centric or formalism-centric. Hardware-centric models strive
for efficiency and usually require a very experienced programmer (e.g., Intel IXP-C
[51]). Application-centric models strive for productivity allowing fast application
development cycles (e.g., Matlab [65], LabView [57]), and formalism-centric
models strive for safeness due to the fact of being verifiable (e.g., Actors [30]).
Practical programming models for embedded MPSoCs cannot pay the performance
overhead brought by a pure application-centric approach and will seldom restrict
programmability for the sake of verifiability. As a consequence, programming
models used in industry are typically hardware-centric and provide some means
to ease programmability, as will be discussed later in this section.

Orthogonal to the previous classification, programming models can be broadly
classified into sequential and parallel ones. The latter being of particular interest
for MPSoC programming and this chapter’s readers, though having its users
outnumbered by the sequential programming community. As a matter of fact, C

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1027

and C++ are still the top languages in the embedded domain [23], which have
underlying sequential semantics. Programmers have been educated for decades to
program sequentially. They find it difficult to describe an application in a parallel
manner, and when doing so, they introduce a myriad of (from their point of view)
unexpected errors. Apart from that, there are millions of lines of sequential legacy
code that will not be easily rewritten within a short period of time to make use
of the new parallel architectures. Parallel programming models for heterogeneous
architectures can be further classified as host-centric and non-host centric. In the
host-centric approach the PEs in the platform have specific roles, either as hosts
or accelerators. Here the execution is controlled by the hosts and eventually they
offload computationally intensive code blocks to specialized accelerators to improve
performance. In contrast, in the non-host centric approach code blocks are assigned
to PEs without assuming any specific role for each of them and the control flow is
distributed.

Compiling a sequential application, for example written in C, for a simple core is
a very mature field. Few people would program an application in assembly language
for a single issue embedded RISC processor, such as the ARM7 or the MIPS32. In
general, compiler technology has advanced greatly in the single-core domain. Sev-
eral optimizations have been proposed for superscalar processors [40], DSPs [49],
VLIW processors [24] and for exploiting Single Instruction Multiple Data (SIMD)
architectures [50]. Nonetheless, high performance routines for complex processor
architectures with complex memory hierarchies are still hand-optimized and are
usually provided by processor vendors as library functions. In the MPSoC era,
the optimization space is too vast to allow hand-crafted solutions across different
cores. The MPSoC compiler has to help the programmer to optimize the application,
possibly taking into account optimized routines for some of the processing elements.

In spite of the efforts invested in classical compiler technology, plain C program-
ming is not likely to be able to leverage the processing power of future MPSoCs.
When coding a parallel application in C, the parallelism is hidden due to the inherent
sequential semantics of the language and its centralized control flow. Retrieving this
parallelism requires complex dataflow and dependence analyses which are usually
NP-complete and sometimes even undecidable (see Sect. 2.3.2). For this reason
MPSoC compilers need also to cope with parallel programming models, some of
which will be introduced in the following.

2.1.1 Mainstream Parallel Programming Models

There are manifold parallel programming models. Modern parallel programming
models are built on top of traditional sequential languages like C or C++ by means
of compiler directives, libraries or language extensions. These models are usually
classified by the underlying memory architecture that they support; either shared
or distributed. They can be further classified by the parallel patterns that they
allow to express (see Sect. 2.3.3). Today a great majority of the mainstream parallel
programming models are industry standards, which have a solid tooling support and

1028 R. Leupers et al.

are constantly evolving to satisfy the needs of developers and to exploit the new
features of modern multi-core platforms. These programming models have their
roots in the High Performance Computing (HPC) community, however, they have
gained acceptance in the embedded domain [5, 41, 71, 74]. Prominent examples of
these models are presented in the following:

• POSIX Threads (Pthreads): This is a library-based shared memory parallel
programming model [69]. Pthreads is a low level approach, as the developer has
to explicitly create and destroy threads, partition the workload, map the threads
to cores and ensure a proper thread synchronization. The accesses to shared
data (critical sections) have to be carefully designed to avoid data races and
deadlocks. The protection to the critical sections can be achieved by means of
mutual exclusion (mutex) or semaphores.

• OpenMP: This is an industry standard parallel programming model for shared
memory systems based on compiler directives [3]. The use of compiler directives
implies minimal source code modifications in contrast to Pthreads. Moreover,
thread management in OpenMP is performed by a runtime system, which further
simplifies the challenging task of multi-core programming. Initially, OpenMP
focused on regular loop level parallelism for homogeneous multi-core platforms.
However, it was later extended to support both irregular parallelism by means its
tasking model, and heterogeneous platforms by means of its accelerator model.
The accelerator model is particular important for the embedded domain, as it
enables the designer to exploit all types of cores in heterogeneous MPSoC,
including DSPs [71, 74]. Furthermore, recent research efforts have confirmed the
applicability of OpenMP in the embedded domain, as it has been demonstrated
that it is feasible to use it in real time systems [77].

• OpenCL: This is a parallel programming model for heterogeneous systems,
which is also an industry standard [70]. OpenCL follows a host-centric approach
in which a host device (e.g., CPU) offloads data and computation typically
to accelerator devices (e.g., GPUs or DSPs). In this programming model,
computations are described as kernels, which are the basic units of execution
(e.g., one iteration of a parallel loop). Kernels are written in a language called
OpenCL C, which is simultaneously a subset and a superset of the C99 standard.
In addition, OpenCL offers an API that allows the host to manage data transfers
and kernel execution on the target devices. In the embedded domain OpenCL
has also gained acceptance, and it is already available for a wide variety of
heterogeneous embedded platforms [41, 74].

• MPI: This is a parallel programming model for distributed systems based on a
library. It relies on the message passing principle, where both point-to-point and
collective form communications are supported. MPI can be used in combination
with other parallel programming models for shared memory systems, such as
OpenMP. While MPI allows to exploit parallelism across nodes in a distributed
system, OpenMP allows to exploit parallelism within each node. This approach
is usually referred as hybrid programming [64]. MPI is currently the de facto
standard for distributed systems in HPC, and it has been also applied in the
embedded domain [5, 74].

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1029

a

c

b

Fig. 4 Example of concurrent MoCs (P: Process, A: Actor). (a) KPN. (b) SDF. (c) DDF

2.1.2 Dataflow Programming Models

Dataflow or streaming Models of Computation (MoCs) appear to be one promising
choice for describing signal processing applications. In dataflow programming
models, an application is represented as a graph. The nodes of this graph (also
called processes or actors) perform computation whereas the edges (also called
channels) are used to transfer data among nodes. These MoCs originated from
theoretical computer science for formally describing a computing system and
were initially used to compute bounds on complexity. MoCs were thereafter used
in the early 1980s to model VLSI circuits and only in the 1990s started to be
utilized for modeling parallel applications. Dataflow programming models based
on concurrent MoCs like Synchronous Dataflow (SDF) [46] and some extensions
(like Boolean Dataflow (BDF) [47]) have been deeply studied in [68]. More
general dataflow programming models based on Dynamic Dataflow (DDF) and
Kahn Process Networks (KPN) [36] MoC have also been proposed [44, 58] (see
also Chapters [12, 26]).

• KPN Programming Model: In this programming model, an application is
represented as a graph G = (V ,E) like the one in Fig. 4a. In such a graph, a
node p ∈ V is called process and represent computation. The edges represent
unbounded FIFO channels for processes communication by means of data items
or tokens. Processes can only be in one of two states: ready or blocked. The
blocked state can only be reached by reading from only one empty input
channel — blocking read semantics. A KPN is said to be determinate: the
history of tokens produced on the communication channels is independent of
the scheduling.

• DDF Programming Model: In this programming model, an application is also
represented as a graph G = (V ,E,R) with R a family of sets, one set for every
node in V . Edges have the same semantics as in the KPN model. Nodes are
called actors and do not feature the blocking read semantics of KPN. Instead,
every actor a ∈ V has a set of firing rules Ra ∈ R,Ra = {Ra,1, Ra,2, . . . }.

1030 R. Leupers et al.

A firing rule for an actor a ∈ V with p inputs is a p-tuple Ra,i = (c1, . . . , cp) of
conditions. A condition describes a sequence of tokens that has to be available at
the given input FIFO. Parks introduced a notation for such conditions in [61]. The
condition [X1,X2, . . . , Xn] requires n tokens with values X1,X2, . . . , Xn to be
available at the top of the input FIFO. The conditions [∗], [∗, ∗], [∗(1), . . . , ∗(m)]
require at least 1, 2 and m tokens respectively with arbitrary values to be available
at the input. The symbol ⊥ represents any input sequence, including an empty
FIFO. For an actor a to be in the ready state at least one of its firing rules need to
be satisfied. An example of a DDF graph is shown in Fig. 4c. In this example, the
actor a2 has three different firing rules. This actor is ready if there are at least two
tokens in input i1 and at least 1 token in input i2, or if the next token on input
i2 or i1 has value 0. Notice that more than one firing rule can be activated, in
this case the dataflow graph is said to be non-determinate.

• SDF Programming Model: An SDF can be seen as a simplification of DDF
model,1 in which an actor with p inputs has only one firing rule of the form
Ra,1 = (n1, . . . , np) with n ∈ N. Additionally, the amount of tokens produced
by one execution of an actor on every output is also fixed. An SDF can be defined
as a graph G = (V ,E,W) where W = {w1, . . . , w|E|} ⊂ N

3 associates three
integer constants we = (pe, ce, de) to every channel e = (a1, a2) ∈ E. pe

represents the number of tokens produced by every execution of actor a1, ce
represents the number of tokens consumed in every execution of actor a2 and de
represents the number of tokens (called delays) initially present on edge e. An
example of an SDF is shown in Fig. 4b with delays represented as dots on the
edges. For the SDF in the example, W = {(3, 1, 0), (6, 2, 0), (2, 3, 0), (1, 2, 2)}.
Different dataflow models differ in their expressiveness, some being more

general, some being more restrictive. By restricting the expressiveness, models
possess stronger formal properties (e.g., determinism) which make them more
amenable to analysis. For example, since the token consumption and production
of an SDF actor are known beforehand, it is possible for a compiler to compute a
plausible static schedule for an SDF. For a KPN instead, due to control dependent
access to channels, it is impossible to compute a pure static schedule.

Apart from explicitly exposing parallelism, dataflow programming models
became attractive mainly for two reasons. On the one hand, they are well-suited
for graphical programming, similar to the block diagrams used to describe signal
processing algorithms. On the other hand, some of the underlying MoC’s properties
facilitate the analysis performed by the tools. For example, channels explicitly
expose data dependencies among computing processes/actors, and they have a
distributed control flow which is easily mapped to different PEs.

To understand how dataflow models can potentially reduce the compilation
effort, an example of an application written in a sequential and in two parallel
forms is shown in Fig. 5. Let us assume that the KPN parallel specification in Fig. 5a

1Being more closely related to the so-called Computation Graphs [38].

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1031

a b

c

Fig. 5 KPN example. (a) C implementation. (b) A “Good” KPN representation. (c) A “Bad” KPN
representation

represents the desired output of a parallelizing compiler. In order to derive this KPN
from the sequential specification in Fig. 5b, complex analyses have to be performed.
For example, the compiler needs to identify that there is no dependency on array
A among lines 11 and 16 (i.e., between f2 and f3), which is a typical example
of dataflow analysis (see Sect. 2.3.4). Only for a restricted subset of C programs,
namely Static Affine Nested Loop Programs (SANLP), similar transformations to
that shown in Fig. 5 have been implemented in [78]. Therefore, starting from a
specification already parallel greatly simplifies the work of the compiler.

However, even with a parallel specification at hand, an MPSoC compiler has to
be able to look inside the nodes in order to attain higher performance. With the
applications becoming more and more complex, a compiler cannot completely rely
on the programmer’s knowledge when decomposing the application into blocks.
A block diagram can hide lots of parallelism in the interior of the blocks and
thus, computing nodes cannot always be considered as black boxes but rather as
gray/white boxes [52]. As an example of this, consider the KPN shown in Fig. 5a.
Assume that this parallel specification was written by a programmer to represent
the same application logic in Fig. 5a. This KPN might seem appropriate to a
programmer, because the communication is reduced (five instead of six edges).
However, if functionsf2 and f3 are time consuming, running them in parallel could
be advantageous. However, in this representation the parallelism remains hidden
inside block f2+f3.

1032 R. Leupers et al.

Summary
Currently, MPSoC compilers should support sequential programming models
as input, both because of the great amount of existing sequential legacy code
and because of the generations of programmers that were taught to program
sequentially. At the same time, the MPSoC compilers need to be aware of the
properties of the target parallel programming models, particularly the forms
of parallelism that they allow to express, as it will be discussed in Sect. 2.3.3.

2.2 Platform Description for MPSoC Compilers

After performing optimizations in the middle end, a single-core compiler backend
generates code for the target platform based on a model of it. Such a platform
model is also required by an MPSoC compiler, but in contrast to a single-core
compiler flow, the architecture model may also be used during multiple phases
of the compiler and not just by the backend, as Fig. 2 shows. For example, if the
programming model exposes some hardware details to the user, the front end needs
to be able to cope with that and eventually perform consistency checks. Besides,
some MPSoC optimizations in the middle end may need some information about
the target platform as discussed in Sect. 2.3. Traditionally an architecture model
describes:

• Available operations: In form of an abstract description of the Instruction Set
Architecture (ISA). This information is mainly used by the code selection phase.

• Available resources: A list of hardware resources such as registers and func-
tional units (in case of a superscalar or a VLIW). This information is used, for
example, by the register allocator and the scheduler.

• Communication links: Describe how data can be moved among functional units
and register files (e.g., cross paths in a cluster VLIW processor).

• Timing behavior: In form of latency and reservation tables. For each available
operation, the latency table tells the compiler how long it takes to generate
a result, whereas the reservation table tells the compiler which resources are
blocked and for how long. This information is mainly used to compute the
schedule.

In the case of an MPSoC, a platform description has to provide similar infor-
mation but at a different level. Instead of a representation of an ISA, the available
operations describe which kinds of processors and hardware accelerators are in the
platform. Instead of a list of functional units, the model provides a list of PEs
and a description of the memory subsystem. The communication links represent
no longer interconnections among functional units and register files, but possibly a
complex Network-On-Chip (NoC) that interconnects the PEs among them and with

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1033

the memory elements. Finally, the timing behavior has to be provided for individual
operations (instructions).

Usually, the platform description is a graph representation provided in a given
format (usually XML files, see Sect. 3 for practical examples). Recently, the Multi-
core Association has introduced a standard to specify multi-core platforms called
Software-Hardware Interface for Multi-Many-Core (SHIM) [56]. This standard
allows the abstraction of hardware properties that are key to enable multi-core tools.
The SHIM implementation is based on XML files that describe the core types and
the platform itself.

One of the main uses of the platform description is to enable the performance
estimation of applications. Getting the timing behavior of given code blocks running
on a particular MPSoC platform, is a major research topic and a requisite for
an MPSoC compiler. Several performance estimation techniques, are applied in
order to get specific execution times: Worst/Best/Average Case Execution Time
(W/B/ACET) [79]. These techniques can be roughly categorized as follows [16]:

• Analytical: Analytical or static performance estimation tries to find theoretical
bounds to the WCET, without actually executing the code. Using compiler
techniques, all possible control paths are analyzed and bounds are computed by
using an abstract model of the architecture. This task is particularly difficult in the
presence of caches and other non-deterministic architectural features. For such
architectures, the WCET might be too pessimistic and thus induces bad decisions
(e.g., wrong schedules). There are already some commercial tools available for
such purposes, aiT [4] is a good example.

• Emulation-based: The simulation time of cycle accurate models can be pro-
hibitively high. Typical simulation speeds range from 1 to 100 KIPS (Kilo
Instructions per Second). Therefore, some techniques emulate the timing behav-
ior of the target platform in the host machine without modeling every detail of
the processor by means of instrumentation. Source level timing estimation has
proven to be useful for simple architectures [33, 39], the accuracy for VLIW
or DSP processors is however not satisfactory. The authors in [25] use so-
called virtual back ends to perform timing estimation by emulating the effects of
the compiler back end and thus improving the accuracy of source level timing
estimation considerably. With these techniques, simulation speeds of up to 1
GIPS are achievable.

• Simulation-based: In this case the execution times are measured on a simulator.
Usually cycle accurate virtual platforms are used for this purpose [72]. Virtual
platforms allow full system simulation, including complex chip interconnects and
memory subsystems. Simulation-based models suffer from the context-subset
problem, i.e., the measurements depend on the selection of the inputs.

• Table-based: This is a performance estimation technique based on source code
instrumentation and a table with the costs of elementary processor operations.
The cost of executing every elementary operation is based on the cost provided
by the architecture model and the execution counts provided by the profiling
information resulting from the execution of the instrumented code. This approach

1034 R. Leupers et al.

allows to identify application hot spots and provides an early idea of the
application runtime. However, it is not very accurate, in particular for non-scalar
architectures such as VLIW.

Summary
Platform models for MPSoC compilers describe similar features to those of
traditional compilers but at a higher level. Processing elements and NoCs take
the place of functional units, register files and their interconnections. On an
MPSoC compiler, the platform model is no longer restricted to be used on the
back end but a subset of it may be used by the front end and the middle end.
Out of the information needed to describe the platform, the timing behavior
is the most challenging. This timing information is needed for performing
successfully software parallelization and distribution, as it will be described
in the next sections.

2.3 Software Parallelization

The software parallelization phase of an MPSoC compiler aims at identifying prof-
itable parallelization opportunities hidden in legacy sequential code. The following
sections will give more insights on the main challenges for software parallelization,
namely the selection of an intermediate representation, the granularity issue,
prominent parallel patterns and the problem of dataflow analysis.

2.3.1 Intermediate Representation (IR)

In a classical compiler, the front end translates application code into an Intermediate
Representation (IR). Complex constructs of the original high level programming
languages are lowered into the IR while keeping machine independence. The IR
serves as basis for performing analysis (e.g., control and data flow), upon which
many compiler optimizations can be performed. Although there is no de facto
standard for IRs, most compiler IRs use graph data structures to represent the
application. The fundamental analysis units used in traditional compilers are the
so-called Basic Blocks (BB), where a BB is defined as a maximal sequence of
consecutive statements in which flow of control enters at the beginning and leaves at
the end without halt or possibility of branching except at the end [10]. A procedure
or function is represented as a Control Flow Graph whose nodes are BBs and edges
represent the control transitions in the program. Data flow is analyzed inside a BB
and as a result a Data Flow Graph is produced, where nodes represent statements
(or instructions) and edges represent data dependencies (or precedence constraints).

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1035

a

c

c

Fig. 6 Example of a CDFG. (a) Sample C code. (b) Optimized code. (c) CDFG for (a)

With intra-procedural analysis, data dependencies that span across BB borders can
be identified. As a result both control and data flow information can be summarized
in a Control Data Flow Graph (CDFG). A sample CDFG for the code in Fig. 6a is
shown in Fig. 6c. BBs are identified with the literals v1,v2,. . . ,v6. For this code it
is easy to identify the data dependencies by simple inspection. Notice however, that
the self-cycles because of variable c in v3 and v4 will never be executed, i.e., the
definition of c in line 7 will never reach line 6. Moreover, notice that the code in
Fig. 6a is equivalent to that in Fig. 6b. Even for such a small program, a compiler
needs to be equipped with powerful analysis to derive such an optimization.

For simple processors, the analysis at the BB granularity has been considered the
state-of-the-art during the last decades. The instructions inside a BB will always be
executed one after another in an in-order processor, and for that reason BBs are very
well-suited for exploiting ILP. Already for more complex processors, like VLIW,
BBs fall short to leverage the available ILP. Predicated execution and software
pipelining [24] are just some examples of optimizations that cross the BB borders
seeking for more parallelism. This quest for parallelism is even more challenging
in the case of MPSoC compilers, as they must go beyond ILP. The question of
granularity and its implication on parallelism becomes a major issue. The ideal
granularity depends on the characteristics of the form of parallelism and of the target
platform. Therefore, extensions to the CDFG have been proposed to address the
granularity issue. One example of this is the Statement Control Data Flow Graph
(SCDFG) [19] in which nodes are single statements instead of BBs to allow more
flexibility. More insights on the granularity issue are provided in Sect. 2.3.2.

1036 R. Leupers et al.

a b

Fig. 7 Hierarchical IRs examples for the code in Fig. 6a. (a) DFG. (b) HTG

Another major issue for MPSoC compilers is the size of the solution space,
which could be prohibitively large even for small applications. This issue has been
addressed by introducing the notion of hierarchy in the IR, by also retaining high
level information about program structure in the intermediate representation, such as
loops and conditional blocks. This is a powerful property that enables a divide-and-
conquer parallelization approach in which code regions can be analyzed in isolation
based on their type. The Dependence Flow Graph (DFG) [35] and the Hierarchical
Task Graph (HTG) [63] are examples of representations that incorporate the notion
of hierarchy, which have been already used in existing MPSoC compilers [7, 8, 22].
Figure 7a shows an example of a DFG for the code presented in Fig. 6a. The
DFG incorporates the notion of hierarchy by means of the so-called Single-Entry
Single-Exit (SESE) regions. A SESE region is a sub-graph of the DFG, which has a
unique incoming control edge leading to the region execution, and a unique outgoing
control edge that exits the region. Regions can be nested or sequentially ordered and
they can be statements, basic blocks, loops or conditional blocks (e.g. if or switch-
case constructs). SESE regions related to loops and conditional blocks are enclosed
by artificial nodes, namely switch and merge, as Fig. 7a illustrates. A key feature
of the artificial nodes is that they allow to re-route data dependencies inside regions
where they are relevant. For example, in Fig. 7a the data dependencies edges on
b and c are re-routed inside the region SESE If, while the data dependency
edge on i is bypassed, as it is not relevant for that particular region. This feature
is useful not only for software parallelization analysis, but also for parallel code
generation [9]. An example of a HTG for the code in Fig. 6a is presented in Fig. 7b.
The aim of the HTG is to hide cyclic dependencies by leveraging the explicit

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1037

hierarchy in a program. In general, the HTG has two main types of nodes: simple
and compound. Single nodes are used to encapsulate a single statement or basic
block, while compound nodes introduce hierarchy, as they contain other single or
compound nodes. Compound nodes are the counter part of SESE regions in a DFG,
as they represent high level program constructs (e.g., loops or conditional blocks).
However, the drawback of the HTG is that it has no artificial nodes that allow to
re-route data dependencies in and out of the compound nodes, which makes data
dependence analysis more challenging.

2.3.2 Granularity and Partitioning

Granularity is one major issue for software parallelization and has a direct impact on
the form and degree of parallelism that can be achieved [6]. We define partitioning
as the process of analyzing an application and fragmenting it into blocks with
a given granularity suitable for parallelism extraction. In this sense, the process
of constructing CFGs out of an application as discussed before can be seen
as a partitioning. The following are the most intuitive granularities for MPSoC
compilers:

• Statement: A statement is the smallest standalone entity of a programming
language. An application can be broken to the level of statements and the
relations among each of them. The statements could be simple expressions, such
as arithmetic operations or function calls. This granularity provides the highest
degree of freedom to the analysis but could prevent ILP from being exploited
at the single-core level. Moreover, the parallelization overhead for such small
granularity could be prohibitively large.

• Basic Block: As already discussed, traditional compilers work on the level of
BBs, as they are well suited for ILP. However, in practice BBs could be either
too big or too small for coarse-grained parallelism extraction. A BB composed
of a sequence of function calls inside a loop would be seen as a single node, and
potential parallelism will be therefore hidden. On the other extreme, a couple of
small basic blocks divided by simple control constructs could be better handled
by a single-core compiler with support for predicated execution.

• Function: A function is defined as a subroutine with its own stack. At this
level, only function calls are analyzed and the rest of the code is considered as
irrelevant. As with BBs, this granularity can be too coarse or too fine-grained
depending on the application. It is possible to force a coding style, where
parallelism is explicitly written in a way that the behavior is factorized into
functions. However, an MPSoC compiler should not make any assumption on
the coding style.

As an example, partitions at different granularity levels for the program intro-
duced in Fig. 5a are shown in Fig. 8. The partition at statement level is shown in
Fig. 8a. In this example the statements at lines 12, 13 and 15 are too light weight.
The partition of function foo at BB level is shown in Fig. 8b. The BB on line 9 is

1038 R. Leupers et al.

a b c

Fig. 8 Granularity examples. (a) Statement. (b) Basic block. (c) Function

too light weight in comparison to the other BBs, whereas the BB in lines 16-17
may be too coarse. Finally, the partition at function level is shown in Fig. 8c. This
partition happens to match the KPN derivation introduced in Fig. 5b. Whether this
granularity is appropriate or not, depends on the amount of data flowing between
the functions and the timing behavior of each one of the functions.

As illustrated with the examples, it is not clear what will be the ideal granularity
for an MPSoC compiler to work on. Existing research efforts have been directed
towards the identification of a suitable granularity for particular parallelism patterns
and platforms [7, 20, 22]. The approach is usually based on partitioning an appli-
cation into code blocks of arbitrary granularity by means of heuristics or clustering
algorithms, which use the previously described granularities as the starting point
(i.e., a code block is built by clustering multiple statements). In the remaining of
this chapter we refer to code blocks as statements, BBs, SESE regions, functions or
the result of clustering algorithms.

2.3.3 Parallelism Patterns

While a traditional compiler tries to exploit fined-grained ILP, the goal of an MPSoC
compiler is to extract coarser parallelism. The most prominent forms of coarse-
grained parallelism are illustrated in Fig. 9 and described in the following.

• Task Level Parallelism (TLP): In TLP different tasks can compute in parallel
on different data sets as shown in Fig. 9a. This form of parallelism is inherent
to programming models based on concurrent MoCs (see Sect. 2.1). Tasks may
have dependencies to each other, but once a task has its data ready, it can execute
in parallel with the already running tasks in the system. Typically, TLP can be
exploited by the parallel execution of independent function calls or loops.

• Data Level Parallelism (DLP): In DLP the same computational task is carried
out on several disjoint Data Sets, as illustrated in Fig. 9b. This is one of the
most scalable forms of parallelism. DLP is typically present in multimedia
applications, where a decoding task performs the same operations on different
portions of an image or video. Several programming models provide support for
DLP, e.g. OpenMP by means of its for construct.

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1039

a b

c d

Fig. 9 Parallelism patterns. (a) TLP. (b) DLP. (c) PLP. (d) RLP

• Pipeline Level Parallelism (PLP): In PLP a computation within a loop is broken
into a sequence of tasks called stages, as Fig. 9c shows. These tasks follow
a producer-consumer relationship in which there is a flow of data from the
first to the last stage. PLP is a well-suited form of parallelism for streaming
applications in the embedded domain, in which there are serially dependent
tasks that continuously operate on a flow of data (e.g., audio/video encoding-
decoding).

• Recursion Level Parallelism (RLP): In RLP tasks are created from self-calls
in functions that exhibit multiple recursion (i.e., recursive functions that contain
two or more self-calls). Applications with multiple recursion typically implement
divide-and-conquer algorithms, which recursively break problems into smaller
sub-problems that are more simple to solve. A scalable form of nested parallelism
can be exploited if the sub-problems are independent (i.e., the recursive call-sites
are mutually independent). In RLP each task can further spawn parallel work as
nested tasks in subsequent recursive calls, as illustrated in Fig. 9d.

Exploiting these kinds of parallelism is a must for an MPSoC compiler, which has
to be therefore equipped with powerful flow and dependence analysis capabilities.

2.3.4 Flow and Dependence Analysis

Flow analysis includes both control and data flow. The result of these analyses can
be summarized in a CDFG, a DFG or a HTG, as discussed at the beginning of this
section. Data flow analysis serves to gather information at different program points,

1040 R. Leupers et al.

e.g., about available defined variables (reaching definitions) or about variables that
will be used later in the control flow (liveness analysis). As an example, consider the
CDFG in Fig. 6c in which a reaching definitions analysis is carried out. The analysis
tells, for example, that the value of variable c in line 5 can come from three different
definitions in lines 2, 7 and 10.

Data flow analysis deals mostly with scalar variables, like in the previous
example, but falls short when analyzing the flow of data when explicit memory
accesses are included in the program. In practice, memory accesses are very
common through the use of pointers, structures or arrays. Additionally, in the case
of loops, data flow analysis only says if a definition reaches a point but does not
specify exactly in which iteration the definition is made. The analyses that answer
these questions are known as array analysis, loop dependence analysis or simply
dependence analysis.

Given two statements S1 and S2, dependence analysis determines if S2 depends
on S1, i.e., if S2 cannot execute before S1. If there is no dependency, S1 and S2 can
execute in any order or in parallel. Dependencies are classified into control and data:

• Control Dependency: A statement S2 is control dependent on S1 (S1 δc S2)
if whether or not S2 is executed depends on S1’s execution. In the following
example, S1 δc S2:

S1: if (a > 0) goto L1;
S2: a = b + c;
S3: L1: ...

• Data Dependencies:

– Read After Write (RAW, also true/flow dependency): There is a RAW depen-
dency between statements S1 and S2 (S1 δf S2) if S1 modifies a resource that
S2 reads thereafter. In the following example, S1 δf S2:

S1: a = b + c; S2: d = a + 1;

– Write After Write (WAW, also output dependency): There is a WAW depen-
dency between statements S1 and S2 (S1 δo S2) if S2 modifies a resource that
was previously modified by S1. In the following example, S1 δo S2:

S1: a = b + c; S2: a = d + 1;

– Write After Read (WAR, also anti-dependency): There is a WAR dependency
between statements S1 and S2 (S1 δa S2) if S2 modifies a resource that was
previously read by S1. In the following example, S1 δa S2:

S1: d = a + 1; S2: a = b + c;

Obviously, two statements can exhibit different kinds of dependencies simulta-
neously. Computing these dependencies is one of the most complex tasks inside a
compiler, both for single-core and for multi-core systems. For a language like C,

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1041

a

b c

Fig. 10 Examples of dependence analysis. (a) NP complete. (b) Inter-procedural analysis. (c)
Undecidable

the problem of finding all dependencies statically is NP complete and in some cases
undecidable. The main reason for this being the use of pointers [31] and indexes to
data structures that can only be resolved at runtime. Figure 10 shows three sample
programs to illustrate the complexity of dependence analysis. In Fig. 10a, in order
to determine if there is a RAW dependency between S3 and S4 (S3δf S4) across
iterations, one has to solve a constrained integer linear system of equations, which
is NP complete. For the example, the system of equations is:

3x1 + 2x2 + 2 = 4y1 + y2 + 1

x1 + x2 + 1 = 2y1 + y2 + 1

subject to X < x1, y1 < N and Y < x2, y2 < M . Notice for example that there
is a RAW dependency between iterations (1, 1) and (2,−2) on A[7][3]. In order
to analyze the sample code in Fig. 10a, b compiler has to perform inter-procedural
analysis to identify if f1 modifies the contents of A[i] and to sort out the potential
return values of f2(i). This problem could be potentially undecidable. Finally,
the code in Fig. 10c is an extreme case of the previous one, in which it is impossible
to know the values of the indexes at compile time. The complexity of dependence
analysis motivated the introduction of memory disambiguation at the programming
language level, such as the restrict keyword in C99 standard [80].

For an MPSoC compiler, the situation is not different. The same kind of analysis
has to be performed at the granularity produced by the partitioning step. Array
analysis could still be handled by a vectorizing compiler for one of the processors
in the platform. The MPSoC compiler has to perform the analysis at a coarser
granularity level in which function calls will not be an exception. This is for example
the case for the code in Fig. 5a. In order to derive KPN representations, like those
presented in Fig. 5b and c, the compiler needs to be aware of the side effects of
all functions. For example, it has to make sure that function f2 does not modify

1042 R. Leupers et al.

a b

Fig. 11 Dependence analysis on example in Fig. 5a. (a) Summarized CDFG. (b) Unrolled
dependencies

the array A, otherwise there would be a dependency (an additional channel in the
KPN) between processes f2 and f3 in Fig. 5b. The dependence analysis should
also provide additional information, for example, that the sum function is only
executed every four iterations of the loop. This means that every four instances
of f3 followed by f4 can be executed in parallel. This is illustrated in Fig. 11. A
summarized version of the CDFG is shown in Fig. 11a. In this graph, data edges
are annotated with the variable that generates the dependency and, in the case of
loop-carried dependencies, with the distance of the dependency [54]. The distance
of a dependency tells after how many iterations a defined value will be actually
used. With the dependency information, it is possible to represent the precedence
constraints along the execution of the whole program as shown in Fig. 11b. In the
figure, n: f represents the n-th execution of function f. With this partitioning, it
is possible to identify two different forms of parallelism: T1 and T2 represent TLP,
whereas T3 represents DLP. This is a good example where flow and dependence
analysis help determining a partitioning that exposes coarse grained parallelism.

Due to the complexity of static analyses, multiple research groups started to rely
on Dynamic Data Flow Analysis DDFA [7, 20, 76]. Unlike static analyses, where
dependencies are determined at compile time, DDFA uses traces obtained from
profiling runs. This analysis is of course not fully safe and the results need approval
from the developer. In general, DDFA is used to obtain a coarse measure of the
data flowing among different portions of the application in order to derive plausible
partitions and in this way identify DLP, TLP, PLP and/or RLP. Being a profile-
based technique, the quality of DDFA depends on a careful selection of the input
stimuli. In interactive programming environments, DDFA can provide hints to the
programmer about where to perform code modifications to expose more parallelism.

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1043

Summary
Traditional compilers work at the basic block granularity which is well suited
for ILP. MPSoC compilers in turn need to be equipped with powerful flow
analysis techniques, that allow to partition the application into a suitable
granularity. This granularity may not match any mainstream granularity and
may depend on the parallel pattern. The partitioning step must break the
application into code blocks from which coarse level parallelism such as DLP,
TLP, PLP or RLP can be extracted.

2.4 Software Distribution

The software distribution phase in an MPSoC compiler aims at deciding where and
when to execute tasks of a parallel application on the target platform. In this chapter
we discuss two forms of software distribution: (1) accelerator offloading in host-
centric programming models and (2) mapping and scheduling of dataflow MoCs.

2.4.1 Accelerator Offloading

The use of specialized accelerators, such as DSPs and GPUs, has gained popu-
larity due to their high peak performance/watt ratio in contrast to homogeneous
multi-cores. However, the heterogeneity introduced by the accelerators makes the
programmability of these platforms a complex task. Therefore, multiple host-
centric parallel programming models have been proposed to address the challenge
of accelerator computing (see Sect. 2.1.1). These models can be classified as
low-level, such as OpenCL, or high-level directive-based, such as the OpenMP
accelerator model. Despite these efforts to provide a convenient programming
model, developers still have to manually specify the code regions to be offloaded and
the data to be transferred, while at the same time taking into account that profitable
accelerator computing is enabled by abundant DLP and low offloading overhead.

The accelerator offloading analysis in MPSoC compilers is enabled by hier-
archical IRs in which applications are decomposed into structured code regions
or blocks. An example of these IRs is the DFG introduced in Sect. 2.3.1, which
has been successfully used for accelerator offloading analysis in [9]. The use of
hierarchical IRs together with the architectural model of the target platform, enables
a divide-and-conquer approach in which every region (typically loops with DLP)
can be analyzed in isolation to reason about its potential performance improvement
when it is offloaded to a particular accelerator. On the one hand, the region-based
analysis allows to compare the performance of a particular region running on a
host core with the performance running on an accelerator device. On the other

1044 R. Leupers et al.

hand, this approach allows to estimate the offloading overhead by looking at the
incoming and outgoing data dependencies of the region. Therefore, region-based
analysis enables MPSoC compilers to decide whether or not to offload a given
region to a particular accelerator, as it provides information about the key aspects
for profitable accelerator computing, namely region execution performance and
offloading overhead. Finally, the compiler has to be also aware of the desired target
programming model to synthesize the appropriate code to offload code regions (see
Sect. 2.5).

2.4.2 Mapping and Scheduling of Dataflow MoCs

Mapping and scheduling in a traditional compiler is done in the backend provided a
description of the architecture. Mapping refers to the process of assigning operations
to instructions and functional units (code selection) and variables to registers
(register allocation). Scheduling refers to the process of organizing the instructions
in a timed sequence. The schedule can be computed statically (for RISC, DSPs
and VLIWs) or dynamically at runtime (for Superscalars), whereas the mapping
of operations to instructions is always computed statically. The main purpose of
mapping and scheduling in single-core compilers had been always to improve
performance. Code size is also an important objective for embedded processors
(specially VLIW). Only recently, power consumption became an issue. However,
the reduction in power consumption with backend techniques does not have a big
impact on the overall system power consumption.

In an MPSoC compiler similar operations have to be performed. Mapping, in
this context, refers to the process of assigning code blocks to PEs and logical
communication links to physical ones. In contrast to the single-core case, mapping
can be also dynamic. A code block could be mapped at runtime to different PEs,
depending on availability of resources. Scheduling for multi-cores has a similar
meaning as for single-core, but instead of scheduling instructions, the compiler has
to schedule code blocks. The presence of different application classes, e.g. real time,
add complexity to the optimizations in the compiler. Particularly, there is much more
room for improving power consumption in an MPSoC; after all, power consumption
is one of the MPSoC drivers in the first place.

The result of scheduling and mapping is typically represented in form of a Gantt
Chart, similar to the ones presented in Fig. 12. The PEs are represented in the
vertical axis and the time in the horizontal axis. Code blocks are located in the plane,
according to the mapping and the scheduling information. In Fig. 12a functions f1
and f2 are mapped to PE 1, the functions f3 and sum are mapped to PE 2 and
function f4 to processor PE 3.

Given that code blocks have a higher time variability than instructions, schedul-
ing can be rarely performed statically. Pure static scheduling requires full knowledge
of the timing behavior and is only possible for very predictable architectures and
regular computations, like in the case of systolic arrays [42]. If it is not possible to
obtain a pure static schedule, some kind of synchronization is needed. Different

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1045

a

b

Fig. 12 Mapping and scheduling examples for code in Fig. 5a. (a) Partition with PLP, direct
implementation of Fig. 5b. (b) Full parallelism exposed in Fig. 11b

scheduling approaches require different synchronization schemes with different
associated performance overhead. In the example, the timing information of task T3
is not known precisely. Therefore the exact starting time of function sum cannot be
determined and a synchronization primitive has to be inserted to ensure correctness
of the result. In this example, a simple barrier is enough in order to ensure that the
execution of T3 in PE 3, PE 4 and PE 5 has finished before executing function sum.

Scheduling Approaches

Which scheduling approach to utilize depends on the characteristics of the applica-
tion and the properties of the underlying MoC used to describe it. Apart from pure
static schedules, one can distinguish among the following scheduling approaches:

• Self-timed Scheduling: Typical for applications modeled with dataflow MoCs.
A self-timed schedule is close to a static one. Once a static schedule is computed,
the code blocks are ordered on the corresponding PEs, and synchronization
primitives are inserted that ensure the presence of data for the computation. This
kind of scheduling is used for SDF applications. For a more detailed discussion
the reader is referred to [68].

• Quasi-static Scheduling: Used in the case where control paths introduce a pre-
dictable time variation. In this approach, unbalanced control paths are balanced
and a self-timed schedule is computed. Quasi-static scheduling for dynamically
parameterized SDF graphs is explored in [14] (see also Chapter [75]).

• Dynamic Scheduling: Used when the timing behavior of the application is dif-
ficult to predict and/or when the number of applications is not known in advance

1046 R. Leupers et al.

(like in the case of general purpose computing). The scheduling overhead is
usually higher, but so is also the average utilization of the processors in the
platform. There are many dynamic scheduling policies. Fair queue scheduling is
common in general purpose operating systems (OSs), whereas different flavors
of priority based scheduling are typically used in embedded systems with real
time constraints, e.g., Rate Monotonic (RM) and Earliest Deadline First (EDF).

• Hybrid Scheduling: Term used to refer to scheduling approaches in which
several static or self-timed schedules are computed for a given application
at compile time, and are switched dynamically at run-time depending on the
scenario [27]. This approach is applied to streaming multimedia applications,
and allows to adapt at runtime making it possible to save energy [52].

Virtually every MPSoC platform provides support for implementing mapping
and scheduling. The support can be provided in software or in hardware and might
restrict the available policies that can be implemented. This has to be taken into
account by the compiler, which needs to generate/synthesize appropriate code (see
Sect. 2.5).

Computing a Schedule

Independent of which scheduling approach and how this is supported, the MPSoC
compiler has to compute a schedule (or several of them). Finding an optimal one
in terms of performance is known to be NP-complete even for simple Directed
Acyclic Graphs (DAGs). Single-core compilers therefore employ heuristics, most
of them being derived from the classical List Scheduling algorithm [32]. Computing
a schedule for multi-core platforms is by no means simpler. The requirements
and characteristics of the schedule depend on the underlying MoC with which
the application was modeled. In this chapter we distinguish between application
modeled with centralized and distributed control flow.

Centralized Control Flow

Single-core compilers deal with centralized control flow, i.e., instructions are placed
in memory and a central entity dictates which instructions to execute next, e.g.,
the program counter generator. The scheduler in a traditional single-core compiler
leaves the control decisions out of the analysis and focus on scheduling instructions
inside a BB. Since the control flow inside a BB is linear, there are no circular
data dependencies and the data dependence graph is therefore acyclic. The resulting
DAG is typically scheduled with a variant of the list scheduling algorithm.

In order to achieve a higher level of parallelism, single-core compilers apply
different techniques that go beyond BBs. Typical examples of this techniques
include loop unrolling and software pipelining [45]. An extreme example of loop
unrolling was introduced in the previous section, where the dependence graph in

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1047

Fig. 11a was completely unrolled in Fig. 11b. Note that the graph in Fig. 11b is
acyclic and could be scheduled with the list scheduling algorithm. The results of
list scheduling with five resources would look similar to the scheduling traces in
Fig. 12b.

In principle, the same scheduling approach can be used for multi-core. However,
since every core in a MPSoC has its own control flow, a mechanism has to be
implemented to transfer control. In the example in Fig. 12b, some core has the
control code for the loop in line 14 of Fig. 5 and activates the four parallel tasks T3.
There are several ways of handling this distribution of control. Parallel programming
models like Pthreads and OpenMP offer source level primitives to implement forks
and joins. Some academic research platforms offer dedicated instructions to send
so-called control tokens among processors [81].

Distributed Control Flow

Parallel programming models based on concurrent MoCs like the ones discussed
in Sect. 2.1.2 feature distributed control flow. For applications represented in this
way, the issue of synchronization is greatly simplified and can be added to the
logic of the channel implementation. Simple applications represented as acyclic
task precedence graphs with predictable timing behavior can be scheduled with
a list scheduling algorithm or with one of many other available algorithms for
DAGs. For a survey on DAG scheduling algorithms the reader is referred to [43].
Applications, where precedence constraints are not explicit in the programming
model and where communication can be control dependent, e.g., KPNs are usually
scheduled dynamically. Finally, for applications represented as SDF, a self-timed
schedule can be easily computed.

• KPN scheduling: KPNs are usually scheduled dynamically. There are two
major ways of scheduling a KPN: data and demand driven. In data driven
scheduling, every process in the KPN with available data at its input is in the
ready state. A dynamic scheduler then decides which process gets executed on
which processor at runtime. A demand driven scheduler first schedules processes
with no output channels. These processes execute until a read blocks in one of the
input channels. The scheduler triggers then only the processes from which data
has been requested (demanded). This process continues recursively. For further
details the reader is referred to [61].

• SDF scheduling: As mentioned before, SDFs are usually scheduled using a self-
timed schedule, which requires a static schedule to be computed in the first place.
There are two major types of schedules: blocked and non-blocked schedules.
In the former, a schedule for one cycle is computed and is repeated without
overlapping, whereas in the latter, the execution of different iterations of the
graph are allowed to overlap. For computing a blocked schedule, a complete cycle
in the SDF has to be determined. A complete cycle is a sequence of actor firings
that brings the SDF to its initial state. Finding a complete cycles requires that

1048 R. Leupers et al.

a

b

Fig. 13 Example of SDF scheduling, for SDF in Fig. 4a. (a) Derived DAG with r = 1 3 2T . (b)
Possible schedule on two cores

(1) enough initial tokens are provided in the edges and (2) there is a non trivial
solution for the system of equationsΓ ·r = 0, where [Γij] = pij−cij , and pij cij
are the number of tokens that actor i produces to and consumes from channel j
respectively. In the literature, r is called repetition vector and Γ topology matrix.
As an example, consider the SDF in Fig. 4b. This SDF has a topology matrix:

Γ =

⎛
⎜⎜⎝

3 −1 0
6 −2 0
0 2 −3
−2 0 1

⎞
⎟⎟⎠

and a repetition vector is r = [1 3 2]T . By unfolding the SDF according to
its repetition vector and removing the feedback edges (those with delay tokens)
one obtains the DAG shown in Fig. 13a with a possible schedule on two cores
sketched in Fig. 13b. Using this procedure, the problem of scheduling an SDF
is turned into DAG scheduling, and once again, one of the many heuristics for
DAGs can be used. See Chapter [29] for further details.

For general application models and with the aim to obtain better results than with
human-designed heuristics, several optimization methods are used. Integer Linear
Programming is used in [59] and a combination of Integer Linear Programming and
Constraint Programming (CP) is employed in [13]. Genetic Algorithms have also
been used for this purpose, see Chapter [12]. Apart from scheduling and mapping
code blocks and communication, a compiler also needs to map data. Data locality is
already an issue for single-core systems with complex memory architectures: caches
and Scratch Pad Memories (SPM). In multi-core systems, maximizing data locality
and minimizing false sharing is an even bigger challenge [37].

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1049

Summary
Software distribution in the form of accelerator offloading and mapping and
scheduling is one of the major challenges of MPSoC compilers. Different
application constraints lead to new optimization objectives. Besides, different
programming models with their underlying MoC allow different scheduling
approaches. Most of these techniques work under the premise of accurate
performance estimation (Sect. 2.2) which is by itself a hard problem. In
addition, due to the high heterogeneity of signal processing multi-core
systems, mapping of data represents a bigger challenge than in single-core
systems.

2.5 Code Generation

The code generation phase of an MPSoC compiler is ad-hoc due to the heterogeneity
of MPSoCs. To name a few examples: the cores are heterogeneous where the
programming models may differ, the communications networks (and thus the APIs)
are heterogeneous, and the OS-service libraries implementations can vary from one
to another. After the software parallelization and the distribution phases, the code
generation of an MPSoC compiler acts like a meta-compiler on top of multiple off-
the-shelf compilers of the target MPSoC, to coordinate the compilation process.
In this process, the code generator first performs a source-to-source transformation
of the input application (which is either a sequential code or an abstract dataflow
MoC), into a concrete parallel implementation, which is then further compiled with
the tool-chain (including assemblers, compilers and linkers) of the target MPSoC.
This tool-chain in turn can enable its own optimization features to further improve
the code quality.

During the source-to-source transformation multiple steps take place, such as
implementation of the parallel patterns according to the programming model,
assignment of code blocks to cores, generation of the code for communication and
scheduling, linking with the low-level libraries, among others. The complexity of the
code generation process depends on the parallel programming model. For example,
the code transformations for OpenMP are minimal, since it only implies inserting
simple compiler directives. In contrast, other parallel programming models, such
as Pthreads or OpenCL require heavy program transformations. For example, in
OpenCL the kernels have to be extracted and the host code managing kernel
execution and data transfers has to be added. Similarly, for abstract dataflow MoCs,
the code generator has to make use of target specific OS APIs and libraries to create
concrete implementations of actors/processes and FIFO channels.

In an MPSoC, PEs will communicate with each other using the NoC, which
requires communication/synchronization primitives (e.g., semaphores, message
passing) correctly set in place of the code blocks that the MPSoC compiler

1050 R. Leupers et al.

distributes to the PEs. Again, due to the heterogeneous nature of the underlying
architecture, the same communication link may look very different in the imple-
mentation, e.g., when the sending/receiving points are in different PEs. Embedded
applications often need to be implemented in a portable fashion for the sake of
software re-use. Abstraction of the communication functions to a higher level into
the programming model is widely practiced, though it is still very ad-hoc and
platform-specific. Recently, the Multicore Association has published the first draft
of Multicore Communications API (MCAPI), which is a message-passing API to
capture the basic elements of communication and synchronization that are required
for closely distributed embedded systems [55]. This might have been a good first
step in this area.

As discussed in Sect. 2.4.2, the scheduling decision is a key factor in the MPSoC
compiler, especially in dataflow MoCs for embedded computing where real-time
constraints have to be met. No matter which scheduling policy is determined for the
final design, the functionality has to be implemented, in hardware, or software, or in
a hybrid manner. A common approach is to use an off-the-shelf OS, often an RTOS,
to enable the scheduling. There are many commercial solutions available such as
QNX and WindRiver. The scheduler implementation in hardware is not uncommon
for embedded devices, as software solutions may lead to larger overhead, which
is not acceptable for RT-constrained embedded systems. Industry and academia
have delivered promising results in this area, though more successful stories are
still needed to justify this approach. A hybrid solution is a mixture, where some
acceleration for the scheduler is implemented in hardware while flexibility is
provided by software programmability, therefore customizing a trade-off between
efficiency and flexibility. If the scheduling is not helped by e.g., an OS or a hardware
scheduler, the code generation phase needs to generate or synthesize the scheduler
e.g., [21] and [44].

Summary
Code generation is a complicated process, where many efforts are made to
hide the compilation complexity via layered SW stacks and APIs. Hetero-
geneity will cause ad-hoc tool-chains to exist for a long time. The complexity
of the code generation process depends of the parallel programming model.

3 Case Studies

As discussed in Sect. 2, the complexity of MPSoC compilers grows rapidly com-
pared to single-core compilers. Nowadays, MPSoC compiler constructions for
different industrial platforms and academic prototypes are still very much ad-hoc.
This section surveys some prominent examples to show the readers how concrete
implementations address the various challenges of MPSoC compilers.

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1051

3.1 Academic Research

In academia, vast research efforts have been recently directed towards MPSoC
compiler technologies. Since the topic is very heterogeneous in nature, it has
caught the attention of different research communities, such as real-time computing,
compiler optimization, parallelization and fast simulation. A considerable amount
of efforts have been invested in areas, such as MoCs, automatic parallelization
and virtual simulation platforms. Compared to their counterparts in industry, the
academic researchers focus mostly on the upstream of the MPSoC compilation flow,
e.g., using MoCs to model applications, automatic task-to-processor mapping, early
system performance estimation and holistic construction of MPSoC compilers.

3.1.1 Shapes

SHAPES [60] is a European Union FP6 Integrated Project whose objective is to
develop a prototype of a tiled scalable hardware and software architecture for
embedded applications featuring inherent parallelism. The major SHAPES building
block, the RISC-DSP tile (RDT), is composed of an Atmel Magic VLIW floating-
point DSP, an ARM9 RISC processor, on-chip memory, and a network interface
for on- and off-chip communication. On the basis of RDTs and interconnect
components, the architecture can be easily scaled to meet the computational
requirements.

The SHAPES framework is shown in Fig. 14a. The starting point is the Model-
driven compiler/Functional simulator, which takes an application specification in
the form of process networks as input. High-level mapping exploration involves
the trace information from the Virtual Shapes Platform (VSP) and the perfor-
mance results from the Analytical Estimator, based on multi-objective optimization
considering throughput, delay, predictability and efficiency. With the mapping
information, the Hardware dependent Software (HdS) phase then generates the
necessary dedicated communication and synchronization primitives, together with
OS services.

The central part of the SHAPES software environment is the Distributed
Operation Layer (DOL) framework [67]. The DOL structure and interactions with
other tools and elements are shown in Fig. 14b. DOL mainly provides the MPSoC
software developers two main services: system level performance analysis and
process-to-processor mapping exploration.

• DOL Programming Model: DOL uses process networks as its programming
model — the structure of the application is specified in an XML format
consisting of processes, software channels and connections, while the application
functionality is specified in C/C++ and process communications are performed
by the DOL APIs, e.g., DOL_read() and DOL_write(). DOL uses a special
iterator element to allow the user to instantiate several processes of the same
type. For the process functionality in C/C++, a set of coding rules needs to be

1052 R. Leupers et al.

a b

Fig. 14 SHAPES design flow. (a) Software development environment. (b) DOL framework

followed. In each process there must be an init and a fire procedure. The
init procedure allocates and initializes data, which is called once during the
application initialization. The fire procedure is called repeatedly afterwards.

• Architecture Description: DOL aims at mapping, therefore its architecture
description abstracts away several details of the underlying platform. The XML
format contains three types of information: structural elements such as proces-
sors/memories, performance data such as bus throughputs, and parameters such
as memory sizes.

• Mapping Exploration: DOL mapping includes two phases: performance eval-
uation and optimization. Performance evaluation collects the data from both
analytical performance evaluation and the simulation. The designer defines the
optimization objectives and DOL uses evolutionary algorithms to generate the
mapping.

With the mapping descriptor the HdS layer generates hardware dependent
implementation codes and makefiles. Thereafter, the application can be compiled
and linked against communication libraries and OS services. The final binary can
be executed on the VSP or on the SHAPES hardware prototype.

3.1.2 Daedalus

Daedalus framework [58] is a tool-flow developed at Leiden University for auto-
mated design, programming and implementation of MPSoCs starting at a high level
of abstraction. The Daedalus design-flow is shown in Fig. 15. It consists of three
key tools, PNgen tool, Sesame (Simulation of Embedded System Architectures for

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1053

Fig. 15 Daedalus framework

Multilevel Exploration) and ESPAM (Embedded System-level Platform synthesis
and Application Modeling), which work together to offer the designers a single
environment for rapid system-level architectural exploration and automated pro-
gramming and prototyping of multimedia MPSoC architectures. The PNgen tool
automatically transforms the sequential application into a parallel specification in
the form of Polyhedral Process Networks (PPNs), which are a subset of KPNs.
The code that can be expressed in PPNs should be analyzable in the polyhedral
model [48], which implies that the input sequential code is restricted to Static
Affine Nested Loop Programs (SANLP). Then, the PPNs are used by Sesame
modeling and simulation tool to perform a system-level design space exploration
(DSE), where the performance of multiple mappings, HW/SW partitions and target
platform architectures is quickly evaluated using high-level models from the IP
library. Finally, the most promising mapping and platform specifications resulting
from the DSE, together with the application specification (PPN) are the inputs
to the ESPAM synthesis tool. The ESPAM tool uses these inputs along with the
low-level RTL models from the IP library to automatically generate synthesizable
VHDL code that implements the hardware architecture. It also generates, from
the XML specification of the application, the C code for those processes that
are mapped on to programmable cores, including the code for synchronization of
the communication between the processors. Furthermore, commercial synthesis
tools and the component compilers can be used to process the outputs for fast
hardware/software prototyping.

1054 R. Leupers et al.

Fig. 16 PREESM
framework

3.1.3 PREESM

The Parallel and Real-time Embedded Executives Scheduling Method (PREESM)
is a framework for rapid prototyping and code generation, whose primary target is
multi-core DSP platforms [62]. PREESM is developed at the Institute of Electronics
and Telecommunications-Rennes (IETR) in collaboration with Texas Instruments.
The PREESM framework is shown in Fig. 16. It takes as input an algorithm
specification, an architectural model and a scenario that links the algorithm with
the architecture. The Parameterized and Interfaced Synchronous Dataflow (PiSDF)
is the MoC used here for the algorithm specification. PiSDF is an extension of
SDF in which the production and consumption rates of the actors and the FIFO
delays can be parameterized. The System-Level Architecture Model (S-LAM)
describes the target platform as a graph in which the processing elements offer
the processing capabilities for the actors and the communication elements offer
the FIFO communication capabilities. The algorithm and architecture models are
then transformed to enable scheduling and memory optimizations. On the one hand,
the scheduling optimization aims at providing a static schedule that is deadlock-
free. On the other hand, the memory optimization aims at reducing the memory
requirements by allowing the re-utilization of memory for the FIFOs during code
generation. Finally, the PREESM simulation facilities allow to assess the system
performance by providing a gantt chart of the parallel execution of the algorithm,
speedup estimates and memory requirements. Finally, the code generation stage
emits the software for the selected multi-core DSP platform, which includes the
necessary instructions for proper inter-core communication, cache management
and synchronization. PREESM has been successfully evaluated in commercial
multi-core DSP platforms, such as the ones from the Keystone family from Texas
Instruments described in Sect. 3.2.1.

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1055

3.2 Industrial Case Studies

Several large semiconductor companies have already a few mature product lines
aiming at different segments of the market due to the application-specific nature
of the embedded devices. The stringent time-to-market window calls for the
necessity to adopt platform-based MPSoC design methodology. That is, a new
generation of an MPSoC architecture is based on a previous successful model
with some evolutionary improvements. Compared to their counterparts in academia,
the MPSoC software architects in industry focus more on the software tools re-
use (considering the huge amount of certified code), providing abstractions and
conveniences to the programmers for software development and efficient code-
generation.

3.2.1 TI Keystone Multi-Core DSP Platform

The Keystone is a family of MPSoCs from Texas Instruments for high performance
systems [73], which integrates RISC and DSP cores together with application
specific co-processors and peripherals. The application domains of the Keystone
platforms include high performance computing, wireless communications, net-
working, and audio/video processing. The Keystone architecture provides a high
internal bandwidth by allowing non-blocking accesses to the processing cores, co-
processors and peripherals. This is enabled by four main components: Multicore
Navigator, TeraNet, Multicore Shared Memory Controller (MSMC) and HyperLink.
The Multicore Navigator is a hardware controller for packet-based communication.
Typical use cases are: message exchange or data transfer among cores, and data
transfers between cores and co-processors or peripherals. The TeraNet is a low
latency switch fabric that allows the movement of the Multicore Navigator packets
among the main components within the Keystone platforms. The Multicore Shared
Memory Controller allows to access the shared memory without using the TeraNet,
which avoids interference with the packet movement. Finally, the HyperLink allows
to interconnect multiple Keystone MPSoC.

Currently, there are two generations of the Keystone family. In the first gener-
ation, only DSPs were integrated as programmable cores. The architecture of the
DSPs used in the Keystone platforms is called C66x. One interesting feature of
the C66x cores is that they have both fixed-point and floating-point computation
capabilities. In the second generation, the major enhancement is the integration of
Cortex-A15 multi-core processors. In addition, the storage and bandwidth capacities
of the main components were increased. Figure 17a shows the 66AK2H12 devices
of the Keystone II family. This device offers a quad-core Cortex-A15 processor and
eight C66x DSP cores, along with the main components of the Keystone family.

1056 R. Leupers et al.

a b

Fig. 17 TI keystone multi-core DSP platform. (a) 66AK2H12 keystone II device. (b) Keystone
software stack

Figure 17b illustrates the software stack that TI provides for the Keystone
platforms [74]. This software stack is divided into two coordinated sub-stacks, one
for the ARM cores and another one for DSP cores. TI promotes the philosophy of
abstractions among the software layers to hide just enough details for the developers
at different roles/layers.

• OS Level: At the OS level the choice on the ARM side is Linux and on the
DSP side is the TI-RTOS kernel (formerly known as SYS BIOS, which was the
successor of DSP/BIOS) [74]. The TI-RTOS is optimized for real-time multi-
tasking and scheduling. Along with the OS, low-level device drivers are provided
to enable the use of hardware components in the Keystone platforms by higher
software layers.

• Software Platform Level: The support for multi-core programming is at software
platform level, including the TI IPC package [74] for inter-core communication
and the support for industry standards, such as OpenMP and OpenCL. At this
level there are also packages that enable tools for debugging, instrumentation
and multi-core performance.

• Algorithm Level: Algorithms/codecs are usually allocated onto the DSP due
to its computation power. At this level TI provides optimized libraries for
multiple domains from general purpose math and signal processing libraries
(e.g., DSPLIB and MATHLIB) to application specific libraries (e.g., IMGLIB
and FFTLIB) [74].

• Application Level: The application developer uses the software layers introduced
earlier to build the final system. Third-party tools that provide valuable add-ons
such as GUI or streaming frameworks can be ported here.

The abstractions among the layers are realized by the standardized interfaces.
Therefore, different teams can work in different domains at the same time thus
boosting the productivity. Moreover, this also enables the possibility of third-parties
participating in the TI software stack to provide valuable/commercial solutions, e.g.,
multi-core development tools and application-level GUI frameworks.

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1057

Fig. 18 SLX tool suite

3.2.2 Silexica: SLX Tool Suite

Silexica (SLX) [66] is a provider of software automation tools that addresses the
increasingly complex task of multi-core programming in a variety of application
domains, such as embedded vision, automotive and wireless telecommunications.
Silexica is a spin-off of the Institute for Communication Technologies and Embed-
ded Systems (ICE) at RWTH Aachen University. Its core technology is the SLX Tool
Suite shown in Fig. 18. This tool suite has its roots in the academic project called
MPSoC Application Programming Studio (MAPS), which started over a decade ago
at ICE. The SLX Tool Suite is an excellent example of the adoption by the industry
of the MPSoC compiler technologies described in this chapter, since it addresses the
challenges of application modeling, platform description, software parallelization,
software distribution, and code generation.

The SLX Tool Suite is composed of three main tools: SLX Parallelizer, SLX
Mapper and SLX Generator. For an effective target-specific analysis, this tool suite
uses fast and accurate software performance estimation technologies and an archi-
tectural model of the target platform. First, the SLX Parallelizer helps to migrate
legacy C/C++ applications into the multi-core domain by identifying profitable
parallelization opportunities. This parallelizer focuses on parallel patterns, such
as DLP, PLP and TLP (see Sect. 2.3.3). As an output it provides source level
information, which helps developers to understand the parallelization opportunities
and its potential. In addition, the parallelized application can be exported using
industry standards, such as OpenMP, or as the SLX specification called C for
Process Networks (CPN). CPN is a language extension that allows to specify
applications as dataflow MoCs (e.g. KPNs). The CPN specification can be either
derived from the SLX Parallelizer analysis or manually by the developer. The SLX
Mapper performs the task of software distribution by analyzing the computation
and communication behavior of the CPN specification, to automatically distribute
the processes on the platform cores and the FIFO channels on the platform
interconnects. Finally, the SLX Generator is a source-to-source translation tool that
takes both the CPN and the mapping specification generated by the SLX Mapper, to
emit architecture-aware code, which is further compiled with the native tool-chain
of the target platform.

1058 R. Leupers et al.

4 Summary

In this chapter is presented an overview of the challenges for building MPSoC
compilers and described some of the techniques, both established and emerging,
that are being used to leverage the computing power of current and yet to come
MPSoC platforms. The chapter concluded with selected academic and industrial
examples that show how the concepts are applied to real systems.

It can be observed how new programming models are being proposed that change
the requirements of the MPSoC compiler. It was discussed that, independent of
the programming model, an MPSoC compiler has to find a suitable granularity to
expose parallelism beyond the instruction level (ILP), demanding advanced analysis
of the data and control flows. Software distribution is one of the most complex
tasks of the MPSoC compiler and can only be achieved successfully with accurate
performance estimation or simulation. Most of these analyses are target-specific,
hence the MPSoC itself needs to be abstracted and fed to the compiler. With this
information, the compiler can tune the different optimizations to the target MPSoC
and finally generate executable code.

The whole flow shares similarities with that of a traditional single-core compiler,
but is much more complex in the case of a multi-core embedded system. In this
chapter it was presented some foundations and described approaches to deal with
these problems. However, there is still a great amount of research to be done to
make the leap from a high level specification to executable code as transparent as it
is in the single-core case.

References

1. Eclipse. http://www.eclipse.org/. Visited on Jan. 2010
2. GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/. Visited on Jan. 2010
3. OpenMP Application Programming Interface. Version 4.5. http://www.openmp.org. Visited on

Mar. 2017
4. AbsInt: aiT worst-case execution time analyzers. http://www.absint.com/ait/. Visited on Nov.

2009
5. Agbaria, A., Kang, D.I., Singh, K.: LMPI: MPI for heterogeneous embedded distributed

systems. In: 12th International Conference on Parallel and Distributed Systems - (ICPADS’06),
vol. 1, pp. 8 pp.– (2006)

6. Aguilar, M.A., Aggarwal, A., Shaheen, A., Leupers, R., Ascheid, G., Castrillon, J., Fitzpatrick,
L.: Multi-grained Performance Estimation for MPSoC Compilers: Work-in-progress. In:
Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis
for Embedded Systems Companion, CASES ’17, pp. 14:1–14:2. ACM, New York, NY, USA
(2017)

7. Aguilar, M.A., Eusse, J.F., Ray, P., Leupers, R., Ascheid, G., Sheng, W., Sharma, P.: Towards
parallelism extraction for heterogeneous multicore Android devices. International Journal of
Parallel Programming pp. 1–33 (2016)

8. Aguilar, M.A., Leupers, R., Ascheid, G., Kavvadias, N.: A toolflow for parallelization of
embedded software in multicore DSP platforms. In: Proceedings of the 18th International
Workshop on Software and Compilers for Embedded Systems, SCOPES ’15, pp. 76–79. ACM,
New York, NY, USA (2015)

http://www.eclipse.org/
http://www.gnu.org/software/gdb/
http://www.openmp.org
http://www.absint.com/ait/

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1059

9. Aguilar, M.A., Leupers, R., Ascheid, G., Murillo, L.G.: Automatic parallelization and acceler-
ator offloading for embedded applications on heterogeneous MPSoCs. In: Proceedings of the
53rd Annual Design Automation Conference, DAC ’16, pp. 49:1–49:6. ACM, New York, NY,
USA (2016)

10. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1986)

11. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,
D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel
computing research: A view from Berkeley. Tech. rep., EECS Department, University of
California, Berkeley (2006)

12. Bacivarov, I., Haid, W., Huang, K., Thiele, L.: Methods and tools for mapping process networks
onto multi-processor systems-on-chip. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,
J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

13. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSoCs via
decomposition and no-good generation. Principles and Practices of Constrained Programming
- CP 2005 (DEIS-LIA-05-001), 107–121 (2005)

14. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP systems.
IEEE Transactions on Signal Processing 49(10), 2408–2421 (2001)

15. Carro, L., Rutzig, M.B.: Multi-core systems on chip. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn. Springer
(2013)

16. Castrillon, J., Leupers, R.: Programming Heterogeneous MPSoCs: Tool Flows to Close the
Software Productivity Gap. Springer Publishing Company, Incorporated (2013)

17. Castrillon, J., Sheng, W., Jessenberger, R., Thiele, L., Schorr, L., Juurlink, B., Alvarez-Mesa,
M., Pohl, A., Reyes, V., Leupers, R.: Multi/many-core programming: Where are we standing?
In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1708–1717
(2015)

18. Castrillon, J., Sheng, W., Leupers, R.: Trends in embedded software synthesis. In: SAMOS,
pp. 347–354 (2011)

19. Ceng, J.: A methodology for efficient multiprocessor system on chip software development.
Ph.D. thesis, RWTH Aachen University (2011)

20. Ceng, J., Castrillon, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G., Meyr, H.,
Isshiki, T., Kunieda, H.: MAPS: an integrated framework for MPSoC application paralleliza-
tion. In: DAC ’08: Proceedings of the 45th annual conference on Design automation, pp.
754–759. ACM, New York, NY, USA (2008)

21. Cesario, W., Jerraya, A.: Multiprocessor Systems-on-Chips, chap. Chapter 9. Component-
Based Design for Multiprocessor Systems-on-Chip, pp. 357–394. Morgan Kaufmann (2005)

22. Cordes, D.A.: Automatic parallelization for embedded multi-core systems using high-level cost
models. Ph.D. thesis, TU Dortmund (2013)

23. Diakopoulos, N., Cass, S.: The top programming languages 2016. http://spectrum.ieee.org/
static/interactive-the-top-programming-languages-2016. Visited on Feb. 2017

24. Fisher, J., P., F., Young, C.: Embedded Computing: A VLIW Approach to Architecture,
Compilers and Tools. Morgan-Kaufmann (Elsevier) (2005)

25. Gao, L., Huang, J., Ceng, J., Leupers, R., Ascheid, G., Meyr, H.: TotalProf: a fast and accurate
retargetable source code profiler. In: CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM
international conference on Hardware/software codesign and system synthesis, pp. 305–314.
ACM, New York, NY, USA (2009)

26. Geilen, M., Basten, T.: Kahn process networks and a reactive extension. In: S.S. Bhattacharyya,
E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second
edn. Springer (2013)

27. Gheorghita, S., T. Basten, H.C.: An overview of application scenario usage in streaming-
oriented embedded system design. www.es.ele.tue.nl/esreports/esr-2006-03.pdf. Visited on
Mar. 2017

http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
www.es.ele.tue.nl/esreports/esr-2006-03.pdf

1060 R. Leupers et al.

28. Gupta, R., Micheli, G.D.: Hardware-software co-synthesis for digital systems. In: IEEE Design
& Test of Computers, pp. 29–41 (1993)

29. Ha, S., Oh, H.: Decidable signal processing dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

30. Hewitt, C., Bishop, P., Greif, I., Smith, B., Matson, T., Steiger, R.: Actor induction and meta-
evaluation. In: POPL ’73: Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pp. 153–168. ACM, New York, NY, USA (1973)

31. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: PASTE ’01, pp. 54–61.
ACM Press (2001)

32. Hu, T.C.: Parallel sequencing and assembly line problems. Oper. Res. 9(6), 841–848 (1961)
33. Hwang, Y., Abdi, S., Gajski, D.: Cycle-approximate retargetable performance estimation at the

transaction level. In: DATE ’08: Proceedings of the conference on Design, automation and test
in Europe, pp. 3–8. ACM, New York, NY, USA (2008)

34. Hwu, W.M., Ryoo, S., Ueng, S.Z., Kelm, J.H., Gelado, I., Stone, S.S., Kidd, R.E., Baghsorkhi,
S.S., Mahesri, A.A., Tsao, S.C., Navarro, N., Lumetta, S.S., Frank, M.I., Patel, S.J.: Implicitly
parallel programming models for thousand-core microprocessors. In: DAC ’07: Proc. of the
44th Design Automation Conference, pp. 754–759. ACM, New York, NY, USA (2007)

35. Johnson, R.C.: Efficient program analysis using dependence flow graphs. Ph.D. thesis, Cornell
University (1994)

36. Kahn, G.: The semantics of a simple language for parallel programming. In: J.L. Rosenfeld
(ed.) Information Processing ’74: Proceedings of the IFIP Congress, pp. 471–475. North-
Holland, New York, NY (1974)

37. Kandemir, M., Dutt, N.: Multiprocessor Systems-on-Chips, chap. Chapter 9. Memory Systems
and Compiler Support for MPSoC Architectures, pp. 251–281. Morgan Kaufmann (2005)

38. Karp, R.M., Miller, R.E.: Properties of a model for parallel computations: Determinacy,
termination, queuing. SIAM Journal of Applied Math 14(6) (1966)

39. Karuri, K., Al Faruque, M.A., Kraemer, S., Leupers, R., Ascheid, G., Meyr, H.: Fine-grained
application source code profiling for ASIP design. In: DAC ’05: Proceedings of the 42nd
annual conference on Design automation, pp. 329–334. ACM, New York, NY, USA (2005)

40. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: A dependence-based
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002)

41. Khronos Group: OpenCL embedded boards comparison 2015. https://www.khronos.org/news/
events/opencl-embedded-boards-comparison-2015. Visited on Mar. 2017

42. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)
43. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)
44. Kwon, S., Kim, Y., Jeun, W.C., Ha, S., Paek, Y.: A retargetable parallel-programming

framework for MPSoC. ACM Trans. Des. Autom. Electron. Syst. 13(3), 1–18 (2008)
45. Lam, M.: Software pipelining: An effective scheduling technique for VLIW machines.

SIGPLAN Not. 23(7), 318–328 (1988)
46. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9), 1235–1245

(1987)
47. Lee, E.A.: Consistency in dataflow graphs. IEEE Trans. Parallel Distrib. Syst. 2(2), 223–235

(1991)
48. Lengauer, C.: Loop parallelization in the polytope model. In: Proceedings of the 4th

International Conference on Concurrency Theory, CONCUR ’93, pp. 398–416. Springer-
Verlag, London, UK, UK (1993)

49. Leupers, R.: Retargetable Code Generation for Digital Signal Processors. Kluwer Academic
Publishers, Norwell, MA, USA (1997)

50. Leupers, R.: Code selection for media processors with SIMD instructions. In: DATE ’00, pp.
4–8. ACM (2000)

51. Li, L., Huang, B., Dai, J., Harrison, L.: Automatic multithreading and multiprocessing of C
programs for IXP. In: PPoPP ’05: Proc. of the 10th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pp. 132–141. ACM, New York, NY, USA (2005)

https://www.khronos.org/news/events/opencl-embedded-boards-comparison-2015
https://www.khronos.org/news/events/opencl-embedded-boards-comparison-2015

Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 1061

52. Ma, Z., Marchal, P., Scarpazza, D.P., Yang, P., Wong, C., Gmez, J.I., Himpe, S., Ykman-
Couvreur, C., Catthoor, F.: Systematic Methodology for Real-Time Cost-Effective Mapping
of Dynamic Concurrent Task-Based Systems on Heterogenous Platforms. Springer (2007)

53. Martin, G.: ESL requirements for configurable processor-based embedded system design.
http://www.us.design-reuse.com/articles/article12444.html. Visited on Mar. 2017

54. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1997)

55. Multicore Association: MCAPI - Multicore Communications API. http://www.multicore-
association.org/workgroup/mcapi.php. Visited on Mar. 2017

56. Multicore Association: Software-hardware interface for multi-many-core (SHIM) specification
v1.00. http://www.multicore-association.org. Visited on Mar. 2017

57. National Instruments: LabView. http://www.ni.com/labview/. Visited on Mar. 2017
58. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose, R., Zissulescu, C.,

Deprettere, E.: Daedalus: Toward composable multimedia MP-SoC design. In: DAC ’08:
Proceedings of the 45th annual conference on Design automation, pp. 574–579. ACM, New
York, NY, USA (2008)

59. Palsberg, J., Naik, M.: Multiprocessor Systems-on-Chips, chap. Chapter 12. ILP-based
Resource-aware Compilation, pp. 337–354. Morgan Kaufmann (2005)

60. Paolucci, P.S., Jerraya, A.A., Leupers, R., Thiele, L., Vicini, P.: SHAPES:: a tiled scalable
software hardware architecture platform for embedded systems. In: CODES+ISSS ’06:
Proceedings of the 4th international conference on Hardware/software codesign and system
synthesis, pp. 167–172. ACM, New York, NY, USA (2006)

61. Parks, T.M.: Bounded scheduling of process networks. Ph.D. thesis, Berkeley, CA, USA (1995)
62. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A dataflow-

based rapid prototyping framework for simplifying multicore dsp programming. In: 2014
6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–
40 (2014). https://doi.org/10.1109/EDERC.2014.6924354

63. Polychronopoulos, C.D.: The hierarchical task graph and its use in auto-scheduling. In:
Proceedings of the 5th International Conference on Supercomputing, ICS ’91, pp. 252–263.
ACM, New York, NY, USA (1991)

64. Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming on clusters
of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, pp. 427–436 (2009)

65. Sharma, G., Martin, J.: MATLAB (R): A language for parallel computing. International Journal
of Parallel Programming 37(1) (2009)

66. Silexica: SLX Tool Suite. http://www.silexica.com. Visited on Mar. 2017
67. Sporer, T., Franck, A., Bacivarov, I., Beckinger, M., Haid, W., Huang, K., Thiele, L., Paolucci,

P., Bazzana, P., Vicini, P., Ceng, J., Kraemer, S., Leupers, R.: SHAPES - a scalable parallel
HW/SW architecture applied to wave field synthesis. In: Proc. 32nd Intl Audio Engineering
Society Conference, pp. 175–187. Audio Engineering Society, Hillerod, Denmark (2007)

68. Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Synchronization.
Marcel Dekker, Inc., New York, NY, USA (2000)

69. Standard for information technology - portable operating system interface (POSIX). Shell and
utilities. IEEE Std 1003.1-2004, The Open Group Base Specifications Issue 6, section 2.9:
IEEE and The Open Group

70. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for heterogeneous
computing systems. IEEE Des. Test 12(3), 66–73 (2010)

71. Stotzer, E.: Towards using OpenMP in embedded systems. OpenMPCon: Developers
Conference (2015)

72. Synopsys: Virtual Platforms. https://www.synopsys.com/verification/virtual-prototyping.html.
Visited on Mar. 2017

73. Texas Instruments: Keystone Multicore Devices. http://processors.wiki.ti.com/index.php/
Multicore. Visited on Mar. 2017

http://www.us.design-reuse.com/articles/article12444.html
http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org
http://www.ni.com/labview/
https://doi.org/10.1109/EDERC.2014.6924354
http://www.silexica.com
https://www.synopsys.com/verification/virtual-prototyping.html
http://processors.wiki.ti.com/index.php/Multicore
http://processors.wiki.ti.com/index.php/Multicore

1062 R. Leupers et al.

74. Texas Instruments: Software development kit for multicore DSP Keystone platform. http://
www.ti.com/tool/bioslinuxmcsdk. Visited on Mar. 2017

75. Theelen, B.D., Deprettere, E.F., Bhattacharyya, S.S.: Dynamic dataflow graphs. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

76. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.: Towards a holistic approach to auto-
parallelization – integrating profile-driven parallelism detection and machine-learning based
mapping. In: PLDI 0-9: Proceedings of the Programming Language Design and Implementa-
tion Conference. Dublin, Ireland (2009)

77. Vargas, R., Quinones, E., Marongiu, A.: OpenMP and timing predictability: A possible union?
In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE ’15, pp. 617–620. EDA Consortium, San Jose, CA, USA (2015)

78. Verdoolaege, S., Nikolov, H., Stefanov, T.: pn: A tool for improved derivation of process
networks. EURASIP J. Embedded Syst. 2007(1), 19–19 (2007)

79. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J.,
Stenström, P.: The worst-case execution-time problem - overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst. 7(3), 1–53 (2008)

80. Working Group ISO/IEC JTC1/SC22/WG14: C99, Programming Language C ISO/IEC
9899:1999

81. Zalfany Urfianto, M., Isshiki, T., Ullah Khan, A., Li, D., Kunieda, H.: Decomposition of task-
level concurrency on C programs applied to the design of multiprocessor SoC. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E91-A(7), 1748–1756 (2008)

http://www.ti.com/tool/bioslinuxmcsdk
http://www.ti.com/tool/bioslinuxmcsdk

Analysis of Finite Word-Length Effects
in Fixed-Point Systems

D. Menard, G. Caffarena, J. A. Lopez, D. Novo, and O. Sentieys

Abstract Systems based on fixed-point arithmetic, when carefully designed, seem
to behave as their infinite precision analogues. Most often, however, this is only a
macroscopic impression: finite word-lengths inevitably approximate the reference
behavior introducing quantization errors, and confine the macroscopic correspon-
dence to a restricted range of input values. Understanding these differences is crucial
to design optimized fixed-point implementations that will behave “as expected”
upon deployment. Thus, in this chapter, we survey the main approaches proposed in
literature to model the impact of finite precision in fixed-point systems. In particular,
we focus on the rounding errors introduced after reducing the number of least-
significant bits in signals and coefficients during the so-called quantization process.

1 Introduction

The use of fixed-point (FxP) arithmetic is widespread in computing systems.
Demanding applications often force computing systems to specialize their hardware
and software architectures to reach the required levels of efficiency (in terms of

D. Menard (�)
INSA Rennes, IETR, UBL, Rennes, France
e-mail: daniel.menard@insa-rennes.fr

G. Caffarena
CEU San Pablo University, Madrid, Spain
e-mail: gabriel.caffarena@ceu.es

J. A. Lopez
ETSIT, Universidad Politécnica de Madrid, Madrid, Spain
e-mail: juanant@die.upm.es

D. Novo
CNRS, LIRMM, Montpellier, France
e-mail: david.novo@lirmm.fr

O. Sentieys
INRIA, University of Rennes I, Rennes, France
e-mail: olivier.sentieys@inria.fr

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_29

1063

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_29&domain=pdf
mailto:daniel.menard@insa-rennes.fr
mailto:gabriel.caffarena@ceu.es
mailto:juanant@die.upm.es
mailto:david.novo@lirmm.fr
mailto:olivier.sentieys@inria.fr
https://doi.org/10.1007/978-3-319-91734-4_29

1064 D. Menard et al.

energy consumption, execution speed, etc.). In such cases, the use of fixed-point
arithmetic is usually not negotiable. Yet, the cost benefits of fixed-point arithmetic
are not for free and can only be reached through an elaborated design methodology
able to restrain finite word-length—or quantization—effects.

Digital systems are invariably subject to nonidealities derived from their finite
precision arithmetic. A digital operator (e.g., an adder or a multiplier) imposes
a limited number of bits (i.e., word-length) upon its inputs and outputs. As a
result, the values produced by such an operator suffer from (small) deviations
with respect to the values produced by its “equivalent” (infinite precision) math-
ematical operation (e.g., the addition or the multiplication). The more the bits
allocated the smaller the deviation—or quantization error—but also the larger,
the slower and the more energy hungry the operator. The so-called word-length
optimization—or quantization—process determines the word-length of every signal
(and corresponding operations) in a targeted algorithm. Accordingly, the best
possible quantization process needs to select the set of word-lengths leading to the
cheapest implementation while bounding the precision loss to a level that is tolerable
by the application in hand. The latter can formally be defined as the following
optimization problem:

minimize
w

C(w)

subject to D(w) ≤ Ω,

(1)

where w is a vector containing the word-lengths of every signal, C(·) is a cost
function that propagates variations in word-lengths to design objectives such
as energy consumption, D(·) computes the degradation in precision caused by
a particular w and Ω represents the maximum precision loss tolerable by the
application.

From a methodological perspective, the word-length optimization process can
be approached in two consecutive steps: (1) range selection and (2) precision
optimization. The range selection step defines the left hand limit—or Most-
Significant Bit (MSB)—and the subsequent precision optimization step fixes the
right hand limit—or Least-Significant Bit (LSB)—of each word-length. Typically,
the range selection step is designed to avoid overflow errors altogether, and
therefore, the precision optimization step becomes the sole responsible for precision
loss. Figure 1 gives a pictorial impression of the word-length optimization process
and divides the precision optimization step into four interacting components, namely
the optimization engine, the cost estimation, the constraint selection and the error
estimation.

• The optimization engine basically consists of an algorithm that iteratively
converges to the best word-length assignment. It has been shown that the
constraint space is non-convex in nature [29]—it is actually possible to have
a lower quantization error at a system output by reducing the word-length at an

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1065

Optimization
engine

Cost
estimation

Error
estimation

Precision constraint

Error
Word-lengths

Cost

Constraint
selection

Range selection

Precision
optimization

LSB1...LSBs

MSB1...MSBs

Signal1

Signal2

Signals

MSB1 LSB1

MSB2 LSB2

MSBs LSBs
...

Binary point

Fig. 1 Basic components of a word-length optimizaton process

internal node—, and that the optimization problem is NP-hard [35]. Accordingly,
existing practical approaches are of a heuristic nature [21, 22, 32].

• A precise cost estimation of each word-length assignment hypothesis leads to
impractical optimization times as such heuristic optimization algorithms involve
a great number of cost and error evaluations. Instead, word-length optimization
processes use fast abstract cost models, such as the hardware cost library
introduced in the chapter [132] of this book or the fast models proposed by
Clarke et al. [28] to estimate the power consumed in the arithmetic components
and routing wires.

• The precision constraint selection block is responsible of reducing the abstract
sentence “the maximum precision loss tolerable by the application” into a
magnitude that can be measured by the error estimation. Practical examples have
been proposed for audio [103] or wireless applications [109].

• Existing approaches for error estimation can be divided into simulation-based
and analytical methods. Simulation-based methods are suitable for any type of
application but are generally very slow. Alternatively, analytical error estimation
methods can be significantly faster but often restrict the domain of application
(e.g., only linear time-invariant systems [32]). There are also hybrid meth-
ods [122] that aim at combining the benefits of each method.

While the chapter presented in [132] covers in breadth most of the blocks
in Fig. 1, this chapter takes a complementary in-depth approach and focuses on
arguably the most important block in the word-length optimization process: the error
estimation. The latter is crucial to ensure correctly behaving fixed-point systems
and has received considerable attention in the research literature. Thus, in this
chapter, we survey the main approaches proposed to model quantization errors.
To understand their similarities and differences, we present a classification of the
reviewed approaches based on their assumptions and coverage. We believe that this
chapter will shed some light on the word-length optimization process as a whole and
help readers choose the most convenient available approach to model quantization
errors in their word-length optimization process.

The rest of the chapter is organized as follows. Section 2 introduces the main
concepts regarding quantization. The next section deals with signal quantization.
Noise metrics and both simulation-based and analytical techniques for the evalua-
tion of quantization noise are explained. Regarding the analytical evaluation, this

1066 D. Menard et al.

covers both the estimation of noise power and noise bound. Section 4 addresses the
quantization of coefficients. The different measurement parameters used to evaluate
coefficient quantization are explained, with special emphasis on the use of the
L2-sensitivity. System stability is described in Sect. 5, again focusing on simulation-
based and analytical approaches. Finally, a summary is presented in the last section.

2 Background

A typical Digital Signal Processing (DSP) design flow begins with a design
specification and follows a number of steps to produce a satisfactory implementation
as illustrated in Fig. 2. The original specification serves as a functional reference and
is typically implemented in frameworks that prioritize software productivity, such
as MATLAB, in floating-point or double precision. For instance to illustrate, such
a specification can include a 64-point Discrete Fourier Transform (DFT). Firstly, a
skillful designer will reduce the algorithmic complexity in the algorithmic refine-
ment step. The DFT matrix can be factorized into products of sparse factors (i.e.,
Fast Fourier Transform), which reduces the complexity from O(n2) to O(n logn).
Additionally, the algorithmic refinement step can make use of approximations
to further reduce the complexity—e.g., the Maximum Likelihood (ML) detector
is approximated by a near-ML detector [109]. Once the algorithm structure is
fixed, operators and signals are defined in the subsequent algebraic transformation
and static data formatting steps, respectively. An algebraic approximation can for
instance reduce a reciprocal square root operator to a scaled linear function [109].
Finally, the static data formatting step is the responsible of finalizing the bit-true

Fig. 2 Basic DSP design flow

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1067

specification that will constrain all succeeding (bit-true) optimizations, such as loop
transformations, resource binding, scheduling, etc.

Algorithmic and algebraic approximations are integrating parts of what is known
as approximate computing [107]. Instead, data formatting is equivalent to the word-
length optimization process introduced in the previous section. Although some
prior work targets implementations that do not add quantization error to those
of the inputs [9, 84, 130], lossy static data formatting [34]—i.e., reduction of
implementation cost by introducing additional quantization noise in intermediate
nodes—is the common practice and the main focus of this chapter.

2.1 Floating-Point vs. Fixed-Point Arithmetic

The IEEE-754 standard [60] for floating-point (FlP) arithmetic—particularly the 64
bit double-precision format—is commonly used in implementations requiring high
mathematical precision. However, many applications tolerate the use of less precise
arithmetic modules in both FxP [34, 120] and non-standard FlP [51] formats. As
introduced in Chapter [132], the FlP format represents numbers by means of two
variables: an exponent e and a mantissa m. Given the pair (m, e), the value of the
represented FlP number, VFlP , is

VFlP = m · 2e. (2)

The combined use of mantissa and exponent provides the finest level of scaling:
each number includes its own scaling factor. Thereby, FlP digital systems can
effectively operate numbers with a very wide dynamic range. However, FlP
arithmetic often involves overheads in terms of area, delay and energy consumption.
Firstly, FlP requires wider bit-widths than FxP arithmetic to operate with equivalent
precision on variables with low to moderate dynamic range [57], which is the typical
case in most applications. Furthermore, FlP operators are more complex as they
implement in hardware the alignment of the fractional point of the operands and the
normalization of the output besides the actual operator.

Alternatively, FxP arithmetic constrains the exponent e to be a design time
constant. Equation (2) remains valid but only the mantissa m changes at run time—
and thus needs to be stored in memory. Accordingly, describing an implementation
employing FxP arithmetic is more complex and tedious as the designer is responsi-
ble of handling explicitly in the source code the scaling of variables.

2.2 Finite Word-Length Effects

Quantized systems suffer from two types of errors: overflow and precision errors.
On the one hand, overflow errors result from variable values growing beyond
the limits of the word-length (WL). They are related to the lack of scaling and

1068 D. Menard et al.

saturation and wrap-around [97, 116, 119] are the most common techniques used
to handle them at the operator output. Saturation employs extra hardware to detect
and reduce overflow error. Instead, wrap-around is hardware-free but leads to
intolerably huge errors in underdimensioned word-lengths. On the other hand,
precision errors are due to the unavoidable limited precision of quantized digital
implementations [97, 116, 119]. Rounding and truncation are the most common
techniques used to handle precision errors at the operator output. Rounding employs
extra hardware to reduce the maximum error magnitude resulting from the removal
of LSBs. Instead, truncation is hardware-free but often accumulates larger precision
errors. The technique leading to the best implementation is application dependent:
even though rounding requires more complex operators, they can generally operate
shorter word-lengths to achieve the same precision error as truncation [98].

The limited precision effects of the DSP realizations have been studied exten-
sively since the raise of digital systems, particularly in Linear Time Invariant
(LTI) systems [97, 116, 119]. They are commonly divided in four different types:
round-off noise, coefficient quantization, limit cycles and system stability. Round-
Off Noise (RON) refers to the probabilistic deviation of the results of a quantized
implementation with respect to the error-free reference [97, 116, 119]. Coefficient
Quantization (CQ) refers to the deterministic deviation of the parameters of the
transfer function [71, 97, 119]. Limit Cycles (LC) are the parasitic oscillations that
appear in quantized system under constant or zero inputs due to the propagation
of the quantization errors through feedback loops [27, 119]. Finally, in the case
of digital filters, the coefficient quantization modifies the position of the poles of
the transfer function, which might jeopardize the system stability when approached
carelessly [110]. Table 1 summarizes the classification of these effects attending to
linearity and whether they result from the quantization of signals or coefficients.

RON is the prominent finite precision effect during normal operation of FxP
systems [71, 97, 116, 119]. It introduces stochastic variations around the system’s
nominal operation point. Complementary, CQ effects modify the actual nominal
operation point of the system and can lead to instability when such deviation is
not carefully conducted. While RON and CQ effects apply to any FxP system, LCs
effects are only relevant to particular types of systems (e.g., DSP filters) as they are
the result of correlated quantization errors in feedback loops [116, 119]. For this
reason, in this chapter we focus mainly on RON (most of Sect. 3) and CQ effects
(Sect. 4) while also covering LCs for the sake of completeness but in much less
detail (end of Sect. 3).

Table 1 Classification of the finite WL quantization effects

Type of effect Quantization object Name of effect
Linear Signals Round-off noise (RON)(Section III)

Coefficients Coefficient quantization (CQ) (Section IV)
Nonlinear Signals Limit cycle oscillations

Coefficients System instability

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1069

3 Effect of Signal Quantization

Finite precision arithmetic leads to unavoidable deviations of the finite precision
values from the infinite precision ones. Such deviations, due to signal quantizations,
modify the quality of the application output. Thus, they must be evaluated and
maintained within reasonable bounds. In most cases these deviations are accurately
modeled as additive white noise, or quantization noise. The quantization noise can
be evaluated through analytical or fixed-point simulation based approaches. In the
case of analytical approaches, a mathematical expression of a metric is determined.
Computing an expression of an quality metric for every kind of application is
generally an issue. Thus, the quality degradations are not analyzed directly in the
quantization process, but an intermediate metric measuring the fixed-point accuracy
is used instead.

Word-length optimization is split into two main steps. Firstly, a computational
accuracy constraint is determined according to application quality and, secondly,
the word-length optimization is carried out using this constraint. Interestingly, fixed-
point simulation approaches enable the direct evaluation of the effect of quantization
on application quality. But, in many cases, an intermediate accuracy metric is used
because less samples are required to estimate this metric in contrast to directly
computing or simulating application quality under quantization effects.

The different approaches available to analyze quantization noise effects that are
covered in this section are displayed in Fig. 3. The techniques are first divided into
the three main major groups: simulation-based, analytical and mixed (that combines
the two previous ones) approaches. The graph include all techniques covered in the
subsequent subsections and also the main related publications.

Analysis of
quantization

effects

Simulation
based

approaches

Optimized
Fixed-point
Data Types

Hardware
Emulation

[78, 73, 39,
82, 37, 38]

Bit-level
Mapping

optimization
[39, 82, 76,

36, 143]

Object-
Oriented Data
Types [75, 96,
11, 104, 77]

Mixed
approaches

Application
Quality Metric

Mixed
approach

[113]

Analytical
approaches

Fig. 3 Classification of the different approaches to analyze the quantization noise effects

1070 D. Menard et al.

Fig. 4 Classification of
systems targeted by RON
evaluation techniques

Figure 4 shows the main classification of systems used by the different techniques
devoted to RON evaluation: LTI systems, smooth systems and all systems. Smooth
systems are those whose operations are differentiable and can be linearized without
committing a significant error. This classification also distinguishes between recur-
sive systems—systems with loops or cyclic—and non-recursive systems—systems
without loops or acyclic. The different regions displayed in the graph are related to
different techniques that are only able to handle a particular type of systems.

Section 3.1 introduces the different noise metrics used. Section 3.2 covers the
analytical evaluation of the quantization noise effect, embracing both the noise
power and noise bound computation. Then the techniques based on fixed-point
simulation and the hybrid techniques are presented in Sect. 3.3.

3.1 Error Metrics

Different metrics can be used to measure the accuracy of a fixed-point realization.
This accuracy can be evaluated through the bounds of the quantization errors [2, 43],
the number of significant bits [24], or the power of the quantization noise [18, 102,
126]. The shape of the power spectral density (PSD) of the quantization noise is
used as metric in [7] or in [31] for the case of digital filters. In [20], a more complex
metric able to handle several models is proposed.

Regarding the metric that computes the bounds of the quantization errors, the
maximum deviation between the exact value and the finite precision value is
determined. This metric is used for critical systems when it is necessary to ensure
that the error will not surpass a maximum deviation. In this case, the final quality
has to be numerically validated.

As for the noise power computation, the error is modeled as a noise, and the
second order moment is computed. This metric analyzes the dispersion of the finite
precision values around the exact value and the mean behaviour of the error. The
noise power metric is used in applications which tolerate sporadic high-value errors
that do not affect the overall quality. In this case, the system design is based on a
trade-off between application quality and implementation cost.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1071

Analytical
approaches

Error Power
Metric

Perturbation
Theory

Hybrid
Approach

[126, 33, 56]

Impulse
Response

Determination
[100, 122],

AA-based
Simulation

[18, 93]

Probability
Density
function
Metric

Unsmooth
[127,115] Smooth

Karhunen-
Loeve

Expansion
(KLE)
[145, 3]

Polynomial
Chaos

Expansion
(PCE)

[146, 50]

Error Bound
Metric

Interval
Arithmetic

(IA) [23, 5],
[45, 41, 124]

Affine
Arithmetic
(AA) [52],

[95, 86, 93],
[111, 13]

Multi-IA
(MIA)

[94, 1, 80, 81]

Fig. 5 Classification of the different analytical approaches to analyze the quantization noise
effects

3.2 Analytical Evaluation of the Round-Off Noise

The aim of analytical approaches is to determine a mathematical expression of the
fixed-point error metric. The error metric function depends on the word-length of
the different data inside the application. The main advantage of these approaches is
the short time required for the evaluation of the accuracy metric for a given set of
word-lengths. The time required to generate this analytical function can be more or
less important but this process is done only once, before the optimization process.
Then, each evaluation of the accuracy metric for a given WL sets corresponds to the
computation of a mathematical expression. The main drawback of these analytical
approaches is that they do not support all kinds of systems. Figure 5 depicts a
classification of existing analytical approaches to analyze the quantization noise
effects. This classification depends on the type of metric used (bound, power or
probability density function), on the smooth/unsmooth nature of the noise, and on
the technique used. In this section, we review the different analytical approaches for
computing: RON bounds, RON power, and the effect of RON on any quality metric
in the presence of unsmooth operators.

3.2.1 Quantization Noise Bounds

There are a number of techniques and methods that have been suggested in the
literature to measure the bounds of the quantization noise. Since the numerical tech-
niques typically lead to exceedingly long computation times, different alternatives
have been proposed to obtain results faster.

Table 2 shows the most relevant techniques related to the evaluation of noise
bounds. The first column indicates the name of the technique. The second col-
umn displays the main characteristics of the technique, while the third column

1072 D. Menard et al.

T
ab

le
2

Te
ch

ni
qu

es
fo

r
th

e
ev

al
ua

ti
on

of
th

e
qu

an
ti

za
ti

on
no

is
e

bo
un

ds

G
en

er
al

fe
at

ur
es

Pa
rt

ic
ul

ar
fe

at
ur

es
Sy

st
em

L
oo

ps
Sp

ee
d

R
ef

er
en

ce
s

In
te

rv
al

ar
it

hm
et

ic
an

d
ra

ng
e

pr
op

ag
at

io
n

Fo
rw

ar
d-

ba
ck

w
ar

d
pr

op
ag

at
io

n:
re

du
ce

s
so

m
e

ov
er

es
ti

m
at

io
n

bu
t

th
e

re
su

lt
s

ar
e

st
il

l
ov

er
si

ze
d

C
om

bi
ne

s
th

re
e

m
et

ho
ds

to
re

du
ce

ov
er

si
ze

:
nu

m
be

r
of

bi
ts

,r
an

ge
of

ea
ch

va
ri

ab
le

,a
nd

lo
gi

c
va

lu
e

of
ea

ch
bi

t.
In

te
gr

at
ed

in
th

e
B

it
w

is
e

to
ol

A
ll

N
o

Fa
st

St
ep

he
ns

on
[1

30
]

In
sp

ir
ed

by
St

ep
he

ns
on

et
al

.
[1

30
],

co
m

bi
ne

s
co

n-
st

ra
in

t
pr

op
ag

at
io

n,
si

m
ul

at
io

n,
ra

ng
e

ev
al

ua
ti

on
an

d
sl

ac
k

an
al

ys
is

.I
nt

eg
ra

te
d

in
th

e
P

ré
ci

s
to

ol

A
ll

N
o

M
ed

iu
m

C
ha

ng
[2

3]

Fo
rw

ar
d

pr
op

ag
at

io
n

U
se

r
an

no
ta

ti
on

s.
In

te
gr

at
ed

in
th

e
M

at
ch

co
m

pi
le

r
an

d
th

e
A

cc
el

F
P

G
A

to
ol

A
ll

N
o

M
ed

iu
m

N
ay

ak
[1

08
]

B
an

er
je

e
[4

,5
]

Pr
ec

is
io

n
an

al
ys

is
st

ag
e

ba
se

d
on

er
ro

r
pr

op
ag

at
io

n
A

ll
N

o
M

ed
iu

m
D

oi
[4

5]

IA
ov

er
es

ti
m

at
io

n
re

du
ct

io
n

In
te

gr
at

ed
in

th
e

G
ap

pa
to

ol
A

ll
N

o
D

e
D

in
e-

ch
in

[4
2]

M
ul

ti
-i

nt
er

va
la

ri
th

m
et

ic
M

or
e

ac
cu

ra
te

re
su

lt
s

th
an

IA
,b

ut
st

il
l

ov
er

si
ze

d
(s

pl
it

ti
ng

do
es

no
ts

ol
ve

th
e

de
pe

nd
en

cy
pr

ob
le

m
)

E
va

lu
at

es
th

e
pr

op
ag

at
io

n
of

th
e

in
te

rv
al

s
du

e
to

th
e

qu
an

ti
za

ti
on

op
er

at
io

ns
th

ro
ug

h
th

e
fe

ed
ba

ck
lo

op
s.

In
te

gr
at

ed
in

th
e

A
ba

co
se

to
f

to
ol

s

LT
I

Y
es

V
er

y
fa

st
L

op
ez

[9
4]

Sy
m

bo
li

c
N

oi
se

A
na

ly
si

s
(S

N
A

)b
y

sp
li

tt
in

g
th

e
in

te
r-

va
ls

.
T

he
y

ta
ke

in
to

ac
co

un
t

th
e

pr
ob

ab
il

it
ie

s
in

th
e

pr
op

ag
at

io
n

of
th

e
er

ro
r

LT
I

N
o

Fa
st

A
hm

ad
i[

1]

B
as

ed
on

th
e

Sa
tis

fi
ab

il
it

y
M

od
ul

o
T

he
or

y
(S

M
T

)
th

e
in

te
rv

al
s

ar
e

it
er

at
iv

el
y

re
du

ce
d

by
sp

li
tt

in
g

th
em

an
d

se
le

ct
in

g
w

hi
ch

pa
rt

s
ar

e
va

li
d

A
ll

Y
es

M
ed

iu
m

K
in

sm
an

[7
9–

81
]

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1073

A
ffi

ne
ar

it
hm

et
ic

M
or

e
ac

cu
ra

te
re

su
lt

s
th

an
IA

an
d

M
IA

It
pr

ov
id

es
gu

ar
an

te
ed

bo
un

ds
LT

I
N

o
V

er
y

fa
st

Fa
ng

[5
3]

It
pr

ov
id

es
es

ti
m

at
es

of
th

e
bo

un
ds

.
In

te
gr

at
ed

in
th

e
A

ba
co

to
ol

LT
I

Y
es

V
er

y
fa

st
L

op
ez

[9
2,

93
,9

5]

It
pr

ov
id

es
gu

ar
an

te
ed

bo
un

ds
.

Im
pl

em
en

te
d

on
M

in
ib

it
an

d
L

en
gt

hfi
nd

er
to

ol
s

Po
ly

no
m

ia
l

N
o

M
ed

iu
m

Fa
st

L
ee

[8
4]

Se
ns

it
iv

it
y

an
al

ys
is

B
as

ed
in

au
to

m
at

ic
di

ff
er

en
ti

at
io

n.
It

pr
ov

id
es

fa
st

re
su

lt
s

It
co

m
pu

te
s

th
e

m
ax

im
um

de
vi

at
io

n
fo

r
ea

ch
no

is
e

so
ur

ce
an

d
pe

rf
or

m
s

pr
op

ag
at

io
n

by
m

ea
ns

of
si

gn
al

de
ri

va
tiv

es
.

It
pr

ov
id

es
gu

ar
an

te
ed

bo
un

ds
,

ye
t

ov
er

-
si

ze
d

Sm
oo

th
N

o
V

er
y

fa
st

G
af

fa
r

[5
8]

A
ri

th
m

et
ic

tr
an

sf
or

m
at

io
ns

A
na

ly
ti

ca
l

ap
pr

oa
ch

th
at

fo
ll

ow
s

a
si

m
il

ar
co

n-
ce

pt
to

th
e

Ta
yl

or
M

od
el

s.
A

T
pr

ov
id

es
a

ca
no

n-
ic

al
re

pr
es

en
ta

ti
on

of
th

e
pr

op
ag

at
io

n
fu

nc
ti

on
s

T
he

ou
tp

ut
is

de
sc

ri
be

d
as

a
po

ly
no

m
ia

l
fu

nc
ti

on
of

th
e

in
pu

ts
.T

he
W

L
s

ar
e

op
ti

m
iz

ed
by

co
ns

id
er

in
g

th
e

im
pr

ec
is

io
n

al
lo

w
ed

fo
r

th
e

qu
an

ti
za

ti
on

s

Po
ly

no
m

ia
l

N
o

Fa
st

Pa
ng

[1
12

,
12

4,
12

5]

A
A

is
us

ed
fo

r
ra

ng
e

an
al

ys
is

,
an

d
(A

T,
IA

)
fo

r
W

L
an

al
ys

is
an

d
op

ti
m

iz
at

io
n.

Sm
al

lo
ve

re
st

im
at

io
n

LT
I

Po
ly

no
-

m
ia

l
Y

es
V

er
y

fa
st

Fa
st

Sa
rb

is
he

i
[1

24
,1

25
]

1074 D. Menard et al.

shows particular features of the cited approaches. The next three columns contain
information about the type of systems that the approaches can be applied to (all,
polynomial, based on smooth operations and LTI systems), the existence of loops
and the computational speed of the approach.

The analytical techniques used to evaluate the noise bounds can be classified
in two major groups: (1) interval-based computation (Interval Arithmetic (IA),
Multi-IA (MIA), Affine Arithmetic (AA) and satisfiability modulo theory) and (2)
polynomial representation with interval remainders (sensitivity analysis and Arith-
metic Transformations (AT)). Principal techniques are described in the following
paragraphs.

Interval-Based Computations
In the last decade, interval-based computations have emerged as an alternative to
simulation-based techniques. A high number of simulations are required in order
to cover a significant set of possible values of the inputs, so traditional simulation-
based techniques imply very long computation times. As an alternative, interval-
based methods have been suggested to speedup the computation process. The results
are obtained much faster, but they have to deal with the continuous growth of the
intervals (oversizing) through the sequence of operations. Thus, these techniques
are restricted to a limited subset of systems (mostly LTI or quasi-LTI), or combined
with other techniques to reduce the oversize.

The most classical approach is the computation using interval arithmetic (IA),
also called forward propagation, value propagation or range propagation tech-
niques. Given the ranges of the inputs of a system, represented by intervals,
IA computes the guaranteed ranges of the outputs. The main drawback of these
techniques is the so-called dependency problem, which is produced when the same
variable is used in several places within the algorithms under analysis, since IA is not
able to track dependency between variables, ranges are overestimated. To alleviate
this situation, some authors have suggested splitting the intervals in a number of
sections, generating a Multi-IA approach.

One of the earliest works that applied value propagation to the computation of the
noise bounds was developed by Stephenson et al. in the Bitwise project [130]. They
perform forward and backward range propagation, and combine three different types
of analysis to optimize the WLs with guaranteed accuracy: analysis of the number
of bits, the ranges of the operands, and the logic value of each bit. The analysis of
the number of bits provides larger WLs than the analysis of ranges, but limits the
LSB of the result. In combination with backward propagation, the evaluation of the
logic values of the operands enables some optimization, but it is not significant in
the general case. Since the oversizing of these techniques rapidly increases along the
sequence of operations, this approach does not provide practical results in complex
systems. However, it provides fast and guaranteed results for smaller blocks.

Chang et al. have applied a similar approach in the Précis tool [23]. By including
fixed-point annotations in Matlab code, they perform fixed-point simulation, range
analysis, forward and backward propagation, and slack analysis. The annotations
are based on the routine fixp, which allows modelling different integer and fractional

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1075

WLs, as well as overflow and underflow quantization strategies. They indicate that
the combined application of range analysis (MSB) and propagation analysis (LSB)
provides accurate WLs, and that the propagation based on the number of bits is more
conservative than range analysis for the MSBs. Slack analysis uses the difference
between these two results to provide an ordered list of signals that provide better
results when their LSBs are optimized [23].

Nayak [108] and Banerjee et al. [4, 5] have applied the propagation techniques
to the computation of the noise bounds. They have developed an automatic
quantization environment that has been included in the Match project and the
AccelFPGA tool.

In [45], Doi et al. present a WL optimization method that estimates the optimum
WLs using noise propagation. They propagate the noise ranges using IA, and apply
it in combination with a nonlinear programming solver to estimate the optimum
WLs in LTI blocks without loops. Due to the oversizing of the interval-based
computations, the bounds provided in this process are conservative in most cases,
but the difference with the optimum result is not significant in blocks without loops.

The Gappa tool [41, 42] uses a different approach to deal with the oversizing
associated to the interval computations. It creates a set of theorems to rewrite
the most common expressions into similar ones that are less affected by the
correlations in the interval computations. This approach provides guaranteed and
accurate results, but up to now its application is limited to systems without loops
and branches [41], and requires a very good knowledge of the target system [42].

Multi-IA (MIA) has also been applied by several authors to reduce the width of
the bounds of the quantization noise. In [94], the authors suggest a method to reduce
the overestimation of IA and use it to provide refined bounds in the impulse response
and the transfer function of an Infinite impulse response (IIR) filter. Although MIA
provides less conservative bounds than IA, MIA does not solve the dependency
problem and is therefore not a good option for systems with loops [95].

The Symbolic Noise Analysis (SNA) method presented in [1] splits the noise
intervals into smaller parts and performs IA propagation of each part. At the output,
intervals are combined according to their probabilities to provide the histogram
of the output noise. When there is small or no oversizing, this approach provides
accurate estimates of the PDF of the output noise. However, in the general case, this
only provides bounds associated to each part, and less conservative global bounds
than IA or range propagation methods.

Kinsman and Nicolici [80, 81] propose to use Satisfiability Modulo Theory
(SMT). This approach initially performs IA propagation of the values of all the
signals and noise sources, and provides an initial (conservative) estimate of the
bounds at the output. After that, all the sources are successively split using the
bisection method to provide less conservative ranges in each iteration. The process
finishes after reaching a given constraint or when all the intervals have zero width
(degenerated intervals). The authors indicate that this method is particularly useful
in presence of discontinuities (such as in systems with divisions or inverse functions)
and that it provides more accurate results than AA in non-linear systems [79]. In a
later work, the authors have generalized this idea to handle floating- and fixed-point

1076 D. Menard et al.

descriptions using the same solver [80] and have introduced vectors to reduce the
amount of terms in the splitting process [81].

Affine Arithmetic (AA) [131] was proposed to optimize the bounds of signals
and noise sources in LTI fixed-point realizations [53]. The authors propose to apply
AA for feed-forward systems to obtain guaranteed bounds and also to obtain a
practical estimation based on a confidence interval. Moreover, an iterative method is
proposed for systems with feedback and is proved to always converge although the
bounds are overestimated. A more detailed analysis about the application of AA to
characterize quantized LTI systems has been carried out in [92, 93, 95]. The authors
have evaluated the source and propagation models of AA in fixed-point LTI systems
with feedback loops, and have concluded that AA propagates the exact results in
systems described by sequences of affine operations (i.e., LTI systems). In [92] and
[95], they propose a variation of the description of the quantization operations of AA
that provides more accurate estimates of the noise bounds. A comparison between
IA, MIA, AA and the proposed approach shows that IA and MIA are affected by the
dependency problem in most LTI systems with feedback loops (whenever the filter
has complex poles), and do not provide useful results [95]. In [93], the expressions
for the generation of the affine sources, the propagation of the noise terms, and the
computation of the output results are provided. Although they are oriented to the
computation of the MSE statistics, the derivation of the corresponding expressions
to obtain the minimum guaranteed bounds is very easily obtained.

AA has also been suggested in combination with Adaptive Simulated Annealing
(ASA) to perform WL optimization of fixed-point systems without feedback loops
in the tool Minibit [85].

Polynomial Representations with Interval Remainders
The polynomial representations with interval remainders are based on the per-
turbation theory and follow a similar idea to the Taylor Models. They perform
a polynomial Taylor series decomposition and the smallest uncertainties can be
merged in one or more terms, or simply they can be neglected. These approaches
have been suggested, in particular in recent years, to perform efficient evaluation of
polynomial sequences of operations.

Perturbation theory is based on a Taylor series decomposition of a given order
and can include intervals to provide guaranteed bounds of the results. This idea
was first presented by Wadekar and Parker [140], but the implementation details of
the computation were not given. The most relevant contributions are those based
on sensitivity analysis (using first-order derivatives) and arithmetic transformations
(canonical polynomial representations with an error interval remainder). Handelman
representations [12] can handle more detailed representations of the internal
descriptions, they are out of the scope of this paper since their application so far
is to floating-point systems.

Gaffar et al. [58] have suggested an approach based on an automatic differen-
tiation method and have applied it to linear or quasi-linear systems. The noise
bounds are computed as the sum of the maximum deviation of each noise signal
multiplied by its corresponding sensitivity. The main advantage of this approach is

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1077

that the bounding expression is very easily obtained, since in this type of systems the
sensitivities are the operands of the multiplications and the other terms of the Taylor
series are considered negligible. However, since it is aimed at providing guaranteed
bounds of the results, the provided WLs are usually overestimated even for small
blocks [58].

Another interesting approach which acquired relevance in the latest years is the
optimization of systems using Arithmetic Transformations (AT) [112, 124, 125].
ATs are polynomials that represent pseudo-boolean functions. Their extensions
also include word-level inputs and sequential variables in the representations.
AT representations are canonical, so the propagation of the polynomial terms is
guaranteed to be accurate. In addition, due to their origin, they are particularly well
suited to describe and optimize the operations of a given circuit.

In [112], authors distinguish three sources of error: approximation by the finite-
order polynomial, quantization of the input signals, and optimization of the WLs
of coefficients and result [112]. The combination of these three sources must be
less than the specified error bound to provide a valid implementation. They initially
determine the order of the Taylor series and the amount of input quantization. After
that, a branch and bound algorithm, tuned for this application and guided by the
sensitivity, is used for the optimization process [112]. In [125] and [124], the authors
extend this approach to evaluate systems containing feedback loops. In [125], they
provide the analytical expressions for the analysis of IIR filters, taking into account
both MSE statistics and bounds as the target measurements. In [124], they extend
this analysis to polynomial systems with loops, and show that AT paired with IA
is more efficient than AA to provide the noise bounds. One of the main features of
this approach is that it does not require numerical simulations, unlike other similar
approaches.

3.2.2 Round-Off Noise Power

Existing approaches to compute the analytical expression of the quantization noise
power are based on perturbation theory, which models finite precision values as
the addition of the infinite precision values and a small perturbation. At node i, a
quantization error signal bi is generated when some bits are eliminated during a
fixed-point format conversion (quantization). This error is assimilated to an additive
noise which propagates inside the system. This noise source contributes to the output
quantization noise by through the gain αi , as shown in Fig. 6.

The aim of this approach is to define the output noise by power expression
according to the noise source bi parameters and the gains αi between the output
and a noise source.

Table 3 summarizes the main techniques to compute the RON power. The first
column indicates the type of technique used. The second column displays the main
characteristic of the technique, while the next column shows particular features of
the cited approaches. The next three columns contain information about the type of
systems that the approaches handle (All, based on smooth operations and LTI), the

1078 D. Menard et al.

Fig. 6 Model for the
computation of output RON
power based on noise sources
bi and gains αi

+

...

..
.

...

b0

bi

bj

by

α0

αi

α j

existence of loops and the computational speed of the approach. The last columns
shows the references to the published works.

The next paragraphs focus on the model used for the quantization process,
which has three phases: (1) noise generation, (2) noise propagation, and (3) noise
aggregation.

Noise Generation
In finite precision arithmetic, signal quantization leads to an unavoidable error. A
commonly used model for the continuous-amplitude signal quantization has been
proposed in [141] and refined in [129]. The quantization of signal x is modeled by
the sum of this signal and a random variable b (quantization noise). This additive
noise b is a uniformly distributed white noise that is uncorrelated with signal x

and any other quantization noise present in the system (due to the quantization of
other signals). The validity conditions of the quantization noise properties have been
defined in [129]. These conditions are based on characteristic function of the signal
x, which is the Fourier transform of the probability density function (PDF). This
model is valid when the dynamic range of signal x is sufficiently greater than the
quantum step size and the signal bandwidth is large enough.

This model has been extended to include the computation noise in a system
resulting from some bit elimination during a fixed-point format conversion. More
especially, the round-off error resulting from the multiplication of a constant by
a discrete amplitude signal has been studied in [6]. This study is based on the
assumption that the PDF is continuous. However, this hypothesis is no longer valid
when the number k of bits eliminated during a quantization operation is small. Thus,
in [30], a model based on a discrete PDF is suggested and the first and second-order
moments of the quantization noise are given. In this study, the probability value of
each eliminated bit to be equal to 0 or 1 is assumed to be 1/2.

Noise Propagation
Each noise source bi propagates to the system output and contributes to the noise
by at the output. The propagation noise model is based on the assumption that the

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1079

T
ab

le
3

Te
ch

ni
qu

es
fo

r
th

e
an

al
yt

ic
al

ev
al

ua
ti

on
of

th
e

qu
an

ti
za

ti
on

no
is

e
po

w
er

G
en

er
al

fe
at

ur
es

Pa
rt

ic
ul

ar
fe

at
ur

es
Sy

st
em

L
oo

ps
Sp

ee
d

R
ef

er
en

ce
s

H
yb

ri
d

te
ch

ni
qu

es
B

as
ed

on
st

at
is

ti
ca

le
xp

re
ss

io
ns

.
R

eq
ui

re
s

la
rg

e
m

at
ri

x
co

m
pu

ta
ti

on
s.

C
oe

ffi
ci

en
ts

K
i

an
d
L
ij

ar
e

co
m

pu
te

d
us

in
g

fix
ed

-p
oi

nt
si

m
ul

at
io

ns
an

d
th

en
su

bs
ti

tu
te

d
in

th
e

st
at

is
ti

ca
lm

at
ri

x
eq

ua
ti

on
s

Sm
oo

th
Y

es
M

ed
iu

m
Sh

i[
12

6]

Sm
oo

th
Y

es
M

ed
iu

m
C

on
st

an
ti

ni
de

s
[3

3]

Sm
oo

th
Y

es
M

ed
iu

m
Fi

or
e

[5
6]

Im
pu

ls
e

re
sp

on
se

de
te

rm
in

at
io

n
B

as
ed

on
sy

st
em

tr
an

sf
or

m
at

io
ns

.
Pr

ov
id

es
fa

st
re

su
lt

s.
C

oe
ffi

ci
en

ts
K

i
an

d
L
ij

ar
e

co
m

pu
te

d
fr

om
th

e
im

pu
ls

e
re

sp
on

se
be

tw
ee

n
th

e
no

is
e

so
ur

ce
s

an
d

th
e

ou
tp

ut
.I

nt
eg

ra
te

d
in

th
e

ID
.F

ix
to

ol

LT
I

Y
es

V
er

y
fa

st
M

en
ar

d
[1

00
]

Sm
oo

th
Y

es
Fa

st
R

oc
he

r
[1

22
]

A
ffi

ne
ar

it
hm

et
ic

si
m

ul
at

io
ns

B
as

ed
on

A
A

si
m

ul
at

io
ns

.P
ro

vi
de

s
fa

st
re

su
lt

s
C

oe
ffi

ci
en

ts
K

i
an

d
L
ij

ar
e

co
m

pu
te

d
fr

om
th

e
re

su
lt

s
of

th
e

A
A

si
m

ul
at

io
ns

.I
nt

eg
ra

te
d

in
th

e
A

ba
co

an
d

Q
ua

sa
r

to
ol

s
LT

I
Y

es
V

er
y

fa
st

L
op

ez
[9

3]

Sm
oo

th
Y

es
Se

e
no

te
a

C
af

fa
re

na
[1

8
]

C
om

bi
ne

s
M

A
A

an
d

PC
E

Pr
ov

id
es

ac
cu

ra
te

re
su

lt
s

in
st

ro
ng

ly
no

nl
in

ea
r

sy
st

em
s

Po
ly

no
m

ia
l

Y
es

M
ed

iu
m

/f
as

t
E

st
eb

an
[5

0]
a F

as
tf

or
LT

I
&

no
n-

li
ne

ar
ac

yc
li

c
sy

st
em

s
an

d
sl

ow
fo

r
no

n-
li

ne
ar

cy
cl

ic
sy

st
em

s

1080 D. Menard et al.

quantization noise is sufficiently small compared to the signal to consider. Thus, the
finite precision values can be modeled by using the addition of the infinite precision
values and a small perturbation. A first-order Taylor approximation [33, 121] is
used to linearize the operation behavior around the infinite precision values. This
approach allows obtaining a time-varying linear expression of the output noise
according to the input noise [99]. In [126], a second-order Taylor approximation
is used directly on the expression of the output quantization noise. In [93] and [18],
affine arithmetic is used to model the propagation of the quantization noise inside
the system. Affine expression allows obtaining directly a linear expression of the
output noise according to the input noises. For non-affine operations, a first order
Taylor approximation is used to obtain a linear behaviour. These models, based
on the perturbation theory, are only valid for smooth operations. An operation is
considered to be smooth if the output is a continuous and differentiable function of
its inputs.

Noise Aggregation
Finally, the output noise by is the sum of all the noise source contributions. The
second order moment of by can be expressed as a weighted sum of the statistical
parameters of the noise source:

E(b2
y) =

Ne∑
i=1

Kiσ
2
bi
+

Ne∑
i=1

Ne∑
j=1

Lijμbiμbj (3)

where μbi and σ 2
bi

are respectively the mean and the variance of noise source bi ,
and Ne is the total number of error sources. These terms depends on the fixed-
point formats and are determined during the evaluation of the accuracy analytical
expression. The terms Ki and Lij are constant and depend on the computation
graph between bi and the output. Thus, these terms are computed only once for
the evaluation of the accuracy analytical expression. These constant terms can be
considered as the gain between the noise source and the output.

For the case of Linear Time-Invariant systems, the expressions of Ki and Lij

are given in [101]. The coefficient Lij can now be computed by the multiplication
of terms Li and Lj , which can be calculated independently. The coefficients Ki

and Lij are determined from the transfer function Hi(z) or the impulse response
hi(n) of the system having bi as input and by as output. In [100, 102], a technique
is proposed to compute these coefficients from the SFG (Signal Flow Graph) of
the application. The recurrent equation of the output contribution of bi is computed
by traversing the SFG representing the application at the noise level. To support
recursive systems, for which the SFG contains cycles, this SFG is transformed into
several Directed Acyclic Graphs (DAG). The recurrent equations associated to each
DAG are computed and then merged together after a set of variable substitutions.
The different transfer functions are determined from the recurrent equations by
applying a Z transform.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1081

In [18], AA is used to keep track of the propagation of every single noise
contribution along the datapath, and from this information the coefficients Ki and
Li are extracted. The method has been proposed for LTI in [93] and for non-LTI
systems in [18]. An affine form, defined by a central value and an uncertainty term
(error term in this context), is assigned to each noise source. These terms depend
on the mean and variance of the noise source. Then, the central value and the
uncertainty terms associated to each noise source are propagated inside the system
through an affine arithmetic based simulation. The values of the coefficients Ki and
Lii are extracted from the affine form of the output noise. In the case of recursive
systems, it is necessary to use a large number of iterations to ensure that the results
converge to stable values. In some cases, this may lead to large AA error terms and
therefore to long computation time.

In the method proposed in [122], an analytical expression of the coefficients Ki

and Lij is determined. For each noise source bi , the recurrent equation of the output
contribution of bi is determined automatically from the application SFG with the
technique presented in [100]. A time-varying impulse response hi is computed from
each recurrent equation. The output quantization noise by is the sum of the noise
source bi convolved with its associated time varying impulse response. The second-
order moment of by is determined. The expression of the coefficients is proposed
in [122]. These coefficients can be computed directly from their expression by
approximating an infinite sum, or a linear prediction approach can be used to obtain
more quickly the value of these coefficients. The statistical parameters of the signal
terms involved in the expression of the coefficients are computed from a single
floating-point simulation, leading to reduced computation times. The analysis to
compute coefficients Ki and Lij is done on an SFG representing the application and
where the control flow has been removed. To avoid loop unrolling which can lead
to huge graph, a method based on polyhedral analysis has been proposed in [44].

Different hybrid techniques [33, 56, 126] that combine simulations and analytical
expressions have been proposed to compute the coefficients Ki and Lij from a set
of simulations. In [126], these Ne(Ne + 1) coefficients are obtained by solving a
linear system in which Ki and Lij are the variables. The way to proceed is to
carry out several fixed-point simulations where a range of values for σbi and μbi

is covered for each noise source. The fixed-point parameters of the system are
set carefully to control each quantizer and to analyze its influence on the output.
For each simulation, the statistical parameters of each noise source bi are known
from the fixed-point parameter and the output noise power is measured. At least
Ne(Ne + 1) fixed-point simulations are required to be able to solve the system
of linear equations. A similar approach is used in [56] to obtain the coefficients
by simulation. Each quantizer is perturbed to analyze its influence at the output to
determine Ki and Lii . To obtain the coefficients Lij with i �= j , the quantizers are
perturbed in pairs. This approach requires again Ne(Ne+1) simulations to compute
the coefficients, which requires long computation times.

During the last 15 years, numerous works on analytical approaches for RON
power estimation have been conducted and interesting progresses have been made
for the automation of this process. These approaches allow for the evaluation of the

1082 D. Menard et al.

RON power and are very fast compared to simulation-based approaches. Theoretical
concepts have been established enabling the development of automatic tools to
generate the expression of the RON power. The limit of the proposed methods have
been identified. Analytical approaches based on perturbation theory are valid for
systems made-up of only smooth operations.

3.2.3 Probability Density Function

The probability density function (PDF) of the quantization noise has been used as
a metric to analyze the effect of signal quantization. This metric provides more
information than the quantization error bounds or the quantization noise power.
They are of special interest if applied to the analysis of unsmooth operations since
error bounds or noise power are mainly suitable for differentiable operations.

There are two types of measures used to optimize quantized systems: statistical
analysis of the quantization noise, and guaranteed bounds of the results. In most
cases, statistical analysis techniques only compute the mean and variance of
the quantization noise (or, alternatively, the noise power) at the output signal.
Since the number of noise sources is usually high, these techniques assume that
the Central Limit Theorem is valid, and the output noise follows a Gaussian
distribution. Consequently, these two parameters fully characterize the distribution
of the quantization noise. However, in systems with non-linear blocks (such as
slicers) the Central Limit Theorem can no longer be valid, and a more detailed
analysis is required. In this sense, some work focused on evaluating the PDF of the
quantization noise.

In the context of guaranteed bounds, the objective is to ensure that the maximum
distortion introduced in the quantization process is below a given constraint. Some
techniques select the WLs and perform the computations to ensure that the bounds
of the quantization noise are below this constraint. Other techniques focus on
ensuring that the output of the quantized system is equal to a valid reference (e.g.,
the floating-point one). In both cases, to obtain efficient implementations, it is
important to ensure that the provided bounds are close to the numerical ones, and
that the oversizing included in the process (if any) is small.

Stochastic approaches, based on Karhunen-Loève Expansion (KLE) and Poly-
nomial Chaos Expansion (PCE), have been used to model the quantization noise at
the output of a system. The output quantization noise PDF can be extracted from
the coefficients of the KLE or PCE. In the domain of fixed-point system design,
these techniques have been previously proposed to determine the signal dynamic
range in LTI [145] and non-LTI systems [146]. In [3], a stochastic approach using
KLE is used to determine the quantization noise PDF of an LTI system output.
The KLE coefficients associated to a noise source are propagated to the output by
means of the impulse response between the noise source and the system output. In
[50], a stochastic approach based on a combination of Modified Affine Arithmetic
(MAA) and Polynomial Chaos Expansion (PCE) is proposed to determine the output
quantization noise PDF. Compared to KLE based approach, PCE allows supporting

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1083

non-LTI systems. This technique is based on decomposing the random variables
into weighted sums of Legendre orthogonal polynomials. The Legendre polynomial
bases are well suited to represent uniformly distributed random variables, thus, they
are very efficient to model quantization noise.

The determination of the PDF is required to handle unsmooth operations. In
[127], the effect of quantization noise on the signum function is analyzed. This
work has been extended in [115] to handle more complex decision operations
which have specific contours like in QAM (Quadrature Amplitude Modulation)
constellation diagrams. These two models are defined for one single unsmooth
operation. Handling systems with several unsmooth operations is still an open issue
for purely analytical approaches.

3.3 Simulation-Based and Mixed Approaches

3.3.1 Fixed-Point Simulation-Based Evaluation

The quantization error can be obtained by extracting the difference between the
outputs of simulation when the system has a very large precision (e.g. simulation
with double-precision floating-point) and when there is quantization (bit-true fixed-
point simulation), as shown in Fig. 7. Floating-point simulation is considered to
be the reference given that the associated error is definitely much smaller than the
error associated to fixed-point computation. Different error metrics can be computed
from the quantization error obtained from this simulation. The main advantage of
simulation-based approaches is that every kind of application can be supported.
Fixed-point simulation can be performed using tools such as [40, 47, 75, 96].

Different C++ classes, to emulate the fixed-point mechanisms have been pro-
posed, such as sc_fixed (SystemC) [11], ac_fixed (Algorithm C Data Types)
[104] or gFix [77]. The C++ class attributes define the fixed-point parameters asso-
ciated to the data: integer and fractional word-lengths, overflow and quantization
modes, signed/unsigned operations. For ac_fixed, the fixed-point attributes can
be parametrized through template parameters. For sc_fixed, these attributes can
be static to obtain fast simulations or dynamic so they can be modified at run-time.
Bit-true operations are performed by overloading the different arithmetic operators.
During the execution of a fixed-point operation, the data range is analyzed and the

Fig. 7 Simulation-based
computation of quantization
error

1084 D. Menard et al.

overflow mode is applied if required. Then, the data is cast with the appropriate
quantization mode. Thus, for a single fixed-point operation, several processing steps
are required to obtain a bit true simulation. Therefore, these techniques suffer from
a major drawback which is the extremely long simulation time [39]. This becomes a
severe limitation when these methods are used in the data word-length optimization
process where multiple simulations are needed. The simulations are made on
floating-point machines and the extra-code used to emulate fixed-point mechanisms
increases the execution time between one to two orders of magnitude compared
to traditional simulations with native floating-point data types [36, 76]. Besides, to
obtain an accurate estimation of the statistical parameters of the quantization error,
a great number of samples must be taken for the simulation. This large number
of samples combined with the fixed-point mechanism emulation lead to very long
simulation time.

Different techniques have been proposed to reduce this overhead. The execution
time of the fixed-point simulation can be reduced by using more efficient fixed-
point data types. In [77], the aim is to reduce the execution time of the fixed-point
simulation by using efficiently the floating-point units of the host computer. The
mantissa is used to compute the integer operations. Thus, the word-length of the
data is limited to 53 bits for double data types. The execution time is one order of
magnitude greater than the one required for a fixed-point simulation. This technique
is also used in SystemC [11] for the fast fixed-point data types.

The fixed-point simulation can be accelerated by executing it on a more
adequate machine like a fixed-point DSP [37, 39, 73, 78, 82] or an FPGA [38]
through hardware acceleration. In the case of hardware implementation, the operator
word-length, the supplementary elements for overflow and quantization modes
are adjusted to comply exactly with the fixed-point specification which has to
be simulated. In the case of software implementation, the operator and register
word-lengths are fixed. When the word-length of the fixed-point data is lower
than the data word-length supported by the target machine, different degrees of
freedom are available to map the fixed-point data into the target storage elements.
In [39], to optimize this mapping, the execution time of the fixed-point simulation is
minimized. The cost integrates the data alignment and the overflow and quantization
mechanism. This combinatorial optimization problem is solved by a divide and
conquer technique and several heuristics to limit the search space are used. In
[82] a technique is proposed to minimize the execution time due to scaling
operations according to the shift capabilities of the target architecture. In the same
way, the aim of the Hybris simulator [36, 76] is to optimize the mapping of the
fixed-point data described with SystemC into the target architecture register. All
compile-time information are used to minimize the number of operations required
to carry-out the fixed-point simulation. The overflow and quantization operations
are implemented by conditional structures, a set of shift operations or bit mask
operations. Nevertheless, to obtain fast simulation, some quantization modes are
not supported. In [143], the binary point alignment is formulated as a combinatorial
optimization problem and an integer linear programming approach is used to
solve it. But, this approach is limited to simple applications to obtain reasonable

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1085

optimization times. These methods reduce the execution time of the fixed-point
simulation but, this optimization needs to be performed every time that the fixed
point configuration changes. Accordingly, it might not compensate for the execution
time gain of the fixed-point simulation when involving complex optimizations.

3.3.2 Mixed Approach

To handle systems made-up of unsmooth operations, a mixed approach which
combines analytical evaluations and simulations has been proposed in [113, 114].
The idea is to evaluate directly the application performance metric with fixed-point
simulation and to accelerate drastically the simulation with analytical models. In
this technique the analytical approach is based on the perturbation theory and the
simulation is used when the assumptions associated with perturbation theory are no
longer valid (i.e. when a decision error occurs). In this case, the quantization noise
at the unsmooth operation input can modify the decision at the operation output
compared to the one obtained with infinite precision.

This technique selectively simulates parts of the system only when an decision
error occurs [114]. Given that decision errors are rare event the simulation time
is not so important as for classical fixed-point simulations. The global system is
divided into smooth clusters made-up of smooth operations. These smooth clusters
are separated by unsmooth operations. The single source noise model [103] is used
to capture the statistical behavior of quantization noise accurately at the output of
each smooth cluster. In [103], The authors propose to model the output quantization
noise of a LTI system with a weighted sum of a Gaussian random variable and
a uniform random variable. In [123], the output quantization noise of a smooth
system is modeled by a generalized Gaussian random variable, whose parameters
define the shape of the PDF. These parameters are analytically determined from
the output quantization noise statistics (mean, variance and kurtosis). The general
expression of the noise moments are given in [123], and are computed from the
impulse responses between the noise sources and the system output.

4 Effect of Coefficient Quantization

Coefficient Quantization (CQ) is the part of the implementation process that
describes the degradation of the system operation due to the finite WL representation
of the constant values of a system. Especially this problematic is of high importance
for LTI systems with the quantization of the coefficients. Opposite to RON, CQ
modifies the impulse and frequency responses for LTI system and the functionality
for other systems. In the analysis of the quantization effects for LTI systems, this
parameter is the first to be determined, since it involves two major tasks: (1) the
selection of the most convenient filter structure to perform the required operation,
and (2) the determination of the actual values of the coefficients associated to it.

1086 D. Menard et al.

0 5 10

time k

15 20
–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

h(n)

0 10 20 30 40 50 60

frequency z

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2
H(z)

a b

Fig. 8 Effect of CQ on a given filter realization: (a) Evolution in time of the impulse response of
the differences in the output response. (b) Distribution of the effects in the frequency domain. The
intervals represent the deviation between the quantized and unquantized samples of the impulse
response and the transfer function

Figure 8 illustrates the amount of deviation due to CQ by means of interval
simulations. A butterworth filter has been realized in DFIIt (Direct Form II
transposed) form, and each coefficient has been replaced by a small interval that
describes the difference between the ideal coefficient and the quantized one using
seven fractional bits. Figure 8a shows the impulse response of the realization, where
the size of each interval reveals how sensitive is each sample to this quantization of
coefficients. Figure 8b shows the transfer function associated to it, where in this case
the intervals reveal the most sensitive frequencies to the same set of quantizations.

In LTI systems, CQ has been traditionally measured using the so-called Coef-
ficient Sensitivity (CS). Although this parameter was originally defined for LTI
systems, whose operation is described by H(z), its current use has also been
extended to non-linear systems.

Table 4 summarizes the most important techniques and groups related to the
computation of the CS. The first column indicates the type of technique used to
compute this parameter (residues, geometric sum of matrices, Lyapunov equations,
perturbation theory). The second and third columns respectively provide the most
important work in this area, and the most relevant features in each case. The last two
columns provide the main advantages and disadvantages of the different approaches.
First, an overview of the different parameters used in the literature to measure the
CS is presented, before discussing in more detail the L2-sensitivity. Second, the
most commonly-used L2-sensitivity computation procedures are described. Finally,
several analytical techniques are described.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1087

Table 4 Measurement techniques for the computation of the Coefficient Sensitivity (CS)

Features Advantages Disadvantages References

Evaluation of the residues

General analytical procedure based on
complex mathematical equality

General method.
Provides exact results

Very complex
to develop.
Different
analysis for
each structure

Roberts
[119]

Geometric sum of matrices

Analytical procedure that approximates
SL12 by using infinite sums in state-space
realizations.

The analytical
expressions easier to
obtain

Limited to
state-space
realizations.
Provides an
upper bound

Hinamoto
[66]

Lyapunov equations

Provides the analytical expression for
families of filter structures, mainly state-
space realizations.

Fast and exact results
(without infinite sums)

Iterative
method.
Limited to
certain filter
structures

Li [89]
Hilaire [64]

Perturbation theory
Compute the sum
of deviations of all
the coefficients.

Analytical approach
based on Lyapunov
equation

Extremely fast, if the
analytical expression
is obtained

Limited to
state-space
realizations.

Xiao [147]

Interval-based
procedure

Fast and automatic.
Valid for all types of
systems

Approximated
value.
Requires
interval
computations
support

Lopez [91]

4.1 Measurement Parameters

A number of procedures have been initially suggested to minimize the degradation
of H(z) with respect to the quantization of all coefficients of the realization
under different constraints [133–135]. In these procedures, the coefficients of the
realization have been obtained by minimizing the so-called L1/L2-sensitivity, SL12

[59, 67–69, 133–135, 144]. The main feature of this parameter is that its upper bound
is easily obtained [59, 88, 144]. However, two different norms are applied to obtain
the result. Therefore, its physical interpretation is not clear.

Instead, it is more natural to measure the deviations of H(z) using only the
L2-norm [68, 88]. For this reason, the so-called L2-sensitivity, SL2, is currently
applied [67, 68]. The main feature of this parameter is that it is proportional to the
variance of the deviation of H(z) due to the quantization of all the coefficients of the
realization [59, 67, 68, 144]. However, the computation of its analytical expression
requires performing extremely complex mathematical operations [68, 89, 144]. Due

1088 D. Menard et al.

to this fact the computation of the L2-sensitivity has been limited to simple linear
structures, typically SSR (State-Space Representation) forms. Since each analytical
expression only characterizes one family of filter structures, it requires developing
a new mathematical expression to optimize or compare each new structure. The
most recent work in this area are focused on minimizing the L2-sensitivity of two-
dimensional (2-D) SSR filter structures [67, 68], and of structures based on the
generalized delta operator [89, 148].

In [136–138], the authors have compared the performance of the filter structures
by computing the maximum value of the magnitude sensitivity, Smag , or the relative
sensitivity, Smag. The main feature of Smag and Srel is that their numerical values are
more easily computed than the analytical expressions of SL12 or SL2. For this reason,
they have been used in combination with simulated annealing or genetic algorithms
that perform automated search of the most robust structures against the quantization
of coefficients [136–138]. However, Smag and Srel only provide information of
the maximum deviations of H(z). In contrast, the L2-sensitivity provides global
information about the deviations of H(z). For this reason, this parameter is widely
preferred [59, 66, 68, 88, 89].

In [64], the authors introduce a unified algebraic description able to represent
the most widely used families of filter realizations. They focus on the fixed-
and floating-point deviation of the transfer function and pole measures using
CS parameters. They apply Adaptive Simulated Annealing to obtain the optimal
realization among these structures. In particular, they introduce the SW

L2 measure,
which considers the individual quantization of coefficients into the traditional L2-
sensitivity parameter. This work has been further expanded in [62] to include
L2-scaling constraints, and in [63] to include the evaluation of MIMO filters and
controllers.

Table 5 summarizes the parameters introduced in this Section. In each column,
the representation of the different parameters, the main references associated to
them, and their most important features, advantages and disadvantages are also
briefly outlined.

4.2 L2-Sensitivity

Since the L2-Sensitivity is much more commonly used than the others CQ
measurement parameters, in this section its mathematical definition and physical
interpretation are described in more detail.

Definition The L2-sensitivity is the parameter that quantitatively measures the
influence of the variations of all the coefficients of the realization in the transfer
function. Its mathematical definition is as follows

SL2 =
nc∑
i=1

Sci =
nc∑
i=1

∥∥∥∥∂H(z)

∂ci

∥∥∥∥
2

2
(4)

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1089

Table 5 Measurement parameters for coefficient quantization

Parameter Features Advantages Disadvantages References

SL12 Initial measure of the
coefficient sensitivity,
based on the L1 and the
L2-norms

It has a simple
expression in
some filter
structures

Only provides an
upper bound, based
on two different
norms

[69, 133–
135]

SL2 Advanced measurement,
based only on the
L2-norm. Development
of the expressions
associated to each filter
structure

Global
measurement.
It has statistical
meaning

Complex to develop [59, 67, 68,
88, 89, 144,
148]

Smag , Srel Information about the
magnitude of the
quantizations

Computationally
simple

Only provides
information about
the maximum
deviations

[136–138]

SW
L2 Measures the actual

deviations of coefficients
with different amount of
quantizations

More accurate
than SL2

Requires complex
analytical
developments

[62–64]

where Sci is the sensitivity of the transfer function with respect to coefficient ci ,
and ‖X(z)‖2

2 represents the L2-norm of X(z) [66, 89]. This definition considers
that all the coefficients of the set i = {1, . . . , nc} are affected by quantization
[45]. Coefficients not affected by quantization operations (i.e., those that are exactly
represented with the assigned number of bits) are excluded from this set.

Statistical Interpretation Using a first-order approximation of the Taylor series,
the degradation of H(z) due to the quantization of the coefficients follows

�H(z) = HQc(z)−H(z) =
nc∑
i=1

∂H(z)

∂ci
�ci (5)

where HQc(z) is the transfer function of the realization with quantized coefficients.
From a statistical point of view, the variance of the degradation of H(z) due to these
quantization operations is given by

σ 2
�H =

nc∑
i=1

∥∥∥∥∂H(z)

∂ci

∥∥∥∥
2

2
σ 2
�ci
=

nc∑
i=1

Sci σ
2
�ci

(6)

When all the coefficients are quantized to the same number of bits, σ 2
�ci

is equal to

the common value σ 2
�c. In this case, Eq. (6) is simplified to

σ 2
�H =

nc∑
i=1

Sci σ
2
�c = SL2σ

2
�c (7)

1090 D. Menard et al.

where σ 2
�c is the variance of the coefficients affected by the quantization operations.

Therefore, SL2 provides a global measure of the degradation of H(z) with
respect to the quantization of all the coefficients of the realization. Consequently,
in the comparison of the different filter structures, the L2-sensitivity indicates
the most robust realizations against the quantization of coefficients. However, it
must be noted that once the final realization has been chosen, the quantization of
coefficients has deterministic effects on the computation of the output samples, and
the behaviour of the filter structure is completely determined by HQc(z).

4.3 Analytical Approaches to Compute the L2-Sensitivity

The analytical computation of the L2-sensitivity is based on calculating the
individual sensitivities of the coefficients of the realization. There are three different
types of techniques: (1) evaluation of residues, (2) geometric series of matrices,
or (3) Lyapunov equations. However, since all of them are based on developing
expressions for the different realizations, they are only valid for particular structures,
mainly SSR (State-Space Realization) and DFIIt (Direct Form II transposed) forms.

Evaluation of the Residues The reference procedure to compute the value of SL2
is to analytically develop the expressions of the derivatives of H(z) [119]. This
approach separately computes the L2-norms of the sensitivities of the coefficients.
The derivatives involved in this process are extremely complex, even in simple
LTI systems. Therefore, this procedure is only applicable to compute the reference
values in some low-complexity LTI systems.

Geometric Series of Matrices (GSM) In this case, the expression to compute
the SL2 is transformed into an equivalent expression that computes the sensitivity
of all the coefficients of the same group [66]. This procedure computes an upper
bound of SL2, which is equal to the real value if all the coefficients of the SSR
filter are quantized [147]. Its main advantage is that it is easily extended to n-D
filters [66]. However, it has two important drawbacks: (1) its application to non-
SSR structures or sparse realizations has not been defined; and (2) due to the infinite
sums involved, the results are only approximated up to a given degree of accuracy.
The approximations can be made as accurate as required by adding a large number
of terms, but in such cases the computation times involved to provide the results can
be very high.

Lyapunov Equations (LEs) In this procedure, the computation of the infinite sum
of matrices of the GSM method is replaced by the computation of the solutions
of their associated LEs. This procedure is very accurate and fast, but requires
performing iterative computations, and the involved equations must be solved for
each non-zero coefficient [147]. Its main drawback is that these expressions are
only applicable to 1-D SSR filters. This procedure has also been used in [89] to
develop the expressions of the L2-sensitivity of DFIIt structures with generalized

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1091

delta operators, and in [64, 65] to include different amounts of quantization in each
coefficient of the realization.

Perturbation Methods The existing analytical techniques to compute the SL2 have
the drawback of being only valid for each family of filter structures, and the required
expressions are in most cases very difficult to develop. Moreover, these techniques
cannot be extended to evaluate the sensitivity of a given signal in non-linear systems.

In [147], the author suggests an analytical approach based on an improved
SL2 measure that separately computes the sensitivities of all the coefficients of
the realization. Using this improved measure, an analytical expression to compute
the SL2 based on LEs for state-space realizations is derived. This measure is
more accurate, and the computation of SL2 as the sum of contributions of the
individual coefficients facilitates the automatization. The author also develops the
analytical expressions for the state-space realizations, but these expressions cannot
be generalized.

5 System Stability Due to Signal Quantization

Although most of existing techniques to evaluate the quantization effects are based
on substituting the quantizers by additive noise sources, this approximation is only
valid under certain assumptions (see Sect. 3.2) [6, 10, 71, 117, 142]. In particular,
when the quantization operations in the feedback loops significantly affect the
behavior of the system, oscillations of a given frequency and amplitude may appear,
provoking an unstable behaviour at the output. These oscillations are called Limit
Cycles [27, 97, 106, 116, 119].

Figure 9 shows an example of the existence of LCs. In unquantized systems,
the output response tends to zero, since it is a requirement of the stability of the
LTI systems (Fig. 9a). In quantized systems, due to the nonlinear effect of the
quantization operations, the output response may present self-sustained oscillations
of a given amplitude and frequency (Fig. 9b). These two parameters vary according
to the quantized realization and the values of the input signals, although certain
conditions have been provided in the literature to keep them under a given limit.

To detect the oscillations, the actual behavior of the quantizers must be evaluated,
instead of substituting them by their respective equivalent linear models (i.e. noise
sources) [6, 27, 117, 119]. In LTI systems these oscillations have been extensively
analyzed in the second-order sections [16, 25–27, 87], and sufficient conditions that
ensure the absence of LCs have also been developed [46, 72, 128], particularly in
regular filters structures [17, 27, 48, 49, 54, 55, 61, 70, 116, 119].

In this Section, a classification of the procedures most commonly used to
guarantee the absence of LCs in digital filters is first presented, followed by a
description of the automatic techniques to detect LCs.

1092 D. Menard et al.

0
–4

–3

–2

–1

0

1

2

3

4
a b

20 40 60 80

sample #

Affine simulation - Unquantized Response

bo
un

ds

100 120 140 160 0
–4

–3

–2

–1

0

1

2

3

4

20 40 60 80

sample #

Affine simulation - Quantized Response

bo
un

ds

100 120 140 160

Fig. 9 Detection of LCs in a filter using AA-based computations. The joint simulation of all the
input values allows fast detection of system instabilities and self-sustained oscillations: (a) The
unquantized response of the reference interval [−1,1] at sampled time k=0 tends to zero. (b) The
quantized system generates LCs due to the nonlinear effects of the quantization operations and the
feedback loops

5.1 Analysis of Limit Cycles in Digital Filters

Limit Cycles (LCs) are self-sustained oscillations that appear due to the propagation
of the non-linear effects of the quantization operations through the feedback loops
[97, 106, 116, 119]. The techniques aimed to detect LCs primarily intend to bound
the maximum amplitudes of these oscillations [19], and, in particular, their effect at
the output signal.

Similarly to the computation of the RON and the CQ, the techniques used
to detect and bound the LCs are classified into analytical and simulation-based.
Analytical techniques provide three different types of results [19]: (1) they give
sufficient conditions to ensure asymptotic stability of filters after quantization
[14, 15, 105, 119]; (2) they present requirements for the absence of LCs [139]; or
(3) they describe strategies to eliminate zero-input and constant-input LCs [83].
These techniques have been used to select realizations where the absence of LCs
is guaranteed. However, they are not able to evaluate all the possible values of the
coefficients, so in general they must be combined with simulation-based procedures
for a detailed analysis of the target structure. Moreover, these techniques have
focused on obtaining the analytical expressions of the coefficients of the second-
order sections and SSR filters, but there are few results about factored-SSR filters
of arbitrary order [119], and they do not consider arbitrary number of quantizers.
Consequently, this type of technique is not suitable to perform automated analysis
of LCs of generic filter structures.

Simulation-based techniques perform exhaustive evaluations of all the possible
sets of values of the state variables [8, 19, 74, 90, 92, 118]. They provide precise
results, but they require exceedingly long computation times [8, 74, 118]. Conse-
quently, this type of technique allows automated analysis of LCs in generic filter
structures, but requires a bounding stage to perform these computations in realistic
computation times.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1093

The application of AA-based simulations reduces by several orders of magnitude
the computation time required to bound the LCs of generic filter structures.
Moreover, they can be used in combination with numerical simulations to detect
the presence or to guarantee the absence of LCs [90, 92].

5.2 Simulation-Based LC Detection Procedures

Existing simulation-based LC detection procedures perform the computation in two
stages [8, 74, 118]: (1) they compute the bounds of the maximum amplitude and
frequency of the LCs; and (2) they perform exhaustive search for LCs among all
the possible combinations of values of the state variables (SVs) contained within
these bounds. Since the SVs have a finite number of bits, the number of possible
combinations of values of the SVs is also finite, i.e.,

nst =
∏
i

(2qi), i = 1, . . . , nSV (8)

where nSV is the number of SVs of the target structure, and qi is the number of bits
of state variable i.

From (8), it is clear that the number of combinations, nst , is huge even for
small-order filters. Consequently, the aim of the first step is to reduce the number
of combinations to be tested for LCs. This reduction is obtained by limiting the
maximum values of the SVs, M , or the maximum period of oscillation, Tmax

[74, 118]. The expressions of M and Tmax are difficult to obtain, and they are
dependent on the filter structure. The interested reader is referred to [118] for the
expressions of these parameters in SSR filters, and to [74] for their expressions in
second-order DFIIt forms with delta operators.

The exhaustive search is performed by evolving the values of the SVs. In each
iteration, four possible cases may occur [74]: (1) The state vector is repeated, which
means that a LC is found. (2) The state converge to a point that produces zero output.
This situation occurs when the values of the SVs are below a given threshold. (3) The
state vector has grown out of the search space. (4) The maximum number of steps
has expired. If none of these situations occur, the state vector evolves to the values
of the next iteration. The most recent algorithms make use of alternative procedures
to speed up the required computations, but they still follow the basic principles
explained above [74]. They consider that: (a) the large values of the SVs do not
need to be tested due to condition (3); (b) the small values of the SVs converge to
zero output in short time; and (c) most LCs have short period of oscillation, so they
are quickly identified.

In summary, the existing simulation-based procedures are based on performing
exhaustive searches among the values of the SVs but they need a binding stage,
which depends on the target structure. This type of procedure can be accelerated in
combination with AA [90, 92], since it is capable of evaluating a large number of
states in a single execution of the algorithm.

1094 D. Menard et al.

6 Summary

Fixed-point design plays a major role in the VLSI implementation of state-of-the-art
multimedia and communication applications. This chapter surveys the major works
related to the automated evaluation of fixed-point quantization effects, focusing
on signal quantization, coefficient quantization and system stability. The main
approaches in the field have been explained and classified covering simulation-
based, analytical and hybrid techniques. The chapter is intended to provide digital
designers with a useful guide while facing the design of fixed-point systems.

When assessing the effect of signal quantization the designer can use general
approaches such as simulation-based techniques but at the expense of expending a
long time in the quantization process. For particular types of systems it is possible
to apply analytical and hybrid automatic techniques that reduce computation time
considerably. As a general remark, all the available techniques are not suitable
to the optimization of high-complexity systems, so a system-level approach to
quantization is most needed.

Regarding, coefficient quantization the designer has to check the impact of finite
WL coefficient on the system properties (i.e. frequency response). The majority of
the available techniques are system-specific and require the manual development of
analytical expressions, so there are still research opportunities in this problem.

Finally, the detection of LCs, the main approaches are based on simulations and
exhaustive search, so the computation time can be high for complex systems. Also,
the starting condition of the algorithms are system dependant so the results depend
on user experience. A fast approach for LC detection is needed, so there is still room
for research in this area.

Quantization is an intriguing field of research which has been open for more
than 30 years, and the most impacting contributions are still to come, as no general
solution exists yet in practice.

References

1. A. Ahmadi and M. Zwolinski. Symbolic noise analysis approach to computational hardware
optimization. In IEEE/ACM Design Automation Conference, 2008. DAC 2008, pages 391–
396, 2008.

2. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New
York, 1983.

3. A. Banciu, E. Casseau, D. Menard, and T. Michel. Stochastic modeling for floating-point
to fixed-point conversion. In IEEE International Workshop on Signal Processing Systems,
(SIPS), Beirut, October 2011.

4. P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R. Uribe. Automatic conversion
of floating point matlab programs into fixed point fpga based hardware design. In Field-
Programmable Custom Computing Machines (FCCM), pages 263–264, 2003.

5. P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal, N. Tripathi,
D. Zaretsky, R. Anderson, and J. Uribe. Overview of a compiler for synthesizing matlab
programs onto fpgas. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
12(3):312–324, 2004.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1095

6. C. Barnes, B. N. Tran, and S. Leung. On the Statistics of Fixed-Point Roundoff Error. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 33(3):595–606, June 1985.

7. B. Barrois, K. Parashar, and O. Sentieys. Leveraging Power Spectral Density for Scalable
System-Level Accuracy Evaluation. In IEEE/ACM Conference on Design Automation and
Test in Europe (DATE), page 6, Dresden, Germany, Mar. 2016.

8. P. Bauer and L.-J. Leclerc. A computer-aided test for the absence of limit cycles in fixed-point
digital filters. IEEE Transactions on Signal Processing, 39(11):2400–2410, 1991.

9. A. Benedetti and P. Perona. Bit-Width Optimization for Configurable DSPs by Multi-interval
Analysis. In IEEE Asilomar Conf. on Signals, Systems and Computers, 2000.

10. W. Bennett. Spectra of quantized signals. Bell System Tech. J., 27:446–472, 1948.
11. F. Berens and N. Naser. Algorithm to System-on-Chip Design Flow that Leverages System

Studio and SystemC 2.0.1. Synopsys Inc., march 2004.
12. D. Boland and G. Constantinides. Bounding variable values and round-off effects using

Handelman representations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(11):1691–1704, 2011.

13. D. Boland and G. Constantinides. A scalable precision analysis framework. IEEE Transac-
tions on Multimedia, 15(2):242–256, 2013.

14. T. Bose and M. Chen. Overflow oscillations in state-space digital filters. IEEE Transaction on
Circuits and Systems, 38(7):807–810, 1991.

15. T. Bose and M. Chen. Stability of digital filters implemented with two’s complement
truncation quantization. IEEE Transaction on Signal Process., 40(1):24–31, 1992.

16. H. Butterweck, A. van Meer, and G. Verkroost. New second-order digital filter sections
without limit cycles. IEEE Transactions on Circuits and Systems, 31(2):141–146, 1984.

17. M. Buttner. Elimination of limit cycles in digital filters with very low increase in the
quantization noise. IEEE Transactions on Circuits and Systems, 24(6):300–304, 1977.

18. G. Caffarena, C. Carreras, J. Lopez, and A. Fernandez. SQNR Estimation of Fixed-Point DSP
Algorithms. Int. J. on Advances in Signal Processing, 2010:1–11, 2010.

19. J. Campo, F. Cruz-Roldan, and M. Utrilla-Manso. Tighter limit cycle bounds for digital filters.
IEEE Signal Processing Letters, 13(3):149–152, 2006.

20. M. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie. A Metric for Automatic Word-Length
Determination of Hardware Datapaths. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(10):2228–2231, October 2006.

21. M.-A. Cantin, Y. Savaria, and P. Lavoie. A comparison of automatic word length optimization
procedures. In IEEE International Symposium on Circuits and Systems, volume 2, pages II–
612–II–615 vol.2, 2002.

22. F. Catthoor, H. de Man, and J. Vandewalle. Simulated-annealing-based optimization of
coefficient and data word-lengths in digital filters. International Journal of Circuit Theory
and Applications, I:371–390, 1988.

23. M. Chang and S. Hauck. Precis: a usercentric word-length optimization tool. IEEE Design
Test of Computers, 22(4):349–361, 2005.

24. J.-M. Chesneaux, L.-S. Didier, and F. Rico. Fixed CADNA library. In Real Number
Conference (RNC), pages 215–221, Lyon, France, September 2003.

25. T. Claasen and L. Kristiansson. Necessary and sufficient conditions for the absence of over-
flow phenomena in a second-order recursive digital filter. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 23(6):509–515, 1975.

26. T. Claasen, W. Mecklenbrauer, and J. Peek. Second-order digital filter with only one
magnitude-truncation quantizer and having practically no limit-cycles. Electronics Letters,
9(22):531–532, 1973.

27. T. Claasen, W. Mecklenbrauker, and J. Peek. Effects of quantization and overflow in recursive
digital filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(6):
517–529, 1976.

28. J. A. Clarke, G. A. Constantinides, and P. Y. K. Cheung. Word-length selection for power
minimization via nonlinear optimization. ACM Transactions on Design Automation of
Electronic Systems, 14(3): 1–28, 2009.

1096 D. Menard et al.

29. G. Constantinides. High Level Synthesis and Wordlength Optimization of Digital Signal
Processing Systems. PhD thesis, Electr. Electron. Eng., Univ. London, 2001.

30. G. Constantinides, P. Cheung, and W. Luk. Truncation Noise in Fixed-Point SFGs. IEE
Electronics Letters, 35(23):2012–2014, 1999.

31. G. Constantinides, P. Cheung, and W. Luk. Roundoff-noise shaping in filter design. In IEEE
International Symposium on Circuits and Systems (ISCAS), volume 4, pages 57–60, Geneva,
May 2000.

32. G. Constantinides, P. Cheung, and W. Luk. Wordlength optimization for linear digital
signal processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 22(10):1432– 1442, October 2003.

33. G. A. Constantinides. Word-length optimization for differentiable nonlinear systems. ACM
Transactions on Design Automation of Electronic Systems, 11(1):26–43, 2006.

34. G. A. Constantinides, P. Y. K. Cheung, and W. Luk. Wordlength Optimization for Linear
Digital Signal Processing. IEEE Transaction on Computer Aided Design of Integrated
Circuits and Systems, 22(10):1432–1442, 2003.

35. G. A. Constantinides and G. J. Woeginger. The complexity of multiple wordlength assign-
ment. Applied Mathematics Letters, 15(2):137–140, 2002.

36. M. Coors, H. Keding, O. Luthje, and H. Meyr. Fast Bit-True Simulation. In ACM/IEEE Design
Automation Conference (DAC), pages 708–713, Las Vegas, june 2001.

37. M. Coors, H. Keding, O. Luthje, and H. Meyr. Integer Code Generation For the TI
TMS320C62x. In IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), Sate Lake City, May 2001.

38. L. D. Coster. Bit-True Simulation of Digital Signal Processing Applications. PhD thesis, KU
Leuven, 1999.

39. L. D. Coster, M. Ade, R. Lauwereins, and J. Peperstraete. Code Generation for Compiled Bit-
True Simulation of DSP Applications. In IEEE International Symposium on System Synthesis
(ISSS), pages 9–14, Hsinchu, December 1998.

40. Coware. Coware SPW. Technical report, Coware, 2010.
41. M. Daumas and G. Melquiond. Certification of bounds on expressions involving rounded

operators. ACM Trans. Math. Softw., 37(1):2:1–2:20, Jan. 2010.
42. F. de Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification of elementary functions

using gappa. In Applied computing, SAC ’06, pages 1318–1322, New York, NY, USA, 2006.
ACM.

43. L. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and applications. Numerical
Algorithms, 37(1):147–158, 2004.

44. G. Deest, T. Yuki, O. Sentieys, and S. Derrien. Toward scalable source level accuracy
analysis for floating-point to fixed-point conversion. In IEEE/ACM International Conference
on Computer-Aided Design, ICCAD ’14, pages 726–733, Piscataway, NJ, USA, 2014. IEEE
Press.

45. N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura. Minimization of fractional wordlength on
fixed-point conversion for high-level synthesis. In Asia and South Pacific Design Automation
Conference, 2004. Pages 80 – 85, 27-30 2004.

46. P. Ebert, J. Mazo, and M. Taylor. Overflow oscillations in digital filters. Bell System Tech. J.,
48:2999–3020, 1969.

47. J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and
Y. Xiong. Taming Heterogeneity, the Ptolemy Approach. Proceedings of the IEEE, 91, 2003.

48. K. Erickson and A. Michel. Stability analysis of fixed-point digital filters using computer gen-
erated Lyapunov functions- part i: Direct form and coupled form filters. IEEE Transactions
on Circuits and Systems, 32(2):113–132, 1985.

49. K. Erickson and A. Michel. Stability analysis of fixed-point digital filters using computer
generated Lyapunov functions- part ii: Wave digital filters and lattice digital filters. IEEE
Transactions on Circuits and Systems, 32(2):132–142, 1985.

50. L. Esteban, J. Lopez, E. Sedano, S. Hernandez-Montero, and M. Sanchez. Quantization
analysis of the infrared interferometer of the tj-ii for its optimized fpga-based implementation.
IEEE Transactions on Nuclear Science, page accepted, 2013.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1097

51. C. Fang, T. Chen, and R. Rutenbar. Lightweight Floating-Point Arithmetic: Case Study
of Inverse Discrete Cosine Transform. EURASIP J. on Applied Signal Processing,
2002(2002):879–892, 2002.

52. C. Fang, T. Chen, and R. Rutenbar. Floating-point error analysis based on affine arithmetic.
In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2:561–564, 2003.

53. C. Fang, R. Rutenbar, and T. Chen. Fast, accurate static analysis for fixed-point finite-
precision effects in dsp designs. In Int. Conf. on Computer-Aided Design, 2003 (ICCAD ’03).,
pages 275–282, 2003.

54. A. Fettweis. Some principles of designing digital filters imitating classical filter structures.
IEEE Transactions on Circuits and Systems, 18(2):314–316, 1971.

55. A. Fettweis. Wave digital filters: Theory and practice. Proceedings of the IEEE, 74:270–327,
1986.

56. P. Fiore. Efficient Approximate Wordlength Optimization. IEEE Transactions on Computers,
57(11):1561 –1570, November 2008.

57. A. Gaffar, O. Mencer, and W. Luk. Unifying Bit-Width Optimisation for Fixed-Point
and Floating-Point Designs. In IEEE Symp. on Field-Programmable Custom Computing
Machines, pages 79–88, 2004.

58. A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi. Floating-point bitwidth analysis
via automatic differentiation. In IEEE International Conference on Field-Programmable
Technology, 2002. (FPT), pages 158–165, 2002.

59. M. Gevers and G. Li. Parametrizations in control, estimation, and filtering problems :
accuracy aspects. Communications and control engineering series. Springer-Verlag, London
; New York, 1993. Michel Gevers and Gang Li.

60. D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv., 23(1):5–48, 1991.

61. A. Gray and J. Markel. Digital lattice and ladder synthesis. IEEE Trans. Audio Electroacoust.,
21:491–500, 1973.

62. T. Hilaire. Low-parametric-sensitivity realizations with relaxed L2-dynamic-range-scaling
constraints. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(7):590–594,
2009.

63. T. Hilaire and P. Chevrel. Sensitivity-based pole and input-output errors of linear filters as
indicators of the implementation deterioration in fixed-point context. EURASIP Journal on
Advances in Signal Processing, 2011(1):893760, 2011.

64. T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite wordlength
realizations. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(8):1765–1774,
2007.

65. T. Hilaire, D. Menard, and O. Sentieys. Bit Accurate Roundoff Noise Analysis of Fixed-point
Linear Controllers. In IEEE International Conference on Computer-Aided Control Systems
(CACSD), pages 607–612, September 2008.

66. T. Hinamoto, K. Iwata, and W.-S. Lu. l2-sensitivity minimization of one- and two- dimen-
sional state-space digital filters subject to l2-scaling constraints. IEEE Transactions on Signal
Processing, 54(5):1804–1812, 2006.

67. T. Hinamoto, H. Ohnishi, and W.-S. Lu. Minimization of l2-sensitivity for state-space digital
filters subject to l2-dynamic-range scaling constraints. IEEE Transactions on Circuits and
Systems II: Express Briefs, 52(10):641–645, 2005.

68. T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W.-S. Lu. Analysis and minimization
of l2-sensitivity for linear systems and two-dimensional state-space filters using general
controllability and observability gramians. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 49(9):1279–1289, 2002.

69. L. Jackson. Roundoff noise bounds derived from coefficient sensitivities for digital filters.
IEEE Transactions on Circuits and Systems, 23(8):481–485, 1976.

70. L. Jackson. Limit cycles in state-space structures for digital filters. IEEE Transactions on
Circuits and Systems, 26(1):67–68, 1979.

1098 D. Menard et al.

71. L. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers, Boston,
1986. by Leland B. Jackson. ill. ; 25 cm. Includes index.

72. E. Jury and B. Lee. The absolute stability of systems with many nonlinearities. Automat.
Remote Contr., 26:943–961, 1965.

73. J. Kang and W. Sung. Fixed-Point C Compiler for TMS320C50 Digital Signal Processor.
In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Munich, April 1997.

74. J. Kauraniemi. Analysis of limit cycles in the direct form delta operator structure by computer-
aided test. International Conference on Acoustics, Speech, and Signal Processing, 1997.
3:2177–2180 vol3, 1997.

75. H. Keding. Pain Killers for the Fixed-Point Design Flow. Technical report, Synopsys, 2010.
76. H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A Fixed-Point Design and

Simulation Environment. In Design, Automation and Test in Europe, pages 429–435, Paris,
France, 1998.

77. S. Kim, K.-I. Kum, and W. Sung. Fixed-point optimization utility for C and C++ based digital
signal processing programs. IEEE Transactions on Circuits and Systems II - Analog and
Digital Signal Processing, 45(11):1455 –1464, Nov 1998.

78. S. Kim and W. Sung. A Floating-point to Fixed-point Assembly program Translator for the
TMS 320C25. IEEE Transactions on Circuits and Systems, 41(11):730–739, Nov. 1994.

79. A. Kinsman and N. Nicolici. Bit-width allocation for hardware accelerators for scientific
computing using sat-modulo theory. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(3):405–413, 2010.

80. A. Kinsman and N. Nicolici. Automated range and precision bit-width allocation for iterative
computations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 30(9):1265–1278, 2011.

81. A. Kinsman and N. Nicolici. Computational vector-magnitude-based range determination for
scientific abstract data types. IEEE Transactions on Computers, 60(11):1652–1663, 2011.

82. K. Kum, J. Kang, and W. Sung. AUTOSCALER for C: An optimizing floating-point to integer
C program converter for fixed-point digital signal processors. IEEE Transactions on Circuits
and Systems II - Analog and Digital Signal Processing, 47(9):840–848, Sept. 2000.

83. T. Laakso, P. Diniz, I. Hartimo, and J. Macedo, T.C. Elimination of zero-input and constant-
input limit cycles in single-quantizer recursive filter structures. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 39(9):638–646, 1992.

84. D.-U. Lee, A. Gaffar, R. Cheung, W. Mencer, O. Luk, and G. Constantinides. Accuracy-
Guaranteed Bit-Width Optimization. IEEE Transaction on Computer Aided Design of
Integrated Circuits and Systems, 25(10):1990–2000, 2006.

85. D.-U. Lee, A. Gaffar, O. Mencer, and W. Luk. Minibit: bit-width optimization via affine
arithmetic. In Design Automation Conference, 2005., pages 837–840, 2005.

86. D.-U. Lee and J. Villasenor. A bit-width optimization methodology for polynomial-based
function evaluation. IEEE Transactions on Computers, 56(4):567–571, 2007.

87. A. Lepschy, G. Mian, and U. Viaro. Stability analysis of second-order direct-form digital
filters with two roundoff quantizers. IEEE Transaction on Circuits Syst., 33(8):824–826,
1986.

88. G. Li, M. Gevers, and Y. Sun. Performance analysis of a new structure for digital filter
implementation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 47(4):474–482, 2000.

89. G. Li and Z. Zhao. On the generalized dfiit structure and its state-space realization in
digital filter implementation. IEEE Transaction on Circuits and Systems I: Regular Papers,
51(4):769–778, 2004.

90. J. Lopez. Evaluacion de los Efectos de Cuantificacion en las Estructuras de Filtros Digitales
Utilizando Tecnicas de Cuantificacion Basadas en Extensiones de Intervalos. PhD thesis,
Univ. Politecnica de Madrid, Madrid, 2004.

91. J. Lopez, G. Caffarena, and C. Carreras. Fast and accurate computation of the l2-sensitivity in
digital filter realizations. Technical report, Univ. Politecnica de Madrid, 2006.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1099

92. J. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz. Analysis of limit cycles by means
of affine arithmetic computer-aided tests. In 12th European Signal Processing Conference
EUSIPCO’04, pages 991–994, Vienna (Austria), 2004.

93. J. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz. Fast and accurate computation
of the roundoff noise of linear time-invariant systems. IET Circuits, Devices and Systems,
2(4):393–408, August 2008.

94. J. Lopez, C. Carreras, G. Caffarena, and O. Nieto-Taladriz. Fast characterization of the noise
bounds derived from coefficient and signal quantization. In International Symposium on
Circuits and Systems (ISCAS ’03)., volume 4, pages IV–309–IV–312 vol4, 2003.

95. J. A. Lopez, C. Carreras, and O. Nieto-Taladriz. Improved interval-based characterization of
fixed-point lti systems with feedback loops. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 26(11):1923–1933, 2007.

96. Mathworks. Fixed-Point Blockset User’s Guide (ver. 2.0), 2001.
97. J. McClellan, C. Burrus, A. Oppenheim, T. Parks, R. Schafer, and H. Schuessler. Computer-

Based Exercises for Signal Processing Using Matlab 5. Matlab Curriculum Series. Prentice
Hall, New Jersey, 1998.

98. D. Menard, D. Novo, R. Rocher, F. Catthoor, and O. Sentieys. Quantization Mode Opportuni-
ties in Fixed-Point System Design. In European Signal Processing Conference (EUSIPCO),
pages 542–546, Aalborg, August 2010.

99. D. Menard, R. Rocher, P. Scalart, and O. Sentieys. SQNR Determination in Non-Linear
and Non-Recursive Fixed-Point Systems. In European Signal Processing Conference, pages
1349–1352, 2004.

100. D. Menard, R. Rocher, and O. Sentieys. Analytical Fixed-Point Accuracy Evaluation in Linear
Time-Invariant Systems. IEEE Transactions on Circuits and Systems I: Regular Papers,,
55(1), November 2008.

101. D. Menard and O. Sentieys. A methodology for evaluating the precision of fixed-point
systems. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Orlando, May 2002.

102. D. Menard and O. Sentieys. Automatic Evaluation of the Accuracy of Fixed-point Algorithms.
In Design, Automation and Test in Europe (DATE), Paris, march 2002.

103. D. Menard, R. Serizel, R. Rocher, and O. Sentieys. Accuracy Constraint Determination in
Fixed-Point System Design. EURASIP Journal on Embedded Systems, 2008:12, 2008.

104. Mentor Graphics. Algorithmic C Data Types. Mentor Graphics, v.1.3 edition, march 2008.
105. W. Mills, C. Mullis, and R. Roberts. Digital filter realizations without overflow oscillations.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(4):334–338, 1978.
106. S. K. Mitra. Digital signal processing laboratory using MATLAB. WCB/McGraw-Hill,

Boston, 1999. Sanjit K. Kumar. ill. ; 24 cm. + 1 computer disk. System requirements for
computer disk: IBM pc or compatible, or Macintosh power pc; Windows 3.11 or higher;
MATLAB Version 5.2 or higher; Signal Processing Toolbox Version 4.2 or higher.

107. S. Mittal. A survey of techniques for approximate computing. ACM Computer Survey,
48(4):62:1–62:33, Mar. 2016.

108. A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. Precision and error analysis of matlab
applications during automated hardware synthesis for fpgas. In Design, Automation and Test
in Europe, 2001, pages 722–728, 2001.

109. D. Novo, N. Farahpour, U. Ahmad, F. Catthoor, and P. Ienne. Energy efficient mimo
processing: A case study of opportunistic run-time approximations. In Design, automation
and test in Europe, pages 1–6. ACM, 2014.

110. A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ, 1987.

111. W. G. Osborne, J. Coutinho, R. C. C. Cheung, W. Luk, and O. Mencer. Instrumented
multi-stage word-length optimization. In International Conference on Field-Programmable
Technology, 2007. ICFPT 2007, pages 89–96, 2007.

112. Y. Pang, K. Radecka, and Z. Zilic. Optimization of imprecise circuits represented by
taylor series and real-valued polynomials. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(8):1177–1190, 2010.

1100 D. Menard et al.

113. K. Parashar, D. Menard, R. Rocher, O. Sentieys, D. Novo, and F. Catthoor. Fast Performance
Evaluation of Fixed-Point Systems with Un-Smooth Operators. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), San Jose, 11 2010.

114. K. Parashar, D. Menard, and O. Sentieys. Accelerated performance evaluation of fixed-
point systems with un-smooth operations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(4):599–612, April 2014.

115. K. Parashar, R. Rocher, D. Menard, and O. Sentieys. Analytical Approach for Analyzing
Quantization Noise Effects on Decision Operators. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 1554–1557, Dallas, march 2010.

116. K. K. Parhi. VLSI Digital Signal Processing Systems: Design and Implementation. Wiley,
New York, 1999. Keshab K. Parhi. ill. ; 25 cm. “A Wiley-Interscience publication.”.

117. S. Parker and P. Girard. Correlated noise due to roundoff in fixed point digital filters. IEEE
Transactions on Circuits and Systems, 23(4):204–211, 1976.

118. K. Premaratne, E. Kulasekere, P. Bauer, and L.-J. Leclerc. An exhaustive search algorithm
for checking limit cycle behavior of digital filters. IEEE Transactions on Signal Processing,
44(10):2405–2412, 1996.

119. R. A. Roberts and C. T. Mullis. Digital Signal Processing. Addison-Wesley series in electrical
engineering. Addison-Wesley, Reading, Mass., 1987. Richard A. Roberts, Clifford T. Mullis.
ill. ; 24 cm. Includes index.

120. R. Rocher, D. Menard, N. Herve, and O. Sentieys. Fixed-Point Configurable Hardware
Components. EURASIP Journal on Embedded Systems, 2006:Article ID 23197, 13 pages,
2006.

121. R. Rocher, D. Menard, P. Scalart, and O. Sentieys. Analytical accuracy evaluation of Fixed-
Point Systems. In European Signal Processing Conference (EUSIPCO), Poznan, September
2007.

122. R. Rocher, D. Menard, P. Scalart, and O. Sentieys. Analytical approach for numerical accuracy
estimation of fixed-point systems based on smooth operations. IEEE Transactions on Circuits
and Systems I: Regular Papers, PP(99):1 –14, 2012.

123. R. Rocher and P. Scalart. Noise probability density function in fixed-point systems based
on smooth operators. In Conference on Design and Architectures for Signal and Image
Processing (DASIP 2012), pages 1–8, Oct. 2012.

124. O. Sarbishei and K. Radecka. On the fixed-point accuracy analysis and optimization of
polynomial specifications. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(6):831–844, 2013.

125. O. Sarbishei, K. Radecka, and Z. Zilic. Analytical optimization of bit-widths in fixed-point lti
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(3):343–355, 2012.

126. C. Shi and R. Brodersen. A Perturbation Theory on Statistical Quantization Effects in Fixed-
Point DSP with Non-Stationary Inputs. In IEEE Int. Conf. on Circuits and Systems, volume 3,
pages 373–376 Vol.3, 2004.

127. C. Shi and R. Brodersen. Floating-point to fixed-point conversion with decision errors due to
quantization. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Montreal, May 2004.

128. V. Singh. An extension to jury-lee criterion for the stability analysis of fixed point digital
filters designed with two’s complement arithmetic. IEEE Transactions on Circuits and
Systems, 33(3):355, 1986.

129. A. Sripad and D. L. Snyder. A Necessary and Sufficient Condition for Quantization Error
to be Uniform and White. IEEE Transactions on Acoustics, Speech, and Signal Processing,
25(5):442–448, October 1977.

130. M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application to silicon
compilation. In SIGPLAN conference on Programming Language Design and Implementa-
tion, pages 108–120, 2000.

131. J. Stolfi and L. d. Figueiredo. Self-validated numerical methods and applications. In 21st
Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, Brazil, 1997.

Analysis of Finite Word-Length Effects in Fixed-Point Systems 1101

132. W. Sung. Optimization of number representations. In S. S. Bhattacharyya, E. F. Deprettere,
R. Leupers, and J. Takala, editors, Handbook of Signal Processing Systems. Springer, third
edition, 2018.

133. V. Tavsanoglu and L. Thiele. Optimal design of state - space digital filters by simultaneous
minimization of sensitivity and roundoff noise. IEEE Transactions on Circuits and Systems,
31(10):884–888, 1984.

134. L. Thiele. Design of sensitivity and round-off noise optimal state-space discrete systems. Int.
J. Circuit Theory Appl., 12:39–46, 1984.

135. L. Thiele. On the sensitivity of linear state-space systems. IEEE Transactions on Circuits and
Systems, 33(5):502–510, 1986.

136. K. Uesaka and M. Kawamata. Synthesis of low coefficient sensitivity digital filters using
genetic programming. In IEEE International Symposium on Circuits and Systems, ISCAS ’99,
volume 3, pages 307–310 vol3, 1999.

137. K. Uesaka and M. Kawamata. Heuristic synthesis of low coefficient sensitivity second-order
digital filters using genetic programming. IEEE Proceedings Circuits, Devices and Systems,
148(3):121–125, 2001.

138. K. Uesaka and M. Kawamata. Evolutionary synthesis of digital filter structures using genetic
programming. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 50(12):977–983, 2003.

139. P. Vaidyanathan and V. Liu. An improved sufficient condition for absence of limit cycles in
digital filters. IEEE Transactions on Circuits and Systems, 34(3):319–322, 1987.

140. S. Wadekar and A. Parker. Accuracy sensitive word-length selection for algorithm optimiza-
tion. In International Conference on Computer Design: VLSI in Computers and Processors,
1998, pages 54–61, 1998.

141. B. Widrow. Statistical Analysis of Amplitude Quantized Sampled-Data Systems. Transaction
on AIEE, Part. II: Applications and Industry, 79:555–568, 1960.

142. B. Widrow, I. Kollar, and M.-C. Liu. Statistical theory of quantization. IEEE Transactions on
Instrumentation and Measurement, 45(2):353–361, 1996.

143. M. Willems. A Methodology for the Efficient Design of Fixed-Point Systems. PhD thesis,
Aachen University of Technology, German, 1998.

144. N. Wong and T.-S. Ng. A generalized direct-form delta operator-based iir filter with minimum
noise gain and sensitivity. IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 48(4):425–431, 2001.

145. B. Wu, J. Zhu, and F. Najm. An analytical approach for dynamic range estimation. In
ACM/IEEE Design Automation Conference (DAC), pages 472–477, San Diego, june 2004.

146. B. Wu, J. Zhu, and F. Najm. Dynamic range estimation for nonlinear systems. In IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages 660–667, 2004.

147. C. Xiao. Improved l2-sensitivity for state-space digital system. IEEE Transactions on Signal
Processing, 45(4):837–840, 1997.

148. Z. Zhao and G. Li. Roundoff noise analysis of two efficient digital filter structures. IEEE
Transactions on Signal Processing, 54(2):790–795, 2006.

Models of Architecture for DSP Systems

Maxime Pelcat

Abstract Over the last decades, the practice of representing digital signal pro-
cessing applications with formal Model of computations (MoCs) has developed.
Formal MoCs are used to study application properties (liveness, schedulability,
parallelism. . .) at a high level, often before implementation details are known.
Formal MoCs also serve as an input for Design Space Exploration (DSE) that
evaluates the consequences of software and hardware decisions on the final system.
The development of formal MoCs is fostered by the design of increasingly complex
applications requiring early estimates on a system’s functional behavior.

On the architectural side of digital signal processing system development,
heterogeneous systems are becoming ever more complex. Languages and models
exist to formalize performance-related information of a hardware system. They
most of the time represent the topology of the system in terms of interconnected
components and focus on time performance. However, the body of work on what
we will call MoAs in this chapter is much more limited and less neatly delineated
than the one on MoCs. This chapter proposes and argues a definition for the concept
of an MoA and gives an overview of architecture models and languages that draw
near the MoA concept.

1 Introduction

In computer science, system performance is often used as a synonym for real-time
performance, i.e. adequate processing speed. However, most DSP systems must, to
fit their market, be efficient in many of their aspects and meet at the same time

M. Pelcat (�)
Institut Pascal, Aubière, France
IETR/INSA, Rennes, France
e-mail: mpelcat@insa-rennes.fr

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_30

1103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_30&domain=pdf
mailto:mpelcat@insa-rennes.fr
https://doi.org/10.1007/978-3-319-91734-4_30

1104 M. Pelcat

several efficiency constraints, including high performance, low cost, and low power
consumption. These systems are referred to as high performance embedded systems
[38] and include for instance medical image processing systems [34], wireless
transceivers [32], and video compression systems [6].

The holistic optimisation of a system in its different aspects is called Design
Space Exploration (DSE) [31]. Exploring the design space consists in creating a
Pareto chart such as the one in Fig. 1 and choosing solutions on the Pareto front,
i.e. solutions that represent the best alternative in at least one dimension and respect
constraints in the other dimensions. As an example, p1 on Fig. 1 can be energy
consumption and p2 can be response time. Figure 1 illustrates in two dimensions a
problem that, in general, has many more dimensions. In order to make system-level
design efficient, separation of concerns is desirable [16]. Separation of concerns
refers to forcing decisions on different design concerns to be (nearly) independent.
The separation of concerns between application and architecture design makes it
possible to generate many points for the Pareto by varying separately application
and architecture parameters and observing their effects on system efficiency.

For example, the designer can build an application, test its efficiency on different
platform architectures and, if constraints are not met by any point on the Pareto,
iterate the process until reaching a satisfactory efficiency. This process is illustrated
on Fig. 2 and leads to Pareto points in Fig. 1. Taking the hypothesis that a unique
constraint is set on the maximum mp1 of property p1, the first six generated systems
in Fig. 2 led to p1 > mp1 (corresponding to points over the dotted line in Fig. 1) and
different values of p2, p3, etc. The seventh generated system has p1 ≤ mp1 and thus
respects the constraint. Further system generations can be performed to optimize
p2, p3, etc. and generate the points under the dotted line in Fig. 1. Such a design
effort is feasible only if application and architecture can be played with efficiently.
On the application side, this is possible using Model of computations (MoCs)
that represent the high-level aspects (e.g. parallelism, exchanged data, triggering
events. . .) of an application while hiding its detailed implementation. Equivalently
on the architectural side, Models of Architecture (MoAs) can be used to extract
the fundamental elements affecting efficiency while ignoring the details of circuitry.

Fig. 1 The problem of Design Space Exploration (DSE) illustrated on a 2-D Pareto chart with
efficiency metrics p1 and p2

Models of Architecture for DSP Systems 1105

Fig. 2 Example of an iterative design process where application is refined and, for each refinement
step, tested with a set of architectures to generate new points for the Pareto chart

This chapter aims at reviewing languages and tools for modeling architectures and
precisely defining the scope and capabilities of MoAs.

The chapter is organised as follows. The context of MoAs is first explained
in Sect. 2. Then, definitions of an MoA and a quasi-MoA are argued in Sect. 3.
Sections 4 and 5 give examples of state of the art quasi-MoAs. Finally, Sect. 6
concludes this chapter.

2 The Context of Models of Architecture

2.1 Models of Architecture in the Y-Chart Approach

The main motivation for developing Models of Architecture is for them to formalize
the specification of an architecture in a Y-chart approach of system design. The Y-
chart approach, introduced in [18] and detailed in [2], consists in separating in two
independent models the application-related and architecture-related concerns of a
system’s design.

This concept is refined in Fig. 3 where a set of applications is mapped to a set of
architectures to obtain a set of efficiency metrics. In Fig. 3, the application model
is required to conform to a specified MoC and the architecture model is required to
conform to a specified MoA. This approach aims at separating What is implemented
from How it is implemented. In this context, the application is qualified by a
Quality of Service (QoS) and the architecture, offering resources to this application,
is characterized by a given efficiency when supporting the application. For the
discussion not to remain abstract, next section illustrates the problem on an example.

1106 M. Pelcat

Fig. 3 MoC and MoA in the Y-chart [18]

2.2 Illustrating Iterative Design Process and Y-Chart on an
Example System

QoS and efficiency metrics are multi-dimensional and can take many forms. For
a signal processing application, QoS may be the Signal-to-Noise Ratio (SNR) or
the Bit Error Rate (BER) of a transmission system, the compression rate of an
encoding application, the detection precision of a radar, etc. In terms of architectural
decisions, the obtained set of efficiency metrics is composed of some of the
following Non-Functional Properties (NFPs):

• over time:

– latency (also called response time) corresponds to the time duration between
the arrival time of data to process and the production time of processed data,

– throughput is the amount of processed data per time interval,
– jitter is the difference between maximal and minimal latency over time,

• over energy consumption:

– energy corresponds to the energy consumed to process an amount of data,
– peak power is the maximal instantaneous power required on alimentation to

process data,
– temperature is the effect of dissipated heat from processing,

• over memory:

– Random Access Memory (RAM) requirements corresponds to the amount of
necessary read-write memory to support processing,

– Read-Only Memory (ROM) requirements is the amount of necessary read-only
memory to support processing,

Models of Architecture for DSP Systems 1107

Fig. 4 Illustrating designer’s freedom on the application side with a video compression example.
(a) Original video compression application. (b) Redesigned video compression application forcing
data parallelism

• over security:

– reliability is 1− pf with pf the probability of system failure over time,
– electromagnetic interference corresponds to the amount of non-desired emit-

ted radiations,

• over space:

– area is the total surface of semiconductor required for a given processing,
– volume corresponds to the total volume of the built system.
– weight corresponds to the total weight of the built system.

• and cost corresponds to the monetary cost of building one system unit under the
assumption of a number of produced units.

The high complexity of automating system design with a Y-chart approach comes
from the extensive freedom (and imagination) of engineers in redesigning both
application and architecture to fit the efficiency metrics, among this list, falling into
their applicative constraints. Figure 4 is an illustrating example of this freedom on
the application side. Let us consider a video compression system, to be ported on a
platform. As shown in Fig. 4a, the application initially has only pipeline parallelism.
Assuming that all four tasks are equivalent in complexity and that they receive and
send at once a full image as a message, pipelining can be used to map the application
to a multicore processor with four cores, with the objective to rise throughput (in
frames per second) when compared to a monocore execution. However, latency will
not be reduced because data will have to traverse all tasks before being output.
In Fig. 4b, the image has been split into two halves and each half is processed
independently. The application QoS in this second case will be lower, as the
redundancy between image halves is not used for compression. The compression
rate or image quality will thus be degraded. However, by accepting QoS reduction,
the designer has created data parallelism that offers new opportunities for latency
reduction, as processing an image half will be faster than processing a whole image.

1108 M. Pelcat

Fig. 5 Illustrating designer’s freedom on the architecture side with some current ARM-based
and Digital Signal Processor-based multi-core architectures. (a) Monocore energy-efficient. (b)
Monocore high-performance. (c) Quad-core energy-efficient. (d) Quad-core high-performance. (e)
Quad-core energy-efficient + accelerator. (f) Octo-core big.LITTLE. (g) multi-ARM + multi-DSP
processor from Texas Instruments

In terms of architecture, and depending on money and design time resources,
the designer may choose to run some tasks in hardware and some in software over
processors. He can also choose between different hardware interconnects to connect
these architecture components. For illustrative purpose, Fig. 5 shows different
configurations of processors that could run the applications of Fig. 4. rounded
rectangles represent Processing Elements (PEs) performing computation while
ovals represent Communication Nodes (CNs) performing inter-PE communication.
Different combinations of processors are displayed, leveraging on high-performance
out-of-order ARM Cortex-A15 cores, on high-efficiency in-order ARM Cortex-A7
cores, on the Multi-Format Codec (MFC) hardware accelerator for video encoding
and decoding, or on Texas Instruments C66x Digital Signal Processing cores.
Figure 5g corresponds to a 66AK2L06 Multicore DSP+ARM KeyStone II processor
from Texas Instruments where ARM Cortex-A15 cores are combined with C66x
cores connected with a Multicore Shared Memory Controller (MSMC) [36]. In
these examples, all PEs of a given type communicate via shared memory with either
hardware cache coherency (Shared L2) or software cache coherency (MSMC), and
with each other using either the Texas Instruments TeraNet switch fabric or the
ARM AXI Coherency Extensions (ACE) with hardware cache coherency [35].

Each architecture configuration and each mapping and scheduling of the appli-
cation onto the architecture leads to different efficiencies in all the previously listed
NFPs. Considering only one mapping per application-architecture couple, models

Models of Architecture for DSP Systems 1109

from Figs. 4 and 5 already define 2 × 7 = 14 systems. Adding mapping choices
of tasks to PEs, and considering that they all can execute any of the tasks and
ignoring the order of task executions, the number of possible system efficiency
points in the Pareto Chart is already roughly 19,000,000. This example shows how,
by modeling application and architecture independently, a large number of potential
systems is generated which makes automated multi-dimensional DSE necessary to
fully explore the design space.

2.3 On the Separation Between Application and Architecture
Concerns

Separation between application and architectural concerns should not be confused
with software (SW)/hardware (HW) separation of concerns. The software/hardware
separation of concerns is often put forward in the term HW/SW co-design. Software
and its languages are not necessarily architecture-agnostic representations of an
application and may integrate architecture-oriented features if the performance is
at stake. This is shown for instance by the differences existing between the C++
and CUDA languages. While C++ builds an imperative, object-oriented code for a
processor with a rather centralized instruction decoding and execution, CUDA is
tailored to GPGPUs with a large set of cores. As a rule of thumb, software qualifies
what may be reconfigured in a system while hardware qualifies the static part of the
system.

The separation between application and architecture is very different in the sense
that the application may be transformed into software processes and threads, as
well as into hardware Intellectual Property cores (IPs). Software and Hardware
application parts may collaborate for a common applicative goal. In the context
of DSP, this goal is to transform, record, detect or synthetize a signal with a given
QoS. MoCs follow the objective of making an application model agnostic of the
architectural choices and of the HW/SW separation. The architecture concern relates
to the set of hardware and software support features that are not specific to the DSP
process, but create the resources handling the application.

On the application side, many MoCs have been designed to represent the
behavior of a system. The Ptolemy II project [7] has a considerable influence in
promoting MoCs with precise semantics. Different families of MoCs exist such
as finite state machines, process networks, Petri nets, synchronous MoCs and
functional MoCs. This chapter defines MoAs as the architectural counterparts of
MoCs and presents a state-of-the-art on architecture modeling for DSP systems.

1110 M. Pelcat

2.4 Scope of This Chapter

In this chapter, we focus on architecture modeling for the performance estimation
of a DSP application over a complex distributed execution platform. We keep
functional testing of a system out of the scope of the chapter and rather discuss
the early evaluation of system non-functional properties. As a consequence, virtual
platforms such as QEMU [3], gem5 [4] or Open Virtual Platforms simulator
(OVPsim), that have been created as functional emulators to validate software when
silicon is not available, will not be discussed. MoAs work at a higher level of
abstraction where functional simulation is not central.

The considered systems being dedicated to digital signal processing, the study
concentrates on signal-dominated systems where control is limited and provided
together with data. Such systems are called transformational, as opposed to reactive
systems that can, at any time, react to non-data-carrying events by executing tasks.

Finally, the focus is put on system-level models and design rather than on detailed
hardware design, already addressed by large sets of existing literature. Next section
introduces the concept of an MoA, as well as an MoA example named Linear
System-Level Architecture Model (LSLA).

3 The Model of Architecture Concept

The concept of MoA is evoked in 2002 in [19] where it is defined as “a formal
representation of the operational semantics of networks of functional blocks
describing architectures”. This definition is broad, and allows the concepts of MoC
and MoA to overlap. As an example, a Synchronous Dataflow (SDF) graph [14, 24]
representing a system fully specialized to an application may be considered as a
MoC, because it formalizes the application. It may also be considered as an MoA
because it fully complies with the definition from [19]. Definition 4 of this chapter,
adapted from [30], is a new definition of an MoA that does not overlap with the
concept of MoC. The LSLA model is then presented to clarify the concept by an
example.

3.1 Definition of an MoA

Prior to defining MoA, the notion of application activity is introduced that ensures
the separation of MoC and MoA. Figure 6 illustrates how application activity
provides intermediation between application and architecture. Application activity
models the computational load handled by the architecture when executing the
application.

Models of Architecture for DSP Systems 1111

Fig. 6 Application activity as an intermediate model between application and architecture

Definition 1 Application activity A corresponds to the amount of processing and
communication necessary for accomplishing the requirements of the considered
application during the considered time slot. Application activity is composed of
processing and communication tokens, themselves composed of quanta.

Definition 2 A quantum q is the smallest unit of application activity. There are two
types of quanta: processing quantum qP and communication quantum qC .

Two distinct processing quanta are equivalent, thus represent the same amount
of activity. Processing and communication quanta do not share the same unit of
measurement. As an example, in a system with a unique clock and byte-addressable
memory, 1 cycle of processing can be chosen as the processing quantum and 1 byte
as the communication quantum.

Definition 3 A token τ ∈ TP ∪ TC is a non-divisible unit of application activity,
composed of a number of quanta. The function size : TP ∪ TC → N associates
to each token the number of quanta composing the token. There are two types of
tokens: processing tokens τP ∈ TP and communication tokens τC ∈ TC .

The activity A of an application is composed of the set:

A = {TP , TC} (1)

where TP = {τ 1
P , τ

2
P , τ

3
P . . .} is the set of processing tokens composing the

application processing and TC = {τ 1
C, τ

2
C, τ

3
C . . .} is the set of communication tokens

composing the application communication.
An example of a processing token is a run-to-completion task with always

identical computation. All tokens representing the execution of this task enclose
the same number N of processing quanta (e.g. N cycles). An example of a
communication token is a message in a message-passing system. The token is then
composed of M communication quanta (e.g. M Bytes). Using the two levels of
granularity of a token and a quantum, an MoA can reflect the cost of managing a
quantum, and the additional cost of managing a token composed of several quanta.

1112 M. Pelcat

Definition 4 A Model of Architecture (MoA) is an abstract efficiency model
of a system architecture that provides a unique, reproducible cost computa-
tion, unequivocally assessing an architecture efficiency cost when supporting
the activity of an application described with a specified MoC.

This definition makes three aspects fundamental for an MoA:

• reproducibility: using twice the same MoC and activity computation with a given
MoA, system simulation should return the exact same efficiency cost,

• application independence: the MoC alone carries application information and the
MoA should not comprise application-related information such as the exchanged
data formats, the task representations, the input data or the considered time
slot for application observation. Application activity is an intermediate model
between a MoC and an MoA that prevents both models to intertwine. An
application activity model reflects the computational load to be handled by
architecture and should be versatile enough to support a large set of MoCs and
MoAs, as demonstrated in [30].

• abstraction: a system efficiency cost, as returned by an MoA, is not bound to
a physical unit. The physical unit is associated to an efficiency cost outside the
scope of the MoA. This is necessary not to redefine the same model again and
again for energy, area, weight, etc.

Definition 4 does not compel an MoA to match the internal structure of the
hardware architecture, as long as the generated cost is of interest. An MoA for
energy modeling can for instance be a set of algebraic equations relating application
activity to the energy consumption of a platform. To keep a reasonably large scope,
this chapter concentrates on graphical MoAs defined hereafter:

Definition 5 A graphical MoA is an MoA that represents an architecture with
a graph Λ = 〈M,L, t, p〉 where M is a set of “black-box” components and
L ⊆ M ×M is a set of links between these components.

The graph Λ is associated with two functions t and p. The type function
t : M × L �→ T associates a type t ∈ T to each component and to each link.
The type dedicates a component for a given service. The properties function
p : M×L×Λ �→ P(-), where P represents powerset, gives a set of properties
pi ∈ P to each component, link, and to the graph Λ itself. Properties are
features that relate application activity to implementation efficiency.

When the concept of MoA is evoked throughout this chapter, a graphical MoA
is supposed, respecting Definition 5. When a model of a system architecture is

Models of Architecture for DSP Systems 1113

evoked that only partially compels with this definition, the term quasi-MoA is used,
equivalent to quasi-moa in [30] and defined hereafter:

Definition 6 A quasi-MoA is a model respecting some of the aspects of Defini-
tion 4 of an MoA but violating at least one of the three fundamental aspects of an
MoA, i.e. reproducibility, application independence, and abstraction.

All state-of-the-art languages and models presented in Sects. 4 and 5 define
quasi-MoAs. As an example of a graphical quasi-MoAs, the graphical represen-
tation used in Fig. 5 shows graphs Λ = 〈M,L〉 with two types of components
(PE and CN), and one type of undirected link. However, no information is given
on how to compute a cost when associating this representation with an application
representation. As a consequence, reproducibility is violated. Next section illustrates
the concept of MoA through the LSLA example.

3.2 Example of an MoA: The Linear System-Level
Architecture Model (LSLA)

The LSLA model computes an additive reproducible cost from a minimalistic
representation of an architecture [30]. As a consequence, LSLA fully complies with
Definition 5 of a graphical MoA. The LSLA composing elements are illustrated in
Fig. 7. An LSLA model specifies two types of components: Processing Elements
and Communication Nodes, and one type of link. LSLA is categorized as linear
because the computed cost is a linear combination of the costs of its components.

Definition 7 The Linear System-Level Architecture Model (LSLA) is a Model of
Architecture (MoA) that consists of an undirected graph Λ = (P,C,L, cost, λ)

where:

• P is a set of Processing Elements (PEs). A PE is an abstract processing facility
with no assumption on internal parallelism, Instruction Set Architecture (ISA),
or internal memory. A processing token τP from application activity must be
mapped to a PE p ∈ P to be executed.

Fig. 7 LSLA MoA semantics elements

1114 M. Pelcat

• C is the set of architecture Communication Nodes (CNs). A communication
token τC must be mapped to a CN c ∈ C to be executed.

• L = {(ni , nj)|ni ∈ C, nj ∈ C ∪ P } is a set of undirected links connecting
either two CNs or one CN and one PE. A link models the capacity of a CN to
communicate tokens to/from a PE or to/from another CN.

• cost is a property function associating a cost to different elements in the model.
The cost unit is specific to the non-functional property being modeled. It may be
in mJ for studying energy or in mm2 for studying area. Formally, the generic
unit is denoted ν.

On the example displayed in Fig. 7, PE1−4 represent Processing Elements (PEs)
while x, y and z are Communication Nodes (CNs). As an MoA, LSLA provides
reproducible cost computation when the activity A of an application is mapped onto
the architecture. The cost related to the management of a token τ by a PE or a CN n

is defined by:

cost : TP ∪ TC × P ∪ C → R

τ, n �→ αn.size(τ)+ βn,

αn ∈ R, βn ∈ R

(2)

where αn is the fixed cost of a quantum when executed on n and βn is the fixed
overhead of a token when executed on n. For example, in an energy modeling use
case, αn and βn are respectively expressed in energy/quantum and energy/token,
as the cost unit ν represents energy. A token communicated between two PEs
connected with a chain of CNs Γ = {x, y, z . . .} is reproduced card(Γ) times
and each occurrence of the token is mapped to 1 element of Γ . This procedure is
illustrated in Fig. 8. In figures representing LSLA architectures, the size of a token
size(τ) is abbreviated into s and the affine equations near CNs and PEs (e.g. 10s+1)
represent the cost computation related to Eq. (2) with αn = 10 and βn = 1.

A token not communicated between two PEs, i.e. internal to one PE, does not
cause any cost. The cost of the execution of application activity A on an LSLA
graph Λ is defined as:

cost (A,Λ) =∑τ∈TP cost (τ,map(τ))+
λ
∑

τ∈TC cost (τ,map(τ))
(3)

where map : TP ∪ TC → P ∪ C is a surjective function returning the mapping of
each token onto one of the architecture elements.

• λ ∈ R is a Lagrangian coefficient setting the Computation to Communication
Cost Ratio (CCCR), i.e. the cost of a single communication quantum relative to
the cost of a single processing quantum.

Similarly to the SDF MoC [24], the LSLA MoA does not specify relations to the
outside world. There is no specific PEs type for communicating with non-modeled
parts of the system. This is in contrast with Architecture Analysis and Design

Models of Architecture for DSP Systems 1115

Fig. 8 Computing cost of executing an SDF graph on an LSLA architecture. The cost for 1
iteration is (looking first at processing tokens then at communication tokens from left to right)
31+ 31+ 41+ 41+ 41+ 41+ 13+ 13+ 4+ 0.2× (5+ 5+ 5+ 10+ 5+ 5+ 10+ 5) = 266 ν

(Eq. (3))

Language (AADL) processors and devices that separate I/O components
from processing components (Sect. 4.1). The Definition 1 of activity is sufficient
to support LSLA and other types of additive MoAs. Different forms of activities
are likely to be necessary to define future MoAs. Activity Definition 1 is generic to
several families of MoCs, as demonstrated in [30].

Figure 8 illustrates cost computation for a mapping of the video compression
application shown in Fig. 4b, described with the SDF MoC onto the big.LITTLE
architecture of Fig. 5f, described with LSLA. The number of tokens, quanta and
the cost parameters are not representative of a real execution but set for illustrative
purpose. The natural scope for the cost computation of a couple (SDF, LSLA),
provided that the SDF graph is consistent, is one SDF graph iteration [30].

The SDF application graph has five actors colorP roc, pred , trans&Quant ,
entropyCod , and mux&Send and the four first actors will execute twice to produce
the two image halves required by mux&Send . The LSLA architecture model has
8 PEs ARMjk with j ∈ {7, 15} and k ∈ {1, 2, 3, 4}, and 3 CNs SL21, ACE

and SL22. Each actor execution during the studied graph iteration is transformed
into one processing token. Each dataflow token transmitted during one iteration is
transformed into one communication token. A token is embedding several quanta
(white squares), allowing a designer to describe heterogeneous tokens to represent
executions and messages of different weight.

In Fig. 8, each execution of actors colorP roc is associated with a cost of 3
quanta and each execution of other actors is associated to a cost of 4 quanta except
mux&Send requiring 1 quantum. Communication tokens (representing one half
image transfer) are given five quanta each. These costs are arbitrary here but should
represent the relative computational load of the task/communication.

Each processing token is mapped to one PE. Communication tokens are “routed”
to the CNs connecting their producer and consumer PEs. For instance, the fifth and
sixth communication tokens in Fig. 8 are generating three tokens each mapped to

1116 M. Pelcat

SL21, ACE and SL22 because the data is carried from ARM71 to ARM151. It is
the responsibility of the mapping process to verify that a link l ∈ L exists between
the elements that constitute a communication route. The resulting cost, computed
from Eqs. (2) and (3), is 266ν. This cost is reproducible and abstract, making LSLA
an MoA.

LSLA is one example of an architecture model but many such models exist in
literature. Next sections study different languages and models from literature and
explain the quasi-MoAs they define.

4 Architecture Design Languages and Their Architecture
Models

This section studies the architecture models provided by three standard ADLs
targeting architecture modeling at system-level: AADL, MCA SHIM, and UML
MARTE.

While AADL adopts an abstraction/refinement approach where components are
first roughly modeled, then refined to lower levels of abstraction, UML MARTE
is closer to a Y-Chart approach where the application and the architecture are kept
separated and application is mapped to architecture.

For its part, MCA SHIM describes an architecture with “black box” processors
and communications and puts focus on inter-PE communication simulation. All
these languages have in common the implicit definition of a quasi-MoA (Defini-
tion 6). Indeed, while they define parts of graphical MoAs, none of them respect the
three rules of MoA Definition 4.

4.1 The AADL Quasi-MoA

Architecture Analysis and Design Language (AADL) [9] is a standard language
released by SAE International, an organization issuing standards for the aerospace
and automotive sectors. The AADL standard is referenced as AS5506 [33] and the
last released version is 2.2. Some of the most active tools supporting AADL are
Ocarina1 [21] and OSATE2 [9].

1https://github.com/OpenAADL/ocarina.
2https://github.com/osate.

https://github.com/OpenAADL/ocarina
https://github.com/osate

Models of Architecture for DSP Systems 1117

Fig. 9 The AADL successive refinement system design approach

Fig. 10 The basic components for describing a hardware architecture in AADL

4.1.1 The Features of the AADL Quasi-MoA

AADL provides semantics to describe a software application, a hardware platform,
and their combination to form a system. AADL can be represented graphically,
serialized in XML or described in a textual language [10]. The term architecture
in AADL is used in its broadest sense, i.e. a whole made up of clearly separated
elements. A design is constructed by successive refinements, filling “black boxes”
within the AADL context. Figure 9 shows two refinement steps for a video
compression system in a camera. Blocks of processing are split based on the
application decomposition of Fig. 4a. First, the system is abstracted with external
data entering a video compression abstract component. Then, four software
processes are defined for the processing. Finally, processes are transformed into
four threads, mapped onto two processes. The platform is defined with two cores
and a bus and application threads are allocated onto platform components. The
allocation of threads to processors is not displayed. Sensor data is assigned a rate of
30 Hz, corresponding to 30 frames per second. Next sections detail the semantics of
the displayed components.

Software, hardware and systems are described in AADL by a composition of
components. In this chapter, we focus on the hardware platform modeling capa-
bilities of AADL, composing an implicit graphical quasi-MoA. Partly respecting
Definition 5, AADL represents platform with a graph Λ = 〈M,L, t, p〉 where M

is a set of components, L is a set of links, t associates a type to each component
and link and p gives a set of properties to each component and link. As displayed
in Fig. 10, AADL defines six types of platform components with specific graphical
representations. The AADL component type set is such that t (c ∈ M) ∈ {system,

1118 M. Pelcat

processor, device, bus, memory, abstract}. There is one type of link
t (l ∈ L) ∈ {connection}. A connection can be set between any two
components among software, hardware or system. Contrary to the Y-chart approach,
AADL does not separate application from architecture but makes them coexist in a
single model.

AADL is an extensible language but defines some standard component prop-
erties. These properties participate to the definition of the quasi-MoA determined
by the language and make an AADL model portable to several tools. The AADL
standard set of properties targets only the time behavior of components and differs
for each kind of component. AADL tools are intended to compute NFP costs such
as the total minimum and maximum execution latency of an application, as well
as the jitter. An AADL representation can also be used to extract an estimated bus
bandwidth or a subsystem latency [20].

Processors are sequential execution facilities that must support thread scheduling,
with a protocol fixed as a property. AADL platform components are not merely
hardware models but rather model the combination of hardware and low-level
software that provides services to the application. In that sense, the architecture
model they compose is conform to MoA Definition 4. However, what is mapped
on the platform is software rather than an application. As a consequence, the
separation of concerns between application and architecture is not supported
(Sect. 2.3). For instance, converting the service offered by a software thread to a
hardware IP necessitates to deeply redesign the model. A processor can specify
a Clock_Period, a Thread_Swap_Execution_Time and an Assign_Time, quantifying
the time to access memory on the processor. Time properties of a processor can thus
be precisely set.

A bus can specify a fixed Transmission_Time interval representing best- and
worst-case times for transmitting data, as well as a PerByte Transmission_Time
interval representing throughput. The time model for a message is thus an affine
model w.r.t. message size. Three models for transfer cost computation are displayed
in Fig. 11: linear, affine, and stair. Most models discussed in the next sections use

Fig. 11 Examples of
different data transfer cost
computation functions (in
arbitrary units): a linear
function (with one
parameter), an affine function
(with two parameters) and a
step function (with four
parameters)

Models of Architecture for DSP Systems 1119

one of these three models. The interpretation of AADL time properties is precisely
defined in [9] Appendix A, making AADL time computation reproducible.

A memory can be associated to a Read_Time, a Write_Time, a Word_Count and
a Word_Size to characterize its occupancy rate. A device can be associated to a
Period, and a Compute_Execution_Time to study sensors’ and actuators’ latency and
throughput. Platform components are defined to support a software application. The
next section studies application and platform interactions in AADL.

4.1.2 Combining Application and Architecture in AADL

AADL aims at analyzing the time performance of a system’s architecture, manually
exploring the mapping (called binding in AADL) of software onto hardware
elements. AADL quasi-MoA is influenced by the supported software model. AADL
is adapted to the currently dominating software representation of Operating Systems
(OS), i.e. the process and thread representation [9]. An application is decomposed
into process and thread components, that are purely software concepts. A process
defines an address space and a thread comes with scheduling policies and shares
the address space of its owner process. A process is not executable by itself; it must
contain a least one thread to execute. AADL Threads are sequential, preemptive
entities [9] and requires scheduling by a processor. Threads may specify a
Dispatch_Protocol or a Period property to model a periodic behavior or an event-
triggered callback or routine.

A values or interval of Compute_Execution_Time can be associated to a
thread. However, in real world, execution time for a thread firing depends on
both the code to execute and the platform speed. Compute_Execution_Time is
not related to the binding of the thread to a processor but a Scaling_Factor
property can be set on the processor to specify its relative speed with regards
to a reference processor for which thread timings have been set. This property
is precise when all threads on a processor undergo the same Scaling_Factor, but
this is not the case in general. For instance, if a thread compiled for the ARMv7
instruction set is first executed on an ARM Cortex-A7 and then on an ARM Cortex-
A15 processor, the observed speedup depends much on the executed task. Speedups
between 1.3× and 4.9× are reported in this context in [30].

AADL provides constructs for data message passing through port features and
data memory-mapped communication through require data access features. These
communications are bound to busses to evaluate their timings.

A flow is neither a completely software nor a completely hardware construct.
It specifies an end-to-end flow of data between sensors and actuators for steady
state and transient timing analysis. A flow has timing properties such as Expected_-
Latency and Expected_Throughput that can be verified through simulation.

1120 M. Pelcat

4.1.3 Conclusions on the AADL Quasi-MoA

AADL specifies a graphical quasi-MoA, as it does define a graph of platform
components. AADL violates the abstraction rule because cost properties are
explicitly time and memory. It respects the reproducibility rule because details of
timing simulations are precisely defined in the documentation. Finally, it violates
the application independence rule because AADL does not conform to the Y-chart
approach and does not separate application and architecture concerns.

AADL is a formalization of current best industrial practices in embedded system
design. It provides formalization and tools to progressively refine a system from
an abstract view to a software and hardware precise composition. AADL targets
all kinds of systems, including transformational DSP systems managing data flows
but also reactive system, reacting to sporadic events. The thread MoC adopted by
AADL is extremely versatile to reactive and transformational systems but has shown
its limits for building deterministic systems [23, 37]. By contrast, the quasi-MoAs
presented in Sect. 5 are mostly dedicated to transformational systems. They are thus
all used in conjunction with process network MoCs that help building reliable DSP
systems. The next section studies another state-of-the-art language: MCA SHIM.

4.2 The MCA SHIM Quasi-MoA

The Software/Hardware Interface for Multicore/Manycore (SHIM) [12] is a hard-
ware description language that aims at providing platform information to multicore
software tools, e.g. compilers or runtime systems. SHIM is a standard developed by
the Multicore Association (MCA). The most recent released version of SHIM is 1.0
(2015) [27]. SHIM is a more focused language than AADL, modeling the platform
properties that influence software performance on multicore processors.

SHIM components provide timing estimates of a multicore software. Contrary
to AADL that mostly models hard real-time systems, SHIM primarily targets
best-effort multicore processing. Timing properties are expressed in clock cycles,
suggesting a fully synchronous system. SHIM is built as a set of UML classes and
the considered NFPs in SHIM are time and memory. Timing performances in SHIM
are set by a shim::Performance class that characterizes three types of software
activity: instruction executions for instructions expressed in the LLVM instruction
set, memory accesses, and inter-core communications. LLVM [22] is used as a
portable assembly code, capable of decomposing a software task into instructions
that are portable to different ISAs.

SHIM does not propose a chart representation of its components. However,
SHIM defines a quasi-MoA partially respecting Definition 5. A shim::System-
Configuration object corresponds to a graph Λ = 〈M,L, t, p〉 where M

is the set of components, L is the set of links, t associates a type to each
component and link and p gives a set of properties to each component and
link. A SHIM architecture description is decomposed into three main sets of ele-
ments: Components, Address Spaces and Communications. We group

Models of Architecture for DSP Systems 1121

and rename the components (referred to as “objects” in the standard) to makes
them easier to compare to other approaches. SHIM defines two types of platform
components. The component types t (c ∈ M) are chosen among:

• processor (shim::MasterComponent), representing a core executing soft-
ware. It internally integrates a number of cache memories (shim::Cache)
and is capable of specific data access types to memory (shim::AccessType). A
processor can also be used to represent a Direct Memory Access (DMA),

• memory (shim::SlaveComponent) is bound to an address space (shim::Address-
Space).

Links t (l ∈ L) are used to set performance costs. They are chosen among:

• communication between two processors. It has three subtypes:

– fifo (shim::FIFOCommunication) referring to message passing with buffer-
ing,

– sharedRegister (shim::SharedRegisterCommunication) referring to a
semaphore-protected register,

– event (shim::EventCommunication for polling or shim::InterruptCommuni-
cation for interrupts) referring to inter-core synchronization without data
transfer.

• memoryAccess between a processor and a memory (modeled as a couple
shim::MasterSlaveBinding, shim::Accessor) sets timings to each type of data
read/write accesses to the memory.

• sharedMemory between two processors (modeled as a triple shim::-
SharedMemoryCommunication, shim::MasterSlaveBinding, and shim::-
Accessor) sets timing performance to exchanging data over a shared memory,

• InstructionExecution (modeled as a shim::Instruction) between a pro-
cessor and itself sets performance on instruction execution.

Links are thus carrying all the performance properties in this model. Application
activity on a link l is associated to a shim::Performance property, decomposed
into latency and pitch. Latency corresponds to a duration in cycles while pitch is the
inverse (in cycles) of the throughput (in cycles−1) at which a SHIM object can be
managed. A latency of 4 and a pitch of 3 on a communication link, for instance,
mean that the first data will take 4 cycles to pass through a link and then 1 data will
be sent per 3 cycles. This choice of time representation is characteristic of the SHIM
objective to model the average behavior of a system while AADL targets real-time
systems. Instead of specifying time intervals [min..max] like AADL, SHIM defines
triplets [min,mode,max] where mode is the statistical mode. As a consequence,
a richer communication and execution time model can be set in SHIM. However,
no information is given on how to use these performance properties present in the
model. In the case of a communication over a shared memory for instance, the
decision on whether to use the performance of this link or to use the performance
of the shared memory data accesses, also possible to model, is left to the SHIM
supporting tool.

1122 M. Pelcat

4.2.1 Conclusions on MCA SHIM Quasi-MoA

MCA SHIM specifies a graphical quasi-MoA, as it defines a graph of platform
components. SHIM violates the abstraction rule because cost properties are limited
to time. It also violates the reproducibility rule because details of timing simulations
are left to the interpretation of the SHIM supporting tools. Finally, it violates the
application independence rule because SHIM supports only software, decomposed
into LLVM instructions.

The modeling choices of SHIM are tailored to the precise needs of multicore
tooling interoperability. The two types of tools considered as targets for the SHIM
standard are Real-Time Operating Systems (RTOSs) and auto-parallelizing compil-
ers for multicore processors. The very different objectives of SHIM and AADL have
led to different quasi-MoAs. The set of components is more limited in SHIM and
communication with the outside world is not specified. The communication modes
between processors are also more abstract and associated to more sophisticated
timing properties. The software activity in SHIM is concrete software, modeled as
a set of instructions and data accesses while AADL does not go as low in terms of
modeling granularity. To complement the study on a third language, the next section
studies the different quasi-MoAs defined by the UML Modeling And Analysis Of
Real-Time Embedded Systems (MARTE) language.

4.3 The UML MARTE Quasi-MoAs

The UML Profile for Modeling And Analysis Of Real-Time Embedded Systems
(MARTE) is standardized by the Object Management Group (OMG) group. The
last version is 1.1 and was released in 2011 [28]. Among the ADLs presented
in this chapter, UML MARTE is the most complex one. It defines hundreds of
UML classes and has been shown to support most AADL constructs [8]. MARTE
is designed to coordinate the work of different engineers within a team to build
a complex real-time embedded system. Several persons, expert in UML MARTE,
should be able to collaborate in building the system model, annotate and analyze it,
and then build an execution platform from its model. Like AADL, UML MARTE is
focused on hard real-time application and architecture modeling. MARTE is divided
into four packages, themselves divided into clauses. Three of these clauses define
four different quasi-MoAs. These quasi-MoAs are named QMoAi

MARTE | i ∈
{1, 2, 3, 4} in this chapter and are located in the structure of UML MARTE clauses
illustrated by the following list:

• The MARTE Foundations package includes:

– the Core Elements clause that gathers constructs for inheritance and composi-
tion of abstract objects, as well as their invocation and communication.

– the Non-Functional Property (NFP) clause that describes ways to specify non-
functional constraints or values (Sect. 2.2), with a concrete type.

Models of Architecture for DSP Systems 1123

– the Time clause, specific to the time NFP.
– the Generic Resource Modeling (GRM) clause that offers constructs to

model, at a high level of abstraction, both software and hardware ele-
ments. It defines a generic component named Resource, with clocks
and non-functional properties. Resource is the basic element
of UML MARTE models of architecture and application. The quasi-MoA
QMoA1

MARTE is defined by GRM and based on Resources. It will be
presented in Sect. 4.3.1.

– the Allocation Modeling clause that relates higher-level Resources to
lower-levelResources. For instance, it is used to allocate Schedulable-
Resources (e.g. threads) to ComputingResources (e.g. cores).

• The MARTE Design Model package includes:

– the Generic Component Model (GCM) clause that defines structured compo-
nents, connectors and interaction ports to connect core elements.

– the Software Resource Modeling (SRM) clause that details software resources.
– the Hardware Resource Modeling (HRM) clause that details hardware

resources and defines QMoA2
MARTE and QMoA3

MARTE (Sect. 4.3.2).
– the High-Level Application Modeling (HLAM) clause that models real-time

services in an OS.

• The MARTE Analysis Model package includes:

– the Generic Quantitative Analysis Modeling (GQAM) clause that specifies
methods to observe system performance during a time interval. It defines
QMoA4

MARTE .
– the Schedulability Analysis Modeling (SAM) clause that refers to thread and

process schedulability analysis. It builds over GQAM and adds scheduling-
related properties to QMoA4

MARTE .
– the Performance Analysis Modeling (PAM) clause that performs probabilistic

or deterministic time performance analysis. It also builds over GQAM.

• MARTE Annexes include Repetitive Structure Modeling (RSM) to compactly
represent component networks, and the Clock Constraint Specification Language
(CCSL) to relate clocks.

The link between application time and platform time in UML MARTE is
established through clock and event relationships expressed in the CCSL language
[25]. Time may represent a physical time or a logical time (i.e. a continuous
repetition of events). Clocks can have causal relations (an event of clock A causes
an event of clock B) or a temporal relations with type precedence, coincidence,
and exclusion. Such a precise representation of time makes UML MARTE capable
of modeling both asynchronous and synchronous distributed systems [26]. UML
MARTE is capable, for instance, of modeling any kind of processor with multiple
cores and independent frequency scaling on each core.

The UML MARTE resource composition mechanisms give the designer
more freedom than AADL by dividing his system into more than two layers. For

1124 M. Pelcat

instance, execution platform resources can be allocated to operating system
resources, themselves allocated to application resourceswhile AADL offers
only a hardware/software separation. Multiple allocations to a single resource
are either time multiplexed (timeScheduling) or distributed in space (spatialDistri-
bution). Next sections explain the 4 quasi-MoAs defined by UML MARTE.

4.3.1 The UML MARTE Quasi-MoAs 1 and 4

The UML MARTE GRM clause specifies the QMoA1
MARTE quasi-MoA. It

corresponds to a graphΛ = 〈M,L, t, p〉where M is a set of Resources,L is a set
of UML Connectors between these resources, t associates types to Resources
and p gives sets of properties to Resources.

Seven types of resources are defined in GRM. Some inconsistencies between
resource relations make the standard ambiguous on resource types. As an example,
CommunicationMedia specializes CommunicationResource on standard
p. 96 [28] while CommunicationMedia specializes ProcessingResource
on standard p. 99. SynchResource disappears after definition and is possibly
equivalent to the later SwSynchronizationResource. Considering the most
detailed descriptions as reference, types of resources (illustrated in Fig. 12) are:

• a Processing Resource, associated to an abstract speed Factor property
that can help the designer compare different Processing Resources. It
has three subtypes: Computing Resource models a real or virtual PE
storing and executing program code. It has no property. Device Resource
communicates with the system environment, equivalently to an AADL device. It
also has no property.Communication Media can represent a bus or a higher-
level protocol over an interconnect. It has several properties: a mode among
simplex, half-duplex, or full-duplex specifies whether the media is directed or not
and the time multiplexing method for data. Communication Media transfers
one data of elementSize bits per clock cycle. A packet time represents the time to
transfer a set of elements. A block time represents the time before the media can
transfer other packets. A data rate is also specified.

• a Timing Resource representing a clock or a timer, fixing a clock rate.
• a Storage Resource representing memory, associated with a unit size and

number of units. Memory read and write occur in 1 clock cycle.

Fig. 12 Elements of the quasi-MoA define in UML MARTE Generic Resource Modeling (GRM)

Models of Architecture for DSP Systems 1125

• a Concurrency Resource representing several concurrent flows of execu-
tion. It is a generalization of SchedulableResources that model logical
concurrency in threads and processes.

The communication time model of QMoA1
MARTE , set by the Communication

Media, is the affine model illustrated in Fig. 11. Precise time properties are set but
the way to correctly compute a timing at system-level from the set of resource
timings is not explicitly elucidated.

QMoA1
MARTE can be used for more than just time modeling.ResourceUsage

is a way to associate physical properties to the usage of a resource. When events
occur, amounts of physical resources can be specified as “consumed”. A resource
consumption amount can be associated to the following types of NFPs values:
energy in Joules, message size in bits, allocated memory in bytes, used memory in
bytes (representing temporary allocation), and power peak in Watts.

The Generic Quantitative Analysis Modeling (GQAM) package defines another
quasi-MoA (QMoA4

MARTE) for performing the following set of analysis: counting
the repetitions of an event, determining the probability of an execution, determining
CPU requirements, determining execution latency, and determining throughput
(time interval between two occurrences). New resources named GaExecHost
(ExecutionHost) and GaCommHost (CommunicationHost) are added to the
ones of QMoA1

MARTE and specialize the ProcessingResource for time
performance and schedulability analysis, as well as for the analysis of other
NFPs. QMoA4

MARTE is thus close to QMoA1
MARTE in terms of resource

semantics but additional properties complement the quasi-MoA. In terms of MoAs,
QMoA1

MARTE and QMoA4
MARTE have the same properties and none of them

clearly states how to use their properties.

4.3.2 The UML MARTE Quasi-MoAs 2 and 3

The UML MARTE Hardware Resource Modeling (HRM) defines two other, more
complex quasi-MoAs than the previously presented ones: QMoA2

MARTE (logical
view) and QMoA3

MARTE (physical view).
An introduction of the related software model is necessary before presenting

hardware components because the HRM is very linked to the SRM software
representation. In terms of software, the UML MARTE standard constantly refers
to threads as the basic instance, modeled with a swSchedulableResource.
The swSchedulableResources are thus considered to be managed by an
RTOS and, like AADL, UML MARTE builds on industrial best practices of using
preemptive threads to model concurrent applications. In order to communicate, a
swSchedulableResource references specifically defined software communi-
cation and synchronization resources.

The HW_Logical subclause of HRM refers to five subpackages: HW_-
Computing, HW_Communication, HW_Storage, HW_Device, and

1126 M. Pelcat

HW_Timing. It composes a complex quasi-MoA referred to as QMoA2
MARTE

in this chapter. For brevity and clarity, we will not enter the details of this quasi-
MoA but give some information on its semantics.

The UML MARTE QMoA2
MARTE quasi-MoA is, like AADL, based on a

HW/SW separation of concerns rather than on an application/architecture sepa-
ration. In terms of hardware, UML MARTE tends to match very finely the real
characteristics of the physical components. UML MARTE HRM is thus torn
between the desire to match current hardware best practices and the necessity
to abstract away system specificities. A QMoA2

MARTE processing element for
instance can be a processor, with an explicit Instruction Set Architecture (ISA),
caches, and a Memory Management Unit (MMU), or it can be a Programmable
Logic Device (PLD). In the description of a PLD, properties go down to the
number of available Lookup Tables (LUTs) on the PLD. However, modern PLDs
such as Field-Programmable Gate Arrays (FPGAs) are far too heterogeneous
to be characterized by a number of LUTs. Moreover, each FPGA has its own
characteristics and in the space domain, for instance, FPGAs are not based on a
RAM configuration memory, as fixed in the MARTE standard, but rather on a
FLASH configuration memory. These details show the interest of abstracting an
MoA in order to be resilient to the fast evolution of hardware architectures.
HW_Physical composes the QMoA3

MARTE quasi-MoA and covers coarser-
grain resources than QMoA2

MARTE , at the level of a printed circuit board. Proper-
ties of resources include shape, size, position, power consumption, heat dissipation,
etc.

Interpreting the technological properties of HRM quasi-MoAs QMoA2
MARTE

and QMoA3
MARTE is supposed to be done based on designer’s experience because

the UML MARTE properties mirror the terms used for hardware design. This is
however not sufficient to ensure the reproducibility of a cost computation.

4.3.3 Conclusions on UML MARTE Quasi-MoAs

When considering as a whole the 4 UML MARTE quasi-MoAs, the standard does
not specify how the hundreds of NFP standard resource parameters are to be used
during simulation or verification. The use of these parameters is supposed to be
transparent, as the defined resources and parameters match current best practices.
However, best practices evolve over time and specifying precisely cost computation
mechanisms is the only way to ensure tool interoperability in the long run. UML
MARTE quasi-MoAs do not respect the abstraction rule of MoAs because, while
cost properties target multiple NFPs, each is considered independently without
capitalizing on similar behaviors of different NFPs. Finally, QMoA1

MARTE and
QMoA4

MARTE respect the application independence rule, and even extend it to
the construction of more than two layers, while QMoA2

MARTE and QMoA3
MARTE

rather propose a HW/SW decomposition closer to AADL.

Models of Architecture for DSP Systems 1127

4.4 Conclusions on ADL Languages

AADL and UML MARTE are both complete languages for system-level design that
offer rich constructs to model a system. MCA SHIM is a domain-specific language
targeted to a more precise purpose. While the three languages strongly differ, they all
specify quasi-MoAs with the objective of modeling the time behavior of a system, as
well as other non-functional properties. None of these three languages fully respects
the three rules of MoA’s Definition 4. In particular, none of them abstracts the
studied NFPs to make generic the computation of a model’s cost from the cost
of its constituents. Abstraction is however an important feature of MoAs to avoid
redesigning redundant simulation mechanisms.

To complement this study on MoAs, the next section covers four formal quasi-
MoAs from literature.

5 Formal Quasi-MoAs

In this section, we put the focus on graphical quasi-MoAs that aim at providing
system efficiency evaluations when combined with a model of a DSP application.
The models and their contribution are presented chronologically.

5.1 The AAA Methodology Quasi-MoA

In 2003, an architecture model is defined for the Adéquation Algorithm Architecture
(AAA) Y-chart methodology, implemented in the SynDEx tool [13]. The AAA
architecture model is tailored to the needs of an application model that splits
processing into tasks called operations arranged in a Directed Acyclic Graph (DAG)
representing data dependencies between them.

The AAA architecture model is a graphical quasi-MoA Λ = 〈M,L, t, p〉,
where M is a set of components, L is a set of undirected edges connecting these
components, and t and p respectively give a type and a property to components. As
illustrated in Fig. 13, there are three types t ∈ T of components, each considered
internally as a Finite State Machine (FSM) performing sequentially applica-
tion management services: memory, sequencer, and bus/multiplexer/demultiplexer
(B/M/D). For their part, edges only model the capacity of components to exchange
data.

In this model, a memory is a Sequential Access Memory (SAM) or a Random
Access Memory (RAM). A SAM models a First In, First Out data queue (FIFO) for
message passing between components. A SAM can be point-to-point or multipoint
and support or not broadcasting. A SAM with broadcasting only pops a data when
all readers have read the data. A RAM may store only data (RAMD), only programs

1128 M. Pelcat

Fig. 13 Typology of the basic components in the AAA architecture model [13]. Leaf components
are instantiable

Fig. 14 Example of an architecture description with the AAA quasi-MoA

(RAMP) or both (RAMDP). When several sequencers can write to a memory, it has
an implicit arbiter managing writing conflicts.

A sequencer is of type operator or communicator. An operator is a
PE sequentially executing operations stored in a RAMP or RAMDP . An operation
reads and writes data from/to a RAMD or RAMDP connected to the operator.
A communicator models a DMA with a single channel that executes communi-
cations, i.e. operations that transfer data from a memory M1 to a memory M2. For
the transfer to be possible, the communicator must be connected to M1 and M2.

A B/M/D models a bus together with its multiplexer and demultiplexer that
implement time division multiplexing of data. As a consequence, a B/M/D repre-
sents a sequential schedule of transferred data. A B/M/D may require an arbiter,
solving write conflicts between multiple sources. In the AAA model, the arbiter has
a maximum bandwidth BPMax that is shared between writers and readers.

Figure 14 shows an example, inspired by Grandpierre and Sorel [13], of a model
conforming the AAA quasi-MoA. It models the 66AK2L06 processor [36] from
Texas Instruments illustrated in Fig. 5g. Operatorsmust delegate communication
to communicators that access their data memory. The architecture has hardware
cache coherency on ARM side (L2CC for L2 Cache Control) and software cache
coherency on c66x side (SL2C for Software L2 Coherency). The communication
between ARML2 and MSMC memories is difficult to model with AAA FSM
components because it is performed by a Network-on-Chip (NoC) with complex
topology and a set of DMAs so it has been represented as a network of B/M/Ds and
communicators in Fig. 14.

Models of Architecture for DSP Systems 1129

Properties p on components and edges define the quasi-MoA. An operator
Op has an associated function δOp setting a Worst Case Execution Time (WCET)
duration to each operation δOp(o) ∈ R≥0 where O is the set of all operations
in the application. This property results from the primary objective of the AAA
architecture model being the computation of an application WCET. Each edge of
the graph has a maximum bandwidth B in bits/s. The aim of the AAA quasi-
MoA is to feed a multicore scheduling process where application operations are
mapped to operators and data dependencies are mapped to routes between
operators, made of communicators and busses. Each operator and
communicator being an FSM, the execution of operations and communications
on a given sequencer is totally ordered. The application graph being a DAG, the
critical path of the application is computed and represents the latency of one
execution, i.e. the time distance between the beginning of the first operation and
the end of the last operation. The computation of the latency from AAA application
model and quasi-MoA in [13] is implicit. The behavior of the arbiter is not specified
in the model so actual communication times are subject to interpretations, especially
regarding the time quantum for the update of bandwidth utilization.

The AAA syntax-free quasi-MoA is mimicking the temporal behavior of a
processing hardware in order to derive WCET information on a system. Many
hardware features can be modeled, such as DMAs; shared memories and hardware
FIFO queues. Each element in the model is sequential, making a coarse-grain model
of an internally parallel component impossible. There is no cost abstraction but
the separation between architecture model and application model is respected. The
model is specific to dataflow application latency computation, with some extra
features dedicated to memory requirement computation. Some performance figures
are subject to interpretation and latency computation for a couple application/archi-
tecture is not specified.

The AAA model contribution is to build a system-level architecture model
that clearly separates architecture concerns from algorithm concerns. Next section
discusses a second quasi-MoA, named CHARMED.

5.2 The CHARMED Quasi-MoA

In 2004, the CHARMED co-synthesis framework [17] is proposed that aims at
optimizing multiple system parameters represented in Pareto fronts. Such a multi-
parameter optimization is essential for DSE activities, as detailed in [31].

In the CHARMED quasi-MoA Λ = 〈M,L, t, p〉, M is a set of PEs, L is a
set of Communication Resources (CR) connecting these components, and t and p

respectively give a type and a property to PEs and CRs. There is only one type of
component so in this model, t = PE. Like in the AAA architecture model, PEs are
abstract and may represent programmable microprocessors as well as hardware IPs.
The PE vector of properties p is such that p(PE ∈ M) = [α, κ,μd, μi, ρidle]T

1130 M. Pelcat

where α denotes the area of the PE, κ denotes the price of the PE, μd denotes the
size of its data memory, μi denotes the instruction memory size and ρidle denotes
the idle power consumption of the PE. Each CR edge also has a property vector:
p(CR ∈ L) = [ρ, ρidle, θ]T where ρ denotes the average power consumption per
each unit of data to be transferred, ρidle denotes idle power consumption and θ

denotes the worst case transmission rate or speed per each unit of data.
This model is close to the concept of MoA as stated by Definition 4. However,

instead of abstracting the computed cost, it defines many costs altogether in a vector.
This approach limits the scope of the approach and CHARMED metrics do not
cover the whole spectrum on NFPs shown in Sect. 2.2. The CHARMED architecture
model is combined with a DAG task graph of a stream processing application in
order to compute costs for different system solutions. A task in the application graph
is characterized by its required instruction memory μ, its Worst Case Execution
Time WCET and its average power consumption ℘avg while a DAG edge is
associated with a data size δ. The cost for a system x has six dimensions: the area
α(x), the price κ(x), the number of used inter-processor routes ln(x), the memory
requirements μ(x), the power consumption ℘(x) and the latency τ (x). Each metric
has an optional maximum value and can be set either as a constraint (all values under
the constraint are equally good) or as an objective to maximize.

Cost computation is not fully detailed in the model. We can deduce from
definitions that PEs are sequential units of processing where tasks are time-
multiplexed and that a task consumes ℘avg × WCET energy for each execution.
The power consumption for a task is considered independent of the PE executing it.
The latency is computed after a complete mapping and scheduling of the application
onto the architecture. The price and area of the system are the sums of PE prices and
areas. Memory requirements are computed from data and instruction information
respectively on edges and tasks of the application graph. Using an evolutionary
algorithm, the CHARMED framework produces a set of potential heterogeneous
architectures together with task mappings onto these architectures.

For performing DSE, the CHARMED quasi-MoA has introduced a model that
jointly considers different forms of NFP metrics. The next section presents a third
quasi-MoA named System-Level Architecture Model (S-LAM).

5.3 The System-Level Architecture Model (S-LAM)
Quasi-MoA

In 2009, the S-LAM model [29] is proposed to be inserted in the PREESM rapid
prototyping tool. S-LAM is designed to be combined with an application model
based on extensions of the Synchronous Dataflow (SDF) dataflow MoC [14] and a
transformation of a UML MARTE architecture description into S-LAM has been
conducted in [1].

Models of Architecture for DSP Systems 1131

Fig. 15 Typology of the basic components in the S-LAM [29]. Leaf components are instantiable

S-LAM defines a quasi-MoA Λ = 〈M,L, t, p〉 where M is a set of components,
L is a set of links connecting them, and t and p respectively give a type and a
property to components. As illustrated in Fig. 15, there are five instantiable types
of components: operator, parallel node, contention node, RAM, and
DMA.
Operators represent abstract processing elements, capable of executing tasks

(named actors in dataflow models) and of communicating data through links.
Actors’ executions are time-multiplexed over operators, as represented by the
black dot on the graphical view, symbolizing scheduling. There are also data
links and control links. A data link represents the ability to transfer
data between components. Control links specify that an operator can
program a DMA. Two actors cannot be directly connected by a data link. A route
must be built, comprising at least one parallel node or one contention
node. A parallel node Np virtually consists of an infinite number of data
channels with a given speed σ(Np) in Bytes/s. As a consequence, no scheduling
is necessary for the data messages sharing a parallel node. A contention
node Nc represents one data channels with speed σ(Nc). Messages flowing over
a contention node need to be scheduled, as depicted by the black dot in its
representation. This internal component parallelism is the main novelty of S-LAM
w.r.t. the AAA model. When transferring a data from operator O1 to operator O2,
three scenarios are considered:

1. direct messaging: the sender operator itself sends the message and, as a conse-
quence, cannot execute code simultaneously. It may have direct access to the
receiver’s address space or use a messaging component.

2. DMA messaging: the sender delegates the communication to a DMA. A DMA
component must then be connected by a data link to a communication node
of the route between O1 and O2 and a control linkmodels the ability of the
sender operator to program the DMA. In this case, the sender is free to execute
code during message transfer.

3. shared memory: the message is first written to a shared memory by O1, then read
by O2. To model this, a RAM component must be connected by a data link
to a communication node of the route between O1 and O2.

1132 M. Pelcat

Fig. 16 Example of an architecture model with the S-LAM quasi-MoA

An S-LAM representation of an architecture can be built where different routes
are possible between two operators O1 and O2 [29]. The S-LAM model has for
primary purpose system time simulation. An S-LAM model can be more compact
than an AAA model because of internal component parallelism. Indeed, there is no
representation of a bus or bus arbiter in S-LAM and the same communication facility
may be first represented by a parallel node to limit the amount of necessary
message scheduling, then modeled as one or a set ofcontention nodes with
or without DMA to study the competition for bus resources. Moreover, contrary
to the AAA model, operators can send data themselves. Figure 16 illustrates such
a compact representation on the same platform example than in Fig. 14. Local PE
memories are ignored because they are considered embedded in their respective
operator. The TeraNet NoC is modeled with a parallel node, modeling it
as a bus with limited throughput but with virtually infinite inter-message parallelism.

The transfer latency of a message of M Bytes over a route R =
(N1, N2, . . . , NK), where Ni are communication nodes, is computed as l(M) =
minN∈R(σ(N)) ∗ M . It corresponds in the linear model presented in Fig. 11
where the slope is determined by the slowest communication node. If the route
comprises contention nodes involved in other simultaneous communications, the
latency is increased by the time multiplexing of messages. Moreover, a DMA
has an offset property and, if a DMA drives the transfer, the latency becomes
l(M) = off set + minNinR(σ (N)) ∗ M , corresponding to the affine message
cost in Fig. 11.

As in the AAA model, an S-LAM operator is a sequential PE. This is
a limitation if a hierarchical architecture is considered where PEs have internal
observable parallelism. S-LAM operators have an operator ISA type (for instance
ARMv7 or C66x) and each actor in the dataflow application is associated to an
execution time cost for each operator type. S-LAM clearly separates algorithm
from architecture but it does not specify cost computation and does not abstract
computation cost.

S-LAM has introduced a compact quasi-MoA to be used for DSP applications.
The next section presents one last quasi-MoA from literature.

Models of Architecture for DSP Systems 1133

5.4 The MAPS Quasi-MoA

In 2012, a quasi-MoA is proposed in [5] for programming heterogeneous Multi-
processor Systems-on-Chips (MPSoCs) in the MAPS compiler environment. It
combines the multi-modality of CHARMED with a sophisticated representation
of communication costs. The quasi-MoA serves as a theoretical background for
mapping multiple concurrent transformational applications over a single MPSoC. It
is combined with Kahn Process Network (KPN) application representations [2, 15]
and is limited to the support of software applications.

The MAPS quasi-MoA is a graph Λ = 〈M,L, t, p〉 where M is a set of PEs, L is
a set of named edges called Communication Primitives (CPs) connecting them, and t

and p respectively give a type and a property to components. Each PE has properties
p(PE ∈ M) = (CMPT ,XPT , V PT) where CMPT is a set of functions associating
NFP costs to PEs. An example of NFP is ζPT that associates to a task Ti in the
application an execution time ζPT (Ti). XPT is a set of PE attributes such as context
switch time of the OS or some resource limitations, and V PT is a set of variables,
set late after application mapping decisions, such as the processor scheduling policy.
A CP models a software Application Programming Interface (API) that is used to
communicate among tasks in the KPN application. A CP has its own set of cost
model functions CMCP associating costs of different natures to communication
volumes. A function ζCP ∈ CMCP is defined. It associates a communication time
ζCP (N) to a message of N bytes. Function ζCP is a stair function modeling the
message overhead and performance bursts frequently observed when transferring
data for instance with a DMA and packetization. This function, displayed in Fig. 11,
is expressed as:

ζCP : N �→=
⎧⎨
⎩

off set if N < start

off set + scale_height�
×�(N − start + 1)/scale_width otherwise,

(4)

where start , off set , scale_height and scale_width are 4 CP parameters. The
primary concern of the MAPS quasi-MoA is thus time. No information is given
on whether the sender or the receiver PE can compute a task in parallel to
communication. A CP also refers to a set of Communication Resources (CRs), i.e.
a model of a hardware module used to implement the communication. A CRs has
two attributes: the number of logical channels and the amount of available memory
in the module. For example, a CR may model a shared memory, a local memory, or
a hardware communication queue.

This quasi-MoA does not specify any cost computation procedure from the
data provided in the model. Moreover, the MAPS architecture model, as the other
architecture models presented in this Section, does not abstract the generated costs.
Next section summarizes the results of studying the four formal architecture models.

1134 M. Pelcat

5.5 Evolution of Formal Architecture Models

The four presented models have inspired the Definition 4 of an MoA. Theses formal
models have progressively introduced the ideas of:

• architecture abstraction by the AAA quasi-MoA [13],
• architecture modeling for multi-dimensional DSE by CHARMED [17],
• internal component parallelism by S-LAM [29],
• complex data transfer models by MAPS [5].

The next section concludes this chapter on MoAs for DSP systems.

6 Concluding Remarks on MoA and Quasi-MoAs for DSP
Systems

In this chapter, the notions of Model of Architecture (MoA) and quasi-MoA have
been defined and several models have been studied, including fully abstract models
and language-defined models. To be an MoA, an architecture model must capture
efficiency-related features of a platform in a reproducible, abstract and application-
agnostic fashion.

The existence of many quasi-MoAs and their strong resemblance demonstrate
the need for architecture modeling semantics. Table 1 summarizes the objectives
and properties of the different studied models. As explained throughout this chapter,

Table 1 Properties (from Definition 4) and objectives of the presented MoA and quasi-MoAs

Repro Appli.

Model ducible Agnostic Abstract Main objective

AADL quasi-
MoA

✓ ✗ ✗ HW/SW codesign of hard RT system

MCA SHIM
quasi-MoA

✗ ✗ ✗ Multicore performance simulation

UML
MARTE
quasi-MoAs

✗ ✓/ ✗ ✗ Holistic design of a system

AAA quasi-
MoA

✗ ✓ ✗ WCET evaluation of a DSP system

CHARMED
quasi-MoA

✗ ✓ ✗ DSE of a DSP system

S-LAM
quasi-MoA

✗ ✓ ✗ Multicore scheduling for DSP

MAPS quasi-
MoA

✗ ✓ ✗ Multicore scheduling for DSP

LSLA MoA ✓ ✓ ✓ System-level modeling of a NFP

Models of Architecture for DSP Systems 1135

LSLA is, to the extent of our knowledge, the only model to currently comply with
the three rules of MoA definition (Definition 4).

LSLA is one example of an MoA but many types of MoAs are imaginable,
focusing on different modalities of application activity such as concurrency or
spatial data locality. A parallel with MoCs on the application side of the Y-chart
motivates for the creation of new MoAs. MoCs have the ability to greatly simplify
the system-level view of a design, and in particular of a DSP design. For example,
and as discussed by several chapters in this Handbook, MoCs based on Dataflow
Process Networks (DPNs) are able to simplify the problem of system verification
by defining globally asynchronous systems that synchronize only when needed, i.e.
when data moves from one location to another. DPN MoCs are naturally suited
to modeling DSP applications that react upon arrival of data by producing data.
MoAs to be combined with DPN MoCs do not necessarily require the description
of complex relations between data clocks. They may require only to assess the
efficiency of “black box” PEs, as well as the efficiency of transferring, either with
shared memory or with message passing, some data between PEs. This opportunity
is exploited in the semantics of the four formal languages presented in Sect. 5 and
can be put in contrast with the UML MARTE standard that, in order to support all
types of transformational and reactive applications, specifies a generic clock relation
language named CCSL [25].

The three properties of an MoA open new opportunities for system design. While
abstraction makes MoAs adaptable to different types of NFPs, cost computation
reproducibility can be the basis for advanced tool compatibility. Independence from
application concerns is moreover a great enabler for Design Space Exploration
methods.

Architecture models are also being designed in other domains than Digital
Signal Processing. As an example in the High Performance Computing (HPC)
domain, the Open MPI Portable Hardware Locality (hwloc) [11] models processing,
memory and communication resources of a platform with the aim of improving
the efficiency of HPC applications by tailoring thread locality to communication
capabilities. Similarly to most of the modeling features described in this chapter,
the hwloc features have been chosen to tackle precise and medium-term objectives.
The convergence of all these models into a few generic MoAs covering different
aspects of design automation is a necessary step to manage the complexity of future
large scale systems.

Acknowledgements I am grateful to François Berry and Jocelyn Sérot for their valuable advice
and support during the writing of this chapter.

This work was partially supported by the CERBERO (Cross-layer modEl-based fRamework for
multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments) Horizon
2020 Project, funded by the European Union Commission under Grant 732105.

1136 M. Pelcat

List of Acronyms

AAA Adéquation algorithm architecture
AADL Architecture analysis and design language
ADL Architecture design language
API Application programming interface
BER Bit error rate
B/M/D bus/multiplexer/demultiplexer
CCCR Computation to communication cost ratio
CCSL Clock constraint specification language
CN Communication node
CP Communication primitive
CPU Central processing unit
CR Communication resource
DAG Directed acyclic graph
DMA Direct memory access
DPN Dataflow process network
DSE Design space exploration
DSP Digital signal processing
EDF Earliest deadline first
FIFO First in, first out data queue
FPGA Field-programmable gate array
FSM Finite state machine
GALS Globally asynchronous locally synchronous
GCM Generic component model
GPP General purpose processor
GQAM Generic quantitative analysis modeling
GRM Generic resource modeling
HLAM High-level application modeling
HPC High performance computing
HRM Hardware resource modeling
hwloc Portable hardware locality
IP Intellectual property core
ISA Instruction set architecture
KPN Kahn process network
LSLA Linear system-level architecture model
LUT Lookup table
MARTE Modeling and analysis of real-time embedded systems
MCA Multicore association
MMU Memory management unit
MoA Model of architecture
MoC Model of computation
MPSoC Multiprocessor system-on-chip
MSMC Multicore shared memory controller

Models of Architecture for DSP Systems 1137

NFP Non-functional property
NoC Network-on-chip
OMG Object management group
OS Operating system
OSI Open systems interconnection
PAM Performance analysis modeling
PE Processing element
PLD Programmable logic device
PT Processor type
PU Processing unit
QoS Quality of service
RAM Random access memory
RM Rate monotonic
ROM Read-only memory
RSM Repetitive structure modeling
RTOS Real-time operating system
SAM Sequential access memory
SAM Schedulability analysis modeling (UML MARTE)
SDF Synchronous dataflow
SHIM Software/hardware interface for multicore/manycore
S-LAM System-level architecture model
SMP Symmetric multiprocessing
SNR Signal-to-noise ratio
SRM Software resource modeling
TLM Transaction-level modeling
TU Transfer unit
UML Unified modeling language
WCET Worst case execution time

References

1. Ammar M, Baklouti M, Pelcat M, Desnos K, Abid M (2016) Automatic generation of s-
lam descriptions from uml/marte for the dse of massively parallel embedded systems. In:
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
2015, Springer, pp 195–211

2. Bacivarov I, Haid W, Huang K, Thiele L (2018) Methods and tools for mapping process
networks onto multi-processor systems-on-chip. In: Bhattacharyya SS, Deprettere EF, Leupers
R, Takala J (eds) Handbook of Signal Processing Systems, 3rd edn, Springer

3. Bellard F (2005) QEMU, a Fast and Portable Dynamic Translator. In: USENIX Annual
Technical Conference, FREENIX Track, pp 41–46

4. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower
DR, Krishna T, Sardashti S, others (2011) The gem5 simulator. ACM SIGARCH Computer
Architecture News 39(2):1–7, URL http://dl.acm.org/citation.cfm?id=2024718

5. Castrillon Mazo J, Leupers R (2014) Programming Heterogeneous MPSoCs. Springer Interna-
tional Publishing, Cham, URL http://link.springer.com/10.1007/978-3-319-00675-8

http://dl.acm.org/citation.cfm?id=2024718
http://link.springer.com/10.1007/978-3-319-00675-8

1138 M. Pelcat

6. Chen Y, Chen L (2013) Video compression. In: Bhattacharyya SS, Deprettere EF, Leupers R,
Takala J (eds) Handbook of Signal Processing Systems, 2nd edn, Springer

7. Eker J, Janneck JW, Lee E, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y, et al
(2003) Taming heterogeneity-the ptolemy approach. Proceedings of the IEEE 91(1):127–144

8. Faugere M, Bourbeau T, De Simone R, Gerard S (2007) Marte: Also an uml profile for
modeling aadl applications. In: Engineering Complex Computer Systems, 2007. 12th IEEE
International Conference on, IEEE, pp 359–364

9. Feiler PH, Gluch DP (2012) Model-based engineering with AADL: an introduction to the SAE
architecture analysis & design language. Addison-Wesley

10. Feiler PH, Gluch DP, Hudak JJ (2006) The architecture analysis & design language (AADL):
An introduction. Tech. rep., DTIC Document

11. Goglin B (2014) Managing the topology of heterogeneous cluster nodes with hardware
locality (hwloc). In: High Performance Computing & Simulation (HPCS), 2014 International
Conference on, IEEE, pp 74–81

12. Gondo M, Arakawa F, Edahiro M (2014) Establishing a standard interface between multi-
manycore and software tools-SHIM. In: COOL Chips XVII, 2014 IEEE, IEEE, pp 1–3

13. Grandpierre T, Sorel Y (2003) From algorithm and architecture specifications to automatic
generation of distributed real-time executives: a seamless flow of graphs transformations. In:
Formal Methods and Models for Co-Design, 2003. MEMOCODE’03. Proceedings. First ACM
and IEEE International Conference on, IEEE, pp 123–132

14. Ha S, Oh H (2013) Decidable dataflow models for signal processing: Synchronous dataflow
and its extensions. In: Bhattacharyya SS, Deprettere EF, Leupers R, Takala J (eds) Handbook
of Signal Processing Systems, 2nd edn, Springer

15. Kahn G (1974) The semantics of a simple language for parallel programming. In Information
Processing 74:471–475

16. Keutzer K, Newton AR, Rabaey JM, Sangiovanni-Vincentelli A (2000) System-level design:
orthogonalization of concerns and platform-based design. IEEE transactions on computer-
aided design of integrated circuits and systems 19(12):1523–1543

17. Kianzad V, Bhattacharyya SS (2004) CHARMED: A multi-objective co-synthesis framework
for multi-mode embedded systems. In: Application-Specific Systems, Architectures and
Processors, 2004. Proceedings. 15th IEEE International Conference on, IEEE, pp 28–40

18. Kienhuis B, Deprettere E, Vissers K, van der Wolf P (1997) An approach for quantitative
analysis of application-specific dataflow architectures. In: Application-Specific Systems,
Architectures and Processors, 1997. Proceedings., IEEE International Conference on, IEEE,
pp 338–349

19. Kienhuis B, Deprettere EF, Van Der Wolf P, Vissers K (2002) A methodology to design
programmable embedded systems. In: Embedded processor design challenges, Springer, pp
18–37

20. Larsen M (2016) Modelling field robot software using aadl. Technical Report Electronics and
Computer Engineering 4(25)

21. Lasnier G, Zalila B, Pautet L, Hugues J (2009) Ocarina: An environment for aadl models
analysis and automatic code generation for high integrity applications. In: International
Conference on Reliable Software Technologies, Springer, pp 237–250

22. Lattner C, Adve V (2004) Llvm: A compilation framework for lifelong program analysis
& transformation. In: Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, IEEE Computer Society, p 75

23. Lee EA (2006) The problem with threads. Computer 39(5):33–42
24. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proceedings of the IEEE 75(9)
25. Mallet F, André C (2008) Uml/marte ccsl, signal and petri nets. PhD thesis, INRIA
26. Mallet F, De Simone R (2009) Marte vs. aadl for discrete-event and discrete-time domains. In:

Languages for Embedded Systems and Their Applications, Springer, pp 27–41
27. Multicore Association (2015) Software/Hardware Interface for Multicore/Manycore (SHIM) -

http://www.multicore-association.org/workgroup/shim.php/ (accessed 03/2017)

http://www.multicore-association.org/workgroup/shim.php

Models of Architecture for DSP Systems 1139

28. OMG (2011) UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems. Object Management Group, Needham, MA

29. Pelcat M, Nezan JF, Piat J, Croizer J, Aridhi S (2009) A system-level architecture model for
rapid prototyping of heterogeneous multicore embedded systems. In: Proceedings of DASIP
conference

30. Pelcat M, Mercat A, Desnos K, Maggiani L, Liu Y, Heulot J, Nezan JF, Hamidouche W,
Menard D, Bhattacharyya SS (2017) Reproducible evaluation of system efficiency with a
model of architecture: From theory to practice. Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD)

31. Pimentel AD (2017) Exploring exploration: A tutorial introduction to embedded systems
design space exploration. IEEE Design & Test 34(1):77–90

32. Renfors M, Juntti M, Valkama M (2018) Signal processing for wireless transceivers. In:
Bhattacharyya SS, Deprettere EF, Leupers R, Takala J (eds) Handbook of Signal Processing
Systems, 3rd edn, Springer

33. SAE International (2012) Architecture analysis and design language (aadl) - http://standards.
sae.org/as5506c/ (accessed 03/2017)

34. Shekhar R, Walimbe V, Plishker W (2013) Medical image processing. In: Bhattacharyya SS,
Deprettere EF, Leupers R, Takala J (eds) Handbook of Signal Processing Systems, 2nd edn,
Springer

35. Stevens A (2011) Introduction to AMBA 4 ACE and big.LITTLE Processing Technology
36. Texas Instruments (2015) 66AK2L06 Multicore DSP+ARM KeyStone II System-on-Chip

(SoC) - SPRS930. Texas Instruments, URL http://www.ti.com/lit/pdf/sprs866e (accessed
03/2017)

37. Van Roy P, et al (2009) Programming paradigms for dummies: What every programmer should
know. New computational paradigms for computer music 104

38. Wolf M (2014) High-performance embedded computing: applications in cyber-physical sys-
tems and mobile computing. Newnes

http://standards.sae.org/as5506c/
http://standards.sae.org/as5506c/
http://www.ti.com/lit/pdf/sprs866e

Optimization of Number Representations

Wonyong Sung

Abstract In this section, automatic scaling and word-length optimization proce-
dures for efficient implementation of signal processing systems are explained. For
this purpose, a fixed-point data format that contains both integer and fractional parts
is introduced, and used for systematic and incremental conversion of floating-point
algorithms into fixed-point or integer versions. A simulation based range estimation
method is explained, and applied to automatic scaling of C language based digital
signal processing programs. A fixed-point optimization method is also discussed,
and optimization examples including a recursive filter and an adaptive filter are
shown.

1 Introduction

Although some embedded processors equip floating-point units, it is needed to
process fixed-point data with reduced word-length like 8 or 16 bits to lower the
energy consumption. But, integer or fixed-point versions can suffer from overflows
and quantization effects. Converting a floating-point program to an integer version
requires scaling of data, which is known to be difficult and time-consuming.
VLSI implementation of digital signal processing algorithms demands fixed-point
arithmetic for reducing the chip area, circuit delay, and power consumption. With
fixed-point arithmetic, it is possible to use the fewest number of bits possible for
each signal and save the chip area. However, if the number of bits is too small,
quantization noise will degrade the system performance to an unacceptable level.
Thus, fixed-point optimization that minimizes the hardware cost while meeting the
fixed-point performance is very needed.

In Sect. 2, the data format for representing a fixed-point data is presented. This
format contains both integer and fractional parts for representing a data. Thus, this

W. Sung (�)
Department of Electrical and Computer Engineering, Seoul National University, Gwanak-gu,
Seoul, Republic of Korea
e-mail: wysung@snu.ac.kr

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_31

1141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_31&domain=pdf
mailto:wysung@snu.ac.kr
https://doi.org/10.1007/978-3-319-91734-4_31

1142 W. Sung

format is very convenient for data conversion between floating-point and fixed-point
data types. Section 3 contains the range estimation methods that are necessary for
integer word-length determination and scaling. A simulation based range estimation
method is explained, which can be applied to not only linear but also non-linear and
time-varying systems. In Sect. 4, a floating-point to integer C program conversion
process is shown. This code conversion process is especially useful for C program
language based implementation of signal processing systems. Section 5 presents
the word-length optimization flow for signal processing programs, which should be
important for VLSI or 16-bit programmable digital signal processor (DSP) based
implementations. In Sect. 6, the summary and related works are described.

2 Fixed-Point Data Type and Arithmetic Rules

A fixed-point data type does not contain an exponent term, which makes hardware
for fixed-point arithmetic much simpler than that for floating-point arithmetic.
However, fixed-point data representation only allows a limited dynamic range,
hence scaling is needed when converting a floating-point algorithm into a fixed-
point version. In this section, fixed-point data formats, fixed-point arithmetic rules,
and a simple floating-point to fixed-point conversion example will be shown. The
two’s complement format is used when representing negative numbers.

2.1 Fixed-Point Data Type

A widely used fixed-point data format is the integer format. In this format, the least
significant bit (LSB) has the weight of 1, thus the maximum quantization error can
be as large as 0.5 even if the rounding scheme is used. As a result, small numbers
cannot be faithfully represented with this format. Of course, there can be overflows
even with the integer format because an N-bit signed integer has a value that is
between−2N−1 and 2N−1−1. Another widely used format is the fractional format,
in which the magnitude of a data cannot exceed 1. This format seems convenient for
representing a signal whose magnitude is bounded by 1, but it suffers from overflow
or saturation problems when the magnitude exceeds the bound. Figure 1 shows two
different interpretations for a binary data ‘1001000.’

With either the integer or the fractional format, an expert can design an optimized
digital signal processing system by incorporating proper scaling operations, which
is, however, very complex and difficult to manage. This conversion flow is not easy
because all of the intermediate variables or constants should be represented with
only integers or fractions whose represented values are usually much different from
those of the corresponding floating-point data. The difference of the representation
format also hinders incremental conversion from a floating-point design to a fixed-

Optimization of Number Representations 1143

0 1 0 0 1 0 0 0

2-1 2-2 2-3 2-4 2-5 2-6 2-7

weight for fractional

integer number
26 + 23 = 72

26 25 24 23 22 21 20

fractional number
2-1 + 2-4 = 0.5625

weight for integer

sign bit

-27

-20

Fig. 1 Integer and fractional data formats

0 1 0 0 1 0 0 0sign bit

22 21 20 2-1 2-2 2-3 2-4weight

IWL FWL
fixed-point value
22 + 2-1 = 4.5

hypothetical
binary point

-23

Fig. 2 Generalized fixed-point data format

point one. For seamless floating-point to integer or fixed-point conversion, the
semantic gap between the floating-point and fixed-point data formats needs to be
eliminated.

To solve these problems, a generalized fixed-point data-type that contains both
integer and fractional parts can be used [17]. This fixed-point format contains the
attributes specified as follows.

< wordlength, integer wordlength, sign overf low quantization mode >

(1)
The word-length (WL) is the total number of bits for representing a fixed-

point data. The integer word-length (IWL) is the number of bits to the left of the
(hypothetical) binary-point. The fractional word-length (FWL) is the number of bits
to the right of the (hypothetical) binary point. The sign is not included in IWL, and
can be either unsigned(‘u’) or two’s complement(‘t’). Thus, the word-length (WL)
corresponds to ‘IWL+FWL+1’ for signed data, and is ‘IWL+FWL’ for unsigned
data. If the fractional word-length is 0, the data with this format can be represented
with integers. At the same way, it becomes the fractional format when the IWL is 0.
Note that the IWL or FWL can be even larger than the WL; in this case, the other
part has a minus word-length. Figure 2 shows an interpretation of an 8-bit binary
data employing the fixed-point format with the IWL of 3.

The overflow and quantization modes are needed for arithmetic or quantization
operations. The overflow mode specifies whether no treatment (‘o’) or saturation
(‘s’) scheme is used when overflow occurs, and the quantization mode denotes
whether rounding (‘r’) or truncation (‘t’) is employed when least significant bits
are quantized.

1144 W. Sung

Most of all, this fixed-point data representation is very convenient for translating
a floating-point algorithm into a fixed-point version because the data values is
not limited to integers or fractions. The range (R) and the quantization step (Q)
are dependent on the IWL and FWL, respectively: −2IWL ≤ R < 2IWL and
Q = 2−FWL = 2−(WL−1−IWL) for the signed format. Assigning a large IWL
to a variable can prevent overflows, but it increases the quantization noise. Thus,
the optimum IWL for a variable should be determined according to its range or the
possible maximum absolute value. The minimum IWL for a variable x, IWLmin(x),
can be determined according to its range, R(x), as follows.

IWLmin(x) = �log2 R(x)�, (2)

where �x� denotes the smallest integer which is equal to or greater than x. Note that
preventing overflow and saturation is very critical in fixed-point arithmetic because
the magnitude of the error caused by them is usually much larger than that produced
by quantization.

2.2 Fixed-Point Arithmetic Rules

Since the generalized fixed-point data format allows a different integer word-length,
two variables or constants that do not have the same integer word-length cannot be
added or subtracted directly. Let us assume that x1 is ‘01001000’ with the IWL of 3
and x2 is ‘00010000’ with the IWL of 2. Since the interpreted value of x1 is 4.5 and
that of x2 is 0.5, the result should be a number that corresponds to 5.0 or a close one.
However, direct addition of 01001000 (x1) and 00010000 (x2) does not yield the
expected result. This is because the two data have different integer word-lengths.
The two fixed-point data should be added after aligning their hypothetical binary
points. The binary point can be moved, or the integer word-length can be changed,
by using arithmetic shift operations. Arithmetic right shift by one bit increases the
integer word-length by one, while arithmetic left shift decreases the integer word-
length. The number of shifts required for addition or subtraction can easily be
obtained by comparing the integer word-lengths of the two input data format. In
the above example, x2, with the IWL of 2, should be shifted right by 1 bit before
performing the integer addition to align the binary-point locations. As illustrated
in Fig. 3, this results in a correct value of 5.0 when the output is interpreted with
the IWL of 3. Note that the result of addition or subtraction sometimes needs an
increased IWL. If the IWL of the added result is greater than those of two input
operands, the inputs should be scaled down to prevent overflows. Subtraction can be
treated the same way with addition. The scaling rules for addition and subtraction
are shown in Table 1, where Ix and Iy are the IWL’s of two input operands x and
y, respectively, and Iz is that of the result, z.

In fixed-point multiplication, the word-length of the product is equal to the
sum of two input word-lengths. In two’s complement multiplication, two identical

Optimization of Number Representations 1145

0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0

X1
IWL 3

X2
IWL 2

Step 1:
right shift 1 bit

Step 2:
fixed-point add

+
=

Fig. 3 Fixed-point addition with different IWL’s

Table 1 Fixed-point arithmetic rules

Floating-
point

Fixed-point

Ix > Iy, Iz Iy > Ix, Iz Iz > Ix , Iy Result IWL

Assignment x = y x = y >>

(Ix − Iy)

x = y <<

(Iy − Ix)

– Ix

Addition/subtraction x + y x + (y >>

(Ix − Iy))

(x >> (Iy −
Ix))+ y

(x >>

(Iz− Ix))+
max(Ix , Iy , Iz)

y >> (Iz−
Iy)

Multiplication x ∗ y mulh(x, y) Ix + Iy + 1

or Ix + Iy

z: a variable storing the result

sign bits are generated except for the case that both input data correspond to the
negative minimum, ‘100 · · ·0.’ Ignoring this case, the IWL of the two’s complement
multiplied result becomes Ix + Iy + 1. Figure 4 shows the multiplied result of two
8-bit fixed-point numbers. By assuming the IWL of 5, we can obtain the interpreted
value of 2.25.

2.3 Fixed-Point Conversion Examples

To illustrate the fixed-point conversion process, a floating-point version of the
recursive filter shown in Fig. 5a is transformed to a fixed-point hardware system.
Assume that the input signal has the range of 1, which implies that it is between−1
and 1. The output signal is also known to be between−5.3 and 5.3. The output signal
range is obtained from floating-point simulation results. The coefficient is 0.9, and
is unsigned. Hence, the range of the multiplied signal, z[n], will be 4.77 (=0.9*5.3).

1146 W. Sung

0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0

X1
IWL 3

X2
IWL 2

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

=

two identical sign bits

IWL of 5 FWL of 9

(4.5)

(0.5)

(2.25)

Fig. 4 Fixed-point multiplication

yfl[n]xfl[n]

zfl[n]

0.9

R(x) = 1.0
a b

R(y) = 5.3
y[n]x[n]

58982 (= 0.9 × 216)

Ix = 0 Iy = 3
3

16bits

19bits

16bits

Iz = 3
32bits

z-1
z-1

Q

32bits

Fig. 5 Floating-point to fixed-point conversion of a recursive filter. (a) Floating-point filter. (b)
Fixed-point filter

From the given range information, we can assign the IWL’s of 0 for x[n], 3 for y[n],
3 for z[n] and 0 for the coefficient. The coefficient a is coded as ‘58982,’ which
corresponds to the unsigned number 0.9× 216. Since the multiplication of y[n] and
a is conducted between signed and unsigned numbers, the IWL of z[n] is 3, which is
Iy + Ia . If the coefficient a is coded with the two’s complement format, the IWL of
z[n] would be 4 due to the extra sign generated in the multiplication process. Since
the precision of the hardware multiplier is 16-bit, only the upper 16 bits, including
the sign bit, of y[n] is used for the multiplication. The quantizer (Q) in this figure
takes the upper 16 bits among 32 bits of y[n]. Since the difference between Ix and
Iz is 3, x[n] is scaled down or arithmetic shift-righted by 3 bits, as the hardware in
Fig. 5b shows.

There are a few different fixed-point implementations. One example is a fixed-
point implementation without needing shift operations. Note that no shift operation
is needed when adding or subtracting two fixed-point data with the same integer
word-length. In this case, the IWL of 3 is assigned to the input x[n], even though
the range of x[n] is 1.0. This means that the input x[n] is un-normalized, and the

Optimization of Number Representations 1147

x[n]

z-1

Q

y[n]
Ix = 3 32bits Iy = 3

16bits

Iz = 3

32bits 16bits

58982 (= 0.9 216)

x[n]

z-1

y[n]
Ix = 3 16bits Iy = 3

16bits

32bits 58982 (= 0.9 216)

Q

16bits

× ×

a b

Fig. 6 Fixed-point filters with reduced complexity. (a) Fixed-point filter without shift. (b) Fixed-
point filter with a 16 bit adder

upper 3 bits next to the sign bit are unused. Since the IWL’s of x[n] and z[n] are the
same, there is no need of inserting a shifter. Figure 6a shows the resulting hardware.
The SQNR (Signal to Quantization Noise Ratio) of the input is obviously lowered
by employing the un-normalized scheme. Another fixed-point implementation in
Fig. 6b shows the hardware using a 16-bit adder. In this case, the quantizer (Q) is
moved to the output of the multiplier. Note that the SQNR of this scheme is even
lower than that of Fig. 6a.

In the above example, the range of 1 is assumed to the input x[n], which is from
the floating-point design. However, assuming the range of 2 as for the input x[n]
does not change the resultant hardware because the output range should be doubled
in this case.

3 Range Estimation for Integer Word-Length Determination

The floating-point to fixed-point conversion examples in the previous section shows
that estimating the ranges of all of variables is most crucial for this conversion
process. There are two different approaches for range estimation. One is to calculate
the L1-norm of the system and the other is using the simulation results of floating-
point systems [12, 17].

3.1 L1-Norm Based Range Estimation

The L1-norm of a linear shift-invariant system is the maximum value of the output
when the absolute value of the input is bounded to 1. If the unit-pulse response
of a system is h[n], where n = 0, 1, 2, 3, · · ·∞, the L1-norm of this system is
defined as:

1148 W. Sung

L1¯norm(h[n]) =
∞∑
n=0

|h[n]| (3)

Obviously, the L1-norm can easily be estimated for an FIR system. There are also
several analytical methods that compute the L1-norm of an IIR (infinite impulse
response) system [12]. Since the unit-pulse response of an IIR system usually
converges to zero when thousands of time-steps elapse, it is practically possible
to estimate the L1-norm of an IIR system with a simple C code or a Matlab
program that sums up the absolute value of the unit-pulse response, instead of
conducting a contour integration [11, 12]. Since L1-norm cannot easily be defined
to time-varying or non-linear systems, the L1-norm based range estimation method
is hardly applicable to systems containing non-linear and time-varying blocks.
Another characteristic of the L1-norm is that it is a very conservative estimate,
which means that the range obtained with the L1-norm is the largest one for any set
of the given input, and hence the result can be an over-estimate. For example, the L1-
norm of the first order recursive system shown in Fig. 5a is 10, which corresponds
to the case that the input is a DC signal with the maximum value of 1. For example,
if we design a speech processing system, the input with this characteristic is not
likely to exist. With an over-estimated range, the data should be shift-down by
more bits, which will increase the quantization noise level. For a large scale system,
the L1-norm based scaling can be impractical because accumulation of extra-bits
at each stage may seriously lower the accuracy of the output. However, if a very
reliable system that should not experience any overflow is needed, the L1-norm
based scaling can be considered. The L1-norm based scaling is limited in use for
real applications because most practical systems contain time-varying or non-linear
blocks.

3.2 Simulation Based Range Estimation

The simulation based method estimates the ranges by simulation of floating-point
design while applying realistic input signal-samples [17]. This method is especially
useful when there is a floating-point simulation model, which can be a C program
or a CAD system based design. This method can be applied to general, including
non-linear and time-varying, systems. Thus, provided that there is a floating-point
version of a designed system and various input files for simulation, a CAD tool can
convert a floating-point design to a fixed-point version automatically. One drawback
of this method is that it needs extensive simulations with different environmental
parameters and various input signal files. The scaling with this approach is not
conservative, thus there can be overflows if the statistics of the real input signal
differ much from the ones used for the range estimation. Therefore, it is needed to
employ various input files for simulation or give some additional integer bits, called

Optimization of Number Representations 1149

the guard-bits, to secure overflow-free design. This simulation based method can
also be applied to word-length optimization.

For unimodal and symmetric distributions, the range can be effectively estimated
by using the mean and the standard deviation, which are obtained from simulation
results, as follows.

R = |μ| + n× σ, n ∝ k (4)

Specifically, we can use n as k + 4, where k is the kurtosis [17]. However, the
above rule is not satisfactory for other distributions, which may be multimodal, non
symmetric, or non zero mean. As an alternate rule, we can consider

R = R̂99.9% + g (5)

where g is a guard for the range. A partial maximum, R̂P%, indicates a sub-
maximum value, which covers P% of the entire samples. Note that various
sub-maxima are collected during the simulation. The more different R̂100% and
R̂99.9% are, the larger guard value is needed.

3.3 C++ Class Based Range Estimation Utility

A range estimation utility for C language based digital signal processing programs
is explained, which is freely available [3]. This range estimation utility is not only
essential for automatic integer C code generation, but also useful for determining
the number of shifts in assembly programming of fixed-point DSPs [16]. With this
utility, users develop a C application program with floating-point arithmetic. The
range estimator then finds the statistics of internal signals throughout floating-point
simulation using real inputs, and determines the integer word-lengths of variables.
Although we can develop a separate program that traces the range information
during simulation, this approach may demand too much program modification. The
developed range estimation class uses the operator overloading characteristics of
C++ language, thus a programmer does not need to change the floating-point code
significantly for range estimation.

To record the statistics during simulation, a new data class for tracing the possible
maximum value of a signal, i.e., the range, has been developed and named as
fSig. In order to prepare a range estimation model of a C or C++ digital signal
processing program, it is only necessary to change the type of variables, from
float to fSig. The fSig class not only computes the current value, but also
keeps the records of a variable using private members for it. When the simulation is
completed, the ranges of the variables declared as fSig class are readily available
from the records stored in the class.

The fSig class has several private members including Data, Sum, Sum2,
Sum3, Sum4, AMax, and SumC. Data keeps the current value, while Sum and

1150 W. Sung

Sum2 record the summation and the square summation of past values, respectively.
Sum3 and Sum4 store the third and fourth moments, respectively. They are needed
to calculate the statistics of a variable, such as mean, standard deviation, skewness,
and kurtosis. AMax stores the absolute maximum value of a variable during the
simulation. The class also keeps the number of modifications during the simulation
in SumC field.

The fSig class overloads arithmetic and relational operators. Hence, basic
arithmetic operations, such as addition, subtraction, multiplication, and division,
are conducted automatically for fSig variables. This property is also applicable
to relational operators, such as ‘==,’ ‘!=,’ ‘>,’ ‘<,’ ‘>=,’ and ‘<=.’ Therefore,
any fSig instance can be compared with floating-point variables and constants.
The contents, or private members, of a variable declared by the fSig class is
updated when the variable is assigned by one of the assignment operators, such
as ‘=,’ ‘+=,’ ‘−=,’ ‘∗=,’ and ‘/=.’ The range estimator is executed after preparing the
simulation model that only modifies the variable declaration. After the simulation
is completed, the mean (μ), standard deviation (σ), skewness (s), and kurtosis (k)
can be calculated using Sum, Sum2, Sum3, Sum4 and SumC information. Then, the
statistical range of fSig variable x can be estimated. The integer word-lengths of
all signals are then obtained from their ranges.

As an example, let us consider a first order digital IIR filter. The original C++
program for the filter and a translated version for range estimation are given in
Fig. 7.

As shown in Fig. 7, it is only necessary for developing a range estimation
program to modify the declaration part of the original floating-point version. In this
example, a white noise sequence uniformly distributed between −1 and +1 is used
for the input data, and four times of standard deviation is used for estimating the
ranges. Note that the integer word-length for Xin is known, 0. The range estimation
result is shown in Fig. 8.

a b

Fig. 7 C++ programs for a first order IIR filter. (a) The original C++ program. (b) A version for
the range estimator

Optimization of Number Representations 1151

Fig. 8 The result of the range estimator for the IIR filter

The elements of an array variable are assumed to have the same IWL for simple
code generation. If it is not, the scaled integer codes need to check the array index,
which can slow down program execution significantly. For a pointer variable, the
IWL is defined as that of the pointed variables. For example, when the pointer
variables p and q have the IWL of 2 and 3, respectively, the expression ∗q = ∗p
can be converted to ∗q = ∗p >> 1. Since the IWL of a pointer variable is not
changed at runtime, a pointer cannot support two variables having different IWL’s.
In this case, the IWL’s of these pointers are equalized automatically at the integer C
code generation step that will be described in the next section.

4 Floating-Point to Integer C Code Conversion

C language is most frequently used for developing digital signal processing
programs. Although C language is very flexible for describing algorithms with
complex control flows, it does not support fixed-point data formats. In this section,
a floating-point to integer C program conversion procedure is explained [13, 24]. As
shown in Fig. 9, the conversion flow utilizes the simulation based range estimation
results for determining the number of shift operations for scaling. In addition, the
number of shift operations is minimized by equalizing the IWL’s of corresponding
variables or constants for the purpose of reducing the execution time.

4.1 Fixed-Point Arithmetic Rules in C Programs

As summarized in Table 1, the addition or subtraction of two input data with
different IWL’s needs arithmetic shift before conducting the operation. Fixed-point
multiplication in C language needs careful treatment because integer multiplication
in ANSI C only stores the lower-half of the multiplied result, while fixed-point
multiplication needs the upper-half part. Integer multiplication is intended to prevent
any loss of accuracy in multiplication of small numbers, and hence it can generate an
overflow when large input data are applied. However, for signal processing purpose,
the upper part of the result is needed to prevent overflows and keep accuracy. Integer
and fixed-point multiplication operations are compared in Fig. 10a, b [14, 15].

1152 W. Sung

Floating point C code

Code conversion

IWL annotator

IWL check

Integer C code
generation

Integer C code

Range estimation

IWL information

Shift reduction

Profiling Syntax analysis

Shift optimization

Fig. 9 Fixed-point addition with different IWL’s

N bitNot used

N bit

N bit Not used

N bit

32 bit

Not used16 bit
a b c

Fig. 10 Integer and fixed-point multiplications. (a) ANSI C integer multiplication. (b) Fixed-point
multiplication. (c) MPYH instruction of TMS320C60

In traditional C compilers, a double precision multiplication operation followed
by a double to single conversion is needed to obtain the upper part, which is
obviously very inefficient [28]. However, in C compilers for some DSPs such as
Texas Instruments’ TMS320C55 (’C55), the upper part of the multiplied result
can be obtained by combining multiply and shift operations [6]. In the case of
TMS320C60 (’C60), which has 16 by 16-bit multipliers as well as 32-bit registers
and ALU’s, the multiplication of the upper 16-bit parts of two 32-bit operands
is efficiently supported by C intrinsics as depicted in Fig. 10c [7]. If there is no
support for obtaining the upper part of the multiplied result in the C compiler level,
an assembly level implementation of fixed-point multiplication is useful. For the
Motorola 56000 processor, fixed-point multiplication is implemented with a single
instruction using inline assembly coding [5]. Note that, in Motorola 56000, the IWL
of the multiplication result is Ix + Iy , because the output of the multiplier is one
bit left shifted in hardware. The implementation of the macro or inline function for
fixed-point multiplication, mulh(), is dependent on the compiler of a target processor
as illustrated in Table 2.

Optimization of Number Representations 1153

Table 2 Implementation of fixed-point multiplication

Target processor Implementation
TMS320C50 #define mulh(x,y) ((x)*(y)>>16)

TMS320C60 #define mulh(x,y) _mpyh(x,y)

Motorola 56000 __inline int mulh(int x, int y) {
int z;
__asm("mpy %1,%2,%0":"=D"(z):"R"(x),"R"(y));
return z;

}

Fig. 11 An example of
expression conversion y=(a+b)*c; tmp = a+b;

y=tmp*c;

4.2 Expression Conversion Using Shift Operations

The most frequently used expression in digital signal processing is the accumulation
of product terms, which can be generally modeled as follows.

xi =
∑
j,k

xj × xk +
∑
l

xl (6)

Complex expressions in C programs are converted to several expressions having
this form. Figure 11 shows one example.

Assuming that there is no shifter at the output of the adder, the IWL of the added
result is determined by the maximum value of two input operands and the result,
as shown in Table 1. From this, the IWL of the right hand side expression, Irhs , is
represented by the maximum IWL of the terms as shown in Eq. (7).

Irhs = max
j,k,l

(Ixj + Ixk + 1, Ixl , Ixi), (7)

where Ix + Iy + 1 is used for the IWL of the multiplied results. The number of
scaling shifts for the product, addition, or assignment, which is represented as, sj,k ,
sl or si , respectively, is determined as follows.

sj,k = Irhs − (Ixj + Ixk + 1) (8)

sl = Irhs − Ixl (9)

si = Irhs − Ixi (10)

Equation (6) is now converted to the scaled expression as follows.

xi = {
∑
j,k

((xj × xk) >> sj,k)+
∑
l

(xl) >> sl)} << si (11)

1154 W. Sung

4.3 Integer Code Generation

The IWL information file generated in the range estimation step includes the scope
of a variable that indicates whether it is global or local, the variable name and its
IWL. In the automatic scaling integer program converter for C, this information is
attached to the symbol table of the floating-point program. The conversion of types
and expression trees is conducted in the integer C code generation stage. The symbol
tables are modified to replace floating-point types with integer types. Not only the
float type but also the float-based types such as pointers to float, float arrays, and
float functions are converted to corresponding integer-based types. The expression
tree conversion that inserts scaling shifts uses the fixed-point arithmetic rules shown
in Table 1. It is performed from the bottom to the top of a parse tree, and the IWL
information of each tree node is also propagated in the same way. In this step, the
pointer operations that involve different IWL’s are also checked.

4.3.1 Shift Optimization

In many programmable DSP’s, an implementation that needs no or less scaling
shift operations is not only faster but also requires a smaller code size. Since no
shift operation is needed for addition or assignment of operands having the same
IWL, the number of scaling shifts can be reduced by equalizing the IWL’s of
relevant variables. An example implementation with shift reduction is illustrated in
Fig. 6a. Note that it is only allowed to increase the initial IWL’s that are determined
according to Eq. (2), thus the equalization can increase the quantization noise level.
Scaling shift reduction requires global optimization because IWL modification of
a variable in an expression can incur additional scaling shifts in other expressions.
Shift optimization also depends on the architecture of a DSP. For example, if a DSP
has a barrel shifter, the number of bits for one scaling shift, unless it is zero, does
not affect the number of execution cycles. However, if it has no barrel shifter and
should conduct the scaling by employing one-bit shift operations, the shift cost is
also affected by the number of bits for one scaling operation. It is also needed for
minimizing the execution time to reduce the number of scaling operations that are
inside a long loop. Thus, this optimization requires program-profiling results.

The IWL modification that minimizes the overhead for scaling is conducted as
follows. First, the number of shifts for each expression is formulated with the IWL’s
of the relevant variables and constants. Second, the cost function that corresponds
to the total overhead of scaling shifts is made based on the results of the first
step, the target DSP architecture, and the program-profiling information. Finally,
the cost function is minimized by modifying the IWL’s using the integer linear
programming or the simulated annealing algorithms. Note that shift reduction using
a DSP architecture without a barrel shifter can be modeled as an integer linear
programming problem. The simulated annealing algorithm is a general optimization
method, but the optimization can take much time. Detailed methods for shift
reduction can be found in [13].

Optimization of Number Representations 1155

4.4 Implementation Examples

A fourth order IIR filter is implemented for TI’s ’C50, ’C60 and Motorola 56000
using the developed scaling method. Floating-point C code for a fourth order IIR
filter shown in Fig. 12 is given in Fig. 13a.

After the range estimation, the original IWL’s are determined as shown in
Table 3. With these initially determined IWL’s, the integer C code shown in Fig. 13b
is generated using the IWL model of Ix + Iy + 1 for the multiplied results. At first,
the coefficients a1, a2, b1, and b2 are all converted with the two’s complement
format having the IWL of 1. Although some coefficients, such as 0.35 or−0.75504,
can be encoded with the IWL of 0, the same IWL is given to all the coefficients
to reduce the number of shifts for scaling. As a result, the coefficient value of
1 is converted to 230 (= 1073741824), the value of 0.355407 is translated to
0.355407× 230 (= 381615360), and so on. The expression x1 = 0.01 * *x is
converted as follows. The constant ‘0.01’ is changed to a two’s complement integer
‘1374389534’ (= 0.01 × 237) because the decimal number 0.01 is represented in
binary as ‘0.0 0000 0101 0001 1110 1011 · · · ,’ where there are six zeroes below
the binary point. Thus, the IWL of −6 is given to this constant, and translates
0.01 to 0.01 × 2(31+6). The input x is read from the file and has the IWL of 17
with the two’s complement format. The multiplied result of a and x has the IWL
of 12 (= −6 + 17 + 1), but x1 has the IWL of 10. Thus, there needs two bit
left shift before assigning the multiplied result to x1 and the expression becomes
x1=sll(mulh(1374389534, *x), 2). Next, since the IWL of t1 or d1 is
12, the IWL of b1[0]*d1[0] and b1[1]*d1[1] is 14 (= 1+12+1). At the same
way, since the IWL of x1 is 10, and that of mulh(*b1, *d1) or mulh(b1[1],
d1[1]) is 14, x1 needs to be right shifted by 4 bits for addition. The added result is
again assigned to t1, which has the IWL of 12, thus it needs two bit left shift before
assigning to t1, and forms the equation of t1 = sll((x1»4)+ mulh(*b1,

*d1) + mulh(b1[1], d1[1]), 2). Because the IWL of t1 and d1 is 12,
the multiplication with the coefficients a1 produces the result having the IWL of 14
(= 12 + 1 +1), and the multiplied result can be assigned to y1 without any shift. The
rest of the code can be interpreted at the same way.

x x1 t1 y1

d1[1]

d1[0]
z-1

z-1b1[0]

b1[1]

a1[1]

a1[2]

a1[0]

t2 y

d2[1]

d2[0]
z-1

z-1b2[0]

b2[1]

a2[1]

a2[2]

a2[0]

Fig. 12 A fourth order IIR filter

1156 W. Sung

a

b

c

Fig. 13 The C codes for the fourth order IIR filter. (a) The floating-point C code. (b) The integer
C code before shift reduction. (c) The integer C code after shift reduction

Optimization of Number Representations 1157

Table 3 IWL determined by the range estimation for the fourth order filter

Variable Original IWL Optimized IWL IWL increment

x 17 20 3

y 15 18 3

x1 10 15 5

y1 14 18 4

t1, d1 12 13 1

t2, d2 16 16 0

b1, b2, a2 1 1 0

a1 1 4 3

Table 4 Performance comparison for the fourth order IIR filter

of cycles SQNR

Floating-p. Integer Speed-up Floating-p. Integer (dB)

’C50 2980 100 29.8 – 49.3

’C60 3659 9 406.6 – 57.9

56000 26,282 921 28.5 – 78.5

Shift reduction is performed with a DSP architecture that employs a barrel shifter,
and the integer C code shown in Fig. 13c is generated by controlling the IWL’s.
When considering the expression of x1 = sll(mulh(1374389545, *x),
2), we can eliminate the shift left operation by increasing the IWL of x1 by 2
bits. Note that the IWL reduction process requires simultaneous IWL modification
of several variables or constants. Table 3 gives the optimized IWL’s and Fig. 13c
shows the optimized integer C code. Although there can be a loss of bit resolution,
we can find that several redundant shift operations are successfully eliminated. In
the optimized code, left shift operations are eliminated when calculating x1 and y.
We can also find that 4bit right shift operations are removed when using x1 and y1.

In the fourth order IIR filter, the speed-up, which is the ratio in the execution time
of the integer to the floating-point versions, was 29.8, 406, and 28.5 for ’C50, ’C60,
and Motorola 56000, respectively, as shown in Table 4. The remarkable speed-up
of ’C60 is mainly due to the deeply pipelined VLIW architecture having a large
register file and the efficient C compiler. This machine can execute up to eight
integer operations in one cycle and store all the variables of a small loop kernel in the
registers, but needs a large number of no-operation cycles for floating-point function
calls to flush pipeline registers. The compiler for ’C60 is very efficient because it
has several compiler friendly components, such as large general purpose register
files, an orthogonal instruction set and a VLIW scheduler [7]. The developed shift
reduction technique is applied to this example. The number of shift operations in
the converted C code is reduced from 7 to 2 without imposing an IWL upper bound
for TI’s ’C50 and ’C60. The number of shifts in the C code for Motorola 56000
is different from that of TI’s DSP’s, because the IWL of multiplication results is
different as described in the previous section. The cycle counts of the shift reduced

1158 W. Sung

Table 5 Shift reduction results of the fourth order IIR filter

IWL increment upper bound 0 (no shift reduction) 3 Infinite

of shifts in C codes 7 4 2

’C50 # of cycles 100 96 94

Speedup – 4% 6%

SQNR 49.3 dB 51.2 dB 54.1 dB

’C60 # of cycles 9 6 8

speedup – 33% 11%

SQNR 57.9 dB 57.1 dB 54.2 dB

of shifts in C codes 5 3 2

56000 # of cycles 921 675 577

Speedup – 27% 37%

SQNR 78.5 dB 78.5 dB 78.5 dB

codes are shown in Table 5. As shown in this Table, ’C60 achieves 33% of speed-up
increase using the shift optimization. ’C50 shows a relatively low speed-up because
the shifts can be performed by load-store instructions with no additional cycle in
’C50. For the Motorola 56000, high speed-up can be achieved because its shift
cost is much higher than that of the other DSP’s employing barrel shifters. The
SQNR of the fixed-point implementations was measured as 49.3 dB, 57.9 dB and
78.5 dB for ’C50, ’C60 and Motorola 56000, respectively. Note that ’C50 uses a
16-bit word-length for internal memory, while ’C60 supports a native 32-bit word-
length, although both machines have only 16-bit multipliers. In ’C60, the upper 16
bits of the 32-bit data are multiplied to produce a 32-bit result. Thus, the ’C50 based
implementation generates more quantization noise because the internal data-path
truncates some of the 32-bit multiplied result. Motorola 56000 uses a 24-bit data
type for both addition and multiplication. The upper 24 bits of the multiplier output
are used for the multiplication results. When the IWL’s are increased for the shift
reduction, the fixed-point performance is slightly degraded in the ’C60 examples
because the FWL’s are decreased, but the ’C50 example results do not agree with
our expectation. It is because the quantization noises due to the scale down shifts
are eliminated. In this example, the input is scaled instead of the internal signals
to reduce the scaling shifts, and it results in less quantization noise at the output
signal. Since the results of the optimization as a function of the IWL increase are
not simple, we need to try a few different upper bounds to find the best one.

5 Word-Length Optimization

VLSI implementation of digital signal processing algorithms requires fixed-point
arithmetic for the sake of circuit area minimization, speed, and low-power consump-
tion. Word-length optimization is also used for 16-bit programmable DSP and SIMD

Optimization of Number Representations 1159

processor based implementations because some SIMD arithmetic instructions for
embedded processors employ shortened word-length, 8-bit or 16-bit, data for
increasing the data-level parallelism. In the word-length optimization, it is necessary
to reduce the quantization effects to an acceptable level without increasing the
hardware cost too much. If the number of bits assigned is too small, quantization
noise will degrade the system performance too much; on the other hand, if the
number of bits is too large, the hardware cost will become too high. Word-length
optimization for linear time-invariant systems may be conducted by analytical
methods [9]. However, the simulation based approach is preferred because these
methods allow not only linear but also non-linear and time-varying blocks [23]. In
this sub-section, the finite word-length effects will be described, a C++ class library
based fixed-point simulation tool will be presented, and the simulation based word-
length optimization method will be explained.

5.1 Finite Word-Length Effects

Fixed-point arithmetic introduces quantization noise, and by which the final system
performance is inevitably degraded in most cases. The Analysis of Finite Word-
Length Effects in Fixed-Point Systems chapter of this handbook treats this problem
in detail. The needed performance of a system with fixed-point arithmetic should be
defined first for word-length optimization. Finite word-length effects for implement-
ing a digital filter can be classified into coefficient and signal quantization [8]. The
coefficient quantization changes the system transfer function, thus its effect can be
observed by displaying the frequency response of the transfer function. Frequency
responses of an FIR filter with floating-point, 12-bit, 8-bit, and 4-bit coefficients
are shown in Fig. 14. The filter structure also affects the quantization effects. When
implementing a high order recursive filters, the second order cascaded forms usually
show better results when compared to the direct forms.

The signal quantization can be considered as adding noise, instead of distorting
the system transfer function. One of the most widely used fixed-point performances
is the SQNR that is defined as Eq. (12), where yf l[n] is the floating-point result and
y[n] is the fixed-point result.

SQNR = Psignal

Pnoise
= E[yf l2]

E[(yf l − y)2] (12)

The SQNR is a convenient measure, but it can usually be applied to linear time-
invariant systems where the output quantization noise can be modeled as additive
terms.

Figure 15 shows a simple additive noise model for the first order filter shown in
Fig. 5a.

Note that the quantization noise can be roughly modeled as uniformly distributed
between−δ/2 and δ/2 when the rounding scheme is employed, where δ corresponds

1160 W. Sung

Fig. 14 Coefficient quantization effects of an FIR filter

Fig. 15 An additive noise
model xfl[n]

z-1

0.9

yfl[n]

zfl[n]

q[n]

to 2−FWL. Thus the maximum noise amplitude is halved when increasing the FWL
by 1 bit. The quantization scheme that simply eliminates the low significant bits
in word-length reduction creates DC biased quantization noise, which can result in
a serious problem when an accumulation circuit that has a very high DC gain is
followed. Thus, as the FWL is decreased by 1 bit, the output noise power becomes
quadrupled, and the SQNR is decreased by 6 dB. At the same way, the increase of
the FWL by 1 bit increases the SQNR by 6 dB. For more complex systems having
multiple of quantization noise sources, the additive quantization noise model can
also be built in a similar way, and the output noise is the sum of all the quantization
noise sources [12]. Therefore, the increase of all the fractional word-lengths by
1 bit also raises the output SQNR by 6 dB in this case, too. The SQNR as the
fixed-point performance measure can also be used for waveform coders, such as
the adaptive delta modulators(ADMs) or CELP vocoders; however the increase of
all the fractional word-lengths by 1 bit does not reduce the output noise power

Optimization of Number Representations 1161

by 6 dB because these systems are not linear with respect to the quantization
noise sources. For the case of an adaptive filter, word-length reduction causes slow
convergence and higher steady state noise power. Thus, the fixed-point performance
for optimizing an adaptive filter can be modeled as the noise power after some time-
off period [22].

5.2 Fixed-Point Simulation Using C++ gFix Library

Although several analytical methods for evaluating the fixed-point performance of
a digital signal processing algorithm have been developed by using the statistical
model of quantization noise, they are not easily applicable to practical systems
containing non-linear and time-varying blocks[26, 27]. The analysis is more com-
plicated when a specific kind of input signal, such as speech, is required for the
evaluation. In order to relieve these problems, simulation tools can be used for
evaluating the fixed-point characteristics of a digital signal processing algorithm.
There are a few commercially available fixed-point simulation tools for signal
processing. The SPD (Signal Processing Designer) of CoWare and the MATLAB
of MathWorks provide fixed-point simulation libraries [1, 4]. Mixed simulation of
floating-point and fixed-point blocks is allowed with these libraries. The fixed-point
block can be a simple adder or a quite complex one, such as FFT or digital filtering.
In order to assign a fixed-point format for each block, it is just needed to open
a block by mouse clicking and edit the fixed-point attributes for the block, such
as the word-length, integer or fractional word-length, overflow or saturation mode,
rounding or quantization mode, and so on.

However, the widely used C programming language does not support fixed-
point arithmetic. Fixed-point simulation of a C program for signal processing
can be conducted with a fixed-point class that also uses the operator overloading
characteristic of the C++ language. A fixed-point data class, gFix, and its operators
are developed to prepare a fixed-point version of a floating-point program, and
to know its finite word-length and scaling effects by simulation [17]. The gFix
class follows the generalized fixed-point format. For example, gFix (10, 2, “tsr”)
represents a format with the WL of 10, IWL of 2, and the two’s complement,
saturation for overflow handling, and rounding for quantization. The gFix class
supports all of the assignment and arithmetic operations supported in C or C++
languages. There is no loss of accuracy during the fixed-point add or multiply
operations. However, arithmetic right shift or arithmetic left shift may cause loss
of accuracy or overflows. The assignment operator, ‘=,’ converts the input data
according to the fixed-point format of the left side variable, and assigns the format
converted data to this variable. If the given format of the left side variable does
not have an enough precision for representing the input data, the data is modified
according to the attributes of the left side variable, such as saturation, rounding,
or truncation. Since the format conversion is occurred only at the assignment
operator, two programs shown in Fig. 16a, b can have different fixed-point results.

1162 W. Sung

a b

Fig. 16 Three operand addition using different architectures

Fig. 17 A fixed-point C++
program for a first order IIR
filter

In Fig. 16b, the result of a + b is format converted to 10 bit data, and then added
to the operand c, and then format converted again. The fixed-point performance of
different implementations with the same algorithm can be compared by utilizing the
above characteristics.

A fixed-point simulation model of a simple IIR filter converted from the floating-
point C program is shown in Fig. 17. Note that only the type of variables is converted
to gFix, but the other parts of the program are not changed. Similar fixed-point data
types are now supported with SystemC.

5.3 Word-Length Optimization Method

Word-length optimization usually tries to find the word-length vector that mini-
mizes the hardware cost while meeting the system performance with fixed-point
arithmetic. Since the optimum word-length is dependent on the desired fixed-point
performance of a system, a performance measurement block has to be included as
a part of a system set-up. The performance measurement block must generate a
positive result (or pass) when the quantization effects are acceptable. A hardware
cost library is also needed to estimate the total complexity when implementing the
system with the given word-length vector. Note that not only the algorithm but also
the system architecture affects the hardware cost.

Optimization of Number Representations 1163

Fig. 18 Fixed-point setup for a first order filter

In the simplest case, only one word-length is used for all arithmetic operations,
which is called the uniform word-length optimization. In the uniform word-length
optimization, fixed-point simulation with a shorter (or longer) word-length than the
optimum one should yield a fixed-point performance which is lower (or higher) than
the needed performance. Thus, it is possible to arrive at the optimum word-length by
increasing (or decreasing) the word-length when the obtained performance is lower
(or higher) than the needed fixed-point performance. In the case of linear time-
invariant systems, it is possible to reduce the number of simulations by considering
that the SQNR becomes higher by 6 dB with the word-length increase of one bit.

Usually, there are multiple word-lengths to optimize in implementing a fixed-
point system. As the number of word-lengths to optimize increases, optimization
of them should take a longer time. In other words, minimizing the number of
variables is very important for reducing the optimization time. In this optimization
method, the number of different word-lengths is reduced by signal grouping that
assigns the same word-length to signals, for example, connected with a delay or a
multiplexer block. The word-length sensitivity of a signal needs to be considered
for optimization. Some signals are very sensitive to quantization, thus they need a
long word-length. The minimum bound of the word-length for each signal group
is in inverse relation with the sensitivity, and can be used to reduce the search
space. Finally, the optimization of different word-lengths requires a hardware cost
model. The word-length optimization method in this section consists of four steps:
signal grouping, sign and integer word-length determination, minimum word-length
determination, and cost optimum word-length search.

As an example, Fig. 18 shows the setup for fixed-point optimization of a first
order filter. The SQNR is used as the measure of the fixed-point performance.

5.3.1 Signal Grouping

The optimization method preprocesses the netlist of a signal flow block diagram
to group the signals that can have the same fixed-point attributes and, as a result,

1164 W. Sung

to minimize the number of variables for optimization. Both automatic and manual
grouping functions are employed. The automatic grouping rules are as follows.

1. Signals connected by a delay, a multiplexer, or a switch are grouped.
2. Input and output signals of an adder or a subtractor are grouped.
3. Signals connected by a multiplier, a quantizer, or a format converter can have

different fixed-point data formats unless these signals are grouped together via
the other path in a signal flow block diagram.

In [18], more grouping rules were implemented to reduce the number of groups
as much as possible. But, for the Fixed Point Optimizer of SPW, a manual
grouping mechanism is developed instead of eliminating complex grouping rules.
By manually adding a prefix to each fixed-point attribute parameter, we can combine
signals into one group that would otherwise be assigned to different groups. For
example, the ADC and the DAC in Fig. 7 can have the same fixed-point data format
if they are manually grouped.

In high-level synthesis, it is necessary to bind operations in order to reduce the
number of hardware components [20]. In this case, we can use the binding results
for grouping.

5.3.2 Determination of Sign and Integer Word-Length

If the minimum value for a signal is not negative, the sign can be ‘u’ (unsigned).
Otherwise, it should be ‘t’ (two’s complement). The integer word-length for a signal
can be determined from the range of a signal, R(x), using Eq. (2).

Although each signal can have a separate integer word-length, one common
integer word-length is assigned to all the signals in the same group in order to lower
the use of shifters for implementation. All the signs and the integer word-lengths
are determined in just one simulation.

5.3.3 Determination of the Minimum Word-Length for Each Group

Assume a word-length vector w, whose component is the word-length in each group.

w = (w1, w2, · · · , wN), (13)

where N is the number of groups.
The performance of a fixed-point system, such as SQNR or negative of mean

squared error, is represented by p(w), and the hardware cost, usually the number
of gates, is c(w). Then, the optimum word-length vector, wopt , should have the
minimum value of c(w) while p(w) is larger than pdesired . We assume the following
relation between the word-length vector and the fixed-point performance.

p((w1, w2, · · · , wi, · · · , wN)) ≥ p((w1, w2, · · · , wi − 1, · · · , wN)), (14)

Optimization of Number Representations 1165

where 1 ≤ i ≤ N . The above equation represents that reducing a word-length of
a group decreases, or at least does not increase, the fixed-point performance of a
system. Then, the number of simulations required for the search can be reduced
greatly by decomposing the procedure into two steps: the minimum word-length
and the cost optimum word-length determination.

The minimum word-length for a group, wi,min, is the smallest word-length that
satisfies the fixed-point performance of a system when the word-lengths of all other
groups are very large, typically a 64 bit fixed-point or the floating-point type. By
the assumption shown in Eq. (14), this minimum word-length is not larger than
the optimum word-length for the group. The minimum word-length determination
procedure for the first order digital filter is illustrated in Table 6. The word-length
vector for this filter consists of three components, which are ‘ADC,’ ‘DAC’ and filter
word-lengths. The uniform word-length that satisfies the fixed-point performance is
first determined. The uniform word-length is not only useful for some architecture,
such as bit-serial implementations, but also the upper limit of the minimum
word-length according to the assumption in Eq. (14). Thus, the search for finding
the minimum word-length for each group goes downward from the determined
uniform word-length. The number of simulations required for the minimum word-

Table 6 Search sequence for the first order recursive filter

Word-length Simulation
result

Hardware
costADC Filter DAC Comment

16 16 16 Pass Uniform word-length

14 14 14 Fail Determination

15 15 15 Fail

14 64 64 Pass Group ADC minimum

12 64 64 Pass Word-length determination

10 64 64 Fail

11 64 64 Pass

64 14 64 Fail Group filter minimum

64 15 64 Fail Word-length determination

64 64 14 Pass Group DAC minimum

64 64 12 Pass Word-length determination

64 64 10 Fail

64 64 11 Pass

11 16 11 Fail 8054 Minimum word-length

12 16 11 Fail 8254 Exhaustive search

11 16 12 Fail 8256

11 17 11 Fail 8281

13 16 11 Fail 8454

12 16 12 Fail 8456

11 16 13 Fail 8458

12 17 11 Pass 8481 Determined word-length

1166 W. Sung

length determination procedure is typically two to four times the number of
groups. The minimum word-length determination does not require the hardware
cost model.

5.3.4 Determination of the Minimum Hardware Cost Word-Length
Vector

The word-length vector that satisfies the system performance while requiring the
minimum hardware cost is determined at the next step. If the simulation using the
minimum word-length vector, wmin, satisfies the desired performance, the minimum
word-length vector wmin becomes the optimum word-length vector, wopt . If not,
the word-length is increased, and the fixed-point system performance is measured
by simulation. Three search strategies, an exhaustive and two heuristic methods, are
developed for this step. The search sequences for the first order recursive filter will
be illustrated as an example. Usually, the optimum word-length for each group is, at
most, two bits larger than the minimum word-length.

The hardware cost of the components for implementing a DSP system, such as
ADC, adder, multiplier, and delay, has to be known for the minimum cost word-
length optimization of a system. For example, when the price of an ADC is high,
it may be justified to minimize the word-length of the ADC by increasing the
word-lengths for multipliers and adders. Adders, constant coefficient multipliers,
and delays are modeled to consume the hardware resources in proportion to their
word-lengths. The number of gates for a multiplier is dependent on the product of
two input word-lengths. Note that the hardware cost model is affected not only by
the process technology but also by the implementation architecture. When a signal
processing algorithm is implemented in a time-domain multiplexed mode, the per-
bit cost of arithmetic blocks that are shared can be lowered. Since the hardware
cost model is stored at an external file, a designer can assign an appropriate value
to each component according to the implementation architecture and the ASIC
library. In this example, the hardware cost model using VLSI Technologies’ cell
library is used, and the hardware cost of 200 and 202 is assumed for each bit
of ADC and DAC, respectively. According to these models, the hardware cost
increase for each bit is 200 for group ‘ADC,’ 227 for group ‘filter,’ and 202 for
group ‘DAC.’

In the exhaustive search algorithm, the word-length vector that requires the least
cost is selected in a priority for the fixed-point performance measurement starting
from the minimum word-length vector. For example, the word-length for group
‘ADC’ will be increased first as shown in Table 6. If the test is failed, the word-length
for group ‘DAC’ will be increased instead of group ‘ADC.’ The search sequence
using the exhaustive algorithm is shown in Table 6. The minimum cost word-length
vector determined is (12, 17, 11), and the hardware cost required is 8481. Although
the result is the minimum cost solution, this method demands many fixed-point
performance measurements. The search procedure is a combinatorial algorithm as a
function of the number of groups and is practical only when the number of groups
is small, usually less than 6.

Optimization of Number Representations 1167

Table 7 Search sequences of performance/cost directed heuristic method

Word-length Performance
SQNR (dB)

Hardware
costADC Filter DAC Comment

11 16 11 34.27 8054 Minimum word-length

12 16 11 38.56 8254 Selected

11 17 11 34.83 8281

11 16 12 34.59 8256

13 16 11 39.65 8454

12 17 11 40.36 8481 Determined word-length

12 16 12 37.43 8456

In the first heuristic search algorithm, all the word-lengths are increased by
one, e.g. the word-length vector is increased to (12, 17, 12) from the minimum
word-length vector (11, 16, 11), and the fixed-point performance is measured. If
the result is not satisfactory, the above procedure is repeated. This step requires
typically one to two simulations. After then, the word-length for a group whose
cost saving is the greatest is decreased. If it does not satisfy the performance, the
word-length is restored. This procedure is conducted for all the group, and, as a
result, requires N simulations. The maximum number of simulations required for
the heuristic search based word-length optimization, including the minimum word-
length determination, is only linearly proportional to the number of groups, N . The
word-length vector determined for the first order digital filter shown in Fig. 7 is
(12, 17, 11), which is the same as the minimum cost word-length. According to the
experiments using eight examples, the additional hardware cost is usually less than
5% of that required for the exhaustive search algorithm.

In the second heuristic search algorithm, the word-length vector that shows
the best ratio of performance increment to cost increase is selected. The word-
length of each group is increased by one bit, and the fixed-point performance is
measured using simulations for each case, and the best result is selected for the next
iteration until the desired fixed-point performance is satisfied. Since the fixed-point
performance increment is used in this method, this heuristic can be applied when
the fixed-point performance can be quantified such as SQNR. When the fixed-point
performance is tested using binary decision, e.g. pass or fail, this method cannot be
used. The search sequences of this heuristic method for the first order recursive filter
is shown in Table 7.

5.4 Optimization Example

The impulse response of a channel can be identified by using an adaptive digital
filter which adjusts the coefficients to minimize the channel modeling error. When
the word-length of the filter coefficients or the input data is not sufficient, the system

1168 W. Sung

LMS_8tap
ADCSIGNAL

SOURCE

ADCCHANNEL

PWR_EST

SIGNAL
SINK

Fig. 19 An LMS channel identification system

Fig. 20 Grouping result for
one tap of LMS adaptive filter z-1

z-1

tap_in

error

sum_in
u001<64,31,t>

sum_out
coef<64,31,t>

coef<64,31,t>

coef<64,31,t>

tap_out
u005<64,31,t>

not only converges slowly but also the magnitude of error becomes large. Thus, as
shown in Fig. 19, a power estimation block that measures the average power of
the error signal after some time-off period is used for the fixed-point performance
measure [22].

When we apply the automatic grouping rules, the coefficient in each tap becomes
a separate group. In order to reduce the number of groups, the coefficients are
manually grouped by assigning a fixed-point attribute of ‘coef.’ The grouping result
for each tap is shown in Fig. 20.

The ‘tap_in’ and ‘tap_out’ signals are automatically grouped because they
are connected by a delay, and assigned to ‘u005.’ The ‘sum_in’ and ‘sum_out’
signals are also grouped, and assigned to the ‘u001’ group. The integer word-
length, minimum word-length, and optimum word-length for each group of signals
are shown in Table 8. The optimization results are compared for three search
algorithms: uniform word-length, exhaustive search, heuristic search based on
uniformly increasing the minimum word-length vector. The uniform word-length
optimization requires 13 bits for all the signals and the hardware cost required is
96,265 gates. The exhaustive and heuristic search algorithms, both are based on
the minimum cost criterion, need the cost of 46,278 and 49,520 gates, respectively.
The hardware cost required using the minimum cost optimization is just 48% of

Optimization of Number Representations 1169

Table 8 Determined fixed-point attributes for the LMS adaptive filter

Group Signal Integer word-length Minimum word-length Optimum word-length

u001 Sum 3 12 12

u005 Tap 2 7 7

u002 Error −4 5 5

coef Coefficient 1 13 13

u004 ADC (channel) 3 8 10

u006 ADC (source) 2 7 13

that needed for the uniform word-length determination in this example. The number
of simulations for searching the optimum word-length vector from the minimum
word-length vector is 27 and 5 for the exhaustive and heuristic search algorithms,
respectively.

6 Summary and Related Works

Fixed-point hardware or integer arithmetic based implementation of digital signal
processing algorithms is important for not only hardware cost minimization but also
power consumption reduction. The conversion of a floating-point algorithm into
a fixed-point or an integer version has been considered very time-consuming; it
often takes more than 50% of the algorithm to hardware or software implementation
procedure [25]. The fixed-point format discussed in Sect. 2 bridges the gap between
the floating-point and fixed-point data types, and allows seamless and incremental
conversion. Note that incremental conversion can help a designer very much because
the effects of each small conversion can readily be verified. There are other fixed-
point formats used for similar purposes, and one of them is the Q format [2]. In the
Q format, the integer and fractional bits are given, while the sign is usually implied
as the two’s complement. For example, ‘Q1,30’ describes a fixed-point data with 1
integer bit and 30 fractional bits stored as a 32-bit two’s complement number. The
Q format has been used widely for assembly programming of Texas Instruments
digital signal processors.

The simulation based range estimation and automatic conversion process
becomes more and more popular as the computing power for simulation becomes
cheaper. The FRIDGE, a fixed-point design and simulation environment, supports
interpolative approach to reduce the range estimation overhead [25, 29]. This
tool also supports integer and VHDL code generation path from a floating-point
C program. In these days, application oriented language, such as Matlab from
MathWorks, is frequently used for signal processing application development. The
Simulink package for Matlab and SPD (Signal Processing Designer) of CoWare
support easy to use, GUI (Graphic User Interface) supported, fixed-point arithmetic
[1, 4]. With these tools, it is possible to convert a floating-point design into a
fixed-point version in an incremental and convenient way.

1170 W. Sung

For the word-length optimization of VLSI and FPGA based design, several
different search methods have been studied recently [10, 21]. For linear systems,
the word-length optimization is converted to an integer programming problem by
exploiting the additive quantization noise model [9]. A fixed-point optimization flow
that conducts both high-level synthesis and fixed-point optimization simultaneously
has been developed [19]. As one of the future works, integer code generation
for SIMD (Single Instruction Multiple Data) architecture is needed; this work
requires combined processing of scaling, word-length optimization, and automatic
vectorization. Also, fast word-length optimization of very large systems is an
interesting problem. The word-length optimization or scaling software needs to be
integrated into widely used CAD tools. The capability of fixed-point optimization
tools currently supported by commercial CAD software can hardly meet users’
expectation.

References

1. URL http://www.coware.com/products/signalprocessing.php
2. URL http://en.wikipedia.org/wiki/Q_(number_format)
3. Fixed-Point C++ class. URL http://msl.snu.ac.kr/fixim/
4. Simulink. URL http://www.mathworks.com/products/simulink/
5. DSP56KCC User’s Manual. Motorola Inc. (1992)
6. TMS320C2x/C2xx/C5x Optimizing C Compiler (Version 6.60). Texas Instruments Inc., TX

(1995)
7. TMS320C6x Optimizing C Compiler. Texas Instruments Inc., TX (1997)
8. Catthoor, F., Vandewalle, J., Man, H.D.: Simulated Annealing based Optimization of Coeffi-

cient and Data Word-Lengths in Digital Filters. Int. J. Circuit Theory and Applications 16,
371–390 (1988)

9. Constantinides, G., Cheung, P., Luk, W.: Wordlength optimization for linear digital signal
processing. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 22(10), 1432–1442 (2003).

10. Han, K., Evans, B.L.: Optimum wordlength search using sensitivity information. EURASIP J.
Appl. Signal Process. 2006, 76–76 (January).

11. Han, K., Olson, A., Evans, L.: Automatic floating-point to fixed-point transformations. In:
Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on, pp.
79–83 (2006).

12. Jackson, L.B.: On the Interaction of Roundoff Noise and Dynamic Range in Digital Filters.
The Bell System Technical Journal pp. 159–183 (1970)

13. K. Kum, J.K., Sung, W.: AUTOSCALER for C: an optimizing floating-point to integer C
program converter for fixed-point digital signal processors. IEEE Trans. Circuits and Systems-
II: Analog and Digital Signal Processing 47(9), 840–848 (2000)

14. Kang, J., Sung, W.: Fixed-point C language for digital signal processing. In: Proc. of the 29th
Annual Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 816–820 (1995)

15. Kang, J., Sung, W.: Fixed-point C compiler for TMS320C50 digital signal processors. In:
Proc. of 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.
707–710 (1997)

16. Kim, S., Sung, W.: A Floating-point to Fixed-point Assembly Program Translator for the TMS
320C25. IEEE Trans. on Circuits and Systems 41(11), 730–739 (1994)

http://www.coware.com/products/signalprocessing.php
http://en.wikipedia.org/wiki/Q_(number_format)
http://msl.snu.ac.kr/fixim/
http://www.mathworks.com/products/simulink/

Optimization of Number Representations 1171

17. Kim, S., Sung, W.: Fixed-point optimization utility for C and C++ based digital signal
processing programs. IEEE Trans. on Circuits and Systems (will be published)

18. Kum, K.I., Sung, W.: VHDL based Fixed-point Digital Signal Processing Algorithm Devel-
opment Software. In: Proceeding of International Conference on VLSI and CAD ’93,
pp. 257–260. Korea (1993)

19. Kum, K.I., Sung, W.: Combined word-length optimization and high-level synthesis of digital
signal processing systems. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 20(8), 921–930 (2001).

20. Micheli, G.D.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, Inc., NJ (1994)
21. Shi, C., Brodersen, R.: Automated fixed-point data-type optimization tool for signal processing

and communication systems. In: Design Automation Conference, 2004. Proceedings. 41st, pp.
478–483 (2004)

22. Sung, W., Kum, K.I.: Word-Length Determination and Scaling Software for a Signal Flow
Block Diagram. In: Proceeding of the International Conference on Acoustics, Speech, and
Signal Processing ’94, vol. 2, pp. 457–460. Adelaide, Australia (1994)

23. Sung, W., Kum, K.I.: Simulation-Based Word-Length Optimization Method for Fixed-Point
Digital Signal Processing Systems. IEEE Trans. on Signal Processing 43(12), 3087–3090
(1995)

24. Willems, M., Bürsgens, V., Grötker, T., Meyr, H.: FRIDGE: An interactive code generation
environment for HW/SW codesign. In: Proc. of 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 287–290 (1997)

25. Willems, M., Bürsgens, V., Meyr, H.: FRIDGE: Floating-point programming of fixed-point
digital signal processors. In: Proc. of the International Conference on Signal Processing
Applications and Technology (1997)

26. Wong, P.W.: Quantization and roundoff noises in fixed-point FIR digital filters. IEEE Trans.
Signal Processing 39, 1552–1563 (1991)

27. Yun, I.D., Lee, S.U.: On the fixed-point error analysis of several fast DCT algorithms. IEEE
Trans. Circuits and Systems for Video Technology 3(1), 27–41 (1993)

28. Zivŏjnovic, V.: Compilers for Digital Signal Processors. DSP & Multimedia Technology 4(5),
27–45 (1995)

29. H. Keding: Pain killers for fixed-point design flow. Technical Report, Synopsys (2010)

Dynamic Dataflow Graphs

Bart D. Theelen, Ed F. Deprettere, and Shuvra S. Bhattacharyya

Abstract Much of the work to date on dataflow models for signal processing
system design has focused on decidable dataflow models. This chapter reviews
more general dataflow modeling techniques targeted to applications that include
dynamic dataflow behavior. The complexity in such applications demands for
increased degrees of agility and flexibility in dataflow models. With the application
of dataflow techniques addressing these challenges, interest in classes of more
general dataflow models has risen correspondingly. We first provide a motivation for
dynamic dataflow models of computation, and review a number of specific methods
that have emerged in this class of models. The dynamic dataflow models covered
in this chapter are Boolean Dataflow, CAL, Parameterized Dataflow, Enable-Invoke
Dataflow, Scenario-Aware Dataflow, and Dynamic Polyhedral Process Networks.

1 Motivation for Dynamic DSP-Oriented Dataflow Models

The decidable dataflow models covered in [30] are useful for their predictability,
strong formal properties, and amenability to powerful optimization techniques.
However, for many signal processing applications, it is not possible to represent
all of the functionality in terms of purely decidable dataflow representations. For
example, functionality that involves conditional execution of dataflow subsystems

B. D. Theelen (�)
Océ Technologies B.V., Venlo, The Netherlands
e-mail: bart.theelen@oce.com

Ed F. Deprettere
Leiden Embedded Research Center, Leiden University Leiden Institute Advanced Computer
Science, Leiden, The Netherlands
e-mail: edd@liacs.nl

S. S. Bhattacharyya
Department of ECE and UMIACS, University of Maryland, College Park, MD, USA

Laboratory for Pervasive Computing, Tampere University of Technology, Tampere, Finland
e-mail: ssb@umd.edu

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_32

1173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_32&domain=pdf
mailto:bart.theelen@oce.com
mailto:edd@liacs.nl
mailto:ssb@umd.edu
https://doi.org/10.1007/978-3-319-91734-4_32

1174 B. D. Theelen et al.

or actors with dynamically varying production and consumption rates can in general
not be expressed with decidable dataflow models.

The need for expressive power beyond what decidable dataflow techniques pro-
vide is becoming increasingly important in the design and implementation of signal
processing systems. This is due to the increasing levels of application dynamics that
must be supported in such systems. Examples include the need to support multi-
standard and other forms of multi-mode signal processing operation; variable data
rate processing; and complex forms of adaptive signal processing behaviors.

Intuitively, dynamic dataflow models can be viewed as dataflow modeling
techniques in which the production and consumption rates of actors can vary in
ways that are not entirely predictable at compile time. It is possible to define
dynamic dataflow modeling formats that are decidable. For example, by restricting
the types of dynamic dataflow actors, and by restricting the usage of such actors to
a small set of graph patterns or “schemas”. Gao, Govindarajan, and Panangaden
defined the class of well-behaved dataflow graphs, which provides a dynamic
dataflow modeling environment that is amenable to compile-time bounded memory
verification [18].

Most existing DSP-oriented dynamic dataflow modeling techniques do not
provide decidable dataflow modeling capabilities. In other words, in exchange for
the increased modeling flexibility (expressive power), one must typically give up
guarantees on compile-time buffer underflow (deadlock) and overflow validation. In
dynamic dataflow environments, analysis techniques may succeed in guaranteeing
avoidance of buffer underflow and overflow for a significant subset of specifications.
However, in general, specifications may exist that “break” these analysis techniques
in the sense that compile-time analysis gives inconclusive results.

Dynamic dataflow techniques can be divided into two general classes:

• Models formulated explicitly in terms of interacting combinations of state
machines and dataflow graphs. In this case, the dataflow dynamics are
represented directly in terms of transitions within one or more underlying
state machines

• Models where the dataflow dynamics are represented using alternative means

The separation in this dichotomy can become somewhat blurry for models that
have a well-defined state structure governing the dataflow dynamics, but whose
design interface does not expose this structure directly to the programmer. Dynamic
dataflow techniques in the first category are covered in [30]—in particular, those
based on explicit interactions between dataflow graphs and finite state machines.
This chapter focusses on the second category.1 Specifically, dynamic dataflow
modeling techniques that involve different kinds of modeling abstractions, apart
from state transitions, as the key mechanisms for capturing dataflow behaviors and
their potential for run-time variation.

1Except for the Scenario Aware Dataflow model in Sect. 6.

Dynamic Dataflow Graphs 1175

Numerous dynamic dataflow modeling techniques have evolved over the past
couple of decades. A comprehensive coverage of these techniques, even after
excluding the “state-centric” ones, is out of the scope this chapter. The objective is
to provide a representative cross-section of relevant dynamic dataflow techniques.
The emphasis is on techniques for which useful forms of compile-time analysis
methods have been developed. Such techniques can be important for exploiting the
specialized properties exposed by these models, and improving predictability and
efficiency when deriving simulations or implementations.

2 Boolean Dataflow

The Boolean Dataflow (BDF) model of computation extends Synchronous Dataflow
(SDF) with a class of dynamic dataflow actors in which production and consumption
rates on actor ports can vary as two-valued functions of control tokens. Such
control tokens are consumed from or produced onto designated control ports of
dynamic dataflow actors. An actor input port is referred to as a conditional input
port if its consumption rate can vary in such a way. Similarly an output port
with a dynamically varying production rate under this model is referred to as a
conditional output port. Given a conditional input port p of a BDF actor A, there
is a corresponding input port Cp, called the control input for p. The consumption
rate on Cp is statically fixed at one token per invocation of A. The number of tokens
consumed from p during a given invocation of A is a two-valued function of the data
value that is consumed from Cp during the same invocation. The dynamic dataflow
behavior for a conditional output port is characterized in a similar way, except that
the number of tokens produced on such a port can be a two-valued function of a
token consumed from a control input port or of a token produced onto a control
output port. If a conditional output port q is controlled by a control output port
Cq , then the production rate on the control output is statically fixed at one token per
actor invocation. The number of tokens produced on q during a given invocation is a
two-valued function of the data value produced onto Cq during the same invocation
of the actor.

Two fundamental dynamic dataflow actors in BDF are the switch and select
actors, which are illustrated in Fig. 1a. The switch actor has two input ports, a control
input port wc and a data input port wd , and two output ports wx and wy . The port wc

accepts Boolean valued tokens, and the consumption rate on wd is statically fixed
at one token per actor invocation. On a given invocation of a switch actor, the data
value consumed from wd is copied to a token that is produced on either wx or wy

depending on the Boolean value consumed from wc. If this Boolean value is true,
then the value from the data input is routed to wx , and no token is produced on wy .
Conversely, if the control token value is false, then the value from wd is routed
to wy with no token produced on wx .

A BDF select actor has a single control input port sc, two additional input ports
(data input ports) sx and sy , and a single output port so. Similar to the control port

1176 B. D. Theelen et al.

Fig. 1 (a) Switch and select
actors in Boolean dataflow,
and (b) An if-then-else
construct expressed in terms
of Boolean dataflow Switch

wd

a b

wc

wx wy

sx sy

Select

so

sc

Switch

wd

wc

wx wy

A B

sx sy

Select

so

sc

of the switch actor, port sc accepts Boolean valued tokens, and the production rate
on so is statically fixed at one token per invocation. On each invocation of the select
actor, data is copied from a single token from either sx or sy to so depending on
whether the corresponding control token value is true or false respectively.

Switch and select actors can be integrated along with other actors in various ways
to express different kinds of control constructs. For example, Fig. 1b illustrates an
if-then-else construct, where the actors A and B are applied conditionally based on
a stream of control tokens. Here A and B are SDF actors that each consume one
token and produce one token on each invocation.

Buck has developed scheduling techniques to automatically derive efficient
control structures from BDF graphs under certain conditions [9]. Buck also showed
that BDF is Turing complete, and furthermore, that SDF augmented with just switch
and select (and no other dynamic dataflow actors) is also Turing complete. This
latter result provides a convenient framework to demonstrate Turing completeness
for other kinds of dynamic dataflow models, such as the Enable-Invoke Dataflow
(EIDF) model described in Sect. 5. In particular, if a given model of computation
can express all SDF actors as well as the functionality associated with the BDF
switch and select actors, then such a model can be shown to be Turing complete.

3 CAL

In addition to providing a dynamic dataflow model of computation that is suitable
for signal processing system design, CAL provides a complete programming
language. It is furthermore supported by a growing family of development tools
for hardware and software implementation. The name “CAL” is derived as a self-
referential acronym for the CAL Actor Language. CAL was developed by Eker and
Janneck at U. C. Berkeley [13]. It has since evolved into an actively-developed,
widely-investigated language for design and implementation of embedded software

Dynamic Dataflow Graphs 1177

and field programmable gate array applications (e.g., see [29, 56, 78]). One of the
most notable developments to date in the evolution of CAL has been its adoption as
part of the recent MPEG standard for Reconfigurable Video Coding (RVC) [6].

A CAL program is specified as a network of CAL actors, where each actor
is a dataflow component that is expressed in terms of a general underlying
form of dataflow. This general form of dataflow admits both static and dynamic
behaviors, and even non-deterministic behaviors. Like typical actors in any dataflow
programming environment, a CAL actor in general has a set of input ports and a set
of output ports that define interfaces to the enclosing dataflow graph. A CAL actor
also encapsulates its own private state, which can be modified by the actor as it
executes but cannot be modified directly by other actors.

The functional specification of a CAL actor is decomposed into a set of actions,
where each action can be viewed as a template for a specific class of firings or
invocations of the actor. Each firing of an actor corresponds to a specific action and
executes based on the code that is associated with that action. The core functionality
of actors therefore is embedded within the code of the actions. Actions can in
general consume tokens from actor input ports, produce tokens on output ports,
modify the actor state, and perform computation in terms of the actor state and the
data obtained from any consumed tokens.

The number of tokens produced and consumed by each action with respect to
each actor output and input port, respectively, is declared up front as part of the
declaration of the action. An action need not consume data from all input ports nor
must it produce data on all output ports. However, the ports with which the action
exchanges data, and the associated rates of production and consumption must be
constant for the action. Across different actions, however, there is no restriction
of uniformity in production and consumption rates. This flexibility enables the
modeling of dynamic dataflow in CAL.

A CAL actor A can be represented as a sequence of four elements σ0(A), !(A),
2(A), pri(A), where !(A) represents the set of all possible values that the state of
A can take. σ0(A) ∈ !(A) represents the initial state of the actor, before any actor
in the enclosing dataflow graph has started execution. 2(A) represents the set of
actions of A. Finally, pri(A) is a partial order relation, called the priority relation of
A, on 2(A) that specifies relative priorities between actions.

Actions execute based on associated guard conditions as well as the priority
relation of the enclosing actor. More specifically, each actor has an associated guard
condition, which can be viewed as a Boolean expression in terms of the values of
actor input tokens and actor state. An actor A can execute whenever its associated
guard condition is satisfied (true-valued), and no higher-priority action (based on
the priority relation pri(A)) has a guard condition that is also satisfied.

In summary, CAL is a language for describing dataflow actors in terms of
ports, actions (firing templates), guards, priorities, and state. This finer, intra-actor
granularity of formal modeling within CAL allows for novel forms of automated
analysis for extracting restricted forms of dataflow structure. Such restricted forms
of structure can be exploited with specialized techniques for verification or synthesis
to derive more predictable or efficient implementations.

1178 B. D. Theelen et al.

An example of the capability for specialized region detection in CAL programs
is the technique of deriving and exploiting so-called Statically Schedulable Regions
(SSRs) [29]. Intuitively, an SSR is a collection of CAL actions and ports that can be
scheduled and optimized statically using the full power of static dataflow techniques,
such as those available for SDF, and integrated into the schedule for the overall CAL
program through a top-level dynamic scheduling interface.

SSRs can be derived through a series of transformations that are applied on inter-
mediate graph representations. These representations capture detailed relationships
among actor ports and actions, and provide a framework for effective quasi-
static scheduling of CAL-based dynamic dataflow representations. Quasi-static
scheduling is the construction of dataflow graph schedules in which a significant
proportion of overall schedule structure is fixed at compile-time. Quasi-static
scheduling has the potential to significantly improve predictability, reduce run-time
scheduling overhead, and as discussed above, expose subsystems whose internal
schedules can be generated using purely static dataflow scheduling techniques.

A further discussion of CAL can be found in [43], which presents the application
of CAL to reconfigurable video coding.

4 Parameterized Dataflow

Parameterized Dataflow is a meta-modeling approach for integrating dynamic
parameters and run-time adaptation of parameters in a structured way into the class
of dataflow models of computations that have a well-defined concept of a graph
iteration [4]. For example, SDF and Cyclo-Static SDF (CSDF), which are discussed
in [30], and Multi-Dimensional SDF (MDSDF), which is discussed in [39], have
well defined concepts of iterations based on solutions to the associated forms of
balance equations. Each of these models can be integrated with Parameterized
Dataflow to provide a dynamically parameterizable form of the original model.

When Parameterized Dataflow is applied to generalize a specialized dataflow
model such as SDF, CSDF, or MDSDF, the specialized model is referred to as the
base model. The resulting dynamically parameterizable form of the base model is
referred to as parameterized X, where X denotes the base model. For example, when
Parameterized Dataflow is applied to SDF as the base model, the resulting model
of computation is called Parameterized Synchronous Dataflow (PSDF). PSDF is
significantly more flexible than SDF as it allows arbitrary parameters of SDF
graphs to be modified at run-time. Furthermore, PSDF provides a useful framework
for quasi-static scheduling, where fixed-iteration looped schedules—such as single
appearance schedules [5] for SDF graphs—can be replaced by parameterized
looped schedules [4, 41]. In such parameterized schedules, loop iteration counts
are represented as symbolic expressions in terms of variables whose values can
be adapted dynamically through computations derived from the enclosing PSDF
specification.

Dynamic Dataflow Graphs 1179

Intuitively, Parameterized Dataflow allows arbitrary attributes of a dataflow graph
to be parameterized, with each parameter characterized by an associated domain of
admissible values that the parameter can take on at any given time. Graph attributes
that can be parameterized include scalar or vector attributes of individual actors,
such as the coefficients of a finite impulse response filter or the block size associated
with an FFT. Also edge attributes, like the delay of an edge or the data type
associated with tokens transferred across the edge, can be parameterized. A final
parameterization example are graph attributes related to numeric precision, which
may be passed down to selected subsets of actors and edges within the given graph.

The Parameterized Dataflow representation of a computation involves three
cooperating dataflow graphs, which are referred to as the body, subinit, and init
graphs. The body graph typically represents the functional “core” of the computa-
tion, while the subinit and init graphs are dedicated to managing the parameters of
the body graph. In particular, each output port of the subinit graph is associated
with a body graph parameter such that data values produced at the output port
are propagated as new parameter values of the associated parameter. Similarly,
output ports of the init graph are associated with parameter values in the subinit
and body graphs.

Changes to body graph parameters, which occur based on new parameter values
computed by the init and subinit graphs, cannot occur at arbitrary points in time.
Instead, once the body graph begins execution it continues uninterrupted through
a graph iteration, where the specific notion of an iteration in this context can be
specified by the user in an application-specific way. For example, in PSDF, the most
natural and general definition for a body graph iteration would be a single SDF
iteration of the body graph (as defined by the SDF repetitions vector [30]).

An iteration of the body graph can however also be defined as some constant
number of iterations, e.g., the number of iterations required to process a fixed-
size block of input data samples. Furthermore, parameters that define the body
graph iteration can be used to parameterize the body graph or the enclosing PSDF
specification at higher levels of the model hierarchy. In this way, the processing that
is defined by a graph iteration can itself be dynamically adapted as the application
executes. For example, the duration (or block length) for fixed-parameter processing
may be based on the size of a related sequence of contiguous network packets, where
the sequence size determines the extent of the associated graph iteration.

Body graph iterations can even be defined to correspond to individual actor
invocations. This can be achieved by defining an individual actor as the body
graph of a parameterized dataflow specification, or by simply defining the notion
of iteration for an arbitrary body graph to correspond to the next actor firing in the
graph execution. Thus, when modeling applications with parameterized dataflow,
designers have significant flexibility to control the windows of execution that define
the boundaries at which graph parameters can be changed.

A combination of cooperating body, init, and subinit graphs is called a PSDF
specification. PSDF specifications can be abstracted as PSDF actors in higher level
PSDF graphs, and in this way, PSDF specifications can be integrated hierarchically.

1180 B. D. Theelen et al.

setSp selector

Compress.init
sets L

Compress.subinit

s1

sets R, M, N

L L

SubsystemCompress: params = {L, M, N, R}

Compress.body

q1

q2

d1

d2

Ans2 Sn P1RN

N1

M1

11

111

1

M

N

NR

Fig. 2 An illustration of a speech compression system that is modeled using PSDF semantics.
This illustration is adapted from [4]

Figure 2 illustrates a PSDF specification for a speech compression system. This
illustration is adapted from [4]. Here, setSp (“set speech”) is an actor that reads a
header packet from a stream of speech data, and configures L, which is a parameter
representing the length of the next speech instance to process. The s1 and s2 actors
are input interfaces that inject successive samples of the current speech instance
into the dataflow graph. The actor s2 zero-pads each speech instance to a length R

(R ≥ L) so that the resulting length is divisible by N , which is the speech segment
size. The An (“analyze”) actor performs linear prediction on speech segments, and
produces corresponding auto-regressive (AR) coefficients (in blocks of M samples),
and residual error signals (in blocks of N samples) on its output edges. The actors
q1 and q2 represent quantizers, and complete the modeling of the transmitter
component of the body graph. The receiver side functionality is modeled in the
body graph starting with the actors d1 and d2, which represent dequantizers. The
actor Sn (“synthesize”) reconstructs speech instances using corresponding blocks of
AR coefficients and error signals. Actor P1 (“play”) represents an output interface
for playing or storing the resulting speech instances.

The model order (number of AR coefficients) M , speech segment size N , and
zero-padded speech segment length R are determined on a per-segment basis by the
selector actor in the subinit graph. Existing techniques, such as the Burg segment
size selection algorithm and AIC order selection criterion [32] can be used for this.

The model of Fig. 2 can be optimized to eliminate the zero padding overhead
(modeled by the parameter R). This optimization can be performed by converting
the design to a Parameterized Cyclo-Static Dataflow (PCSDF). In PCSDF, Parame-
terized Dataflow is integrated with CSDF as the base model instead of SDF.

Further details on the exemplified speech compression application and its
representations in PSDF and PCSDF, the semantics of Parameterized Dataflow
and PSDF, and quasi-static scheduling techniques for PSDF can be found in [4].
Parameterized Cyclo-Static Dataflow (PCSDF), the integration of Parameterized
Dataflow meta-modeling with Cyclo-Static Dataflow, is explored further in [57].

Dynamic Dataflow Graphs 1181

The exploration of different models of computation, including PSDF and PCSDF,
for modeling software defined radio systems is described in [3]. In [38], Kee et
al. explore the application of PSDF techniques to field programmable gate array
implementation of the physical layer for 3GPP-Long Term Evolution (LTE). The
integration of concepts related to parameterized dataflow in language extensions for
embedded streaming systems is described in [42]. General techniques for analysis
and verification of hierarchically reconfigurable dataflow graphs are explored
in [47].

5 Enable-Invoke Dataflow

Enable-Invoke Dataflow (EIDF) is another DSP-oriented dynamic dataflow model-
ing technique [51]. The applicability of EIDF has been demonstrated in the context
of behavioral simulation, FPGA implementation, and prototyping of different
scheduling strategies [49–51]. This latter capability—prototyping of scheduling
strategies—is particularly important in analyzing and optimizing embedded soft-
ware. The importance and complexity of carefully analyzing scheduling strategies
are high, even for the restricted SDF model where scheduling decisions have a major
impact on key implementation metrics [7]. The incorporation of dynamic dataflow
features makes the scheduling problem more critical since application behaviors are
less predictable and more difficult to understand through analytical methods.

EIDF is based on a formalism in which actors execute through dynamic tran-
sitions among modes. Although each mode has constant production/consumption
rate behavior, different modes can have different dataflow rates. Unlike other
forms of mode-oriented dataflow specification, SDF-integrated starcharts [30],
SysteMoc [14], and CAL (see Sect. 3), EIDF imposes a strict separation between
fireability checking (checking whether or not the next mode has sufficient data
to execute), and mode execution (carrying out the execution of a given mode).
This allows for lightweight fireability checking since it is completely separated
from mode execution. Furthermore, the approach improves predictability of mode
executions since there is no waiting for data (blocking reads)—the time required
to access input data is not affected by scheduling decisions or global dataflow
graph state.

For a given EIDF actor, the specification for each mode of the actor includes the
number of tokens that is consumed on each input port, the number of tokens that is
produced on each output port, and the computation (the invoke function) that is to be
performed when the actor is invoked in the given mode. The specified computation
must produce the designated number of tokens on each output port. The invoke
function must also produce a value for the next mode of the actor, which determines
the number of input tokens required for and the computation to be performed during
the next actor invocation. The next mode can in general depend on the current mode
as well as the input data that is consumed as the mode executes.

1182 B. D. Theelen et al.

Switch

1

1

Control

Data

[1,0]

[0,1]

True
Output

False
Output

Control
Mode

True
Mode

False
Mode

Mode Control Input Data Input True Output False Output
Control Mode 1 0 0 0
True Mode 0 1 1 0
False Mode 0 1 0 1

a b

c

Fig. 3 An illustration of the design of a switch actor in CFDF. (a) Switch actor. (b) Mode
transition diagram. (c) Production and consumption behavior of modes

At any given time between mode executions (actor invocations), an enclosing
scheduler can query the actor using the enable function of the actor. The enable
function can only examine the number of tokens on each input port (without
consuming any data), and based on these “token populations”, the function returns
a Boolean value indicating whether or not the next mode has enough data to execute
to completion without waiting for data on any port.

The set of possible next modes for a given actor at a given point in time can in
general be empty or contain one or multiple elements. If the next mode set is empty
(i.e., it is null), then the actor cannot be invoked again before it is somehow reset or
re-initialized from environment that controls the enclosing dataflow graph. A null
next mode is therefore equivalent to a transition to a mode that requires an infinite
number of tokens on an input port. The provision for multi-element sets of next
modes allows for natural representation of non-determinism in EIDF specifications.

When the set of next modes for a given actor mode is restricted to have at
most one element, the resulting model of computation, called Core Functional
Dataflow (CFDF), is a deterministic, Turing complete model [51]. CFDF semantics
underlie the Functional DIF simulation environment for behavioral simulation of
signal processing applications. Functional DIF integrates CFDF-based dataflow
graph specification using the Dataflow Interchange Format (DIF). DIF is a tex-
tual language for DSP-oriented dataflow graphs and Java-based specifications of
intra-actor functionality covering enable and invoke functions, and next mode
computations [51].

Figures 3 and 4 illustrate, respectively, the design of a CFDF actor and its imple-
mentation in functional DIF. This actor provides functionality that is equivalent to
the Boolean Dataflow switch actor described in Sect. 2.

Dynamic Dataflow Graphs 1183

public CFSwitch() {
_control = addMode("control");
_control_true = addMode("control_true");
_control_false = addMode("control_false");

_data_in = addInput("data_in");
_control_in = addInput("control_in");
_true_out = addOutput("true_out");
_false_out = addOutput("false_out");

_control.setConsumption(_control_in, 1);
_control_true.setConsumption(_data_in, 1);
_control_true.setProduction(_true_out, 1);
_control_false.setConsumption(_data_in, 1);
_control_false.setProduction(_false_out, 1);

}

public boolean enable(CoreFunctionMode mode) {
if (_control == mode) {

if (peek(_control_in) > 0) {
return true;

}
return false;

} else if (_control_true == mode) {
if (peek(_data_in) > 0) {

return true;
}
return false;

} else if (_control_false == mode) {
if (peek(_data_in) > 0) {

return true;
}
return false;

}
return false;

}

public CoreFunctionMode invoke(CoreFunctionMode mode) {
if (_init == mode) {

return _control;
}
if (_control == mode) {

if ((Boolean)pullToken(_control_in)) {
return _control_true;

} else {
return _control_false;

}
}
if (_control_true == mode) {

Object obj = pullToken(_data_in);
pushToken(_true_out, obj);
return _control;

}
if (_control_false == mode) {

Object obj = pullToken(_data_in);
pushToken(_false_out, obj);
return _control;

}
}

a

b

c

Fig. 4 An implementation of the switch actor design of Fig. 3 in the functional DIF environ-
ment. (a) Constructor (defines modes and dataflow behavior). (b) Enable Function (determines
whether firing condition is met). (c) Invoke function (performs action and determines next mode)

1184 B. D. Theelen et al.

6 Scenario-Aware Dataflow

This section discusses Scenario-Aware Dataflow (SADF), which is a generalization
of dataflow models with strict periodic or static behavior. Like many dataflow mod-
els, SADF is primarily a coordination language that highlights how actors (which are
potentially executed in parallel) interact. To express dynamism, SADF distinguishes
data and control explicitly. The control-related coherency between the behavior
(and hence, the resource requirements) of different parts of a signal processing
application can be captured with so-called scenarios [25]. The scenarios commonly
coincide with dissimilar (but within themselves more static) modes of operation
originating, for example, from different parameter settings, sample rate conversion
factors, or the signal processing operations to perform. Scenarios are typically
defined by clustering operational situations with similar resource requirements [25].
The scenario-concept in SADF allows for more precise (quantitative) analysis
results compared to applying SDF-based analysis techniques. Moreover, common
subclasses of SADF can be synthesized into efficient implementations [35, 66].

6.1 SADF Graphs

We introduce SADF by some examples from the multi-media domain. We first
consider the MPEG-4 video decoder for the Simple Profile from [67, 71]. It supports
video streams consisting of Intra (I) and Predicted (P) frames. For an image size of
176× 144 pixels (QCIF), there are 99 macro blocks to decode for I frames and no
motion vectors. For P frames, such motion vectors determine the new position of
certain macro blocks relative to the previous frame. The number of motion vectors
and macro blocks to process for P frames ranges between 0 and 99. The MPEG-4
decoder clearly shows variations in the functionality to perform and in the amount
of data to communicate between the operations. This leads to large fluctuations
in resource requirements [52]. The order in which the different situations occur
strongly depends on the video content and is generally not periodic.

Figure 5 depicts an SADF graph for the MPEG-4 decoder in which nine different
scenarios are identified. SADF distinguishes two types of actors: kernels (solid ver-
tices) model the data processing parts, whereas detectors (dashed vertices) control
the behavior of actors through scenarios.2 Moreover, data channels (solid edges) and
control channels (dashed edges) are distinguished. Control channels communicate
scenario-valued tokens that influence the control flow. Data tokens do not influence
the control flow. The availability of tokens in channels is shown with a dot. Here,
such dots are labeled with the number of tokens in the channel. The start and end
points of channels are labeled with production and consumption rates respectively.

2In case of one detector, SADF literature may not show the detector and control channels explicitly.

Dynamic Dataflow Graphs 1185

They refer to the number of tokens atomically produced respectively consumed by
the connected actor upon its firing. The rates can be fixed or scenario-dependent,
similar as in PSDF. Fixed rates are positive integers. Parameterized rates are valued
with non-negative integers that depend on the scenario. The parameterized rates
for the MPEG-4 decoder are listed in Fig. 5b. A value of 0 expresses that data
dependencies are absent or that certain operations are not performed in those
scenarios. Studying Fig. 5b reveals that for any given scenario, the rate values yield a
consistent SDF graph. In each of these scenario graphs, detector FD has a repetition
vector entry of 1 [71], which means that scenario changes as prescribed by the
behavior of FD may only occur at iteration boundaries of each scenario graph. This
is not necessarily true for SADF in general as discussed below.

SADF specifies execution times of actors (from a selected time domain, see
Sect. 6.2) per scenario. Figure 5c lists the worst-case execution times of the MPEG-4
decoder for an ARM7TDMI processor. The tables in Fig. 5 show that the worst-case
communication requirements occur for scenario P99, in which all actors are active
and production/consumption rates are maximal. Scenario P99 also requires maximal
execution times for VLD, IDCT, and MC, while for RC, it is scenario I in which
the worst-case execution time occurs. Traditional SDF-based approaches need
to combine these worst-case requirements into one (unrealistically) conservative
model, which yields too pessimistic analysis results.

An important aspect of SADF is that sequences of scenarios are made explicit
by associating state machines to detectors. The dynamics of the MPEG-4 decoder

d

a

1
1

1

1

d

1

1

1
1

b

1

c
1

1

d

e

31

1

c

IDCTVLD

MC
RCFD

Actor (Sub)Scenario E (kCycles)

VLD P0 0
All except P0 40

IDCT P0 0
All except P0 17

MC

I, P0 0
P30 90
P40 145
P50 190
P60 235
P70 265
P80 310
P99 390

RC

I 350
P0 0

P30, P40, P50 250
P60 300

P70, P80, P99 320
FD All 0

Rate (Sub)Scenario

a
b
c
d
e

I
0
0

99
I

99

P0
0
0
0
0
0

Px
1
x
x
1
x

x ∈{ 30,40,50,60,70,80,99}

a c

b

Fig. 5 Modeling the MPEG-4 decoder with SADF. (a) Actors and channels. (b) Parameterized
rates. (c) Worst-case execution times

1186 B. D. Theelen et al.

originate from control-flow code that (implicitly or explicitly) represents a state-
machine with video stream content dependent guards on the transitions between
states. One can think of if-statements that distinguish processing I frames from
processing P frames. For the purpose of compile-time analysis, SADF abstracts
from the content of data tokens (similar to SDF and CSDF) and therefore also
from the concrete conditions in control-flow code. Different types of state machines
can be used to model the occurrences of scenarios, depending on the compile-time
analysis needs as presented in Sect. 6.2. The dynamics of the MPEG-4 decoder
can be captured by a state-machine of 9 states (one per scenario) associated to
detector FD.

The operational behavior of actors in SADF follows two steps, similar to the
switch and select actors in BDF (see Sect. 2) and to EIDF (see Sect. 5). The first step
covers the control part which establishes the mode of operation. The second step
is like the traditional data flow behavior of SDF actors3 in which data is consumed
and produced. Kernels establish their scenario in the first step when a scenario-
valued token is available on their control inputs. The operation mode of detectors
is established based on external and internal forces. We use subscenario to denote
the result of the internal forces affecting the operation mode. External forces are
the scenario-valued tokens available on control inputs (similar as for kernels). The
combination of tokens on control inputs for a detector determine its scenario,4 which
(deterministically) selects a corresponding state-machine. A transition is made in
the selected state machine, which establishes the subscenario. Where the scenario
determines values for parameterized rates and execution time details for kernels, it
is the subscenario that determines these aspects for detectors. Tokens produced by
detectors onto control channels are scenario-valued to coherently affect the behavior
of controlled actors, which is a key feature of SADF. Actor firings in SADF block
until sufficient tokens are available. Hence, the execution of different scenarios
can overlap in a pipelined fashion. For example, in the MPEG-4 decoder, IDCT
is always ready to be executed immediately after VLD, which may already have
accepted a control token with a different scenario value from FD. The ability to
express such so-called pipelined reconfiguration is another key feature of SADF.

We now turn our attention to the MP3 audio decoder example from [67] depicted
in Fig. 6. It illustrates that SADF graphs can contain multiple detectors, which may
even control each other’s behavior. MP3 decoding transforms a compressed audio
bitstream into pulse code modulated data. The stream is partitioned into frames of
1152 mono or stereo frequency components, which are divided into two granules
of 576 components structured in blocks [58]. MP3 distinguishes three frame types:
Long (L), Short (S) and Mixed (M), and two block types: Long (BL) and Short
(BS). A Long block contains 18 frequency components, while Short blocks include
only 6 components. Long frames consist of 32 Long blocks, Short frames of 96

3Execution of the reflected function or program is enabled when sufficient tokens are available on
all (data) inputs, and finalizes (after a certain execution time) with producing tokens on the outputs.
4If a detector has no control inputs, it operates in a default scenario ε and has one state machine.

Dynamic Dataflow Graphs 1187

RQL ROL ARL IMDCTL FIL SPFL
576

576

b
b

b

f

f
i

i

i

l

l

l

576
576

1152RQR ROR

S

ARR IMDCTR FIR SPFR
d

d

d h
j

j j n

n

n

576 576

11521152

1152 WH

g

e

k

m

g

c

h

a

e

FD BDR

2

1

1

1

1

1

x

1

1

1

1

BDL

1

y y

1

z
z

1

1

1
1

1

x

1

1 1

9

1

z

y

1

Fig. 6 Modeling an MP3 decoder with SADF using hierarchical control

Short blocks and Mixed frames are composed of 2 Long blocks, succeeded by 90
Short blocks. The frame type and block type together determine the operation mode.
Neglecting that the frame types and specific block type sequences are correlated
leads to unrealistic models. The sequences of block types is dependent on the frame
types as reflected in the structure of source code of the MP3 audio decoder. SADF
supports hierarchical control to intuitively express this kind of correlation between
different aspects that determine the scenario.

Figure 7a lists the parameterized rates for the MP3 decoder. Only five combina-
tions of frame types occur for the two audio channels combined. We use a two-letter
abbreviation to indicate the combined fame type for the left and right audio channel
respectively: LL, SS, LS and SL. Mixed frames M cover both audio channels
simultaneously. Detector FD determines the frame type with a state machine of five
states, each uniquely identifying a subscenario in {LL, SS, LS, SL, M}. The operation
mode of kernel S depends on the frame types for both audio channels together and
therefore it operates according to a scenario from this same set. The scenario of
kernels RQL, ROL and RQR, ROR is only determined by the frame type for either
the left or right audio channel. They operate in scenario S, M or L by receiving
control tokens from FD, valued with either the left or right letter in LL, SS, LS, SL
or with M.

Detectors BDL and BDR identify the appropriate number and order of Short and
Long blocks based on the frame scenario, which they receive from FD as control
tokens valued L, S or M. From the perspective of BDL and BDR, block types BL
and BS are refinements (subscenarios) of the scenarios L, S and M. Figure 7b shows
the three state machines associated with BDL as well as BDR. Each of their states
implies one of the possible subscenarios in {LBL,SBS,MBL,MBS}. The value
of the control tokens produced by BDL and BDR to kernels ARL, IMDCTL, FIL
and ARR, IMDCTR, FIR in each of the four possible subscenarios matches the last
two letters of the subscenario name (i.e., BL or BS). Although subscenarios LBL

1188 B. D. Theelen et al.

Rate Scenario
L

a, c
b, d

y, z

576 0 36
0

0 576 0 576 36
576 0 576 0 540

0 576 576 0 540
576 0 0 576 36

1 1 1 1 2

18 0
0 6

18 6

32 96 2 90

576 540

Rate (Sub)Scenario

e
f
g
h
x

Rate Scenario

i, j
k, m
l, n

Rate SubScenario

Scenario L Scenario S

LBL SBS

Scenario M

MBS MBL

S M

M

LBL SBS MBL

BL BS

MBS

SLLSSSLL

a b

Fig. 7 Properties of the MP3 decoder model. (a) Parameterized rates. (b) State machines for BDL
and BDR

and MBL both send control tokens valued BL, the difference between them is the
number of such tokens (similarly for subscenarios SBS and MBS).

Consider decoding of a Mixed frame. It implies the production of two M-valued
tokens on the control port of detector BDL. By interpreting each of these tokens,
the state machine for scenario M in Fig. 7b makes one transition. Hence, BDL uses
subscenario MBL for its first firing and subscenario MBS for its second firing. In
subscenario MBL, BDL sends 2 BL-valued to kernels ARL, IMDCTL and SPFL,
while 90 BS-valued tokens are produced in subscenario MBS. As a result, ARL,
IMDCTL and SPFL first process 2 Long blocks and subsequently 90 Short blocks
as required for Mixed frames.

The example of Mixed frames highlights a unique feature of SADF: reconfigu-
rations may occur during an iteration. An iteration of the MP3 decoder corresponds
to processing frames, while block type dependent variations occur during process-
ing Mixed frames. Supporting reconfiguration within iterations is fundamentally
different from assumptions underlying other dynamic dataflow models, including
for example PSDF. The concept is orthogonal to hierarchical control. Hierarchical
control is also different from other dataflow models with hierarchy such as
Heterogeneous Dataflow [26]. SADF allows pipelined execution of the controlling
and controlled behavior together, while other approaches commonly prescribe that
the controlled behavior must first finish completely before the controlling behavior
may continue.

6.2 Analysis

Various analysis techniques exist for SADF, allowing the evaluation of both quali-
tative properties (such as consistency and absence of deadlock) and best/worst-case
and average-case quantitative properties (like minimal and average throughput). We

Dynamic Dataflow Graphs 1189

briefly discuss consistency of SADF graphs. The MPEG-4 decoder is an example
of a class of SADF graphs where each scenario is like a consistent SDF graph and
scenario changes occur at iteration boundaries of these scenario graphs (although
still pipelined). Such SADF graphs are said to be strongly consistent [71], which
is easy to check as it results from structural properties only. The SADF graph of
the MP3 decoder does not satisfy these structural properties (for Mixed frames), but
it can still be implemented in bounded memory. The required consistency property
is called weak consistency [22, 67]. Checking weak consistency requires taking the
possible (sub)scenario sequences as captured by the state machines associated to
detectors into account, which complicates a consistency check considerably.

Analysis of quantitative properties and the efficiency of the underlying tech-
niques depend on the selected type of state machine associated to detectors as well
as the chosen time model. For example, one possibility is to use non-deterministic
state machines, which merely specify what sequences of (sub)scenarios can occur
but not how often. This typically enables worst/best-case analysis. Applying the
techniques in [19, 22, 23] then allows computing that a throughput of processing
0.253 frames per kCycle can be guaranteed for the MPEG-4 decoder. An alternative
is to use probabilistic state machines (i.e., Markov chains), which also capture the
occurrence probabilities of the (sub)scenario sequences to allow for average-case
analysis as well. Assuming that scenarios I , P0, P30, P40, P50, P60, P70, P80 and
P99 of the MPEG-4 decoder may occur in any order and with probabilities 0.12,
0.02, 0.05, 0.25, 0.25, 0.09, 0.09, 0.09 and 0.04 respectively, the techniques in [68]
compute that the MPEG-4 decoder processes on average 0.426 frames per kCycle.

The semantics of SADF graphs where Markov chains are associated to detectors
while assuming generic discrete execution time distributions5 has been defined
in [67] by using Timed Probabilistic Systems (TPS) as formal sematic model. Such
transition systems operationalize the behavior with states and guarded transitions
that capture events like the begin and end of each of the two steps in firing
actors and progress of time. In case an SADF graph yields a TPS with finite state
space, it is amenable to analysis techniques for (Priced) Timed Automata, Markov
Decision Processes, and Markov Chains by defining reward structures as also used
in (probabilistic or quantitative) model checking. In [68], for example, specific
properties of dataflow models in general and SADF in particular are discussed
that enable substantial state-space reductions during such analysis. The underlying
techniques have been implemented in [69] in the SDF3 tool kit [63], covering the
computation of worst/best-case and average-case properties for SADF including
throughput and various forms of latency and buffer occupancy metrics [69].

Other variants of Scenario-Aware Dataflow have been proposed that are sup-
ported by exact analysis techniques using formal sematic models. The techniques
presented in [36, 37, 72] exploit Interactive Markov Chains (IMC) to combine the
association of Markov chains to detectors with exponentially distributed execution
times, which allows for instance computing the response time distribution of the

5This covers the case of constant execution times as so-called point distributions [67, 68].

1190 B. D. Theelen et al.

MPEG-4 decoder to complete processing the first frame [72]. A further generalisa-
tion of the time model for Scenario-Aware Dataflow with Markov chains associated
to detectors is proposed in [31]. This generalisation is based on the formal sematic
model of Stochastic Timed Automata (STA) and allows for scenario-dependent cost
annotations to compute for instance energy consumption.

When abstracting from the stochastic aspects of execution times and scenario
occurrences, SADF is still amenable to worst/best-case analysis. Since SADF
graphs are timed dataflow graphs, they exhibit linear timing behavior [19, 44, 77].
This property facilitates network-level worst/best-case analysis by considering the
worst/best-case execution times for individual actors. For linear timed systems,
this is known to lead to the overall worst/best-case performance. For the class of
SADF graphs with a single detector (often called FSM-based SADF), very efficient
performance analysis can be done based on a (max,+)-algebraic interpretation of
the operational semantics. It allows for worst-case throughput analysis, some latency
analysis and can find critical scenario sequences without explicitly exploring the
underlying state-space. Instead, the analysis is performed by means of state-space
analysis and maximum-cycle ratio analysis of the equivalent but much smaller
(max,+)-automaton [19, 22, 23]. Reference [22] shows how this analysis can be
extended for weakly-consistent SADF graphs. An alternative to using (max,+)-
algebra is proposed in [60], where the formal semantic model of Timed Automata
(TA) is exploited to enable analyzing various qualitative and quantitative properties.

In case exact computation is hampered by state-space explosion, [69, 71] exploit
an automated translation into process algebraic models expressed in the Parallel
Object-Oriented Specification Language (POOSL) [70], which supports statistical
model checking (simulation-based estimation) of various average-case properties.

6.3 Synthesis

FSM-based SADF graphs have been extensively studied for implementation on
(heterogeneous) multi-processor platforms [35, 65]. Variations in resource require-
ments need to be exploited to limit resource usage without violating any timing
requirements. The result of the design flow for FSM-based SADF implemented in
the SDF3 tool kit [63] is a set of Pareto optimal mappings that provide a trade-
off in valid resource usages. For certain mappings, the application may use many
computational resources and few storage resources, whereas an opposite situation
may exist for other mappings. At run-time, the most suitable mapping is selected
based on the available resources not used by concurrently running applications [59].

We highlight two key aspects of the design flow of [63, 65]. The first concerns
mapping channels onto (possibly shared) storage resources. Like other dataflow
models, SADF associates unbounded buffers with channels, but a complete graph
may still be implemented in bounded memory. FSM-based SADF allows for
efficient compile-time analysis of the impact that certain buffer sizes have on the
timing of the application. Hence, a synthesized implementation does not require

Dynamic Dataflow Graphs 1191

0 50 100 150 200 250

I

P0

P30

P40

P50

P60

P70

P80

P99

Buffer size [#tokens]

T
hr

ou
gh

pu
t [

ite
ra

tio
ns

/ti
m

e-
un

it]

300 350 400 450
1

2

3

4

5

6

7

8

9

10
× 10–4

Fig. 8 Throughput/buffer size trade-off space for the MPEG-4 decoder

run-time buffer management, thereby making it easier to guarantee timing. The
design flow in [65] dimensions the buffer sizes of all individual channels in the graph
sufficiently large to ensure that timing (i.e., throughput) constraints are met, but also
as small as possible to save memory and energy. It exploits the techniques of [64]
to analyze the trade-off between buffer sizes and throughput for each individual
scenario in the FSM-based SADF graph. After computing the trade-off space for
all individual scenarios, a unified trade-off space for all scenarios is created. The
same buffer size is assigned to a channel in all scenarios. Combining the individual
spaces is done using Pareto algebra [21] by taking the free product of all trade-off
spaces and selecting only the Pareto optimal points in the resulting space. Figure 8
shows the trade-off space for the individual scenarios in the MPEG-4 decoder.
In this application, the set of Pareto points that describe the trade-off between
throughput and buffer size in scenario P99 dominate the trade-off points of all other
scenarios. Unifying the trade-off spaces of the individual scenarios therefore results
in the trade-off space corresponding to scenario P99. After computing the unified
throughput/buffer trade-off space, the synthesis process in [65] selects a Pareto point
with the smallest buffer size assignment that satisfies the throughput constraint as a
means to allocate the required memory resources in the multiprocessor platform.

A second key aspect of the synthesis process is the fact that actors of the
same or different applications may share resources. The set of concurrently active
applications is typically unknown at compile-time. It is therefore not possible to
construct a single static-order schedule for actors of different applications. The

1192 B. D. Theelen et al.

design flow in [65] uses static-order schedules for actors of the same application,
but sharing of resources between different applications is handled by run-time
schedulers with TDMA policies. It uses a binary search algorithm to compute the
minimal TDMA time slices ensuring that the throughput constraint of an application
is met. By minimizing the TDMA time slices, resources are saved for other
applications. Identification of the minimal TDMA time slices works as follows.
In [1], it is shown that the timing impact of a TDMA scheduler can be modeled
into the execution time of actors. This approach is used to model the TDMA time
slice allocation it computes. Throughput analysis is then performed on the modified
FSM-based SADF graph. When the throughput constraint is met, the TDMA time
slice allocation can be decreased. Otherwise it needs to be increased. This process
continues until the minimal TDMA time slice allocation satisfying the throughput
constraint is found.

7 Dynamic Polyhedral Process Networks

The chapter on Polyhedral Process Networks (PPN) [74] deals with the auto-
matic derivation of certain dataflow networks from Static Affine Nested Loop
Programs (SANLP). An SANLP is a nested loop program in which loop bounds,
conditions and variable index expressions are (quasi-)affine expressions in the
iterators of enclosing loops and static parameters.6 Because many signal processing
applications are not static, there is a need to consider dynamic affine nested loop
programs (DANLP) which differ from SANLPs in that they can contain

1. if-the-else constructs with no restrictions on the condition [61],
2. loops with no condition on the bounds [45],
3. while statements other than while(1) [46],
4. dynamic parameters [79].

Remark In all DANLP programs presented in subsequent Subsections, arrays are
indexed by affine functions of static parameters and enclosing for-loop iterators.
This is why the A is still in the name DANLP.

7.1 Weakly Dynamic Programs

Whereas condition statements in an SANLP must be affine in static parameters
and iterators of enclosing loops, if conditions can be anything in a DANLP. Such
programs have been called Weakly Dynamic Programs (WDP) in [61]. A simple

6The corresponding tool is called PNgen [75], and is part of the Daedalus design frame-
work [48], http://daedalus.liacs.nl.

http://daedalus.liacs.nl

Dynamic Dataflow Graphs 1193

example of a WDP is shown in Fig. 9. The question here is whether the argument of
function F3 originates from the output of function F2 or function F1.

In the case of an SANLP, the input-output equivalent PPN is obtained by:

1. Converting the SANLP—by means of an array analysis [15, 16]—into a Single
Assignment Code (SAC) used in the compiler community and the systolic array
community [33]

2. Deriving from the SAC a Polyhedral Reduced Dependence Graph (PRDG) [55]
3. Constructing the PPN from the PRDG [11, 40, 55]

While in an SAC every variable is written only once, in a Dynamic Single
Assignment Code (dSAC) every variable is written at most once. For some variables,
it is not known at compile time whether or not they will be read or written. For a
WDP not all dependences are known at compile time and therefore, the analysis
must be based on the so-called Fuzzy Array Dataflow Analysis (FADA) [17]. This
approach allows the conversion of a WDP to a dSAC. The procedure to generate the
dSAC is out of the scope. The dSAC for the WDP in Fig. 9 is shown in Fig. 10.

Parameter C in the dSAC of Fig. 10 is emerging from the if-statement in line 8
of the original program shown in Fig. 9. This if-statement also appears in the dSAC
in line 14. The dynamic change of the value of C is accomplished by the lines 18
and 21 in Fig. 10. The control variable ctrl(i) in line 18 stores the iterations for
which the data dependent condition that introduces C is true. Also, the variable
ctrl(i) is used in line 21 to assign the correct value to C for the current iteration.
See [61] for more details.

The dSAC can now be converted to two graph structures, namely the Approxi-
mate Reduced Dependence Graph (ADG), and the Schedule Tree (STree). The ADG
is the dynamic counterpart of the static PRDG. Both the PRDG and the ADG are
composed of processes N , input ports IP , output ports OP , and edges E [11, 55].
They contain all information related to the data dependencies between functions in
the SAC and the dSAC, respectively. However, in a WDP some dependencies are
not known at compile time, hence the name approximate. Because of this, the ADG
has the additional notion of Linearly Bounded Set (LBS), as follows.

Let be given four sets of functions S1 = {f 1
x (i) | x = 1..|S1|, i ∈ Zn}, S2 =

{f 2
x (i) | x = 1..|S2|, i ∈ Zn}, S3 = {f 3

x (i) | x = 1..|S3|, i ∈ Zn}, S4 =

Fig. 9 Pseudo code of a
simple Weakly Dynamic
Program

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 [x(i), t(i)] = F1(...);
5 end
6
7 for i = 1:1:N,
8 if t(i) <= 0,
9 [x(i)] = F2(x(i));
10 end
11 [...] = F3(x(i));
12 end

1194 B. D. Theelen et al.

Fig. 10 Dynamic Single
Assignment Code for the
example if Fig. 9

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 ctrl(i) = N+1;
5 end
6 for i = 1:1:N,
7 [out_0, out_1] = F1(...);
8 [x_1(i)] = opd(out_0);
9 [t_1(i)] = opd(out_1);
10 end
11
12 for i = 1:1:N,
13 [t_1(i)] = ipd(t_1(i));
14 if t_1(i) <= 0,
15 [in_0] = ipd(x_1(i));
16 [out_0] = F2(in_0);
17 [x_2(i)] = opd(out_0);
18 [ctrl(i)] = opd(i);
19 end
20
21 C = ipd(ctrl(i));
22 if i = C,
23 [in_0] = ipd(x_2(C));
24 else
25 [in_0] = ipd(x_1(i));
26 end
27
28 [out_0] = F3(in_0);
29 [...] = opd(out_0);
30 end

{f 4
x (i) | x = 1..|S4|, i ∈ Zn}, an integral m × n matrix A and an integral n-vector

b. An LBS is a set of points LBS = { i ∈ Zn | A.i ≥ b,

if S1 �≡ ∅ ⇒ ∀ x=1..|S1|, f 1
x (i) ≥ 0,

if S2 �≡ ∅ ⇒ ∀ x=1..|S2|, f 2
x (i) ≤ 0,

if S3 �≡ ∅ ⇒ ∀ x=1..|S3|, f 3
x (i) > 0,

if S4 �≡ ∅ ⇒ ∀ x=1..|S4|, f 4
x (i) < 0 }.

The set of points B = { i ∈ Zn | A.i ≥ b } is called linear bound of the LBS
and the set S = S1 ∪ S2 ∪ S3 ∪ S4 is called filtering set. Every f

j
x (i) ∈ S can

be an arbitrary function of i.
Consider the dSAC shown in Fig. 10. The exact iterations i are not known at

compile time because of the dynamic condition at line 14 in the dSAC. That is why
the notion of linearly bounded set is introduced, by which the unknown iterations
i are approximated. So, NDN2 is the following LBS: NDN2 = {i ∈ Z | 1 ≤ i ≤

Dynamic Dataflow Graphs 1195

N ∧ 8 ≤ N ≤ 16, t_1(i) ≤ 0}. The linear bound of this LBS is the polytope B =
{1 ≤ i ≤ N ∧ 8 ≤ N ≤ 16} that captures the information known at compile time
about the bounds of the iterations i. The variable t_1(i) is interpreted as an unknown
function of i called filtering function whose output is determined at run time.

The STree contains all information about the execution order amongst the
functions in the dSAC. The STree represents one valid schedule between all these
functions called global schedule. From the STree a local schedule between any
arbitrary set of the functions in the dSAC can be obtained by pruning operations
on the STree. Such a local schedule may for example be needed when two or more
processes are merged [62]. The STree is obtained by converting the dSAC to a
syntax tree using a standard syntax parser, after which all the nodes and edges that
are not related to nodes Fi, i.e., F1, F2, and F3 in Fig. 10 [61]. Figure 11 depicts
a summary.

The difference between the ADG in Fig. 11a and the transformed ADG in
Fig. 11b is that an ADG may have several input ports connected to a single output
port whilst in the transformed ADG every input port is connected to only one single
output port (in accordance with the Kahn Process Network semantics [34]). Parsing
the STree in Fig. 11c top-down from left to right generates a program that gives
a valid execution order (global schedule) among the functions F1, F2 and F3
which is the original order given by the dSAC. The process network in Fig. 11d may
be the result of a design space exploration, and some optimizations. For example,
process P2 is constructed by grouping nodes N1 and N3 in the ADG in Fig. 11b.
Because the behavior of process P2 is sequential (by default), it has to execute the
functionality of nodes N1 and N3 in sequential order. This order is obtained from
the STree in Fig. 11c. See [61] for details.

In a (static) PPN, there are two models of FIFO communication [73], namely
in-order communication and out-of-order communication. In the first model, the
order in which tokens are read from a FIFO channel is the same as the order in
which they have been written to the channel. In the second model, that order is
different. In a PPN that is input-output equivalent to a WDP, there are two more
FIFO communication models, namely in-order with coloring and out-of-order with
coloring. This is necessary because the number of tokens that will be written to a
channel and read from that channel is not known at compile time [61].

Buffer sizes can be determined using the procedure given in [74, 75]. It however
needs a conservative strategy (i.e., an over-estimation) due to the fact that the rate
and the exact amount of data tokens transferred over a particular data channel
is unknown at compile-time. Such over-estimation can be achieved by modifying
the iteration domains of all input/output ports, such that all dynamic if-conditions
defining any of these iteration domains always evaluate to true.

1196 B. D. Theelen et al.

N2
(F2)p1
p2

q2
q1

N1
(F1)

q2

q1 N3
(F3)

p1p2
p2

ED1(t_1) ED5(ctrl)

ED4(x_2)

ED3(x_1)

ED
2(

x_
1)

N2
(F2)p1

p2
q2

q1

N1
(F1)

q2

N3
(F3)

p1p2
p2

ED1(t_1) ED5(ctrl)ED4(x_2)

ED3(x_1)

ED
2(

x_
1)

q12
q11

P1
(N2)

OG1

OG2

IG1

P2
(N1&N3)

IG2 C4(ED3)

C1(ED5)

C2(ED4)
IG1

OG2

OG1

IG3

C3(ED1&ED2)

Schedule Tree (STree)

F1 F2 F3

root

for i = 1:1:Nfor i = 1:1:N

if t_1(i)<=0

F1 F2 F3

root

for i = 1:1:Nfor i = 1:1:N

if t_1(i)<=0

STree Marking

√

√ √

√√

STree Pruning

F1 F3

root

for i = 1:1:Nfor i = 1:1:N

Transformed ADG (ADG’)

Approximated Dependence Graph (ADG)

Process Network (PN) model

a

b

c

d

Fig. 11 Examples of (a) Approximated Dependence Graph (ADG) model; (b) Transformed ADG;
(c) Schedule Tree and Transformations; (d) Process Network model

Dynamic Dataflow Graphs 1197

1 %parameter N 1 10;
2
3 for j = 1 to N,
4 for i = 1 to f(...),
5 y[i] = F1()
6 end
7 end
8 [...] = F2(y[5]),

1 %parameter N 1 10;
2
3 for j = 1 to N,
4 X[j] = f(...)
5 for i = 1 to max f,
6 if i <= X[j],
7 y[i] = F1()
8 end
9 end
10 end
11 [] = F2(y[5])

a b

Fig. 12 A Dynloop program and its equivalent WDP program. (a) Example of a Dynloop
program. (b) Equivalent Weakly Dynamic Program

7.2 Dynamic Loop-Bounds

While loop bounds in an SANLP have to be affine functions of iterators of enclosing
loops and static parameters, loop bounds in a DANLP program can be dynamic.
Such programs have been called Dynloop programs in [45]. A simple example of
a Dynloop program is shown in Fig. 12a.

A Dynloop program can be cast in the form of a WDP, see Sect. 7.1. The
WDP corresponding to the Dynloop program in Fig. 12a is shown in Fig. 12b.
The maximum value of f (), denoted by max_f in line 5 in Fig. 12b is substituted
for the upper bound of the loop at line 4 in Fig. 12a. The value of max_f can be
determined by studying the range of function f ().7 As in Sect. 7.1, a dSAC can
now be obtained by means of a FADA [17]. This analysis introduces parameters to
deal with the dynamic structure in the WDP. The values of these parameters have
to be changed dynamically. This is done by introducing for every such parameter, a
control variable that stores the correct value of the parameter for every iteration.
However, the straightforward introduction of control values as done in Sect. 7.1
violates the dSAC condition that every control variable is written at most once.
To obtain a valid dSAC, an additional dataflow analysis for the control variables is
necessary, resulting in additional control variables [45].

The final dSAC is shown in Fig. 13 where it has been assumed that the variable
y(5) has been initialized to zero. The control variables must be initialized with
values that are greater than the maximum value of the corresponding parameters.
For the example at hand, parameter c1 ∈ [1..N], and c2 ∈ [1..max_f]. Therefore,
the corresponding control variables are initialized as follows:

∀i : 1 ≤ i ≤ max_f : ctrl_c1[i] = N+ 1,

ctrl_c2[i] = max_f+ 1.

7If that is not possible, then an alternative way to estimate max_f is given in [45].

1198 B. D. Theelen et al.

For brevity, the initialization is not shown in Fig. 13. After applying the standard
linearization [73], and its extension of Sect. 7.1, and estimating buffer sizes as also
described Sect. 7.1, the resulting PPN is as shown in Fig. 14.

7.3 Dynamic While-Loops

While only while(1) loops are allowed in an SANLP program, in a DANLP
program any while-loop is acceptable. Such DANLP programs have been called
While-Loop Affine Programs (WLAP) in [46]. There are a number of publications
that address the problem of while loops parallelization [2, 8, 10, 24, 27, 28, 53, 54].
The approach presented here has the advantage that it

• supports both task-level and data-level parallelism,
• generates also parallel code for multi-processor systems with distributed

memory,
• provides an automatic data-dependence analysis procedure,
• exposes and utilizes all available parallelism.

An example is shown in Fig. 15a. The question is again from where for example
function F7 gets its scalar argument x. Because this is not known at compile-time,

Fig. 13 Final dSAC 1 %parameter N 1 10;

2 for j = 1 to N,
3 X[j] = f()
4 for i = 1 to max_f,
5 if i <= X[j],
6 y_1[j,i] = F1()
7 ctrl_c1[i] = j
8 ctrl_c2[i] = i
9 end
10 ctrl c1 1[j,i] = ctrl c1[i]
11 ctrl c2 1[j,i] = ctrl c2[i]
12 end
13 end
14 if max f >= 5,
15 c1 = ctrl c1 1[N, 5]
16 c2 = ctrl c2 1[N, 5]
17 else
18 c1 = N + 1
19 c2 = max f + 1
20 end
21 if c1 <= N & c2 == 5,
22 in_0 = y_1[c1,c2]
23 else
24 in_0 = 0
25 end
26 [...] = F2(in_0)

Dynamic Dataflow Graphs 1199

1 for j = 1 to N,
2 read(i1, in_1)
3 for i = 1 to max_f,
4 if i <= in_1,
5 y_1[j,i] = F1()
6 ctrl_c1[i] = j
7 ctrl_c2[i] = i
8 endif
9 if j=N and i=5
10 out_1 = ctrl_c1[i]
11 out_2 = ctrl_c2[i]
12 out_3 = y_1[ctrl_c1[i], ctrl_c2[i]]
13 write(o1, out_1)
14 write(o2, out_2)
15 write(o3, out_3)
16 endif
17 endfor
18 endfor

Process P2

i1

i3

i2

1 if max_f >= 5,
2 read(i1, in_1)
3 read(i2, in_2)
4 read(i3, in_3)
5 else
6 in_1 = N+1

9 if in_1 <= N & in_2 == 5,

11 else
12 in_4 = 0
13 endif
14 [] = F2(in_4)

8 endif
7 in_2 = max_f+1

10 in_4 = in_3

Process P3Process P1

o1

1 for j = 1 to N,
2 out_1 = f();
3 write(o1, out_1);
4 endfor

i1

o3

o2
o1

Fig. 14 The final PPN derived from the program in Fig. 13

a FADA analysis [17] is necessary to find all data dependencies. The approach to
convert a WLAP program to an input-output equivalent PPN goes in four steps:

1. All data-dependency relations in the initial WLAP program have to be found
by applying FADA analysis on it. Recall that the result of the analysis is
approximated, i.e., it depends on parameters which values are determined at
run-time.

2. Based on the results of the analysis, the initial WLAP is transformed into a dSAC
representation, see Sect. 7.1. Parameters that are introduced by the FADA appear
in the dSAC, and their values are assigned using control variables.

3. The control variables are generated in a way that extends the methods in
Sects. 7.1 and 7.2 to be applicable for WLAP programs as well [46].

4. The topology of the corresponding PPN is derived as well as the code to be
executed in the processes of the PPN.

The result of step 2 for the example in Fig. 15a is shown in Fig. 15b. The iterator
w is associated with the while loop and is initialized with value 0, meaning that the
while loop has never been executed. The parameter α captures the value of the for-
loop iterator in the enclosing while-loop and is initialized to N + 1. The parameter
β is the upper bound of the while-loop iterator w. Because α ∈ [1..N] and β ≥ 1,
the above initializations satisfy the condition that their values are never taken by the
corresponding parameters. It follows from line 23 in Fig. 15b that control variable
ctrl_x_5 is initialized to ctrl_x_5 = (N+1,0) at line 3 in Fig. 15b.

Where does control variable ctrl_x_5 come from? It comes from the con-
struction of the dSAC. The procedure to derive the dSAC is largely based on [17]
and its extension in Sect. 7.2. The problem is again that the dSAC resulting from
the FADA analysis is not a proper dSAC because it violates the property that every
variable is written at most once. The relation between writing to and reading from
the control variables must be identified by performing a dataflow analysis for the
control variables, where the writings to them occur inside a while-loop. To that end,
an additional control variable ctrl_x_5_ is introduced right after the while-loop,

1200 B. D. Theelen et al.

1 ¶meter EPS 0.005

2 for i = 1 to N,
3 y[i] = F1()
4 x = F2(y[i])
5 while (x >= EPS)
6 x = F3()
7 for j = i+1 to N+1,
8 y[j] = F4(y[j-1])
9 x = F5(x, y[j])
10 end
11 y[i] = F6(x)
12 end
13 out = F7(x)
14 end

1 %parameter EPS 0.005

2 w = 0
3 ctrl_x_5 = (N+1,0)
4 for i = 1 to N,
5 y_1[i] = F1()
6 in_2 = y_1[i]
7 x_2[i] = F2(in_2)
8 while (in_w = sx(〈W ,(i,w)〉) >= EPS),
9 w = w + 1
11 x_3[i,w] = F3()
11 for j = i+1 to N+1,
12 in_4 = sy(〈S4,(i,w, j)〉)
13 y_4[i,w,j] = F4(in_4)
14 in_5_x = sx(〈S5,(i,w, j)〉)
15 in_5_y = y_4[i,w,j]
16 x_5[i,w,j] =

F5(in_5_x, in_5_y)
17 ctrl x 5 = (i,w)
18 end
19 in_6 = sx(〈S6,(i,w)〉)
20 y_6[i,w] = F6(in_6)
21 end
22 ctrl x 5 [i] = ctrl x 5
23 (a,b) = ctrl x 5 [i]
24 in_7 = sx(〈S7,(i,a,b)〉)
25 out = F7(in_7)
26 end

a

b

Fig. 15 Example of a while-loop affine program and its corresponding dynamic single assignment
program. (a) An example of a WLAP program. (b) The corresponding final dSAC

P1

P2y_1[]

P4

y_4[]

W

x_2[] P7

x_2[]

P3
P5

P6

ctrl_x_5_[]

y_6[]

Fig. 16 The PPN for the program in Fig. 15

see line 22 in Fig. 15b. The new control variable is written at every iteration of for-
loop i and takes the value either of control variable ctrl_x_5 assigned on the last
iteration of the while-loop, or its initial value, if the while-loop is not executed. A
static Exact Array Dataflow Analysis (EADA) [15] can be performed on this new
control variable ctrl_x_5_. This is possible because the new control variable is
not surrounded by the dynamic while-loop, i.e., it is outside the while-loop.

Dynamic Dataflow Graphs 1201

1 %parameter EPS 0.005

2 w = 0
3 for i = 1 to N,
4 while(1),
5 w = w + 1
6 if (w > 2) then w = 2
7 if (w == 1),
8 read(P2, 1, in w)
9 else
10 read(P5, 2, in w)
11 end
12 out_w = (in_w >= EPS)
13 write(P3, 3, out w)
14 write(P4, 4, out w)
15 write(P5, 5, out w)
16 write(P6, 6, out w)
17 if (!out_w) <break>
18 end
19 end

1 w = 0
2 for i = 1 to N,
3 read(P5, 1, in c)
4 if (in_c.b>=1 &&

1<= in_c.a <= i),
5 read(P5, 2, in 7)
6 else
7 read(P2, 3, in 7)
8 end
9 out = F7(in_7)
10 end

1 w = 0
2 ctrl_x_5 = (N+1,0)
3 for i = 1 to N,
4 while(1),
5 w = w + 1
6 if (w > 2) then w = 2
7 read(W, 1, in w)
8 if (!in_w) <break>
9 for j = i+1 to N+1,
10 if (j == i+1),
11 if (w == 1),
12 read(P3, 2, in 5 x)
13 else
14 read(P5, 3, in 5 x)
15 en
16 else
17 read(P5, 4, in 5 x)
18 end
19 read(P4,5, in 5 y)
20 out 5 = F5(in_5_x, in_5_y)
21 ctrl x 5 = (i,w)
22 if (j == N+1),
23 write(P5, 6, out 5)
24 else
25 write(P5, 7, out 5)
26 endif
27 end
28 end
29 out_5_c = ctrl x 5
30 out 5 x = out_5
31 write(P7, 8, out 5 c)
32 write(P7, 9, out 5 x)
33 end

a

b

c

Fig. 17 Processes W , P 5, and P 7 after linearization. (a) Code of process W. (b) Code of process
P7. (c) Code of process P5

Step 4 constructs the PPN from the dSAC. The PPN corresponding to the
dSAC in Fig. 15b is depicted in Fig. 16. It consists of 8 processes and 18 channels.
The processes P1–P7 correspond to the functions F1–F7 in Fig. 15. Process W

corresponds to the while condition at line 8 of the dSAC in Fig. 15b.
The code for processes W , P5, and P7 is shown in Fig. 17. Process W is an

example of a process detecting the termination of the while-loop at line 5 in Fig. 15a.
Process P5 is an example of a process executing a function enclosed in the while-
loop. Process P7 is an example of a process that runs a function outside the while-
loop, and has a data dependency with a function inside the while-loop.

1202 B. D. Theelen et al.

7.4 Parameterized Polyhedral Process Networks

Parameters that appear in an SANLP program are static. In a DANLP, parame-
ters can be dynamic. A Polyhedral Process Network (PPN) that is input-output
equivalent to a DANLP program is called a Parameterized Polyhedral Process
Network, which is abbreviated to P3N. The formal definition of a P3N is given
in [79], and is only slightly different from the definition in [74]. Although the
consistency of a P3N has to be checked at run-time, still some analysis can be done
at compile-time.

Remark There are two assumptions here. First, dynamic conditions, dynamic loop
bounds and dynamic while-loops are left out to focus only on dynamic parameters.
Second, values of the dynamic parameters are obtained from the environment.

An example P3N is shown in Fig. 18. Figure 18a is a static PPN of which
process P3 is shown in Fig. 18b. Figure 18c presents a P3N version of the PPN in
Fig. 18a. Process P3 of the P3N in Fig. 18c is shown in Fig. 18d. The PPN and the
P3N have the same dataflow topology. Processes P2 and P3 in the P3N in Fig. 18c
are reconfigured by two parameters M and N whose values are updated from the
environment at run-time using process Ctrl and FIFO channels ch7, ch8, and ch9.
The P3N in Fig. 18c may be derived from a sequential program, yet it can also be
constructed from library elements as in [30] or using the approach of [12].

Reference [74] explains that a parametric polyhedron P(p) is defined as P(p) =
{(w, x1, . . . , xd) ∈ Q

d+1 | A · (w, x1, . . . , xd)
T ≥ B · p+ b} with A ∈ Z

m×d , B ∈
Z
m×n and c ∈ Z

m. For nested loop programs, w is to be interpreted as the one-
dimensional while(1) index, and d as the depth of a loop nest. For a particular
value of w, the polyhedron gets closed, i.e., it becomes a polytope. The parameter
vector p is bounded by a polytope Pp = {p ∈ Q

n | C · p ≥ d}. The domain DP

of a process is defined as the set of all integral points in its underlying parametric
polyhedron, i.e., DP = PP (p) ∩ Z

d+1. The domains DIP and DOP of an input port
IP and an output port OP, respectively, of a process are subdomains of the domain
of that process.

The following four notions play a role in the operational semantics of a P3N:

• A process iteration of process P is a point (w, x1, . . . , xd) ∈ DP , where the
following operations are performed sequentially: reading a token from each IP
for which (w, x1, . . . , xd) ∈ DIP, executing process function FP , and writing a
token to each OP for which (w, x1, . . . , xd) ∈ DOP.

• A process cycle CYCP (S,p) ⊂ DP is the set of lexicographically ordered points
∈ DP for a particular value of w = S ∈ Z

+. The lexical ordering is typically
imposed by a loop nest.

• A Process execution EP is a sequence of process cycles denoted by
CYCP (1,p1)→ CYCP (2,p2)→ . . .→ CYCP (k,pk), where k →∞.

• A point QP (S,pi) ∈ CYCP (S,pi) of process P is a quiescent point if
CYCP (S,pi) ∈ EP and ¬(∃(w, x1, . . . , xd) ∈ CYCP (S,pi) : (w, x1, . . . , xd) ≺
QP (S,pS).

Dynamic Dataflow Graphs 1203

Example of a PPN

Example Parameterized PPN Process P3 in the P3N in subfigure c)

Process P3 in the PPN in subfigure a)

for (i=0; i<=10; i++) {
for (j=0; j<=8; j++) {

if (i<=5 && j>=4)
READ(in1, IP1);

else
READ(in1, IP2);

READ(in2, IP3);
out = F3(in1, in2);
WRITE(out, OP5);
WRITE(out, OP6);

}}

OP5

ch1

Process P3

OP6

IP3

ch2
ch3

IP1

IP2

1 while(1) {
2 READ(M, IP8)
3 READ(N, IP9)
4 for (i=0; i<=M; i++) {
5 for (j=0; j<=N-2*i; j++) {
6 if (i<=N)
7 READ(in1, IP1);
8 else
9 READ(in1, IP2);
10 READ(in2, IP3);
11 out = F3(in1, in2);
12 WRITE(out, OP5);
13 WRITE(out, OP6);
}}}

OP5

ch1

Process P3

IP8

IP9

OP6

IP3

ch8
ch9

ch2
ch3

IP1

IP2

a b

c d

P1
OP5

P3

P2

OP6

IP1

IP2

IP3
ch4 ch3

ch2

ch1

P1
OP5

P3

P2

OP6

IP1

IP2

IP3
ch4 ch3

ch2

ch1

Ctrl

IP7
(M)

ch7

OP7

(M)
IP8

(N)
IP9

OP1

OP2

ch8

ch9

OP9

OP8

(M)
IP10

(N)
IP11

Fig. 18 (a) An example of a PPN, (b) process P3 in the PPN, (c) an example of a P3N, and (d)
process P3 in the P3N

Thus, process P can change parameter values at the first process iteration of
any process cycle during the execution. The notion of quiescent points as being the
points at which values of the parameters p can change appears also in [47].

The behavior of the control process Ctrl is given in Fig. 19a. Process Ctrl
starts with at least one valid parameter combination (lines 1-2) and then reads
parameters from the environment (lines 3-4) every pre-specified time interval.
For every incoming parameter combination, the process function Eval (line 5)
checks whether the combination of parameter values is valid. The implementation of
function Eval is given in Fig. 19b. If the combination is valid, then function Eval

1204 B. D. Theelen et al.

returns the current parameter values (M, N). Otherwise, the last valid parameter
combination (propagated through M_new, N_new in this example) is returned.
After the evaluation of the parameter combination, process Ctrl writes the parameter
values to output ports (lines 6-8) when all channels ch7, ch8, and ch9 have at least
one buffer place available. When at least one channel buffer is full, the incoming
parameters combination is discarded and the control process continues to read the
next parameters combination from the environment. Furthermore, the depth of the
FIFOs of the control channels determines how many process cycles of the dataflow
processes are allowed to overlap. Valid parameter values lead to the consistent
execution of a P3N, i.e., without deadlocks and with bounded memory (FIFOs with
finite capacity).

To illustrate the consistency problem, consider channel ch3 connecting processes
P2 and P3 of the P3N given in Fig. 18c. The access of processes P2 and P3 to
channel ch3 is depicted in Fig. 20. Consistency requires that, for each corresponding
process cycle of both processes CYCP2(i,Mi) and CYCP3(i,Mi,Ni), the number
of tokens produced by process P2 to channel ch3 must be equal to the number of
tokens consumed by process P3 from channel ch3. For example, if (M,N) = (7, 8),
P2 produces 25 tokens to ch3 and P3 consumes 25 tokens from the same channel
after one corresponding process cycle of both processes. It can be verified that P2
produces 13 tokens to ch3 while P3 requires 20 tokens from it in a corresponding
process cycle when (M,N) = (3, 7). Thereby, in order to complete one execution
cycle of P3 in this case, it will read data from ch3 which will be produced during
the next execution cycle of P2. Evidently this leads to an incorrect execution of the
P3N. From this example, it is clearly seen that the incoming values of (M,N) must
satisfy certain relation to ensure the consistent execution of the P3N.

Although the consistency of a P3N has to be checked at run-time, still some
analysis can be done at design-time. This is because input ports and output ports of
a process cycle are parametric polytopes. The number of points in a port domain
equals the number of tokens that will be written to a channel or read from a channel

1 M_new = M_init
2 N_new = N_init

while(1) {
3 READ_PARM(M, IP10)
4 READ_PARM(N, IP11)
5 [M_new, N_new] =

Eval(M, N, M_new, N_new)
6 WRITE_PARM(M_new, OP7)
7 WRITE_PARM(M_new, OP8)
8 WRITE_PARM(N_new, OP9)

}

OP7 ch7

Ctrl

IP10
IP11

OP8
OP9

ch8
ch9

[M_new, N_new]
Eval(M, N, M_old, N_old) {

// Checking Parameters
par_ok = Check(M, N);

if (par_ok) {
return (M, N)

} else {
return (M_old, N_old)

}}

Eval
a b

Fig. 19 (a) Control process Ctrl and (b) process function Eval

Dynamic Dataflow Graphs 1205

while(1){
READ(M, IP7);
for (i=0; i<=3*M+3; i++) {
...
WRITE(out, OP3)

}}

while(1){
READ(M, IP8);
READ(N, IP9);
for (i=0; i<=M; i++) {

for (j=0; j<=N-2*i; j++) {
...
READ(in2, IP3)
...

}}}

OP3 IP3

ch3

P2 P3

Fig. 20 Which combinations (M, N) do ensure consistency of P3N?

depending on whether the port is an output port or an input port, respectively. The
condition |DCYC

OP | = |DCYC
IP | can be checked by comparing the number of points in

both port domains. The counting problem can be solved in polynomial time using
the Barvinok library [74, 76]. In general, the number of points in domain DX =
PX(p) ∩ Z

d+1, where X stand for either a process P , an input port IP, or an output
port OP, is a set of quasi-polynomials [74].

For the example in Fig. 20, the difference |DCYC
OP | − |DCYC

IP | is,

{
(1 +N + N ·M −M2)− (3M + 4) = 0 if (M,N) ∈ C1
(1 + 3

4N + 1
4N

2 + 1
4N − 1

4 · {0, 1}N)− (3M + 4) = 0 if (M,N) ∈ C2

where C1 = {(M,N) ∈ Z
2 |M ≤ N ∧2M ≥ 1+N}, C2 = {(M,N) ∈ Z

2 | 2M ≤
N}, and {0, 1}N is a periodic coefficient with period 2.8 If in this example the range
of the parameters is 0 ≤ M,N ≤ 100, then there are only 10 valid parameter
combinations. If 0 ≤ M,N ≤ 1000, then there are 34 valid parameter combinations,
and if 0 ≤M,N ≤ 10000, then the number of valid combinations is 114.

The symbolic subtraction of the quasi-polynomials can result in constant zero,
non-zero constant, or a quasi-polynomial. In the first case, consistency is always
preserved for all parameters within the range. In the second case, all parameters
within the range are invalid, because they violate the consistency condition. In
the third case, a quasi-polynomial remains, and only some parameter combinations
within the range are valid for the consistency condition. The equations can be solved
at design time, and all valid parameter combinations are put in a table which is
stored in a function Check. At run-time, the control process only propagates those
incoming parameter combinations that match an entry in the table. Alternatively,
function Check evaluates the difference between the two quasi-polynomials against
zero with incoming parameter values at run-time. When using a table, the execution
time of the P3N is almost equal to the execution time of the corresponding PPN.
On the other hand, evaluation the polynomials at run-time overlaps the dataflow

8{0, 1}N is 0 or 1 depending on whether N is even or odd, respectively.

1206 B. D. Theelen et al.

processing. For medium and high workloads (execution latency of the processes)
the overhead is negligible. See [79] for further details.

8 Summary

This chapter reviewed several DSP-oriented dataflow models of computation that
focus on representing dynamic dataflow behavior. As signal processing systems
are developed and deployed for more complex applications, exploration of such
generalized dataflow modeling techniques is of increasing importance. This chapter
complemented the discussion in [30], which focuses on the relatively mature class
of decidable dataflow modeling techniques, and builds on the dynamic dataflow
principles introduced in certain specific forms [14, 20].

Acknowledgements In this work, Bhattacharyya has been supported in part by the US Air Force
Office of Scientific Research. The authors also thank Marc Geilen (m.c.w.geilen@tue.nl) and
Sander Stuijk (s.stuijk@tue.nl), both from the Eindhoven University of Technology, for their
contribution to Sect. 6.

References

1. Bekooij, M., Hoes, R., Moreira, O., Poplavko, P., Pastrnak, M., Mesman, B., Mol, J.D.,
Stuijk, S., Gheorghita, S.V., van Meerbergen, J.: Dataflow analysis for real-time embedded
multiprocessor system design. In: P. van der Stok (ed.) Dynamic and Robust Streaming in and
between Connected Consumer-Electronic Devices, pp. 81–108. Springer (2005)

2. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral model is
more widely applicable than you think. In: R. Gupta (ed.) Proceedings of the International
Conference on Compiler Construction, CC, pp. 283–303. Springer (2010)

3. Berg, H., Brunelli, C., Lucking, U.: Analyzing models of computation for software defined
radio applications. In: Proceedings of the International Symposium on System-on-Chip, SoC,
pp. 1–4 (2008)

4. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP systems.
IEEE Transactions on Signal Processing 49(10), 2408–2421 (2001)

5. Bhattacharyya, S.S., Buck, J.T., Ha, S., Lee, E.A.: Generating compact code from dataflow
specifications of multirate signal processing algorithms. IEEE Transactions on Circuits and
Systems — I: Fundamental Theory and Applications 42(3), 138–150 (1995)

6. Bhattacharyya, S.S., Eker, J., Janneck, J.W., Lucarz, C., Mattavelli, M., Raulet, M.: Overview
of the MPEG reconfigurable video coding framework. Journal of Signal Processing Systems
(2010)

7. Bhattacharyya, S.S., Leupers, R., Marwedel, P.: Software synthesis and code generation for
DSP. IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing
47(9), 849–875 (2000)

8. Bijlsma, T., Bekooij, M.J.G., Smit, G.J.M.: Inter-task communication via overlapping read
and write windows for deadlock-free execution of cyclic task graphs. In: Proceedings of the
International Symposium on Systems, Architectures, Modeling, and Simulation, ICSAMOS,
pp. 140–148 (2009)

Dynamic Dataflow Graphs 1207

9. Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. Ph.D. thesis, Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley (1993)

10. Collard, J.F.: Automatic parallelization of while-loops using speculative execution. Interna-
tional Journal of Parallel Programming 23(2), 191–219 (1995)

11. Deprettere, E.F., Rijpkema, E., Kienhuis, B.: Translating imperative affine nested loop
programs to process networks. In: E.F. Deprettere, J. Teich, S. Vassiliadis (eds.) Embedded
Processor Design Challenges, LNCS 2268, pp. 89–111. Springer (2002)

12. Desnos, K., Palumbo, F.: Dataflow modeling for reconfigurable signal processing systems.
In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal
Processing Systems, third edn. Springer (2018)

13. Eker, J., Janneck, J.W.: CAL language report, language version 1.0 — document edition 1.
Tech. Rep. UCB/ERL M03/48, Electronics Research Laboratory, University of California at
Berkeley (2003)

14. Falk, J., Neubauer, K., Haubelt, C., Zebelein, C., Teich, J.: Integrated modeling using finite
state machines and dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,
J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

15. Feautrier, P.: Dataflow analysis of scalar and array references. International Journal of Parallel
Programming 20(1), 23–53 (1991)

16. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Parallel
Programming Model, pp. 79–103 (1996)

17. Feautrier, P., Collard, J.F.: Fuzzy array dataflow analysis. Tech. rep., Ecole Normale Superieure
de Lyon (1994). ENS-Lyon/LIP No 94-21

18. Gao, G.R., Govindarajan, R., Panangaden, P.: Well-behaved dataflow programs for dsp
computation. In: Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, ICASSP, pp. 561–564 (1992)

19. Geilen, M.C.W.: Synchronous dataflow scenarios. ACM Transactions on Embedded Comput-
ing Systems 10(2), 16:1–16:31 (2011)

20. Geilen, M.C.W., Basten, T.: Kahn process networks and a reactive extension. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

21. Geilen, M.C.W., Basten, T., Theelen, B.D., Otten, R.: An algebra of pareto points. Fundamenta
Informaticae 78(1), 35–74 (2007)

22. Geilen, M.C.W., Falk, J., Haubelt, C., Basten, T., Theelen, B.D., Stuijk, S.: Performance
analysis of weakly-consistent scenario-aware dataflow graphs. Journal of Signal Processing
Systems 87(1), 157–175 (2017)

23. Geilen, M.C.W., Stuijk, S.: Worst-case performance analysis of synchronous dataflow sce-
narios. In: Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis, CODES/ISSS, pp. 125–134. ACM, New York, NY, USA (2010)

24. Geuns, S.J., Bekooij, M.J.G., Bijlsma, T., Corporaal, H.: Parallelization of while loops in
nested loop programs for shared-memory multiprocessor systems. In: Proceedings of Design,
Automation and Test in Europe, DATE, pp. 1–6 (2011)

25. Gheorghita, S.V., Stuijk, S., Basten, T., Corporaal, H.: Automatic scenario detection for
improved WCET estimation. In: Proceedings of the Design Automation Conference, DAC,
pp. 101–104 (2005)

26. Girault, A., Lee, B., Lee, E.: Hierarchical finite state machines with multiple concurrency
models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
18(6), 742 –760 (1999)

27. Griebl, M., Collard, J.F.: Generation of synchronous code for automatic parallelization of while
loops. In: S. Haridi, K. Ali, P. Magnusson (eds.) Proceedings of the International Conference
on Parallel Processing, EURO-PAR, pp. 313–326. Springer (1995)

28. Griebl, M., Lengauer, C.: A communication scheme for the distributed execution of loop nests
with while loops. International Journal of Parallel Programming 23 (1995)

1208 B. D. Theelen et al.

29. Gu, R., Janneck, J.W., Raulet, M., Bhattacharyya, S.S.: Exploiting statically schedulable
regions in dataflow programs. In: Proceedings of the International Conference on Acoustics,
Speech and Signal Processing, ICASSP, pp. 565–568 (2009)

30. Ha, S., Oh, H.: Decidable signal processing dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

31. Hartmanns, A., Hermanns, H., Bungert, M.: Flexible support for time and costs in scenario-
aware dataflow. In: Proceedings of the International Conference on Embedded Software,
EMSOFT, pp. 3:1–3:10 (2016)

32. Haykin, S.: Adaptive Filter Theory. Prentice Hall (1996)
33. Hu, Y.H., Kung, S.Y.: Systolic arrays. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,

J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)
34. Kahn, G.: The semantics of a simple language for parallel programming. In: Proceedings of

Information Processing (1974)
35. van Kampenhout, R., Stuijk, S., Goossens, K.: Programming and analysing scenario-aware

dataflow on a multi-processor platform. In: Proceedings of Design, Automation and Test in
Europe, DATE, pp. 876–881 (2017)

36. Katoen, J.P., Wu, H.: Exponentially timed SADF: Compositional semantics, reductions, and
analysis. In: Proceedings of the International Conference on Embedded Software, EMSOFT,
pp. 1–10 (2014)

37. Katoen, J.P., Wu, H.: Probabilistic model checking for uncertain scenario-aware data flow.
Transactions on Design Automation of Electronic Systems 22(1), 15:1–15:27 (2016)

38. Kee, H., Bhattacharyya, S.S., Wong, I., Rao, Y.: FPGA-based design and implementation
of the 3GPP-LTE physical layer using parameterized synchronous dataflow techniques. In:
Proceedings of the International Conference on Acoustics, Speech and Signal Processing,
ICASSP, pp. 1510–1513 (2010)

39. Keinert, J., Deprettere, E.F.: Multidimensional dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, pp. 1145–
1175. Springer (2013)

40. Kienhuis, B., Rijpkema, E., Deprettere, E.F.: Compaan: Deriving process networks from
Matlab for embedded signal processing architectures. In: Proceedings of the International
Workshop on Hardware/Software Codesign, CODES, pp. 13–17 (2000)

41. Ko, M., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S.S., Kienhuis, B., Deprettere, E.F.:
Parameterized looped schedules for compact representation of execution sequences in DSP
hardware and software implementation. IEEE Transactions on Signal Processing 55(6), 3126–
3138 (2007)

42. Lin, Y., Choi, Y., Mahlke, S., Mudge, T., Chakrabarti, C.: A parameterized dataflow language
extension for embedded streaming systems. In: Proceedings of the International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS, pp. 10–17
(2008)

43. Mattavelli, M., Janneck, J.W., Raulet, M.: MPEG reconfigurable video coding. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

44. Moreira, O.: Temporal analysis and scheduling of hard real-time radios running on a multi-
processor. Ph.D. thesis, Eindhoven University of Technology (2012)

45. Nadezhkin, D., Nikolov, H., Stefanov, T.: Translating affine nested-loop programs with
dynamic loop bounds into polyhedral process networks. In: Proceedings of the Symposium
on Embedded Systems for Real-Time Multimedia, ESTIMedia, pp. 21–30 (2010)

46. Nadezhkin, D., Stefanov, T.: Automatic derivation of polyhedral process networks from while-
loop affine programs. In: Proceedings of the Symposium on Embedded Systems for Real-Time
Multimedia, ESTIMedia, pp. 102–111 (2011)

47. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: Proceedings of
the International Conference on Formal Methods and Models for Co-Design, MEMOCODE,
pp. 179–188 (2004)

Dynamic Dataflow Graphs 1209

48. Nikolov, H., Stefanov, T., Deprettere, E.F.: Systematic and automated multi-processor system
design, programming, and implementation. IEEE Transactions on Computer-Aided Design
27(3), 542–555 (2008)

49. Plishker, W., Sane, N., Bhattacharyya, S.S.: A generalized scheduling approach for dynamic
dataflow applications. In: Proceedings of Design, Automation and Test in Europe, DATE, pp.
111–116 (2009)

50. Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized
scheduling of dynamic dataflow applications. In: Proceedings of the Design Automation
Conference, DAC, pp. 923–926 (2009)

51. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattacharyya, S.S.: Functional DIF for rapid
prototyping. In: Proceedings of the International Symposium on Rapid System Prototyping,
RSP, pp. 17–23 (2008)

52. Poplavko, P., Basten, T., van Meerbergen, J.: Execution-time prediction for dynamic streaming
applications with task-level parallelism. In: Proceedings of the Euromicro Conference on
Digital System Design Architectures, Methods and Tools, DSD, pp. 228–235 (2007)

53. Raman, E., Ottoni, G., Raman, A., Bridges, M.J., August, D.I.: Parallel-stage decoupled
software pipelining. In: Proceedings of the International Symposium on Code Generation
and Optimization, CGO, pp. 114–123 (2008)

54. Rauchwerger, L., Padua, D.: Parallelizing while loops for multiprocessor systems. In:
Proceedings of International Parallel Processing Symposium, IPDPS, pp. 347–356 (1995)

55. Rijpkema, E., Deprettere, E.F., Kienhuis, B.: Deriving process networks from nested loop
algorithms. Parallel Processing Letters 10(2), 165–176 (2000)

56. Roquier, G., Wipliez, M., Raulet, M., Janneck, J.W., Miller, I.D., Parlour, D.B.: Automatic
software synthesis of dataflow program: An MPEG-4 simple profile decoder case study. In:
Proceedings of the Workshop on Signal Processing Systems, SIPS, pp. 281–286 (2008)

57. Saha, S., Puthenpurayil, S., Bhattacharyya, S.S.: Dataflow transformations in high-level DSP
system design. In: Proceedings of the International Symposium on System-on-Chip, SoC, pp.
131–136 (2006)

58. Shlien, S.: Guide to MPEG-1 audio standard. IEEE Transactions on Broadcasting 40(4), 206
–218 (1994)

59. Shojaei, H., Ghamarian, A.H., Basten, T., Geilen, M.C.W., Stuijk, S., Hoes, R.: A parameter-
ized compositional multi-dimensional multiple-choice knapsack heuristic for CMP run-time
management. In: Proceedings of the Design Automation Conference, DAC, pp. 917–922
(2009)

60. Skelin, M., Wognsen, E.R., Olesen, M.C., Hansen, R.R., Larsen, K.G.: Model checking of
finite-state machine-based scenario-aware dataflow using timed automata. In: Proceedings of
the International Symposium on Industrial Embedded Systems, SIES, pp. 1–10 (2015)

61. Stefanov, T., Deprettere, E.F.: Deriving process networks from weakly dynamic applications
in system-level design. In: Proceedings of the International Conference on Hardware/Software
Codesign and Systems Synthesis, CODES+ISSS, pp. 90–96 (2003)

62. Stefanov, T., Kienhuis, B., Deprettere, E.F.: Algorithmic transformation techniques for efficient
exploration of alternative application instances. In: Proceedings of the International Sympo-
sium on Hardware/Software Codesign, CODES, pp. 7–12 (2002)

63. Stuijk, S., Geilen, M.C.W., Basten, T.: SDF3: SDF For Free. In: Proceeding of the International
Conference on Application of Concurrency to System Design, ACSD, pp. 276–278 (2006).
URL http://www.es.ele.tue.nl/sdf3

64. Stuijk, S., Geilen, M.C.W., Basten, T.: Throughput-buffering trade-off exploration for cyclo-
static and synchronous dataflow graphs. IEEE Transactions on Computers 57(10), 1331–1345
(2008)

65. Stuijk, S., Geilen, M.C.W., Basten, T.: A predictable multiprocessor design flow for streaming
applications with dynamic behaviour. In: Proceedings of the Euromicro Conference on Digital
System Design: Architectures, Methods and Tools, DSD, pp. 548–555 (2010)

http://www.es.ele.tue.nl/sdf3

1210 B. D. Theelen et al.

66. Stuijk, S., Geilen, M.C.W., Theelen, B.D., Basten, T.: Scenario-aware dataflow: Modeling,
analysis and implementation of dynamic applications. In: Proceedings of the International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation,
SAMOS, pp. 404–411 (2011)

67. Theelen, B.D., Geilen, M.C.W., Stuijk, S., Gheorghita, S.V., Basten, T., Voeten, J.P.M.,
Ghamarian, A.H.: Scenario-aware dataflow. Tech. Rep. ESR-2008-08, Eindhoven University
of Technology (2008)

68. Theelen, B.D., Geilen, M.C.W., Voeten, J.P.M.: Performance model checking scenario-aware
dataflow. In: U. Fahrenberg, S. Tripakis (eds.) Proceedings of the International Conference on
Formal Modeling and Analysis of Timed Systems, FORMATS, pp. 43–59. Springer (2011)

69. Theelen, B.D.: A performance analysis tool for scenario-aware streaming applications. In:
Proceedings of the International Conference on Quantitative Evaluation of Systems, QEST,
pp. 269–270 (2007)

70. Theelen, B.D., Florescu, O., Geilen, M.C.W., Huang, J., van der Putten, P.H.A., Voeten, J.P.M.:
Software/hardware engineering with the parallel object-oriented specification language. In:
Proceedings of the International Conference on Formal Methods and Models for Codesign,
MEMOCODE, pp. 139–148 (2007)

71. Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.: A
scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In: Proceedings of the International Conference on Formal Methods and Models for
Co-Design, MEMOCODE, pp. 185–194 (2006)

72. Theelen, B.D., Katoen, J.P., Wu, H.: Model checking of scenario-aware dataflow with CADP.
In: Proceedings of Design, Automation and Test in Europe, DATE, pp. 653–658 (2012)

73. Turjan, A., Kienhuis, B., Deprettere, E.F.: Realizations of the Extended Linearization Model.
in Domain-Specific Embedded Multiprocessors (Chapter 9), Marcel Dekker, Inc. (2003)

74. Verdoolaege, S.: Polyhedral process networks. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, pp. 1335–1375. Springer
(2013)

75. Verdoolaege, S., Nikolov, H., Stefanov, T.: pn: a tool for improved derivation of process
networks. EURASIP Journal on Embedded Systems (2007)

76. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting integer points
in parametric polytopes using Barvinok’s rational functions. Algorithmica (2007)

77. Wiggers, M.: Aperiodic multiprocessor scheduling. Ph.D. thesis, University of Twente (2009)
78. Willink, E.D., Eker, J., Janneck, J.W.: Programming specifications in CAL. In: Proceedings of

the OOPSLA Workshop on Generative Techniques in the context of Model Driven Architecture
(2002)

79. Zhai, J.T., Nikolov, H., Stefanov, T.: Modeling adaptive streaming applications with parame-
terized polyhedral process networks. In: Proceedings of the Design Automation Conference,
DAC, pp. 116–121 (2011)

	Foreword
	Preface
	Contents
	Part I Applications
	Signal Processing Methods for Light Field Displays
	1 Introduction
	2 Light Field Basics
	2.1 Plenoptic Function
	2.2 Light Field Parametrization
	2.3 Light Ray Propagation
	2.4 Epipolar Plane Images
	2.5 Fourier Domain Representation
	2.6 Plenoptic Sampling
	2.7 Densely Sampled Light Field

	3 Light Field Displays
	3.1 Visual Cues
	3.2 From Ideal to Real Light Field Display
	3.3 Overview of Current Light Field (Type) Displays
	3.3.1 Integral Imaging
	3.3.2 Super-Multiview Displays
	3.3.3 Projection-Based Displays
	3.3.4 Holographic Stereograms
	3.3.5 Tensor Displays

	4 Display Specific Light Field Analysis
	4.1 Display-related Ray Propagation
	4.2 Display Bandwidth
	4.3 Display-Camera Setup and Optimization
	4.3.1 Light Field Display Setup Optimization
	4.3.2 Camera Setup Optimization

	5 Reconstruction of Densely Sampled Light Field
	5.1 Plenoptic Modelling, Depth Layering and Rendering
	5.2 Reconstruction of DSLF in Directional Transform Domain
	5.2.1 Directional Transforms
	5.2.2 Shearlet Transform
	5.2.3 DSLF Reconstruction in Shearlet Domain
	5.2.4 Other Sparsifying Transforms

	6 Conclusions
	References

	Inertial Sensors and Their Applications
	1 Introduction to Inertial Sensors
	1.1 Accelerometers
	1.2 Gyroscopes
	1.3 Areas of Application
	1.3.1 Navigation
	1.3.2 Automotive
	1.3.3 Industrial
	1.3.4 Consumer Products
	1.3.5 Sport

	2 Performance of Inertial Sensors
	2.1 Effect of Different Sources of Error
	2.1.1 Calibration of Inertial Sensors
	2.1.2 Allan Variance
	2.1.3 Modeling the Measurement Errors

	2.2 Sensor Quality Grade

	3 Pedestrian Dead Reckoning
	3.1 INS Mechanization
	3.2 Step Detection with Accelerometers
	3.3 Step Length Estimation
	3.4 PDR Mechanization
	3.5 Effect of Sensor Quality Grade to the Accuracy of PDR

	4 Infering Context with Inertial Sensors
	4.1 Pattern Recognition
	4.2 Feature Extraction
	4.3 Classification Accuracy
	4.4 Areas of Application

	5 Summary
	References

	Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems
	1 Defining Stream Mining
	1.1 Motivation
	1.1.1 Application 1: Semantic Concept Detection in Multimedia; Processing Heterogeneous and Dynamic Data in a Resource-Constrained Setting
	1.1.2 Application 2: Online Healthcare Monitoring; Processing Data in Real Time
	1.1.3 Application 3: Analysis of Social Graphs; Coping with Decentralized Information and Setup

	1.2 From Data Mining to Stream Mining
	1.2.1 Data Mining
	1.2.2 Changing Paradigm

	1.3 Problem Formulation
	1.3.1 Classifiers
	1.3.2 Axis for Study

	1.4 Challenges
	1.4.1 Coping with Complex Data: Large-Scale, Heterogeneous and Time-Varying
	1.4.2 Immediacy
	1.4.3 Distributed Information and Knowledge Extraction
	1.4.4 Resource Constraints

	2 Proposed Systematic Framework for Stream Mining Systems
	2.1 Query Process Modeled as Classifier Chain
	2.1.1 A-Priori Selectivity
	2.1.2 Classifier Performance
	2.1.3 Throughput and Goodput of a Chain of Classifiers

	2.2 Optimization Objective
	2.2.1 Misclassification Cost
	2.2.2 Processing Delay Cost
	2.2.3 Resource Constraints
	2.2.4 Optimization Problem

	2.3 Operating Point Selection
	2.4 Further Research Areas

	3 Topology Construction
	3.1 Linear Topology Optimization: Problem Formulation
	3.2 Centralized Ordering Algorithms for Fixed Operating Points
	3.2.1 Optimal Order Search
	3.2.2 Greedy Algorithm

	3.3 Joint Order and Operating Point Selection
	3.3.1 Limits of Centralized Algorithms for Order Selection

	3.4 Multi-Chain Topology
	3.4.1 Motivations for Using a Multi-Chain Topology: Delay Tradeoff Between Feature Extraction and Intra-Classifier Communication
	3.4.2 Number of Chains and Tree Configuration

	4 Decentralized Approach
	4.1 Limits of Centralized Approaches and Necessity of a Decentralized Approach
	4.2 Decentralized Decision Framework
	4.2.1 Users of the Stream Mining System
	4.2.2 States Observed by Each Classifier
	4.2.3 Actions of a Classifier
	4.2.4 Local Utility of a Classifier

	4.3 Decentralized Algorithms
	4.3.1 Exhaustive Search Ordering Algorithm
	4.3.2 Partial Search Ordering Algorithm
	4.3.3 Decentralized Ordering and Operating Point Selection
	4.3.4 Robustness of the Partial Search Algorithm and Convergence Speed

	4.4 Multi-Agent Learning in Decentralized Algorithm
	4.4.1 Tradeoff Between Efficiency and Computational Time
	4.4.2 Safe Experimentation

	4.5 Parametric Partial Search Order and Operating Point Selection Algorithm
	4.5.1 Controlling the Screening Probability
	4.5.2 Comparison of Ordering and Operating Point Selection Algorithms
	4.5.3 Order Selected by Various Classifiers for Different Ordering Algorithms

	5 Online Learning for Real-Time Stream Mining
	5.1 Centralized Online Learning
	5.1.1 Problem Formulation
	5.1.2 Active Stream Mining
	5.1.3 Learning Under Accuracy Drift
	5.1.4 Learning the Relevant Contexts

	5.2 Decentralized Online Learning
	5.2.1 Problem Formulation
	5.2.2 Cooperative Contextual Bandits
	5.2.3 Hedged Bandits

	6 Conclusion
	References

	Deep Neural Networks: A Signal Processing Perspective
	1 Introduction
	2 Building Blocks of a Deep Neural Network
	2.1 Neural Networks
	2.2 Convolutional Layer
	2.3 Pooling Layer
	2.4 Network Activations

	3 Network Training
	3.1 Loss Functions
	3.2 Optimization

	4 Implementation
	4.1 Platforms
	4.2 Example: Image Categorization

	5 System Level Deployment
	6 Further Reading
	7 Conclusions
	References

	High Dynamic Range Video Coding
	1 Introduction
	2 Early Work: HDR Coding for Still Images
	3 Signal Quantization: Gamma, PQ, and HLG
	4 Backward-Compatible HDR Coding
	4.1 Dual-Layer Coding
	4.1.1 Piecewise Linear Model Representation
	4.1.2 Multivariate Multiple Regression Predictor
	4.1.3 MPEG Color Gamut Scalability
	4.1.4 System-Level Design Issues in Dual-Layer Systems

	4.2 Single-Layer Methods
	4.2.1 Philips HDR Codec

	5 Non-Backward-Compatible HDR Coding
	5.1 Multi-Layer Non-Backward-Compatible Systems
	5.1.1 Dolby Non-Backward-Compatible 8-Bit Dual-Layer Codec
	5.1.2 HEVC Range Extension Proposals

	5.2 Single-Layer Solutions Using Signal Reshaping
	5.2.1 MPEG Proposals for Reshaping Methods
	5.2.2 Encoder Optimization for PQ-Coded HDR Signals
	5.2.3 Perceptual Quality-Based Quantization Models

	5.3 The Ultra HD Blu-Ray Disc Format

	6 Conclusions
	Appendix: List of Abbreviations
	References

	Signal Processing for Control
	1 Introduction
	2 Brief Introduction to Control
	2.1 Stability
	2.2 Sensitivity to Disturbance
	2.3 Sensitivity Conservation

	3 Signal Processing in Control
	3.1 Simple Cases
	3.2 Demanding Cases
	3.3 Exemplary Case

	4 Conclusions
	5 Further Reading
	References

	MPEG Reconfigurable Video Coding
	1 Introduction
	2 Requirements and Rationale of the MPEG RVC Framework
	3 Rationale for Changing the Traditional Specification Paradigm Based on Sequential Model of Computation
	3.1 Limits of Previous Monolithic Specifications
	3.2 Reconfigurable Video Coding Specification Requirements

	4 Description of the Standard or Normative Components of the Framework
	4.1 The Toolbox Library
	4.2 The Cal Actor Language
	4.2.1 Basic Constructs
	4.2.2 Priorities and State Machines
	4.2.3 Cal Subset Language for RVC
	4.2.4 Non-standard Process Language Extension to Cal

	4.3 FU Network Language for Codec Configurations
	4.4 Bitstream Syntax Specification Language BSDL
	4.5 Instantiation of the ADM
	4.6 Case Study of New and Existing Codec Configurations
	4.6.1 Commonalities
	4.6.2 MPEG-4 Simple Profile (SP) Decoder
	4.6.3 MPEG-4 AVC Decoder

	5 Tools and Integrated Environments Supporting Development, Analysis and Synthesis of Implementations
	5.1 OpenDF Framework
	5.2 Orcc Framework
	5.3 CAL2HDL Synthesis
	5.4 CAL2C Synthesis
	5.5 Integrated Design Flows Including Design Exploration and Full SW/HW Synthesis Capabilities
	5.5.1 Turnus Design Exploration Framework
	5.5.2 Xronos System Design Synthesis Framework

	5.6 The Tÿcho Framework

	6 Conclusion
	References

	Signal Processing for Wireless Transceivers
	1 Introduction and System Overview
	2 Equalization and MIMO Processing
	2.1 System Model
	2.2 Optimum Detector and Decoding
	2.3 Suboptimal Equalization
	2.4 Channel Estimation
	2.5 Implementations

	3 Multicarrier Waveforms
	3.1 Waveform Processing in OFDM Systems
	3.1.1 OFDM Principle
	3.1.2 Synchronization, Adaptive Modulation and Coding, and Multiple Access

	3.2 Enhanced Multicarrier Waveforms
	3.2.1 Peak-to-Average Power Ratio Issues and SC-FDMA
	3.2.2 Enhancing Spectral Containment of OFDM
	3.2.3 Filterbank Multicarrier Waveforms

	4 Transceiver RF System Fundamentals and I/Q Signal Processing
	4.1 RF-System Fundamentals
	4.2 Complex I/Q Signal Processing Fundamentals
	4.2.1 Basic Definitions and Connection to Bandpass Signals
	4.2.2 Analytic Signals and Hilbert Transforms

	4.3 Frequency Translations and Filtering
	4.3.1 Frequency Translations for Signals
	4.3.2 Frequency Translations for Linear Systems and Filters

	4.4 Radio Architecture Basics
	4.4.1 Superheterodyne Receiver
	4.4.2 Direct-Conversion Receiver
	4.4.3 Low-IF Receiver
	4.4.4 RF/IF Subsampling Receiver

	4.5 Transceiver Digital Front-End
	4.5.1 Traditional vs. Software Defined Radio Models

	4.6 RF Imperfections and DSP
	4.6.1 I/Q Imbalance and Mirror-Frequency Interference
	4.6.2 Transmitter Nonlinearities
	4.6.3 Receiver and ADC Nonlinearities
	4.6.4 Oscillator Phase Noise
	4.6.5 Sampling Jitter

	5 Concluding Remarks
	References

	Signal Processing for Radio Astronomy
	1 Introduction
	2 Notation
	3 Basic Concepts of Interferometry; Data Model
	3.1 Data Acquisition
	3.2 Complex Baseband Signal Representation
	3.3 Data Model
	3.4 Radio Interferometric Imaging Concepts

	4 Image Reconstruction
	4.1 Constructing Dirty Images
	4.1.1 Beamforming Formulation
	4.1.2 Constructing Dirty Images by Adaptive Beamforming

	4.2 Deconvolution
	4.2.1 The CLEAN Algorithm
	4.2.2 CLEAN Using Other Dirty Images

	4.3 Matrix Formulations
	4.3.1 Matrix Formulation of the Data Model
	4.3.2 Matrix Formulation of Imaging via Beamforming

	4.4 Parametric Image Estimation
	4.4.1 Weighted Least Squares Imaging
	4.4.2 Estimating the Position of the Sources
	4.4.3 Preconditioned WLS

	4.5 Constraints on the Image
	4.5.1 Non-negativity Constraint
	4.5.2 Dirty Image as Upper Bound
	4.5.3 Tightest Upper Bound
	4.5.4 Constrained WLS Imaging
	4.5.5 Imaging Using Sparse Reconstruction Techniques
	4.5.6 Comparison of Regularization Techniques

	5 Calibration
	5.1 Non-ideal Measurements
	5.1.1 Instrumental Effects
	5.1.2 Propagation Effects

	5.2 Calibration Algorithms
	5.2.1 Estimating the Element Gains and Directional Responses
	5.2.2 Estimating the Ionospheric Perturbation
	5.2.3 Estimating the General Model

	6 A Typical Signal Processing Pipeline
	7 Concluding Remarks and Further Reading
	References

	Distributed Smart Cameras and Distributed Computer Vision
	1 Introduction
	2 Approaches to Computer Vision
	3 Early Work in Distributed Smart Cameras
	4 Challenges
	5 Camera Calibration
	6 Tracking
	6.1 Tracking with Overlapping Fields-of-View
	6.2 Tracking in Sparse Camera Networks

	7 Gesture Recognition
	8 Platform Architectures
	9 Summary
	References

	Part II Architectures
	Arithmetic
	1 Number Representation
	1.1 Binary Representation
	1.2 Two's Complement Representation
	1.3 Redundant Representations
	1.3.1 Signed-Digit Representation
	1.3.2 Carry-Save Representation

	1.4 Shifting and Increasing the Word Length
	1.5 Negation
	1.6 Finite Word Length Effects
	1.6.1 Overflow Characteristics
	1.6.2 Truncation
	1.6.3 Rounding
	1.6.4 Magnitude Truncation
	1.6.5 Quantization of Products

	2 Addition
	2.1 Ripple-Carry Addition
	2.2 Carry-Lookahead Addition
	2.3 Carry-Select and Conditional Sum Addition
	2.4 Multi-Operand Addition

	3 Multiplication
	3.1 Partial Product Generation
	3.1.1 Avoiding Sign-Extension
	3.1.2 Reducing the Number of Rows
	3.1.3 Reducing the Number of Columns

	3.2 Summation Structures
	3.2.1 Sequential Accumulation
	3.2.2 Array Accumulation
	3.2.3 Tree Accumulation

	3.3 Vector Merging Adder
	3.4 Multiply-Accumulate
	3.5 Multiplication by Constants
	3.6 Distributed Arithmetic
	3.6.1 Reducing the Memory Size
	3.6.2 Complex Multipliers

	4 Division
	4.1 Restoring and Nonrestoring Division
	4.2 SRT Division
	4.3 Speeding Up Division
	4.4 Square Root Extraction

	5 Floating-Point Representation
	5.1 Normalized Representations
	5.2 IEEE Standard for Floating-Point Arithmetic, IEEE 754
	5.3 Addition and Subtraction
	5.4 Multiplication
	5.5 Quantization Error

	6 Computation of Elementary Functions
	6.1 CORDIC
	6.2 Polynomial and Piecewise Polynomial Approximations
	6.3 Table-Based Methods

	7 Further Reading
	References

	Coarse-Grained Reconfigurable Array Architectures
	1 Application Domain of Coarse-Grained Reconfigurable Arrays
	2 CGRA Basics
	3 CGRA Design Space
	3.1 Tight Versus Loose Coupling
	3.2 CGRA Control
	3.2.1 Reconfigurability
	3.2.2 Scheduling and Issuing
	3.2.3 Thread-Level and Data-Level Parallelism

	3.3 Interconnects and Register Files
	3.3.1 Connections
	3.3.2 Register Files
	3.3.3 Predicates, Events and Tokens

	3.4 Computational Resources
	3.5 Memory Hierarchies
	3.6 Compiler Support
	3.6.1 Intermediate Code Generation and Optimization
	3.6.2 CGRA Code Mapping and Scheduling Techniques

	4 Case Study: ADRES
	4.1 Mapping Loops on ADRES CGRAs
	4.1.1 Modulo Scheduling Algorithms for CGRAs
	4.1.2 Loop Transformations
	4.1.3 Data Flow Manipulations

	4.2 ADRES Design Space Exploration
	4.2.1 Example ADRES Instances
	4.2.2 Design Space Exploration Example

	5 Conclusions
	6 Further Reading
	References

	High Performance Stream Processing on FPGA
	1 Introduction
	2 The FPGA-Based Processing Element (FPE)
	3 Case Study: Sphere Decoding for MIMO Communications
	4 FPE-Based Pre-processing Using SQRD
	4.1 FPE Coprocessors for Arithmetic Acceleration
	4.2 SQRD Using FPGA

	5 FSD Tree-Search for 802.11n
	5.1 FPE Coprocessors for Data Dependent Operations
	5.2 SIMD Implementation of 802.11n FSD MCS

	6 Stream Processing for FPGA Accelerators
	6.1 Streaming Processing Elements
	6.2 Instruction Coding

	7 Streaming Block Processing
	7.1 Loop Execution Without Overheads
	7.2 Block Data Memory Access
	7.3 Off-sFPE Communications
	7.4 Stream Frame Processing Efficiency

	8 Experiments
	9 Summary
	References

	Application-Specific Accelerators for Communications
	1 Introduction
	1.1 Coarse Grain Versus Fine Grain Accelerator Architectures
	1.2 Hardware/Software Workload Partition Criteria

	2 Hardware Accelerators for Communications
	2.1 MIMO Channel Equalization Accelerator
	2.2 MIMO Detection Accelerators
	2.2.1 Maximum-Likelihood (ML) Detection
	2.2.2 Sphere Detection
	2.2.3 Computational Complexity of Sphere Detection
	2.2.4 Depth-First Sphere Detector Architecture
	2.2.5 K-Best Detector Architecture

	2.3 Channel Decoding Accelerators
	2.3.1 Turbo Decoder Accelerator Architecture
	2.3.2 LDPC Decoder Accelerator Architecture

	2.4 Digital Predistortion
	2.4.1 Full-Band DPD Mobile GPU Accelerator Architecture
	2.4.2 Sub-band FPGA Accelerator Architecture

	3 Summary
	4 Further Reading
	References

	System-on-Chip Architectures for Data Analytics
	1 Introduction
	2 Algorithm/Architecture Co-design: Analytic Architecture for SMART SoC
	2.1 Architectural Platform
	2.2 Algorithm/Architecture Co-design: Abstraction at the System Level
	2.2.1 Levels of Abstraction
	2.2.2 Joint Exploration of Algorithms and Architecture

	2.3 Algorithmic Intrinsic Complexity Metrics and Assessment
	2.3.1 Number of Operations
	2.3.2 Degree of Parallelism
	2.3.3 Data Transfer Rate
	2.3.4 Data Storage Requirement

	2.4 Intelligent Parallel and Reconfigurable Computing

	3 AAC Case Studies
	3.1 Mapping Motion-Compensated Frame Rate Up-Convertor onto Multi-Core Platform via Complexity Metrics Quantification
	3.2 Reconfigurable Interpolation

	References

	Architectures for Stereo Vision
	1 Introduction
	2 Algorithms
	2.1 Epipolar Geometry and Rectification
	2.2 Stereo Correspondence
	2.2.1 Classical Disparity Estimation
	2.2.2 Disparity Estimation Using Deep-Learning

	2.3 Algorithm Example: Semi-global Matching

	3 Architectures
	3.1 GPU-Based Implementations
	3.2 Dedicated Architectures (FPGA and VLSI)
	3.3 Other Architectures
	3.4 Comparison Studies
	3.5 Current Trends
	3.6 Implementation Example: Semi-global Matching on the GPU
	3.6.1 Parallelization Principles
	3.6.2 Rank Transform and Median Filter Kernel
	3.6.3 SGM Kernel
	3.6.4 Performance

	3.7 Implementation Example: VLSI Architecture for Semi-global Matching
	3.7.1 Parallelization
	3.7.2 Architecture
	3.7.3 Performance

	4 Summary
	5 Further Reading
	References

	Hardware Architectures for the Fast Fourier Transform
	1 Introduction
	2 FFT Algorithms
	2.1 The Cooley-Tukey Algorithm
	2.2 Representation Using Flow Graphs
	2.3 Binary Tree Representation
	2.4 Triangular Matrix Representation
	2.5 The Radix in FFTs
	2.6 Non-power-of-two and Mixed-Radix FFTs

	3 Building Blocks for FFT Hardware Architectures
	3.1 Butterflies
	3.2 Rotators
	3.2.1 Multiplier-Based General Rotators
	3.2.2 Multi-Stage General Rotators
	3.2.3 Simplified Multiplier-Based Rotators
	3.2.4 Simplified Multi-Stage Rotators
	3.2.5 Rotators Based on Trigonometric Identities

	3.3 Shuffling Circuits

	4 FFT Hardware Architectures
	4.1 Architecture Selection
	4.2 Fully Parallel FFT
	4.3 Iterative FFT Architectures
	4.4 Pipelined FFT Architectures
	4.4.1 Serial Pipelined FFT Architectures
	4.4.2 Parallel Pipelined FFT Architectures

	5 Bit Reversal for FFT Architectures
	5.1 The Bit Reversal Algorithm
	5.2 Bit Reversal for Serial Data
	5.3 Bit Reversal for Parallel Data

	6 Conclusions
	References

	Programmable Architectures for Histogram of Oriented Gradients Processing
	1 Introduction
	1.1 Chapter Breakdown

	2 HOG Algorithm
	2.1 Profiling HOG

	3 IPPro Introduction
	4 HOG Deployment on IPPro
	4.1 Algorithm Partitioning
	4.2 Instruction Mapping and Scheduling on a Single IPPro
	4.3 Instruction Mapping and Scheduling on Multiple IPPro
	4.4 Results Generation: Initial Architecture

	5 Profiling of Initial HOG Implementation
	5.1 Normalize Gamma and Color
	5.2 Compute Gradients
	5.3 Weighted Vote into Spatial and Orientation Cells
	5.4 Normalize over Overlapping Spatial Blocks
	5.5 Collect HOGs over Detection Window
	5.6 Linear SVM
	5.7 Summary of HOG Profiling

	6 IPPro Optimisations
	6.1 Register Size
	6.2 Mapping Strategy, Input Data Pattern
	6.3 Coprocessor Development
	6.4 Implementation of Coprocessor
	6.4.1 Serial Coprocessor (Temporal Parallelism)
	6.4.2 Parallel Coprocessor
	6.4.3 Architecture Choice
	6.4.4 IPPro Coprocessor Interface Design
	6.4.5 Summary of Coprocessor Impact

	7 Conclusions
	References

	Part III Design Methods and Tools
	Methods and Tools for Mapping Process Networks onto Multi-Processor Systems-On-Chip
	1 Introduction
	2 KPN Design Flows for Multiprocessor Systems
	3 Methods
	3.1 System Specification
	3.2 System Synthesis
	3.3 Performance Analysis
	3.4 Design Space Exploration

	4 Specification, Synthesis, Analysis, and Optimization in DOL
	4.1 Distributed Operation Layer
	4.2 System Specification
	4.3 System Synthesis
	4.3.1 Functional Simulation Generation
	4.3.2 Software Synthesis

	4.4 Performance Analysis
	4.4.1 Modular Performance Analysis (MPA)
	4.4.2 Integration of MPA into the DOL Design Flow

	4.5 Design Space Exploration
	4.6 Results of the DOL Framework

	5 Concluding Remarks
	References

	Intermediate Representations for Simulation and Implementation
	1 The Role of Intermediate Representations
	1.1 Forms of Representations
	1.2 Representation for Parallel and Distributed Hardware

	2 Untimed Representations
	2.1 Representation of System Property Intervals
	2.1.1 Specification of Process Mode Changes
	2.1.2 Specification of Latency Constraints
	2.1.3 Concluding Remarks on System Property Intervals

	2.2 Representation of Functions Driven by State Machines
	2.2.1 Describing an Application in FunState
	2.2.2 Examples of Representation of Different Models of Computation
	2.2.3 Representation of Schedules

	2.3 Concluding Remarks on Untimed Representations

	3 Timed Representations
	3.1 Job Configuration Networks
	3.1.1 Implementation of a Job Configuration Network

	3.2 IPC Graphs
	3.2.1 Timing Analysis of IPC Graphs

	3.3 Timed Configuration Graphs
	3.4 Set of Models
	3.4.1 Modeling a Tiled 16 Cores Processor

	3.5 Construction of Timed Configuration Graphs
	3.5.1 Abstract Interpretation of TCFGs

	4 Chapter Summary
	References

	Throughput Analysis of Dataflow Graphs
	1 Introduction
	2 Terminology
	2.1 Synchronous and Cyclo-Static Dataflow Graphs
	2.1.1 Auto-Concurrency and Ordering of Firings
	2.1.2 Structural Invariants
	2.1.3 Self-timed Execution and Throughput

	2.2 Max-plus Algebra

	3 Maximum Cycle Ratio Analysis
	3.1 Max-plus Characterization
	3.2 Computing the Maximum Cycle Ratio
	3.2.1 The Power Method
	3.2.2 Policy Iteration
	3.2.3 Parametric Paths

	3.3 Discussion

	4 Single-Rate Approximations
	4.1 Characterization of CSDF Constraints
	4.2 Transforming the CSDF Constraints
	4.2.1 Changing Counting Units

	4.3 Computing Strictly Periodic Schedules
	4.4 Discussion

	5 Unfolding Actor Firings
	5.1 Multi-Rate Equivalents
	5.2 A General Transformation
	5.3 Discussion

	6 Throughput Analysis
	6.1 State-Space Exploration
	6.2 Incremental Unfolding
	6.3 Comparing the Two Approaches
	6.4 Discussion

	References

	Dataflow Modeling for Reconfigurable Signal Processing Systems
	1 Reconfigurable Signal Processing Systems
	2 Reconfigurable Dataflow Models
	2.1 Reconfiguration Semantics
	2.2 Reconfigurable Dataflow Models
	2.2.1 Hierarchy-Based Reconfigurable Dataflow Meta-Models
	2.2.2 Statically Analyzable Reconfigurable Dataflow Models

	2.3 Dynamic Dataflow moc and Reconfigurability
	2.3.1 Classification of Dynamic Dataflow Graphs
	2.3.2 Reconfigurable Semantics for Dynamic Dataflow moc

	3 Software Implementation Techniques for Reconfigurable Dataflow Specifications
	3.1 Compile-Time Parameterized Quasi-Static Scheduling
	3.2 Multicore Runtime for pisdf Graphs
	3.3 Compilation Flow for spdf Graphs
	3.4 Software Reconfiguration for Dynamic Dataflow Graphs

	4 Dataflow-Based Techniques for Hardware Reconfigurable Computing Platforms
	4.1 Dataflow-Driven Coarse Grained Reconfiguration
	4.1.1 Heterogeneous Coarse-Grained and Runtime Reconfigurable Architectures
	4.1.2 Coarse-Grained and Runtime Reconfigurable Arrays

	4.2 Fine-Grained Dataflow-Driven Reconfiguration

	References

	Integrated Modeling Using Finite State Machines and DataflowGraphs
	1 Intro
	2 Modeling Approaches
	2.1 Dataflow Graphs
	2.2 *charts
	2.2.1 Refining Dataflow Actors via FSMs
	2.2.2 Refining FSM States via Dataflow Graphs

	2.3 Extended Codesign Finite State Machines
	2.4 SysteMoC
	2.5 Further Approaches

	3 Scheduling Dataflow Graphs
	3.1 Modeling Static-Order Schedules
	3.2 Quasi-Static and Dynamic Schedule Modeling
	3.2.1 Actor Execution Model
	3.2.2 Cluster Execution Model
	3.2.3 Scheduling Examples

	4 Exploiting Static MoCs for Scheduling
	4.1 Scheduling Overhead
	4.2 Cluster FSM Computation for QSS

	5 Quasi-Static Scheduling in the Presence of Bounded Channels
	5.1 Channel Capacity Adjustment Problem
	5.2 Channel Capacity Adjustment Algorithm
	5.2.1 Input-to-Input Back Pressure
	5.2.2 Output-to-Output Back Pressure
	5.2.3 Input-to-Output Back Pressure

	6 Conclusions
	References

	Kahn Process Networks and a Reactive Extension
	1 Introduction
	1.1 Motivation
	1.2 Example
	1.3 Preliminaries

	2 Denotational Semantics
	3 Operational Semantics
	3.1 Labeled Transition Systems
	3.1.1 Semantics
	3.1.2 Determinacy

	3.2 Operational Semantics

	4 The Kahn Principle
	5 Analyzability Results
	6 Implementing Kahn Process Networks
	6.1 Implementing Atomic Processes
	6.2 Correctness Criteria
	6.3 Run-Time Scheduling and Buffer Management

	7 Extensions of KPN
	7.1 Events
	7.2 Time

	8 Reactive Process Networks
	8.1 Introduction
	8.2 A Reactive Process Network Example
	8.3 Design Considerations of RPN
	8.3.1 Streams, Events and Time
	8.3.2 Semantic Model
	8.3.3 Communicating Events

	8.4 Operational Semantics of RPN
	8.5 Implementation Issues
	8.5.1 Coordinating Streaming and Events
	8.5.2 Deadlock Detection and Resolution

	8.6 Analyzable Models Embedded in RPN

	9 Bibliography
	References

	Decidable Signal Processing Dataflow Graphs
	1 Introduction
	2 SDF (Synchronous Dataflow)
	2.1 Static Analysis
	2.2 Software Synthesis from SDF Graph
	2.3 Static Scheduling Techniques
	2.3.1 Scheduling Techniques for Single Processor Implementations

	2.4 Parallel Scheduling of SDF Graphs
	2.4.1 Scheduling Objectives
	2.4.2 Execution Strategies
	2.4.3 Scheduling of Multiple SDF Graphs

	2.5 Hardware Synthesis from SDF Graph

	3 Cyclo-Static Dataflow (CSDF)
	3.1 Static Analysis
	3.2 Static Scheduling and Buffer Size Reduction
	3.3 Hierarchical Composition

	4 Other Decidable Dataflow Models
	4.1 FRDF (Fractional Rate Dataflow)
	4.2 SPDF (Synchronous Piggybacked Dataflow)
	4.3 SSDF (Scalable SDF)

	References

	Systolic Arrays
	1 Introduction
	2 Systolic Array Computing Algorithms
	2.1 Convolution Systolic Array
	2.2 Linear System Solver Systolic Array
	2.3 Sorting Systolic Arrays

	3 Formal Systolic Array Design Methodology
	3.1 Loop Representation, Regular Iterative Algorithm (RIA), and Index Space
	3.2 Localized and Single Assignment Algorithm Formulation
	3.3 Data Dependence and Dependence Graph
	3.4 Mapping an Algorithm to a Systolic Array
	3.5 Linear Schedule and Assignment

	4 Wavefront Array Processors
	4.1 Synchronous Versus Asynchronous Global On-Chip Communication
	4.2 Wavefront Array Processor Architecture
	4.3 Mapping Algorithms to Wavefront Arrays
	4.4 Example: Wavefront Processing for Matrix Multiplication
	4.5 Comparison of Wavefront Arrays Against Systolic Arrays

	5 Hardware Implementations of Systolic Array
	5.1 Warp and iWARP
	5.2 SAXPY Matrix-1
	5.3 Transputer
	5.4 TMS 32040

	6 Recent Developments and Real World Applications
	6.1 Block Motion Estimation
	6.2 Wireless Communication
	6.3 Deep Neural Network

	7 Summary
	References

	Compiling for VLIW DSPs
	1 VLIW DSP Architecture Concepts and Resource Modeling
	1.1 Resource Modeling
	1.2 Latency and Register Write Models
	1.3 Clustered VLIW: Partitioned Register Sets
	1.4 Control Hazards
	1.5 Hardware Loops
	1.6 Examples of VLIW DSP Processors

	2 Case Study: TI 'C6x DSP Processor Family
	2.1 TI 'C6201 DSP Processor Architecture
	2.2 SIMD and Floatingpoint Support
	2.3 Programming Models

	3 VLIW DSP Code Generation Overview
	4 Instruction Selection and Resource Allocation
	5 Cluster Assignment for Clustered VLIW Architectures
	6 Register Allocation and Generalized Spilling
	7 Instruction Scheduling
	7.1 Local Instruction Scheduling
	7.2 Modulo Scheduling for Loops
	7.3 Global Instruction Scheduling
	7.4 Generated Instruction Schedulers

	8 Integrated Code Generation for VLIW and Clustered VLIW
	8.1 Integrated Code Generation at Basic Block Level
	8.2 Loop-Level Integrated Code Generation

	9 Concluding Remarks
	References

	Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems
	1 Introduction
	1.1 MPSoCs and MPSoC Compilers
	1.2 Challenges of Building MPSoC Compilers

	2 Foundation Elements of MPSoC Compilers
	2.1 Programming Models
	2.1.1 Mainstream Parallel Programming Models
	2.1.2 Dataflow Programming Models

	2.2 Platform Description for MPSoC Compilers
	2.3 Software Parallelization
	2.3.1 Intermediate Representation (IR)
	2.3.2 Granularity and Partitioning
	2.3.3 Parallelism Patterns
	2.3.4 Flow and Dependence Analysis

	2.4 Software Distribution
	2.4.1 Accelerator Offloading
	2.4.2 Mapping and Scheduling of Dataflow MoCs
	Scheduling Approaches
	Computing a Schedule
	Centralized Control Flow
	Distributed Control Flow

	2.5 Code Generation

	3 Case Studies
	3.1 Academic Research
	3.1.1 Shapes
	3.1.2 Daedalus
	3.1.3 PREESM

	3.2 Industrial Case Studies
	3.2.1 TI Keystone Multi-Core DSP Platform
	3.2.2 Silexica: SLX Tool Suite

	4 Summary
	References

	Analysis of Finite Word-Length Effects in Fixed-Point Systems
	1 Introduction
	2 Background
	2.1 Floating-Point vs. Fixed-Point Arithmetic
	2.2 Finite Word-Length Effects

	3 Effect of Signal Quantization
	3.1 Error Metrics
	3.2 Analytical Evaluation of the Round-Off Noise
	3.2.1 Quantization Noise Bounds
	3.2.2 Round-Off Noise Power
	3.2.3 Probability Density Function

	3.3 Simulation-Based and Mixed Approaches
	3.3.1 Fixed-Point Simulation-Based Evaluation
	3.3.2 Mixed Approach

	4 Effect of Coefficient Quantization
	4.1 Measurement Parameters
	4.2 L2-Sensitivity
	4.3 Analytical Approaches to Compute the L2-Sensitivity

	5 System Stability Due to Signal Quantization
	5.1 Analysis of Limit Cycles in Digital Filters
	5.2 Simulation-Based LC Detection Procedures

	6 Summary
	References

	Models of Architecture for DSP Systems
	1 Introduction
	2 The Context of Models of Architecture
	2.1 Models of Architecture in the Y-Chart Approach
	2.2 Illustrating Iterative Design Process and Y-Chart on an Example System
	2.3 On the Separation Between Application and Architecture Concerns
	2.4 Scope of This Chapter

	3 The Model of Architecture Concept
	3.1 Definition of an MoA
	3.2 Example of an MoA: The Linear System-Level Architecture Model (LSLA)

	4 Architecture Design Languages and Their Architecture Models
	4.1 The AADL Quasi-MoA
	4.1.1 The Features of the AADL Quasi-MoA
	4.1.2 Combining Application and Architecture in AADL
	4.1.3 Conclusions on the AADL Quasi-MoA

	4.2 The MCA SHIM Quasi-MoA
	4.2.1 Conclusions on MCA SHIM Quasi-MoA

	4.3 The UML MARTE Quasi-MoAs
	4.3.1 The UML MARTE Quasi-MoAs 1 and 4
	4.3.2 The UML MARTE Quasi-MoAs 2 and 3
	4.3.3 Conclusions on UML MARTE Quasi-MoAs

	4.4 Conclusions on ADL Languages

	5 Formal Quasi-MoAs
	5.1 The AAA Methodology Quasi-MoA
	5.2 The CHARMED Quasi-MoA
	5.3 The System-Level Architecture Model (S-LAM) Quasi-MoA
	5.4 The MAPS Quasi-MoA
	5.5 Evolution of Formal Architecture Models

	6 Concluding Remarks on MoA and Quasi-MoAs for DSP Systems
	List of Acronyms
	References

	Optimization of Number Representations
	1 Introduction
	2 Fixed-Point Data Type and Arithmetic Rules
	2.1 Fixed-Point Data Type
	2.2 Fixed-Point Arithmetic Rules
	2.3 Fixed-Point Conversion Examples

	3 Range Estimation for Integer Word-Length Determination
	3.1 L1-Norm Based Range Estimation
	3.2 Simulation Based Range Estimation
	3.3 C++ Class Based Range Estimation Utility

	4 Floating-Point to Integer C Code Conversion
	4.1 Fixed-Point Arithmetic Rules in C Programs
	4.2 Expression Conversion Using Shift Operations
	4.3 Integer Code Generation
	4.3.1 Shift Optimization

	4.4 Implementation Examples

	5 Word-Length Optimization
	5.1 Finite Word-Length Effects
	5.2 Fixed-Point Simulation Using C++ gFix Library
	5.3 Word-Length Optimization Method
	5.3.1 Signal Grouping
	5.3.2 Determination of Sign and Integer Word-Length
	5.3.3 Determination of the Minimum Word-Length for Each Group
	5.3.4 Determination of the Minimum Hardware Cost Word-Length Vector

	5.4 Optimization Example

	6 Summary and Related Works
	References

	Dynamic Dataflow Graphs
	1 Motivation for Dynamic DSP-Oriented Dataflow Models
	2 Boolean Dataflow
	3 CAL
	4 Parameterized Dataflow
	5 Enable-Invoke Dataflow
	6 Scenario-Aware Dataflow
	6.1 SADF Graphs
	6.2 Analysis
	6.3 Synthesis

	7 Dynamic Polyhedral Process Networks
	7.1 Weakly Dynamic Programs
	7.2 Dynamic Loop-Bounds
	7.3 Dynamic While-Loops
	7.4 Parameterized Polyhedral Process Networks

	8 Summary
	References

