ABSTRACT

The development of technology is a very big influence on the development

of society which will have a direct impact on everyday life. Based on this, we are

required to continue to innovate and one of them is technology in the field of

aviation, namely Hypersonic Flight Control (HFC). In this field, a lot of research

has been carried out starting from vehicle modeling, namely Hypersonic Flight

Vehicles (HFV's) to flight paths, which certainly do not always run well, so a good

calculation and control system is needed. The Hypersonic Airplane Space Tether

Orbital Launch (HASTOL) concept was originally suggested by Dr. Robert L.

Forward in his book, FUTURE MAGIC (Avon Books, New York, (1988)[1]. The

focus of this journal is to control the flight trajectory that will be traversed by the

aircraft/rocket and the method that will be used in this journal is the Vector Field

Orbital Path to control the orbital path of an aircraft/rocket while in the air.

The implementation of this journal will use a simulation with the MATLAB

application which will be integrated with the FlightGear application, starting with

modeling and continuing with finding the linear form of the system and then doing

the simulation. MATLAB (MATrix LABoratory) itself is a high-level, closed, and

case sensitive programming language in a numerical computing environment

developed by MathWorks, while FlightGear is an application that will simulate how

an airplane/rocket starts from takeoff to the state when it is in the air.

With the simulation results and also a demo using the FlightGear

application, it is expected to be able to visualize the situation when the plane/rocket

is in the air and the orbital trajectory it passes.

Keywords: Hypersonic Flight Control, MATLAB, Flightgear.

V