
5. Conclusion

Creating a dialogue system can be challenging, considering the context in past conversation. This problem can
be solved with LSTM, LSTM allows the preservation of gradients, the memory cell remembers the first input,
which in this case is the very first conversation until the current conversation and also LSTM solves the vanishing
gradient problem in common Recurrent Neural Network. This experiment and some few direct test on the bot
concludes that the dialogue state manager system is working properly. Most errors though are coming from the
intent classifier that could not classify some sentences that is not in the corpus properly.

This system is far from perfect as the we can still do more experiments on the hyper parameter, using different
training data, improve the intent classifier, and perhaps adding a module for Named Entity Recognition.
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Gambar 8. Intent classifier data training sample

Gambar 9. LSTM/Dialogue state manager data training sample
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