ABSTRACT

Hydroponic plants are gaining popularity in Indonesia due to their ease of

cultivation and minimal land requirements. Hydroponics is a cultivation technique

that employs a water-based medium without soil and focuses on meeting the

nutritional needs of plants. The method used in this research is the Deep Flow

Technique (DFT), which conserves electrical energy by utilizing stagnant water in

PVC pipes. The water used to irrigate the hydroponic system contains essential

nutrients required by plants, such as nutrients. Iron is a crucial nutrient for the

formation of respiratory enzymes and can be provided through the process of

electrolysis.

Electrolysis is a chemical transformation or decomposition reaction that

occurs in an electrolyte with the assistance of an electrical current. The objective of

this study is to enhance the iron content in red spinach while considering the pH of

the water flowing into the hydroponic system.

The results of the tests conducted during the system design reveal an average

water pH measurement of 6.128 using the PH405 sensor. Subsequently, the average

increase in iron content with electrolysis-treated water in red spinach was 2.57

mg/liter, whereas the group without electrolysis had an average of 0.93 mg/liter.

The enhancement of iron content with electrolysis-treated water was achieved by

applying a voltage of 12V for one month of cultivation.

Keywords: Hydroponics, Iron, Electrolysis, Nutrients

iv