
Tabel 5. Accuracy and F-1 Score for balanced dataset

Method Accuracy F-1 Score Macro Avg
KNN 93.67% 93.55%
Random Forest 97.76% 97.70%
Boosted KNN 97.94% 98.00%

4. Conclusion

This research has shown that using imbalanced and balanced datasets gives different results. Based on Table 4,
when the methods classify the imbalanced dataset, all methods have good accuracy. However, the F-1 score macro
average of every method indicates that the performance of the models needs to be improved. The imbalanced data
training resulted in the models classifying most cases as the majority class, so the models do not perform well on
the rare class or the minority class. Table 5 shows that the accuracy of the balanced dataset is lower than that of
the imbalanced dataset. However, each method’s F-1 score macro average is significantly improved rather than the
imbalanced dataset. Therefore, the performance of every method for both classes has improved. Apart from good
results of F-1 scores, Table 5 shows a comparison between KNN, RF, and BK. The KNN method has 93.67% of
accuracy and 93.55% of F-1 score. Meanwhile, the Random Forest has 97.76% of accuracy and 97.70% of F-1
score. Thus, this result indicates that Random Forest performs better than the KNN method. On the other hand,
the BK model (combining the concept of Random Forest and Ensemble Learning) achieves 97.94% of accuracy
and 98.00% of F-1 score. Therefore, the BK has succeeded in boosting the performance of the original KNN
method. Future work in developing a machine learning model for classification can be related to implementing the
RF concept to another machine learning method, such as Naive Bayes or Logistic Regression. Besides that, the
BK model can be implemented into text or image classification.
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