
Massih-Reza Amini · Stéphane Canu ·
Asja Fischer · Tias Guns · Petra Kralj Novak ·
Grigorios Tsoumakas (Eds.)

 123

LN
AI

 1
37

18

European Conference, ECML PKDD 2022
Grenoble, France, September 19–23, 2022
Proceedings, Part VI

Machine Learning and
Knowledge Discovery
in Databases

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 13718
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level. As with the LNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Massih-Reza Amini · Stéphane Canu ·
Asja Fischer · Tias Guns · Petra Kralj Novak ·
Grigorios Tsoumakas
Editors

Machine Learning and
Knowledge Discovery
in Databases
European Conference, ECML PKDD 2022
Grenoble, France, September 19–23, 2022
Proceedings, Part VI

Editors
Massih-Reza Amini
Grenoble Alpes University
Saint Martin d’Hères, France

Asja Fischer
Ruhr-Universität Bochum
Bochum, Germany

Petra Kralj Novak
Central European University
Vienna, Austria

Stéphane Canu
INSA Rouen Normandy
Saint Etienne du Rouvray, France

Tias Guns
KU Leuven
Leuven, Belgium

Grigorios Tsoumakas
Aristotle University of Thessaloniki
Thessaloniki, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-26421-4 ISBN 978-3-031-26422-1 (eBook)
https://doi.org/10.1007/978-3-031-26422-1

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2023
Chapter “SLISEMAP: Combining Supervised Dimensionality Reduction with Local Explanations” is licensed
under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-26422-1
http://creativecommons.org/licenses/by/4.0/

Preface

The European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML–PKDD 2022) in Grenoble, France, was once again
a place for in-person gathering and the exchange of ideas after two years of completely
virtual conferences due to the SARS-CoV-2 pandemic. This year the conference was
hosted for the first time in hybrid format, and we are honored and delighted to offer you
these proceedings as a result.

The annual ECML–PKDD conference serves as a global venue for the most recent
research in all fields of machine learning and knowledge discovery in databases, includ-
ing cutting-edge applications. It builds on a highly successful run of ECML–PKDD
conferences which has made it the premier European machine learning and data mining
conference.

This year, the conference drew over 1080 participants (762 in-person and 318 online)
from 37 countries, including 23 European nations. This wealth of interest considerably
exceeded our expectations, and we were both excited and under pressure to plan a
special event. Overall, the conference attracted a lot of interest from industry thanks to
sponsorship, participation, and the conference’s industrial day.

The main conference program consisted of presentations of 242 accepted papers and
four keynote talks (in order of appearance):

– Francis Bach (Inria), Information Theory with Kernel Methods
– Danai Koutra (University of Michigan), Mining & Learning [Compact] Representa-

tions for Structured Data
– Fosca Gianotti (Scuola Normale Superiore di Pisa), Explainable Machine Learning

for Trustworthy AI
– Yann Le Cun (Facebook AI Research), From Machine Learning to Autonomous

Intelligence

In addition, there were respectively twenty three in-person and three online work-
shops; five in-person and three online tutorials; two combined in-person and one com-
bined online workshop-tutorials, together with a PhD Forum, a discovery challenge and
demonstrations.

Papers presented during the three main conference days were organized in 4 tracks,
within 54 sessions:

– Research Track: articles on research or methodology from all branches of machine
learning, data mining, and knowledge discovery;

– Applied Data Science Track: articles on cutting-edge uses of machine learning, data
mining, and knowledge discovery to resolve practical use cases and close the gap
between current theory and practice;

– Journal Track: articles that were published in special issues of the journals Machine
Learning and Data Mining and Knowledge Discovery;

vi Preface

– Demo Track: short articles that propose a novel system that advances the state of the
art and include a demonstration video.

We received a record number of 1238 abstract submissions, and for the Research
and Applied Data Science Tracks, 932 papers made it through the review process (the
remaining papers were withdrawn, with the bulk being desk rejected). We accepted 189
(27.3%) Research papers and 53 (22.2%) Applied Data science articles. 47 papers from
the Journal Track and 17 demo papers were also included in the program. We were able
to put together an extraordinarily rich and engaging program because of the high quality
submissions.

Research articles that were judged to be of exceptional quality and deserving of
special distinction were chosen by the awards committee:

– Machine Learning Best Paper Award: “Bounding the Family-Wise Error Rate in Local
Causal Discovery Using Rademacher Averages”, by Dario Simionato (University of
Padova) and Fabio Vandin (University of Padova)

– Data-Mining Best Paper Award: “Transforming PageRank into an Infinite-Depth
Graph Neural Network”, by Andreas Roth (TU Dortmund), and Thomas Liebig (TU
Dortmund)

– Test of Time Award for highest impact paper from ECML–PKDD 2012: “Fairness-
Aware Classifier with Prejudice Remover Regularizer”, by Toshihiro Kamishima
(National Institute of Advanced Industrial Science and Technology AIST), Shotaro
Akashi (National Institute of Advanced Industrial Science and Technology AIST),
Hideki Asoh (National Institute of Advanced Industrial Science and Technology
AIST), and Jun Sakuma (University of Tsukuba)

We sincerely thank the contributions of all participants, authors, PC members, area
chairs, session chairs, volunteers, and co-organizers who made ECML–PKDD 2022 a
huge success. We would especially like to thank Julie from the Grenoble World Trade
Center for all her help and Titouan from Insight-outside, who worked so hard to make
the online event possible. We also like to express our gratitude to Thierry for the design
of the conference logo representing the three mountain chains surrounding the Grenoble
city, as well as the sponsors and the ECML–PKDD Steering Committee.

October 2022 Massih-Reza Amini
Stéphane Canu

Asja Fischer
Petra Kralj Novak

Tias Guns
Grigorios Tsoumakas

Georgios Balikas
Fragkiskos Malliaros

Organization

General Chairs

Massih-Reza Amini University Grenoble Alpes, France
Stéphane Canu INSA Rouen, France

Program Chairs

Asja Fischer Ruhr University Bochum, Germany
Tias Guns KU Leuven, Belgium
Petra Kralj Novak Central European University, Austria
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece

Journal Track Chairs

Peggy Cellier INSA Rennes, IRISA, France
Krzysztof Dembczyński Yahoo Research, USA
Emilie Devijver CNRS, France
Albrecht Zimmermann University of Caen Normandie, France

Workshop and Tutorial Chairs

Bruno Crémilleux University of Caen Normandie, France
Charlotte Laclau Telecom Paris, France

Local Chairs

Latifa Boudiba University Grenoble Alpes, France
Franck Iutzeler University Grenoble Alpes, France

viii Organization

Proceedings Chairs

Wouter Duivesteijn Technische Universiteit Eindhoven,
the Netherlands

Sibylle Hess Technische Universiteit Eindhoven,
the Netherlands

Industry Track Chairs

Rohit Babbar Aalto University, Finland
Françoise Fogelmann Hub France IA, France

Discovery Challenge Chairs

Ioannis Katakis University of Nicosia, Cyprus
Ioannis Partalas Expedia, Switzerland

Demonstration Chairs

Georgios Balikas Salesforce, France
Fragkiskos Malliaros CentraleSupélec, France

PhD Forum Chairs

Esther Galbrun University of Eastern Finland, Finland
Justine Reynaud University of Caen Normandie, France

Awards Chairs

Francesca Lisi Università degli Studi di Bari, Italy
Michalis Vlachos University of Lausanne, Switzerland

Sponsorship Chairs

Patrice Aknin IRT SystemX, France
Gilles Gasso INSA Rouen, France

Organization ix

Web Chairs

Martine Harshé Laboratoire d’Informatique de Grenoble, France
Marta Soare University Grenoble Alpes, France

Publicity Chair

Emilie Morvant Université Jean Monnet, France

ECML PKDD Steering Committee

Annalisa Appice University of Bari Aldo Moro, Italy
Ira Assent Aarhus University, Denmark
Albert Bifet Télécom ParisTech, France
Francesco Bonchi ISI Foundation, Italy
Tania Cerquitelli Politecnico di Torino, Italy
Sašo Džeroski Jožef Stefan Institute, Slovenia
Elisa Fromont Université de Rennes, France
Andreas Hotho Julius-Maximilians-Universität Würzburg,

Germany
Alípio Jorge University of Porto, Portugal
Kristian Kersting TU Darmstadt, Germany
Jefrey Lijffijt Ghent University, Belgium
Luís Moreira-Matias University of Porto, Portugal
Katharina Morik TU Dortmund, Germany
Siegfried Nijssen Université catholique de Louvain, Belgium
Andrea Passerini University of Trento, Italy
Fernando Perez-Cruz ETH Zurich, Switzerland
Alessandra Sala Shutterstock Ireland Limited, Ireland
Arno Siebes Utrecht University, the Netherlands
Isabel Valera Universität des Saarlandes, Germany

Program Committees

Guest Editorial Board, Journal Track

Richard Allmendinger University of Manchester, UK
Marie Anastacio Universiteit Leiden, the Netherlands
Ira Assent Aarhus University, Denmark
Martin Atzmueller Universität Osnabrück, Germany
Rohit Babbar Aalto University, Finland

x Organization

Jaume Bacardit Newcastle University, UK
Anthony Bagnall University of East Anglia, UK
Mitra Baratchi Universiteit Leiden, the Netherlands
Francesco Bariatti IRISA, France
German Barquero Universität de Barcelona, Spain
Alessio Benavoli Trinity College Dublin, Ireland
Viktor Bengs Ludwig-Maximilians-Universität München,

Germany
Massimo Bilancia Università degli Studi di Bari Aldo Moro, Italy
Ilaria Bordino Unicredit R&D, Italy
Jakob Bossek University of Münster, Germany
Ulf Brefeld Leuphana University of Lüneburg, Germany
Ricardo Campello University of Newcastle, UK
Michelangelo Ceci University of Bari, Italy
Loic Cerf Universidade Federal de Minas Gerais, Brazil
Vitor Cerqueira Universidade do Porto, Portugal
Laetitia Chapel IRISA, France
Jinghui Chen Pennsylvania State University, USA
Silvia Chiusano Politecnico di Torino, Italy
Roberto Corizzo Università degli Studi di Bari Aldo Moro, Italy
Bruno Cremilleux Université de Caen Normandie, France
Marco de Gemmis University of Bari Aldo Moro, Italy
Sebastien Destercke Centre National de la Recherche Scientifique,

France
Shridhar Devamane Global Academy of Technology, India
Benjamin Doerr Ecole Polytechnique, France
Wouter Duivesteijn Technische Universiteit Eindhoven,

the Netherlands
Thomas Dyhre Nielsen Aalborg University, Denmark
Tapio Elomaa Tampere University, Finland
Remi Emonet Université Jean Monnet Saint-Etienne, France
Nicola Fanizzi Università degli Studi di Bari Aldo Moro, Italy
Pedro Ferreira University of Lisbon, Portugal
Cesar Ferri Universität Politecnica de Valencia, Spain
Julia Flores University of Castilla-La Mancha, Spain
Ionut Florescu Stevens Institute of Technology, USA
Germain Forestier Université de Haute-Alsace, France
Joel Frank Ruhr-Universität Bochum, Germany
Marco Frasca Università degli Studi di Milano, Italy
Jose A. Gomez Universidad de Castilla-La Mancha, Spain
Stephan Günnemann Institute for Advanced Study, Germany
Luis Galarraga Inria, France

Organization xi

Esther Galbrun University of Eastern Finland, Finland
Joao Gama University of Porto, Portugal
Paolo Garza Politecnico di Torino, Italy
Pascal Germain Université Laval, Canada
Fabian Gieseke Westfälische Wilhelms-Universität Münster,

Germany
Riccardo Guidotti Università degli Studi di Pisa, Italy
Francesco Gullo UniCredit, Italy
Antonella Guzzo University of Calabria, Italy
Isabel Haasler KTH Royal Institute of Technology, Sweden
Alexander Hagg Bonn-Rhein-Sieg University, Germany
Daniel Hernandez-Lobato Universidad Autónoma de Madrid, Spain
Jose Hernandez-Orallo Universidad Politecnica de Valencia, Spain
Martin Holena Neznámá organizace, Czechia
Jaakko Hollmen Stockholm University, Sweden
Dino Ienco IRSTEA, France
Georgiana Ifrim University College Dublin, Ireland
Felix Iglesias Technische Universität Wien, Austria
Angelo Impedovo Università degli Studi di Bari Aldo Moro, Italy
Frank Iutzeler Université Grenoble Alpes, France
Mahdi Jalili RMIT University, Australia
Szymon Jaroszewicz Polish Academy of Sciences, Poland
Mehdi Kaytoue INSA Lyon, France
Raouf Kerkouche Helmholtz Center for Information Security,

Germany
Pascal Kerschke Westfälische Wilhelms-Universität Münster,

Germany
Dragi Kocev Jožef Stefan Institute, Slovenia
Wojciech Kotlowski Poznan University of Technology, Poland
Lars Kotthoff University of Wyoming, USA
Peer Kroger Ludwig-Maximilians-Universität München,

Germany
Tipaluck Krityakierne Mahidol University, Thailand
Peer Kroger Christian-Albrechts-University Kiel, Germany
Meelis Kull Tartu Ulikool, Estonia
Charlotte Laclau Laboratoire Hubert Curien, France
Mark Last Ben-Gurion University of the Negev, Israel
Matthijs van Leeuwen Universiteit Leiden, the Netherlands
Thomas Liebig TU Dortmund, Germany
Hsuan-Tien Lin National Taiwan University, Taiwan
Marco Lippi University of Modena and Reggio Emilia, Italy
Daniel Lobato Universidad Autonoma de Madrid, Spain

xii Organization

Corrado Loglisci Università degli Studi di Bari Aldo Moro, Italy
Nuno Lourenço University of Coimbra, Portugal
Claudio Lucchese Ca’Foscari University of Venice, Italy
Brian MacNamee University College Dublin, Ireland
Davide Maiorca University of Cagliari, Italy
Giuseppe Manco National Research Council, Italy
Elio Masciari University of Naples Federico II, Italy
Andres Masegosa University of Aalborg, Denmark
Ernestina Menasalvas Universidad Politecnica de Madrid, Spain
Lien Michiels Universiteit Antwerpen, Belgium
Jan Mielniczuk Polish Academy of Sciences, Poland
Paolo Mignone Università degli Studi di Bari Aldo Moro, Italy
Anna Monreale University of Pisa, Italy
Giovanni Montana University of Warwick, UK
Gregoire Montavon Technische Universität Berlin, Germany
Amedeo Napoli LORIA, France
Frank Neumann University of Adelaide, Australia
Thomas Nielsen Aalborg Universitet, Denmark
Bruno Ordozgoiti Aalto-yliopisto, Finland
Panagiotis Papapetrou Stockholms Universitet, Sweden
Andrea Passerini University of Trento, Italy
Mykola Pechenizkiy Technische Universiteit Eindhoven,

the Netherlands
Charlotte Pelletier IRISA, France
Ruggero Pensa University of Turin, Italy
Nico Piatkowski Technische Universität Dortmund, Germany
Gianvito Pio Università degli Studi di Bari Aldo Moro, Italy
Marc Plantevit Université Claude Bernard Lyon 1, France
Jose M. Puerta Universidad de Castilla-La Mancha, Spain
Kai Puolamaki Helsingin Yliopisto, Finland
Michael Rabbat Meta Platforms Inc, USA
Jan Ramon Inria Lille Nord Europe, France
Rita Ribeiro Universidade do Porto, Portugal
Kaspar Riesen University of Bern, Switzerland
Matteo Riondato Amherst College, USA
Celine Robardet INSA Lyon, France
Pieter Robberechts KU Leuven, Belgium
Antonio Salmeron University of Almería, Spain
Jorg Sander University of Alberta, Canada
Roberto Santana University of the Basque Country, Spain
Michael Schaub Rheinisch-Westfälische Technische Hochschule,

Germany

Organization xiii

Erik Schultheis Aalto-yliopisto, Finland
Thomas Seidl Ludwig-Maximilians-Universität München,

Germany
Moritz Seiler University of Münster, Germany
Kijung Shin KAIST, South Korea
Shinichi Shirakawa Yokohama National University, Japan
Marek Smieja Jagiellonian University, Poland
James Edward Smith University of the West of England, UK
Carlos Soares Universidade do Porto, Portugal
Arnaud Soulet Université de Tours, France
Gerasimos Spanakis Maastricht University, the Netherlands
Giancarlo Sperli University of Campania Luigi Vanvitelli, Italy
Myra Spiliopoulou Otto von Guericke Universität Magdeburg,

Germany
Jerzy Stefanowski Poznan University of Technology, Poland
Giovanni Stilo Università degli Studi dell’Aquila, Italy
Catalin Stoean University of Craiova, Romania
Mahito Sugiyama National Institute of Informatics, Japan
Nikolaj Tatti Helsingin Yliopisto, Finland
Alexandre Termier Université de Rennes 1, France
Luis Torgo Dalhousie University, Canada
Leonardo Trujillo Tecnologico Nacional de Mexico, Mexico
Wei-Wei Tu 4Paradigm Inc., China
Steffen Udluft Siemens AG Corporate Technology, Germany
Arnaud Vandaele Université de Mons, Belgium
Celine Vens KU Leuven, Belgium
Herna Viktor University of Ottawa, Canada
Marco Virgolin Centrum Wiskunde en Informatica,

the Netherlands
Jordi Vitria Universität de Barcelona, Spain
Jilles Vreeken CISPA Helmholtz Center for Information

Security, Germany
Willem Waegeman Universiteit Gent, Belgium
Markus Wagner University of Adelaide, Australia
Elizabeth Wanner Centro Federal de Educacao Tecnologica de

Minas, Brazil
Marcel Wever Universität Paderborn, Germany
Ngai Wong University of Hong Kong, Hong Kong, China
Man Leung Wong Lingnan University, Hong Kong, China
Marek Wydmuch Poznan University of Technology, Poland
Guoxian Yu Shandong University, China
Xiang Zhang University of Hong Kong, Hong Kong, China

xiv Organization

Ye Zhu Deakin University, USA
Arthur Zimek Syddansk Universitet, Denmark
Albrecht Zimmermann Université de Caen Normandie, France

Area Chairs

Fabrizio Angiulli DIMES, University of Calabria, Italy
Annalisa Appice University of Bari, Italy
Ira Assent Aarhus University, Denmark
Martin Atzmueller Osnabrück University, Germany
Michael Berthold Universität Konstanz, Germany
Albert Bifet Université Paris-Saclay, France
Hendrik Blockeel KU Leuven, Belgium
Christian Böhm LMU Munich, Germany
Francesco Bonchi ISI Foundation, Turin, Italy
Ulf Brefeld Leuphana, Germany
Francesco Calabrese Richemont, USA
Toon Calders Universiteit Antwerpen, Belgium
Michelangelo Ceci University of Bari, Italy
Peggy Cellier IRISA, France
Duen Horng Chau Georgia Institute of Technology, USA
Nicolas Courty IRISA, Université Bretagne-Sud, France
Bruno Cremilleux Université de Caen Normandie, France
Jesse Davis KU Leuven, Belgium
Gianmarco De Francisci Morales CentAI, Italy
Tom Diethe Amazon, UK
Carlotta Domeniconi George Mason University, USA
Yuxiao Dong Tsinghua University, China
Kurt Driessens Maastricht University, the Netherlands
Tapio Elomaa Tampere University, Finland
Sergio Escalera CVC and University of Barcelona, Spain
Faisal Farooq Qatar Computing Research Institute, Qatar
Asja Fischer Ruhr University Bochum, Germany
Peter Flach University of Bristol, UK
Eibe Frank University of Waikato, New Zealand
Paolo Frasconi Università degli Studi di Firenze, Italy
Elisa Fromont Université Rennes 1, IRISA/Inria, France
Johannes Fürnkranz JKU Linz, Austria
Patrick Gallinari Sorbonne Université, Criteo AI Lab, France
Joao Gama INESC TEC - LIAAD, Portugal
Jose Gamez Universidad de Castilla-La Mancha, Spain
Roman Garnett Washington University in St. Louis, USA
Thomas Gärtner TU Wien, Austria

Organization xv

Aristides Gionis KTH Royal Institute of Technology, Sweden
Francesco Gullo UniCredit, Italy
Stephan Günnemann Technical University of Munich, Germany
Xiangnan He University of Science and Technology of China,

China
Daniel Hernandez-Lobato Universidad Autonoma de Madrid, Spain
José Hernández-Orallo Universität Politècnica de València, Spain
Jaakko Hollmén Aalto University, Finland
Andreas Hotho Universität Würzburg, Germany
Eyke Hüllermeier University of Munich, Germany
Neil Hurley University College Dublin, Ireland
Georgiana Ifrim University College Dublin, Ireland
Alipio Jorge INESC TEC/University of Porto, Portugal
Ross King Chalmers University of Technology, Sweden
Arno Knobbe Leiden University, the Netherlands
Yun Sing Koh University of Auckland, New Zealand
Parisa Kordjamshidi Michigan State University, USA
Lars Kotthoff University of Wyoming, USA
Nicolas Kourtellis Telefonica Research, Spain
Danai Koutra University of Michigan, USA
Danica Kragic KTH Royal Institute of Technology, Sweden
Stefan Kramer Johannes Gutenberg University Mainz, Germany
Niklas Lavesson Blekinge Institute of Technology, Sweden
Sébastien Lefèvre Université de Bretagne Sud/IRISA, France
Jefrey Lijffijt Ghent University, Belgium
Marius Lindauer Leibniz University Hannover, Germany
Patrick Loiseau Inria, France
Jose Lozano UPV/EHU, Spain
Jörg Lücke Universität Oldenburg, Germany
Donato Malerba Università degli Studi di Bari Aldo Moro, Italy
Fragkiskos Malliaros CentraleSupelec, France
Giuseppe Manco ICAR-CNR, Italy
Wannes Meert KU Leuven, Belgium
Pauli Miettinen University of Eastern Finland, Finland
Dunja Mladenic Jožef Stefan Institute, Slovenia
Anna Monreale Università di Pisa, Italy
Luis Moreira-Matias Finiata, Germany
Emilie Morvant University Jean Monnet, St-Etienne, France
Sriraam Natarajan UT Dallas, USA
Nuria Oliver Vodafone Research, USA
Panagiotis Papapetrou Stockholm University, Sweden
Laurence Park WSU, Australia

xvi Organization

Andrea Passerini University of Trento, Italy
Mykola Pechenizkiy TU Eindhoven, the Netherlands
Dino Pedreschi University of Pisa, Italy
Robert Peharz Graz University of Technology, Austria
Julien Perez Naver Labs Europe, France
Franz Pernkopf Graz University of Technology, Austria
Bernhard Pfahringer University of Waikato, New Zealand
Fabio Pinelli IMT Lucca, Italy
Visvanathan Ramesh Goethe University Frankfurt, Germany
Jesse Read Ecole Polytechnique, France
Zhaochun Ren Shandong University, China
Marian-Andrei Rizoiu University of Technology Sydney, Australia
Celine Robardet INSA Lyon, France
Sriparna Saha IIT Patna, India
Ute Schmid University of Bamberg, Germany
Lars Schmidt-Thieme University of Hildesheim, Germany
Michele Sebag LISN CNRS, France
Thomas Seidl LMU Munich, Germany
Arno Siebes Universiteit Utrecht, the Netherlands
Fabrizio Silvestri Sapienza, University of Rome, Italy
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Yizhou Sun UCLA, USA
Jie Tang Tsinghua University, China
Nikolaj Tatti Helsinki University, Finland
Evimaria Terzi Boston University, USA
Marc Tommasi Lille University, France
Antti Ukkonen University of Helsinki, Finland
Herke van Hoof University of Amsterdam, the Netherlands
Matthijs van Leeuwen Leiden University, the Netherlands
Celine Vens KU Leuven, Belgium
Christel Vrain University of Orleans, France
Jilles Vreeken CISPA Helmholtz Center for Information

Security, Germany
Willem Waegeman Universiteit Gent, Belgium
Stefan Wrobel Fraunhofer IAIS, Germany
Xing Xie Microsoft Research Asia, China
Min-Ling Zhang Southeast University, China
Albrecht Zimmermann Université de Caen Normandie, France
Indre Zliobaite University of Helsinki, Finland

Organization xvii

Program Committee Members

Amos Abbott Virginia Tech, USA
Pedro Abreu CISUC, Portugal
Maribel Acosta Ruhr University Bochum, Germany
Timilehin Aderinola Insight Centre, University College Dublin, Ireland
Linara Adilova Ruhr University Bochum, Fraunhofer IAIS,

Germany
Florian Adriaens KTH, Sweden
Azim Ahmadzadeh Georgia State University, USA
Nourhan Ahmed University of Hildesheim, Germany
Deepak Ajwani University College Dublin, Ireland
Amir Hossein Akhavan Rahnama KTH Royal Institute of Technology, Sweden
Aymen Al Marjani ENS Lyon, France
Mehwish Alam Leibniz Institute for Information Infrastructure,

Germany
Francesco Alesiani NEC Laboratories Europe, Germany
Omar Alfarisi ADNOC, Canada
Pegah Alizadeh Ericsson Research, France
Reem Alotaibi King Abdulaziz University, Saudi Arabia
Jumanah Alshehri Temple University, USA
Bakhtiar Amen University of Huddersfield, UK
Evelin Amorim Inesc tec, Portugal
Shin Ando Tokyo University of Science, Japan
Thiago Andrade INESC TEC - LIAAD, Portugal
Jean-Marc Andreoli Naverlabs Europe, France
Giuseppina Andresini University of Bari Aldo Moro, Italy
Alessandro Antonucci IDSIA, Switzerland
Xiang Ao Institute of Computing Technology, CAS, China
Siddharth Aravindan National University of Singapore, Singapore
Héber H. Arcolezi Inria and École Polytechnique, France
Adrián Arnaiz-Rodríguez ELLIS Unit Alicante, Spain
Yusuf Arslan University of Luxembourg, Luxembourg
André Artelt Bielefeld University, Germany
Sunil Aryal Deakin University, Australia
Charles Assaad Easyvista, France
Matthias Aßenmacher Ludwig-Maxmilians-Universität München,

Germany
Zeyar Aung Masdar Institute, UAE
Serge Autexier DFKI Bremen, Germany
Rohit Babbar Aalto University, Finland
Housam Babiker University of Alberta, Canada

xviii Organization

Antonio Bahamonde University of Oviedo, Spain
Maroua Bahri Inria Paris, France
Georgios Balikas Salesforce, France
Maria Bampa Stockholm University, Sweden
Hubert Baniecki Warsaw University of Technology, Poland
Elena Baralis Politecnico di Torino, Italy
Mitra Baratchi LIACS - University of Leiden, the Netherlands
Kalliopi Basioti Rutgers University, USA
Martin Becker Stanford University, USA
Diana Benavides Prado University of Auckland, New Zealand
Anes Bendimerad LIRIS, France
Idir Benouaret Université Grenoble Alpes, France
Isacco Beretta Università di Pisa, Italy
Victor Berger CEA, France
Christoph Bergmeir Monash University, Australia
Cuissart Bertrand University of Caen, France
Antonio Bevilacqua University College Dublin, Ireland
Yaxin Bi Ulster University, UK
Ranran Bian University of Auckland, New Zealand
Adrien Bibal University of Louvain, Belgium
Subhodip Biswas Virginia Tech, USA
Patrick Blöbaum Amazon AWS, USA
Carlos Bobed University of Zaragoza, Spain
Paul Bogdan USC, USA
Chiara Boldrini CNR, Italy
Clément Bonet Université Bretagne Sud, France
Andrea Bontempelli University of Trento, Italy
Ludovico Boratto University of Cagliari, Italy
Stefano Bortoli Huawei Research Center, Germany
Diana-Laura Borza Babes Bolyai University, Romania
Ahcene Boubekki UiT, Norway
Sabri Boughorbel QCRI, Qatar
Paula Branco University of Ottawa, Canada
Jure Brence Jožef Stefan Institute, Slovenia
Martin Breskvar Jožef Stefan Institute, Slovenia
Marco Bressan University of Milan, Italy
Dariusz Brzezinski Poznan University of Technology, Poland
Florian Buettner German Cancer Research Center, Germany
Julian Busch Siemens Technology, Germany
Sebastian Buschjäger TU Dortmund Artificial Intelligence Unit,

Germany
Ali Butt Virginia Tech, USA

Organization xix

Narayanan C. Krishnan IIT Palakkad, India
Xiangrui Cai Nankai University, China
Xiongcai Cai UNSW Sydney, Australia
Zekun Cai University of Tokyo, Japan
Andrea Campagner Università degli Studi di Milano-Bicocca, Italy
Seyit Camtepe CSIRO Data61, Australia
Jiangxia Cao Chinese Academy of Sciences, China
Pengfei Cao Chinese Academy of Sciences, China
Yongcan Cao University of Texas at San Antonio, USA
Cécile Capponi Aix-Marseille University, France
Axel Carlier Institut National Polytechnique de Toulouse,

France
Paula Carroll University College Dublin, Ireland
John Cartlidge University of Bristol, UK
Simon Caton University College Dublin, Ireland
Bogdan Cautis University of Paris-Saclay, France
Mustafa Cavus Warsaw University of Technology, Poland
Remy Cazabet Université Lyon 1, France
Josu Ceberio University of the Basque Country, Spain
David Cechák CEITEC Masaryk University, Czechia
Abdulkadir Celikkanat Technical University of Denmark, Denmark
Dumitru-Clementin Cercel University Politehnica of Bucharest, Romania
Christophe Cerisara CNRS, France
Vítor Cerqueira Dalhousie University, Canada
Mattia Cerrato JGU Mainz, Germany
Ricardo Cerri Federal University of São Carlos, Brazil
Hubert Chan University of Hong Kong, Hong Kong, China
Vaggos Chatziafratis Stanford University, USA
Siu Lun Chau University of Oxford, UK
Chaochao Chen Zhejiang University, China
Chuan Chen Sun Yat-sen University, China
Hechang Chen Jilin University, China
Jia Chen Beihang University, China
Jiaoyan Chen University of Oxford, UK
Jiawei Chen Zhejiang University, China
Jin Chen University of Electronic Science and Technology,

China
Kuan-Hsun Chen University of Twente, the Netherlands
Lingwei Chen Wright State University, USA
Tianyi Chen Boston University, USA
Wang Chen Google, USA
Xinyuan Chen Universiti Kuala Lumpur, Malaysia

xx Organization

Yuqiao Chen UT Dallas, USA
Yuzhou Chen Princeton University, USA
Zhennan Chen Xiamen University, China
Zhiyu Chen UCSB, USA
Zhqian Chen Mississippi State University, USA
Ziheng Chen Stony Brook University, USA
Zhiyong Cheng Shandong Academy of Sciences, China
Noëlie Cherrier CITiO, France
Anshuman Chhabra UC Davis, USA
Zhixuan Chu Ant Group, China
Guillaume Cleuziou LIFO, France
Ciaran Cooney AflacNI, UK
Robson Cordeiro University of São Paulo, Brazil
Roberto Corizzo American University, USA
Antoine Cornuéjols AgroParisTech, France
Fabrizio Costa Exeter University, UK
Gustavo Costa Instituto Federal de Goiás - Campus Jataí, Brazil
Luís Cruz Delft University of Technology, the Netherlands
Tianyu Cui Institute of Information Engineering, China
Wang-Zhou Dai Imperial College London, UK
Tanmoy Dam University of New South Wales Canberra,

Australia
Thi-Bich-Hanh Dao University of Orleans, France
Adrian Sergiu Darabant Babes Bolyai University, Romania
Mrinal Das IIT Palakaad, India
Sina Däubener Ruhr University, Bochum, Germany
Padraig Davidson University of Würzburg, Germany
Paul Davidsson Malmö University, Sweden
Andre de Carvalho USP, Brazil
Antoine de Mathelin ENS Paris-Saclay, France
Tom De Schepper University of Antwerp, Belgium
Marcilio de Souto LIFO/Univ. Orleans, France
Gaetan De Waele Ghent University, Belgium
Pieter Delobelle KU Leuven, Belgium
Alper Demir Izmir University of Economics, Turkey
Ambra Demontis University of Cagliari, Italy
Difan Deng Leibniz Universität Hannover, Germany
Guillaume Derval UCLouvain - ICTEAM, Belgium
Maunendra Sankar Desarkar IIT Hyderabad, India
Chris Develder University of Ghent - iMec, Belgium
Arnout Devos Swiss Federal Institute of Technology Lausanne,

Switzerland

Organization xxi

Laurens Devos KU Leuven, Belgium
Bhaskar Dhariyal University College Dublin, Ireland
Nicola Di Mauro University of Bari, Italy
Aissatou Diallo University College London, UK
Christos Dimitrakakis University of Neuchatel, Switzerland
Jiahao Ding University of Houston, USA
Kaize Ding Arizona State University, USA
Yao-Xiang Ding Nanjing University, China
Guilherme Dinis Junior Stockholm University, Sweden
Nikolaos Dionelis University of Edinburgh, UK
Christos Diou Harokopio University of Athens, Greece
Sonia Djebali Léonard de Vinci Pôle Universitaire, France
Nicolas Dobigeon University of Toulouse, France
Carola Doerr Sorbonne University, France
Ruihai Dong University College Dublin, Ireland
Shuyu Dong Inria, Université Paris-Saclay, France
Yixiang Dong Xi’an Jiaotong University, China
Xin Du University of Edinburgh, UK
Yuntao Du Nanjing University, China
Stefan Duffner University of Lyon, France
Rahul Duggal Georgia Tech, USA
Wouter Duivesteijn TU Eindhoven, the Netherlands
Sebastijan Dumancic TU Delft, the Netherlands
Inês Dutra University of Porto, Portugal
Thomas Dyhre Nielsen AAU, Denmark
Saso Dzeroski Jožef Stefan Institute, Ljubljana, Slovenia
Tome Eftimov Jožef Stefan Institute, Ljubljana, Slovenia
Hamid Eghbal-zadeh LIT AI Lab, Johannes Kepler University, Austria
Theresa Eimer Leibniz University Hannover, Germany
Radwa El Shawi Tartu University, Estonia
Dominik Endres Philipps-Universität Marburg, Germany
Roberto Esposito Università di Torino, Italy
Georgios Evangelidis University of Macedonia, Greece
Samuel Fadel Leuphana University, Germany
Stephan Fahrenkrog-Petersen Humboldt-Universität zu Berlin, Germany
Xiaomao Fan Shenzhen Technology University, China
Zipei Fan University of Tokyo, Japan
Hadi Fanaee Halmstad University, Sweden
Meng Fang TU/e, the Netherlands
Elaine Faria UFU, Brazil
Ad Feelders Universiteit Utrecht, the Netherlands
Sophie Fellenz TU Kaiserslautern, Germany

xxii Organization

Stefano Ferilli University of Bari, Italy
Daniel Fernández-Sánchez Universidad Autónoma de Madrid, Spain
Pedro Ferreira Faculty of Sciences University of Porto, Portugal
Cèsar Ferri Universität Politècnica València, Spain
Flavio Figueiredo UFMG, Brazil
Soukaina Filali Boubrahimi Utah State University, USA
Raphael Fischer TU Dortmund, Germany
Germain Forestier University of Haute Alsace, France
Edouard Fouché Karlsruhe Institute of Technology, Germany
Philippe Fournier-Viger Shenzhen University, China
Kary Framling Umeå University, Sweden
Jérôme François Inria Nancy Grand-Est, France
Fabio Fumarola Prometeia, Italy
Pratik Gajane Eindhoven University of Technology,

the Netherlands
Esther Galbrun University of Eastern Finland, Finland
Laura Galindez Olascoaga KU Leuven, Belgium
Sunanda Gamage University of Western Ontario, Canada
Chen Gao Tsinghua University, China
Wei Gao Nanjing University, China
Xiaofeng Gao Shanghai Jiaotong University, China
Yuan Gao University of Science and Technology of China,

China
Jochen Garcke University of Bonn, Germany
Clement Gautrais Brightclue, France
Benoit Gauzere INSA Rouen, France
Dominique Gay Université de La Réunion, France
Xiou Ge University of Southern California, USA
Bernhard Geiger Know-Center GmbH, Germany
Jiahui Geng University of Stavanger, Norway
Yangliao Geng Tsinghua University, China
Konstantin Genin University of Tübingen, Germany
Firas Gerges New Jersey Institute of Technology, USA
Pierre Geurts University of Liège, Belgium
Gizem Gezici Sabanci University, Turkey
Amirata Ghorbani Stanford, USA
Biraja Ghoshal TCS, UK
Anna Giabelli Università degli studi di Milano Bicocca, Italy
George Giannakopoulos IIT Demokritos, Greece
Tobias Glasmachers Ruhr-University Bochum, Germany
Heitor Murilo Gomes University of Waikato, New Zealand
Anastasios Gounaris Aristotle University of Thessaloniki, Greece

Organization xxiii

Antoine Gourru University of Lyon, France
Michael Granitzer University of Passau, Germany
Magda Gregorova Hochschule Würzburg-Schweinfurt, Germany
Moritz Grosse-Wentrup University of Vienna, Austria
Divya Grover Chalmers University, Sweden
Bochen Guan OPPO US Research Center, USA
Xinyu Guan Xian Jiaotong University, China
Guillaume Guerard ESILV, France
Daniel Guerreiro e Silva University of Brasilia, Brazil
Riccardo Guidotti University of Pisa, Italy
Ekta Gujral University of California, Riverside, USA
Aditya Gulati ELLIS Unit Alicante, Spain
Guibing Guo Northeastern University, China
Jianxiong Guo Beijing Normal University, China
Yuhui Guo Renmin University of China, China
Karthik Gurumoorthy Amazon, India
Thomas Guyet Inria, Centre de Lyon, France
Guillaume Habault KDDI Research, Inc., Japan
Amaury Habrard University of St-Etienne, France
Shahrzad Haddadan Brown University, USA
Shah Muhammad Hamdi New Mexico State University, USA
Massinissa Hamidi PRES Sorbonne Paris Cité, France
Peng Han KAUST, Saudi Arabia
Tom Hanika University of Kassel, Germany
Sébastien Harispe IMT Mines Alès, France
Marwan Hassani TU Eindhoven, the Netherlands
Kohei Hayashi Preferred Networks, Inc., Japan
Conor Hayes National University of Ireland Galway, Ireland
Lingna He Zhejiang University of Technology, China
Ramya Hebbalaguppe Indian Institute of Technology, Delhi, India
Jukka Heikkonen University of Turku, Finland
Fredrik Heintz Linköping University, Sweden
Patrick Hemmer Karlsruhe Institute of Technology, Germany
Romain Hérault INSA de Rouen, France
Jeronimo Hernandez-Gonzalez University of Barcelona, Spain
Sibylle Hess TU Eindhoven, the Netherlands
Fabian Hinder Bielefeld University, Germany
Lars Holdijk University of Amsterdam, the Netherlands
Martin Holena Institute of Computer Science, Czechia
Mike Holenderski Eindhoven University of Technology,

the Netherlands
Shenda Hong Peking University, China

xxiv Organization

Yupeng Hou Renmin University of China, China
Binbin Hu Ant Financial Services Group, China
Jian Hu Queen Mary University of London, UK
Liang Hu Tongji University, China
Wen Hu Ant Group, China
Wenbin Hu Wuhan University, China
Wenbo Hu Tsinghua University, China
Yaowei Hu University of Arkansas, USA
Chao Huang University of Hong Kong, China
Gang Huang Zhejiang Lab, China
Guanjie Huang Penn State University, USA
Hong Huang HUST, China
Jin Huang University of Amsterdam, the Netherlands
Junjie Huang Chinese Academy of Sciences, China
Qiang Huang Jilin University, China
Shangrong Huang Hunan University, China
Weitian Huang South China University of Technology, China
Yan Huang Huazhong University of Science and Technology,

China
Yiran Huang Karlsruhe Institute of Technology, Germany
Angelo Impedovo University of Bari, Italy
Roberto Interdonato CIRAD, France
Iñaki Inza University of the Basque Country, Spain
Stratis Ioannidis Northeastern University, USA
Rakib Islam Facebook, USA
Tobias Jacobs NEC Laboratories Europe GmbH, Germany
Priyank Jaini Google, Canada
Johannes Jakubik Karlsruhe Institute of Technology, Germany
Nathalie Japkowicz American University, USA
Szymon Jaroszewicz Polish Academy of Sciences, Poland
Shayan Jawed University of Hildesheim, Germany
Rathinaraja Jeyaraj Kyungpook National University, South Korea
Shaoxiong Ji Aalto University, Finland
Taoran Ji Virginia Tech, USA
Bin-Bin Jia Southeast University, China
Yuheng Jia Southeast University, China
Ziyu Jia Beijing Jiaotong University, China
Nan Jiang Purdue University, USA
Renhe Jiang University of Tokyo, Japan
Siyang Jiang National Taiwan University, Taiwan
Song Jiang University of California, Los Angeles, USA
Wenyu Jiang Nanjing University, China

Organization xxv

Zhen Jiang Jiangsu University, China
Yuncheng Jiang South China Normal University, China
François-Xavier Jollois Université de Paris Cité, France
Adan Jose-Garcia Université de Lille, France
Ferdian Jovan University of Bristol, UK
Steffen Jung MPII, Germany
Thorsten Jungeblut Bielefeld University of Applied Sciences,

Germany
Hachem Kadri Aix-Marseille University, France
Vana Kalogeraki Athens University of Economics and Business,

Greece
Vinayaka Kamath Microsoft Research India, India
Toshihiro Kamishima National Institute of Advanced Industrial Science,

Japan
Bo Kang Ghent University, Belgium
Alexandros Karakasidis University of Macedonia, Greece
Mansooreh Karami Arizona State University, USA
Panagiotis Karras Aarhus University, Denmark
Ioannis Katakis University of Nicosia, Cyprus
Koki Kawabata Osaka University, Tokyo
Klemen Kenda Jožef Stefan Institute, Slovenia
Patrik Joslin Kenfack Innopolis University, Russia
Mahsa Keramati Simon Fraser University, Canada
Hamidreza Keshavarz Tarbiat Modares University, Iran
Adil Khan Innopolis University, Russia
Jihed Khiari Johannes Kepler University, Austria
Mi-Young Kim University of Alberta, Canada
Arto Klami University of Helsinki, Finland
Jiri Klema Czech Technical University, Czechia
Tomas Kliegr University of Economics Prague, Czechia
Christian Knoll Graz, University of Technology, Austria
Dmitry Kobak University of Tübingen, Germany
Vladimer Kobayashi University of the Philippines Mindanao,

Philippines
Dragi Kocev Jožef Stefan Institute, Slovenia
Adrian Kochsiek University of Mannheim, Germany
Masahiro Kohjima NTT Corporation, Japan
Georgia Koloniari University of Macedonia, Greece
Nikos Konofaos Aristotle University of Thessaloniki, Greece
Irena Koprinska University of Sydney, Australia
Lars Kotthoff University of Wyoming, USA
Daniel Kottke University of Kassel, Germany

xxvi Organization

Anna Krause University of Würzburg, Germany
Alexander Kravberg KTH Royal Institute of Technology, Sweden
Anastasia Krithara NCSR Demokritos, Greece
Meelis Kull University of Tartu, Estonia
Pawan Kumar IIIT, Hyderabad, India
Suresh Kirthi Kumaraswamy InterDigital, France
Gautam Kunapuli Verisk Inc, USA
Marcin Kurdziel AGH University of Science and Technology,

Poland
Vladimir Kuzmanovski Aalto University, Finland
Ariel Kwiatkowski École Polytechnique, France
Firas Laakom Tampere University, Finland
Harri Lähdesmäki Aalto University, Finland
Stefanos Laskaridis Samsung AI, UK
Alberto Lavelli FBK-ict, Italy
Aonghus Lawlor University College Dublin, Ireland
Thai Le University of Mississippi, USA
Hoàng-Ân Lê IRISA, University of South Brittany, France
Hoel Le Capitaine University of Nantes, France
Thach Le Nguyen Insight Centre, Ireland
Tai Le Quy L3S Research Center - Leibniz University

Hannover, Germany
Mustapha Lebbah Sorbonne Paris Nord University, France
Dongman Lee KAIST, South Korea
John Lee Université catholique de Louvain, Belgium
Minwoo Lee University of North Carolina at Charlotte, USA
Zed Lee Stockholm University, Sweden
Yunwen Lei University of Birmingham, UK
Douglas Leith Trinity College Dublin, Ireland
Florian Lemmerich RWTH Aachen, Germany
Carson Leung University of Manitoba, Canada
Chaozhuo Li Microsoft Research Asia, China
Jian Li Institute of Information Engineering, China
Lei Li Peking University, China
Li Li Southwest University, China
Rui Li Inspur Group, China
Shiyang Li UCSB, USA
Shuokai Li Chinese Academy of Sciences, China
Tianyu Li Alibaba Group, China
Wenye Li The Chinese University of Hong Kong, Shenzhen,

China
Wenzhong Li Nanjing University, China

Organization xxvii

Xiaoting Li Pennsylvania State University, USA
Yang Li University of North Carolina at Chapel Hill, USA
Zejian Li Zhejiang University, China
Zhidong Li UTS, Australia
Zhixin Li Guangxi Normal University, China
Defu Lian University of Science and Technology of China,

China
Bin Liang UTS, Australia
Yuchen Liang RPI, USA
Yiwen Liao University of Stuttgart, Germany
Pieter Libin VUB, Belgium
Thomas Liebig TU Dortmund, Germany
Seng Pei Liew LINE Corporation, Japan
Beiyu Lin University of Nevada - Las Vegas, USA
Chen Lin Xiamen University, China
Tony Lindgren Stockholm University, Sweden
Chen Ling Emory University, USA
Jiajing Ling Singapore Management University, Singapore
Marco Lippi University of Modena and Reggio Emilia, Italy
Bin Liu Chongqing University, China
Bowen Liu Stanford University, USA
Chang Liu Institute of Information Engineering, CAS, China
Chien-Liang Liu National Chiao Tung University, Taiwan
Feng Liu East China Normal University, China
Jiacheng Liu Chinese University of Hong Kong, China
Li Liu Chongqing University, China
Shengcai Liu Southern University of Science and Technology,

China
Shenghua Liu Institute of Computing Technology, CAS, China
Tingwen Liu Institute of Information Engineering, CAS, China
Xiangyu Liu Tencent, China
Yong Liu Renmin University of China, China
Yuansan Liu University of Melbourne, Australia
Zhiwei Liu Salesforce, USA
Tuwe Löfström Jönköping University, Sweden
Corrado Loglisci Università degli Studi di Bari Aldo Moro, Italy
Ting Long Shanghai Jiao Tong University, China
Beatriz López University of Girona, Spain
Yin Lou Ant Group, USA
Samir Loudni TASC (LS2N-CNRS), IMT Atlantique, France
Yang Lu Xiamen University, China
Yuxun Lu National Institute of Informatics, Japan

xxviii Organization

Massimiliano Luca Bruno Kessler Foundation, Italy
Stefan Lüdtke University of Mannheim, Germany
Jovita Lukasik University of Mannheim, Germany
Denis Lukovnikov University of Bonn, Germany
Pedro Henrique Luz de Araujo University of Brasília, Brazil
Fenglong Ma Pennsylvania State University, USA
Jing Ma University of Virginia, USA
Meng Ma Peking University, China
Muyang Ma Shandong University, China
Ruizhe Ma University of Massachusetts Lowell, USA
Xingkong Ma National University of Defense Technology,

China
Xueqi Ma Tsinghua University, China
Zichen Ma The Chinese University of Hong Kong, Shenzhen,

China
Luis Macedo University of Coimbra, Portugal
Harshitha Machiraju EPFL, Switzerland
Manchit Madan Delivery Hero, Germany
Seiji Maekawa Osaka University, Japan
Sindri Magnusson Stockholm University, Sweden
Pathum Chamikara Mahawaga CSIRO Data61, Australia
Saket Maheshwary Amazon, India
Ajay Mahimkar AT&T, USA
Pierre Maillot Inria, France
Lorenzo Malandri Unimib, Italy
Rammohan Mallipeddi Kyungpook National University, South Korea
Sahil Manchanda IIT Delhi, India
Domenico Mandaglio DIMES-UNICAL, Italy
Panagiotis Mandros Harvard University, USA
Robin Manhaeve KU Leuven, Belgium
Silviu Maniu Université Paris-Saclay, France
Cinmayii Manliguez National Sun Yat-Sen University, Taiwan
Naresh Manwani International Institute of Information Technology,

India
Jiali Mao East China Normal University, China
Alexandru Mara Ghent University, Belgium
Radu Marculescu University of Texas at Austin, USA
Roger Mark Massachusetts Institute of Technology, USA
Fernando Martínez-Plume Joint Research Centre - European Commission,

Belgium
Koji Maruhashi Fujitsu Research, Fujitsu Limited, Japan
Simone Marullo University of Siena, Italy

Organization xxix

Elio Masciari University of Naples, Italy
Florent Masseglia Inria, France
Michael Mathioudakis University of Helsinki, Finland
Takashi Matsubara Osaka University, Japan
Tetsu Matsukawa Kyushu University, Japan
Santiago Mazuelas BCAM-Basque Center for Applied Mathematics,

Spain
Ryan McConville University of Bristol, UK
Hardik Meisheri TCS Research, India
Panagiotis Meletis Eindhoven University of Technology,

the Netherlands
Gabor Melli Medable, USA
Joao Mendes-Moreira INESC TEC, Portugal
Chuan Meng University of Amsterdam, the Netherlands
Cristina Menghini Brown University, USA
Engelbert Mephu Nguifo Université Clermont Auvergne, CNRS, LIMOS,

France
Fabio Mercorio University of Milan-Bicocca, Italy
Guillaume Metzler Laboratoire ERIC, France
Hao Miao Aalborg University, Denmark
Alessio Micheli Università di Pisa, Italy
Paolo Mignone University of Bari Aldo Moro, Italy
Matej Mihelcic University of Zagreb, Croatia
Ioanna Miliou Stockholm University, Sweden
Bamdev Mishra Microsoft, India
Rishabh Misra Twitter, Inc, USA
Dixant Mittal National University of Singapore, Singapore
Zhaobin Mo Columbia University, USA
Daichi Mochihashi Institute of Statistical Mathematics, Japan
Armin Moharrer Northeastern University, USA
Ioannis Mollas Aristotle University of Thessaloniki, Greece
Carlos Monserrat-Aranda Universität Politècnica de València, Spain
Konda Reddy Mopuri Indian Institute of Technology Guwahati, India
Raha Moraffah Arizona State University, USA
Pawel Morawiecki Polish Academy of Sciences, Poland
Ahmadreza Mosallanezhad Arizona State University, USA
Davide Mottin Aarhus University, Denmark
Koyel Mukherjee Adobe Research, India
Maximilian Münch University of Applied Sciences Würzburg,

Germany
Fabricio Murai Universidade Federal de Minas Gerais, Brazil
Taichi Murayama NAIST, Japan

xxx Organization

Stéphane Mussard CHROME, France
Mohamed Nadif Centre Borelli - Université Paris Cité, France
Cian Naik University of Oxford, UK
Felipe Kenji Nakano KU Leuven, Belgium
Mirco Nanni ISTI-CNR Pisa, Italy
Apurva Narayan University of Waterloo, Canada
Usman Naseem University of Sydney, Australia
Gergely Nemeth ELLIS Unit Alicante, Spain
Stefan Neumann KTH Royal Institute of Technology, Sweden
Anna Nguyen Karlsruhe Institute of Technology, Germany
Quan Nguyen Washington University in St. Louis, USA
Thi Phuong Quyen Nguyen University of Da Nang, Vietnam
Thu Nguyen SimulaMet, Norway
Thu Trang Nguyen University College Dublin, Ireland
Prajakta Nimbhorkar Chennai Mathematical Institute, Chennai, India
Xuefei Ning Tsinghua University, China
Ikuko Nishikawa Ritsumeikan University, Japan
Hao Niu KDDI Research, Inc., Japan
Paraskevi Nousi Aristotle University of Thessaloniki, Greece
Erik Novak Jožef Stefan Institute, Slovenia
Slawomir Nowaczyk Halmstad University, Sweden
Aleksandra Nowak Jagiellonian University, Poland
Eirini Ntoutsi Freie Universität Berlin, Germany
Andreas Nürnberger Magdeburg University, Germany
James O’Neill University of Liverpool, UK
Lutz Oettershagen University of Bonn, Germany
Tsuyoshi Okita Kyushu Institute of Technology, Japan
Makoto Onizuka Osaka University, Japan
Subba Reddy Oota IIIT Hyderabad, India
María Óskarsdóttir University of Reykjavík, Iceland
Aomar Osmani PRES Sorbonne Paris Cité, France
Aljaz Osojnik JSI, Slovenia
Shuichi Otake National Institute of Informatics, Japan
Greger Ottosson IBM, France
Zijing Ou Sun Yat-sen University, China
Abdelkader Ouali University of Caen Normandy, France
Latifa Oukhellou IFSTTAR, France
Kai Ouyang Tsinghua University, France
Andrei Paleyes University of Cambridge, UK
Pankaj Pandey Indian Institute of Technology Gandhinagar, India
Guansong Pang Singapore Management University, Singapore
Pance Panov Jožef Stefan Institute, Slovenia

Organization xxxi

Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
Evangelos Papalexakis UC Riverside, USA
Anna Pappa Université Paris 8, France
Chanyoung Park UIUC, USA
Haekyu Park Georgia Institute of Technology, USA
Sanghyun Park Yonsei University, South Korea
Luca Pasa University of Padova, Italy
Kevin Pasini IRT SystemX, France
Vincenzo Pasquadibisceglie University of Bari Aldo Moro, Italy
Nikolaos Passalis Aristotle University of Thessaloniki, Greece
Javier Pastorino University of Colorado, Denver, USA
Kitsuchart Pasupa King Mongkut’s Institute of Technology, Thailand
Andrea Paudice University of Milan, Italy
Anand Paul Kyungpook National University, South Korea
Yulong Pei TU Eindhoven, the Netherlands
Charlotte Pelletier Université de Bretagne du Sud, France
Jaakko Peltonen Tampere University, Finland
Ruggero Pensa University of Torino, Italy
Fabiola Pereira Federal University of Uberlandia, Brazil
Lucas Pereira ITI, LARSyS, Técnico Lisboa, Portugal
Aritz Pérez Basque Center for Applied Mathematics, Spain
Lorenzo Perini KU Leuven, Belgium
Alan Perotti CENTAI Institute, Italy
Michaël Perrot Inria Lille, France
Matej Petkovic Institute Jožef Stefan, Slovenia
Lukas Pfahler TU Dortmund University, Germany
Nico Piatkowski Fraunhofer IAIS, Germany
Francesco Piccialli University of Naples Federico II, Italy
Gianvito Pio University of Bari, Italy
Giuseppe Pirrò Sapienza University of Rome, Italy
Marc Plantevit EPITA, France
Konstantinos Pliakos KU Leuven, Belgium
Matthias Pohl Otto von Guericke University, Germany
Nicolas Posocco EURA NOVA, Belgium
Cedric Pradalier GeorgiaTech Lorraine, France
Paul Prasse University of Potsdam, Germany
Mahardhika Pratama University of South Australia, Australia
Francesca Pratesi ISTI - CNR, Italy
Steven Prestwich University College Cork, Ireland
Giulia Preti CentAI, Italy
Philippe Preux Inria, France
Shalini Priya Oak Ridge National Laboratory, USA

xxxii Organization

Ricardo Prudencio Universidade Federal de Pernambuco, Brazil
Luca Putelli Università degli Studi di Brescia, Italy
Peter van der Putten Leiden University, the Netherlands
Chuan Qin Baidu, China
Jixiang Qing Ghent University, Belgium
Jolin Qu Western Sydney University, Australia
Nicolas Quesada Polytechnique Montreal, Canada
Teeradaj Racharak Japan Advanced Institute of Science and

Technology, Japan
Krystian Radlak Warsaw University of Technology, Poland
Sandro Radovanovic University of Belgrade, Serbia
Md Masudur Rahman Purdue University, USA
Ankita Raj Indian Institute of Technology Delhi, India
Herilalaina Rakotoarison Inria, France
Alexander Rakowski Hasso Plattner Institute, Germany
Jan Ramon Inria, France
Sascha Ranftl Graz University of Technology, Austria
Aleksandra Rashkovska Koceva Jožef Stefan Institute, Slovenia
S. Ravi Biocomplexity Institute, USA
Jesse Read Ecole Polytechnique, France
David Reich Universität Potsdam, Germany
Marina Reyboz CEA, LIST, France
Pedro Ribeiro University of Porto, Portugal
Rita P. Ribeiro University of Porto, Portugal
Piera Riccio ELLIS Unit Alicante Foundation, Spain
Christophe Rigotti INSA Lyon, France
Matteo Riondato Amherst College, USA
Mateus Riva Telecom ParisTech, France
Kit Rodolfa CMU, USA
Christophe Rodrigues DVRC Pôle Universitaire Léonard de Vinci,

France
Simon Rodríguez-Santana ICMAT, Spain
Gaetano Rossiello IBM Research, USA
Mohammad Rostami University of Southern California, USA
Franz Rothlauf Mainz Universität, Germany
Celine Rouveirol Université Paris-Nord, France
Arjun Roy Freie Universität Berlin, Germany
Joze Rozanec Josef Stefan International Postgraduate School,

Slovenia
Salvatore Ruggieri University of Pisa, Italy
Marko Ruman UTIA, AV CR, Czechia
Ellen Rushe University College Dublin, Ireland

Organization xxxiii

Dawid Rymarczyk Jagiellonian University, Poland
Amal Saadallah TU Dortmund, Germany
Khaled Mohammed Saifuddin Georgia State University, USA
Hajer Salem AUDENSIEL, France
Francesco Salvetti Politecnico di Torino, Italy
Roberto Santana University of the Basque Country (UPV/EHU),

Spain
KC Santosh University of South Dakota, USA
Somdeb Sarkhel Adobe, USA
Yuya Sasaki Osaka University, Japan
Yücel Saygın Sabancı Universitesi, Turkey
Patrick Schäfer Humboldt-Universität zu Berlin, Germany
Alexander Schiendorfer Technische Hochschule Ingolstadt, Germany
Peter Schlicht Volkswagen Group Research, Germany
Daniel Schmidt Monash University, Australia
Johannes Schneider University of Liechtenstein, Liechtenstein
Steven Schockaert Cardiff University, UK
Jens Schreiber University of Kassel, Germany
Matthias Schubert Ludwig-Maximilians-Universität München,

Germany
Alexander Schulz CITEC, Bielefeld University, Germany
Jan-Philipp Schulze Fraunhofer AISEC, Germany
Andreas Schwung Fachhochschule Südwestfalen, Germany
Vasile-Marian Scuturici LIRIS, France
Raquel Sebastião IEETA/DETI-UA, Portugal
Stanislav Selitskiy University of Bedfordshire, UK
Edoardo Serra Boise State University, USA
Lorenzo Severini UniCredit, R&D Dept., Italy
Tapan Shah GE, USA
Ammar Shaker NEC Laboratories Europe, Germany
Shiv Shankar University of Massachusetts, USA
Junming Shao University of Electronic Science and Technology,

China
Kartik Sharma Georgia Institute of Technology, USA
Manali Sharma Samsung, USA
Ariona Shashaj Network Contacts, Italy
Betty Shea University of British Columbia, Canada
Chengchao Shen Central South University, China
Hailan Shen Central South University, China
Jiawei Sheng Chinese Academy of Sciences, China
Yongpan Sheng Southwest University, China
Chongyang Shi Beijing Institute of Technology, China

xxxiv Organization

Zhengxiang Shi University College London, UK
Naman Shukla Deepair LLC, USA
Pablo Silva Dell Technologies, Brazil
Simeon Simoff Western Sydney University, Australia
Maneesh Singh Motive Technologies, USA
Nikhil Singh MIT Media Lab, USA
Sarath Sivaprasad IIIT Hyderabad, India
Elena Sizikova NYU, USA
Andrzej Skowron University of Warsaw, Poland
Blaz Skrlj Institute Jožef Stefan, Slovenia
Oliver Snow Simon Fraser University, Canada
Jonas Soenen KU Leuven, Belgium
Nataliya Sokolovska Sorbonne University, France
K. M. A. Solaiman Purdue University, USA
Shuangyong Song Jing Dong, China
Zixing Song The Chinese University of Hong Kong, China
Tiberiu Sosea University of Illinois at Chicago, USA
Arnaud Soulet University of Tours, France
Lucas Souza UFRJ, Brazil
Jens Sparsø Technical University of Denmark, Denmark
Vivek Srivastava TCS Research, USA
Marija Stanojevic Temple University, USA
Jerzy Stefanowski Poznan University of Technology, Poland
Simon Stieber University of Augsburg, Germany
Jinyan Su University of Electronic Science and Technology,

China
Yongduo Sui University of Science and Technology of China,

China
Huiyan Sun Jilin University, China
Yuwei Sun University of Tokyo/RIKEN AIP, Japan
Gokul Swamy Amazon, USA
Maryam Tabar Pennsylvania State University, USA
Anika Tabassum Virginia Tech, USA
Shazia Tabassum INESCTEC, Portugal
Koji Tabata Hokkaido University, Japan
Andrea Tagarelli DIMES, University of Calabria, Italy
Etienne Tajeuna Université de Laval, Canada
Acar Tamersoy NortonLifeLock Research Group, USA
Chang Wei Tan Monash University, Australia
Cheng Tan Westlake University, China
Feilong Tang Shanghai Jiao Tong University, China
Feng Tao Volvo Cars, USA

Organization xxxv

Youming Tao Shandong University, China
Martin Tappler Graz University of Technology, Austria
Garth Tarr University of Sydney, Australia
Mohammad Tayebi Simon Fraser University, Canada
Anastasios Tefas Aristotle University of Thessaloniki, Greece
Maguelonne Teisseire INRAE - UMR Tetis, France
Stefano Teso University of Trento, Italy
Olivier Teste IRIT, University of Toulouse, France
Maximilian Thiessen TU Wien, Austria
Eleftherios Tiakas Aristotle University of Thessaloniki, Greece
Hongda Tian University of Technology Sydney, Australia
Alessandro Tibo Aalborg University, Denmark
Aditya Srinivas Timmaraju Facebook, USA
Christos Tjortjis International Hellenic University, Greece
Ljupco Todorovski University of Ljubljana, Slovenia
Laszlo Toka BME, Hungary
Ancy Tom University of Minnesota, Twin Cities, USA
Panagiotis Traganitis Michigan State University, USA
Cuong Tran Syracuse University, USA
Minh-Tuan Tran KAIST, South Korea
Giovanni Trappolini Sapienza University of Rome, Italy
Volker Tresp LMU, Germany
Yu-Chee Tseng National Yang Ming Chiao Tung University,

Taiwan
Maria Tzelepi Aristotle University of Thessaloniki, Greece
Willy Ugarte University of Applied Sciences (UPC), Peru
Antti Ukkonen University of Helsinki, Finland
Abhishek Kumar Umrawal Purdue University, USA
Athena Vakal Aristotle University, Greece
Matias Valdenegro Toro University of Groningen, the Netherlands
Maaike Van Roy KU Leuven, Belgium
Dinh Van Tran University of Freiburg, Germany
Fabio Vandin University of Padova, Italy
Valerie Vaquet CITEC, Bielefeld University, Germany
Iraklis Varlamis Harokopio University of Athens, Greece
Santiago Velasco-Forero MINES ParisTech, France
Bruno Veloso Porto, Portugal
Dmytro Velychko Carl von Ossietzky Universität Oldenburg,

Germany
Sreekanth Vempati Myntra, India
Sebastián Ventura Soto University of Cordoba, Portugal
Rosana Veroneze LBiC, Brazil

xxxvi Organization

Jan Verwaeren Ghent University, Belgium
Vassilios Verykios Hellenic Open University, Greece
Herna Viktor University of Ottawa, Canada
João Vinagre LIAAD - INESC TEC, Portugal
Fabio Vitale Centai Institute, Italy
Vasiliki Voukelatou ISTI - CNR, Italy
Dong Quan Vu Safran Tech, France
Maxime Wabartha McGill University, Canada
Tomasz Walkowiak Wroclaw University of Science and Technology,

Poland
Vijay Walunj University of Missouri-Kansas City, USA
Michael Wand University of Mainz, Germany
Beilun Wang Southeast University, China
Chang-Dong Wang Sun Yat-sen University, China
Daheng Wang Amazon, USA
Deng-Bao Wang Southeast University, China
Di Wang Nanyang Technological University, Singapore
Di Wang KAUST, Saudi Arabia
Fu Wang University of Exeter, UK
Hao Wang Nanyang Technological University, Singapore
Hao Wang Louisiana State University, USA
Hao Wang University of Science and Technology of China,

China
Hongwei Wang University of Illinois Urbana-Champaign, USA
Hui Wang SKLSDE, China
Hui (Wendy) Wang Stevens Institute of Technology, USA
Jia Wang Xi’an Jiaotong-Liverpool University, China
Jing Wang Beijing Jiaotong University, China
Junxiang Wang Emory University, USA
Qing Wang IBM Research, USA
Rongguang Wang University of Pennsylvania, USA
Ruoyu Wang Shanghai Jiao Tong University, China
Ruxin Wang Shenzhen Institutes of Advanced Technology,

China
Senzhang Wang Central South University, China
Shoujin Wang Macquarie University, Australia
Xi Wang Chinese Academy of Sciences, China
Yanchen Wang Georgetown University, USA
Ye Wang Chongqing University, China
Ye Wang National University of Singapore, Singapore
Yifei Wang Peking University, China
Yongqing Wang Chinese Academy of Sciences, China

Organization xxxvii

Yuandong Wang Tsinghua University, China
Yue Wang Microsoft Research, USA
Yun Cheng Wang University of Southern California, USA
Zhaonan Wang University of Tokyo, Japan
Zhaoxia Wang SMU, Singapore
Zhiwei Wang University of Chinese Academy of Sciences,

China
Zihan Wang Shandong University, China
Zijie J. Wang Georgia Tech, USA
Dilusha Weeraddana CSIRO, Australia
Pascal Welke University of Bonn, Germany
Tobias Weller University of Mannheim, Germany
Jörg Wicker University of Auckland, New Zealand
Lena Wiese Goethe University Frankfurt, Germany
Michael Wilbur Vanderbilt University, USA
Moritz Wolter Bonn University, Germany
Bin Wu Beijing University of Posts and

Telecommunications, China
Bo Wu Renmin University of China, China
Jiancan Wu University of Science and Technology of China,

China
Jiantao Wu University of Jinan, China
Ou Wu Tianjin University, China
Yang Wu Chinese Academy of Sciences, China
Yiqing Wu University of Chinese Academic of Science,

China
Yuejia Wu Inner Mongolia University, China
Bin Xiao University of Ottawa, Canada
Zhiwen Xiao Southwest Jiaotong University, China
Ruobing Xie WeChat, Tencent, China
Zikang Xiong Purdue University, USA
Depeng Xu University of North Carolina at Charlotte, USA
Jian Xu Citadel, USA
Jiarong Xu Fudan University, China
Kunpeng Xu University of Sherbrooke, Canada
Ning Xu Southeast University, China
Xianghong Xu Tsinghua University, China
Sangeeta Yadav Indian Institute of Science, India
Mehrdad Yaghoobi University of Edinburgh, UK
Makoto Yamada RIKEN AIP/Kyoto University, Japan
Akihiro Yamaguchi Toshiba Corporation, Japan
Anil Yaman Vrije Universiteit Amsterdam, the Netherlands

xxxviii Organization

Hao Yan Washington University in St Louis, USA
Qiao Yan Shenzhen University, China
Chuang Yang University of Tokyo, Japan
Deqing Yang Fudan University, China
Haitian Yang Chinese Academy of Sciences, China
Renchi Yang National University of Singapore, Singapore
Shaofu Yang Southeast University, China
Yang Yang Nanjing University of Science and Technology,

China
Yang Yang Northwestern University, USA
Yiyang Yang Guangdong University of Technology, China
Yu Yang The Hong Kong Polytechnic University, China
Peng Yao University of Science and Technology of China,

China
Vithya Yogarajan University of Auckland, New Zealand
Tetsuya Yoshida Nara Women’s University, Japan
Hong Yu Chongqing Laboratory of Comput. Intelligence,

China
Wenjian Yu Tsinghua University, China
Yanwei Yu Ocean University of China, China
Ziqiang Yu Yantai University, China
Sha Yuan Beijing Academy of Artificial Intelligence, China
Shuhan Yuan Utah State University, USA
Mingxuan Yue Google, USA
Aras Yurtman KU Leuven, Belgium
Nayyar Zaidi Deakin University, Australia
Zelin Zang Zhejiang University & Westlake University, China
Masoumeh Zareapoor Shanghai Jiao Tong University, China
Hanqing Zeng USC, USA
Tieyong Zeng The Chinese University of Hong Kong, China
Bin Zhang South China University of Technology, China
Bob Zhang University of Macau, Macao, China
Hang Zhang National University of Defense Technology,

China
Huaizheng Zhang Nanyang Technological University, Singapore
Jiangwei Zhang Tencent, China
Jinwei Zhang Cornell University, USA
Jun Zhang Tsinghua University, China
Lei Zhang Virginia Tech, USA
Luxin Zhang Worldline/Inria, France
Mimi Zhang Trinity College Dublin, Ireland
Qi Zhang University of Technology Sydney, Australia

Organization xxxix

Qiyiwen Zhang University of Pennsylvania, USA
Teng Zhang Huazhong University of Science and Technology,

China
Tianle Zhang University of Exeter, UK
Xuan Zhang Renmin University of China, China
Yang Zhang University of Science and Technology of China,

China
Yaqian Zhang University of Waikato, New Zealand
Yu Zhang University of Illinois at Urbana-Champaign, USA
Zhengbo Zhang Beihang University, China
Zhiyuan Zhang Peking University, China
Heng Zhao Shenzhen Technology University, China
Mia Zhao Airbnb, USA
Tong Zhao Snap Inc., USA
Qinkai Zheng Tsinghua University, China
Xiangping Zheng Renmin University of China, China
Bingxin Zhou University of Sydney, Australia
Bo Zhou Baidu, Inc., China
Min Zhou Huawei Technologies, China
Zhipeng Zhou University of Science and Technology of China,

China
Hui Zhu Chinese Academy of Sciences, China
Kenny Zhu SJTU, China
Lingwei Zhu Nara Institute of Science and Technology, Japan
Mengying Zhu Zhejiang University, China
Renbo Zhu Peking University, China
Yanmin Zhu Shanghai Jiao Tong University, China
Yifan Zhu Tsinghua University, China
Bartosz Zieliński Jagiellonian University, Poland
Sebastian Ziesche Bosch Center for Artificial Intelligence, Germany
Indre Zliobaite University of Helsinki, Finland
Gianlucca Zuin UFM, Brazil

Program Committee Members, Demo Track

Hesam Amoualian WholeSoft Market, France
Georgios Balikas Salesforce, France
Giannis Bekoulis Vrije Universiteit Brussel, Belgium
Ludovico Boratto University of Cagliari, Italy
Michelangelo Ceci University of Bari, Italy
Abdulkadir Celikkanat Technical University of Denmark, Denmark

xl Organization

Tania Cerquitelli Informatica Politecnico di Torino, Italy
Mel Chekol Utrecht University, the Netherlands
Charalampos Chelmis University at Albany, USA
Yagmur Gizem Cinar Amazon, France
Eustache Diemert Criteo AI Lab, France
Sophie Fellenz TU Kaiserslautern, Germany
James Foulds University of Maryland, Baltimore County, USA
Jhony H. Giraldo Télécom Paris, France
Parantapa Goswami Rakuten Institute of Technology, Rakuten Group,

Japan
Derek Greene University College Dublin, Ireland
Lili Jiang Umeå University, Sweden
Bikash Joshi Elsevier, the Netherlands
Alexander Jung Aalto University, Finland
Zekarias Kefato KTH Royal Institute of Technology, Sweden
Ilkcan Keles Aalborg University, Denmark
Sammy Khalife Johns Hopkins University, USA
Tuan Le New Mexico State University, USA
Ye Liu Salesforce, USA
Fragkiskos Malliaros CentraleSupelec, France
Hamid Mirisaee AMLRightSource, France
Robert Moro Kempelen Institute of Intelligent Technologies,

Slovakia
Iosif Mporas University of Hertfordshire, UK
Giannis Nikolentzos Ecole Polytechnique, France
Eirini Ntoutsi Freie Universität Berlin, Germany
Frans Oliehoek Delft University of Technology, the Netherlands
Nora Ouzir CentraleSupélec, France
Özlem Özgöbek Norwegian University of Science and Technology,

Norway
Manos Papagelis York University, UK
Shichao Pei University of Notre Dame, USA
Botao Peng Chinese Academy of Sciences, China
Antonia Saravanou National and Kapodistrian University of Athens,

Greece
Rik Sarkar University of Edinburgh, UK
Vera Shalaeva Inria Lille-Nord, France
Kostas Stefanidis Tampere University, Finland
Nikolaos Tziortziotis Jellyfish, France
Davide Vega Uppsala University, Sweden
Sagar Verma CentraleSupelec, France
Yanhao Wang East China Normal University, China

Organization xli

Zhirong Yang Norwegian University of Science and Technology,
Norway

Xiangyu Zhao City University of Hong Kong, Hong Kong, China

Sponsors

Contents – Part VI

Time Series

Few-Shot Forecasting of Time-Series with Heterogeneous Channels 3
Lukas Brinkmeyer, Rafael Rego Drumond, Johannes Burchert,
and Lars Schmidt-Thieme

Online Adaptive Multivariate Time Series Forecasting . 19
Amal Saadallah, Hanna Mykula, and Katharina Morik

U-Net Inspired Transformer Architecture for Far Horizon Time Series
Forecasting . 36

Kiran Madhusudhanan, Johannes Burchert, Nghia Duong-Trung,
Stefan Born, and Lars Schmidt-Thieme

Learning Perceptual Position-Aware Shapelets for Time Series
Classification . 53

Xuan-May Le, Minh-Tuan Tran, and Van-Nam Huynh

Finding Local Groupings of Time Series . 70
Zed Lee, Marco Trincavelli, and Panagiotis Papapetrou

TS-MIoU: A Time Series Similarity Metric Without Mapping 87
Azim Ahmadzadeh, Yang Chen, Krishna Rukmini Puthucode,
Ruizhe Ma, and Rafal A. Angryk

Financial Machine Learning

Distributional Correlation–Aware Knowledge Distillation for Stock
Trading Volume Prediction . 105

Lei Li, Zhiyuan Zhang, Ruihan Bao, Keiko Harimoto, and Xu Sun

Banksformer: A Deep Generative Model for Synthetic Transaction
Sequences . 121

Kyle Nickerson, Terrence Tricco, Antonina Kolokolova,
Farzaneh Shoeleh, Charles Robertson, John Hawkin, and Ting Hu

Stock Trading Volume Prediction with Dual-Process Meta-Learning 137
Ruibo Chen, Wei Li, Zhiyuan Zhang, Ruihan Bao, Keiko Harimoto,
and Xu Sun

xliv Contents – Part VI

Uncertainty Awareness for Predicting Noisy Stock Price Movements 154
Yun-Hsuan Lien, Yu-Syuan Lin, and Yu-Shuen Wang

A Prescriptive Machine Learning Approach for Assessing Goodwill
in the Automotive Domain . 170

Stefan Haas and Eyke Hüllermeier

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 185
David Winkel, Niklas Strauß, Matthias Schubert, and Thomas Seidl

Applications

Waypoint Generation in Row-Based Crops with Deep Learning
and Contrastive Clustering . 203

Francesco Salvetti, Simone Angarano, Mauro Martini, Simone Cerrato,
and Marcello Chiaberge

Grasping Partially Occluded Objects Using Autoencoder-Based Point
Cloud Inpainting . 219

Alexander Koebler, Ralf Gross, Florian Buettner, and Ingo Thon

Is This Bug Severe? A Text-Cum-Graph Based Model for Bug Severity
Prediction . 236

Rima Hazra, Arpit Dwivedi, and Animesh Mukherjee

Physically Invertible System Identification for Monitoring System Edges
with Unobservability . 253

Jingyi Yuan and Yang Weng

GALG: Linking Addresses in Tracking Ecosystem Using Graph
Autoencoder with Link Generation . 270

Tianyu Cui, Gang Xiong, Chang Liu, Junzheng Shi, Peipei Fu,
and Gaopeng Gou

Automatic Grading of Student Code with Similarity Measurement 286
Dongxia Wang, En Zhang, and Xuesong Lu

Meta Hierarchical Reinforced Learning to Rank for Recommendation:
A Comprehensive Study in MOOCs . 302

Yuchen Li, Haoyi Xiong, Linghe Kong, Rui Zhang, Dejing Dou,
and Guihai Chen

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model
from Multivariate Physiological Data . 318

Zirui Yong, Guoxin Su, Xiaohu Li, Lingyun Sun, Zejian Li, and Li Liu

Contents – Part VI xlv

Placing (Historical) Facts on a Timeline: A Classification Cum Coref
Resolution Approach . 335

Sayantan Adak, Altaf Ahmad, Aditya Basu, and Animesh Mukherjee

‘John Ate 5 Apples’ != ‘John Ate Some Apples’: Self-supervised
Paraphrase Quality Detection for Algebraic Word Problems 353

Rishabh Gupta, V. Venktesh, Mukesh Mohania, and Vikram Goyal

Looking Beyond the Past: Analyzing the Intrinsic Playing Style of Soccer
Teams . 370

Jeroen Clijmans, Maaike Van Roy, and Jesse Davis

Recognizing Non-small Cell Lung Cancer Subtypes by a Constraint-Based
Causal Network from CT Images . 386

Zhengqiao Deng, Shuang Qian, Jing Qi, Li Liu, and Bo Xu

Detection of ADHD Based on Eye Movements During Natural Viewing 403
Shuwen Deng, Paul Prasse, David R. Reich, Sabine Dziemian,
Maja Stegenwallner-Schütz, Daniel Krakowczyk, Silvia Makowski,
Nicolas Langer, Tobias Scheffer, and Lena A. Jäger

FFBDNet: Feature Fusion and Bipartite Decision Networks
for Recommending Medication Combination . 419

Zisen Wang, Ying Liang, and Zhengjun Liu

Towards Federated COVID-19 Vaccine Side Effect Prediction 437
Jiaqi Wang, Cheng Qian, Suhan Cui, Lucas Glass, and Fenglong Ma

MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural
Networks . 453

Qi Cao, Renhe Jiang, Chuang Yang, Zipei Fan, Xuan Song,
and Ryosuke Shibasaki

EpiGNN: Exploring Spatial Transmission with Graph Neural Network
for Regional Epidemic Forecasting . 469

Feng Xie, Zhong Zhang, Liang Li, Bin Zhou, and Yusong Tan

Applications: Transportation

Route to Time and Time to Route: Travel Time Estimation from Sparse
Trajectories . 489

Zhiwen Zhang, Hongjun Wang, Zipei Fan, Jiyuan Chen, Xuan Song,
and Ryosuke Shibasaki

xlvi Contents – Part VI

Attention, Filling in the Gaps for Generalization in Routing Problems 505
Ahmad Bdeir, Jonas K. Falkner, and Lars Schmidt-Thieme

Can we Learn from Outliers? Unsupervised Optimization of Intelligent
Vehicle Traffic Management Systems . 521

Tom Mertens and Marwan Hassani

A Bayesian Markov Model for Station-Level Origin-Destination Matrix
Reconstruction . 538

Victor Amblard, Amir Dib, Noëlie Cherrier, and Guillaume Barthe

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing
via Multi-task Learning . 554

Yuecheng Rong, Jun Liu, Zhilin Xu, Jian Ding, Chuangming Zhang,
and Jiaxiang Gao

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 571
Md. Tareq Mahmood, Mohammed Eunus Ali,
Muhammad Aamir Cheema, Syed Md. Mukit Rashid, and Timos Sellis

Demo Track

Logistics, Graphs, and Transformers: Towards Improving Travel Time
Estimation . 589

Natalia Semenova, Vadim Porvatov, Vladislav Tishin, Artyom Sosedka,
and Vladislav Zamkovoy

Explainable Anomaly Detection System for Categorical Sensor Data
in Internet of Things . 594

Peng Yuan, Lu-An Tang, Haifeng Chen, Moto Sato, and Kevin Woodward

AGG: An Automated Genogram Generator by Discovering Information
in Clinical Texts . 599

Nuria García-Santa and Kendrick Cetina

TAMOR: Tier-Aware Multi-objective Recommendation for Ant Fortune
Financial Marketing . 603

Xu Min, Xiaolu Zhang, Jun Zhou, Changxun Fan, and Junlin Yu

Benchmarking GNNs with GenCAT Workbench . 607
Seiji Maekawa, Yuya Sasaki, George Fletcher, and Makoto Onizuka

SLISEMAP: Combining Supervised Dimensionality Reduction with Local
Explanations . 612

Anton Björklund, Jarmo Mäkelä, and Kai Puolamäki

Contents – Part VI xlvii

A Camera-Based System to Detect Driver Hands on the Steering Wheel
in Semi-autonomous Vehicles . 617

Raphaël Morvillier, Christophe Prat, and Saifeddine Aloui

ADEPT: Anomaly Detection, Explanation and Processing for Time Series
with a Focus on Energy Consumption Data . 622

Benedikt Tobias Müller, Marvin Ender, Jan Erik Swiadek,
Mengcheng Jin, Simon Winkel, Dominik Niedziela, Bin Li,
Jelle Hüntelmann, and Emmanuel Müller

RE- Tagger: A Light-Weight Real-Estate Image Classifier 627
Prateek Chhikara, Anil Goyal, and Chirag Sharma

An Embedded Continual Learning System for Facial Emotion Recognition 631
Olivier Antoni, Marion Mainsant, Christelle Godin, Martial Mermillod,
and Marina Reyboz

Cage: A Hybrid Framework for Closed-Domain Conversational Agents 636
Edward Burgin, Sourav Dutta, Haytham Assem, and Raj Nath Patel

Cloud-Based Real-Time Molecular Screening Platform with MolFormer 641
Brian Belgodere, Vijil Chenthamarakshan, Payel Das, Pierre Dognin,
Toby Kurien, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti,
Jarret Ross, Yair Schiff, and Richard A. Young

ImbalancedLearningRegression - A Python Package to Tackle
the Imbalanced Regression Problem . 645

Wenglei Wu, Nicholas Kunz, and Paula Branco

A Light Weight Cardiac Monitoring System for On-device ECG Analysis 649
Rohan Banerjee and Avik Ghose

Urban Traveller Preference Miner: Modelling Transport Choices
with Survey Data Streams . 654

Maciej Grzenda, Marcin Luckner, and Przemysław Wrona

Interactive Toolbox for Two-Dimensional Gaussian Mixture Modeling 658
Michael C. Thrun, Quirin Stier, and Alfred Ultsch

Demonstrator on Counterfactual Explanations for Differentially Private
Support Vector Machines . 662

Rami Mochaourab, Sugandh Sinha, Stanley Greenstein,
and Panagiotis Papapetrou

xlviii Contents – Part VI

Correction to: Recognizing Cognitive Load by a Hybrid Spatio-Temporal
Causal Model from Multivariate Physiological Data . C1

Zirui Yong, Guoxin Su, Xiaohu Li, Lingyun Sun, Zejian Li, and Li Liu

Author Index . 667

Time Series

Few-Shot Forecasting of Time-Series
with Heterogeneous Channels

Lukas Brinkmeyer(B) , Rafael Rego Drumond(B) , Johannes Burchert,
and Lars Schmidt-Thieme

University of Hildesheim, Hildesheim, Germany
{brinkmeyer,radrumond,burchert,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. Learning complex time series forecasting models usually
requires a large amount of data, as each model is trained from scratch for
each task/data set. Leveraging learning experience with similar datasets
is a well-established technique for classification problems called few-shot
classification. However, existing approaches cannot be applied to time-
series forecasting because i) multivariate time-series datasets have differ-
ent channels, and ii) forecasting is principally different from classification.
In this paper, we formalize the problem of few-shot forecasting of time-
series with heterogeneous channels for the first time. Extending recent
work on heterogeneous attributes in vector data, we develop a model
composed of permutation-invariant deep set-blocks which incorporate a
temporal embedding. We assemble the first meta-dataset of 40 multivari-
ate time-series datasets and show through experiments that our model
provides a good generalization, outperforming baselines carried over from
simpler scenarios that either fail to learn across tasks or miss temporal
information.

Keywords: Few-shot learning · Time-series forecasting ·
Meta-learning

1 Introduction

Time-series research is a central area in the field of machine learning and is
widely present in real-life problems and applications ranging from health to the
financial sector [23,24], with time-series data being an essential modality in all of
the industry. In particular, time-series forecasting has been in focus of research
as it strives to forecast variables over a future time horizon which applies to
most data currently being collected. Forecasts can be made for a complete hori-
zon or just a single point in time. Forecasting on univariate time-series, meaning

L. Brinkmeyer and R. Drumond—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-26422-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_1&domain=pdf
http://orcid.org/0000-0001-5754-1746
http://orcid.org/0000-0002-6607-3208
http://orcid.org/0000-0001-5729-6023
https://doi.org/10.1007/978-3-031-26422-1_1
https://doi.org/10.1007/978-3-031-26422-1_1

4 L. Brinkmeyer et al.

a signal that varies over time and comes without covariates that contain addi-
tional information, e.g., the day of the week, is a well-researched area, spanning
decades of work with classical approaches being well-studied for all kinds of
problem settings [3,41]. Recently, deep learning approaches are becoming more
popular in this area, showing to outperform classical approaches when a suffi-
cient amount of training data is available [28]. However, often this is not the
case as many time-series datasets are limited in size, giving classical approaches
the edge [29]. Specifically, in the case of multivariate time-series data, this is a
common problem because datasets have different sets of covariates, making it
impossible to learn joint model attributes. Research for time-series shares a lot
of commonality with research on image data since both areas are just special
cases of structural data. As an example, both benefit from using convolutional
networks and transformer-based approaches. However, one main difference in
the respective state-of-the-art models is that the best approaches in computer
vision rely almost exclusively on a deep feature extractor [13,47]. These models
are pretrained on vast amounts of data pooled from various sources with a trend
toward ever-larger collections (e.g. Imagenet [8], JFT-300M [16], JFT-3B [5])
to facilitate the ever-growing models, which nowadays consist of several billion
parameters [6]. Meanwhile, this is not easily possible on time-series data due to
heterogeneous covariates. Thus, virtually all models are just trained on limited
single tasks of time-series data. Looking at the state-of-the-art in the area of
computer vision, our aim is to enable the training of a single model across a
larger pool of various time-series datasets. The M4 competition was held with
that objective [28], by assembling a dataset consisting of 100.000 time-series
from various datasets and domains, they analyzed the performance of forecast-
ing approaches when applied to various tasks at once. The clear winner was
a hybrid deep learning model by Smyl et al. [43] outperforming any statistical
model. However, the competition was limited to univariate time-series data to
avoid the problem of dealing with heterogeneous channels and did not intro-
duce unseen datasets in the test evaluation. Most real-world applications involve
multivariate time-series data since a set of covariates is almost always given,
which can aid forecasting greatly. These covariate channels can be, for example,
additional sensors or simple information about the respective day and month.

Learning a single model on a set of different tasks can be achieved through
meta-learning. Meta-learning has been hugely successful in various areas of
machine learning, with a special focus on computer vision and few-shot image
recognition in particular. In contrast to classical machine learning, where a
model is typically trained on a single dataset for one specific task, meta-learning
aims at learning from a distribution of tasks which can vary in their target
[12,34] or even their predictors [4,19]. Meta-learning techniques have been suc-
cessfully applied to various areas of machine learning including few-shot clas-
sification [17], hyperparameter optimization [11,20], reinforcement learning [15]
and neural architecture search [25]. In particular, research in few-shot learning
has seen an immense rise in popularity, with methods undergoing fundamen-
tal changes and benchmarks significantly improving over a very short period of
time. Motivated by the fact that humans require only a few examples to correctly

Meta-learning for Time-Series with Heterogeneous Channels 5

classify previously unseen objects based on their past experience, few-shot learn-
ing strives to learn models which can generalize to novel tasks based on task-
agnostic information extracted from a large set of tasks. Most meta-learning
approaches still require a homogeneous representation across tasks, rendering
them not feasible in the application to multivariate time-series tasks with hetero-
geneous channels. In recent works, various approaches were published to enable
machine learning on sets by introducing permutation-invariant and equivariant
layers [30,53]. The work of Iwata et al. [19] incorporated these permutation-
invariant layers in a few-shot learning approach to enable learning on vector
data with heterogeneous attributes. Encouraged by these findings, we propose
the first model for few-shot forecasting on time-series tasks with heterogeneous
channels. Our main contributions are as follows:

1. We formalize the problem of few-shot forecasting of time-series with hetero-
geneous channels for the first time.

2. We develop a model for this new problem that extends prior work on vector
data in a principled way.

3. We assemble the first meta-dataset of 40 multivariate time-series datasets and
thus provide a public benchmark for future research.

4. We show that our model provides a good generalization, outperforming base-
lines carried over from simpler scenarios that either fail to learn across tasks
or miss temporal information.

2 Related Work

There exists a vast amount of research on time-series forecasting and few-shot
learning in literature, but the intersection of the two is still very limited, with no
existing approaches dealing with few-shot forecasting for time-series tasks with
heterogeneous channels. In this section, we will discuss the research of these
related areas in a concise way and point out the most important distinctions.

Time-series forecasting focuses on identifying temporal patterns in given
data. Historically this was done with methods like ARIMA [3]. In the field of
machine learning, CNN and RNN architectures [39,41] were used to significantly
outperform these methods. A further improvement came with the incorporation
of attention layers [48] in time-series models [38]. While proving to be very effec-
tive, the quadratic complexity of attention comes with a high computational
cost. Recent architectures like the Reformer [22], Yformer [27], and Informer
[54] focused on reducing this cost by introducing restricted attention layers to
effectively approximate the full attention mechanism. Currently, the best per-
forming model architectures are SCINet [26] and N-BEATS [37] on all common
datasets and we will compare against them as baselines.

In relation to the problem setting in this work, learning across time-series
stemming from different datasets has also been the goal of the popular M4 time-
series forecasting competition [28]. However, it was limited to univariate time-
series and, more importantly, designed as a classical forecasting problem and not
a meta-learning one, meaning that the test set only contained future windows

6 L. Brinkmeyer et al.

of datasets seen during training. In contrast, our work aims at generalizing to
a new time-series dataset during testing, which renders the winning approaches
of the M4 competition not applicable to our problem. Few-Shot Learning
describes a subarea of meta-learning that deals with evaluating tasks of unseen
classes or even datasets with very few labeled samples [51]. By learning from a
large collection of related tasks, the model is trained to capture task-agnostic
knowledge, which can then be used for a fast adaptation to a novel task that
shares this similarity. Different approaches have been proposed with this goal in
mind. Gradient-based methods rely on second-order gradient information that
is passed across tasks to optimize meta-parameters [12,33,40]. Neighbor-based
approaches learn a metric embedding space to compare novel tasks [44,49] while
memory-based approaches rely on recurrent components to memorize a repre-
sentation of the previous tasks [31,42].

All these methods, however, require a homogeneous predictor and target
space in order to learn a joint distribution. One of the first methods to attempt
few-shot learning on homogeneous predictors was chameleon [4], which used a
convolutional encoder to align tasks from similar domains to a common attribute
space before utilizing gradient-based few-shot methods. Similarly, other works
tried to learn across tasks with varied label spaces [9,34]. Finally, Iwata et al.
[19] proposed a model that uses deep sets [53] based blocks to compute a task-
embedding over predictor and targets of training samples (support data), which
then can be combined with new unlabeled samples (query data) to perform clas-
sification or regression without the need of retraining or fine-tuning, similar to
neighbor-based approaches (we will refer to this method as HetNet throughout
the rest of the paper). The main advantage of HetNet is that, since it uses the
deep sets formalization, it is invariant to the order of attributes and samples in
both query and support set. So far, these approaches are limited to simple vector
data and not applicable to structural data.

Few-Shot Learning for Time-Series Data. Few works have been published
that apply few-shot learning or even meta-learning to time-series data. We argue
that this is due to the fact that, in contrast to image data, it is not readily possible
to learn a single feature extractor across tasks stemming from different datasets
when dealing with multivariate time-series data. Thus, published approaches can
be divided into two groups. The first group of approaches utilizes meta-learning
techniques to train across slices of the same time-series with homogeneous chan-
nels. This includes approaches that combine classical time-series regression with
gradient-based meta-learning [1] and approaches that utilize metric-based meta-
learning in combination with shapelet learning [46]. These methods are not appli-
cable to our problem setting as they are not equipped to learn across tasks with
heterogeneous channels.

Second, there are meta-learning approaches for time-series data that limit
their problem setting to univariate time-series tasks in order to learn a single
feature extractor without having to deal with heterogeneous channels. Iwata et
al. [18] proposed a method to embed tasks through BiLSTM and regular LSTM
layers. Narwariya et al. [32] utilized Resnet to embed each time-series to a vec-
tor, and then trained across tasks with Reptile [33] on a meta-dataset of 41

Meta-learning for Time-Series with Heterogeneous Channels 7

univariate UCR datasets. Lastly, Oreshkin et al. [36] showed how N-BEATS can
be used for zero-shot time-series forecasting by rephrasing it in a meta-learning
formalization. None of these approaches are capable of dealing with multivariate
time-series tasks with heterogeneous channels, which is the focus of this work.
Nevertheless, we compare our approach against N-BEATS for zero-shot time-
series forecasting by using only the target channel to show that incorporating
covariate channels is absolutely necessary for this problem setup. Our method
called TimeHetNet serves as the first few-shot time-series forecasting model
for multivariate time-series data that can learn across different tasks with het-
erogeneous channels.

3 Methodology

In this work, we want to propose the first work in the intersection of few-shot
learning and multivariate time-series forecasting. We will first formalize the prob-
lem of time-series forecasting on a single task before extending it to a few-shot
learning setting across a meta-dataset of tasks with heterogeneous channels.

3.1 Problem Setting

In the (vanilla) time-series forecasting problem, a time-series x with C
channels is a finite sequence of vectors in R

C . Their space is denoted by R
∗×C :=⋃

T∈N
R

T×C with time-series length |x| := T . Time-series forecasting data with
a single univariate target time-series and C predictor channels is then given by:

D := {(x1, y1, x
′
1, y

′
1), ..., (xN , yN , x′

N , y′
N)} ∈ X × Y (1)

with x, x′ ∈ R
∗×C and y, y′ ∈ R

∗, sampled from an unknown distribution p,
where x, y are predictors and targets up to a reference time point t0−1 and x′, y′

denote the corresponding future predictors and targets starting from time point
t0 up to T . The predictors can also be described as future covariate information
for the target. Given a loss function l : R

∗ × R
∗ → R, we want to learn a function

ŷ : R
∗×C × R

∗ × R
∗×C → R

∗ called model with minimal expected loss over the
data:

E(x,y,x′,y′)∼p l(y′, ŷ(x, y, x′)) (2)

Extending this formalization, the problem of few-shot time-series fore-
casting across tasks with heterogeneous channels is then given by a
sample D := {(Ds

1,Dq
1), ..., (Ds

m,Dq
m)} called meta-dataset of pairs Ds,Dq ∈

(X × Y) from an unknown distribution pm of dataset pairs, and a function
L : Y × Y → R. Each pair is called a task and consists of support data Ds for
which the full instance (x, y, x′, y′) is known during prediction time and the query
data Dq for which the future target y′ is not known during prediction time. The
number of predictor channels C varies across tasks between Cmin and Cmax. In
few-shot learning, the number of samples Ns in the support data Ds is typically

8 L. Brinkmeyer et al.

low. We want to find a function ŷ : X × (X × Y)∗ → Y called meta-model with
minimal expected loss:

E(Ds,Dq)∼pm

1
|Dq|

∑

(x,y,x′,y′)∈Dq

L(y′, ŷ(x, y, x′,Ds)) (3)

In this work, the loss L is chosen to be the mean squared error (MSE) averaged
over the query datasets of our meta-dataset. By weighting only a single time
step of the target y′, we can learn a point-forecasting model with a specific focus
on that one point.

3.2 Model Formulation

In this work, we extend HetNet [19] which is a permutation-invariant model
for few-shot classification on vector data with heterogeneous attributes. Their
model relies on nested deep set-blocks [53] which were first published as a means
to enable machine learning models to process sets by introducing a family of
permutation-invariant functions. Each deep set-block consists of an inner func-
tion f that is applied on each element of the set and an outer function g which
is applied after aggregating the output of f such that the block is permutation-
invariant to the order of elements. The architecture consists of an inference
network that extracts latent task-dependent features of the support data Ds,
which are then used by the prediction network in conjunction with the query
data (x, y, x′) ∈ Dq to generate the forecast for the future targets y′ of a given
task.

Inference Network. We adapted the formalization of HetNet [19] to our
proposed problem setting by extending it from simple vector data to a forecasting
task on structural data. A conceptual depiction of our model is shown in Fig. 1.
First, using the support data Ds we compute the target embeddings w̄ and c̄ for
y and y′ respectively, and a predictor embedding v̄i for each predictor channel
i ∈ C by aggregating across the instances such that the block is permutation-
invariant to their order:

v̄i = gv̄

(
1
N

N∑

n=1

fv̄([xni, x
′
ni])

)

∀i ∈ C (4)

w̄ = gw̄

(
1
N

N∑

n=1

fw̄(yn)

)

, c̄ = gc̄

(
1
N

N∑

n=1

fc̄(y′
n)

)

Here, v̄ ∈ R
C×T×K with K being the latent output dimension of gv̄, T the length

of the time-series task at hand, N the number of samples in the support data
Ds and [·, ·] a concatenation. Through concatenation of the embeddings with the
respective support data followed by another deep-set block, we can generate an

Meta-learning for Time-Series with Heterogeneous Channels 9

Fig. 1. TimeHetNet architecture. Values in parenthesis represent the output shape of
each layer. x and y represent the predictor and target channels respectively, while x′ and
y′ represent future predictor and targets. N represents the number of samples in the set,
T represents the maximum time length, C describes the number of channels/attributes
in each sample. K represents the latent space embedding. T ′ represents the number of
future points of y′ we want to predict. For readability: Raw predictors are bold, raw
targets are dotted, and latent tensors are regular arrows.

embedding for each instance in the support data Ds through aggregation over
the predictor channels:

un = gu

(
1
C

C∑

i=1

(
fu([xni, x

′
ni, v̄i])

)
+ fo([yn, w̄]) + fp([y′

n, c̄])

)

∀n ∈ N (5)

where C is the number of predictor channels of the task and u ∈ R
N×T×K . By

concatenating these instance-wise embeddings with the respective support data
before repeating the block structure of Eq. 4, we can again generate the predictor
and target embeddings, only this time they are computed with regard to the
entire support set. The embeddings for the future target y′ are not aggregated
over the number of instances, as they are fed directly into the final network fy

generating the forecast on an instance-level:

vi = gv

(
1
N

N∑

n=1

fv([xni, x
′
ni, un])

)

∀i ∈ C (6)

w = gw

(
1
N

N∑

n=1

fw([yn, un])

)

, c = fc([y′
n, un])

Prediction Network. The embeddings for the predictors v and the past targets
w are concatenated with the predictors x, x′, and past target y of the query data

10 L. Brinkmeyer et al.

0 10 20 30 40 50 60 70 80 90 100
time steps

-2.0

-1.0

0.0

1.0

2.0
va

lu
e

o
f

ti
m
e-

se
ri

es
target
pred-10
pred-80
covariates
target

Fig. 2. Task visualization with forecast: The figure shows the four covariate chan-
nels (orange) and the target channel (purple) of a query instance for a task sampled
from HandMovementDirection, and the predictions for the two models trained to pre-
dict t0 + 10 (star) and t0 + 80 (triangle) which predict 10 and 80 time steps ahead
respectively. The solid target line represents the 20 target time steps y which serve
as input to the model trained to predict t0 + 80, while the model trained to predict
t0 + 10 receives the target data including the dashed line mark. The dotted line shows
the target over the last 10 steps.

Dq. This concatenation is passed to a deep set-block consisting of networks gz

and fz which compute the per-instance features:

zn = gz

(
1
C

I∑

i=1

fz([xni, yn, x′
ni, vi, w])

)

∀n ∈ Nq (7)

where Nq is the number of samples in Dq. Finally, the prediction for a query
sample n is made by passing the embedding z of Dq and the embedding c of the
future target of Ds to a final network fy:

ŷn = fy([zn, c]) (8)

The full TimeHetNet then contains the following neural networks gv̄, fv̄,
gw̄, fw̄, gc̄, fc̄, gu, fu, fo, fp, gv, fv, gw, fw, fc, gz, fz. We share the parameters
between the network pairs (fv̂, fŵ), (gv̂, gŵ), (fv, fw), (gv, gw).

4 Experimental Setup

In order to evaluate TimeHetNet, we have performed an extensive evaluation
by creating a meta-dataset to learn few-shot forecasting on multivariate time-
series data and comparing the performance of our method to related baseline
methods. In this section, we will describe our meta-dataset construction, our
baseline methods, the experimental procedures with observed results, and finally,
a discussion of our findings.

4.1 Meta-Dataset

In order to evaluate our approach, we assembled the first meta-dataset for few-
shot forecasting on multivariate time-series data. For that purpose, we collected

Meta-learning for Time-Series with Heterogeneous Channels 11

40 multivariate time-series datasets consisting of popular forecasting datasets
like the ETT and ECL [54], as well as datasets from the Monash time series
forecasting archive, [14], 3 Kaggle datasets [35,45,50], the UCR and UEA time
series archive [2,7], and also the sparse motion capture dataset PeekDB [10].
The details on all datasets are summarized in Table 3 (supplementary material).
A single task is sampled from a dataset by randomly selecting between Cmin

and Cmax of the channels, a random slice of the temporal dimension of size T
and NQ+NS samples for the query and support split of the task. We normal-
ized the channel of each task to mean zero and standard deviation one. In our
experiments, we set the number of query and support instances to 20 each, the
time length to 100, and varied the number of channels between 5 and 10. In
case a dataset has only a single instance, we sample multiple temporal slices
for a single task. Furthermore, one channel is selected to be the target channel,
with the remaining channels serving as covariate information (during sampling,
we make sure that the target channel is not included in the covariates). Finally,
the last time step t = 100 of the target channel for a given instance is chosen
as the future target y′, while the last p time steps of the target channel y are
removed, thus creating a multivariate time-series forecasting task with covariate
information with the aim of forecasting p steps ahead. We evaluated our app-
roach for p = 1, 10, 80 and 100, where p = 1 corresponds to forecasting the next
time step t+1 with the target channel y including the first 99 steps, and p = 80
to forecasting the time step t + 80 with the target channel including the first 20
time steps. The experiments with p = 100 demonstrate an uncontrolled scenario
where only covariate channels are given in addition to the future target y′ for
the support instances. A visualization of a single task is given in Fig. 4 including
the forecast of our approach.

4.2 Experimental Details

We conducted a 5-fold cross-validation with each fold having 8 datasets in meta-
test, 8 in meta-validation, and 24 in meta-training. During each epoch of meta-
training, we sample 10 meta-batches, where each meta-batch includes one task
per dataset: 24 tasks in meta-training and 8 in meta-validation. For the sake of
comparability, we generated 11.000 tasks for each dataset in meta-testing before-
hand (1.000 tasks per channel size 5 to 10). The final meta-test performance can
then be computed by evaluating the model on each of the 440.000 tasks in the
fixed test set while guaranteeing comparability between different models. Instead
of evaluating our model for the average loss over all time steps, we evaluate the
model for individual time steps. By doing this, we want to emphasize the con-
crete performance differences for close and far events without overlap. For our
approach TimeHetNet, all networks f and g in the deep set-blocks consist of
three layers. In all configurations, fy is a feed-forward network. After optimizing
the concrete architecture on the validation tasks, we selected GRU layers for the
deep-set blocks formalized in Eqs. 4 and 7 and convolutional layers for 5 and
6. All hyperparameters for all approaches were optimized via grid search. Our
model was trained with Adam [21] for a maximum number of 15.000 epochs with

12 L. Brinkmeyer et al.

Table 1. Experimental results across all folds. All scores represent mean squared error.
Standard deviation is computed over 5 repeated experimental runs. Oracle channel
gives the best possible performance if the best control channel is known. Bold-faced
results represent the best scores.

Category Method t0 + 1 t0 + 10 t0 + 80 t0 + 100

Proposed TimeHetNet 0.148 0.389 0.509 0.579

(ours) ±0.003 ±0.007 ±0.006 ±0.004

Meta-Learning HetNet[19] 0.178 0.413 0.524 0.582

±0.002 ±0.003 ±0.003 ±0.006

zero prediction 1.006 1.006 1.006 1.006

Heuristic last time step 0.215 0.899 1.404 ×
avg time step 0.867 0.867 0.867 0.867

GRU 0.531 0.692 0.699 0.712

Single task FCN [52] 0.631 0.791 0.806 0.871

1D-FF 0.484 0.726 0.845 0.947

No covariates N-BEATS [36] 0.193 0.677 0.924 ×
±0.002 ±0.005 ±0.006 ×

SCINet [26] 0.192 0.594 0.718 ×
±0.003 ±0.006 ±0.006 ×

Oracle Best Channel* 0.353 0.353 0.353 0.353

early stopping over the validation tasks. More details on our experimental setup
and the concrete hyperparameters can be found in our supplementary material.

4.3 Baseline Methods

We evaluated our approach against baselines from different related problem set-
tings since there is no approach that can learn across multivariate time-series tasks
with heterogeneous channels to the best of our knowledge: a set of heuristics con-
sisting of predicting the constant zero (zero prediction) as our data is nor-
malized to mean zero, predicting the last observed time step of the target chan-
nel (last time step), and predicting the average of the last time steps over the
covariate channels (avg time step). Moreover, we evaluate a set of models on
each individual task in meta-test, namely a stacked GRU network (gru), a fully-
convolutional model (fcn) [52] and a feed-forward neural network which relies only
on the last observed time step (1d-ff). Note that these models have a lower model
complexity than the other approaches, as they are only trained on the support data
of a single task without incorporating any other tasks. Additionally, we show the
performance of a hypothetical oracle which gives the mean squared error between
the target and the last time step of the closest covariate channel (oracle). This
model can be used as a point of orientation for the upper limit of the information
within the covariate channels and is not a feasible model.

Moreover, we evaluate a set of time-series forecasting models by training them
across all datasets without using the covariate channels. Here, we select only the
target channel y and the future target y′ per task, similar to the setup of Oreshkin

Meta-learning for Time-Series with Heterogeneous Channels 13

5 6 7 8 9 10
number of channels

0.38

0.39

0.40

av
er

ag
e

m
se

5 6 7 8 9 10
number of channels

0.49

0.51

0.53

Fig. 3. Varying number of channels: Mean-squared error over the test tasks with
fixed number of channels. Results are averaged over all five folds and five repetitions
with the corresponding standard deviation (shade) for the experiment t0 + 10 (left)
and t0 + 80 (right).

et al. [36]. In this setup we evaluate the current best model for time-series fore-
casting on PapersWithCode, SCINet, and the popular time-forecasting model
N-BEATS [37] as it is shown as a successful model for zero-shot time-series
forecasting on univariate data [36]. Evaluating the state-of-the-art forecasting
models on the single-task level has proven to be infeasible, as a single task is too
small for these architectures to train on, as well as too computationally expen-
sive for all tasks in the test set. Lastly, we evaluate HetNet by feeding the
last time-steps of x′ and y of the time-series as it is the only few-shot learning
model which can learn with heterogeneous attributes. The details on all baseline
approaches and the training setup can be found in the supplementary material.

4.4 Results

The results for our main experiments can be seen in Table 1 stating the mean-
squared error averaged over the test tasks of each fold. It is not useful to compute
the standard deviation over cross-validation folds as each fold includes different
datasets for which the expected losses naturally vary. Instead, we repeated the
full 5-fold cross-validation experiment five times to compute a standard devia-
tion. However, this was too computationally expensive for the models trained
on each task from scratch. Thus it is only given for the approaches that train
across tasks. Note that heuristical approaches have no standard deviation since
they are completely deterministic, and the test tasks are pre-generated. This is
the same reason why zero prediction, avg time step and oracle have the
same performance for all experiments, as the test tasks only vary in what part
of the target channel is given.

Our approach is shown to outperform all of our baselines in all 4 scenarios. As
expected, last time step yields competitive results for the t0 + 1 experiments
since oftentimes the next time step does not deviate too much. The closest
baseline is HetNet which learns across tasks and utilizes the heterogeneous
channels but does not incorporate any past temporal information. The approach
is still significantly worse than our proposed model for t0 + 1, t0 + 10 and t0 +
80 when looking at the standard deviation, suggesting that especially existing

14 L. Brinkmeyer et al.

5 6 7 8 9 10
channels in test

2
4
6
8

10ch
a
n
n
el

s
in

tr
a
in

0.45

0.50

0.55

avg
m
se

Fig. 4. Heatmap over channels: Performance of our approach for t0 + 80 when
trained and evaluated on a fixed task size. Results are averaged over five repetitions of
the 5-fold cross validation. Train channels include [2,4,6,8,10].

temporal information for the target channel aids the prediction. The models
trained on a single task from scratch show an expected subpar performance as
they can only learn from a single limited few-shot task. Moreover, the state-of-
the-art time-series forecasting methods show a good performance on t0 + 1 and
t0 + 10, but degrade a lot for t0 + 80, which is the consequence of only relying
on the target channel, while especially for t0 + 80 the covariates are shown to
be crucial. This fact is emphasized when evaluating the performance of oracle

as it gives an upper limit on the achievable score when only considering the
predictor channels. Note that there are no scores listed for approaches that rely
solely on the target channel for t0 +100 as there is no past target y given in that
setting.

4.5 Ablations

We conducted several ablation studies to analyze the robustness of our model
with respect to the number of channels across tasks and to show the perfor-
mance of different architectural choices. First, we analyzed the performance of
our approach for t0 + 10 and t0 + 80 with respect to the number of predictor
channels for a given novel test task. We show the aggregated results for this
experiment in Fig. 2. We can see that the performance of our approach increases
with the number of predictor channels up to 8 channels. Note that c channels
here refer to one target channel and c − 1 predictor channels for each task. This
suggests that our model successfully learned to process tasks independently of
their number of channels. It can benefit from the fact that tasks with a higher
number of randomly sampled channels are more likely to feature covariates that
correlate to the target channel up to a certain point. In the case of predicting
10 steps ahead, the performance slightly degrades for tasks with more than 8
channels.

To investigate the robustness of our model to the number of predictor chan-
nels of the tasks in training, we repeated our experiments while limiting the
tasks sampled in training to a fixed number of channels. In Fig. 3 we show the
performance of our model for t0 +80 trained only on tasks with 2, 4, 6, 8 and 10
channels respectively, while evaluating it again for a fixed number of channels in

Meta-learning for Time-Series with Heterogeneous Channels 15

Table 2. Architectures ablation: Comparison of four different architecture setups.

Experiment GRU-Corner Conv-Corner All GRU All Conv

t0 + 80 0.509 0.538 0.512 0.522

t0 + 10 0.389 0.397 0.389 0.395

test. One can see that the model is generally robust to the number of channels
in training, with the exception of training on tasks with only 2 channels, mean-
ing only one predictor and one target channel. This is most likely due to the
number of sampled training tasks that will not have a predictor channel that is
sufficiently correlated to the target task. In accord with the previous ablation,
there seems to be a slight performance optimum around tasks with 8 channels,
while training on tasks with 10 channels and evaluating on tasks with 2 channels
also degrades the performance.

Finally, we compare the performance of our model when changing the network
design within the deep set blocks. Namely, we evaluate different combinations of
convolutional and GRU layers to the one chosen in this work after optimizing the
hyperparameters on the validation data. The results are shown in Table 2. The
best architecture which is used throughout all our experiments utilizes stacked
GRU layers in first the deep-set blocks formalized in Eq. 4 which receive the
raw data input as well as the one before the final output layer in Eq. 7 which
output the final embedding, while using 1D-convolutional layers in the inter-
mediate blocks (GRU-Corner). Using only GRU layers (All GRU) degrades the
performance by a slight margin while using convolutional layers at the beginning
and end of the network is shown to be significantly worse (Conv-Corner). This
indicates that the GRU blocks are adapting more easily to the very heteroge-
neous time-series tasks. For comparison reasons, we make our code available at
https://github.com/radrumond/timehetnet.

5 Conclusion

In this work, we presented the first multivariate time-series forecasting model
that works across tasks with heterogeneous channels. Currently, to the best of
our knowledge, this is the first work to build a multivariate time-series meta-
dataset for this type of meta task. Our model significantly outperforms all related
baselines, which either fail to incorporate covariate information or cannot learn
across tasks. This approach serves as a benchmark for future research in this
area. In future work, we would like to explore the effects of different deep-set
blocks and how the model behaves with different types of models and problems.

Acknowledgements. This work was supported by the Federal Ministry for Economic
Affairs and Climate Action (BMWK), Germany, within the framework of the IIP-
Ecosphere project (project number: 01MK20006D).

https://github.com/radrumond/timehetnet

16 L. Brinkmeyer et al.

References

1. Arango, S.P., Heinrich, F., Madhusudhanan, K., Schmidt-Thieme, L.: Multimodal
meta-learning for time series regression. In: Lemaire, V., Malinowski, S., Bagnall,
A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2021. LNCS (LNAI), vol.
13114, pp. 123–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91445-5 8

2. Bagnall, A., et al.: The UEA multivariate time series classification archive (2018).
arXiv preprint arXiv:1811.00075 (2018)

3. Box, G.E.P., Jenkins, G.M.: Some recent advances in forecasting and control. J.
R. Stat. Soc. Ser. C (Applied Statistics) 17(2), 91–109 (1968). http://www.jstor.
org/stable/2985674

4. Brinkmeyer, L., Drumond, R.R., Scholz, R., Grabocka, J., Schmidt-Thieme, L.:
Chameleon: learning model initializations across tasks with different schemas.
arXiv preprint arXiv:1909.13576 (2019)

5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

6. Dai, Z., Liu, H., Le, Q., Tan, M.: Coatnet: marrying convolution and attention for
all data sizes. Advances in Neural IHou, R., Chang, H., Ma, B., Shan, S., and Chen,
X. (2019). Cross attention network for few-shot classification. Advances in Neural
Information Processing Systems, 32. Information Processing Systems 34 (2021)

7. Dau, H.A., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica
6(6), 1293–1305 (2019)

8. Deng, J., et al.: Imagenet: A large-scale hierarchical image database. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE
(2009)

9. Drumond, R.R., Brinkmeyer, L., Grabocka, J., Schmidt-Thieme, L.: Hidra: Head
initialization across dynamic targets for robust architectures. In: Proceedings of the
2020 SIAM International Conference on Data Mining, pp. 397–405. SIAM (2020).
https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.45

10. Drumond, R.R., Marques, B.A., Vasconcelos, C.N., Clua, E.: Peek-an lstm recur-
rent network for motion classification from sparse data. In: VISIGRAPP (1:
GRAPP), pp. 215–222 (2018)

11. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter opti-
mization via meta-learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29 (2015)

12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, pp. 1126–
1135. PMLR (2017)

13. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

14. Godahewa, R., Bergmeir, C., Webb, G.I., Hyndman, R.J., Montero-Manso, P.:
Monash time series forecasting archive. arXiv preprint arXiv:2105.06643 (2021)

15. Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., Levine, S.: Meta-reinforcement
learning of structured exploration strategies. In: Advances in Neural Information
Processing Systems 31 (2018)

16. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 2(7) (2015)

https://doi.org/10.1007/978-3-030-91445-5_8
https://doi.org/10.1007/978-3-030-91445-5_8
http://arxiv.org/abs/1811.00075
http://www.jstor.org/stable/2985674
http://www.jstor.org/stable/2985674
http://arxiv.org/abs/1909.13576
https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.45
http://arxiv.org/abs/2010.01412
http://arxiv.org/abs/2105.06643
http://arxiv.org/abs/1503.02531

Meta-learning for Time-Series with Heterogeneous Channels 17

17. Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-
shot classification. In: Advances in Neural Information Processing Systems, vol. 32
(2019)

18. Iwata, T., Kumagai, A.: Few-shot learning for time-series forecasting. arXiv
preprint arXiv:2009.14379 (2020)

19. Iwata, T., Kumagai, A.: Meta-learning from tasks with heterogeneous attribute
spaces. Adv. Neural Inf. Process. Syst. 33, 6053–6063 (2020)

20. Jawed, S., Jomaa, H., Schmidt-Thieme, L., Grabocka, J.: Multi-task learning
curve forecasting across hyperparameter configurations and datasets. In: Oliver,
N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021.
LNCS (LNAI), vol. 12975, pp. 485–501. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86486-6 30

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Kitaev, N., Kaiser, �L., Levskaya, A.: Reformer: the efficient transformer. arXiv
preprint arXiv:2001.04451 (2020)

23. Krollner, B., Vanstone, B.J., Finnie, G.R., et al.: Financial time series forecasting
with machine learning techniques: a survey. In: ESANN (2010)

24. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Philos.
Trans. R. Society A 379(2194), 20200209 (2021)

25. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

26. Liu, M., Zeng, A., Xu, Z., Lai, Q., Xu, Q.: Time series is a special sequence: fore-
casting with sample convolution and interaction. arXiv preprint arXiv:2106.09305
(2021)

27. Madhusudhanan, K., Burchert, J., Duong-Trung, N., Born, S., Schmidt-Thieme,
L.: Yformer: u-net inspired transformer architecture for far horizon time series
forecasting. arXiv preprint arXiv:2110.08255 (2021)

28. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The m4 competition: results,
findings, conclusion and way forward. Int. J. Forecast. 34(4), 802–808 (2018)

29. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learn-
ing forecasting methods: concerns and ways forward. PLoS ONE 13(3), e0194889
(2018)

30. Maron, H., Ben-Hamu, H., Shamir, N., Lipman, Y.: Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902 (2018)

31. Munkhdalai, T., Yu, H.: Meta networks. In: International Conference on Machine
Learning, pp. 2554–2563. PMLR (2017)

32. Narwariya, J., Malhotra, P., Vig, L., Shroff, G., Vishnu, T.: Meta-learning for few-
shot time series classification. In: Proceedings of the 7th ACM IKDD CoDS and
25th COMAD, pp. 28–36 (2020)

33. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

34. Oh, J., Yoo, H., Kim, C., Yun, S.Y.: BOIL: towards representation change for few-
shot learning. In: International Conference on Learning Representations (2021).
https://openreview.net/forum?id=umIdUL8rMH

35. Oliveira, E.M.: Quality prediction in a mining process. https://www.kaggle.com/
datasets/shasun/tool-wear-detection-in-cnc-mill?select=README.txt

36. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: Meta-learning frame-
work with applications to zero-shot time-series forecasting. arXiv preprint
arXiv:2002.02887 (2020)

http://arxiv.org/abs/2009.14379
https://doi.org/10.1007/978-3-030-86486-6_30
https://doi.org/10.1007/978-3-030-86486-6_30
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/2106.09305
http://arxiv.org/abs/2110.08255
http://arxiv.org/abs/1812.09902
http://arxiv.org/abs/1803.02999
https://openreview.net/forum?id=umIdUL8rMH
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill?select=README.txt
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill?select=README.txt
http://arxiv.org/abs/2002.02887

18 L. Brinkmeyer et al.

37. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: Neural basis
expansion analysis for interpretable time series forecasting. In: International
Conference on Learning Representations (2020). https://openreview.net/forum?
id=r1ecqn4YwB

38. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage
attention-based recurrent neural network for time series prediction. arXiv preprint
arXiv:1704.02971 (2017)

39. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y.,
Januschowski, T.: Deep state space models for time series forecasting. In: Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31.
Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/
5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf

40. Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S.,
Hadsell, R.: Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960 (2018)

41. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–
1191 (2020)

42. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: International Conference on Machine
Learning, pp. 1842–1850. PMLR (2016)

43. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting. Int. J. Forecast. 36(1), 75–85 (2020)

44. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

45. Sun, S.: Cnc mill tool wear. https://www.kaggle.com/datasets/shasun/tool-wear-
detection-in-cnc-mill?select=README.txt

46. Tang, W., Liu, L., Long, G.: Interpretable time-series classification on few-shot
samples. In: 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE (2020)

47. Tolstikhin, I.O., et al.: Mlp-mixer: an all-mlp architecture for vision. In: Advances
in Neural Information Processing Systems (2021)

48. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

49. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: Advances in Neural Information Processing Systems, vol. 29
(2016)

50. Von Birgelen, A., Buratti, D., Mager, J., Niggemann, O.: Self-organizing maps
for anomaly localization and predictive maintenance in cyber-physical production
systems. Procedia cirp 72, 480–485 (2018)

51. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a
survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

52. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: a strong baseline. In: 2017 International joint conference on neural
networks (IJCNN), pp. 1578–1585. IEEE (2017)

53. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems, vol. 30
(2017)

54. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series
forecasting. In: Proceedings of AAAI (2021)

https://openreview.net/forum?id=r1ecqn4YwB
https://openreview.net/forum?id=r1ecqn4YwB
http://arxiv.org/abs/1704.02971
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
http://arxiv.org/abs/1807.05960
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill?select=README.txt
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill?select=README.txt

Online Adaptive Multivariate Time Series
Forecasting

Amal Saadallah(B), Hanna Mykula, and Katharina Morik

Artificial Intelligence Group, Department of Computer Science, TU Dortmund,
Dortmund, Germany

{amal.saadallah,hanna.mykula,katharina.morik}@tu-dortmund.de

Abstract. Multivariate Time Series (MTS) involve multiple time series
variables that are interdependent. The MTS follows two dimensions,
namely spatial along the different variables composing the MTS and
temporal. Both, the complex and the time-evolving nature of MTS data
make forecasting one of the most challenging tasks in time series anal-
ysis. Typical methods for MTS forecasting are designed to operate in a
static manner in time or space without taking into account the evolution
of spatio-temporal dependencies among data observations, which may
be subject to significant changes. Moreover, it is generally accepted that
none of these methods is universally valid for every application. There-
fore, we propose an online adaptation of MTS forecasting by devising
a fully automated framework for both adaptive input spatio-temporal
variables and adequate forecasting model selection. The adaptation is
performed in an informed manner following concept-drift detection in
both spatio-temporal dependencies and model performance over time. In
addition, a well-designed meta-learning scheme is used to automate the
selection of appropriate dependence measures and the forecasting model.
An extensive empirical study on several real-world datasets shows that
our method achieves excellent or on-par results in comparison to the
state-of-the-art (SoA) approaches as well as several baselines.

Keywords: Multivariate time series · Forecasting · Automated model
selection · Spatio-temporal dependencies · Concept-drift

1 Introduction

Time series forecasting is an important task in time series analysis to study the
behavior of temporal data and forecast its future values [19,20]. It is widely applied

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) within the
Collaborative Research Center SFB 876 and the Federal Ministry of Education and
Research of Germany as part of the competence center for machine learning ML2R
(01-S18038A).

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 19–35, 2023.
https://doi.org/10.1007/978-3-031-26422-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_2
https://doi.org/10.1007/978-3-031-26422-1_2

20 A. Saadallah et al.

in various fields, including weather forecasts, energy demand/consumption predic-
tions, and stock market prices forecasting, to name but a few [18–20]. In nowadays’
rapidly growing digital environments and Internet-of-Things systems, the repre-
sentation of time series data often involves multiple interdependent variables, thus
creating Multivariate Time Series (MTS) data [25]. On the one hand, this data rep-
resents an enriched form of information about the application. On the other hand,
the number of these variables can increase drastically and might include irrele-
vant and redundant ones. This may heighten the curse of dimensionality. There-
fore, it is necessary to carefully select the most important time series variables.
The evolution of MTS is spatio-temporal, along with the different variables and
over time, respectively. However, this spatio-temporal data may involve multiple
non-stationary processes and the dependencies along its composing variables may
also follow a non-stationary process. As a result, the relationship between some
time series variables and the target one might change significantly over time. This
phenomenon is broached in the machine learning literature as concept drift [8].
Hence, previously learned concepts about data become no longer valid, making the
offline input variable selection procedures inappropriate for making future predic-
tions. Therefore, the selection of time series variables should cope with the evolving
nature of the spatio-temporal dependencies in the MTS data.

Various Machine Learning (ML) models have already been successfully
applied to solve the forecasting task either by dealing with the MTS data as
a collection of ordered sequences of observations in an offline [25] or a streaming
fashion [19], or by using an embedding of the MTS to reformulate the forecast-
ing task as a regression task [20]. However, it is generally accepted that none
of the ML methods is universally valid for every task, in particular for fore-
casting [20]. Therefore, in addition to adaptive time-dependent spatial variables
selection, adequate model selection is required to cope with the characteristics
of the MTS. Most of the existing MTS forecasting models operate in a static
manner, i.e. the model is trained offline using some collection of historical data
and a fixed selection of input variables. Its parameters are optimized once at
training time. At test time, the model is deployed with fixed learned parameters
and fixed information about temporal and spatial data [25]. Methods for online
MTS forecasting focus either on very specific application/setting [9] or use a
very specific family of ML models, such as Deep Neural Networks [21,26]. More
recently, a drift-aware Vector Autoregressive (VAR) model has been proposed in
[19]. In contrast to the classic VAR model which takes as input, all the variables
of the MTS [25], an adaptive selection procedure of a subset of input variables
is done in the drift-aware VAR. The update of this subset depends on a change
in the Pearson-Correlation (PC) [15] measured between two variables over a
time-sliding window, which we assume has occurred due to concept drift. Even
though the proposed method is online and adaptive, it focuses only on a par-
ticular model, namely the VAR. In addition, the time series variables selection
is done by ranking them according to their relevance to the target time series
using PC. No further analysis is carried out to investigate the redundancy in the
selected subset. The relevance/similarity to the target is measured using the PC
coefficient. However, it has been proven that there is no single universal measure

Online Adaptive Multivariate Time Series Forecasting 21

for the similarity between two time series either for relevance or redundancy
analysis [15]. The quality of the achieved results in this context depends to a
large extent on the used time series measure [15].

In this work, we propose an online adaptive framework for MTS forecasting
which performs both input variable time series selection and adequate forecasting
model selection. Input variables selection is done on two stages using relevance
and redundancy analysis. The selection is made dynamically and adaptively in an
informed manner following concept drift detection. The concept drift detection
covers the two MTS dimensions, namely spatial and temporal. Spatial depen-
dencies indicate the similarity between the input variables at one time instant.
We monitor the change of the similarity values over time. Temporal dependen-
cies indicate the patterns discovered within the same spatial dimension over
time. The drift detection within the temporal dimension is ensured by track-
ing the change in the estimated model’s performance on a given target time
series variable over time. In addition, the choice of the adequate relevance and
redundancy measures, as well as the forecasting model is done in an automated
fashion using meta-learning on well-devised MTS meta-features. Our framework
is denoted in the rest of the paper, OAMTS: Online Adaptive Multivariate Time
series forecasting. We further conduct a comprehensive empirical analysis to val-
idate our method using 66 real-world MTS datasets from different domains. We
have created separate meta-data which cover a collection of real-world and syn-
thetic MTS with various characteristics for the meta-learning task. The obtained
results show that our method achieves excellent results in comparison to the SoA
approaches for MTS forecasting. We note that all experiments are fully repro-
ducible and that both the code and datasets are publicly available1.

The main contributions of this work can be summarized as follows: We
present a novel method for online drift-aware input time series variables selec-
tion using relevance and redundancy analysis; The drift detection mechanism is
devised to operate on both spatial and temporal dimensions; We fully automate
the choice of relevance and redundancy measures for MTS, as well as forecast-
ing model selection using meta-learning; We provide a comparative empirical
study with SoA methods, and discuss their implications in terms of predictive
performance and scalability.

2 Literature Review

In contrast to univariate time series forecasting, i.e. the forecast of a single time
series, where several methods for online adaptive single model selection [18] or
ensemble learning [19,20] have been proposed, most of existing methods for MTS
forecasting are devised to operate in a static manner [9,25,26]. In other words,
the models in these methods are learned offline using a collection of historical
MTS data, their parameters are optimized using these datasets and stored to be
used at test time to make the predictions. In addition, most of these methods
1 https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6 6JcGZHN y10q8XDYa a?

dl=0.

https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0
https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0

22 A. Saadallah et al.

are either application specific [9] or model specific, i.e. use an arbitrary selected
machine learning model family [25]. The most widely used models are VAR
[19,25] or DNNs [21,26]. In [9], MTS for energy forecasting in smart buildings
is transformed into a standard regression task using time series embedding, and
then, different types of feature selection methods for regression tasks are applied.
The features are extracted offline once and kept static at test time.

More recently, some works have exploited the success of some DNNs archi-
tectures in computer vision-related applications and successfully transferred and
adapted them to MTS forecasting by treating the temporal and the spatial
dimensions in MTS as the 2d-dimension in images. Some of other works focused
on introducing some improvements or adaptations over existing DNNs to cope
with the characteristics of MTS [21,26]. In [21], authors argued that the ran-
dom weights initialization in Recurrent Neural Networks (RNNs), disallows the
neurons from learning the latent features of the correlated variables of the MTS.
Therefore, they suggest using a pre-trained LSTM combined with a stacked auto-
encoder to replace the random weight initialization strategy adopted in deep
RNNs. In [26], Graph Neural Networks (GNNs) are adapted to MTS forecasting
by adding a mix-hop propagation layer and a dilated inception layer to capture
the spatial and temporal dependencies within the MTS. This is done to make
GNN capable of handling relational dependencies that are not known in advance
like in the case of MTS. Even though dependencies between the variables of the
MTS may change significantly over time, most of the aforementioned works do
not consider a time-dependent selection of the input time series variables to the
MTS forecasting model. The choice of the model is most often arbitrary or trans-
ferred from another domain like computer vision or regression. In addition, once
the model is chosen, its corresponding parameters are kept fixed. It is impor-
tant to note that there exist methods for model adaptation to data changes
and model performance, more particularly to concept drift in the context of
streaming data classification [13,14] and univariate time series forecasting [20].
These methods can be grouped into two main families, namely blind adaptation
and informed adaptation. In blind adaptation, the model is retrained either at
each time instant with each upcoming observation or over a fixed period in time
without any consideration of possible data or model performance changes. How-
ever, this family of methods is known to be time-intensive, resource-consuming,
and unpractical for online forecasting [18,20]. Informed adaptation methods use
some statistical information about the data or model performance to inform
the model about the occurrence of concept drift and, if necessary, trigger input
data update using adaptive time-windowing approaches and input re-selection
[13,14,20] and subsequently, model retraining [19] or new model selection [18].
In this work, we propose an informed adaptation for MTS forecasting. This is
done by monitoring the changes in spatio-temporal dependencies in the MTS
and the model performance over time. Since the results achieved in various time
series tasks such as clustering and classification depend to a large extent on
the used measures for evaluating time series dependencies/similarities [15], we
suggest automating the choice of the adequate dependencies measures as well

Online Adaptive Multivariate Time Series Forecasting 23

as the selection of the adequate model for a particular application by means of
meta-learning.

3 Methodology

In this section, we present our framework and its main components. For given
MTS data, the input time series variables to be used for forecasting are deter-
mined in a timely manner by computing their relevance to the target time series
variable. Once the most relevant variables are identified, redundancy analysis
through time series clustering is carried out to remove redundant variables. The
choice of adequate time series measures for relevance and redundancy is deter-
mined beforehand by the meta-learning component that decides as well which
model to be used for particular MTS data. Both input time series variables and
model updates are triggered once a concept drift in the spatio-temporal depen-
dencies among these variables or/and model performance is detected. Basically,
either new variables are selected or time windows are adjusted to update the time
series variables with recent observations. This depends on the nature of detected
concept drift, i.e. whether it is on variables dependencies or model performance
or on both.

3.1 Preliminaries

A time series variable Xi with i ∈ N, is a temporal sequence of values, where
Xi

1:t = {xi
1, x

i
2, · · · , xi

t} denotes the sequence of Xi recorded until time t and xi
j

is the value of Xi at a time instant j. A MTS X consists of multiple time series
variables, i.e. X = {X1,X2, · · · ,XN}, that are interdependent. The variables
are assumed in this work to be recorded simultaneously with the same frequency.
The MTS X1:t recorded until a time instant t can be formally described as N ×t-
dimensional matrix, with Xj = {x1

j , x
2
j , · · · , xN

j } which represent the spatial
dimension of X for a fixed time instant j and Xi

1:t represents the evolution of X
over the temporal dimension across the variable i.

Given a target time series variable Xr, the goal of online input variable
selection is to determine which time series variables Xi, i ∈ [1, N]\{r} should be
fed into the forecasting model at time t to forecast the next value at time t+1. It is
important to note that in MTS, each time series variable can play the role of the
target variable and be predicted using the remaining variables, as it may be that
only one or some variables need to be predicted. This is application dependent.
However, the reasoning applied to one target variable can be generalized to all the
remaining variables. We denote by Xi

ts:te
the subsequence of Xi starting at time

instant ts and ending at time instant te. We divide the MTS X into Xtrain
ω =

{X1
1:t−ω,X2

1:t−ω, · · · ,XN
1:t−ω} and Xval

ω = {X1
t−ω+1:t,X

2
t−ω+1:t, · · · ,XN

t−ω+1:t},
with ω a provided window size. Xtrain

ω is used for training the forecasting model
and Xval

ω is used to compute the relevance and redundancy measures, since both
input and target time series variables are required to be known.

24 A. Saadallah et al.

3.2 Forecasting Models Learning

Standard approaches for addressing MTS forecasting tasks include traditional
techniques for MTS analysis, such as the popular Vector Autoregressive VAR
family of methods [25], or ARIMAX [3] which is the extension of Autoregressive
Integrated Moving Average model (ARIMA) to MTS where some input time
series variables are provided as exogenous variables to forecast the dependent
variable, i.e. target variable. These models take as an input multiple time series
sequences X1:t. In addition, regression models can be employed in the context of
MTS forecasting by using a time-delayed embedding that maps a set of obser-
vations from the target time series variable Xr ∈ X to a l × N -dimensional
feature space corresponding to the l past lagged values of each observation in
each time series variable in X. Each observation is composed of a feature vector
zi ∈ Z ⊂ R

l×N , which denotes the previous l values of each variable, and a
target vector xi ∈ X ⊂ R, which represents the value we want to predict. The
objective is to construct a model f : Z → X, where f denotes the regression
function. In this work, we aim to select an adequate model given the character-
istics of MTS data in question. This is done by the meta-learning components in
Sect. 3.5. Therefore, we consider a pool of candidate forecasting models P which
is designed to contain a set of various and heterogeneous models, such as VAR,
Gaussian processes, support vector regression, and DNNs. The candidate models
are trained on Xtrain

ω using the same number l of lagged values for each variable
in the MTS as input to model the following value in the time series.

3.3 Adaptive Input Time Series Variables Selection

Given a target time series Xr ∈ X, in order to forecast its value at a future time
instant t + h, h ≥ 1 (for simplicity of notation, we assume h = 1), the selection
of the time series variables Xi, i ∈ [1, N]\{r} whose l-lagged values will be used
as input for the forecasting model in addition to the l-lagged values of target
time series Xr, has to be determined in a timely-manner at t. The selection is
decided by measuring how much each of Xi,∀i ∈ [1, N]\{r} is relevant to Xr

and whether Xi is redundant in the presence of the other variables.

Relevance. The relevance of each Xi,∀i ∈ [1, N]\{r} to Xr is measured by
computing the similarity between them on T val

ω = [t − ω + 1, t], denoted si,r
t =

sim(Xi
t−ω+1:t,X

r
t−ω+1:t). The time series variables Xi,∀i ∈ [1, N]\{r} are sorted

according to their si,r
t and the top-n most similar variables to Xr are selected.

There is no single universal similarity measure between time series that is valid
for every application. The choice of the adequate similarity measure is done by
considering the characteristics of the MTS at question.

Redundancy. The top-n selected input time series variables may include some
redundant variables that would lead to increasing the dimensionality of the MTS
forecasting task without contributing to the model’s accuracy. Relying on the

Online Adaptive Multivariate Time Series Forecasting 25

computed similarity measures is not sufficient since they are measured over a
time window of observations T val

ω . For instance, two candidate variables can
have the same level of similarity to the target variables while being effectively
similar to it on two distinct time intervals included within T val

ω . Therefore, we
suggest removing redundancies by clustering the top-n variables and selecting
only one-time series representative per cluster. To compute clusters for time
series, several techniques are proposed in the literature which can be classi-
fied based on the way they treat the data and how the underlying grouping is
performed [1]. One classification depends on whether the whole series, a sub-
sequence, or individual time points are to be clustered. In our case, we clus-
ter the subsequences {X1

t−ω+1:t,X
2
t−ω+1:t, · · · ,XN

t−ω+1:t}. On the other hand,
the clustering itself may be shape-based, feature-based, or model-based. The
choice of time-series representation and the clustering algorithm has a big impact
on performance with respect to cluster quality and execution time [22]. Again,
no single clustering method is universally valid and the success of the method
depends on the characteristics of the time series data [1]. Denote with the ci,j

t the
clustering measure used for computing the distance between the two sequences
Xi

t−ω+1:t and Xj
t−ω+1:t, with i, j ∈ TOPn and Topn denotes the subset of selected

input time series variables,i.e. |TOPn| = topn. The choice of the clustering algo-
rithm together with the corresponding distance measure is decided by the meta-
learning component. Further details are provided in Sect. 3.5.

Drift-Aware Variables Selection Adaptation. Both relevance and redun-
dancies are monitored continuously over time. For relevance, with each upcoming
data observation at t + h, h ≥ 1, we slide T val

ω by one step, i.e. to include the
observation at t + h, and we measure si,r

t+h,∀i ∈ [1, N]\{r}. Then, we computed:
smin

t+h = mini∈[1,N]\{r} si,r
t+h in order to determine the distance between the target

sequence and the most dissimilar sequence within the N − 1 input variables.
Then, we compare it to the initial calculated distance smin

ti
. In our case, ti = t

indicates the start of the online forecasting stage. The distance is treated as time
series where smin

t+h is its value at time t + h.

Definition 1 (Weak stationary Similarity). The similarity structure
between a set of input time series variables and a target time series is said
to be weakly stationary if the true mean of Δs is 0, with: Δs

t+h =
∣
∣smin

t+h − smin
ti

∣
∣

Following this definition, we can assume that the distance between the target
time series sequence and the most dissimilar input sequence sets its boundary
under a form of a logical diameter. If this boundary diverges in a significant way
over time, a drift is assumed to take place. We propose to detect the validity of
such an assumption using the well-known Hoeffding Bound, which states that
after ω independent observations of a real-value random variable with range
R, its true mean has not diverged if the sample mean is contained within ±ζ:

ζ =
√

R2 ln(1/μ)
2ω with a probability of 1 − μ (a user-defined hyperparameter).

Once the condition of the weak stationary similarity presented in Definition 1 is

26 A. Saadallah et al.

violated at td, a drift is assumed to take place at tds
. A relevance re-computation

is then triggered. A re-clustering is also performed, the selection of the variables
is updated and the reference diameter smin

ti
is reset by setting ti = tds

. This drift
type is denoted Drift Type I.

Similarly for the redundancy, we monitor continuously the distance measure
used for clustering ci,j

t+h,∀Xi,Xj ∈ TOPn, which results in the similarity matrix
Ct+h = (ci,j

t+h)1≤i,j≥topn
∈ R

topn×topn and we place all the elements of Ct+h in a
vector ςt+h, where ςj,t+h ≥ ςj−1,t+h,∀j ∈ {1, · · · , top2

n}. Let ςti
denote the value

of ς at the initial instant ti = t of the generation of C. We monitor the deviation
Δς

t+h =
∣
∣ςt+h − ςti

∣
∣ similarly to Δs

t+h. We test the occurrence of concept drift
within the clusters following the same condition defined in Definition 1. If a
concept drift is detected at tdc

, both relevance and redundancies re-computation
are triggered and a re-selection of input variables is performed. We reset then
ςti

= ςtdc
. This drift type is denoted Drift Type II.

3.4 Forecasting Models Adaptation

The increase in the forecasting error may indicate a possible change in the rela-
tionship between the input variables and the target time series or outdated model
parameters due to outdated time series observations that were used for training.
Therefore, necessary measures such as input variables re-selection and/or model
re-training with recently acquired data have to be taken. To do so, the forecasting
error ε is estimated using the Root Mean Square Error (RMSE) and is monitored
over the sliding window of the recent observations T val

ω . The error can be viewed
as a time series, and at t + h εω

t+h = 1
ω

∑t+h−1
j=t+h−ω(xr

j − x̂r
j)

2, with x̂r
j the pre-

dicted value of Xr at time j. Naturally, with time-evolving data, the model’s error
changes over time and may follow non-stationary concepts. Let εti

denote ε value
at the initial instant of its generation ti = t. Since the forecasting error is direc-
tional, the drift-detection using the absolute value of the error deviation with the
Hoeffding-bound can be misleading. Therefore, we suggest using the Page-Hinkley
Test [19] to detect a significant increase in the forecasting error. We present the
pseudo-code of the Page-Hinkley Test in the supplementary materials. ν and � are
user-defined hyper-parameters, where ν is the tolerable change in the estimated
error and � is a threshold. A larger � avoids detecting false drift alarms, but can
also lead to missing true drifts [8]. The error drift detection is denoted Drift Type
III. An alert at time tdε

declares the occurrence of Drift Type III and triggers the
update of the input variables through new selection, i.e. new relevance and redun-
dancy re-computation and updates the current model with the new input and the
recent observations. It also restarts the Page-Hinkley Test from the beginning. The
model gets also updated with the update of the input triggered by Drift Type I
or Drift Type II.

3.5 Online Automated MTS Forecasting

As discussed above, there are no single universal similarity measures for relevance
and redundancies. Similarly, for the forecasting model, adequate model selection

Online Adaptive Multivariate Time Series Forecasting 27

has to be performed to cope with the characteristics of the MTS in question.
Once the model is selected, the online adaptation scheme in our framework (See
Sect. 3.4) takes care of the update of the model in an informed manner to the
real-time changes in the data and the performance. To automate the choice of
the measures and the model, we use meta-learning. Let S and C be the spaces
of the relevance and redundancy measures, respectively. Denote with M the
space of the candidate models to solve the MTS forecasting task. Using a set
of m MTS characteristics represented here by the so-called meta-features, the
goal of the meta-task is to fit model fmeta : R

m → S × C × M to predict the
best combination of relevance and redundancies measures and forecasting model
choice given a vector of m MTS meta-features as input.

MTS Meta-features. Several works have been proposed for extracting Uni-
variate Time Series (UTS) meta-features [24]. Therefore, most of the existing
works that tackled the same task for MTS use the same features developed for
UTS to extract meta-features from each time series variable in the MTS and
concatenate them in one feature vector [9]. In this work, in addition to the
transfer of the most often used meta-features in the context of univariate time
series to the MTS domain, we propose to add MTS-specific meta-features. We
additionally adapted the concept of land-marking developed for meta-tasks in
classification and regression [12] to MTS data. The extracted meta-features can
be grouped into three main families.

UTS-Specific Features. For each time series variable in the MTS, we extract
different time series-specific features that can be grouped into three families,
including descriptive statistics, frequency domain, and auto-correlation features
[11]. The list of these features includes then trend, skewness of series, turning
points, kurtosis of series, step changes, length of series, non-linearity measure,
the standard deviation of de-trended series, power spectrum: maximal value, no.
of peaks not lower than 60% of the max, auto- and partial correlations at lags
one and two, seasonality. Since the number of variables in the MTS can be very
big, we compute the mean and the standard deviation of each extracted feature
over the different variables from a subset.

MTS-Specific Features. We suggest investigating the relationships/dependence
among the MTS variables. To do so, we compute several similarity measures
[15], including Pearson Correlation, Euclidean distance, Dynamic time warping
distance, Mahalanobis distance, Amplitude and Phase differences of the Fourier
Transform (FT), and Shape similarity based on derived FT amplitude and phase
differences, between each pair of variables. These similarities computations result
in similarity matrices for each measure. Instead of concatenating all the coeffi-
cients of all the matrices in one feature vector and increasing the meta-task input
dimensionality, we suggest computing diversity in similarity/dependence along
with all the variables pairs for each similarity matrix. Denote with S ∈ R

N×N

the resulting similarity matrix of a given similarity/distance s between all the

28 A. Saadallah et al.

N MTS variables. We define the diversity as (note the similarity values are
normalized between -1 and 1) : div(S) = 1 − 1∑

1≤i�=j,≤N

∑

1≤i�=j,≤N s(Xi,Xj)

Landmarking-Based Features. This type of meta-features are designed to
describe the performance of some learning algorithms, called landmarkers, in
various learning contexts on the same data. Landmarkers are machine learning
models that are computationally relatively cheap either in training or testing
compared to other models. So far, all the proposed landmarkers and correspond-
ing meta-features have been proposed for classical meta-learning applications to
classification problems and one work has added the extension of this concept to
regression [12], whereas we focus on landmarkers integration for MTS forecast-
ing. In regression, the process starts by creating one landmarking model over
the entire training set. A small artificial neighborhood for each training example
is created using Gaussian noise. Then descriptive statistics of the models’ out-
put, mean, stdev., 1st/3rd quantile, are extracted. In our case, we use, LASSO,
1NN, MARS and CART, as landmarkers [12] and train them on Xtrain

ω . We can
distinguish three types of Landmarking features:

– Global landmarking : We evaluate each model on each time Xval
ω and we

extract the descriptive statistics of the models’ output.
– Performance-based local landmarking : we split Xval

ω into equally-sized non-
overlapping time windows of size nω. We evaluate each model on each time
window and we extract for each window the descriptive statistics of the mod-
els’ output.

– Model-based local landmarking : This type of local landmarking is designed
to characterize the landmarkers within a particular time series region, in our
case each time window of size nω. To do so, we extract the knowledge that the
landmarkers have learned about each window. In addition to the prediction
of each landmarker on each window, we compute the depth of the leaf which
makes the prediction and the number of examples in that leaf and variance
for each window for CART, the average over each window of the width and
mass of the interval in which each time value falls, and the average over each
window of absolute distance to the nearest neighbor for 1NN.

4 Experiments

We present the experiments carried out to validate OAMTS and to answer these
research questions: Q1: How does OAMTS perform compared to the SoA and
existing online methods for MTS forecasting?; Q2: To which extent is it neces-
sary to automate the choice of adequate relevance and redundancies measures,
as well as the forecasting model choice? Q3: What is the importance of each
component, namely relevance and redundancy, in the input time series variables
selection on the performance? Q4: What is the benefit of each drift type detec-
tion for the performance of OAMTS? Q5: How scalable is OAMTS in terms of
computational resources compared to the most competitive online model selec-
tion methods? and what is the computational advantage of drift-aware adap-
tation of the framework?

Online Adaptive Multivariate Time Series Forecasting 29

4.1 Experimental Setup

The methods used in the experiments were evaluated using the root mean
squared error (RMSE). We collected a total of 166 MTS from various real-world
applications. 100 MTS are exclusively used for the meta-learning task, while
the remaining 66 MTS are used for testing the meta-model which recommends
which relevance and redundancy measures and forecasting model from the pool
of candidate models that we have devised, to use. Following the recommenda-
tion of the meta-model, these 66 MTS are used to validate the online forecasting
performance of OAMTS. Each of the 66 MTS was split using 50% for training
(Xtrain

ω), and 25% for validation (Xval
ω) and 25% for testing. Note that in each

MTS, we have chosen one variable as the target one depending on the applica-
tion and the remaining variables as different input variables. However, for some
applications like taxi demand forecasting, all the variables can play the role of
the target one and change the role between variables. A full list of the used
datasets, together with a description, is given in the code repository2 and in the
supplementary materials.

Candidate Models Set-Up. We construct the pool P of candidate models.
We mentioned earlier that there is no single method for forecasting that out-
performs all the other methods on every time series. Hence, we incorporate and
test different families of models. Traditional time series forecasting models like
VAR [25] is included. Regression models are also included in P and are applied
after using MTS embedding of dimension N × l. These models include Gradi-
ent Boosting Machines GBM [5], Support Vector Regression SVR [4], Random
Forest RF [2], Projection Pursuit Regression PPR [6], MARS MARS [7], and
Partial Least Squares Regression PLS [16]. Neural networks based models that
are designed for time series forecasting task are introduced to P such as Multi-
Layer Perceptron MLP [10], Bidirectional LSTM bi-LSTM [23]. More recently,
CNN-LSTM [27] and Convolutional LSTM Conv-LSTM [27] are suggested to
solve MTS forecasting tasks. Using different parameter settings for each family,
we generate a pool of 20 candidate models.

Meta-learning Task Set-Up. The list of similarity measures considered to
measure the variables relevance includes Pearson Correlation, Spearman corre-
lation, Euclidean distance, Dynamic time warping distance, Manhattan distance,
and Fourier-based distance. A detailed description of each measure can be found
in [15] (Table 1). For redundancies, we have chosen K-means [17] as the clus-
tering algorithm with distance measure either Euclidean distance or Dynamic
time warping distance. For the models, we consider the selection from the pool
P. Note for the meta-data labelling, we consider all the possible combinations
of relevance, redundancy measures and model type and we evaluate our frame-
work performance on each MTS dataset in the meta set by splitting it into 80%
for training the framework and 20% for testing. Even though, the meta-task
is performed fully offline (only meta-model predictions are output online), this
2 https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6 6JcGZHN y10q8XDYa a?

dl=0.

https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0
https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0

30 A. Saadallah et al.

annotation is very resource-consuming because of the big number of combina-
tions. That is why we restrained the size of the metadata to 100 MTS. However,
we aim to enlarge this data in the future. There are different options on how to
tackle the meta-learning task. One possible option would be to encode all the
combinations of relevance, redundancy measures, and model type which would
lead to a high number of classes compared to the size of the meta-data. Another
option is to consider it as a multi-label classification task. However, a classifier’s
performance on different labels can vary significantly. Therefore, we have chosen
to split the task into three learning tasks. The first one is for relevance measure
prediction and is a multi-class classification task solved with SVM [4]. The sec-
ond task is for redundancy measure prediction and is a binary classification task
solved with SVM [4]. The third task is for model selection and is a multi-class
classification task solved with RF [2]. The choice of the learning algorithm is
decided using a cross-validation evaluation of the accuracy on the meta-data.

OAMTS Set-Up: OAMTS has also a number of hyper-parameters that are
summarized in Table 1 in the supplementary materials. We compare OAMTS
against the following approaches which include SoA methods for MTS forecast-
ing. Some of them operate in an online fashion.

SoA Forecasting Models: ARIMAX [3]: Auto-Regressive Moving Average
model with exogenous variables, LSTM [18]: Long Short Term Memory Network
which has shown better performance than the remaining neural networks such
as MLP and CNN-LSTM and comparable performance with bi-LSTM, VAR
[25]: Traditional Vector Autoregressive model. Its order is tuned using Akaike
Information Criterion (AIC) using the R-package ’vars’, Drift-aware VAR [19]
A recent framework that selects the relevant variables using Pearson-Correlation
for the VAR model and update them following concept-drift detection. It uses
also L1-regularization to prevent over-fitting. However, redundancies are not
removed.

OAMTS Variants: OAMTS-Ran: The variant of OAMTS that is computed
using a random selection of Relevance and Redundancies measures and model,
OAMTS-VAR: The variant of OAMTS that uses VAR as the forecasting
model instead of the automatic model selection. Relevance and Redundancies
are selected by the meta-model, OAMTS-Rel: The variant of OAMTS that
performs adaptive input selection by considering only the relevance, OAMTS-
Red: The variant of OAMTS that performs adaptive input selection by con-
sidering only the redundancy, OAMTS-DI-II: The variant of OAMTS that
performs model adaptation following concept drift in the input structure (Drift
type I and Drift type II, OAMTS-DIII: The variant of OAMTS that per-
forms model adaptation following in the changes in the error (Drift type III),
OAMTS-Per: The variant of OAMTS that performs model adaptation periodi-
cally without any consideration of concept drift occurrence, with each upcoming
10% data points, OAMTS-BG: The variant of OAMTS where we assume we
know the background truth of which Relevance and Redundancies measures
to use and which model to select. This is done by evaluating all the possible

Online Adaptive Multivariate Time Series Forecasting 31

combinations on the test set. This variant is used as a reference model to know
how well the meta-learning component performs.

4.2 Results

Table 1 presents the average ranks and their deviation for all methods. For the
paired comparison, we compare our method OAMTS against each of the other
methods. We counted wins and losses for each dataset using the RMSE scores.
We use the non-parametric Wilcoxon Signed Rank test to compute significant
wins and losses (significance level 0.05). In the results in Table 1, OAMTS outper-
forms the baseline methods in terms of wins/loses in pairwise comparison. The
online MTS forecasting methods, e.g., Drift-aware VAR [19] and OAMTS-VAR
show inferior performance compared to OAMTS. VAR and LSTM, SoA meth-
ods for forecasting, are considerably worse in average rank compared to OAMTS.
The most competitive SoA approach to OAMTS is ARIMAX. Nevertheless, it
has a higher average rank and a lower performance than our method. VAR is
considered to be the most widely used method of MTS forecasting but it can be
seen from OAMTS-VAR that it is not always the best model choice. This is also
confirmed by the Drift-aware VAR performance. It can also be seen that none
of OAMTS-Rel and OAMTS-Red is able on its own to reach the performance
of OAMTS which shows the importance of both relevance and redundancies

Table 1. Comparison of OAMTS to different SoA for 66 time series. The rank column
presents the average rank and its standard deviation across different time series. A
rank of 1 means the model was the best performing on all time series. We report only
significant wins and losses of OAMTS against remaining methods.

Method Our method

Wins Losses Avg. rank

VAR 40 0 7.7 ± 0.9

ARIMAX 20 20 3.0 ± 2.2

LSTM 40 0 7.8 ± 1.4

Drift-aware VAR 40 0 6.7 ± 0.9

OAMTS-VAR 40 0 7.6 ± 0.7

OAMTS-Ran 40 0 5.0 ± 0.9

OAMTS-Rel 40 0 5.9 ± 1.3

OAMTS-Red 40 0 6.3 ± 0.6

OAMTS-Per 39 1 4.3 ± 0.8

OAMTS-DI-II 30 10 3.2 ± 1.2

OAMTS-DIII 7 33 2.9 ± 0.7

OAMTS – – 2.2 ± 0.5

OAMTS-BG – – 1.9 ± 0.6

32 A. Saadallah et al.

consideration in the input selection. These results address the research ques-
tions Q1-Q2.

Table 2 presents some examples where we show the ground truth of which are
the best relevance and redundancies measures, as well as the model choice for
some data sets. It is clear from Table 2 that there is no one single best relevance
and redundancies measures, as well as one optimal model choice, even for MTS
data sets extracted from the same data source like Taxi1,2,3 that are extracted
from NYC Trip Record Data (Yellow taxi 2021). This justifies the necessity
of automating these choices. Random choices would lead to considerably worse
performance which is reflected in the performance of OAMTS-Ran in Table 1.
In addition, comparing OAMTSto OAMTS-BG, we can see a slight difference
in the ranks in favor of course of OAMTS-BG but it highlights the usefulness of
the meta-learning component in our framework for automating all the choices.
These results address the research question Q3.

Table 2. Ground truth of the best model and relevance/redundancy measures for some
datasets.

Dataset Model Similarity measure Clustering method

Taxi-1 PLS Pearson correlation DTW

Taxi-2 MARS Euclidean distance DTW

Taxi-3 PLS Spearman correlation DTW

Chengdu-city-3 MARS Spearman correlation Euclidean

From Table 1, we can also see that none of the drift adaptation methods
is able on its own to perform as well as OAMTSwhich deploys the three drift
types to monitor changes in the input dependence structure as well as the model
performance. In addition, OAMTS which relies on the informed adaption of the
framework using concept drift detection is better than OAMTS-Per. This can be
explained by the fact that unnecessary updates are not always beneficial. This
answers the research question Q4.

In the next experiment, we compare the runtime of OAMTS and its variants
against some SoA methods in Table 3.

All the reported runtimes concern only the online predictions and any oper-
ation computed offline is not taken into account. The results demonstrate that
OAMTS has lower runtime than OAMTS-Per. This is due to using drift detec-
tion to update only when necessary. This results in faster predictions and less
computational requirements. The high deviation of the runtime of OAMTS is
due to the different numbers of drifts per time series. This answers question Q5.

4.3 Discussion and Future Work

The empirical results indicate that OAMTS has performance advantages com-
pared to popular MTS forecasting methods. We show that our method, for adap-
tively selecting input MTS variables and performing the model update, is able

Online Adaptive Multivariate Time Series Forecasting 33

Table 3. Empirical runtime comparison between different methods in seconds.

Method OAMTS OAMTS-Per LSTM

Avg. runtime 34.26 72.12 150.09

± 94.51 35.29 29.26

to gain excellent and reliable empirical performance in our setting. The informed
adaptation following concept drift detection makes our method in addition to
better predictive performance, computationally cheaper than blind adaptation
methods like periodic ones. In future work, we plan to enhance further the meta-
learning components by adding more datasets and annotating them, and estab-
lishing a direct mapping to the best combination of measures and model choice
as target label as we assume that there is a link in addition to the MTS char-
acteristics that we tried to cover from different perspectives, between relevance
and redundancies measures and the chosen forecasting model. This investiga-
tion will make the scope of our future work. In addition, we’ve thought about
adding more time series clustering algorithms so that we change the mapping to
the clustering algorithm directly instead of the relevance measure. We may also
think about enlarging the pool P.

5 Concluding Remarks

This paper introduces OAMTS: a novel, practically useful online adaptive frame-
work for multivariate time series forecasting. OAMTS uses adaptive input selec-
tion by investigating relevance and redundancies. Both input variables and learn-
ing models are updated in an informed manner following different types of con-
cept drift detection. The choice of the relevance and redundancies measure, as
well as the model, is automated using meta-learning. An exhaustive empirical
evaluation, including several real-world datasets and multiple comparison algo-
rithms, showed the advantages of OAMTS in terms of performance and scala-
bility.

References

1. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering-a
decade review. Inf. Syst. 53, 16–38 (2015)

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
3. Dissanayake, B., Hemachandra, O., Lakshitha, N., Haputhanthri, D., Wijayasiri,

A.: A comparison of ARIMAX, VAR and LSTM on multivariate short-term traffic
volume forecasting. In: Conference of Open Innovations Association, FRUCT, pp.
564–570. No. 28, FRUCT Oy (2021)

4. Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector
regression machines. In: Advances in Neural Information Processing Systems, pp.
155–161 (1997)

34 A. Saadallah et al.

5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2001)

6. Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc.
76(376), 817–823 (1981)

7. Friedman, J.H., et al.: Multivariate adaptive regression splines. Ann. Stat. 19(1),
1–67 (1991)

8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)

9. González-Vidal, A., Jiménez, F., Gómez-Skarmeta, A.F.: A methodology for energy
multivariate time series forecasting in smart buildings based on feature selection.
Energy Build. 196, 71–82 (2019)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016).
www.deeplearningbook.org

11. Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection.
In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp.
1616–1619. IEEE (2015)

12. Khiari, J., Moreira-Matias, L., Shaker, A., Ženko, B., Džeroski, S.: MetaBags:
bagged meta-decision trees for regression. In: Berlingerio, M., Bonchi, F., Gärtner,
T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp.
637–652. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7 39

13. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector
machines. In: ICML, pp. 487–494 (2000)

14. Klinkenberg, R., Rüping, S.: Concept drift and the importance of examples. In:
Text Mining-Theoretical Aspects and Applications. Citeseer (2002)

15. Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P.: A comparison of
time series similarity measures for classification and change detection of ecosystem
dynamics. Remote Sens. Environ. 115(12), 3129–3152 (2011)

16. Mevik, B.H., Wehrens, R., Liland, K.H.: PLS: partial least squares and principal
component regression (2018). CRAN.R-project.org/package=pls

17. Priebe, F.: Dynamic model selection for automated machine learning in time series
(2019)

18. Saadallah, A., Jakobs, M., Morik, K.: Explainable online deep neural network
selection using adaptive saliency maps for time series forecasting. In: Oliver, N.,
Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021.
LNCS (LNAI), vol. 12975, pp. 404–420. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86486-6 25

19. Saadallah, A., Moreira-Matias, L., Sousa, R., Khiari, J., Jenelius, E., Gama, J.:
Bright-drift-aware demand predictions for taxi networks. IEEE Trans. Knowl. Data
Eng. 32, 234–245 (2018)

20. Saadallah, A., Priebe, F., Morik, K.: A drift-based dynamic ensemble members
selection using clustering for time series forecasting. In: Brefeld, U., Fromont, E.,
Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019.
LNCS (LNAI), vol. 11906, pp. 678–694. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-46150-8 40

21. Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked
autoencoder for multivariate time series forecasting problems. Sci. Rep. 9(1), 1–16
(2019)

22. Sardá-Espinosa, A.: Comparing time-series clustering algorithms in R using the
dtwclust package. R Package Vignette 12, 41 (2017)

http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-10925-7_39
http://www.CRAN.R-project.org/package=pls
https://doi.org/10.1007/978-3-030-86486-6_25
https://doi.org/10.1007/978-3-030-86486-6_25
https://doi.org/10.1007/978-3-030-46150-8_40
https://doi.org/10.1007/978-3-030-46150-8_40

Online Adaptive Multivariate Time Series Forecasting 35

23. Sun, Q., Jankovic, M.V., Bally, L., Mougiakakou, S.G.: Predicting blood glucose
with an LSTM and Bi-LSTM based deep neural network. In: 2018 14th Symposium
on Neural Networks and Applications (NEUREL), pp. 1–5. IEEE (2018)

24. Talagala, T.S., Hyndman, R.J., Athanasopoulos, G., et al.: Meta-learning how
to forecast time series. Monash Econometrics Bus. Stat. Work. Papers 6(18), 16
(2018)

25. Tsay, R.S.: Multivariate Time Series Analysis: with R and Financial Applications.
John Wiley & Sons (2013)

26. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
multivariate time series forecasting with graph neural networks. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 753–763 (2020)

27. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolu-
tional LSTM network: a machine learning approach for precipitation nowcasting.
In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

U-Net Inspired Transformer Architecture
for Far Horizon Time Series Forecasting

Kiran Madhusudhanan1(B) , Johannes Burchert1, Nghia Duong-Trung2,
Stefan Born2, and Lars Schmidt-Thieme1

1 Institute for Computer Science, University of Hildesheim, Hildesheim, Germany
{madhusudhanan,burchert,schmidt-thieme}@ismll.uni-hildesheim.de

2 Technische Universität Berlin, Berlin, Germany
nghia.duong-trung@tu-berlin.de, born@math.tu-berlin.de

Abstract. Time series data is ubiquitous in research as well as in a
wide variety of industrial applications. Effectively analyzing the avail-
able historical data and providing insights into the far future allows us
to make effective decisions. Recent research has witnessed the superior
performance of transformer-based architectures, especially in the regime
of far horizon time series forecasting. However, the current state of the
art sparse Transformer architectures fail to couple down- and upsam-
pling procedures to produce outputs in a similar resolution as the input.
We propose a U-Net inspired Transformer architecture named Yformer,
based on a novel Y-shaped encoder-decoder architecture that (1) uses
direct connection from the downscaled encoder layer to the corresponding
upsampled decoder layer in a U-Net inspired architecture, (2) Combines
the downscaling/upsampling with sparse attention to capture long-range
effects, and (3) stabilizes the encoder-decoder stacks with the addition of
an auxiliary reconstruction loss. Extensive experiments have been con-
ducted with relevant baselines on three benchmark datasets, demonstrat-
ing an average improvement of 19.82, 18.41% MSE and 13.62, 11.85%
MAE in comparison to the baselines for the univariate and the multi-
variate settings respectively.

Keywords: Time series forecasting · Transformer · U-Net

1 Introduction

In the most simple case, time series forecasting deals with a scalar time-varying
signal and aims to predict or forecast its values in the near future; for example,
countless applications in finance, healthcare, production automatization, etc.
[4,27,29] can benefit from an accurate forecasting solution. Often not just a
single scalar signal is of interest, but multiple at once, and further time-varying

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 36–52, 2023.
https://doi.org/10.1007/978-3-031-26422-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_3&domain=pdf
http://orcid.org/0000-0001-6356-8646
http://orcid.org/0000-0001-5729-6023
https://doi.org/10.1007/978-3-031-26422-1_3
https://doi.org/10.1007/978-3-031-26422-1_3

Yformer for Far Horizon Time Series Forecasting 37

signals are available and even known for the future. For example, suppose one
aims to forecast the energy consumption of a house, it likely depends on the
social time that one seeks to forecast for (such as the next hour or day), and
also on features of these time points (such as weekday, daylight, etc.), which are
known already for the future. This is also the case in model predictive control [3],
where one is interested to forecast the expected value realized by some planned
action, then this action is also known at the time of forecast. More generally,
time series forecasting, nowadays deals with quadruples (x, y, x′, y′) of known
past predictors x, known past targets y, known future predictors x′ and sought
future targets y′ (Fig. 1).

Fig. 1. General time series setting illustrating the quadruples (x, y, x′, y′) denoting the
past predictors, past targets, future predictors and future targets respectively. Given
the history information (x, y) until time t = T and the future predictors (x′) for the
next τ time steps, time series forecasting predicts the target y′ from t = T + 1, . . . , τ
time steps. In the figure, O and M represents the respective channels of the targets
and the predictors.

Time series problems can often be addressed by methods developed initially
for images, treating them as 1-dimensional images. Especially for time-series
classification many typical time series encoder architectures have been adapted
from models for images [33,37]. Time series forecasting then is closely related
to image outpainting [32], the task to predict how an image likely extends to
the left, right, top or bottom, as well as to the more well-known task of image
segmentation, where for each input pixel, an output pixel has to be predicted,
whose channels encode pixel-wise classes such as vehicle, road, pedestrian say
for road scenes. Time series forecasting combines aspects from both problem
settings: information about targets from shifted positions (e.g., the past targets
y as in image outpainting) and information about other channels from the same
positions (e.g., the future predictors x′ as in image segmentation). One of the
most successful, principled architectures for the image segmentation task are U-
Nets introduced in [26], an architecture that successively downsamples/coarsens
its inputs and then upsamples/refines the latent representation with deconvo-
lutions also using the latent representations of the same detail level, tightly
coupling down- and upsampling procedures and thus yielding latent features on
the same resolution as the inputs.

38 K. Madhusudhanan et al.

Following the great success in Natural Language Processing (NLP) appli-
cations, attention-based, esp. transformer-based architectures [30] that model
pairwise interactions between sequence elements have been recently adapted for
time series forecasting. One of the significant challenges, is that the length of the
time series, are often one or two magnitudes of order larger than the (sentence-
level) NLP problems.

Plenty of approaches aim to mitigate the quadratic complexity O(T 2) in the
sequence/time series length T to at most O(T log T). For example, the Informer
architecture [35], adapts the transformer with a sparse attention mechanism and
a successive downsampling/coarsening of the past time series. As in the original
transformer, only the coarsest representation is fed into the decoder. Possibly to
remedy the loss in resolution by this procedure, the Informer feeds its input a
second time into the decoder network, this time without any coarsening.

While forecasting problems share many commonalities with image segmenta-
tion problems, transformer-based architectures like the Informer do not involve
coupled down- and upscaling procedures to yield predictions on the same reso-
lution as the inputs. Thus, we propose a novel Y-shaped architecture that

1. Couples downscaling/upscaling to leverage both, coarse and fine-grained fea-
tures for time series forecasting,

2. Combines the coupled scaling mechanism with sparse attention modules to
capture long-range effects on all scale levels, and

3. Stabilizes encoder and decoder stacks by reconstructing the recent past.

2 Related Work

Time Series Forecasting: While Convolutional Neural Network (CNN) and
Recurrent Neural network (RNN) based architectures [25,28] outperform tra-
ditional methods like ARIMA [2] and exponential smoothing methods [10], the
addition of attention layers [30] to model time series forecasting has proven to be
very beneficial across different problem settings [7,16,24,34]. Attention allows
direct pair-wise interaction with eccentric events (like holidays) and can model
temporal dynamics inherently unlike RNNs and CNNs that fail to capture long-
range dependencies directly. Recent work like Reformer [14], Linformer, [31],
Triformer [5] and Informer [35] have focused on reducing the quadratic complex-
ity of modeling pair-wise interactions to a lower complexity with the introduction
of restricted attention layers. Consequently, they can predict for longer forecast-
ing horizons but are hindered by their capability of aggregating features and
maintaining the resolution required for far horizon forecasting.

U-Net: The Yformer model is inspired by the famous U-Net architecture intro-
duced in [26] originating from the field of medical image segmentation. The
U-net architecture is capable of compressing information by aggregating over
the inputs and up-sampling embeddings to the same resolutions as that of the
inputs from their compressed latent features. While there exist U-Net based
transformer architectures within the vision community [23,36], to the best of

Yformer for Far Horizon Time Series Forecasting 39

our knowledge U-Net based transformer architecture for time series forecast-
ing remains unexplored. Current transformer architectures like the Informer [35]
do not utilize up-sampling techniques even though the network produces inter-
mediate multi-resolution feature maps. Our work aims to capitalize on these
multi-resolution feature maps and use the U-net shape effectively for the task
of time series forecasting. In [22], the authors have successfully applied U-Net
architecture for the task of time series segmentation, illustrating superior results
in the task. These motivate the use of a U-Net-inspired architecture for time
series forecasting as current methods fail to couple sparse attention mechanism
with the U-Net shaped architecture for time series forecasting.

Reconstruction Loss: Reconstruction loss is widely used in the domain of time
series outlier detection [13] and is less popular within the Time Series Forecasting
community. Although recent time series forecasting architecture like the N-Beats
[21] tries to reconstruct part of the past time steps (backcasting) as an effective
method to improve model performance, the majority of transformer-based time
series forecasting architectures [7,16,19] fail to utilize the reconstruction loss as
an auxiliary target to improve performance. In [12], the authors demonstrate
a multi-task approach for time series forecasting that couples an auxiliary task
of predicting known channels along with the target channel for improved reg-
ularization. Additionally, recent studies [17] have shown that the addition of
the reconstruction term to any loss function generally provides uniform stability
and bounds on the generalization error, therefore leading to a more robust model
overall with no negative effect on the performance.

3 Problem Formulation

By a time series x with M channels, we mean a finite sequence of vectors in
R

M , denote their space by R
∗×M :=

⋃
T∈N

R
T×M , and their length by |x| := T

(for x ∈ R
T×M ,M ∈ N). We write (x, y) ∈ R

∗×(M+O) to denote two time
series of same length with M and O channels for the predictors and targets,
respectively. We model a time series forecasting instance as a quadruple
(x, y, x′, y′) ∈ R

∗×(M+O) ×R
∗×(M+O), where x, y denote the past predictors and

targets until a reference time point T and x′, y′ denote the future predictors and
targets from the reference point T to the next τ (forecast horizon) time steps.

For a Time Series Forecasting Problem, given (i) a sample D := {
(x1, y1, x

′
1, y

′
1), . . . , (xN , yN , x′

N , y′
N)} from an unknown distribution p of time

series forecasting instances and (ii) a function � : R
∗×(O+O) → R called loss, we

attempt to find a function ŷ : R
∗×(M+O) × R

∗×M → R
∗×O (with |ŷ(x, y, x′)| =

|x′|) with minimal expected loss

E(x,y,x′,y′)∼p �(y′, ŷ(x, y, x′)) (1)

The loss � usually is the mean absolute error (MAE) or mean squared error
(MSE) averaged over future time points:

40 K. Madhusudhanan et al.

�mae(y′, ŷ) :=
1

|y′|
|y′|∑

t=1

1
O

||y′
t − ŷt||1, �mse(y′, ŷ) :=

1
|y′|

|y′|∑

t=1

1
O

||y′
t − ŷt||22 (2)

Furthermore, if there is only one target channel and no predictor channels
(O = 1,M = 0), the time series forecasting problem is called univariate, oth-
erwise multivariate.

4 Background

Our work incorporates restricted attention based Transformer in a U-Net
inspired architecture. For this reason, we base our work on the current state
of the art sparse attention model Informer, introduced in [35]. We provide a
brief overview of the ProbSparse attention and the Contracting ProbSparse Self-
Attention Blocks used in the Informer model for completeness.

ProbSparse Attention: The ProbSparse attention mechanism restricts the
canonical attention [30] by selecting a subset u of dominant queries from avail-
able sequence length LQ having the largest variance across all the keys. Con-
sequently, the dense query matrix Q ∈ R

LQ×d in the canonical attention is
replaced by a sparse query matrix Q ∈ R

LQ×d consisting of the u dominant
queries. ProbSparse attention can hence be defined as:

APropSparse(Q,K,V) = Softmax(
QKT

√
d

)V (3)

where d denotes the input dimension to the attention module. For more
details on the ProbSparse attention mechanism, we refer the reader to [35].

Contracting ProbSparse Self-attention Blocks: The Informer model uses
Contracting ProbSparse Self-Attention Blocks to distill out redundant informa-
tion from the long history input sequence (x, y) in a pyramid structure motivated
from the image domain [20]. The sequence of operations within a block begins
with a ProbSparse self-attention that takes as input the hidden representation
hi from the ith block and projects the hidden representation into query, key and
value for self-attention. This is followed by convolution operations (Conv1d)
[15], and finally the Max-Pooling (MaxPool) [15] operation reduces the latent
dimension by effectively distilling out redundant information at each block as
summarized in Algorithm 1. Here, ELU represents the ELU activation function
[6] and LayerNorm is the Layer Normalization operation [1]. The encoder block in
the Informer model [35] stacks multiple Contracting ProbSparse Self-Attention
Block blocks and produce multi-resolution encoder embeddings following a pyra-
mid structure.

Yformer for Far Horizon Time Series Forecasting 41

Algorithm 1. Contracting ProbSparse Self-Attention Block
Input : hi

Output : hi+1

hi+1 ← ProbSparseAttn(hi, hi)
hi+1 ← Conv1d(hi+1)
hi+1 ← LayerNorm(hi+1)
hi+1 ← MaxPool(ELU(Conv1d(hi+1)))

5 Methodology

Fig. 2. Comparison of Informer and Yformer architecture highlighting the three key
differences. (1) The Informer architecture process part of the past input data (x, y)
within the decoder as (xtoken, ytoken) along with the future predictors (x′). The Yformer
avoids this redundant reprocessing of (x, y) and uses a masked self-attention network
for embedding the only the future predictors (x′). (2) The Informer uses the final
encoder embedding as the input to the decoder. The Yformer passes a concatenated
(++) representation (ei) of the ith Y-Past and Y-Future Encoder embedding to the
I − ith layer of the Y-Decoder, forming a U-Net connection (represented in red) between
the encoder and the decoder. (3) The Yformer architecture predicts both the input
reconstruction ŷpast and future predictions ŷfut.

The Yformer model is a Y-shaped symmetric encoder-decoder architecture that
is specifically designed to take advantage of the multi-resolution embeddings
generated by the Contracting ProbSparse Self-Attention Blocks. The fundamen-
tal design consideration is the adoption of U-Net-inspired connections to extract
encoder features at multiple resolutions and provide a direct connection to the
corresponding symmetric decoder block. The Yformer additionally utilizes recon-
struction loss to learn generalized embeddings that better approximate the data

42 K. Madhusudhanan et al.

generating distribution. Figures 2a and 2b compares the Informer architecture
with the Yformer and Fig. 3 illustrates the U-Net connections employed by the
Yformer model.

The Y-Past Encoder of the Yformer is designed using a similar encoder
structure as that of the Informer (Fig. 2a). The Y-Past Encoder embeds the past
sequence (x, y) into a scalar projection along with the addition of positional and
temporal embeddings. Multiple Contracting ProbSparse Self-Attention Blocks
are used to generate encoder embeddings at various resolutions following a con-
tracting pyramid structure. The Informer model uses the final low-dimensional
embedding as the input to the decoder whereas, the Yformer retains the embed-
dings at multiple resolutions to be passed on to the decoder. This allows the
Yformer to use high-dimensional lower-level embeddings effectively.

The Y-Future Encoder of the Yformer mitigates the redundant reprocess-
ing of the past sequence (x, y) (used as tokens (xtoken, ytoken) in the Informer
architecture) by passing only the future predictors (x′) through the Y-Future
Encoder and utilizing the multi-resolution embeddings to dismiss the need for
tokens entirely. The attention blocks in the Y-Future encoder are based on a
masked canonical self-attention mechanism [30] to prevent any information leak
from the future time steps into the past. Thus, the Y-Future Encoder is designed
by stacking multiple Contracting ProbSparse Self-Attention Blocks where the
ProbSparse attention is replaced by the Masked Attention. We name these blocks
Contracting Masked Self-Attention Blocks.

The Yformer processes the past inputs and the future predictors separately
within its encoders. However, considering the time steps, the future predictors
are a continuation of the past time steps. For this reason, the Yformer model
concatenates (represented by the symbol ++) the past encoder embedding and
the future encoder embedding along the time dimension after each encoder block,
preserving the continuity between the past input time steps and the future time
steps. Let i represent the index of an encoder block, then epast

i+1 and efut
i+1 represent

the output from the past encoder and the future encoder respectively. The final
concatenated encoder embedding (ei+1) is calculated as,

epast
i+1 = ContractingProbSparseSelfAttentionBlock(epast

i)

efut
i+1 = ContractingMaskedSelfAttentionBlock(efut

i)

ei+1 = epast
i+1 ++ efut

i+1

(4)

The encoder embeddings represented by E = [e0, . . . , eI] (where I is the number
of encoder layers) contain the combination of past and future embeddings at
multiple resolutions.

The Y-Decoder of the Yformer consists of two parts. The first part takes
as input the final concatenated low-dimensional embedding (eI) of the encoders
and performs a multi-head canonical self-attention mechanism. Since the canon-
ical self-attention layer is separated from the repeating attention blocks within
the decoder, the Yformer complexity from this full attention module does not
increase with an increase in the number of decoder blocks. The U-Net archi-
tecture inspires the second part of the Y-Decoder. Consequently, the decoder is

Yformer for Far Horizon Time Series Forecasting 43

Fig. 3. U-Net connections for effectively utilizing embeddings at multiple resolutions
in the Yformer. The Y-Past Encoder embeddings and the Y-Future Encoder embed-
dings are concatenated within the Yformer encoder. A direct connection is allowed
between the contracting encoder embedding (ei) and the corresponding expanding
decoder embedding (dI−i). (++ denotes concatenation)

structured in a symmetric expanding path identical to the contracting encoder
(Fig. 3). We realize this idea by introducing Expanding ProbSparse Cross-
Attention Block for symmetric upsampling.

The Expanding ProbSparse Cross-Attention Block within the Yformer
decoder performs two tasks: (1) upsample the compressed encoder embedding
eI and (2) perform restricted cross attention between the expanding decoder
embedding dI−i and the corresponding encoder embedding ei as shown below.

Algorithm 2. Expanding ProbSparse Cross-Attention Block
Input : dI−i, ei

Output : dI−i+1

dI−i+1 ← ProbSparseCrossAttn(dI−i, ei)
dI−i+1 ← Conv1d(dI−i+1)
dI−i+1 ← LayerNorm(dI−i+1)
dI−i+1 ← ELU(ConvTranspose1d(dI−i+1)))

The Expanding ProbSparse Cross-Attention Blocks within the Yformer
decoder uses a ProbSparseCrossAttn to construct direct connections between
the lower levels of the encoder and the corresponding symmetric higher lev-
els of the decoder. Direct connections from the encoder to the decoder are an
essential component for the majority of models within the image domain. For
example, ResNet [8], and DenseNet [9] have demonstrated that direct connec-
tions between previous feature maps, strengthen feature propagation, reduce
parameters, mitigate vanishing gradients and encourage feature reuse. However,
current transformer-based architectures fail to utilize these direct connections.

44 K. Madhusudhanan et al.

We utilize ConvTranspose1d or popularly known as Deconvolution for incre-
mentally increasing the embedding space. The famous U-Net architecture uses
a symmetric expanding path using such Deconvolution layers. This property
enables the model to not only aggregate over the input but also upscale the
latent dimensions, improving the overall expressivity of the architecture. The
decoder of Yformer follows a similar strategy by employing Deconvolution to
expand the embedding space of the encoded output as shown in Fig. 3.

Finally, a fully connected layer (LinearLayer) predicts the future time steps
ŷfut from the final decoder layer (dI) and additionally reconstructs the past input
targets ŷpast for the reconstruction auxiliary loss.

[ŷpast, ŷfut] = LinearLayer(dI) (5)

The addition of reconstruction loss to the Yformer as an auxiliary loss serves
two significant purposes. Firstly, the reconstruction loss acts as a data-dependent
regularization term that reduces overfitting by learning embeddings that are
more general [11]. Secondly, the reconstruction loss helps in producing future
output in a similar distribution as the inputs. For far horizon forecasting, we are
interested in learning a future-output distribution, however, the future-output
distribution and the past-input distribution arise from the same data generat-
ing process. Therefore having an auxiliary reconstruction loss would direct the
gradients to a better approximate of the data generating process. Consequently,
the Yformer model is trained on the combined loss �,

� = α �mse(y, ŷpast) + (1 − α) �mse(y′, ŷfut) (6)

where the first term tries to learn the past targets y and the second term learns
the future targets y′. We use the reconstruction factor (α) to vary the importance
of reconstruction and future prediction and tune this as a hyperparameter.

6 Experiments

6.1 Datasets

We compare the experimental results of our proposed YFormer architecture,
with that of the Informer on three real-world public datasets.

ETTh1 and ETTh2 (Electricity Transformer Temperature1): These real-world
datasets for the electric power deployment introduced by [35] combine short-
term periodical patterns, long-term periodical patterns, long-term trends, and
irregular patterns. The data consists of load and temperature readings from two
transformers at two different stations with varying load conditions. The ETTm1
dataset is generated by splitting ETTh1 dataset into 15-minute intervals. The
dataset has six features and 70,080 data points in total. For easy comparison,
we kept the splits for train/val/test consistent with the published results in [35],

1 https://github.com/zhouhaoyi/ETDataset.

https://github.com/zhouhaoyi/ETDataset

Yformer for Far Horizon Time Series Forecasting 45

where the available 20 months of data is split as 12/4/4. For the Univariate
setting, ’OT’ (Oil Temperature) was set as the target value.

ECL (Electricity Consuming Load2): This electricity dataset represents the elec-
tricity consumption from 2011 to 2014 of 370 clients recorded in 15-minutes peri-
ods in Kilowatt (kW). We split the data into 15/3/4 months for train, validation,
and test respectively as in [35]. For the Univariate setting, ‘MT 320’ was set as
the target value.

6.2 Experimental Setup

Baseline: Our main baseline is the Informer architecture. As a second baseline,
we also compare the second-best performing model which is the Informer that
uses canonical attention module [35] represented as Informer†. Furthermore, we
also compare against DeepAR [28], and LogTrans [18] for the univariate setting,
and LSTnet [16] for the multivariate setting as they outperform the Informer
baseline for certain forecasting horizons. For a quick analysis, we present the
percent improvement achieved by the Yformer over the current best results as
the final column in Tables 1, 2.

For a fair comparison, we retain the design choices from the Informer baseline
like the history input length (T) for a particular forecast length (τ), so that any
performance improvement can exclusively be attributed to the architecture of
the Yformer model and not to an increased history input length. We performed
a grid search for learning rates of {0.001, 0.0001}, α-values of {0, 0.3, 0.5, 0.7, 1},
number of encoder and decoder blocks I = {2, 3, 4} while keeping all the other
hyperparameters the same as the Informer. Furthermore, Adam optimizer and
an early stopping criterion with a patience of three epochs was used for all
experiments. To counteract overfitting, we tried dropout with varying ratios but
interestingly found the effect to be minimal in the results. Therefore, we adopt
weight-decay for our experiments with factors {0, 0.02, 0.05} for additional regu-
larization. We select the optimal hyperparameters based on the lowest validation
loss.

For easy comparison, we choose two commonly used metrics for time series
forecasting to evaluate the Yformer architecture, the MAE and MSE in Eq. 2.
We performed our experiments on GeForce RTX 2080 Ti GPU nodes with 32
GB ram and provide results as an average of three runs. The source code3 and
optimal hyperparameter configurations are made public for reproducibility.

6.3 Results and Analysis

This section compares our results with the results reported in the Informer base-
line both in uni- and multivariate settings for the multiple datasets and horizons.
A direct comparison with the reported results [35] is possible as the experimental
setup and the problem settings are kept the same. The best-performing and the
second-best models are highlighted in bold and in underline, respectively.
2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
3 https://github.com/18kiran12/Yformer-Time-Series-Forecasting.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/18kiran12/Yformer-Time-Series-Forecasting

46 K. Madhusudhanan et al.

Table 1. Univariate results for three datasets (four cases) with different prediction
lengths τ ∈ {24, 48, 96, 168, 288, 336, 672, 720, 960}.

Methods Yformer Informer Informer† LogTrans DeepAR Improvement%

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 24 0.082 0.230 0.098 0.247 0.092 0.246 0.103 0.259 0.107 0.280 10.87 6.50

48 0.139 0.308 0.158 0.319 0.161 0.322 0.167 0.328 0.162 0.327 12.03 3.45

168 0.111 0.268 0.183 0.346 0.187 0.355 0.207 0.375 0.239 0.422 39.34 22.54

336 0.195 0.365 0.222 0.387 0.215 0.369 0.230 0.398 0.445 0.552 09.30 1.08

720 0.226 0.394 0.269 0.435 0.257 0.421 0.273 0.463 0.658 0.707 12.06 6.41

ETTh2 24 0.082 0.221 0.093 0.240 0.099 0.241 0.102 0.255 0.098 0.263 11.83 7.92

48 0.172 0.334 0.155 0.314 0.159 0.317 0.169 0.348 0.163 0.341 –10.97 –6.37

168 0.174 0.337 0.232 0.389 0.235 0.390 0.246 0.422 0.255 0.414 25.00 13.37

336 0.224 0.391 0.263 0.417 0.258 0.423 0.267 0.437 0.604 0.607 13.18 6.24

720 0.211 0.382 0.277 0.431 0.285 0.442 0.303 0.493 0.429 0.580 23.83 11.37

ETTm1 24 0.024 0.118 0.030 0.137 0.034 0.160 0.065 0.202 0.091 0.243 20.00 13.87

48 0.048 0.173 0.069 0.203 0.066 0.194 0.078 0.220 0.219 0.362 27.27 10.82

96 0.143 0.311 0.194 0.372 0.187 0.384 0.199 0.386 0.364 0.496 23.53 16.40

288 0.150 0.316 0.401 0.554 0.409 0.548 0.411 0.572 0.948 0.795 62.59 42.34

672 0.305 0.476 0.512 0.644 0.519 0.665 0.598 0.702 2.437 1.352 40.43 26.09

ECL 48 0.194 0.322 0.239 0.359 0.238 0.368 0.280 0.429 0.204 0.357 4.90 9.80

168 0.260 0.361 0.447 0.503 0.442 0.514 0.454 0.529 0.315 0.436 17.46 17.20

336 0.269 0.375 0.489 0.528 0.501 0.552 0.514 0.563 0.414 0.519 35.02 27.75

720 0.427 0.479 0.540 0.571 0.543 0.578 4.891 4.047 0.563 0.595 20.93 19.50

960 0.595 0.573 0.582 0.608 0.594 0.638 7.019 5.105 0.657 0.683 –2.23 16.11

Count 37 3 0 0 0

Average 19.82 13.62

Univariate: The proposed Yformer model is able to outperform the Informer
baseline in 37 out of the 40 available tasks across different datasets and horizons
by an average of 19.82% MSE and 13.62 % of MAE. Table 1 illustrates that
the superiority of the Yformer is not just limited to a far horizon but even for
the shorter horizons and in general across datasets. Considering the individual
datasets, the Yformer surpasses the baselines by 8, 6.8, 21.9, and 18.1% of MAE
for the ETTh1, ETTh2, ETTm1, and ECL datasets respectively. MSE results
illustrates an improvement of 16.7, 12.6, 34.8, and 15.2% for the ETTh1, ETTh2,
ETTm1, and ECL datasets respectively. We observe that the MAE for the model
is greater at horizon 48 than the MAE at horizon 168 for the ETTh1 dataset.
This may be a case where the reused hyperparameters from the Informer paper
are far from optimal for the Yformer. The other results show consistent behavior
of increasing error with increasing horizon length τ . Additionally, this behavior
is also observed in the Informer baseline for ETTh2 dataset (Table 2), where the
loss is 1.340 for horizon 336 and 1.515 for a horizon of 168.

Yformer for Far Horizon Time Series Forecasting 47

Table 2. Multivariate results for three datasets (four cases) with different prediction
lengths τ ∈ {24, 48, 96, 168, 288, 336, 672, 720, 960}.

Methods Yformer Informer Informer† LogTrans LSTnet Improvement%

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 24 0.485 0.492 0.577 0.549 0.620 0.577 0.686 0.604 1.293 0.901 15.94 10.38

48 0.530 0.537 0.685 0.625 0.692 0.671 0.766 0.757 1.456 0.960 22.63 14.08

168 0.866 0.684 0.931 0.752 0.947 0.797 1.002 0.846 1.997 1.214 06.98 09.04

336 1.041 0.803 1.128 0.873 1.094 0.813 1.362 0.952 2.655 1.369 04.84 01.23

720 1.098 0.803 1.215 0.896 1.241 0.917 1.397 1.291 2.143 1.380 09.63 10.38

ETTh2 24 0.412 0.498 0.720 0.665 0.753 0.727 0.828 0.750 2.742 1.457 42.78 25.11

48 1.171 0.865 1.457 1.001 1.461 1.077 1.806 1.034 3.567 1.687 19.63 13.59

168 2.171 1.218 3.489 1.515 3.485 1.612 4.070 1.681 3.242 2.513 33.04 19.60

336 2.260 1.283 2.723 1.340 2.626 1.285 3.875 1.763 2.544 2.591 11.16 0.16

720 2.595 1.337 3.467 1.473 3.548 1.495 3.913 1.552 4.625 3.709 25.15 9.23

ETTm1 24 0.289 0.363 0.323 0.369 0.306 0.371 0.419 0.412 1.968 1.170 05.56 1.63

48 0.486 0.457 0.494 0.503 0.465 0.470 0.507 0.583 1.999 1.215 –4.52 2.77

96 0.569 0.567 0.678 0.614 0.681 0.612 0.768 0.792 2.762 1.542 16.08 7.35

288 0.649 0.593 1.056 0.786 1.162 0.879 1.462 1.320 1.257 2.076 38.54 24.55

672 0.772 0.656 1.192 0.926 1.231 1.103 1.669 1.461 1.917 2.941 35.23 29.16

ECL 48 0.306 0.390 0.344 0.393 0.334 0.399 0.355 0.418 0.369 0.445 08.38 0.76

168 0.317 0.387 0.368 0.424 0.353 0.420 0.368 0.432 0.394 0.476 10.20 7.86

336 0.323 0.394 0.381 0.431 0.381 0.439 0.373 0.439 0.419 0.477 15.22 8.58

720 0.312 0.384 0.406 0.443 0.391 0.438 0.409 0.454 0.556 0.565 20.20 12.33

960 0.315 0.388 0.460 0.548 0.492 0.550 0.477 0.589 0.605 0.599 31.52 29.20

Count 39 0 1 0 0

Average 18.41 11.85

Multivariate: We observe a similar trend in the multivariate setting. Here the
Yformer model outperforms the baseline method in almost all of the 40 tasks
across the three datasets by a margin of 18.41 % MSE and 11.85% of MAE. There
is a clear superiority of the proposed approach, especially for the longer hori-
zons. Across the different datasets, the Yformer improves on the baseline results
by 9, 13.5, 13.1, and 11.7% of MAE, and 12, 26.3, 13.9, and 17.1% of MSE for
the ETTh1, ETTh2, ETTm1, and ECL datasets respectively. We attribute the
improvement in performance to superior architecture and the ability to approx-
imate the data distribution due to the addition of auxiliary loss.

7 Ablation Study

Additional experiments were performed on the ETTm1 datasets to analyze the
different components of the Yformer model. Similar ablation experiment results
for ETTh2 dataset are reported in the Appendix section for reference.

48 K. Madhusudhanan et al.

7.1 Y-Former Architecture

In this section, we attempt to understand (1) the improvement brought about
by the Y-shaped model architecture, and (2) the impact of the reconstruction
loss on the superiority of the Yformer model. Firstly, Fig. 5c compares the model
complexity for the proposed Yformer model with the Informer baseline model
and demonstrates the advantage offered by the Yformer model for longer hori-
zons. Secondly, Figs. 4a, 4b, show that the Yformer architecture performs better
or is comparable to the Informer throughout the entire horizon range. Moreover,
for the larger horizons, the Yformer architecture without the reconstruction loss
i.e. α = 0, has a clear advantage over the Informer baseline. We attribute this
improvement in performance to the additional direct U-Net inspired connec-
tions within the Yformer architecture. Using feature maps at multiple resolutions
offers a clear advantage by eliminating vanishing gradients and encouraging fea-
ture reuse. Figures 4a, 4b also clearly delineates the advantage offered by adding
reconstruction loss as an auxiliary task for the model, by comparing Yformer
with Yformer (α = 0) results. Such a multi-task approach offers regularization
to the model by learning parameters that do not overfit on the future target
distribution and propels the gradients towards a general distribution that can
predict the history along with the future time steps.

7.2 Effectiveness of the U-Net Based Skip Connections

To analyze the impact of U-Net based skip-connections, we conduct an ablation
study on the Y-former architecture by removing the U-Net skip connections
from the encoder to the decoder. We denote this model as Yformer∗. Figures 4c,
4d provides a summary of the results obtained after hyperparameter tuning the
Yformer∗ and comparing it with the proposed Yformer model. The skip con-
nections from the encoder to the decoder improve the performance throughout
the entire horizon range for the multivariate setting and offers partial improve-
ment for the univariate setting. Within the multivariate setting, the skip connec-
tions have a considerable impact on larger horizons and a smaller impact on the
shorter horizons. This observation can be reasoned by considering the fact that
long-range forecasting can utilize the additional multi-resolution encoder fea-
ture maps encoded by the U-Net based skip connections. Similar reason can be
applied to the fact that U-Net based skip connections improve the performance
of the multivariate setting more than that of the univariate settings.

Yformer for Far Horizon Time Series Forecasting 49

Fig. 4. (top) Figs. 4a, 4b illustrates the reduction in MAE loss (y-axis) by the Yformer
architecture in comparison with the Informer baseline for the univariate and multi-
variate settings respectively. The Yformer (α = 0) represent the Yformer architecture
without the reconstruction loss. (bottom) Figs. 4c, 4d demonstrate the reduction in
MAE loss (y-axis) brought by the addition of U-Net based skip connections (Yformer)
to the Yformer architecture without the skip connections (Yformer∗).

7.3 Reconstruction Factor

How impactful is the reconstruction factor α from the proposed loss in Eq. 6?
We aggregated the optimal value chosen by hyperparameter tuning α across
different datasets and summarized the distribution in Figs. 5a and 5b. Interest-
ingly, α value of 0.7 is the predominant optimal setting across most horizons.
Consequently, this shows that a high weight for the reconstruction loss helps
the Yformer to achieve a lower loss for the future targets. Moreover, we can
observe a trend that α is on average larger for short forecasting horizons signify-
ing the importance of auxiliary loss for the shorter horizons. One possible reason
could be that the reconstruction loss generalizes the output distribution better
and avoids overfitting on short-horizon lengths. For the longer horizon forecasts,
optimal α values are distributed on the lower and upper range of α’s evenly,
indicating that for long horizons, the reconstruction loss from long history helps
for some datasets and does not for other datasets. This could be a characteristic
of the dataset having a domain shift within the forecast horizon.

50 K. Madhusudhanan et al.

Fig. 5. Figures 5a and 5b illustrates the distribution of selected Reconstruction factor
(y-axis) across the multiple horizons (x-axis). Figure 5c, compares the model size com-
plexity (y-axis) for the multivariate setting across the multiple horizons (x-axis) for
the Informer and the Yformer model.

8 Conclusion

Time series forecasting is an important business and research problem that has
a broad impact in today’s world. This paper proposes a novel Y-shaped archi-
tecture, specifically designed for the far horizon time series forecasting problem.
The study shows the importance of direct connections from the multi-resolution
encoder to the decoder and reconstruction loss for the task of time series forecast-
ing. The Yformer couples the U-Net architecture from the image segmentation
domain on a sparse transformer model and empirically demonstrates superior
performance across multiple datasets for both univariate and multivariate set-
tings. We believe that our work provides a base for future research in the direction
of using efficient U-Net based skip connections and the use of reconstruction loss
as an auxiliary loss within the time series forecasting community.

Acknowledgements. This work was supported by the Federal Ministry for Economic
Affairs and Climate Action (BMWK), Germany, within the framework of the IIP-
Ecosphere project (project number: 01MK20006D).

References

1. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR (2016)
2. Box, G.E.P., Jenkins, G.M.: Some recent advances in forecasting and control. Jour-

nal of the Royal Statistical Society. Series C (Appl. Stat.) 17, 91–109 (1968)
3. Camacho, E.F., Alba, C.B.: Model Predictive Control. Springer, Heidelberg (2013)
4. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent

imputation for time series. In: NeurIPS (2018)
5. Cirstea, R.G., Guo, C., Yang, B., Kieu, T., Dong, X., Pan, S.: Triformer: Triangu-

lar, variable-specific attentions for long sequence multivariate time series forecast-
ing. In: IJCAI (2022)

6. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (ELUS). In: ICLR (2016)

Yformer for Far Horizon Time Series Forecasting 51

7. Fan, C., et al.: Multi-horizon time series forecasting with temporal attention learn-
ing. In: SIGKDD (2019)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

10. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. In:
OTexts (2018)

11. Jarrett, D., van der Schaar, M.: Target-embedding autoencoders for supervised
representation learning. In: ICLR (2020)

12. Jawed, S., Rashed, A., Schmidt-Thieme, L.: Multi-step forecasting via multi-task
learning. In: IEEE Big Data (2019)

13. Kieu, T., Yang, B., Guo, C., S. Jensen, C.: Outlier detection for time series with
recurrent autoencoder ensembles. In: IJCAI (2019)

14. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer. In: ICLR
(2020)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NeurIPS (2012)

16. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal
patterns with deep neural networks. In: SIGIR (2018)

17. Le, L., Patterson, A., White, M.: Supervised autoencoders: Improving generaliza-
tion performance with unsupervised regularizers. In: NeurIPS (2018)

18. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of trans-
former on time series forecasting. In: NeurIPS (2019)

19. Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for inter-
pretable multi-horizon time series forecasting. Int. J. Forecast. 37, 1748–1764
(2021)

20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR (2017)

21. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis
expansion analysis for interpretable time series forecasting. In: ICLR (2020)

22. Perslev, M., Jensen, M., Darkner, S., Jennum, P.J., Igel, C.: U-time: a fully convo-
lutional network for time series segmentation applied to sleep staging. In: NeurIPS
(2019)

23. Petit, O., Thome, N., Rambour, C., Themyr, L., Collins, T., Soler, L.: U-net trans-
former: self and cross attention for medical image segmentation. In: International
Workshop on MLMI (2021)

24. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage
attention-based recurrent neural network for time series prediction. In: IJCAI
(2017)

25. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski,
T.: Deep state space models for time series forecasting. In: NeurIPS (2018)

26. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

27. Sagheer, A., Kotb, M.: Time series forecasting of petroleum production using deep
lstm recurrent networks. Neurocomputing 323, 203–213 (2019)

28. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: Probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191
(2020)

https://doi.org/10.1007/978-3-319-24574-4_28

52 K. Madhusudhanan et al.

29. Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M.: Financial time series forecasting
with deep learning: a systematic literature review: 2005–2019. Appl. Soft Comput.
90 106181(2020)

30. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
31. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with

linear complexity. ArXiv (2020)
32. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation.

In: CVPR (2019)
33. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep

neural networks: a strong baseline. In: IJCNN (2017)
34. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with

auto-correlation for long-term series forecasting. In: NeurIPS (2021)
35. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series

forecasting. In: AAAI (2021)
36. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved

transformer for volumetric segmentation. ArXiv (2021)
37. Zou, X., Wang, Z., Li, Q., Sheng, W.: Integration of residual network and convo-

lutional neural network along with various activation functions and global pooling
for time series classification. Neurocomputing 367, 39–45 (2019)

Learning Perceptual Position-Aware
Shapelets for Time Series Classification

Xuan-May Le1, Minh-Tuan Tran2, and Van-Nam Huynh1(B)

1 School of Knowledge Science, Japan Advanced Institute of Science and Technology,
Nomi, Japan

{xuanmay,huynh}@jaist.ac.jp
2 School of Computing, Korea Advanced Institute of Science and Technology,

Daejeon, Korea
tmtuan@kaist.ac.kr

Abstract. Shapelets are time series subsequences that effectively dis-
tinguish time series classes. Recently, time series classifiers based on
shapelets have gained interest from the community thanks to their high
accuracy and interpretable results. However, these shapelet-based meth-
ods still have some problems in both shapelet initialization and learning
shapelet phases that limit their performances. In this paper, we propose a
novel shapelet-based classifier, called Perceptual Position-aware Shapelet
Network (PPSN), to effectively discover and optimize the shapelets. Our
method effectively utilizes the perceptually important points to extract
a small number of high-quality shapelet candidates and leverages the
position-aware subsequence distance for evaluating these candidates. In
the learning shapelet phase, our model applied the fixed normalization
on each shapelet’s transformed values to address the negative impact
of their different value ranges. It also uses the stop-gradient connec-
tion in the first few epochs to reduce the unwelcome effect of the non-
optimal weights of the final linear layer. Experimental results on 112
UCR datasets demonstrate that our model is state-of-the-art compared
to existing non-ensemble methods and competitive with the current most
accurate classifier, HIVE-COTE 2.0, while retaining the advantage of low
computational time and the power of interpretation.

Keywords: Time series classification · Shapelet discovery · Efficiency

1 Introduction

Time series classification (TSC) has been receiving a great attention from the
research community due to its importance in many real-world applications.
In 2009, Ye et al. [1] introduced a novel concept of shapelets for TSC. Intu-
itively, shapelets are time series subsequences that can effectively discriminate
the classes. It has been demonstrated to be a superb success in leveraging
for TSC tasks since various classes are generally recognized by local patterns

X.-M. Le and M.-T. Tran—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 53–69, 2023.
https://doi.org/10.1007/978-3-031-26422-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_4

54 X.-M. Le et al.

rather than global structures. Furthermore, shapelet-based approaches can con-
vey interpretable results. Two first shapelet-based classifiers searched all possible
shapelet candidates from the dataset and selected the final shapelets by their
information gain. After that, they build the shapelet decision tree with the opti-
mal shapelet at each of their nodes [1] or transform a target time series by
its distance to shapelets and then leverage several standard methods to clas-
sify transform values instead of the original time series [6]. On the other hand,
shapelets and learning algorithms have been integrated into recent research [2–4]
to directly train shapelets that can identify time series of distinct classes.

In general, almost the shapelet-based classifiers contain two main phases:
(i) shapelet initialization phase that discovers shapelet candidates from training
time series and then selects the final shapelets by using quality evaluations like
information gain, Kruskal-Wallis statistic or F-statistic; (ii) learning shapelet
phase that optimizes shapelets through a gradient descent algorithm with the
neural network model. Nevertheless, there are shortcomings in both phases of
the existing shapelet-based methods.

In the shapelet initialization phase, the first shapelet-based methods [1,6]
use a so-called Full Extractor to find all possible shapelet candidates and then
utilize the Euclidean Distance to define the distance between the shapelet can-
didates and the target time series, it yields a good performance while suffering
from high computational complexity. To avoid this problem, in [2], the authors
proposed to use the Fixed-Length Extractor that only draws out all the can-
didates of the same length. Then, they apply k-Mean for clustering these can-
didates and use the k-Mean centroids as initial shapelets. However, this means
that the shapelet length must be fixed while there can be shapelets of different
lengths in the dataset. Recently, several attempts have been made to shorten the
time for the process of shapelet extractor and automatically tune cumbersome
parameters (e.g., the number and length of shapelets) by exploiting piecewise
aggregate approximation (PAA), potentially resulting in loss of detailed data
characteristics [5,7,8]. On the other hand, leveraging Euclidean Distance to cal-
culate subsequence distance between shapelet candidates and original long time
series instances takes significant time and inadvertently ignores the position of
shapelets.

In the learning shapelet phase, the previous methods learn directly from
the subsequence distances (transformed values) of shapelets and target time
series. However, this makes the model challenging to train and converge when
some shapelets give an extremely high values, and others provide values that are
considered small. On the other hand, during the first training epochs, the linear
layer in the final network usually generates very unsatisfactory predictions due
to its non-optimal weights. Both problems may limit the model’s performance.

In this paper, we propose a novel method called the Perceptual Position-
aware Shapelets Network (PPSN) for time series classification in order to tackle
the aforementioned issues. In the shapelet initialization phase, we construct
a perceptual shapelet extractor that automatically extracts a few prominent
shapelet candidates by using three consecutive important points. Next, we use

Learning Perceptual Position-Aware Shapelets for Time Series Classification 55

position-aware subsequence distance for shapelet evaluation, which calculates the
distance of the shapelet candidate and its corresponding time series by leverag-
ing its position information rather than comparing it with the entire original
time series, leading to both achieving better performance and reducing the com-
putation time. Finally, high-quality shapelets with various lengths are retained
effectively. In the learning shapelet phase, our model applied the fixed normal-
ization on each shapelet’s transformed values to address the negative impact of
their different value ranges. Furthermore, the proposed method uses the stop-
gradient connection in the first few epochs (stop-gradient epochs) to reduce the
unwelcome effect of the non-optimal weights of the final linear layer.

Our contributions can be summarized as follows: (i) We propose the novel
shapelet-based approach, PPSN, that combines the effective shapelet extractor
and effectively applies position information to calculate subsequence distance;
(ii) We also introduce the fixed normalization and stop-gradient epochs tech-
niques that increase the model’s accuracy; (iii) Extensive experiments on 112
UCR datasets show that our PPSN achieves state-of-the-art performance to
non-ensemble methods while still having the power of interpretation and low
computational time.

2 Relative Works

2.1 State-of-the-Art Time Series Classifiers

During the late decades, numerous algorithms have been developed for TSC,
among them the ensemble-based and feature-based methods are currently the
state-of-the-art. Some popular ensemble-based methods include HIVE-COTE
[13] and the most accurate TSC model, HIVE-COTE 2.0 [12], that combine
four highly different classifiers, each of which is designed to capture a separate
discriminatory feature. InceptionTime [16] is the best deep learning model for
TSC. It is proposed to reduce the variance of the sub-model by using an ensem-
ble of five Inception-based convolutional neural networks. On the other hand,
many feature-based methods have been demonstrated to be successful in the
task. Specifically, ROCKET [11] feeds the target time series into convolutional
kernels and then classifies their transformed features by a simple linear classi-
fier, e.g. ridge regression. MiniRocket [14] is a reformulated version of ROCKET,
which makes a few adjustments in their kernels and highly optimizes the con-
volutional process. Thus, MiniROCKET achieves the state-of-the-art compared
to non-ensemble classifiers. Shapelet-based classifiers [1,6] are also the feature-
based approaches. However, since essential local patterns (shapelets) obtained
from original time series are employed to designate their class, shapelet-based
approaches can deliver more interpretable decisions.

2.2 Perceptually Important Points

Perceptually Important Points (PIPs) method was first proposed [9] in order
to extract important points from a price series. PIPs are then mainly used in

56 X.-M. Le et al.

time series data mining for many tasks such as data representation or dimension
reduction. Assume we have a time series T = [t1, ..., tn], where k is the number
of salient points to be extracted. To begin, we create a list of PIPs (PIPs =
[1, n]) with the first and last indexes of T . The maximum Perpendicular Distance
(PD) from the line created from two preceding elements added to PIPs is then
determined by recursively finding the index in T with the highest PD. Equation 1
is used to compute the PD between one position pos and PIPs.

PD(pos, PIPs) =
a ∗ Ppos − Tpos + c√

a2 + 1
(1)

where, a = Te−Ts

Pe−Ps
, c = Te−a∗Pe and P = z norm([1, ..., n]) is a z-normalized list

of positions. In which, given g where 1 ≤ g ≤ k and PIPsg < pos < PIPsg+1,
define s = PIPsg and e = PIPsg+1. The Fig. 1 shows an example of finding the
first six PIPs from the target time series.

New PIP
Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 1. The process of extracting first 6 PIPs. In that, PD is calculated by Eq. 1.

3 Preliminaries

In this section, we provide all of the essential definitions and notations.

Definition 1. Time Series. A time series T is a sequence of real numbers col-
lected at regular intervals over a period of time: T = [t1, .., tn], where n ∈ N is
length of T .

Definition 2. Time Series Dataset. A time series dataset D consists of m time
series: D = [T1, ..., Tm], where Ti is the i − th time series in D with Yi is label
of Ti. Note that, Yi ∈ Y is label of dataset and |Y | is indicated as number of
classes in dataset D.

Definition 3. Subsequence. Given a time series T of length n, a time series
subsequence Ti,i+l−1 = [ti, ..., ti+l−1] is a consecutive subsequence of time series
T , where i is a starting position and l is length of S with l ≤ n.

Definition 4. Time Series Distance Measure. Time series distance measure is
a crucial function for determining the similarity of two time series.

Complexity Invariant Distance. Complexity Invariant Distance (CID) [17]
is motivated on the notion that complex time series are frequently seen to be

Learning Perceptual Position-Aware Shapelets for Time Series Classification 57

more comparable to simple time series than to other complex time series. The

complexity-invariant estimate, CI(Q) =
√∑n−1

i=1 (qi+1 − ci)2, is used to calculate
the CID of Q and C as follows:

CID(Q,C) = ED(Q,C) ∗ max(CI(Q), CI(C))
min(CI(Q), CI(C)

, (2)

where ED is Euclidean Distance:

ED(Q,C) =

√√√√
n∑

i=1

(qi − ci)2 (3)

Definition 5. Subsequence Distance (SubDist). Given a time series T =
[t1, ..., tn] of length n, and a subsequence Si = [si

1, ..., s
i
l] of length l, with l ≤ n,

the subsequence distance of T and Si (SubDist) is determined as:

SubDist(T, Si) =
n−l+1
min
j=1

(
ED(Tj,j+l−1, S

i)
)

(4)

In this work, we utilize the CID to calculate the SubDist between T and Si,
called CID SubDist, the formulation for determining CID SubDist is given by:

CID SubDist(T, Si) =
n−l+1
min
j=1

(
CID(Tj,j+l−1, S

i)
)

(5)

Definition 6. Information Gain (Infogain). Given a time series dataset D with
two labels A and B, where p(A) and p(B) represent the percentage of instances
in each class. Given a split strategy sp that divides D into two sub-datasets D1
and D2. This splitting’s information gain is determined as follows:

IG(sp) = E(D) −
(|D1|

|D| E(D1) +
|D2|
|D| E(D2)

)
(6)

where |D| denotes the number of instances in dataset D, and E(D) denotes the
entropy of D, which is calculated as follows:

E(D) = −p(A)log(p(A)) − p(B)log(p(B)) (7)

Definition 7. Optimal Split Point (OSP). Give time series dataset D and a
subsequence Si, we first compute SubDist between Si and all instances of D,
and then sort the distance collection. For separating D into D1 and D2, we pick
certain distance thresholds dt. For instance, SubDist(Si, Ti) ≤ dt if Ti ∈ D1,
while SubDist(Si, Ti) > dt if Ti ∈ D2. An Optimal Split Point (OSP), OSP(Si),
is a set of thresholds with the best information gain when compared to other
thresholds d∗

t .
IG(Si, OSP (Si)) ≥ IG(Si, d∗

t) (8)

58 X.-M. Le et al.

Time Series Dataset

Shapelet Candidates

Selected
Shapelets

Perceptual
Shapelet
Extractor

Shapelet
Evaluating

with
Position-

aware
SubDist

Normalization

Re
LU

Li
ne

ar
 L

ay
er

Learning Shapelet Network

So
ft

m
ax

Classification Head

Position-
aware

Shapelet
Transform

Fi
xe

d
N

or
m

al
iza

tio
n

Fig. 2. General Architecture of Perceptual Position-aware Shapelet Network.

Definition 8. Shapelet. Given a shapelet candidate Si of class Yi with its cor-
responding OSP (Si). It is considered as a shapelet when it has the highest infor-
mation gain compared to any other candidates S∗.

IG(Si, OSP (Si)) ≥ IG(S∗, OSP (S∗)) (9)

As a result, it can discriminate a class Yi from other classes Y \{Yi}.
Definition 9. Soft-minimum Function. Arcoding to [2], the minimum functions
in 4 and 5 are not differentiable. We therefore use the soft-minimum function
instead of original minimum function. Given a time series T of length n, and a
shapelet Si of length l. The CID SubDist of T and Si is calculated as Eq. 10. In
that, when α → ∞ the soft-minimum approaches the true minimum.

CID SubDist(T, Si) =
∑n−l+1

i=1 CIDi,le
αCIDi,l

∑n−l+1
i=1 eαCIDi,l

(10)

where, CIDi,l = CID(Ti,i+l−1, S
i)

4 Perceptual Position-Aware Shapelet Network

In this section, we propose the novel Perceptual Position-aware Shapelet Net-
work (PPSN). Specifically, our method uses the Perceptually Important Points
to extract the shapelet candidates (Perceptual Shapelet Extractor at Sect. 4.1)
and leverages the position information on calculating SubDist (Position-aware
SubDist at Sect. 4.2) for evaluating these shapelet candidates. Then, we also
introduce two techniques for better classifying, namely Fixed Normalization
(Sect. 4.3) and Stop-Gradient Epochs (Sect. 4.3). The general architecture of
PPSN is shown in Fig. 2.

Learning Perceptual Position-Aware Shapelets for Time Series Classification 59

Time series PAA
Ground truth shapelets Extracted shapelets

PIP

(a) Time Series (c) PAA-based Extractor

(b) Fixed-Length Extractor (l=52) (d) Perceptual Shapelet Extractor

l=52
l=37

l=52

Fig. 3. Shapelets in beef dataset selected
by compared extractors. Ground truths
are the most infogain shapelets.

Time series Shapelets

Time series
of Class A

Time series
of Class B

Fig. 4. Two classes in CinCECGTorso
dataset have a same shapelet in different
positions.

Table 1. Average information gains of PSE with different number of continuous PIPs
on 10 first UCR datasets.

Number of continuous PIPs 2 3 (Default) 4 5 Full extractor

Avg. Information Gain 0.501 0.631 0.601 0.581 0.652

4.1 Perceptual Shapelet Extractor

Extracting shapelet candidates is the most critical component of shapelet-based
classifiers. From that, the high-quality shapelets can increase the model’s perfor-
mance [5,7]. However, the current extractors have their own problems. The Full
Extractor used in [1,6], for instance, draws out all possible candidates from the
dataset that can provide the highest quality after evaluation, but its complex-
ity is the significant problem. To avoid the problem, Fixed-Length Extractor [2]
draws out the same length l candidates. However, the method requires the length
of shapelet as its parameter, while finding the optimal fixed length is challenging.
Furthermore, time series often has shapelets with various lengths; therefore, con-
straining shapelets’ length can hurt the accuracy. For instance, the most infogain
Fixed-Length Extractor (with l = 52) cannot draw out the shapelets that per-
fectly cover the second ground truth of length 37. Note that, the ground truths
are the most infogain shapelets extracted by Full Extractor. [5,7,8] proposed to
use the PAA-based extractor to reduce the complexity. However, this may make
the methods suffer from the loss of detailed data characteristics. In Fig. 3(c) the
extracted shapelet is bigger on both sides compared to the ground truths since
they only use the reduced-information segments.

We propose to use Perceptual Shapelet Extractor (PSE), which leverages
the PIPs to efficiently pick out the high-quality shapelet candidates of various
lengths. We conduct the experiment in Table 1 to show that 3 continuous PIPs
provide the highest infogain which is close to Full Extractor’s score (0.631 com-
pared to 0.652). The Algorithm 1 shows the pseudo-code of PSE. Specifically,
with each new extracted PIPs, p, three new possible candidates are checked and
added into the candidate pool if they exist (Line 9 → 15). Figure 3(d) demon-
strates that our PSE can extract perfectly similar shapelets with ground truths.

60 X.-M. Le et al.

Algorithm 1. Perceptual Shapelet Extractor

Input: Time series data set: D = [T1, ..., Tm], number of important points: k, and
n is length of all time series in D
Output: Shapelet candidates set SCs, candidates’ start position set SC start pos,
and candidates’ end position set SC end pos
01: SCs = SCs start pos = SCs end pos = []
02: for i = 1 to |D| do
03:

∣
∣ PIPs = [1, n]

04:
∣
∣ for j = 1 to k - 2 do

05:
∣
∣

∣
∣ Find p from 1 to n with max PD(Ti[pos], P IPs) where p /∈ PIPs

06:
∣
∣

∣
∣ PIPs.append(p)

07:
∣
∣

∣
∣ PIPs.sort()

08:
∣
∣

∣
∣ for z = 0 to 2 do

09:
∣
∣

∣
∣

∣
∣ # Check if the candidate is valid, if yes add it into SCs

10:
∣
∣

∣
∣

∣
∣ if p − z ≥ 1 and p + 2 − z ≤ |PIPs| then

11:
∣
∣

∣
∣

∣
∣

∣
∣ start pos = PIPs[p − z], end pos = PIPs[p + 2 − z]

12:
∣
∣

∣
∣

∣
∣

∣
∣ SCs.append(Ti[start pos : end pos])

13:
∣
∣

∣
∣

∣
∣

∣
∣ SCs start pos.append(start pos)

14:
∣
∣

∣
∣

∣
∣

∣
∣ SCs end pos.append(end pos)

15: return SCs, SCs start pos, SCs end pos

4.2 Position-Aware Sub-Distance for Shapelet Evaluating

Position-Aware Sub-Distance (PSD). Subsequence distance (SubDist) is
the distance of shapelet and the best matching location in the time series
instance. Typically, ED is used to calculate the SubDist of the shapelet can-
didate to the entire target time series, which ignores the position information of
the shapelet. As a result, it significantly elevates their computing cost and ren-
ders them susceptible when the major difference between time series of various
classes is the location of the shapelet. In Fig. 4, two first time series belong to
the same class A, and two last ones come to class B. Obviously, four time series
share a similar subsequence, but differ in their occurrence position. To address
this issue, we use a Position-aware SubDist (PSD), which only computes the
SubDist between the shapelet and the subsequence in target time series with
the original position of the shapelet, but enlarges on both sides with a window
size w. Given time series T of length n, shapelet Si with its start position si

and end position ei, and window size w. The Position-aware SubDist (PSD) of
T and Si is calculated as Eq. 11. Note that, instead of ED, we use the CID for
the SubDist (as Eq. 5).

PSD(T, Si) = CID SubDist(T [s posi : e posi], Si), (11)

s posi =

{
si − w + 1, si − w + 1 ≥ 1
1, otherwise

; e posi =

{
ei + w, ei + w ≤ n

n, otherwise

Learning Perceptual Position-Aware Shapelets for Time Series Classification 61

Fig. 5. (a,b) The changing of shapelets after 1, 20 and
100 epochs. (c) Average accuracies over 5 runs in Beef
dataset of compared methods.

Fig. 6. Average accuracies
over 5 runs in Beef dataset
of compared methods.

Shapelet Evaluating with PSD. Given the shapelet candidates set SCs =
[S1, ..., Sc], we find OSP of them with PSD between each Si and all instances
of D. Then, the top highest infogain g shapelet candidates are considered as
selected shapelets S = [Si, ..., Sg]. Given S∗ is any instance in SCs\S.

IG(Si, OSP (Si)) ≥ IG(S∗, OSP (S∗))

4.3 Learning Shapelet Network

The ground truth shapelets have better discriminant capabilities that may
not occur in the training time series instance. In this module, we use the
set of selected shapelets as the learnable parameters and try to optimize it
by the learning shapelet network. The model includes four modules: Position-
aware Shapelet Transform, Fixed Normalization, Classification Head, and Stop-
Gradient Epochs.

Position-Aware Shapelet Transform. With the utility of PSD mentioned
at Sect. 4.2, our method transforms the time series by the PSD (Eq. 11) instead
of original SubDist. Given the set of shapelet S = [Si, ..., Sg] and the input time
series T . The transformed vector, Z = [Zi, ..., Zg] of T is computed as follows:

Zi = PSD(T, Si), ∀i ∈ [1, .., g] (12)

Fixed Normalization. Each shapelet has a different OSP to classify its class
and others. This makes the shapelet generate the different ranges of SubDist val-
ues. Consequently, it makes the model challenging to train and converge when
some shapelets generate extremely high SubDist values, and others provide sig-
nificantly small values. We proposed the fixed normalization on each shapelet’s
transformed values to address this problem. Given the vector of transformed
Position-ware SubDist of Shapelet Si over a mini-batch: B = [Z1

i , ..., Zb
i] with

62 X.-M. Le et al.

b is number of time series instances in the batch. The normalization vector
B̄ = [Z̄1

i , ..., Z̄b
i] of Zi is calculated as follows:

Z̄j
i = 1 − Zj

i

σ
, ∀j ∈ [1, .., b] (13)

where σ = max(σ,max(Zi)) is the learned parameter. Unlike batch normaliza-
tion, σ is only updated on the first epoch. In Fig. 5, by stopping the σ update, the
shapelets of PPSN with fixed normalization are not changing excessively, while
its accuracies are higher than that of batch normalization. It demonstrates the
utility of fixed normalization.

Classification Head. After normalizing the transform value, we use the sim-
ple neural network containing a ReLU activation and a single Linear Layer to
optimize the shapelets. Softmax function is then used for calculating the pre-
dicted label. Given the normalization vector V = [V1, ..., Vg], the predicted label
ŷ = [ŷ1, ..., ŷ|Y |] is predicted as follows:

hi = Wi,0 +
g∑

j=1

Wi,jReLU(Vj), ∀i ∈ [1, .., |Y |] (14)

ŷi =
ehi

∑|Y |
j=1 ehj

, ∀i ∈ [1, .., |Y |] (15)

where Wi,j and Wi,0 denote the weights and bias of Linear Layer respectively, and
ReLU is the activation function computed as follows: ReLU(Vj) = max(0, Vj).
We use the cross-entropy loss function for this model:

Loss = −
|Y |∑
i=1

yi ∗ log(ŷi) (16)

Stop-Gradient Epochs. Our Perceptual Shapelet Extractor provides very
high-quality shapelets for classifying time series. However, during the first train-
ing epochs, the linear layer in the final network usually generates very unsat-
isfactory predictions due to its non-optimal weights. Therefore, we apply the
stop-gradient epochs for our model in which the shapelet is not updated. As can
be seen in Fig. 6, PPSN without SGE has a significant drop in validation accu-
racies in the first few epochs, it makes the gap of the model far bigger than that
of PPSN with SGE. That demonstrates the negative impact on the accuracy of
non-optimal weights and the benefit of stop-gradient epochs.

5 Experimental Results

In this work, we follow to [12] perform experiments on 112 datasets UCR Time
Series Archive [10] in the original train/test split (which does not include unequal

Learning Perceptual Position-Aware Shapelets for Time Series Classification 63

Fig. 7. Critical different diagram shows the average ranks of PPSN and 6 shapelet-
based methods on 85 UCR Dataset. Solid lines indicate the group in which there is no
significant difference (p-value > 0.05)

length and missing values datasets). They vary by the dataset types, number of
classes, number of instances, and time series lengths.

To compare multiple classifiers on multiple datasets, we follow the recommen-
dation in [11] and report the result on a critical different diagram that contains
average ranks instead of error rates. A black horizontal line connects methods
whose pairwise classification accuracy difference is not statistically significant
using a two-sided Wilcoxon signed-rank test (α = 5%). Holm correction is used
as the post-hoc test to the Friedman test [11] for all comparison.

In order to reproduce our experiments, we built a website1 containing all
results on 112 UCR datasets and the source code.

5.1 Hyperparameter Setting

The number of Stop-Gradient Epochs and PIPs are fixed at 1 and 0.3 of
time series length, respectively. The number of shapelets g is searched over
{0.1, 0.2, 0.5, 1, 2, 5, 10} of time series length. We use the simple heuristic app-
roach for searching the window size w from {5, 10, 20, 30, 50, 100, 200}. In that,
with each number of shapelets g, we calculate information gain for shapelet can-
didates for all w ∈ {5, 10, 20, 30, 50, 100, 200}. We then choose the window size
w, which has the highest average information gain of top g selected shapelets.
From that, PPSN has only one parameter g that needs to tune.

We conduct the experiments on Pytorch and use the AdamW optimizer with
learning rate at 0.01 and momentum at 0.9. For all datasets, we use the Smooth-
ing Label at 0.1, and the Batch size depends on the size of datasets. Specifically,
the batch size is chosen from {16, 32, 64, 128, 256} if the number of training
instances is higher than {0, 100, 200, 400, 800}, respectively. For example, if the
number of training instances is 500, the batch size is then set at 128.

5.2 Compared with Shapelet Methods

In this section, we conduct the experiment to compare our PPSN with 6 state-
of-the-art shapelet-based classifiers, including Learning Time Series Shapelet
(LTS) [2], Shapelet Transform (ST) [6], Fast Shapelet (FS) [8], BSPCOVER [7],

1 https://github.com/xuanmay2701/ppsn.

https://github.com/xuanmay2701/ppsn

64 X.-M. Le et al.

Fig. 8. Scatter charts compare the accuracy of our PPSN and ADSN, ELIS++, and
MiniRocket. Each point represents the accuracy over dataset. We only conduct the
comparison on the datasets they reported (85, 35, and 109 datasets for ADSN, ELIS++,
and MiniRocket, respectively)

Triple-Shapelet Network (TSN) [3] and Adversarial Dynamic Shapelet Network
(ADSN) [4]. We follow the protocol in [3,4,7], we only report the result on
85 UCR datasets. We do not compare to ELIS++ [5] since they only provide
the results on 35/85 datasets. Figure 7 shows the critical different diagram for
comparing our model and baseline classifiers. It is clear that our PPSN achieves
the highest rank and significantly outperforms all other shapelet-based classifiers.
We also provide a pair-wise comparison with ADSN in Fig. 8(a) and the ELIS++
[5] in Fig. 8(b). The charts show that PPSN is superior (including equal) to
ADSN and ELIS++ in most datasets (64/85 and 29/35 datasets, respectively).

5.3 Compared with Current State-of-the-Art Methods

PPSN is compared with 7 SOTA methods including: (i) 4 ensemble-based meth-
ods HIVE-COTE (HC1) [13], HIVE-COTE 2.0 (HC2) [12], TS-CHIEF [15],
InceptionTime [16]; (ii) 2 feature-based methods Rocket [11], MiniRocket [14];
(iii) interval-based algorithms DrCIF [12]. They are chosen since they are cur-
rently the most accurate approaches for time series classification.

We conduct the experiment on all 112 datasets but only report the results of
109 datasets to follow the protocol at [14]. The average rank of our model (PPSN)
and other state-of-the-art classifiers is shown in Fig. 9. PPSN is more accurate
than MiniRocket, InceptionTime on average, and comparatively less accurate
than the most accurate existing ensemble classifiers, especially TSCHIEF, HIVE-
COTE, and HIVE-COTE 2.0, although the differences are not statistically signif-
icant. However, please note that InceptionTime, HIVE-COTE, TS-CHIEF and
HIVE-COTE 2.0 are ensemble methods that combime many different models
including several shapelet-based classifiers. Furthermore, our model is consider-
ably faster than those ensemble methods in terms of computational time. We
also provide the scatter chart to pair-wise compare our PPSN and the best non-
ensemble methods MiniRocket (see Fig. 8(c)). The chart demonstrates that our

Learning Perceptual Position-Aware Shapelets for Time Series Classification 65

Fig. 9. Critical different diagram shows the average ranks of PPSN and 7 SOTA meth-
ods on 109 UCR datasets. Note that InceptionTime, HIVE-COTE, TS-CHIEF and
HIVE-COTE 2.0 are ensemble methods that combime many different models including
several shapelet-based classifiers.

Table 2. Run time (in hours) to train 109 UCR datasets. We run the shapelet initial-
ization phase on the single thread on a cluster using AMD EPYC 7H12 2.6GHz CPU
and learning shapelet phase threads on NVIDIA A40 GPU.

Methods MiniRocket Rocket DrCIF InceptionTime HC1 HC2 TS-CHIEF

Total train time 0.25 2.85 45.4 86.58 340.21 427.18 1016.87

Our methods
PPSN (1 thread) PPSN (32 threads) PPSN (64 threads)

Shapelet

Initialization

Learning

Shapelet

Shapelet

Initialization

Learning

Shapelet

Shapelet

Initialization

Learning

Shapelet

Total train time 13.73 0.62 4.23 0.62 2.47 0.62

PPSN is superior (including equal) to MiniRocket on most datasets (68/109
datasets) with p-value at 0.10334.

5.4 Computation Time Comparison

As shown in Table 2, PPSN takes 14.35 h to train all 109 UCR datasets, it is far
faster than all of the state-of-the-art methods except Rocket and MiniRocket.
Especially, PPSN is two order of magnitude faster than TS-CHIEF and 34 times
faster than HC2. In addition, executing PPSN with multiple threads signifi-
cantly speeds up the computational time. For instance, if we train PPSN on 32
threads and 64 threads, the running time is reduced to only 4.23 and 2.47 h,
respectively. Note that, almost of PPSN’s running is taken by the shapelet ini-
tialization phase, 13.73 h compared to only 0.62 h of the learning shapelet phase
(on single threads). This also means that the testing time of our PPSN is really
fast, approximately 10 min for all 109 UCR datasets. The results indicate the
advantage of our proposed method in terms of computational time.

5.5 Ablation Study and Sensitivity Study

We conduct several experiments on the first 30 UCR datasets to evaluate the
effect of proposed components and the key parameter choice for PPSN.

66 X.-M. Le et al.

Fig. 10. Average ranks for 4 ablation versions of PPSN and LTS baseline.

Fig. 11. Average ranks for PPSN with different number of Stop-Gradient Epochs.

Component Evaluation. We first evaluate the impact of four proposed com-
ponents of our PPSN: Perceptual Shaplet Extractor at Sect. 4.1 (PSE), Position-
aware SubDist at Sect. 4.2 (PSD), Fixed Normalization at Sect. 4.3 (FN), and
Stop-Gradient Epochs at Sect. 4.3 (SGE). In that, the components are added
one-by-one to measure their effect on final accuracy. As can be seen in Fig. 10,
all four components have a positive impact on increasing the results of the final
proposed model.

Fig. 12. Average ranks for our Fixed Normalization and Batch Normalization.

Number of Perceptually Important Points. We conduct experiments to
execute our PPSN with different number of PIPs values and measure the average
information gain (Eq. 4.2) of selected shapelets. We use the parameter related
to the length of time series. This means that given n is length of time series, so
k = n∗npips. As shown in Table 3, the average of information gain of PPSN with
npips = 0.3 (our default parameter) is approximately equal to npips = 0.4 and
npips = 0.5, while the number of extracted candidates is considerably smaller.
In addition, the information gain from our PPSN with npips = 0.3 is very close
to that of Full Extractor, at 0.633 and 0.652, respectively, while only extracting
280 candidates compared to 102380 candidates of Full Extractor.

Learning Perceptual Position-Aware Shapelets for Time Series Classification 67

Table 3. The comparison of our PPSN with different number of PIPs.

Number of PIPs (npips) 0.1 0.2 0.3 (Default) 0.4 0.5 Full extractor

Avg. information gain 0.592 0.611 0.631 0.633 0.635 0.652

Avg. no. extracted candidates 100.1 195.2 280.2 370.5 475.5 102380.9

Time series Top 2 Shapelets

(a) Instance 1 (b) Instance 2 (c) Instance 1 (d) Instance 2

Class A Class A Class B Class B

Fig. 13. Selected shapelets by PPSN for ECGFiveDays dataset.

Number of Stop-Gradient Epochs. Figure 11 shows the effect of our PPSN
model with different numbers of Stop-Gradient Epochs (SGE), ranging from 1
to 1000. While all PPSN with different number of SGE outperforms the baseline,
there is almost no benefit for increasing the number of SGE. Finally, PPSN with
SGE at 1 gains the most performance.

Normalization. Figure 12 indicates the comparison of our proposed Fixed Nor-
malization, Batch Normalization, and Baseline (without Norm). It is clear that
while there are improvements when applied normalization for PPSN, Fixed Nor-
malization shows a significantly superior result to its counterparts.

5.6 Experiments on Interpretability

One of the great capabilities of shapelets is the power of interpretability,
which can effectively provide data comprehension. Figure 13 illustrates that the
shapelets can discriminate between two classes of the ECGFiveDays dataset [10].
Electrocardiography (ECG) is a term that refers to the study of the heart. Two
time series instances in Fig. 13 (a) (b) come from Class A, and those of Fig. 13
(c) (d) come from Class B. It is clear that selected shapelets by PPSN (orange
lines) indicate the major differences between segments in the two classes. Specif-
ically, the first shapelet presents a QRS complex, while the second one is a T
wave of ECG. Intuitively, the T wave gained a larger peak compared to the QRS
complex in Class A. In medicine, it is known as a hyperacute T wave when it
occurs as a result of certain diseases such as ischemia or hyperkalemia.

6 Conclusion

This paper has proposed a novel Perceptual Position-aware Shapelet Network
for time series classification, namely PPSN, including two phases. For shapelet

68 X.-M. Le et al.

initialization phase, we introduce an effective shapelet candidates extractor using
perceptually important points and evaluate them based on position-aware subse-
quence distance. For learning shapelet phase, we introduce two techniques called
fixed normalization and stop-gradient epochs in order to mitigate the detrimen-
tal impact of various subsequence distance ranges and diminish the unpleasant
effect of the final linear layer’s non-optimal weights, respectively. Our experi-
ments show that PPSN is a state-of-the-art method compared to non-ensemble
approaches. In addition, its accuracy is comparable to the current most accurate
classifier, HIVE-COTE 2.0, while maintaining the benefits of low computational
time and interpretive power. In future work, we intend to investigate PPSN to
other time series problems such as multivariate time series classification.
Author contributions. Xuan-May Le, Minh-Tuan Tran : Equal contribution

References

1. Chung, F.L.K., Fu, T.C., Luk, W.P.R., Ng, V.T.Y.: Flexible time series pattern
matching based on perceptually important points. In: Workshop on Learning from
Temporal and Spatial Data in IJCAI (2001)

2. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. In: Proceedings of the 20th ACM SIGKDD international Conference On
Knowledge Discovery And Data Mining. pp. 392–401 (2014)

3. Ma, Q., Zhuang, W., Cottrell, G.: Triple-shapelet networks for time series clas-
sification. In: 2019 IEEE International Conference on Data Mining (ICDM), pp.
1246–1251. IEEE (2019)

4. Ma, Q., Zhuang, W., Li, S., Huang, D., Cottrell, G.: Adversarial dynamic shapelet
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
34, pp. 5069–5076 (2020)

5. Zhang, H., Wang, P., Fang, Z., Wang, Z., Wang, W.: Elis++: a shapelet learning
approach for accurate and efficient time series classification. World Wide Web
24(2), 511–539 (2021)

6. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series
classification. In: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 289–297 (2012)

7. Li, G., Choi, B.K.K., Xu, J., Bhowmick, S.S., Chun, K.P., Wong, G.L.: Efficient
shapelet discovery for time series classification. IEEE Trans. Knowl. Data Eng.
(2020)

8. Rakthanmanon, T., Keogh, E.: Fast shapelets: A scalable algorithm for discovering
time series shapelets. In: Proceedings of the 2013 SIAM International Conference
on Data Mining, pp. 668–676. SIAM (2013)

9. Chung, F.L.K., Fu, T.C., Luk, W.P.R., Ng, V.T.Y.: Flexible time series pattern
matching based on perceptually important points. In: Workshop on Learning from
Temporal and Spatial Data in International Joint Conference on Artificial Intelli-
gence (2001)

10. Dau, H., et al.: Batista & Hexagon-ML The UCR Time Series Classification
Archive. (October 2018). www.cs.ucr.edu/∼eamonn/time series data 2018/

11. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Min. Knowl.
Disc. 34(5), 1454–1495 (2020)

www.cs.ucr.edu/~eamonn/time_series_data_2018/

Learning Perceptual Position-Aware Shapelets for Time Series Classification 69

12. Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: Hivecote
2.0: a new meta ensemble for time series classification. Mach. Learn. 110(11), 3211–
3243 (2021)

13. Lines, J., Taylor, S., Bagnall, A.: Time series classification with hive-cote: The
hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl.
Disc. Data 12(5) (2018)

14. Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: A very fast (almost) deter-
ministic transform for time series classification. In: Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 248–257 (2021)

15. Shifaz, A., Pelletier, C., Petitjean, F., Webb, G.I.: Ts-chief: a scalable and accurate
forest algorithm for time series classification. Data Min. Knowl. Disc. 34(3), 742–
775 (2020)

16. Ismail Fawaz, H., et al.: Inceptiontime: Finding alexnet for time series classification.
Data Mining Knowl. Disc. 34(6), 1936–1962

17. Batista, G.E., Wang, X., Keogh, E.J.: A complexity-invariant distance measure for
time series. In: Proceedings of the 2011 SIAM International Conference on Data
Mining, pp. 699–710. SIAM (2011)

Finding Local Groupings of Time Series

Zed Lee1(B), Marco Trincavelli2, and Panagiotis Papapetrou1

1 Stockholm University, Stockholm, Sweden
{zed.lee,panagiotis}@dsv.su.se

2 H&M Group, Milan, Italy
marco.trincavelli@hm.com

Abstract. Collections of time series can be grouped over time both glob-
ally, over their whole time span, as well as locally, over several common
time ranges, depending on the similarity patterns they share. In addition,
local groupings can be persistent over time, defining associations of local
groupings. In this paper, we introduce Z-Grouping, a novel framework for
finding local groupings and their associations. Our solution converts time
series to a set of event label channels by applying a temporal abstrac-
tion function and finds local groupings of maximized time span and time
series instance members. A grouping-instance matrix structure is also
exploited to detect associations of contiguous local groupings sharing
common member instances. Finally, the validity of each local grouping is
assessed against predefined global groupings. We demonstrate the ability
of Z-Grouping to find local groupings without size constraints on time
ranges on a synthetic dataset, three real-world datasets, and 128 UCR
datasets, against four competitors.

Keywords: Local groupings · Temporal abstractions · Time series

1 Introduction

Groupings of time series can be found in several application domains where mul-
tiple time series instances are collected and monitored. These groupings comprise
sets of time series of high similarity over a time period (e.g., in terms of con-
currently similar values or trends). Such groupings can span the whole time
series length, defining global groupings, or shorter time periods, defining local
groupings. Furthermore, some instances may persist being grouped together in
consecutive local groupings over a longer time period, possibly separated by
short time gaps, hence forming associations of local groupings. For example,
Fig. 1-left shows two time series with four consecutive local groupings (red-blue-
red-blue), forming an association (green box). Moreover, Fig. 1-right shows six
associations of local groupings each depicted by a different color, and each con-
taining several local groupings (bold color) separated by short time gaps (light

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 5.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 70–86, 2023.
https://doi.org/10.1007/978-3-031-26422-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_5
https://doi.org/10.1007/978-3-031-26422-1_5

Finding Local Groupings of Time Series 71

color). Note that all local groupings and associations have different lengths and
member instances. Such local groupings and associations can be of high utility
in various application domains, including retail monitoring [11] or stock price
prediction [10]. More concretely:

Fig. 1. An example of locally similar time series with four local groupings (left) and
six associations (right) each containing several local groupings separated by short time
gaps indicated by a lighter color.

– Retail monitoring: Product sales may follow different patterns over time,
while a particular set of products can show a common local trend, e.g., high
sales over the Christmas week, forming a “high sales” local grouping. After
Christmas some sales in this grouping may drop, while some may still be
maintained. This results in the “high sales” grouping to continue expanding
over time and a new “low sales” grouping to be formed. If multiple local sales
trends are shared by the same set of products, e.g., high sales over Christmas
(1st local trend), followed by low sales in Feb-March (2nd local trend) and
high sales over Easter (3rd local trend), they form an association.

– Investing portfolio management: Sets of stocks exhibit similar fluctua-
tions from time to time. Local groupings represent stocks with similar fluc-
tuation trends over fixed time periods. Moreover, at some time point some
stocks from a local grouping may start showing different fluctuations and
are, hence, placed into another grouping. Finally, associations are formed by
growth stocks or sectors following consistently common fluctuation patterns,
e.g., rising and dropping concurrently over the same time periods, and can
be used for improving the portfolio over time or suggesting new portfolios.

In this paper, we study two problems: given a set of time series instances,
we want to identify (1) local groupings of high similarity with maximized time
span and number of member instances, (2) associations of maximum number
of common local groupings and number of member instances. One solution is
clustering (e.g., kmeans under the Euclidean distance) over a fixed-length sliding
window. Nonetheless, such approach has two limitations: (1) noise or outliers can
distort distance values, (2) as local groupings continuously evolve based on the
similarity in each grouping, some instances in one grouping may become more
similar to instances in another grouping, hence swapping groupings. As a result,
detecting local groupings becomes even harder since groupings change over time
both in length (i.e., time duration) and size (i.e., number of member instances).

72 Z. Lee et al.

One way to mitigate the first limitation is to resort to temporal abstractions,
widely used to for time series summarization [14,19]. A temporal abstraction
compresses a time series by converting its original values into a set of event labels
that are no longer sensitive to noise or outliers, and are no longer distorted by
minor fluctuations, thus they tend to favor the formation of patterns over time.

For the second limitation, longest common prefix mining [18] can be applied
for finding local groupings of varying length. However, it ignores the occurrences
of smaller ones and may eventually miss many local groupings. Furthermore, it
considers only the ordering of events, hence failing to localize these patterns in
time. An alternative way is semigeometric tiling [9], a technique for finding local
patterns in binary matrices spanning different ranges without constraining the
number of neighbors or a time range. However, it only handles binary matrices
and does not include any principled strategy to handle real (original time series)
or categorical (abstraction) values. One way to apply semigeometric tiling is to
binarize the original time series values by converting them to 1 if the original
value is greater than, e.g., the mean of the time series values. Nonetheless, such
solution is unable to capture all granularity levels in the data and the formed
groupings will be sparse. In addition, this solution cannot identify associations.

1.1 Related Work

There have been several attempts to cluster time series by employing differ-
ent distance functions [6,13], exploiting temporal features of high utility (e.g.,
shapelets [15], temporal abstractions [20]), or hybrid solutions [3]. However, they
focus only on finding global groupings [2]. Subsequence clustering finds clusters of
subsequences within a single time series, but not across different time series [22].
The problem of finding patterns from subsets of a dataset has been addressed
in diverse ways including segmentation [8], bi-clustering [5]. However, all previ-
ous attempts have focused on finding common patterns between data examples
without placing any constraints to the ordering of the features (i.e., both data
rows and columns can be re-ordered), making it infeasible to be applied to time
series. Column-coherent bi-clustering [12] clusters time series keeping their col-
umn order, but the problem formulation and its solutions are still not free from
placing specific constraints on the column order. Although semigeometric tiling
[9] imposes column order to the problem, it assumes a binary data representation
and suffers from generating small tiles that are not practically useful for iden-
tifying local groupings of maximum time span. Longest common prefix mining
[18] can be applied to extracting temporal patterns of time series; nonetheless,
it is not directly applicable to our problem setup as it fails to detect concurrent
patterns, since it only focuses on the longest patterns per time series, hence miss-
ing many local patterns shared by time series instances. Maximum correlation
algorithms [16,17] find the local segment with the maximum correlation between
pairs of time series under a minimum subsequence length threshold. This setup
is orthogonal to ours since we are interested in finding all local groupings with
the maximum number of instances and time span under a similarity measure. In
contrast to maximum correlation algorithms, local maximum correlation algo-
rithms [21] identify the longest gapped time interval between two time series

Finding Local Groupings of Time Series 73

with the maximum correlation. This outputs the pair of regions with the highest
correlation across the two time series. This problem differs from the problem
studied in this paper, since we aim to find groupings of time series subsequences
with high similarity over the same time period. Time series motif discovery [4]
aims to find motifs, i.e., repetitive patterns in one time series. However, this
paper focuses on detecting different time ranges where high similarity of time
series instances can be detected, thus creating a grouping that is not repeti-
tive throughout time, unlike motifs. Applying motif discovery across time series
instances over a fixed-length sliding window would identify some local groupings,
but it would fail to find local groupings of variable time ranges.

1.2 Contributions

To the best of our knowledge, none of the existing formulations and solutions
is directly applicable and comparable to our problem, since we aim to find all
maximized time spans of groupings of locally similar time series without a specific
time range as a constraint. Our main contributions include:

– Novelty. We propose Z-Grouping, an effective algorithm for finding local
groupings of time series with high similarity and their associations in four
steps by: (a) exploiting the notion of temporal abstraction, (b) generating local
groupings based on the abstraction labels, (c) generating associations using a
grouping-instance matrix, (d) validating the local groupings and associations
against predefined global groupings.

– Effectiveness. We benchmark the effectiveness of Z-Grouping against four
competitors on one synthetic and three real-world datasets. Effectiveness is
measured in terms of the ability of extracted local groupings to identify highly
similar local regions in unseen instances. Z-Grouping achieves lower mean
squared error (MSE) up to 59.2% compared to the four competitors on our
synthetic dataset, and up to 44.3% on three real-world datasets.

– Generalizability. We additionally benchmark Z-Grouping on 128 UCR time
series datasets to demonstrate its ability to find valid local groupings with
lower errors than the four competitors.

2 Problem Definition

Let t = {t1, . . . , tm} be a time series instance of length |t| = m. A time series
collection T = {t1, . . . , tn} is a collection of |T | = n time series instances.

Definition 1. (Event sequence) An event sequence e = {e1, . . . , el} of length
|e| = l is a collection of event labels, with ∀i ≤ n, ei ∈ Σ, where Σ is a set of
discrete event labels of size λ.

Definition 2. (Temporal abstraction) A temporal abstraction of a time
series instance t is an event sequence e obtained by applying a mapping function
f to t, such that e = f(t), with e ∈ Σ|e| and |t| = |e|.

74 Z. Lee et al.

Fig. 2. An example of a time series collection T of size 6 (left) and its event sequence
matrix M (right) with λ = 3 with six candidates for local groupings.

Function f can be any time series summarization technique, such as discrete
Fourier transform (DFT) [20] or symbolic aggregate approximation (SAX) [14].
For example, given t = {1, 3, 3, 4, 5}, f converts t to an event sequence e =
{a, b, b, c, c} with λ = 3. Applying temporal abstraction to a time series collection
T results in an n×m event sequence matrix M = {e1, . . . , en} where ei = f(ti).

Definition 3. (Local grouping) A local grouping ρ = {rρ, Tρ} is defined by a
time range rρ = [rs, re] and a subset of time series instances Tρ ∈ T that are
similar over time range rρ.

The time series instances in Tρ are called member instances of ρ, where
|ρ| = (rρ.re − rρ.rs +1)×|Tρ| is the size of ρ. A set of local groupings is denoted
as R = {ρ1, . . . , ρ|R|}.

Example. Figure 2 depicts a time series collection T with |T | = 6, and an event
sequence matrix M abstracting T . In M we define six local groupings (colored
areas) of sizes |5 × 3|, |4 × 2|, |4 × 2|, |4 × 2|, |5 × 2|, and |4 × 1|.

Definition 4. (Association) An association γ = {rγ , Tγ ,Rγ} is a merger of
local groupings Rγ with a time range spanning all ρ ∈ Rγ , while containing the
intersection of the member instances, i.e.:

rγ = {min(rρ.rs : ρ ∈ Rγ),max(rρ.re : ρ ∈ Rγ)}, Tγ = {Tρ1 ∩ Tρ2 ∩ · · · ∩ Tρk
}}.

The cardinality of an association |γ| is the number of comprised local groupings.
The purpose of an association is to identify time series instances with maximum
commonalities over time, by sharing many adjacent local groupings not easily
detected globally, due to their negligible time spans or noise and outliers.

Based on the above definitions, we formulate our two problems.

Problem 1. (Detecting local groupings maximizing the time span and
the number of member instances) Given T and a threshold θ ∈ R, find R
with maximum instance size, maintaining the internal pairwise distance between
the raw times series members below θ. That is, for each ρ = {rρ, Tρ} ∈ R:

max |ρ|, s.t. ∀ti, tj ∈ Tρ : dist(ti[rρ.rs : rρ.re], tj [rρ.rs : rρ.re]) ≤ θ.

Problem 2. (Detecting associations maximizing the number of common
local groupings and member instances) Given T and a threshold θ′ ∈

Finding Local Groupings of Time Series 75

Fig. 3. An example of the four steps of Z-Grouping.

Algorithm 1: Z-Grouping
Input : T , λ, G: global groupings, α: purity, η: global grouping density
Result: R: local groupings, Γ : associations, Z: validity matrix

1 R ← {}, M ← SAX(T , λ)
2 for Mk ∈ generateChannels(M,λ) do
3 for ρ ∈ generateLocalGroupingCandidates(Mk) do

4 if
∑

t∈Tρ
(Mk[t,rρ.rs:rρ.re])

∑
t∈Tρ

|Mk[t,rρ.rs:rρ.re]| ≥ α then R ← R ∪ ρ

5 Γ ← createAssociations(T ,R, α)
6 Z ← validateGroupings(R,G, Γ, η)
7 return R, Γ , Z

R, find the set of associations Γ = {γ1, . . . , γ|Γ|} of maximum cardinality and
number of instance members, keeping the internal pairwise distance between the
raw instance members below θ′. That is, for each γ = {rγ , Tγ ,Rγ} ∈ Γ :

max |γ| × |Tγ |, s.t. ∀ti, tj ∈ Tγ : dist(ti[rγ .rs : rγ .re], tj [rγ .rs : rγ .re]) ≤ θ′.

Constraining time to a specific range makes it difficult to spot local groupings
that can be wider or narrower than the specified range. An exhaustive search with
any distance function to optimize Problems 1, 2 is computationally prohibitive.

3 The Z-Grouping Algorithm

Z-Grouping is a four-step algorithm for solving Problems 1, 2. The first step
converts a time series collection into an event sequence matrix by applying a
temporal abstraction function. The second step generates local groupings on
the abstractions (Problem 1), while the third step identifies associations of local
groupings using a grouping-instance matrix (Problem 2). Finally, local groupings
and associations are validated against predefined global groupings. These steps,
also outlined in Fig. 3 and Algorthim 1, are described below.

76 Z. Lee et al.

3.1 Event Sequence Matrix Generation

This step converts a collection T of n time series of length m into an event
sequence matrix M by applying a temporal abstraction function f . Without
loss of generality, we employ SAX as our abstraction function, but different
abstraction techniques can also be applied. SAX is applied to each time series
instance ti ∈ T resulting in an n × m event sequence matrix M , such that

M = {ei | ∀i ≤ n, ei = SAX(ti, λ)} ,

and λ corresponds to the event label size parameter of SAX (Algorithm 1, line
1). Next, we split M into λ subsets, which we refer to as event label channels,
where each channel Mk corresponds to the kth event label in Σ and records its
occurrence in the form of binary values, indicating whether an event is assigned
with the abstraction label of that channel (line 2); i.e., ∀i ∈ {1, . . . , n} ∀j ∈
{1, . . . , m}(Mij = k → Mk

ij = 1)∧ (Mij �= k → Mk
ij = 0). Note that the channels

do not contain duplicate values, hence always satisfying Mk
ij �= Mk′

ij if k �= k′.

Example. An example of this transformation is depicted in Fig. 3 (Step 1),
where we obtain matrix M with event labels {a, b, c}, i.e., λ = 3. Next, we divide
M into three event label channels {M1,M2,M3}, one per event label.

3.2 Local Grouping Generation

The second step reduces Problem 1 to finding λ separate sets of local groupings,
one set per channel Mk. Since by definition the active events in each channel
(indicated by 1s) share the same temporal abstraction label, they also fall in
the same value range in their original representation. This implies that each
channel can be used to extract local groupings, creating subsets of the channel
by selecting time series instances and a time range. We apply semigeometric tiling
[9] to each channel to generate candidates for local groupings (Algorithm 1, line
3). The algorithm employs a priority queue to store the counts of active labels
for every combination of time ranges r = {rs, re} in each channel Mk. It then
iteratively selects the time range with the maximum count from the priority
queue and adds rows from the one with the highest number of active labels until
a given threshold α is satisfied. α controls label purity of each subset, which we
define as the proportion of active events in the subset of the channel (see Eq. 1).

More concretely, we create optimal subsets by optimizing the trade-off
between two scores: recall (i.e., the number of active labels in the subset divided
by the total number of active labels in Mk) and α. The algorithm keeps expand-
ing the size of each subset by maximizing the recall while satisfying a given con-
straint of the subset. Since for each Mk we have a binary problem setup, recall
is submodular [9], thus the generated subsets are at least 1− 1

e times the optimal
recall. A local grouping ρ is defined by a candidate channel subset with a time
range rρ and a subset of time series instances Tρ. Each ρ can be added to R
when the following condition on α is satisfied:

accept(ρ,Mk) =

∑
t∈Tρ

(Mk[t, rρ.rs : rρ.re])
∑

t∈Tρ
|Mk[t, rρ.rs : rρ.re]|

≥ α (1)

Finding Local Groupings of Time Series 77

Algorithm 2: createAssociations
Input : T , R, α

1 Γ = {}, V ← 00000000000000000||T | × |R||, R ← sort(R, by={rρ.rs : ∀ρ ∈ R})
2 ∀j ≤ |R| ∀i ≤ |Tρj

| (ti ∈ Tρj
→ Vij = 1) ∧ (ti /∈ Tρj

→ Vij = 0)
3 for γ̄ = {rγ̄ , Tγ̄} ∈ generateAssociationCandidates(V) do

4 if
∑

t∈Tγ̄
(V [t,rγ̄ .rs:rγ̄ .re])

∑
t∈Tγ̄

|V [t,rγ̄ .rs:rγ̄ .re]| ≥ α then

5 rmin
s ← min({rρj

.rs : ∀j ∈ rγ̄})
6 rmax

e ← max({rρj
.re : ∀j ∈ rγ̄})

7 Γ ← Γ ∪ {(rmin
s , rmax

e), Tγ̄ , {ρj : ∀j ∈ rγ̄})
8 return Γ

where Mk[t, rρ.rs : rρ.re] corresponds to the subset of Mk that matches time
series t within rρ, and accept is a function that computes the proportion of active
labels in ρ on its corresponding channel Mk. We keep the continuous order of
time, but we can include any time series instances to Tρ regardless of their order.

Next, we proceed by extracting a set of local groupings from each channel
and store all local groupings in a list R, which is used in the next steps (line 4).

Example. Figure 3 (Step 2) shows six local grouping candidates with α = 0.75
allowing 25% of impurity in each candidate. Using Eq. 1, ρ1, ρ2, and ρ3 return
0.75 ≥ α, so they are added to R, while ρ6 returns 1 and is also added.

3.3 Association Generation

This step solves Problem 2 by reducing it to the problem of associating adjacent
local groupings represented by time-ordered local groupings. An association of
local groupings is generated following Definition 4 requiring minimized internal
pairwise distances between the time series instances, while expanding cardinality,
i.e., the number of local groupings included in the association. Computing all
pairwise distances of all possible instances over time would be computationally
prohibitive. We solve this problem by defining a grouping-instance matrix V ,
i.e., a binary matrix of size |T | × |R| recording the memberships of time series
instances to each local grouping, where the columns are sorted by start time of
each local grouping to keep their temporal order (Algorithm 2, lines 1-2).

Matrix V allows us to easily find consecutive local groupings even if they are
not continuous (i.e., gaps between them are allowed) in time. We first generate
local groupings of V as candidate associations, each denoted by γ̄ = {rγ̄ , Tγ̄} (line
3). Using Eq. 1 with each candidate γ̄, we accept the candidate if accept(γ̄, V) ≥
α, by checking which instances belong to which local groupings, with α being
the degree of proximity between local groupings in γ̄ (line 4). Then we create an
association γ by extracting the minimum start and maximum end time from the
involved local groupings in the candidate γ̄, alongside the time series instances
sharing those groupings (lines 5–7). In this way, local groupings are merged into
the association, if they are consecutive in V . Depending on α, non-consecutive

78 Z. Lee et al.

but close local groupings in V can also be added. Since associations maintain the
longest time span (Definition 4), time gaps are also covered by the associations.
As the main goal of associations is to find contiguous groupings of locally similar
time series instances, we only store the intersecting instances; thus an association
contains fewer instances than merged local groupings.

Example. In Figure 3 (Step 3), six local groupings are generated in Step 2.
Using these groupings and their member instances, we create V , marking if the
grouping contains the corresponding members. We find two associations γ1 with
range [1, 10] and γ2 with [6, 10]. Each association only contains the intersect-
ing instances, so γ1 contains {t2, t3, t4}, excluding t5 and t6. Associations can
contain non-consecutive groupings based on α, e.g., ρ3, ρ5 in γ1, and ρ4, ρ6 in γ2.

3.4 Validation of Local Groupings

In this last step, we validate the obtained local groupings by assuming a set of
global groupings on the same time series collection T , obtained either by time
series clustering or provided by a domain expert. Hence, each time series t ∈ T
can belong to a global grouping as well as to multiple local groupings. Our goal
is to assess how related the global groupings are to local groupings and how can
local groupings help us assess the similarity of these global groupings.

Let G = {g1, . . . , gx} be a list of global groupings and consider a local group-
ing ρ, with its member instances Tρ. For each t ∈ Tρ, we can extract the corre-
sponding global grouping g and its member instances Tg, hence t ∈ Tρ ∩ Tg. If
the majority of Tρ also belong to Tg, we can assume such global grouping follows
a similarity pattern of ρ over the time span rρ of the grouping. However, some
instances in Tρ may belong to different global groupings, and all these group-
ings may not always follow the similarity pattern of ρ, as small number of global
grouping instances can be included by chance. Therefore, it is important to check
the validity of a local grouping for each global grouping having its members in
Tρ. This is achieved by a validity score δ for g and ρ calculated as:

δg,η
ρ = �sρ · sg · η, where sρ =

|Tρ|
|T | , sg = |Tg|.

A global grouping density parameter η controls the required proportion of the
member instances of g in Tρ for ρ to be valid for g. If η = 1, ρ is valid when the
proportion of Tg ∩ Tρ in Tρ is equal to the proportion of Tg in T . For example,
if |T | = 100, |Tρ| = 10, and |Tg| = 90, we need at least 9 members satisfying
t ∈ Tρ ∩Tg to accept ρ for g. If η = 0, we accept all {ρ : ∀t ∈ Tρ,∃t ∈ Tg} since δ
becomes 0. If η = 2, the same calculation of δ would require at least 18 members.
Using δ, we create a validity matrix Z of size |G| × |R| to record the validity
between local and global groupings, where ∀i ≤ |G| ∀j ≤ |R| (

∑
t∈Tρj

�t ∈ Tgi
� ≥

δgi,η
ρj

→ Zij = 1) ∧ (
∑

t∈Tρj
�t ∈ Tgi

� < δgi,η
ρj

→ Zij = 0).

Example. Figure 3 (Step 4) shows the valid groupings with η = 1. We first
calculate δ for each ρi ∈ R and gj ∈ G. For groupings of size 4 ({ρ2.ρ3, ρ4, ρ6}),

Finding Local Groupings of Time Series 79

Table 1. Summary of the datasets used in this paper.

Dataset |T | |t| |G| avg(|Tg|) max(|Tg|) min(|Tg|)
SYNTHETIC 1,000 365 20 50 50 50

GARMENT 3,963 365 50 79.26 282 29

STOCK 505 503 11 45.91 84 3

COVID 191 618 6 31.83 53 11

we need at least � 4
6 · 2 · 1 = 2 instances of g1 and � 4

6 · 4 · 1 = 3 of g2 to be valid.
Since ρ2, ρ3, ρ4 contain two instances of g1 and two of g2, they are only valid for
g1 On the other hand, ρ6 has three of g2 and one of g1 so it is only valid for g2.

3.5 Complexity of Z-Grouping

Given an n × m time series collection T and λ, the time complexity for creating
the groupings for one event label follows the complexity of semigeometric tiling
O(m2nlogn) [9], leading to O(λm2nlogn) as the total complexity of Steps 1–2.
For creating associations (Step 3), since, in the extreme case, the number of local
groupings can be the same as the count of all data points (|R| = mn), the worst
case complexity becomes O(m2n3logn). The validation (Step 4) takes O(n2m)
since Z-Grouping checks every grouping and all time series instances for each
grouping in the worst case. However, in practice, we can relax the complexity of
Steps 1–3 by limiting the number of local groupings and associations Z-Grouping
finds. For example, the complexity can be reduced to O(knlogn) by picking
top k local groupings and associations, as they are chosen in descending order.
Extremely small local groupings which have either few time points or few member
instances may have no meaningful information and can be ignored. It may also
be possible to give other constraints such as minimum length or size.

4 Experiments

4.1 Setup

Datasets. We use three real-world datasets from (1) retail industry (GARMENT),
(2) stock market (STOCK), and (3) COVID-19 epidemics (COVID). A summary of
the properties of these datasets is provided in Table 1, while a detailed description
and sources can be found in our repository [1]. We also generated a synthetic
dataset (SYNTHETIC) for extensive parameter investigation. It contains 1,000
instances and 20 global groupings that resemble the presence of local similarity.
Each global grouping comprises a sinusoidal pattern with a different frequency
and amplitude. The number of inserted patterns is smaller than the number of
global groupings, hence some of them can share the same pattern, which can be
detected as local groupings. To simulate a realistic scenario, noise and outliers
are imputed. We also tested on 128 UCR datasets [7], excluding the cases where

80 Z. Lee et al.

at least one algorithm cannot find any valid groupings (17 cases) and where the
dataset length is shorter than the smallest window size parameter (6 cases). Our
datasets and code including synthetic data generator are available online [1].

Competitors. While, to the best of our knowledge, there exists no direct com-
petitor for the problem solved by Z-Grouping, we benchmark on the closest
approach, i.e., semigeometric tiling and three additional baselines.

– Semigeometric: We employ a simple modification of semigeometric tiling [9].
First, we generate a binary matrix with its values set to 1 for the standardized
time series values above the boundary found by SAX with λ = 2. Second, to
make it directly comparable to Z-Grouping, we apply α (Eq. 1).

– kmeans: We divide each instance t into r partitions of time range w, such
that w · r = |t|. For each partition, we apply kmeans; the resulting k clusters
per partition correspond to the local groupings.

– kmeans-FLEX: We define a flexible version of kmeans with a sliding window of
width w and slide step w

2 as a brute-force solution to finding local groupings
of multiple fixed window lengths. We repeat for different values of w and
k, and for each window, clusters with an average silhouette above a cutoff
threshold s are accepted as groupings.

– kNN: Using the same partitioning approach as kmeans, and given a global
grouping (see Experiment protocol), for each partition, we identify k instances
belonging to that global grouping. For each instance, we apply kNN, retrieving
the k nearest instances under the Euclidean distance resulting in k2 samples,
which correspond to a local grouping.

Note that kNN, kmeans, and kmeans-FLEX are also tested on the SAX abstracted
space with λ = 5 to directly compare to Z-Grouping running on the abstracted
space to detect maximized time spans. The results on the raw time series are in
favor of the competitors since they can find more accurate neighbors but still
only find fixed-length groupings. Also, as we are after local similarity synced in
time, we do not explore elastic measures such as dynamic time warping.

Experiment Protocol. Assuming a set of predefined global groupings G on a
given time series collection T , we divide T into a training set T train and a test set
T test, and create local groupings on T train. Our goal is to investigate if the local
groupings detected by each algorithm can identify potential local similarity on
unseen instances. More concretely, for each unseen sample ti ∈ T test, we retrieve
its global grouping ḡ. Our assumption is that the values of ti are unseen, so the
only information available for choosing valid local groupings is ḡ. For example,
this simulates the scenario where we have a new product ready for market and
we would like to identify potential local similarity patterns of its upcoming sales
with existing products. In this case, ḡ corresponds to a predefined product type
and its features (e.g., color, size, material type).

Hence, for each unseen sample ti ∈ T test and its corresponding global group-
ing ḡ, our evaluation is as follows. For kmeans, we choose the cluster with the

Finding Local Groupings of Time Series 81

Table 2. Average test errors of the algorithms on SYNTHETIC (CV: Coverage (%)).

α

Semigeometric Z-Grouping (λ = 3)

η =1 η = 1.5 η = 2 η =1 η = 1.5 η = 2

MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV

0.8 1.30 0.79 72 1.28 0.78 41 1.24 0.74 15 1.22 0.75 88 1.08 0.68 55 1.09 0.68 29

0.9 1.18 0.73 61 1.16 0.72 44 1.14 0.72 21 1.08 0.69 68 1.09 0.69 43 0.97 0.63 30

1.0 1.11 0.71 40 1.16 0.72 22 1.09 0.68 7 0.97 0.73 40 0.95 0.62 24 0.89 0.61 15

α Z-Grouping (λ = 5) Z-Grouping (λ = 10)

0.8 1.00 0.65 45 0.93 0.62 27 0.85 0.57 15 0.88 0.56 20 0.88 0.56 12 0.78 0.52 10

0.9 0.95 0.60 30 0.94 0.59 20 0.87 0.55 10 0.84 0.56 14 0.86 0.55 10 0.81 0.52 5

1.0 0.87 0.57 21 0.87 0.56 15 0.77 0.52 8 0.73 0.51 8 0.89 0.56 5 0.97 0.61 2

w
kNN-SAX kNN

k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

30 1.30 0.77 - 1.41 0.83 - 1.59 0.92 - 1.31 0.77 - 1.40 0.83 - 1.58 0.91 -

60 1.23 0.74 - 1.34 0.80 - 1.54 0.90 - 1.22 0.73 - 1.33 0.80 - 1.53 0.90 -

180 1.12 0.68 - 1.22 0.72 - 1.40 0.82 - 1.10 0.67 - 1.20 0.72 - 1.40 0.83 -

w kmeans-SAX kmeans

30 1.49 0.88 - 1.51 0.89 - 1.51 0.88 - 1.51 0.89 - 1.53 0.90 - 1.53 0.90 -

60 1.59 0.93 - 1.59 0.93 - 1.58 0.92 - 1.60 0.93 - 1.60 0.93 - 1.59 0.93 -

180 1.57 0.91 - 1.56 0.91 - 1.55 0.90 - 1.58 0.92 - 1.58 0.91 - 1.57 0.91 -

kmeans-FLEX-SAX

s = 0.1 1.44 0.84 100

kmeans-FLEX

s = 0.1 1.45 0.85 100

s = 0.2 1.48 0.85 100 s = 0.2 1.47 0.85 100

s = 0.3 1.56 0.93 100 s = 0.3 1.53 0.89 100

s = 0.4 1.79 1.01 36 s = 0.4 1.79 1.01 36

highest number of instances of ḡ for each time window. For kNN we employ
the k2 chosen samples. For Z-Grouping and Semigeometric, we choose the
groupings based on δ (see Sect. 3.4). Next, for each ρ, we extract all global
groupings {g : ∀tj ∈ Tρ,∃tj ∈ Tg} except for the target global grouping
ḡ. Then we calculate the errors (MSE and mean absolute error (MAE)) over
the active time range rρ between the test time series ti[rρ.rs : rρ.re] and
{tj [rρ.rs : rρ.re] | ∀tj ∈ T train ∧ tj /∈ Tḡ}, i.e., all the instances in the local
grouping that belong to the chosen global groupings. This way we explore if
these global groupings show local similarity and benchmark the robustness of
each algorithm to randomness and noise. For Z-Grouping, Semigeometric, and
kmeans-FLEX, we report coverage, i.e., the fraction of time series covered by the
groupings. kmeans and kNN have 100% coverage since they always find similar
instances based on the distance function. The ability of Z-Grouping can be
shown by lower errors than the competitors since this confirms Z-Grouping can
find groupings of different lengths showing better local similarity than fixed-size
clusters.

4.2 Results

Results on the Synthetic Dataset. For Z-Grouping, we test α = {0.8, 0.9, 1},
λ = {3, 5, 10}, and η = {1, 1.5, 2}. For Semigeometric, we apply the same α and
η. For kmeans and kNN, we test different time ranges of w = {30, 60, 180} and
k = {3, 5, 10}. For kmeans-FLEX, we apply a silhouette cutoff from 0.1 until it fails
to detect any valid groupings. All results are 10-fold cross-validated.

82 Z. Lee et al.

Table 2 shows the average test errors of Z-Grouping and its four competi-
tors. Z-Grouping always succeeds in finding valid local groupings of low errors.
Z-Grouping’s lowest MSE is at least 33.0% lower than the competitors’ low-
est MSE (23.9% in MAE), and up to 59.2% lower (49.5% in MAE) than the
worst score of the competitors. Semigeometric shows lower errors in general
than kmeans and kNN, but it still has higher errors than Z-Grouping while
covering smaller areas in the same parameter setting, as it suffers from its
lack of representation power with a strong binary assumption, outperformed by
Z-Grouping to a great extent up to 33.0% (25.0% in MAE). Except for two cases
(α = {0.8, 0.9}, η = 1}, Semigeometric even fails to cover more than 50% of the
dataset. This confirms the effectiveness of Z-Grouping in finding local groupings
compared to its binary competitor; Z-Grouping with only one more abstraction
label (λ = 3) achieves substantially better results than Semigeometric achieving
from 6.0% to 18.3% lower MSEs while covering larger areas.

Since our synthetic data is designed to have clear local groupings, distance-
based methods do not show noticeable differences in errors on both abstracted
and original spaces. kNN achieves its best score with {w : 180, k : 3} in both
spaces, but its MSE is still 50.7% higher than Z-Grouping’s best error (31.4% in
MAE). It achieves lower errors with smaller window sizes, as it is easier to iden-
tify local groupings within the window. kmeans does not show remarkable differ-
ences with various parameter settings; it is generally worse than its competitors.
Kmeans-FLEX has its lowest MSE being only 3.4% lower than the lowest error of
kmeans (4.6% in MAE) but 97.3% higher than the lowest error of Z-Grouping
(64.7% in MAE). This means giving a few options for the length of local group-
ings can be worse than fixed-size search, as well as far worse than Z-Grouping’s
ability to detect a maximized time range for local groupings. None of the com-
petitors detect groupings of similar quality to Z-Grouping, which means an
exhaustive search is required to find meaningful groupings, while Z-Grouping
can find more flexible groupings with more valid local similarity.

Effect of the Parameters. All three parameters (λ, α, and η) of Z-Grouping
control the trade-off between coverage and error. Since the abstraction label size
is directly related to the sparsity of the channels, higher λ can lead to lower
coverage, making Z-Grouping difficult to find the same event labels adjacent to
each other, while detecting better local groupings with lower errors. Highe3 α
leads to purer groupings allowing a smaller number of different event labels. If
we increase flexibility with small α, the error increases due to the formation of
many impure groupings. Higher η requires more samples in the local grouping
for validity, leading to smaller number of groupings. This results in lower error
scores but reduces coverage too. Associations of the groupings help increase
coverage by filling the gaps created by high values of the parameters. However,
under the highest parameter values, the algorithm loses its ability to grow over
a substantial area, only showing less than 10% coverage and the error also gets
higher since there is no meaningful amount of data points to compare to.

Relationship between θ, θ′ and α. Z-Grouping solves Problems 1, 2 by transform-
ing θ, θ′ to the purity parameter α while maximizing the same space, assuming

Finding Local Groupings of Time Series 83

Fig. 4. Relation between α and the average pairwise distance of time series instances
in local groupings (left) and associations (right) on SYNTHETIC.

Table 3. Best average test errors of the algorithms on three real-world datasets.

Datasets Z-Grouping Semigeometric kNN-SAX kNN

MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV

GARMENT 0.83 0.65 88 1.76 0.96 67 1.64 0.92 100 1.64 0.92 100

STOCK 0.99 0.74 77 1.49 0.84 70 1.21 0.83 100 1.20 0.83 100

COVID 0.84 0.49 40 2.17 0.92 74 1.37 0.70 100 1.37 0.71 100

Datasets kmeans-SAX kmeans kmeans-FLEX kmeans-FLEX-SAX

GARMENT 1.65 0.90 100 1.67 0.92 100 1.49 0.87 100 1.51 0.92 100

STOCK 1.37 0.89 100 1.37 0.89 100 1.49 0.92 100 1.50 0.92 100

COVID 1.49 0.73 100 1.49 0.73 100 0.99 0.55 38 0.99 0.55 37

that θ, θ′ are dependent on our choice of α. Hence, it is important to validate the
relation between θ and α. Figure 4 shows the relation between α and the average
pairwise distance of time series instances in the estimated groupings (left) and
the associations (right) on SYNTHETIC. This confirms higher α leads to smaller θ,
hence Z-Grouping approximately solves Problems 1, 2, while the actual thresh-
olds (θ, θ′) are dependent on α, and we maximize |ρl| and |γl| × |Tγl

| keeping α.
The same analysis on the real-world datasets is in the supplement (Sec. A).

Results on Three Real-World Datasets. Table 3 shows the average test
errors of Z-Grouping and the competitors on three real-world datasets. We
explore the same parameter settings as for the synthetic experiment. We report
the best case in MSE covering more than 30% of the datasets, while Z-Grouping
also gets lower errors with lower coverage. Overall, Z-Grouping achieves the best
score on every dataset. On GARMENT and STOCK, Z-Grouping is a clear winner
by having 44.3% lower MSE (25.2% in MAE) on GARMENT and 17.5% lower MSE
(10.9% in MAE) on STOCK than the MSE under the best competitor, with at least
70% coverage. On COVID, Z-Grouping shows 15.2% lower MSE (11.0% in MAE)
compared to the best of four competitors (kmeans-FLEX), but only covers 40%
of the dataset as the COVID-19 patterns in one continent have not always been
similar. It appears that the goal of finding consistent local similarity across con-
tinents has not been well met compared to the other two cases. Semigeometric

84 Z. Lee et al.

Fig. 5. Nemenyi post hoc test on the
128 UCR datasets.

Table 4. Average MSE rankings and
wins/loses on the 128 UCR datasets.

Algorithms Avg.rank Win Lose

Z-Grouping 3.34 48 9

Semigeometric 5.45 9 45

kNN 4.13 8 0

kNN-SAX 5.07 0 8

kmeans 3.32 20 1

kmeans-SAX 4.98 6 22

kmeans-FLEX 4.21 8 5

kmeans-FLEX-SAX 4.44 9 4

performs the worst on every dataset, even outperformed by the baselines. Full
results for each parameter setting are available in our repository [1].

Results on the UCR Datasets. We test Z-Grouping and its competitors on
128 UCR datasets using the parameter settings yielding average performance in
our synthetic experiments. Since the UCR datasets contain general cases and
do not always have clear local similarity, the experiment shows a different per-
spective from our synthetic and three real-world data experiments as described
in Fig. 5 and Table 4. First, the solutions on the abstracted space show signifi-
cantly worse results than the ones on the original space, while Z-Grouping still
outperforms them. Second, kmeans performs well on the UCR datasets showing
the lowest average rank in terms of MSE and MAE while it shows the worst
performance in our synthetic experiment, due to some datasets entirely missing
valid local groupings; this can be confirmed by kmeans-FLEX underperforming
even though it is also the same distance-based solution.

Z-Grouping in itself requires temporal abstraction to maximize the time span
of the local groupings and the associations given α, thus losing some of the origi-
nal information. This might make the detection process harder when local group-
ings are not distinct in the dataset as some cases in the UCR datasets. However,
Z-Grouping still succeeds in finding valid local groupings of variable time span
from these cases. This can be confirmed by noticing that Z-Grouping wins in 48
cases and only loses in nine cases, while two competitors capable of searching for
local groupings of varying lengths (Semigeometric and kmeans-FLEX) show sig-
nificantly worse results. Our main state-of-the-art competitor (Semigeometric)
loses in 45 cases, even underperforming the baselines and Z-Grouping .

While losing information due to SAX, Z-Grouping achieves statistically
equivalent average rank to its competitors running on the original space, despite
the fact that it is harder to identify local groupings in some of the UCR datasets.
Moreover, this also means we show our effectiveness over the baselines, since the
competitors are still limited to only finding the fixed area (i.e., window size)
while Z-Grouping finds maximized length areas for the groupings with similar
or lower errors. Z-Grouping loses (1) when there are completely no valid local

Finding Local Groupings of Time Series 85

groupings in the dataset, (2) when there are more than two different local sim-
ilarities in the same period with enough support in one class, and (3) when
the original values have only slight fluctuations, so the SAX space loses all this
information and as a result distance-based clustering outperforms. Examples of
losing cases can be found in the supplementary material (Sec. B).

5 Conclusion

We proposed Z-Grouping, a novel framework for detecting local groupings of
locally similar time series and their associations. We benchmarked Z-Grouping
on three real-world datasets and a synthetic dataset as well as 128 UCR datasets
against four competitor methods. Our experiments showed that Z-Grouping
could achieve lower error rates than its competitors while successfully retrieving
local groupings without size constraints on time ranges, which is infeasible by
using traditional methods. Future work includes exploring alternative temporal
abstractions, applying global optimization to create the local groupings, studying
multivariate time series, i.e., creating multidimensional groupings.

References

1. Z-Grouping repository. www.github.com/zedshape/zgrouping/
2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade

review. ISJ 53, 16–38 (2015)
3. Aghabozorgi, S., Wah, T.Y.: Clustering of large time series datasets. IDA 18(5),

793–817 (2014)
4. Alaee, S., Mercer, R., Kamgar, K., Keogh, E.: Time series motifs discovery under

dtw allows more robust discovery of conserved structure. DAMI 35(3), 863–910
(2021)

5. Cheng, Y., Church, G.: Biclustering of expression data. ISMB 8, 93–103 (2000)
6. Cuturi, M., Blondel, M.: Soft-dtw: a differentiable loss function for time-series. In:

ICML, pp. 894–903. PMLR (2017)
7. Dau, H.A., et al.: The ucr time series archive. JAS 6(6), 1293–1305 (2019)
8. Gionis, A., Mannila, H., Terzi, E.: Clustered segmentations. In: TDM. Citeseer

(2004)
9. Henelius, A., Karlsson, I., Papapetrou, P., Ukkonen, A., Puolamäki, K.: Semi-

geometric tiling of event sequences. In: Frasconi, P., Landwehr, N., Manco, G.,
Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 329–344.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1 21

10. Huang, C.F.: A hybrid stock selection model using genetic algorithms and support
vector regression. Appl. Soft Comput. 12(2), 807–818 (2012)

11. Jiang, Y., Liu, Y., Wang, H., Shang, J., Ding, S.: Online pricing with bundling and
coupon discounts. IJPR 56(5), 1773–1788 (2018)

12. Lee, J.H., Lee, Y.R., Jun, C.H.: A biclustering method for time series analysis.
IEMS 9(2), 131–140 (2010)

13. Li, H., Liu, J., Yang, Z., Liu, R.W., Wu, K., Wan, Y.: Adaptively constrained
dynamic time warping for time series classification and clustering. Inf. Sci. 534,
97–116 (2020)

www.github.com/zedshape/zgrouping/
https://doi.org/10.1007/978-3-319-46128-1_21

86 Z. Lee et al.

14. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic repre-
sentation of time series. DMKD 15(2), 107–144 (2007)

15. Luo, L., Lv, S.: An accelerated u-shapelet time series clustering method with lsh.
In: Journal of Phys. Conference Series, vol. 1631, pp. 12–77. IOP (2020)

16. Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence correlation.
In: ICDM, pp. 450–459. IEEE (2014)

17. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series
data. In: SIGMOD, pp. 171–182 (2010)

18. Raza, A., Kramer, S.: Accelerating pattern-based time series classification: a linear
time and space string mining approach. KAIS 62(3), 1113–1141 (2020)

19. Ruta, N., Sawada, N., McKeough, K., Behrisch, M., Beyer, J.: Sax navigator: Time
series exploration through hierarchical clustering. In: VIS, pp. 236–240 (2019)

20. Schäfer, P.: The boss is concerned with time series classification in the presence of
noise. DAMI 29(6), 1505–1530 (2015)

21. Wu, J., Wang, Y., Wang, P., Pei, J., Wang, W.: Finding maximal significant linear
representation between long time series. In: ICDM, pp. 1320–1325. IEEE (2018)

22. Zolhavarieh, S., Aghabozorgi, S., Teh, Y.W.: A review of subsequence time series
clustering. The Scientific World Journal 2014 (2014)

TS-MIoU: A Time Series Similarity
Metric Without Mapping

Azim Ahmadzadeh1(B), Yang Chen1, Krishna Rukmini Puthucode1,
Ruizhe Ma2, and Rafal A. Angryk1

1 Department of Computer Science, Georgia State University, Atlanta, Georgia
aahmadzadeh1@gsu.edu

2 Department of Computer Science, University of Massachusetts Lowell, Lowell, USA

Abstract. Quantifying the similarity or distance between time series,
processes, signals, and trajectories is a task-specific problem and remains
a challenge for many applications. The simplest measure, meaning the
Euclidean distance, is often dismissed because of its sensitivity to noise
and the curse of dimensionality. Therefore, elastic mappings (such as
DTW, LCSS, ED) are often utilized instead. However, these measures
are not metric functions, and more importantly, they must deal with
the challenges intrinsic to point-to-point mappings, such as patholog-
ical alignment. In this paper, we adopt an object-similarity measure,
namely Multiscale Intersection over Union (MIoU), for measuring the
distance/similarity between time series. We call the new measure TS-
MIoU. Unlike the most popular time series similarity measures, TS-MIoU
does not rely on a point-to-point mapping, and therefore, circumvents all
respective challenges. We show that TS-MIoU is indeed a metric func-
tion, especially that it holds the triangle inequality axiom, and therefore
can take advantage of indexing algorithms without a lower bounding. We
further show that its sensitivity to noise is adjustable, which makes it a
strong alternative to the Euclidean distance while not suffering from the
curse of dimensionality. Our proof-of-concept experiments on over 100
UCR datasets show that TS-MIoU can fill the gap between the unfor-
giving strictness of the �p-norm measures, and the mapping challenges
of elastic measures.

Keywords: Time series · Similarity · Distance

1 Introduction

Signals, processes, time series, and trajectories are data types which despite
their differences have a lot in common. They all are ordered—and often equally
spaced in time—values of a random variable recorded in time. With the advances
in machine learning algorithms and computational power at our disposal, these
high-dimensional data types have become ubiquitous. Since our primary focus in
this study is on their spatiotemporal similarities, we use the name “time series”
as an umbrella term for all such data types.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 87–102, 2023.
https://doi.org/10.1007/978-3-031-26422-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_6

88 A. Ahmadzadeh et al.

One of the primary challenges in dealing with these data types is in the way
the similarity notion is defined. Similarity is a subjective concept, so much so that
often different applications require very different or even contradictory criteria to
define similarity. For example, two trajectories sampled from the Australian Sign
Language dataset [15] may be considered ‘similar’ despite the absence of any spa-
tial alignment, whereas in the Taxi Service Trajectory dataset [25], a significant
spatial alignment is essential for trips to be considered ‘similar’. Therefore, the
no-free-lunch theorem applies; there is no general-purpose, universal similarity
measure that outperforms all others in all applications. This subjectivity has
given rise to the invention of an array of effective and elegant measures, each
with its own strengths and shortcomings. Because of this diversity, a degree
of expertise is almost always expected for the user to be able to appropriately
utilize them and achieve the optimal gain.

In this paper, we entertain a new idea that claims, in the context of similarity
measures, time series can be treated as objects with unique shapes and struc-
tures, as opposed to spatiotemporal data types. Time series have been treated
as objects before (e.g., as fractals [27]), primarily to extract their complex fea-
tures. But to the best of our knowledge, the similarity notion has almost always
been tied to a mapping function of some sort, which requires time series to be
considered what they actually are; sequences of points.

Although the mapping-based strategies are ideal for a large pool of time series
applications, it should not be generalized as the only way of defining and quantify-
ing their similarity. Borrowing from the computer vision domain, this is analogous
to the pixel-to-pixel similarity measures (e.g., Mean Square Error), as opposed to
other strategies such as a patch-to-patch comparison or Histogram of Oriented
Gradients (HOG) [21]. We bring this up because it was shown that the pixel-to-
pixel similarity measures, despite their popularity, are not the best choices for, for
example, an objective similarity evaluation [26]. Compared to images, time series
are much less intuitive data points, and therefore, we might not be able to always
perceive the inadequacy of some measures’ mapping strategy.

Our non-mapping perspective has two fundamental advantages. Firstly, it cir-
cumvents the real challenges caused by different point-to-point mapping strate-
gies. Secondly, it builds (adjustable) resistance against noise. The latter will be
more clear after we define the measure. Regarding the former, the mapping strat-
egy generally divides the similarity measures into two main groups: those which
do not allow local time shifting, such as the �p norm family, and those which
do, such as the Edit Distance on Real Sequence (EDR) [6], Longest Common
Subsequence (LCSS) [34], and Dynamic Time Warping (DTW) [4,17,30], and
their many variants. The first group of measures are very sensitive to noise, and
moreover, they require time series to be of the same length. Among the measures
in the second group, one of the most prominent issues is the occurrence of patho-
logical alignments, i.e., when a single point is mapped onto a large subsection of
another time series—a known issue of DTW and some of its variants [30]. Several
constraints have been proposed to control for such undesirable mappings, such
as windowing, slope weighting, and step patterns (see [29] and references therein).

TS-MIoU: A Time Series Similarity Metric Without Mapping 89

In addition, methods such as feature mapping/segmentation have also been pro-
posed to avoid pathological warpings [13,22]. Another complication that comes
with this approach lies in the mapping of some key points (e.g., peaks or dips
of time series). In addition to the possibility of pathological mappings of these
key points, the detection of peaks and dips is often a challenge of its own, as
peaks and dips are also subjective and task-specific concepts [22]. There are also
assumptions in the mapping functions that may or may not be desirable in some
applications. For example, DTW is restricted by assumptions such as continuity
and/or monotonicity. The continuity assumption forbids ‘jumps’, meaning that
every point on each time series must be mapped onto at least one other point
on the other time series. The monotonicity assumption forbids going back in
time, i.e., connecting a point of one time series to a processed point in another
time series. Because of these restrictions, an optimal mapping may exist well
outside such a confined space. A good example in which discontinuity is allowed
is LCSS, however, its mapping is still monotonic. A similarity measure that does
not require a mapping is entirely free of such challenges—while of course subject
to some other challenges.

2 Background

The literature on the similarity measures for time series is as rich and diverse
as the time series application itself. A thorough review of these measures, even
when limited to a particular application, requires a dedicated study on its own.
Therefore, in the present work, which should not be seen as anything other
than a proof of concept, we do not go beyond a quick review of the most popular
similarity measures (in Sect. 2.1). Instead, we review a few other measures which,
at some level, bear some resemblance to our proposed measure (in Sect. 2.2).

2.1 Popular Distance/Similarity Measures

The simplest approach for measuring the distance between two time series is
by seeing them as high-dimensional data points in the Euclidean space, and
measuring their distance with the Euclidean distance (a.k.a. �2 norm). This
measure, as well as the Manhattan distance (�1 norm) and Chebyshev distance
(�∞ norm), are special cases of a more generalized distance function called the
Minkowski distance (�p norm). Euclidean distance, the most popular of the �p

norm family, is very sensitive to noise. Meaning small variations on the time
axis or any spatial misalignment may significantly impact the distance. More-
over, it cannot be used for time series of different lengths and sampling rates
due to its static pairwise mapping between the time series elements. For appli-
cations such as GPS tracking, where the spherical coordinates system might be
preferred over a Cartesian coordinate system, Haversine distance can be used
instead. Haversine distance is the angular distance between two points on a sur-
face of a sphere. Haversine distance is also sensitive to noise, but what makes
these measures popular, in addition to their simplicity and cheap computation

90 A. Ahmadzadeh et al.

(i.e., a linear time complexity), is the fact that they are metric functions. A
metric function holds the triangle inequality axiom, which makes it a natural
choice for indexing and tree-based search algorithms (as discussed in Sect. 3.5).

The fact that �p norm does not allow local time shifting—it restricts the
mapping of the i-th element of one time series to only the i-th element of the
other time series—gave rise to a number of other distance/similarity measures of
which we only review some of the most popular. Inspired by the Edit Distance
(ED) measure used for string comparisons [19], the ED with Real Penalty (ERP)
was introduced for quantifying the time series similarity with local time shifting
[5]. Although ERP is a metric, it was shown that (like DTW) it is sensitive to
noise [6]. As a remedy, a modified version of it, namely the ED on Real Sequence
(EDR), was proposed [6]. EDR defines the distance between two time series in
terms of the number of modifications (i.e., insertion, deletion, and replacement)
one time series may need to change into the other. EDR reduces the impact
of noise the same way LCSS does; by quantizing pairwise distances to either
0 or 1. This advantage comes at the cost of violating the triangle inequality
which makes EDR a non-metric [5]. Among several ED-based measures, the
Time Warp ED with Stiffness Adjustment (TWED) was tailored to (1) hold the
triangle inequality while being an elastic metric and (2) provide a parameter to
control the elasticity of the mapping function [24]. All these measures have a
quadratic time complexity.

The LCSS measure can also be seen as a special case of ED. The key difference
for LCSS is that unlike DTW and ED-based measures (which require all elements
of time series to be matched), it allows partial comparisons, i.e., parts of time
series can be left unmatched. This is advantageous because it allows tolerance of
some noise. This unique feature, from a different angle, limits the application of
LCSS, since the unmatched elements are entirely ignored and do not contribute
to the final value of the distance. LCSS is not a metric as it violates the triangle
inequality. It is also worth mentioning that LCSS, as well as DTW and ED-
based measures, cannot be directly used for 2D time series (with time as the
third dimension). Interested readers in multidimensional time series can read
about some proposed approaches in [9].

DTW searches through a 2D space to find an optimal mapping between the
two given time series and then defines the distance as the sum of the Euclidean
distance between all matched elements. In principle, DTW requires quadratic
computation time, it is not a metric [5], and it remains sensitive to noise. That
said, DTW seems to have become the most popular elastic measure for time
series data mining community thanks to the several lower bounding methods
(including the lower bounding based on warping constraints, i.e., 4S), which
significantly sped up its computation time [28].

2.2 Measures with Comparable Ideas

A grid-based approach for measuring the distance between two trajectories was
introduced by Lin et al. [20]. The authors talked about the applications such as
animal migration patterns and city traffic monitoring, in which the similarity

TS-MIoU: A Time Series Similarity Metric Without Mapping 91

of interest is primarily determined by the trajectories’ spatial patterns, and the
temporal aspect (e.g., timestamp and velocity) is not seen as critical. Given a
query trajectory Q and an arbitrary trajectory T , their method superimposes a
grid over T and Q, and then computes the one-way distance (OWD) of Q from
T . The OWD is computed by first identifying the so-called “local min points”
on T (one local min point relative to each point on Q) and then summing up
the Euclidean distances between each point on Q and its corresponding local
min point on T . The main purpose of their grid representation is to build an
efficient indexing method that speeds up the similarity search. The authors rec-
ommended building multiple grid representations of trajectories with different
granularity levels to confine the search space. This is done by starting the search
algorithm from the coarsest representation of trajectories and iteratively passing
forward the k-most similar trajectories, as the granularity of the grid increases.
This approach is similar to ours in that they both use a 2-dimensional grid-based
segmentation. However, it is only in our approach that the hierarchical repre-
sentation of time series directly contributes to the measure of similarity. In the
method proposed by Lin et al., the hierarchical representation is part of their
retrieval algorithm and not the similarity measure.

The Complexity-Invariant Distance (CID) is a method for adding a complex-
ity sensitivity to distance measures [3]. CID has a somewhat similar motivation
as ours; without taking into account this new invariance property, similarity
search algorithms may not be able to differentiate between ‘complex’ and ‘sim-
ple’ time series because of their overall similarities, hence ignoring their difference
in ‘complexity’. Although the authors did not define ‘complexity’, they explained
it intuitively, that the complexity of a time series is proportional to the total
sum of its line segments’ length. This is generally how the correction factor is
computed. Their notion of complexity is identical to what is known in fractal
geometry as fractal dimension [23]. Our measure of similarity takes full advan-
tage of the definition of fractal dimension to account for time series’ complexity
(see Sect. 3).

The Hausdorff distance [2] is another measure that—if carefully examined—
is somewhat similar to our approach. To quantify the distance between two
time series (originally between two shapes), Hausdorff distance finds the smallest
radius of the disk needed that if each point of either of the time series is replaced
with that disk, the union of those disks contains all points of the other time series.
This ‘thickening’ process is in principle similar to the change of resolution in our
proposed measure, as we explain in Sect. 3.2. Hausdorff distance is a metric, but
unlike our measure, it is sensitive to noise. This is because the computed distance
is always determined by the single farthest point from the other time series, and
therefore, a single outlier can heavily impact the distance.

Although not a distance measure, the indexing technique used in [17] bears
some resemblance to our proposed measure, in that they both treat time series as
shapes. The authors introduced LB PAA—a modified version of the Piecewise
Aggregate Approximation [35]—for reducing the dimensionality of time series
(from n to 16) and therefore speeding up the indexing process for DTW. Instead

92 A. Ahmadzadeh et al.

of comparing a candidate time series T to a query time series Q, they compare a
16-dimensional version of T , denoted as T̄ , to the 16-dimensional lower and upper
bounds of Q. Then, when building the tree structure for indexing, they compute
the distance of Q from a minimum bounding rectangle (MBR) of T̄ instead of
T itself. This is where a time series is treated as a shape and estimated by an
MBR. Our proposed measure uses a similar spatial estimate of time series to
compare them without a mapping.

3 Multiscale IoU (MIoU) for Time Series

Since we are borrowing a region-based similarity measure, namely MIoU [1], and
re-purposing it for time series analysis, we first review the original idea, and then
discuss the specific modifications needed for this adoption12.

3.1 MIoU Recap

Intuitively, MIoU [1] is the marriage of two concepts: Intersection over Union
(IoU) [10] and the fractal dimension [23]. IoU (a.k.a. the Jaccard Index [14])
is a widely used object-similarity measure that quantifies the degree of which a
ground-truth object is detected (i.e., intersection) relative to the area occupied
by both of the ground-truth and detected objects (i.e., union). The fractal dimen-
sion was originally proposed to quantify the complexity of self-similar objects,
called fractals. Among several methods that compute the fractal dimension the
box-counting method utilizes grids of varying cell sizes in order to capture the
complexity of fractals’ geometry (see [33] and the references therein). Figure 1
illustrates the general idea behind MIoU for two different proposed objects rep-
resenting a solar filament.

The motivation behind introducing MIoU for measuring objects’ similarity is
to compensate for the limited sensitivity of IoU (as well as other area-based mea-
sures such as f1 score, precision, and recall) to the fine details visible in objects’
structures—a highly informative feature present in many scientific computer
vision applications (see examples in [1]). MIoU achieves this through a multi-
scale approach: for noticeably misaligned objects, either spatially or structurally,
MIoU is able to capture major misalignments early on, at lower resolution levels,
whereas for well-aligned objects, MIoU can identify the subtle misalignments at
higher resolution levels.

Formally, the MIoU measure is formulated using three functions. Let O
denote a set of all valid objects (represented as binary masks of regions), and
Δ ⊂ N denote a finite set of box sizes. The first function, s : O × Δ −→ O,
performs a grid-based segmentation on the object o ∈ O, with a given box size
δi ∈ Δ, and downsamples the region. The second function, | · | : O −→ N,
computes the area of a given region by counting the number of pixels (or grid

1 MIoU repository: https://bitbucket.org/gsudmlab/multiscale iou/.
2 TS-MIoU repository: https://bitbucket.org/gsudmlab/ts miou ecmlpkdd22/.

https://bitbucket.org/gsudmlab/multiscale_iou/
https://bitbucket.org/gsudmlab/ts_miou_ecmlpkdd22/

TS-MIoU: A Time Series Similarity Metric Without Mapping 93

Fig. 1. The graphic reviews how MIoU measures the similarity between a fine (top)
and coarse (bottom) region (each of size 512×512 pixels). The box sizes of the grid
varies from 1 pixel (highest resolution) to 512 pixels (lowest resolution). The line plot
shows the intersection ratios, and the area under its curve (0.78) which defines the
similarity between two regions.

cells after it was downsampled by s) o’s boundary spans over. The last function,
r : O2 ×Δ −→ [0, 1], called intersection ratio, computes the intersection between
the boundaries of a region o and its estimate õ, in terms of the number of δi×δi

boxes they share, and normalizes it by the number of boxes o’s boundary spans
over. More precisely, r(o, õ, δi) = |s(o,δi)∩s(õ,δi)|

|s(o,δi)| .
Having r calculated for all different box sizes in Δ, MIoU is then computed

by measuring the area under the curve formed by r. This curve is shown in Fig. 1,
and can be formulated as follows: MIoU(o, õ) =

∑ 1

0
r(o, õ, δ)dδ, which is the total

area of |Δ| − 1 trapezoids. MIoU varies within the interval [0, 1] if dδ = 1
|Δ|−1 .

As a similarity measure, greater values indicate greater similarity, 1 means a
perfect alignment, and no overlap is represented by 0. It is worth noting that
although 1 − MIoU can be considered a distance (dissimilarity) measure, it is
not a metric. We will discuss this shortly in Sect. 3.5.

3.2 TS-MIoU: MIoU for Time Series

We claim that MIoU is an effective measure for quantifying time series similar-
ity. In many applications, the implicit or explicit definition of similarity for time
series is indistinguishable from that for objects. In such cases, while we want
similar time series to have similar shapes and patterns, we expect them to gen-
erally stay within a close distance along the time dimension, regardless of their
individual sampling rate. Trajectory of moving objects [20] is just one of such
cases. As we discuss in this section, with some minor changes and appropriate
(task-specific) segmentation strategies, time series can be treated as objects and
shapes. Needless to say that neither this nor any other realization of similarity
can be used universally for all applications.

94 A. Ahmadzadeh et al.

To justify our main modifications of MIoU, we first need to highlight the
fact that MIoU is defined under a specific assumption; the given regions of inter-
est are categorized into either ground truth (annotated by human) or detected
(annotated by an algorithm) regions. This subtle assumption gives away a priori
knowledge about the intended comparison, and to take advantage of that, when
defining intersection ratio, the authors replaced the area of the union—which
is in the definition of IoU—with the area of the ground-truth. In the absence
of this a priori knowledge (e.g., in unsupervised approaches and information
retrieval systems), it is highly advantageous for us to revert to the original def-
inition of IoU. Not only is this supported by our empirical study, but also, and
perhaps more importantly, it rewards us with the triangle inequality condition
(see Sect. 3.5). The reverted definition of the intersection ratio that we used for
TS-MIoU is given in Eq. 1.

r(T1, T2, (δx,i, δy,i)) =
|s(T1, (δx,i, δy,i)) ∩ s(T2, (δx,i, δy,i))|
|s(T1, (δx,i, δy,i)) ∪ s(T2, (δx,i, δy,i))|

(1)

Another minor change is that compared to the intersection ratio in MIoU,
TS-MIoU’s intersection ratio benefits from a tuple, i.e., (δx,i, δy,i), determining
the box sizes, instead of a single value of δ. Consequently, TS-MIoU(T1, T2) =∑ 1

0
r(T1, T2, (δx, δy))dδxδy. This allows us to build segmentations grids with non-

squared cells in order to tackle the ill-definedness of the time series space. We
further discuss these topics in Sects. 3.3 and 3.4.

3.3 Ill-Definedness of Space

TS-MIoU transforms time series into binary masks. This procedure requires
quantisation (binning) on both of the dimensions. In doing so caution must be
taken in using shape-based similarity metrics on time series. For a time series to
be considered a 2-dimensional object with a well-defined geometry, both dimen-
sions must be of the same unit. This incommensurability of the axes of time
series plots makes the geometrical aspect ratio of this artificially-made space
ill-defined. One direct consequence of this ill-definedness is the arbitrariness of
measures such as the fractal dimension. Such measures depend on the arbitrari-
ness of the aspect ratios of time series plots. In fact, time series’ patterns and
motifs might be partially or completely obscured by choosing an inappropriate
aspect ratio of the axes in the binning process.

This is certainly a concern for the box-counting method incorporated in TS-
MIoU. Theoretically, the δ × δ boxes used by the box-counting method do not
represent any meaningful geometric area on time series space. However, similarity
is a relative concept. For example, a retrieval algorithm looks for the most similar
instances relative to a query instance. Therefore, this ill-defined space can still
be explored as long as (1) the sides of the boxes used for segmentation can be
adjusted independently to account for the different resolutions needed for each
dimension of the time series space, and (2) the conditions determining the space
remain constant for all comparisons. We elaborate in these conditions in the
following sections.

TS-MIoU: A Time Series Similarity Metric Without Mapping 95

Fig. 2. Segmentation with proportional binning is illustrated for computing TS-
MIoU on two time series (blue and purple). For visibility purposes, only four of
the six representations of time series are shown, corresponding to the bin sizes in
Δx,y = {(1, 4), (2, 8), (4, 16), (8, 32), (16, 64), (32, 128)}. (Color figure online)

3.4 Segmentation with Proportional Binning

As mentioned before, TS-MIoU treats time series like objects through the use
of grid-based segmentation while remaining completely agnostic to the segmen-
tation method used. The simplest approach for segmentation is to set an upper
bound for the number of cells, k, and then carry out hierarchical segmentation
with all integers from 1 to k. The upper bound can be axis-specific as well. A
slightly more dynamic strategy is to define non-square boxes with widths and
heights proportional to the ranges of values on the x and y axes, respectively.
These boxes will then be used to form the segmentation grids representing vary-
ing resolutions. The latter is the strategy we use in our experiments, and we call
it segmentation with proportional binning.

Suppose we have a dataset of N time series, T = {T}N
i=1, each of length n.

Note that this assumption of fixed length is not a requirement for TS-MIoU as it
does not rely on any types of mapping between time series. Let m and M denote
the global minimum and maximum values in T (per variate, for multivariate
time series), respectively. The width and height of the largest (δx × δy)-box used
for segmentation can then be determined by δx = n

cx
and δy = (M−m)

cy
, respec-

tively, where cx, cy ∈ (0, 1] are user-defined parameters. Appropriate choices of
cx and cy can guarantee that TS-MIoU does not overlook the interesting struc-
tures of the time series. Each of the upper bounds δx and δy determine the rest
of the corresponding box sizes using a linear or logarithmic function, starting
from 1, representing the original time series. In Sect. 4, we use powers of two,
inspired by the original definition of fractal dimension [23]. An example of such
a segmentation strategy is illustrated in Fig. 2.

In this paper, we will not address an optimum binning strategies as it heavily
depends on the data, the time series’ patterns, and structures. An efficient,
data-driven methodology for determining the optimal set Δx,y seeks a thorough
investigation of its own, which belongs to our future work.

96 A. Ahmadzadeh et al.

3.5 TS-MIoU as a Metric

MIoU’s corresponding distance function, dMIoU = 1−MIoU, is not a metric. But
we will show that dTS-MIoU = 1 − TS-MIoU satisfies all conditions of a metric
function. Let us start by reviewing these conditions.

Given a distance function d : X ×X −→ R where X is the universe of all valid
objects (time series in our case), d is called a metric if the following properties
hold for all x, y, z ∈ X : (1) positiveness, d(x, y) ≥ 0; (2) strict positiveness,
x �= y ⇒ d(x, y) > 0; (3) symmetry, d(x, y) = d(y, x); (4) reflexivity, d(x, x) = 0;
and (5) triangle inequality, d(x, z) ≤ d(x, y) + d(y, z).

dMIoU is by definition asymmetric. Moreover, it does not hold the triangle
inequality. A simple counterexample can be made with any three objects A, B,
and |A| = |C|, A ∩ C = ∅, and A ∪ C = B. This gives us MIoU(A,C) = 0,
MIoU(A,B) = 1, and MIoU(B,C) = 0.5. Consequently, dMIoU of those pairs are
1, 0, and 0.5, respectively. The triangle inequality dMIoU(A,C) ≤ dMIoU(A,B)+
dMIoU(B,C) yields the contradiction 1 ≤ 0+0.5. Therefore, dMIoU is not a metric
function.

It is easy to see that dTS-MIoU satisfies the positiveness condition as the area
under the intersection-ratio curve is non-negative and less than or equal to 1. The
strict positiveness also holds as long as (1, 1) ∈ Δ. This guarantees the inclusion
of the original time series in all comparisons, i.e., by computing r(T1, T2, (1, 1));
If T1 �= T2, no matter how subtle their differences might be, r(T1, T2, (1, 1)) > 0,
and hence dTS-MIoU > 0. The generalization discussed in Sect. 3.2 propagates the
symmetry property of IoU to dTS-MIoU. The reflexivity condition is trivial. And
lastly, dTS-MIoU’s triangle inequality is inherited from the triangle inequality of
dIoU (see the proofs in [11,18]); since TS-MIoU is the sum of a finite number
of IoUs, it therefore preserves the IoU’s triangle inequality condition. Therefore,
dTS-MIoU is indeed a metric function.

3.6 Time Complexity of TS-MIoU

A pseudo-code of TS-MIoU is given in Algorithm 1. Outside the loop, the area
can be computed in linear time (O(n), n being the number of iterations) using the
Riemann sum. Inside the loop, the segmentize method is responsible for binning
on the axes of a given time series. One possible implementation of this (e.g., see
the digitize method in the NumPy package [12]) can be achieved through a
binary search (with O(log(n)), where n is the number of bins). The logical and
and or operations on 2D arrays require O(r × c), where r and c are the number
of rows and columns of the binary matrices m1 and m2. This is the bottleneck
of TS-MIoU’s time complexity. If the proportional binning strategy discussed in
Sect. 3.4 is adopted, the number of and (or or) operations at the i-th iteration
will be (r · c)/4i. The overall complexity of the algorithm is then equivalent
to the sum of the geometric series

∑∞
i=0 (r · c)/4i which converges to 4/3(r ·

c). Therefore, the current implementation of TS-MIoU has a quadratic time
complexity. This is similar to the time complexity of the most popular similarity
measures such as DTW, EDR, and LCSS without any additional constraints.

TS-MIoU: A Time Series Similarity Metric Without Mapping 97

Algorithm 1: TS-MIoU Distance Metric
Input : T1, T2,Δ
output: TS-MIoU

1 function ts miou(t1: array, t2: array, Δ: array) : float
2 ratios = []
3 for δx, δy ∈ Δ :
4 m1 = segmentize(T1, δx, δy)
5 m2 = segmentize(T2, δx, δy)
6 union = m1 ∨ m2 /* logical or */
7 inters = m1 ∧ m2 /* logical and */
8 ratios.append(sum(inters) / sum(union))
9 tsmiou = 1 - area under curve(ratios)

10 return tsmiou
11 end

4 Experiments and Results

4.1 Experimental Settings

We conducted our experiments on 105 (out of 128) datasets of the UCR Time
Series Archive [7]. We excluded the 11 datasets with varying lengths of time series
because each similarity measure handles the varying length (if at all) differently,
and this would have introduced a confounding factor to our experiments. We
excluded another set of 12 datasets which contain very lengthy time series (> 900
elements). This decision was made primarily because for such long time series,
a full-size comparison of time series has limited application in the real world,
and failure or success of a similarity measure on such time series does not reveal
much about its weaknesses or strengths.

As a proof of concept, we compared TS-MIoU with Euclidean distance (EuD),
DTW, and LCSS. For the time series segmentation of TS-MIoU, we determined
the bin sizes (i.e., δx and δy) as discussed in Sect. 3.4. Except for 16 datasets,
for all other datasets, we defined the upper bounds of the bin sizes on the x
and y axes by setting cx = 2.5 and cy = 0.025, respectively. This difference
compensates for the difference in the range of the values on the two axes. For
the 16 datasets in which the ratio n/(M −m) was lower than 10, we noticed that
setting cy = 0.025 would make our segmentation method generate significantly
imbalanced bin-size sets (i.e., |δy|− |δx| ≥ 4). For these datasets, we increased cy

to 0.25 to reduce the difference. In all cases, we handled the imbalanced bin-size
sets (of x and y axes) by clipping the head of the longer sets.

Regarding DTW, for the results shown in Figs. 3 and 4, we used the
best values reported in the UCR official web site [8] (under the column
DTW (learned_w)). For LCSS, we used the tslearn Python package [32] and
we set the maximum matching distance threshold ε to one, i.e., the default value
in the package.

98 A. Ahmadzadeh et al.

4.2 Accuracy Gain of TS-MIoU

To fairly assess the overall quality of TS-MIoU, we use the so-called “Texas
sharpshooter plot”, as suggested in [3,7]. We compute the accuracy of the 1-NN
classifier, using leave-one-out cross-validation, on the training set Dtrain of each
UCR dataset, using an arbitrary distance function μ. We repeat the experiment
but this time we classify time series of the respective test set Dtest. The former
gives us the expected performance, denoted as âccμ, and the latter gives us the
actual performance, denoted as accμ. Using these quantities, we calculate the
expected gain (ĝμ,ref) and the actual gain (gμ,ref) of using the distance function
μ (i.e., TS-MIoU) over another distance function μref (i.e., DTW or EuD), for

each dataset. Precisely, ĝμ,ref =
âccμ(Dtrain)

âccμref(Dtrain)
and gμ,ref =

accμ(Dtest)
accμref(Dtest)

.

The aggregated results illustrated in Fig. 3 show that TS-MIoU (with
accTS-MIoU = 0.72 ± 0.19, âccTS-MIoU = 0.73 ± 0.20) can indeed make 1-NN
classifier to achieve a performance similar to that of DTW (with accDTW =
0.76 ± 0.19, âccDTW = 0.75 ± 0.21) and EuD (with accEuD = 0.71 ± 0.20,
âccEuD = 0.73 ± 0.22). Note that in this comparison, DTW’s parameter, the
warping window size, was already optimized for each dataset, whereas for TS-
MIoU a generic set of bin sizes were used. 1-NN with LCSS performed signifi-
cantly worse than the others, which shows its sensitive dependence on its param-
eter ε. Because of LCSS’s significantly lower accuracy values which resulted in
outside-the-range accuracy gain of TS-MIoU, we had to remove its corresponding
points from the Texas sharpshooter plot for better visibility.

There are four partitions in Fig. 4, namely true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The TP region represents
datasets on which TS-MIoU claimed to make improvements, and it did. In the
TN region, TS-MIoU made no such claims and no improvements were made
either. In the FN region, TS-MIoU improved 1-NN’s performance despite making
no claim about it. The worst cases lie in the FP region, where TS-MIoU falsely
claimed to achieve an improvement. Overall, TS-MIoU wins on 42 datasets (41%
of all datasets) over EuD, on 87 datasets (83%) over LCSS, and on 14 datasets
(13%) over DTW with learned window sizes. Although these numbers paint a
convincing picture of TS-MIoU’s effectiveness in many applications, this is not
the most informative way to analyze the outcome; even a handful of datasets
could be enough to show the unique value of a measure.

Looking at the distribution of the red and blue points in these regions, we
are interested in a few different angles. One is the magnitude of accuracy gain
1-NN benefits from. By recognizing all the points in the TP region, which are not
close to the center, it is evident that the improvement is not just marginal. For
example see the Worms dataset (marked in Fig. 4) on which TS-MIoU improved
1-NN’s performance significantly compared to both EuD and DTW, in both the
expected and actual cases. This shows TS-MIoU can in fact make a significant
contribution to the similarity search and retrieval applications. Another inter-
esting angle to consider is the reason as to why TS-MIoU significantly under-
performs in several cases, precisely in 51% of datasets compared to DTW and

TS-MIoU: A Time Series Similarity Metric Without Mapping 99

Fig. 3. The average expected and
actual accuracy values of 1-NN on the
UCR datasets, using four different dis-
tance functions.

Fig. 4. The Texas sharpshooter plot
showing the accuracy gain of 1-NN on
UCR datasets, using TS-MIoU as the
distance function over Euclidean dis-
tance and DTW.

40% compared to EuD. Our analysis reveals that in most of these cases our
generic binning strategy resulted in too large or too small bin sizes which could
not capture the discriminatory characteristics of time series. For example, time
series in TwoPatterns dataset have two distinct patterns; a white noise pat-
tern and a clear min-max binary pattern. Based on the class labels, it seems
that only the second pattern has discriminatory power. DTW did an excellent
job on this dataset (accDTW � 1.00) which makes it perhaps the most difficult
dataset to compete against DTW on. This nearly perfect performance is owed
to DTW’s learned window size and its success in the mapping of the binary
peaks and dips. The added distance corresponding to the (correct or incorrect)
mapping of the noisy patterns is almost constant across all pairwise comparisons
and does not have a significant impact on the 1-NN’s performance. Regarding
TS-MIoU, our generic binning strategy on the y-axis returns the bin size set
{0.01, 0.02, 0.04, 0.08, 0.16, 0.32} (since we set cy to 0.025). These disproportion-
ately small bin sizes results in accTS-MIoU = 0.57. Upon a quick grid-search on
cy, we found that changing the bin sizes to a much smaller but more effective
set, i.e., {0.5, 1.0} (by setting cy to 1.25), significantly boosts the performance
of 1-NN to 0.94. It might be interesting to note that the range of the noisy pat-
tern of TwoPatterns’s time series lies almost always within the range of 0.5 to
1.0, the bin sizes corresponding to cy = 1.25. This example is a strong evidence
supporting the power and flexibility of TS-MIoU when appropriate bin sizes are
used.

100 A. Ahmadzadeh et al.

5 Discussion, Conclusion, and Future Work

We introduced a similarity measure for time series, called Time Series Multiscale
Intersection over Union (TS-MIoU). The novelty of TS-MIoU lies in the fact
that unlike most of the other similarity measures, it does not require a point-to-
point mapping of time series. We discussed that this approach circumvents many
challenges such as pathological warping. TS-MIoU, however, is not intended to be
used for capturing non-co-occurring trends between time series. DTW measure
(with a large window size) and LCSS are more suitable for these applications
where the temporal alignment is of little or no importance. We also showed that
TS-MIoU is a metric function which makes it an excellent choice for indexing
algorithms.

In this proof-of-concept study, we only focused on the feasibility and applica-
bility of TS-MIoU in time series similarity analysis. One avenue that we wish to
explore is its pruning and further indexing potential. Sequential scan algorithms
can be used to illustrate the pruning power, independent of the actual indexing
structure [5]. The next natural step is to investigate the indexing of the TS-MIoU
algorithm in detail. Other than taking advantage of the triangle inequality con-
dition, another method for indexing is to apply the GEMINI framework where
lower-bounding is used. Since the TS-MIoU is based on box-counting, we could
adapt it for lower-bounding, similar to the Piecewise Aggregate Approximation
used in LB Keogh [16]. Another avenue of our future work is to adapt TS-MIoU
for streaming time series data. We will investigate the various dynamic normal-
ization methods, such as the ones based on z-normalization and min-max nor-
malization (e.g., [31] among many). Real-time processing combined with early
abandoning can greatly enhance TS-MIoU in real-world applications.

Acknowledgment. This project has been supported in part by funding from CISE,
MPS and GEO Directorates under NSF award #1931555, and by funding from the
LWS Program, under NASA award #80NSSC20K1352.

References

1. Ahmadzadeh, A., Kempton, D.J., Chen, Y., Angryk, R.A.: Multiscale iou: A met-
ric for evaluation of salient object detection with fine structures. In: 2021 IEEE
International Conference on Image Processing (ICIP), pp. 684–688 (2021). https://
doi.org/10.1109/ICIP42928.2021.9506337

2. Alt, H.: The computational geometry of comparing shapes. In: Efficient Algorithms,
Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. LNCS,
vol. 5760, pp. 235–248. Springer (2009). https://doi.org/10.1007/978-3-642-03456-
5 16

3. Batista, G.E.A.P.A., Wang, X., Keogh, E.J.: A complexity-invariant distance mea-
sure for time series. In: Proceedings of the Eleventh SIAM International Conference
on Data Mining, SDM 2011, 28–30 April 2011, Mesa, Arizona, USA, pp. 699–710.
SIAM / Omnipress (2011). https://doi.org/10.1137/1.9781611972818.60

https://doi.org/10.1109/ICIP42928.2021.9506337
https://doi.org/10.1109/ICIP42928.2021.9506337
https://doi.org/10.1007/978-3-642-03456-5_16
https://doi.org/10.1007/978-3-642-03456-5_16
https://doi.org/10.1137/1.9781611972818.60

TS-MIoU: A Time Series Similarity Metric Without Mapping 101

4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Knowledge Discovery in Databases: Papers from the 1994 AAAI Work-
shop, Seattle, Washington, USA, July 1994. Technical Report WS-94-03, pp. 359–
370. AAAI Press (1994)

5. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In:
(e)Proceedings of the Thirtieth International Conference on Very Large Data
Bases, VLDB 2004, Toronto, Canada, 31 August - 3 September 2004, pp. 792–
803. Morgan Kaufmann (2004). https://doi.org/10.1016/B978-012088469-8.50070-
X, https://www.vldb.org/conf/2004/RS21P2.PDF

6. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2005, pp. 491–502. Association for Computing
Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1066157.1066213

7. Dau, H.A., et al.: The UCR time series archive. IEEE CAA J. Autom. Sinica 6(6),
1293–1305 (2019)

8. Dau, H.A., et al.: The ucr time series classification archive (October 2018). https://
www.cs.ucr.edu/∼eamonn/time series data 2018/

9. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory
search. In: Proceedings of the 23rd International Conference on Data Engineering,
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, 15–20 April 2007, pp. 816–825.
IEEE Computer Society (2007). https://doi.org/10.1109/ICDE.2007.367927

10. Ge, F., Wang, S., Liu, T.: Image-segmentation evaluation from the perspective of
salient object extraction. In: 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 1146–1153. IEEE
(2006)

11. Gilbert, G.: Distance between sets. Nature 239, 174–174 (1972)
12. Harris, C.R., Millman, K.J., et al.: Array programming with NumPy. Nature

585(7825), 357–362 (2020)
13. Hong, J.Y., Park, S.H., Baek, J.G.: Ssdtw: Shape segment dynamic time warping.

Expert Syst. Appl. 150, 113291 (2020)
14. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11,

37–50 (1912)
15. Kadous, W., Taylor, S.A.: Grasp: Recognition of australian sign language using

instrumented gloves (1995)
16. Keogh, E.J.: Exact indexing of dynamic time warping. In: Proceedings of 28th

International Conference on Very Large Data Bases, VLDB 2002, Hong Kong, 20–
23 August 2002, pp. 406–417. Morgan Kaufmann (2002). https://doi.org/10.1016/
B978-155860869-6/50043-3, www.vldb.org/conf/2002/S12P01.pdf

17. Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358–386 (2005)

18. Kosub, S.: A note on the triangle inequality for the jaccard distance. Pattern
Recognit. Lett. 120, 36–38 (2019)

19. Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions,
and reversals. In: Soviet Physics Doklady. vol. 10, pp. 707–710. Soviet Union (1966)

20. Lin, B., Su, J.: Shapes based trajectory queries for moving objects. In: 13th ACM
International Workshop on Geographic Information Systems, ACM-GIS 2005, 4–5
November 2005, Bremen, Germany, Proceedings, pp. 21–30. ACM (2005). https://
doi.org/10.1145/1097064.1097069

21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

https://doi.org/10.1016/B978-012088469-8.50070-X
https://doi.org/10.1016/B978-012088469-8.50070-X
https://www.vldb.org/conf/2004/RS21P2.PDF
https://doi.org/10.1145/1066157.1066213
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1109/ICDE.2007.367927
https://doi.org/10.1016/B978-155860869-6/50043-3
https://doi.org/10.1016/B978-155860869-6/50043-3
www.vldb.org/conf/2002/S12P01.pdf
https://doi.org/10.1145/1097064.1097069
https://doi.org/10.1145/1097064.1097069

102 A. Ahmadzadeh et al.

22. Ma, R., Ahmadzadeh, A., Boubrahimi, S.F., Angryk, R.A.: Segmentation of time
series in improving dynamic time warping. In: 2018 IEEE International Conference
on Big Data (Big Data), pp. 3756–3761 (2018). https://doi.org/10.1109/BigData.
2018.8622554

23. Mandelbrot, B.B.: The fractal geometry of nature. 1982, San Francisco, CA (1982)
24. Marteau, P.: Time warp edit distance with stiffness adjustment for time series

matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2009)
25. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Pre-

dicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp.
Syst. 14(3), 1393–1402 (2013)

26. Mrak, S., et al.: Reliability of objective picture quality measures. J. Electr. Eng.
55(1–2), 3–10 (2004)

27. Pilgrim, I., Taylor, R.P.: Fractal analysis of time-series data sets: Methods and
challenges (2019)

28. Ratanamahatana, C.A., Keogh, E.: Everything you know about dynamic time
warping is wrong. In: Third workshop on Mining Temporal And Sequential Data,
vol. 32. Citeseer (2004)

29. Ratanamahatana, C.A., Keogh, E.J.: Making time-series classification more
accurate using learned constraints, pp. 11–22 (2004). https://doi.org/10.1137/1.
9781611972740.2

30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978).
https://doi.org/10.1109/TASSP.1978.1163055

31. Sukhanov, S., Wu, R., Debes, C., Zoubir, A.M.: Dynamic pattern matching with
multiple queries on large scale data streams. Signal Process. 171, 107402 (2020)

32. Tavenard, R., et al.: Tslearn, a machine learning toolkit for time series data. J.
Mach. Learn. Res. 21, 118:1–118:6 (2020)

33. Theiler, J.: Estimating fractal dimension. J. Optical Soc. Am. A-optics Image Sci.
Vis. 7(6), 1055–1073 (1990)

34. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional tra-
jectories. In: Proceedings 18th International Conference On Data Engineering. pp.
673–684. IEEE (2002)

35. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms, pp. 385–
394 (2000), www.vldb.org/conf/2000/P385.pdf

https://doi.org/10.1109/BigData.2018.8622554
https://doi.org/10.1109/BigData.2018.8622554
https://doi.org/10.1137/1.9781611972740.2
https://doi.org/10.1137/1.9781611972740.2
https://doi.org/10.1109/TASSP.1978.1163055
www.vldb.org/conf/2000/P385.pdf

Financial Machine Learning

Distributional Correlation–Aware
Knowledge Distillation for Stock Trading

Volume Prediction

Lei Li1,2, Zhiyuan Zhang1,2, Ruihan Bao3(B), Keiko Harimoto3,
and Xu Sun1,2(B)

1 MOE Key Lab of Computational Linguistics, Peking University, Beijing, China
lilei@stu.pku.edu.cn, {zzy1210,xusun}@pku.edu.cn

2 School of Computer Science, Peking University, Beijing, China
3 Mizuho Securities Co., Ltd., Tokyo, Japan

{ruihan.bao,keiko.harimoto}@mizuho-sc.com

Abstract. Traditional knowledge distillation in classification problems
transfers the knowledge via class correlations in the soft label produced
by teacher models, which are not available in regression problems like
stock trading volume prediction. To remedy this, we present a novel dis-
tillation framework for training a light-weight student model to perform
trading volume prediction given historical transaction data. Specifically,
we turn the regression model into a probabilistic forecasting model, by
training models to predict a Gaussian distribution to which the trading
volume belongs. The student model can thus learn from the teacher at a
more informative distributional level, by matching its predicted distribu-
tions to that of the teacher. Two correlational distillation objectives are
further introduced to encourage the student to produce consistent pair-
wise relationships with the teacher model. We evaluate the framework
on a real-world stock volume dataset with two different time window
settings. Experiments demonstrate that our framework is superior to
strong baseline models, compressing the model size by 5× while main-
taining 99.6% prediction accuracy. The extensive analysis further reveals
that our framework is more effective than vanilla distillation methods
under low-resource scenarios. Our code and data are available at https://
github.com/lancopku/DCKD.

Keywords: Knowledge distillation · Trading volume prediction

1 Introduction

Large deep neural networks (DNNs) like Transformer [30] have achieved superior
performance in various areas like computer vision [6], natural language process-
ing [5] and time series forecasting problems like stock trading volume predic-
tion [32]. However, the increase of model parameters demands more computa-
tional resources, limiting their applicability in latency-sensitive scenarios like
high-frequency trading (HFT). The pursuit of a better performance-efficiency
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 105–120, 2023.
https://doi.org/10.1007/978-3-031-26422-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_7&domain=pdf
https://github.com/lancopku/DCKD
https://github.com/lancopku/DCKD
https://doi.org/10.1007/978-3-031-26422-1_7

106 L. Li et al.

trade-off promotes an active research field toward compressing large DNNs while
maintaining promising model performance. Pilot model compression techniques
include pruning [8], quantization [11,28] and knowledge distillation [9,24]. Prun-
ing improves the parameter efficiency by de-activating redundant structures in
the network, and quantization focuses on exploring fewer bits for representing
the model weights. While effective in reducing the model size, these two meth-
ods require hardware-specific support for actually gaining the speed-up. On the
other hand, knowledge distillation (KD), trains a much smaller student model
by utilizing the learned knowledge from a large teacher model. It has been prove
successful in various classifications problems like natural language understand-
ing [26,29] and image classification [9,24], and recent studies have demonstrated
that KD can obtain a compact student model that matches or even outperforms
the teacher model [7,13,24].

Traditional knowledge distillation works relatively well for classification prob-
lems, as it can transfer the dark knowledge, i.e., the softened logits of the teacher
prediction, to the student. The softened logits contain richer supervision signals
than the vanilla one-hot class label, reflecting the semantic correlation between
different classes and thus boosting student performance. However, this advan-
tage cannot hold in regression problems like stock trading volume prediction, as
the teacher model only produces real-valued predictions which have an identical
characteristic to the oracle label. Without an optimal carrier for the learned
knowledge in the teacher, the effects of KD are limited in regression problems.

Fig. 1. Distributional knowledge distillation for regression problems. While conven-
tional KD for regression problems only transfers the knowledge by matching the scalar
yS to yT , our proposed distributional KD operates on the distributional level and
provides more informative supervision for the student.

To remedy this, in this paper, we propose a distributional knowledge distil-
lation framework for regression problems, as illustrated in Fig. 1. Specifically, we
first turn the problem into a probabilistic forecasting problem. We cast the trad-
ing volume prediction problem as a conditional probability distribution modeling
problem given the historical data. The teacher and the student are both proba-
bilistic forecasting models trained by minimizing the log-likelihood of the train-
ing data. The learned knowledge from the teacher model is then transferred to
the student by minimizing the discrepancy between the predicted distributions.

Distributional Correlation 107

Besides, recent studies have shown that the capacity gap between the teacher
model and the student model may harm the distillation effect [15,21], which is
also observed in our vanilla distributional KD framework. To alleviate this, we
design two correlations between different samples regarding the output distribu-
tions. The student is then trained to predict pair-wise correlations consistently
with the teacher model, by incorporating the correlation congruence objectives
into the distillation process. These objectives serve as auxiliary objectives to
provide more informative supervision for alleviating the capacity gap problem.
We validate our proposal by distilling a multiple-layer Transformer model into a
single layer student model. Experiments on a real-world stock volume prediction
dataset show that our framework can reduce the number of model parameters
by 5 times while maintaining 99.6% prediction accuracy. Further analysis shows
that our framework is more effective under low-resource settings and can make
the student produce more calibrated predictions.

2 Methodology

In this section, we first formulate the stock trading volume prediction problem
and introduce the metrics defined for evaluation. Followingly, we introduce con-
ventional knowledge distillation for classification problems. We then elaborate
the proposed distributional correlation-aware knowledge distillation framework
for the regression problem.

2.1 Task Formulation

Stock trading volume prediction aims at predicting the market trading volume
given historical transaction data. Specifically, given training dataset consists of
N data samples D = {(x1, y1), . . . , (xN , yN)}, where xi denotes the transaction
data including open, closing, lowest, highest price and the trading volume in the
past time windows, and yi is the target volume of the i-th sample. Our goal
is training a light-weight student model S, to predict the trading volume ŷ, by
learning from a larger teacher model T . The student performance is measured
by the mean squared error (MSE), mean absolute error (MAE) and prediction
accuracy (ACC):

MSE = E(x,y)∼D(ŷ − y)2,
MAE = E(x,y)∼D|ŷ − y|,
ACC = P(x,y)∼D ((ŷ − ylast) × (y − ylast) > 0) ,

(1)

where ylast is the volume of the most last time slot. Thus, ACC is the accuracy
of whether the volume increases or decreases compared to the last time slot.

2.2 Conventional Knowledge Distillation for Classification

Knowledge distillation is a classic framework for transferring the knowledge of
a larger teacher model to a light-weight student model. The main idea behind is

108 L. Li et al.

training the student model to mimic the outputs of the teacher model. Specifi-
cally, in a classification problem, given the one-hot label y, the student prediction
OS and the teacher prediction OT over the class set, KD is usually achieved by
minimizing both the hard label error and a soft label error between the student
and the teacher predictions:

LKD = αH (y,OS) + (1 − α)H (OT ,OS) , (2)

where H(·, ·) denotes the cross-entropy objective and α is a tuning parame-
ter controlling the relative contribution of cross-entropies. As OT usually con-
tains rich information regarding the semantic relationships between classes, the
student can capture more fine-grained structured information from the teacher
predictions than directly learning from the ground-truth label. However, this
characteristic cannot hold in regression problems like stock trading volume pre-
diction, as the teacher predictions are also real-valued scalars. The predicted
scalars of the teacher cannot convey more information to benefit the student,
motivating us to explore a better distillation framework for regression problems.

2.3 Distributional Knowledge Distillation for Regression Problems

To facilitate the distillation effect, we propose to cast the trading volume predic-
tion problem as a probabilistic forecasting problem, thus the information can be
transferred at the distribution level. Specifically, following DeepAR [25], instead
of directly predicting the scalar, we assume that the predicted trading volume
follows a Gaussian distribution N (μ, σ), turning the regression problem into a
likelihood model as:

p(y | μ, σ) =
1√

2πσ2
exp

(
− (y − μ)2

2σ2

)
. (3)

The Gaussian distribution is parameterized by a mean μ and a standard devia-
tion σ, which can be obtained by applying affine transformations on the model
encoding h of the input transaction data x:

μ (h) = wT
μ h + bμ

σ (h) = log
(
1 + exp

(
wT

σ h + bσ

))
,

(4)

where wμ, bμ, wσ and bσ are learnable parameters of the affine transforma-
tion. Note that the standard deviation is wrapped with a softplus activation to
ensure the value is positive. With this formulation, a model M can be trained
by minimizing the negative log-likelihood of the ground-truth data:

hi = M(xi)

LNLL = −
N∑

i=1

log p (yi | μ (hi) , σ (hi)) .
(5)

Distributional Correlation 109

We first train a teacher model with the above objective, and then transfer
the learned knowledge into the student model by minimizing the Kullback-
Leibler (KL) divergence between the Gaussian distributions [22] predicted by
the teacher and the student model:

LDKD = −
N∑
i

KL
(N (

μT
i , σT

i

) ‖N (
μS

i , σS
i

))

= −
N∑
i

(
log

σS
i

σT
i

+

(
σT

i

)2 +
(
μT

i − μS
i

)2

2
(
σS

i

)2 − 1
2

)
,

(6)

where μS
i , μT

i , σS
i and σT

i are the mean and standard deviation outputs of the
student model and the teacher model of the i-th data sample, respectively.

2.4 Transferring Knowledge via Correlation Consistency

Directly minimizing the KL-divergence between distributions can be challenging
for the student model, as revealed by recent studies regarding the capacity gap
between the teacher model and the student model [15,21]. To remedy this, we
introduce correlational knowledge distillation objectives which capture the pair-
wise relationships between the examples for alleviating this issue. Specifically,
given the outputs distributions of the teacher models and the students model on
m data samples:

NT =
[N T

1 , . . . ,N T
m

]
NS =

[N S
1 , . . . ,N S

m

]
.

(7)

A mapping function ψ is introduced for mapping the outputs to a pairwise
correlation matrix C:

ψ : N → C ∈ R
m×m. (8)

The element in C denotes the correlation between distributions on two sample
xi and xj :

Cij = ϕ (Ni,Nj) , Cij ∈ R. (9)

The function ϕ denotes a correlation metric that captures the relationship
between two Gaussian distributions, and the two options we designed for the
function will be elaborated later. The correlational knowledge in the teacher
then can be transferred by training student to minimize the congruence objec-
tive:

LDCKD =
1

m2
‖ψ (NS) − ψ (NT)‖2

2

=
1

m2

∑
i,j

(
ϕ

(N S
i ,N S

j

) − ϕ
(N T

i ,N T
j

))2
.

(10)

In this way, the student can learn to predict the correlation between instances
consistently with the teacher model. The correlational distillation objective
serves as an auxiliary objective. The student can first learn the correlations

110 L. Li et al.

Fig. 2. The main idea illustration of the proposed distributional correlation-aware dis-
tillation, which transfers the knowledge in the teacher model by matching the pre-
dicted Gaussian distributions, with correlational consistency distillation objectives for
improving the student performance.

between its own predictions according to the teacher predictions, then make
efforts towards predicting exactly the same as the teacher model. Followingly,
we introduce two correlation metrics regarding the distance-wise and the angle-
wise similarity between samples.

Distance-Wise Correlation. Given two Gaussian distributions, a straightfor-
ward correlation metric is the distance between these two distributions. Specifi-
cally, we adopt the Jeffreys divergence (JSD) as the distance between Ni(μi, σi)
and Nj(μj , σj) since it is symmetrized:

ϕDist(Ni,Nj) =
1
2

(KL (Ni‖Nj) + KL (Nj‖Ni))

=
1
2

(
1
σ2

i

+
1
σ2

j

)(
(σi − σj)

2 + (μi − μj)
2
)

.
(11)

We note that the JSD can be replaced with alternative distance measurements
like Wasserstein distance. As our goal is developing a distributional distillation
framework for regression problems and the JSD works well in practice, we leave
the explorations on the choices of distance metrics for future work.

Angle-Wise Correlation. Another commonly adopted similarity measure-
ment is the angle-wise correlation, which is a higher-order relationship than the
vanilla distance metric and thus can be more effective for transferring informa-
tion [23]. In the Euclidean space, cosine similarity is a commonly adopted for
evaluating the angle-wise correlation between two vectors:

cos〈u,v〉 =
(u,v)√

(u,u)(v,v)
, (12)

where (u,v) denotes the inner-product in the Euclidean space of two vec-
tors. We extend this idea to Gaussian distributions and design a corresponding

Distributional Correlation 111

angle-wise cosine similarity metric for probabilistic distributions. Specifically, we
define (Ni,Nj) as the inner-product in the Hilbert space:

(Ni,Nj) =
∫ +∞

−∞
Ni(t | μi, σi)Nj(t | μj , σj)dt . (13)

The cosine similarity thus can be calculated as:

ϕCosine (Ni,Nj) =
(Ni,Nj)√

(Ni,Ni)(Nj ,Nj)
=

√
2σiσj

σ2
i + σ2

j

exp

(
− (μi − μj)

2

2
(
σ2

i + σ2
j

)
)

.

(14)
We refer readers to Appendix A for the detailed proof of the inner-dot and the
cosine similarity of Gaussian distributions.

By combining the correlation metrics with the distillation objective, the stu-
dent model finally is trained by minimizing the following loss function:

L = λNLLLNLL + λDKDLDKD + λDistLDist-CKD + λCosineLCosine-CKD, (15)

where λNLL, λDKD, λDist and λCosine are hyper-parameters for tuning the relative
contribution of the proposed correlational distillation objectives. We name the
methods that setting λDist = 0 and λCosine = 0 as Cosine-CKD and Dist-CKD,
respectively. Figure 2 gives an overview of our proposed framework.

3 Experiments

In this section, we conduct experiments on a real-world stock trading volume
prediction dataset for evaluating the effectiveness of our framework. We first
introduce the dataset used for evaluation, followed by the details of compared
baseline models and implementation details for reproducible results. Finally, we
present the main results compared with strong baseline models.

Table 1. The statistics of the TPX500 datasets used in our paper. The training and
validation datasets have no time window overlapping with the test dataset to avoid
potential data leakage.

Dataset Hourly Daily

Split Training Validation Test Training Validation Test

of Samples 49,712 16,571 26,841 81,950 27,317 38,316

3.1 Datasets

We conduct our experiments by collecting trading data from the largest 500
stock names traded at Tokyo Exchange known as TPX500. For our research,
we construct two datasets with different time windows, i.e., an hourly intra-day

112 L. Li et al.

trading volume prediction dataset and a daily trading volume prediction dataset.
The two datasets are both extracted from the price and trading volume data of
the TPX500 between Jan. 2017 and June. 2018. Each data sample consists of
the open, closing, lowest, highest price and trading volume in the past time
windows and a target trading volume. We adopt the data of 2017 as the training
set and development set, and the samples between Jan. 2018 and Jun. 2018 are
adopted as the test set, making sure that the test set and the training dataset
are non-overlapping. The dataset statistics can be found in Table 1.

3.2 Baselines

We compare our methods to the following baseline models, including:
Moving average methods, which adopts the averaged last 20-day transaction
data as the predictions. We implement (1) Simple Moving Average (SMA), where
the predictions are the averaged trading volume of the last 20 days at the same
time slot, i.e., x̂ = 1

T

∑T
i=1 xi, and (2) Exponential Moving Average (EMA),

which pays more attention to the nearest values, by setting y1 = x1 and yt =
ρxt +(1−ρ)yt−1. yT is adopted as the prediction. We set ρ = 0.04 following [32].
Teacher-free methods, which requires no teacher model for training the stu-
dent. We implement two methods: (1) Min-MSE, where the student minimizes
the mean-square error between the prediction and the ground-truth volume,
and (2) DeepAR [25], which models the prediction as a conditional probability
distribution and maximizes the log-likelihood of the oracle data.
Distillation methods, which utilizes the teacher model for enhancing the stu-
dent model. Specifically, we implement (1) Vanilla KD [9], where the mean-
square error of the student predictions and teacher predictions and the objective
of the Min-MSE method are both optimized, similar to the original knowl-
edge distillation in the classification problem, and (2) Attentive Imitation
Loss (AIL) [27], where the supervision from imitating the teacher prediction
is adaptively adjusted according to the relative correctness of the teacher model.

3.3 Implementation Details

Without loss of generality, we adopt the Transformer [30] model as the backbone
model due to its powerful modeling ability. The teacher model consists of 6
Transformer layer, which contains a self-attention module and a feed-forward
network layer. We omit the description of the Transformer layer due to the
space limit and refer readers to the original Transformer paper [30] for details.
The student is a much smaller Transformer model with only one layer. The
number of input, number of hidden units and the output dimension are all set
to 200, and the hidden states are split into 8 heads for capturing sub-space
relations. The teacher and the student only differ from the layer number. The
resulting numbers of model parameters of the student and the teacher model
are 0.3M and 1.5M, respectively. To eliminate the influence of model capacity,
all the teacher-free models are of the same architecture with the student model
in distillation methods. For a fair comparison, we set the λNLL and λDKD to

Distributional Correlation 113

0.5, which is consistent with the α in Vanilla KD. We perform grid search over
the hyper-parameter λDist and λCosine in {1.0, 2.0, 5.0, 10.0} and select the best
performing parameters according to the validation performance. We adopt the
Adam [20] optimizer and initialize the learning rate with 0.001. The batch size is
set to 32 and the consistency matrix is computed in the mini-batch. We evaluate
the model performance on the validation set every 1000 steps, and test the best
model on the test set. We repeat every experiment with 7 random seeds and
report the averaged results with a GeForce GTX 1080Ti GPU.

3.4 Main Results

Table 2. Experimental results on two different time window settings comparing with
different baseline models. The best results are shown in bold. * denotes the results are
statistically significant compared with the best performing baseline with p < 0.05.

Dataset Hourly Daily

Model MSE (↓) MAE (↓) ACC (↑) MSE (↓) MAE (↓) ACC (↑)

Teacher model 0.195 0.335 0.731 0.124 0.265 0.665

20-day SMA 0.249 0.385 0.709 0.169 0.321 0.634

20-day EMA 0.288 0.413 0.696 0.196 0.344 0.632

Min-MSE 0.206 0.348 0.719 0.137 0.284 0.630

DeepAR [25] 0.204 0.347 0.721 0.139 0.288 0.627

Vanilla KD [9] 0.200 0.342 0.725 0.132 0.277 0.645

AIL [27] 0.202 0.344 0.722 0.134 0.282 0.634

DKD 0.201 0.342 0.724 0.133 0.279 0.639

w/Dist-CKD 0.202 0.344 0.726 0.129 0.272 0.652

w/Cosine-CKD 0.197∗ 0.339∗ 0.728∗ 0.128∗ 0.271∗ 0.656∗

w/Dist-CKD + Cosine-CKD 0.199 0.340 0.727 0.129 0.273 0.652

The main results on the TPX500 dataset with two different time-window settings
can be found in Table 2. It can be found that:

(1) Näıve moving average methods like 20-day SMA achieves high prediction
accuracy, even better than DNN-based models on the daily dataset. This reflects
a strong consistency of stock trading volume in time series, i.e., stocks with larger
trading volumes in the last 20 days will also have more active trading in the
future. However, regarding the absolute prediction error metrics MSE and MAE,
averaging methods fall far behind the DNN-based methods, which indicates that
the powerful DNNs are capable of capturing more complex data patterns behind
the time series data and thus making closer predictions. (2) Distillation meth-
ods like Vanilla KD and AIL consistently outperform methods without a teacher
model. This validates the effectiveness of KD by transferring the learned knowl-
edge from a larger teacher model into the student model to help improve the
student performance. (3) Our proposed correlation-aware distillation framework

114 L. Li et al.

Table 3. Experimental results on two settings. The best results are shown in bold.

Dataset Hourly Daily

Model MSE (↓) MAE (↓) ACC (↑) MSE (↓) MAE (↓) ACC (↑)

Vanilla KD [9] 0.200 0.342 0.725 0.132 0.277 0.645

DKD 0.201 0.342 0.724 0.133 0.279 0.639

w/Dist-CKD 0.202 0.344 0.726 0.129 0.272 0.652

w/Cosine-CKD 0.197 0.339 0.728 0.128 0.271 0.656

Only Dist-CKD 0.223 0.364 0.717 0.132 0.278 0.647

Only Cosine-CKD 0.199 0.341 0.726 0.138 0.286 0.633

achieves the best performance. For example, on the hourly dataset, conduct-
ing distributional KD with the cosine similarity correlation objective achieves
99.6% prediction accuracy of the teacher model, while reducing the model size
by 5×. It indicates that conducting KD on the distribution level and incorpo-
rating the correlation objectives are effective for enhancing the KD effect. (4)
Interestingly, we observe that the angle-wise objective consistently outperforms
the distance-wise correlation, which we attribute to the fact the angle correla-
tion is higher-order information, thus is more effective for the student model to
gain knowledge. Besides, combining two correlation objectives together cannot
bring further performance gain, indicating that the knowledge in the two cor-
relations can be overlapped to some extent. We leave the exploration towards
better incorporating different correlation objectives as future work.

4 Analysis

In this section, we conduct experiments for probing the property of our pro-
posed framework, by exploring the interplay between the distillation objectives,
investigating the performance gain under low-resource settings and examining
the pair-wise relationship with different distillation methods.

4.1 Interplay Between Distributional KD and Correlational KD

In our framework, there are two types of distillation objectives: individual distri-
butional distillation objective, i.e., the DKD distillation objective, and pair-wise
correlational distillation objectives, i.e., Dist-CKD or Cosine-CKD objective.
However, the interplay between these two distillation objectives remains unclear.
To investigate this, we examine the performance without the DKD distillation
objective in Eq. 6 by setting the λDKD to 0. The results are listed in Table 3. We
find that DKD alone performs worse than Vanilla KD, indicating that directly
mimicking the distributional level outputs of teacher models is more challenging
for the student than minimizing the discrepancy between single trading volume
values. On the other hand, the correlational distillation objective alone, i.e., only

Distributional Correlation 115

Dist-CKD and only Cosine-CKD also under-perform the Vanilla KD baseline, as
only learning the relative correlation of output distributions is not sufficient for
the student to predict accurately. It can be found that only when combined with
the correctional distillation objectives, distributional knowledge distillation can
achieve the best performance. These findings suggest that our proposed frame-
work is holistic, where the two types of distillation objectives are complementary
to each other to achieve optimal distillation performance.

4.2 Correlational Objectives Boost More with Fewer Data

As our framework can provide more informative supervision than conventional
KD, it can be more effective under low-resource settings. To investigate this, we
conduct experiments to compare the performance gain over the non-distillation
training methods, i.e., Vanilla KD and AIL over Min-MSE and our methods over
DeepAR. We vary the size of the training dataset from 10% to 100%, and plot
the performance gain regarding the reduction of the MSE and the MAE with
varying training dataset sizes in Fig. 3.

Fig. 3. The MSE (left) and MAE (right) reduction curve over the non-distillation
methods with varying dataset sizes of different distillation objective on the hourly
dataset. Our distributional correlation-aware distillation boosts the performance more
significantly under low-resource settings. Best viewed in color.

Our findings are: (1) The performance gain of distillation vanishes as the data
size becomes larger. It is reasonable as the small training dataset cannot provide
comprehensive supervision, while the extra information in the teacher predic-
tions can alleviate this problem. As the size of the training dataset increases, the
training samples cover more diverse data patterns, thus the student can directly
learn from the supervision provided by the original data samples instead of rely-
ing on the teacher predictions. This is consistent with previous studies which
observe that KD brings more performance boost on small datasets [17,29]. (2)
Compared with distillation methods solely based on the predicted scalar val-
ues, the proposed Dist-CKD and Cosine-CKD boost the performance more sig-
nificantly under low-resource settings. We attribute the success to the more

116 L. Li et al.

Table 4. Examining the Error Ranking Number of different methods on datasets with
different time window settings. The best results are shown in bold.

Dataset Hourly Daily

Model Error ranking number (↓) Error ranking number (↓)

Min-MSE 20,545,150 14,781,916

Vanilla KD [9] 20,011,092 14,369,730

AIL [27] 20,026,808 14,580,932

DeepAR [25] 20,042,538 14,490,082

DKD 20,036,694 14,363,378

w/Dist-CKD 19,841,196 14,294,670

w/Cosine-CKD 19,930,742 14,393,534

informative supervision brought by the distributional correlational-aware distil-
lation objectives, which helps the student make more accurate predictions even
with few training samples. (3) Dist-CKD reduces prediction error more under
low-resource settings while Cosine-CKD outperforms the Dist-CKD with the
full training dataset. We attribute the reason to that the cosine similarity is a
higher-order property than the distance-wise similarity, it may require more data
samples to fully exploit its effectiveness.

4.3 Correlational Objectives Improve Magnitude Ordering

We are interested in that whether the proposed correlational objective help the
model learn the relation between the output trading volumes, which can facil-
itate better trading decisions. To investigate this, we calculate the pair-wise
relations, i.e., the relative trading magnitude between samples, and probe the
relation consistency between the model predictions and the oracle trading vol-
ume. Specifically, given N data samples and the corresponding oracle volume
y1, . . . , yN , we define the error ranking score as:

Error Ranking Number =
N∑

i=1

N∑
j=1,j �=i

ErrorSign ((yi − yj) × (ŷi − ŷj)) ,

ErrorSign (x) =

{
1 if x ≤ 0,

0 otherwise.

(16)

This metric indicates how many pairs of data samples whose relative trading
volume magnitude are mispredicted by the model. We randomly sampled 12, 000
data samples from the test set and calculate the metric. The results are shown in
Table 4. Our observations are: (1) Distillation methods are effective for improving
the prediction consistency with the oracle model. Compared with training the
student model with the original mean-square error loss objective, Vanilla KD and
AIL both greatly reduce the error ranking number. This shows that transferring

Distributional Correlation 117

the knowledge from the teacher model to the student not only improves the
student prediction accuracy, but also makes the student become more aware of
the relative magnitude between predictions. (2) Our methods achieve the best
performance on both datasets. For example, on the hourly dataset, compared
with the Min-MSE method, Dist-CKD reduces the Error Ranking Number by
3.4%, which verifies that our proposed correlational distillation objectives can
help the model learn the relative trading volume magnitude better. Besides,
Dist-CKD performs consistently better than Cosine-CKD regarding the trading
volume magnitude relationship, which we attribute to the fact that the distance
correlation defined in Eq. 11 is a more explicit modeling of the magnitude relation
than the angle-wise objective.

5 Related Work

5.1 Knowledge Distillation

Neural network compression can produce light-weight models for efficient deploy-
ments, and it has been an active research area towards green and sustainable
deep learning [14,16,31]. Knowledge distillation [9,24] transfers the knowledge of
a larger teacher to a smaller student model, achieving a better trade-off between
model performance and inference efficiency. Recent studies show that KD is
effective in computer vision [21,23] and natural language processing [13,29],
successfully training a compact student model to perform on par with the large
teacher model. While previous studies focus on classification problems, in this
paper, we explore knowledge distillation for obtaining a compact student model
to perform time series forecasting. We build a distributional level knowledge dis-
tillation framework for trading volume prediction and propose two correlation-
aware distillation objectives. Our work is partially inspired by [23], which aligns
the pair-wise correlations of data representations in the teacher and the student
model. However, our framework focuses on the relationship of output distribu-
tions. Their method thus is orthogonal to our method and can be incorporated
into our framework for further performance boost. Besides, to the best of our
knowledge, we are the first to conduct knowledge distillation for the trading vol-
ume prediction problem and prove it is effective for obtaining light-weight and
well-performing models.

5.2 Volume Prediction

Stock trading volume prediction has a significant role in algorithmic trading
systems [2–4], which aims to predict the stock trading volume based on preced-
ing transaction data. Recently, progresses have been made towards more accu-
rate volume prediction via various machine learning techniques. Specifically, [19]
propose to adopt support vector machine (SVM) for the regression problem to
predict the changes of volume percentage. [18] exploit long short-term mem-
ory (LSTM) models [10] for its capability of modeling long-range dependency.

118 L. Li et al.

Besides, temporal mixture ensemble models [1], Bayesian auto-regressive mod-
els [12] and graph neural networks [33] are also explored in volume prediction.
[32] train a Transformer model [30] with adversarial objectives to improve the
model performance and robustness at the same time. In this paper, we focus
on distilling a more efficient trading volume prediction model and adopt the
powerful Transformer as the backbone model for distillation. Our framework is
generalizable and can be easily extended to other backbone models.

6 Conclusion

In this paper, we present a distributional knowledge distillation framework for
training light-weight trading volume prediction models. The learned knowledge
of the teacher model is transferred to the student model at the distributional
level, by minimizing the KL-divergence between the predicted Gaussian distri-
butions and the distance-wise and angle-wise correlation distillation objectives.
Experiments on the TPX500 dataset with two different time window settings
show that our framework can effectively compress the model while maintaining
accurate predictions. Further analysis shows that the correlational objectives sig-
nificantly boost the student performance under low-resource settings and make
the predictions more consistent with the oracle labels. In the future, we are
hoping to explore this framework for more general regression tasks.

Acknowledgements. We thank all the anonymous reviewers for their constructive
comments. This work is supported by a Research Grant from Mizuho Securities Co.,
Ltd. We sincerely thank Mizuho Securities for valuable domain expert suggestions and
the experiment dataset.

A Cosine Similarity of Gaussian Distributions

Proof. The inner-dot and the cosine similarity of Ni (μi, σi) and Nj (μj , σj) are:

(Ni,Nj) =
∫ +∞

−∞
Ni(t | μi, σi)Nj(t | μj , σj)dt

=
∫ +∞

−∞

1
2πσ2

i σ2
j

exp

(
− (t − μi)2

2σ2
i

− (t − μj)2

2σ2
j

)
dt

=
∫ +∞

−∞

1
2πσiσj

exp

⎛
⎜⎝− (t − μ′)2

2
σ2

i σ2
j

σ2
i +σ2

j

− (μi − μj)2

2(σ2
i + σ2

j)

⎞
⎟⎠ dt

=
1√

2π(σ2
i + σ2

j)
exp

(
− (μi − μj)2

2(σ2
i + σ2

j)

)

Distributional Correlation 119

where μ′ = μiσ
2
j +μjσ2

i

σ2
i +σ2

j
, (Ni,Ni) = 1√

4πσ2
i

, (Nj ,Nj) = 1√
4πσ2

j

,

ϕCosine (Ni,Nj) =
(Ni,Nj)√

(Ni,Ni)(Nj ,Nj)

=

√
(4πσ2

i)
1
2 (4πσ2

j)
1
2√

2π(σ2
i + σ2

j)
exp

(
− (μi − μj)2

2(σ2
i + σ2

j)

)

=

√
2σiσj

σ2
i + σ2

j

exp

(
− (μi − μj)

2

2
(
σ2

i + σ2
j

)
)

References

1. Antulov-Fantulin, N., Guo, T., Lillo, F.: Temporal mixture ensemble models for
intraday volume forecasting in cryptocurrency exchange markets. arXiv Trading
and Market Microstructure (2020)

2. Bia�lkowski, J., Darolles, S., Le Fol, G.: Improving vwap strategies: a dynamic
volume approach. J. Bank. Finan. 32(9), 1709–1722 (2008)

3. Brownlees, C.T., Cipollini, F., Gallo, G.M.: Intra-daily volume modeling and pre-
diction for algorithmic trading. J. Finan. Econ. 9(3), 489–518 (2011)

4. Cartea, Á., Jaimungal, S.: A closed-form execution strategy to target volume
weighted average price. SIAM J. Finan. Math. 7(1), 760–785 (2016)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–
4186 (2019)

6. Dosovitskiy, A., et al.: An image is worth 16×16 words: transformers for image
recognition at scale. In: ICLR (2020)

7. Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born-again
neural networks. In: ICML. Proceedings of Machine Learning Research, vol. 80,
pp. 1602–1611 (2018)

8. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

11. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: NeurIPS, pp. 4107–4115 (2016)

12. Huptas, R.: Point forecasting of intraday volume using bayesian autoregressive
conditional volume models. J. Forecast. (2018)

13. Jiao, X., et al.: Tinybert: distilling bert for natural language understanding. In:
Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
4163–4174 (2020)

14. Li, L., et al.: CascadeBERT: accelerating inference of pre-trained language mod-
els via calibrated complete models cascade. In: Findings of the Association for
Computational Linguistics: EMNLP, pp. 475–486 (2021)

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1503.02531

120 L. Li et al.

15. Li, L., Lin, Y., Ren, S., Li, P., Zhou, J., Sun, X.: Dynamic knowledge distillation
for pre-trained language models. In: EMNLP, pp. 379–389 (2021)

16. Li, L., et al.: Model uncertainty-aware knowledge amalgamation for pre-trained
language models. arXiv preprint arXiv:2112.07327 (2021)

17. Liang, K.J., et al.: MixKD: towards efficient distillation of large-scale language
models. In: ICLR (2021)

18. Libman, D.S., Haber, S., Schaps, M.: Volume prediction with neural networks.
Front. Artif. Intell. 2 (2019)

19. Liu, X., Lai, K.K.: Intraday volume percentages forecasting using a dynamic svm-
based approach. J. Syst. Sci. Complex. 30(2), 421–433 (2017)

20. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)
21. Mirzadeh, S., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh,

H.: Improved knowledge distillation via teacher assistant. In: AAAI, pp. 5191–5198
(2020)

22. Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman and
Hall/CRC, Boca Raton (2018)

23. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR,
pp. 3967–3976 (2019)

24. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
hints for thin deep nets. In: ICLR (2015)

25. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–
1191 (2020)

26. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. In: NeurIPS Workshop on Energy Effi-
cient Machine Learning and Cognitive Computing (2019)

27. Saputra, M.R.U., de Gusmão, P.P.B., Almalioglu, Y., Markham, A., Trigoni, N.:
Distilling knowledge from a deep pose regressor network. In: ICCV, pp. 263–272
(2019)

28. Shen, S., et al.: Q-BERT: hessian based ultra low precision quantization of BERT.
In: AAAI, pp. 8815–8821 (2020)

29. Sun, S., Cheng, Y., Gan, Z., Liu, J.: Patient knowledge distillation for BERT model
compression. In: EMNLP-IJCNLP, pp. 4323–4332 (2019)

30. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
31. Xu, J., Zhou, W., Fu, Z., Zhou, H., Li, L.: A survey on green deep learning. arXiv

preprint arXiv:2111.05193 (2021)
32. Zhang, Z., Li, W., Bao, R., Harimoto, K., Wu, Y., Sun, X.: ASAT: adaptively

scaled adversarial training in time series. arXiv preprint arXiv:2108.08976 (2021)
33. Zhao, L., Li, W., Bao, R., Harimoto, K., Wu, Y., Sun, X.: Long-term, short-term

and sudden event: trading volume movement prediction with graph-based multi-
view modeling. In: Zhou, Z. (ed.) IJCAI, pp. 3764–3770 (2021)

http://arxiv.org/abs/2112.07327
http://arxiv.org/abs/2111.05193
http://arxiv.org/abs/2108.08976

Banksformer: A Deep Generative Model
for Synthetic Transaction Sequences

Kyle Nickerson1(B), Terrence Tricco1, Antonina Kolokolova1,
Farzaneh Shoeleh2, Charles Robertson2, John Hawkin2, and Ting Hu3

1 Memorial University of Newfoundland, St. John’s, NL, Canada
kln870@mun.ca

2 Verafin Inc., St. John’s, NL, Canada
3 Queen’s University, Kingston, ON, Canada

Abstract. Synthetic data are generated data that closely model real-
world measurements, and can be a valuable substitute for real data in
domains where it is costly to obtain real data or privacy concerns exist.
Synthetic data has traditionally been generated using computational sim-
ulations, but deep generative models (DGMs) are increasingly used to cre-
ate high-quality synthetic data. In this work, we tackle the problem of gen-
erating synthetic, multivariate sequences of banking transactions.

A key challenge in modeling transactional sequences with DGMs
is that transactions occur at irregular intervals and may depend on
timestamp-based features, such as the time of day or day of the
week. Relationships between date-based features are often poorly rep-
resented in data generated using state-of-the-art sequence DGMs,
such as DoppelGANger [17] and TimeGAN [31]. To remedy this,
we propose a novel DGM, called Banksformer (Code available at
github.com/BigTuna08/Banksformer ecml 2022), which is able to emu-
late date-based patterns found in transactional data significantly bet-
ter than other DGMs. We demonstrate Banksformers’ ability to gener-
ate high-quality synthetic sequences of banking transactions by conduct-
ing a multi-faceted evaluation that compares synthetic data generated by
Banksformer to data from other comparable DGMs, across two datasets
of banking transactions.

Keywords: Synthetic data · Deep generative models · Transaction
sequences

1 Introduction

Synthetic data are becoming an increasingly important component in machine
learning systems. Recent work has demonstrated the ability of deep genera-

We wish to acknowledge the support of Mitacs through Accelerate funding for applied
research.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 8.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 121–136, 2023.
https://doi.org/10.1007/978-3-031-26422-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_8&domain=pdf
https://github.com/BigTuna08/Banksformer_ecml_2022
https://doi.org/10.1007/978-3-031-26422-1_8
https://doi.org/10.1007/978-3-031-26422-1_8

122 K. Nickerson et al.

tive models (DGMs) to produce high-quality synthetic data in domains such as
images [10], text [3], and audio [6]. Each of these domains has presented unique
challenges, which were addressed by modifying model architectures from previ-
ous tasks to be more suited to the target task. Success in these general domains
has led to the creation of focused, domain-specific models. One domain that has
received considerable recent interest is financial data.

Financial data is a broad category, however most existing work on DGMs in
finance focuses on modeling price sequences for stocks and other financial instru-
ments [13,25,29]. Another important type of financial data is transactional data;
that is, data that contains sequences of records or transactions recorded at arbi-
trary intervals. Transactional data is common in finance but also occurs in other
domains. For example, both a sequence of purchase records from a credit card and a
sequence of entries in electronic health records are transactional. In general,model-
ing transactional data is more challenging than other time-series data, as we must
learn to model the intervals between transactions in addition to the transaction
features. This can be particularly challenging in a domain such as banking, where
the date and time of a transaction can be strongly related to the transaction type
and amount. Further, certain types of dates, such as the weekends or the end of
the month, can significantly influence what transactions occur.

Evaluating the quality of synthetic data is a difficult problem without a sin-
gle clear solution [1,9,26]. Ideally, we would like to measure a distance between
the real and synthetic data distributions; however, this is not feasible for multi-
dimensional sequence data. A seemingly general approach would be to use the
log-likelihood the generative model assigns to validation data. Unfortunately, this
approach is known to have issues [26], and also depends on the model being able
to assign likelihood scores, which is possible for transformers but not generative
adversarial networks (GANs) [8]. Existing work generating financial time series
is limited but commonly evaluates the quality of generated data by comparing
univariate features distributions [13,29]. However, these univariate metrics only
give a rough picture of the synthetic data quality. These metrics cannot mea-
sure how well the synthetic data captures feature interactions and interactions
between sequence elements.

The main goal of this work is to produce high-quality synthetic financial trans-
action sequence datasets, with the same statistical properties as real data upon
which they are based. We propose Banksformer (BF), a novel transformer-based
DGM designed to model transactional data with date-based patterns. GANs have
typically been used as the generative model in previous work generating sequential
financial data [13,25,29]. To demonstrate the benefits of our approach, we com-
pare BF against two high-quality GAN models – TimeGAN (TG) [31] and Dop-
pelGANger (DG) [17] – on two datasets of banking transaction sequences.

2 Datasets

We used two datasets of banking transactions to compare the quality of syn-
thetic data produced by BF with data produced by TG and DG. The first is

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 123

a set of real banking data from the Czech Republic in the 1990s1 (czech), and
the second is a synthetic dataset of transactions from the UK in 20172 (uk).
Both datasets contain transaction records from many different bank accounts,
with the uk dataset containing 5 000 unique accounts, and the czech containing
4 500 accounts. Each transaction contains the dollar value of the transaction,
multiple categorical codes that have information about the transaction type,
and a timestamp indicating when the transaction occurred. To create a uniform
representation between datasets, we concatenate together all categorical codes
into a single field called the tcode (transaction code). In the czech data there
are 16 unique tcodes, and the uk dataset has 44 (Table 1). The timestamp in the
czech dataset only contains the transaction date, and not the specific time of
day. Because of this, we do not use the time of day information in the uk dataset
and focus only on modeling the transaction dates.

Table 1. Dataset Summary. Properties of the czech and uk data sets. Columns show
the number of unique accounts (Accts), total number of transactions (Total Trans),
statistics on the number of transactions per account (Trans per Acct), number of unique
transcations codes (Tcodes), and the date range.

Accts Total trans Trans per Acct Tcodes Date range

Count Count Min Max Mean Count Start End

Czech 4500 1.06×106 9 675 235 16 01/01/1993 31/12/1998

UK 5000 105 2 50 20 44 01/04/2017 25/05/2017

We are primarily interested in the czech dataset, which was initially made
available as part of the Discovery Challenge at the 1999 PKKD conference [23].
This dataset is likely to lead to more meaningful results than the uk dataset for
three main reasons. First, the czech dataset contains real banking data. This is
in contrast to the uk dataset, which is a synthetic dataset. Second, the czech
dataset contains over 1 M transactions, making it over ten times larger than
the uk dataset, which has only 100K transactions. Because the datasets have
a similar number of unique accounts, this means there are comparatively fewer
transactions per account in the uk dataset (Table 1). Finally, the uk data is
also from a much smaller range of dates, containing less than two months’ data,
whereas the czech dataset spans five years. Transactional banking data often
contains date-based patterns, which can be difficult for DGMs to emulate. In
the uk dataset, the most significant date-based patterns are related to the day
of the week. In that dataset, transactions never occur on Sunday. Further, certain
types of transactions are related to the day of the week, and happen more or less
often on certain days. Because the uk dataset spans less than two full months,

1 https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-
transactions.

2 https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-
a1d67a7752ac; this blog post explores using DG to create synthetic data.

https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-a1d67a7752ac
https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-a1d67a7752ac

124 K. Nickerson et al.

we do not consider patterns related to the day of the month. In contrast, the
czech dataset does not contain any apparent relationships involving the day of
the week. However, in the czech data there are clear patterns related to the day
of the month, with certain types of transactions only occurring at the month’s
end, and others only happening early in the month.

We transform this dataset of transactions into transaction sequences by
grouping together transactions by account, and then sorting the transactions for
each account by date (and time in the uk dataset). In order to create more uni-
form datasets, we filtered out sequences shorter than a minimum length parame-
ter lmin (5 for uk and 20 for czech), and split sequences longer than lmax (20 for
uk and 80 for czech) into multiple contiguous subsequences, so that all sequences
used for training and validation have length in the range [lmin, lmax]. In addition
to the features present in each transaction, there is also meta-data information
associated with each sequence. This meta-data contains the starting account bal-
ance, start date of the sequence, and for the czech dataset, the customers’ age
at the start of the sequence. To preprocess the data for the generative models,
continuous features are linearly scaled to have a variance of 1, and categorical
features are encoded with a one-hot encoding. In the generic preprocessing step
used by all models, we follow the method of [17] and represent time information
by providing the start date as meta-data and including a time delta feature with
each transaction that indicates the amount of time that has passed between
transactions. When using BF, we perform a further preprocessing step (detailed
in Sect. 5.1) to create additional date-based features which BF requires.

3 Methods

3.1 Generative Adversarial Networks (GANs)

GANs [8] are a commonly used generative model, and are capable of generating
high-quality synthetic data in many domains [3,6,10]. TG [31] and DG [17] are
two GAN models that have been successful at generating complex multivariate
sequence data. Each of these models has unique innovations that allow them to
generate high-fidelity synthetic sequences. In TG, an embedding scheme is used
so that the generator and discriminator are operating in an embedded space, and
a supervised loss based on predicting the next sequence element is used in addi-
tion to the standard GAN training objective. In DG, there are many innovations,
including batch generation to better capture long-term dependencies, a condi-
tional generation mechanism to deal with relationships between metadata and
sequences, and a custom auto-normalization scheme that reduces mode collapse.

3.2 Transformers

The transformer architecture [27] was designed to perform sequence modeling
tasks without a recurrence, instead relying on an attention mechanism and posi-
tional encoding scheme to model sequence ordering. While originally proposed as
a language model [27], transformers have since been applied to modeling many

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 125

types of sequences [14,30]. In this work, we use the transformer-decoder (TD)
[18] variant of the transformer, as this is most appropriate for generating novel
sequences. TD is designed as an auto-regressive model that can model prob-
ability distributions over sequences. The main innovations in the transformer
and TD architectures are positional encodings (PEs) and multi-head attention
(MHA). Since transformers do not use recurrence, and process all sequence ele-
ments simultaneously, the PEs are designed to allow the model to learn ordered
sequences by adding a PE vector to the initial embedding. While there are many
possible options for creating PE vectors, a standard choice for d-dimensional
PE vectors is for the ith dimension, corresponding to input position t, to be
sin(t/10000i/d) if i is even, and cos(t/10000i/d) otherwise. The MHA mecha-
nism allows the model to create multiple sequence representations by projecting
the encoded sequences into multiple sub-spaces. Scaled dot-product attention
[27] is then applied separately in each sub-space. When TD models are applied
to sequences of discrete symbols, including language, they are trained using
the maximum-likelihood objective of minimizing the negative log-likelihood of
observed sequences, −log(P (seq;Θ)), with parameters Θ. The probability of a
length n sequence, s = (x1, ..., xn), is computed using the auto-regressive factor-
ization p(seq;Θ) =

∏n
i=1 p(xn|x1, ..., xn1 ;Θ), which is implemented by the TD.

4 Related Work

There are several different approaches to creating and evaluating synthetic finan-
cial time series. Here, we give a brief overview of the most relevant works.

4.1 Synthetic Financial Time Series

Traditionally, agent-based models were used to generate synthetic sequences of
financial banking data [2,19], similar to the type of data modeled in our work,
as well as for generating synthetic stock-market data [4,12,21].

Methods based on DGMs have recently begun to outperform agent-based
approaches in generating realistic, univariate financial sequences [11,24,25,29];
however, there is less research on generating multivariate financial data. A GAN
model for generating multivariate sequences of stock option prices was proposed
in [28]. The work most similar to ours is StockGAN [13], which generates syn-
thetic stock-market order-stream data, where each sequence item contains infor-
mation about the order price, quantity, type, and date.

Methods based on DGMs have recently begun to outperform agent-based
approaches in generating realistic, univariate financial sequences [11,24,25,29].
There is less research on generating multivariate financial sequences; however,
[28] introduced a GAN model for generating multivariate sequences of stock
option prices, and [13] proposed StockGAN, which generates synthetic stock-
market order-stream data.

A critical difference between the banking data we are interested in and the
datasets used in these works on financial time series is the transactional nature
of our data. The previously mentioned works all aim to model sequences where

126 K. Nickerson et al.

measurements are taken at regular intervals, such as daily stock prices. In our
transactional data, the time between transactions varies, and the timing informa-
tion plays a critical role influencing the transactional properties. Existing work
on modeling transactional data with DGMs is limited, and we are not aware of
other works which have solely focused on this task. In the papers which intro-
duced both TG [31] and DG [17], the authors briefly discuss how their models
can be used on data with irregular time intervals. In both cases, the authors
suggest adding a time delta feature to indicate the time between elements and
modeling this like a typical continuous feature. However, neither of these works
attempts to show that their models can learn patterns based on dates or times.

To the best of our knowledge, transformers have not yet been applied to the
task of generating synthetic financial time-series data. Originally proposed as
a language model, transformer models such as GPT-3 can generate novel text
with narrative structure [3]. Transformers have also been applied to modeling
other types of time series data, including influenza prevalence [30], as well as
electricity usage and traffic [7,14,16].

4.2 Evaluation of Synthetic Sequence Data

The evaluation of synthetic data depends upon its planned use. If synthetic data
is planned to augment training data, then one approach is to train the model on
synthetic data and evaluate its predictive performance on real data [17,31]. If it
can achieve comparable accuracy on real data to a model trained on real data,
then this is taken as evidence of the quality of the synthetic data. This approach
is less valuable when the use of the synthetic data is not known a priori.

Continuous Data. A simple way to evaluate synthetic financial time-series
data is to compare univariate distributions, using metrics such as the 1-
Wasserstein distance [29] or Kolmogorov-Smirnov distance [2,13]. For multivari-
ate data, these distances can be computed separately for each feature of interest
[13]. A limitation is that these metrics do not consider interactions between fea-
tures, nor sequence order. Due to the limited work in generating multivariate
banking data, there are no domain-specific metrics we are aware of. In works on
financial sequences of asset prices, such as [13,29], domain-specific metrics were
used that focused on well-documented features that occur in real market data
known as stylized-facts [5].

Categorical Data. [13] studied synthetic financial time-series that generates
data with both categorical and continuous-valued features, however, their evalu-
ation only focused on continuous features. [32] use a randomly initialized LSTM
model to generate a dataset of discrete sequences that were used to train their
sequence generator. The LSTM model was then used to evaluate the likelihood
of the data produced by the generator. [15] adopt a similar approach, performing
additional validation experiments on real text sequences. To evaluate the quality
of the generated text, they use BLEU scores [22], which measure the proportion
of N-grams in the generated data that also occur in the real data.

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 127

5 Banksformer

We have created a modified TD model, called Banksformer (BF), to generate
multivariate sequences of banking transactions. There are two main innovations
in the design of BF. First, a preprocessing step allows BF to model sequences
of items that contain multiple features of different types, including continuous
and categorical features, as well as dates. Second, BF uses a novel method for
generating multivariate time series data, in which each field of a transaction is
generated sequentially. Our results indicate that this allows BF to better learn
the joint distribution, such as p(amount, tcode) as the product of two simpler
distributions p(amount, tcode) = p(tcode)p(amount|tcode).

5.1 Date Mechanism

The unique way Banksformer handles dates involves two parts – encoding and
prediction. In BF, we create multiple features based on the timestamp to facili-
tate learning date-based patterns. Specifically, the day of the month (DoM), the
number of days until the months’ end (DTME), the day of the week (DoW),
and the month of the transaction are each represented using two features. The
two features are f1 = sin (2πi/ni) and f2 = cos (2πi/ni), where i is an ordering
index and ni is the number of possible indices (e.g., i = 0 and ni = 12 when
encoding the month of January). Additionally, BF also models a time delta (Δt)
feature, as is done in TG and DG.

The way we have chosen to encode the date information helps BF learn date
patterns; however, it also clearly contains redundancy. When generating data
with BF, we first generate a probability distribution over the result for each
date feature, and then create a distribution over the transaction date as

p(date) =
1
Z

∏

field∈{DoM,DTME,DoW,month,Δt}
pfield(date[field]), (1)

where Z is a normalizing constant.
We implement this with the following approach. First, a maximum time

between transactions is set to make the approach feasible. The distribution over
the time delta feature is modeled with a truncated Gaussian distribution, cover-
ing the range from 0 to the maximum time. BF outputs two features for the time
delta, which are interpreted as the mean and variance to the truncated Gaus-
sian. For each of the other features, BF outputs a categorical distribution over
the options, which is created by a softmax layer. To compute the normalizing
constant for the distribution, we sum the normalized probabilities of all dates
between 0 and the maximum number of days from the current date. We then
sample a date from this distribution, and then convert the selected date back
into the separate date features.

5.2 Architecture

Figure 1 outlines the architecture of BF, which is composed of 3 main parts. The
input layer takes a sequence of multivariate transactions and maps it to a dmodel

128 K. Nickerson et al.

Fig. 1. An illustration of BF. (A) An overview of BFs architecture. (B) A zoomed-
in view of the output layers, showing how BF sequentially handles transaction parts.
When generating data, the * boxes indicate a sampling operation that samples a value
from the input distribution. During training, teacher forcing is used, and the * boxes
indicate the true value which should have been produced by the input distribution. (C)
A further zoomed-in view of the date layer, showing that each piece of date information
is predicted independently from the context, which encodes the sequence of previous
transactions and the true value of the tcode for the current transaction.

dimensional sequence to which the positional encoding is added. The decoder
stack then processes the encoded sequence and emits a context sequence that
encodes predictions about the next element in the sequence. Finally, the output
layers process each context and transform them into transaction predictions.

Input Layer. The input layer in BF is fully connected and simply maps the
input data with dimension dinput to a representation with dimension dmodel,
which is used throughout the decoder stack.

Decoder Stack. After the input layer, BF contains a stack of 4 identical
decoder layers, following a similar design as the decoder layers used in [27].
Each decoder layer is composed of two sub-layers. The first is a masked multi-
head self-attention layer. This layer allows the network to attend to all sequence
positions less than i when predicting the ith element. This design follows the
decoder stack in [18]. The final decoder layer emits a vector with size dmodel.
Our BF synthetic datasets were created using dmodel = 128 (see Supplementary
materials for a complete list of parameters).

Output Layer. In BF, the output contains multiple important pieces of
information. This work focuses specifically on three: a categorical tcode, a
transaction date, and a real-valued amount. The output layer of BF con-
tains a conditional generation mechanism, which generates each of these
values sequentially, and conditions each value on all previous ones. In the
end, our model represents the probability distribution of the kth transaction
(transk) in a sequence as p(transk|hist) = p(tcodek|hist) · p(date|hist, tcodek) ·
p(amount|hist, tcodek, date), where hist is the transaction history up to the kth

element of the sequence.

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 129

Loss Function. The loss function used for training BF treats each piece of
information within a transaction separately, with the overall loss a weighted
sum of individual losses. For continuous features, BF outputs predictions as
parameters to a normal distribution, and the loss is the negative log probability
of the data under the distribution. For categorical features, categorical cross-
entropy is used.

5.3 Generating Data

BF generates synthetic data in the following way. The first element of the
sequence contains the metadata, transformed into a vector with the same dimen-
sionality as the feature dimension of the training sequences. A sequence of l
transactions is then iteratively generated. At each step, the current generated
sequence is passed as input, and the next element in the sequence is output. This
element is then concatenated to the existing generated sequence. When generat-
ing a transaction, BF generates each attribute in a predefined order, conditioning
each attribute on all previous attributes. Each generated attribute is output by
a unique, fully connected layer. For categorical attributes, the raw output from
the associated layer is passed through a softmax function to create a probability
distribution over possible values, and the generated value is randomly sampled
from this distribution. For continuous attributes, BF outputs two features, which
are treated as the mean and variance of a normal distribution, and the generated
value is sampled from this distribution. The transaction date is sampled from
the distribution in Eq. 1, following the method detailed in Sect. 5.1.

6 Results

In this section, we present a comparison of synthetic data generated by BF, TG,
and DG on both the czech and uk datasets. Due to space limitations, the fig-
ures in this section focus on results from the czech dataset; however, we have
included additional figures further detailing our results on the uk dataset as a
supplementary PDF. For BF and TG, all synthetic sequences had an equal num-
ber of transactions (20 for uk, 80 for czech), and the start dates (plus ages for
the czech data) were randomly sampled from the empirical distribution in the
real datasets. In contrast, DG generates sequence lengths and meta-data along
with the transaction sequences. To better understand the quality of our gener-
ated data, we use a set of metrics to evaluate multiple aspects of our synthetic
data.

6.1 Univariate Distributions

The most straightforward metrics are based on comparing univariate feature dis-
tributions for the continuous and categorical features. We use the Wasserstein-1
distance for distributions of continuous variables and the Jensen Shannon diver-
gence (JSD) for discrete variables to quantify the difference in univariate distri-
butions. For continuous variables, we compare the distributions of transaction

130 K. Nickerson et al.

amounts and monthly cash flow. The monthly cash flow of an account is simply
the sum of all credits and debits (positively and negatively-valued transaction
amounts) in a given month. We are interested in cash flow distributions because,
unlike the transaction amount, cash flow is not directly modeled as a variable in
the training data. However, cash flow is still an important facet of bank data. If
synthetic data can capture the cash flow patterns from the real training data, this
will support the claim that the model is learning the actual data distribution.
As we can see from Fig. 2, the synthetic data generated by BF best captured the
monthly cash flow patterns from the real data. This is supported quantitatively
as well (Table 2). The amount distribution produced by BF was quantitatively
worse than both TG and DG on the czech data (Table 2). However, when viewed
on a log scale, BF appears to better capture the three modes of the real amount
distribution Fig. 2. On the uk dataset, BFs’ amount distribution was closest to
the real data. The data generated by BF also performs best at emulating the
tcode distribution in the czech data, which can be seen in Fig. 2 and Table 2.
DG does nearly as well as BF at capturing the tcode distribution on the czech
data, and slightly better than BF on the uk data.

Fig. 2. Comparison of univariate distributions in czech data. This figure shows a com-
parison of the distributions for the tcode (top), log amount (middle), and monthly cash
flow (bottom) in the synthetic datasets produced by BF, DG, and TG.

6.2 N-grams

We also compare N-gram distributions for the categorical feature to measure
the models’ ability to capture sequence orderings. Here we focus on 3-grams,
and use the JSD to quantify differences in these distributions. We experimented
with other values of N and the results did not change significantly. However,
the JSD becomes harder to estimate as N increases because the empirical N-
gram distributions become worse estimates of the true N-gram distributions

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 131

Table 2. Results Summary. The first 2 score columns are the Wasserstein-1 distances
comparing the univariate amount (Amt) and monthly cash flow (CF) distributions
respectively. The next two columns are JSD results comparing the univariate distribu-
tions of the tcode (Tcode) and transaction day of the month (DoM). The final columns
are also JSD results. The Tcode 3G column show the JSD between the distributions of
tcode 3-grams. And finally, the (Tcode, Date*) column compares the joint distributions
of tcode and the most significant categorical date feature, which is DoM for the czech
data, and DoW for the uk data. The bottom three results for the czech dataset show
the results of ablation experiments; ablation results for the uk dataset can be found in
the supplementary PDF.

Data Model Amt CF Tcode DoM Tcode 3G Tcode, Date*

Czech BF 2102 2738 0.004 0.011 0.042 0.251

DG 1939 57800 0.007 0.090 0.132 0.660

TG 1931 4980 0.075 0.059 0.337 0.638

BF-ND 3705 4191 0.009 0.059 0.059 0.595

BF-NC 3580 4775 0.158 0.006 0.411 0.542

TF-V 4726 4138 0.185 0.059 0.445 0.674

UK BF 42.6 541.8 0.015 0.024 0.156 0.008

DG 179.0 1051 0.011 0.034 0.135 0.061

TG 116.0 1460 0.237 0.087 0.622 0.077

due to the curse of dimensionality. We attempted to mitigate this with additive
smoothing [20], however this did not significantly change the results, so the
results we present are based solely on comparing empirical distributions. Figure 3
compares the distributions of the most common N-grams, and shows both BF
and DG produce more accurate N-gram distributions on the czech data than
TG. This is supported by quantitative results in Table 2, which also show that
BF outperforms DG in terms of the JSD metric on the czech dataset. This metric
also shows DG performs slightly better than BF on the uk dataset.

Fig. 3. 3-gram frequency comparison. This figure compares the frequency of the 25
most commonly occurring 3-grams in the real czech data, for each of the synthetic
datasets.

132 K. Nickerson et al.

6.3 Joint Distributions

One limitation of the previous metrics is that they do not account for how
well feature interactions are modeled in the synthetic data. To get a sense of
the overall joint distribution, we can visually compare the distributions of two-
dimensional projections of the datasets (Fig. 4). To create this visualization, we
follow the approach of [31], The sequences were first flattened along the temporal
dimension and then a PCA model was fit to the real data. All data sets are
projected into 2D using this PCA fit. Figure 4 shows that there are multiple
peaks in the real czech data, and that BF reproduces these peaks on the whole.
DG only poorly reproduces the real data, yielding a bimodal distribution, and
TG focuses on a single mode.

Fig. 4. PCA visualization of czech data. The two principal components of the data
distributions obained using PCA. The generated data are projected using the PCA
model that was fit to the real data.

Figure 5 shows the distribution over the day of the month for two specific
tcodes that only occur at specific times of the month. The top row is for interest
credited to the account, which only happens on the last day of the month, and the
bottom row is a type of debit transaction that only occurred between the 5th and
14th of the month. BF is the only model able to learn the date pattern associated
with these tcodes. In particular, our model can correctly generate transactions
at the end of the month, even though the last day of the month may occur
on days 28 to 31. The JSD may be used to quantify how well the relationship
between tcodes and categorical date features were learned in general. Table 2
shows the JSD for the czech data, using the joint (tcode, DoM) distributions,
and the uk data, using joint (tcode, DoW) distributions. For both data sets, BF
significantly outperforms both DG and TG.

Different transaction types also have different associated amount distribu-
tions. In Fig. 6, we compare the conditional amount distributions for the two
most common tcodes in the czech dataset. In this figure, we can see that BF,
TG and DG all appear to have approximately learned the relationship between
amount and tcode. Additionally, this figure also shows qualitative differences
in the conditional amount distributions produced by the different models. BF
tends to produce narrower, symmetric distributions, which are centered near the

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 133

Fig. 5. Date, tcode relationship in czech data. This figure shows the conditional dis-
tribution of the transaction day of the month, given the tcode, for two tcodes that are
strongly related to the date. This figure shows that BF (left) is the only model which
has learned the relationship between these tcodes and the date.

mean of the real data; whereas both DG and TG tend to produce much wider,
asymmetric distributions.

6.4 Ablation

To illustrate the impact of the innovations behind BF, we perform ablation
experiments on conditional generation and date generation mechanisms. Specif-
ically, we create the following three ablated versions of BF:

– A version without the date mechanism (BF-ND). In this implementation, we
model the date using only the time delta feature, as is done in TG and DG.

– A version without conditional generation (BF-NC). In this implementation,
we generate all transaction fields simultaneously.

– A basic transformer model with neither mechanism (TF-V).

The results from these experiments are shown in Table 2, which validate
that both mechanisms introduced to the architecture of BF led to improved
performance on most metrics. This was particularly true for the metrics that
measured joint distributions, as well as metrics related to the amount, where
BF scored much better than the ablated versions, and TF-V scored noticeably
worse. For other metrics, different ablations had different impacts. The BF-NC
version did worse than BF-ND on comparisons of both the tcode and tcode 3-
gram distributions, with BF-NC being comparable to TF-V on these metrics.
Similarly, BF-ND does worse than BF-NC and is comparable to TF-V on the
DoM metric, which compares the distributions of transaction day of month.

Overall, these results are in line with expectations. It is somewhat surprising
that the conditional generation mechanism improved the distributions of tcodes
and tcode 3-grams, as the tcode is the first feature produced when generating
conditionally. It may be that without conditional generation, the other features

134 K. Nickerson et al.

Fig. 6. Amount, tcode relationship in czech data. This figure shows a comparison of
the conditional distributions p(amount|tcode) produced by BF, DG and TG, against
real data for the two most common tcodes in the real data.

become more difficult to model, causing the model to spend more effort learning
those relationships, and less on the tcodes. We plan to investigate this further
in future work.

7 Discussion

Our experiments show that the design of BF led to a clear improvement over TG
and DG in modeling financial transactional sequences. Qualitatively, the most
significant area of gain is in modeling the joint relationship between dates and
transaction types, as only BF was able to learn these. Quantitatively, BF also
created data that better matched the statistical properties of real data, according
to the majority of the metrics we considered. Through ablation experiments, we
demonstrated that both of BFs’ innovations, the date mechanism and conditional
generation for the individual transaction fields, improved synthetic data quality.
We believe a promising future direction for this work is to explore hybrid models
and combine innovations from BF, TG, and DG. There are multiple approaches
we have in mind to explore this idea, including adapting the date mechanism
from BF to GAN models based on TG and DG, and adding an adversarial
training step to BF.

Another critical area for future work is to examine the privacy implications of
these models. One major motivation for studying synthetic banking transaction
data is to minimize reliance on real private data. However, before these models
can be used to generate synthetic data to replace real data with genuine privacy
concerns, users must be aware of any potential information which could be leaked
through synthetic datasets.

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences 135

Reproducible Research Statement. Code for Banksformer is available at
github.com/BigTuna08/Banksformer ecml 2022, as well as copies of the datasets
and links to the other models used in this work. The synthetic datasets we have
generated are available upon request.

References

1. Alaa, A.M., van Breugel, B., Saveliev, E., van der Schaar, M.: How faithful is your
synthetic data? sample-level metrics for evaluating and auditing generative models.
CoRR abs/2102.08921 (2021)

2. Assefa, S., Dervovic, D., Mahfouz, M., Balch, T., Reddy, P., Veloso, M.: Generat-
ing Synthetic Data in Finance: Opportunities, Challenges and Pitfalls. InfoSciRN:
Data Protection (Topic) (2020)

3. Brown, T., Mann, B., Ryder, N., et al.: Language models are few-shot learners.
In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901.
Curran Associates, Inc. (2020)

4. Byrd, D., Hybinette, M., Balch, T.H.: ABIDES: towards high-fidelity market sim-
ulation for AI research. ArXiv abs/1904.12066 (2019)

5. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues.
Quant. Finan. 1, 223–236 (2001)

6. Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: Gan-
synth: adversarial neural audio synthesis. arXiv:1902.08710 (2019)

7. Farsani, R.M., Pazouki, E.: A transformer self-attention model for time series fore-
casting. J. Electr. Comput. Eng. Innov. (JECEI) 9(1), 1–10 (2021)

8. Goodfellow, I., et al.: Generative Adversarial Networks. ArXiv abs/1406.2661
(2014)

9. Jordon, J., Yoon, J., van der Schaar, M.: Measuring the quality of synthetic data
for use in competitions. arXiv:1806.11345 (2018)

10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. CoRR abs/1912.04958 (2019)

11. Koshiyama, A., Firoozye, N., Treleaven, P.: Generative adversarial networks for
financial trading strategies fine-tuning and combination. Quant. Finan. 21(5), 797–
813 (2021)

12. LeBaron, B.: Chapter 24 agent-based computational finance. In: Handbook of Com-
putational Economics, vol. 2, pp. 1187–1233. Elsevier (2006)

13. Li, J., Wang, X., Lin, Y., Sinha, A., Wellman, M.: Generating realistic stock market
order streams. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, pp. 727–734 (2020)

14. Li, S., Jin, X., Xuan, Y., et al.: Enhancing the locality and breaking the mem-
ory bottleneck of transformer on time series forecasting. In: Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

15. Li, Z., Xia, T., Lou, X., et al.: Adversarial discrete sequence generation without
explicit neural networks as discriminators. In: The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 3089–3098. PMLR (2019)

16. Lim, B., Arık, S., Loeff, N., Pfister, T.: Temporal Fusion Transformers for inter-
pretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764
(2021)

https://github.com/BigTuna08/Banksformer_ecml_2022
http://arxiv.org/abs/1902.08710
http://arxiv.org/abs/1806.11345

136 K. Nickerson et al.

17. Lin, Z., Jain, A., Wang, C., Fanti, G., Sekar, V.: Using GANs for sharing networked
time series data: challenges, initial promise, and open questions. In: Proceedings of
the ACM Internet Measurement Conference, IMC 2020, pp. 464–483. Association
for Computing Machinery, New York (2020)

18. Liu, P.J., Saleh, M., Pot, E., et al.: Generating Wikipedia by Summarizing Long
Sequences. ArXiv abs/1801.10198 (2018)

19. Lopez-Rojas, E.: Applying Simulation to the Problem of Detecting Financial
Fraud. Ph.D. thesis, Blekinge Institute of Technology (2016)

20. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

21. Panayi, E., Harman, M., Wetherilt, A.: Agent-based modelling of stock markets
using existing order book data. In: MABS (2012)

22. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318 (2002)

23. Berka, P., Sochorova, M.: PKKD 1999 Discovery Challenge (1999). Accessed 01
Apr 2022

24. Silva, B.D., Shi, S.S.: Towards Improved Generalization in Financial Markets with
Synthetic Data Generation (2019)

25. Takahashi, S., Chen, Y., Tanaka-Ishii, K.: Modeling financial time-series with gen-
erative adversarial networks. Physica A: Stat. Mech. Appl. 527, 121261 (2019)

26. Theis, L., Oord, A.V.D., Bethge, M.: A note on the evaluation of generative models.
arXiv preprint arXiv:1511.01844 (2015)

27. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS 2017, pp.
6000–6010. Curran Associates Inc., Red Hook (2017)

28. Wiese, M., Bai, L., Wood, B., Buehler, H.: Deep hedging: learning to simulate
equity option markets. arXiv preprint arXiv:1911.01700 (2019)

29. Wiese, M., Knobloch, R., Korn, R., Kretschmer, P.: Quant GANs: deep generation
of financial time series. Quant. Finan. 20(9), 1419–1440 (2020)

30. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series
forecasting: the influenza prevalence case. CoRR abs/2001.08317 (2020)

31. Yoon, J., Jarrett, D., van der Schaar, M.: Time-series generative adversarial net-
works. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

32. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial
nets with policy gradient. In: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI 2017, pp. 2852–2858. AAAI Press (2017)

http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1911.01700

Stock Trading Volume Prediction
with Dual-Process Meta-Learning

Ruibo Chen1, Wei Li2, Zhiyuan Zhang1, Ruihan Bao3(B), Keiko Harimoto3,
and Xu Sun1(B)

1 Peking University, Beijing, China
{ruibochen,zzy1210,xusun}@pku.edu.cn

2 Beijing Language and Culture University, Beijing, China
liweitj47@blcu.edu.cn

3 Mizuho Securities Co., Ltd., Chiyoda-ku, Japan
{ruihan.bao,keiko.harimoto}@mizuho-sc.com

Abstract. Volume prediction is one of the fundamental objectives in
the Fintech area, which is helpful for many downstream tasks, e.g., algo-
rithmic trading. Previous methods mostly learn a universal model for
different stocks. However, this kind of practice omits the specific charac-
teristics of individual stocks by applying the same set of parameters for
different stocks. On the other hand, learning different models for each
stock would face data sparsity or cold start problems for many stocks
with small capitalization. To take advantage of the data scale and the
various characteristics of individual stocks, we propose a dual-process
meta-learning method that treats the prediction of each stock as one task
under the meta-learning framework. Our method can model the common
pattern behind different stocks with a meta-learner, while modeling the
specific pattern for each stock across time spans with stock-dependent
parameters. Furthermore, we propose to mine the pattern of each stock in
the form of a latent variable which is then used for learning the param-
eters for the prediction module. This makes the prediction procedure
aware of the data pattern. Extensive experiments on volume predictions
show that our method can improve the performance of various baseline
models. Further analyses testify the effectiveness of our proposed meta-
learning framework.

Keywords: Volume prediction · Meta-learning · Dual-process

1 Introduction

Stock trading volume prediction is one of the fundamental objectives in the Fin-
tech area, which plays a crucial role in various downstream tasks, e.g., algorithmic
trading. Volume prediction aims to predict the absolute volume value or the move-
ment trend within a certain period of time based on the historical trading-related
information. Considering the importance of volume prediction, many researchers
have been devoted to predicting the volume. Both classical machine learning mod-
els and deep learning models have been applied in volume prediction. For instance,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 137–153, 2023.
https://doi.org/10.1007/978-3-031-26422-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_9

138 R. Chen et al.

Liu and Lai [13] propose to predict the volume with the dynamic SVM method.
Chen, Feng, and Palomar [2] propose to adopt a Kalman filter approach. While
Libman, Haber, and Schaps [10] first propose to apply the LSTM models in vol-
ume pre-diction, which is popularly used for sequence prediction.

Although these methods have produced practicable prediction results, they
basically model different stocks with one universal set of parameters. This kind
of approach omits the individual characteristics of each stock. For example, the
volumes of stocks with different scales of capitalization or from different indus-
tries can follow quite different movement patterns. On the other hand, learning
different sets of parameters for each stock would face severe data sparsity and
cold start problems, especially for newly listed stocks.

Based on the above observations, we propose to introduce the meta-learning
framework into volume prediction. Under the proposed meta-learning frame-
work, we propose to treat each stock as one individual task, while a meta-learner
is responsible for learning the general pattern from the whole market. The meta-
learner is updated according to the learning process of each task, so that its
parameters can stay sensitive to individual tasks.

Apart from the pattern variation among different stocks, we assume that
the pattern of one stock from different time spans can vary too. Therefore,
we propose a dual meta-learning process that makes the parameters not only
sensitive to different stocks (tasks), but also sensitive to different time spans. To
model the movement pattern of each stock at a specific period, we propose to
learn a latent variable for each sampled batch from that period of time with an
encoder. This latent variable is then fed into a decoder to produce the actual
prediction parameters. Note that the encoder-decoder framework instead of the
prediction model plays the role of meta-learner in our method. This dual meta-
learning process makes the latent variable sensitive to different time periods
inside given the given stock while the decoder sensitive to different stocks (tasks).

To test the effectiveness of our proposed dual meta-learning process method,
we conduct experiments on the TPX500 volume prediction dataset. Extensive
analyses show that our dual meta-learning process outperforms the traditional
methods and neural network baselines on five-minute and ten-minute dataset.
Our codes have been made public.1

We conclude our contributions as follows:

– We propose to introduce the meta-learning framework into the volume pre-
diction task to take advantage of both the general pattern and the individual
stock patterns. In order to model the specific patterns of each stock, we apply
an encoder-decoder framework, which encodes the volume variation trend into
a latent variable.

– We propose a dual meta-learning process method to make the meta-learner
sensitive to both the task-specific pattern and the time-specific pattern.

– Experiment results show that our proposed method can significantly improve
the performance of various popularly applied baseline models.

1 https://github.com/RayRuiboChen/DPML.

https://github.com/RayRuiboChen/DPML

Stock Trading Volume Prediction with Dual-Process Meta-Learning 139

2 Related Work

2.1 Stock Market Prediction

As deep learning techniques developed rapidly in recent years, much effort has
been made in the finance area, such as stock market prediction. Existing meth-
ods are mainly based on classic models, such as Feedforward Neural Networks
(FNN) [1,24], Convolutional Neural Networks (CNN) [20,22], Recurrent Neural
Networks (RNN), including Gated Recurrent Unit model (GRU) [12] and Long-
Short Term Memory model (LSTM) [16,21]. Liu et al. [11] first use Capsule
Network based on Transformer Encoder to predict stock movements. Ding et al.
[3] propose several enhancements to the basic Transformer in stock movement
prediction.

2.2 Meta-Learning

Recent meta-learning approaches can be basically classified into three categories,
metric-based, model-based and optimization-based techniques.

Metric-based methods like Siamese networks [8] use neural networks to map
the input into a feature space, and predict labels by comparing the similar-
ity between features from support sets and query sets. Matching networks [27]
absorbs the same idea and learns a network to map the support sets and unla-
belled examples to their labels. Cosine similarity is used and they are trained in
the few-shot setting. Prototypical networks [23] generate a prototype for each
class in the feature space for comparing, increasing the robustness and reduc-
ing the time for inference. Relation networks [25] propose to use a network to
work as the similarity function, which breaks the limits of pre-defined similarity
metrics and exploits the task-specific information.

Model-based techniques usually use a fixed neural network at test time, and
use various memory techniques to store the information from previously seen
inputs or tasks. Meta Networks [15] use fast weights and slow weights to generate
task-specific weights. SNAIL [14] use the temporal convolution and attention
mechanisms to improve memory capacity.

Optimization-based techniques are aimed at learning new tasks quickly with
optimization methods and they mostly view meta-learning as a bi-level opti-
mization problem. In the inner level(usually described as the inner loop), a base
learner is proposed to make task-specific adjustments and the outer level(the
outer loop) is concerned with performance across tasks. Model Agnostic Meta-
Learning (MAML) [4] uses second-order derivatives to find the most sensitive
parameters in the parameter space for fast adaptation to new tasks. A large
number of variations [5,6,17,18] are proposed afterwards. Meta-SGD [9] learns
a learning rate vector and aims to adapt to the given task in one optimization
step. Latent Embedding Optimization [19] proposes an encoder-decoder archi-
tecture and optimizes in the latent embedding space under the few-shot setting.

However, previous methods mostly concentrate on classification tasks and
are more suitable for few-shot learning. When presented with a larger dataset,

140 R. Chen et al.

they often cannot perform well and are computationally expensive [7]. Thus, we
propose the dual meta-learning process, which are able to solve both classification
and regression problems and can deal with the few-shot setting as well as large
support set scenarios.

Algorithm 1. Meta-Train
Require: Stocks S, Encoder e, Decoder d, prediction model f , learning rates

α, β, γ
Initialize encoder parameters φe, decoder parameters φd

for i=1,2,... do
For Si = (Dtrain

i ,Dtest
i), zi is the latent variable of Si

φdi
= φd

for a few steps
Sample a time span t1 with batch {xt1 , yt1} from Dtrain

i

z = e(φe, xt1)
for a few steps:

θ′ = d(φdi
, z)

L1 = loss(f(θ′, xt1), yt1)
z = z − α∇zL1

end for
zi = zi + β(z − zi)
θi = d(φdi

, zi)
Sample another time span t2 with batch {xt2 , yt2} from Dtrain

i

L2 = loss(f(θi, xt2), yt2)
Update φe, φdi

using L2

end for
φd = φd + γ(φdi

− φd)
end for

3 Approach

In this paper, we propose the dual meta-learning approach on top of the encoder-
decoder framework. The encoder-decoder framework is responsible for extracting
the patterns behind the data and learning latent variables z representing the
task data distribution, while the dual meta-learning process is to keep the model
parameters sensitive to different stocks from different time spans. Our model first
generates latent variables z for each stock with the help of the encoder, which
represent the characteristics of the stocks. Then we calculate the parameters
θ for actual prediction models through the decoder using latent variables z. A
dual meta-learning process with two layers is proposed to endow the encoder-
decoder framework with the ability to learn the features and similarities among
stocks regarding both stock level and time scale level. The inner meta-learning
layer optimizes z for each stock by learning different time spans while the outer

Stock Trading Volume Prediction with Dual-Process Meta-Learning 141

layer focuses on different stocks and meta-learn through the encoder-decoder
framework, making the parameters sensitive to changes, such that the model
can quickly adapt to different tasks. Figure 1 visualizes the whole optimization
steps illustrated in Algorithm 1.

Fig. 1. An overview of the optimization steps in the dual meta-learning process.

3.1 Encoder-Decoder Framework

Instead of learning high-dimensional prediction module parameters θ directly,
we propose to apply the encoder-decoder framework to learn the pattern behind
stock data with latent variables z, which is represented in the form of low-
dimensional vectors for each stock. The encoder maps the input data x to z
in the latent space, and z serves as the input of the decoder. Note that the
parameters θ for the prediction module f are produced by the decoder, and the
final prediction result y′ can be computed as y′ = f(θ, x).

Encoder. The encoder can effectively capture the patterns behind data and
transform the knowledge into low-dimensional latent variables. It takes input
data x as input and generate latent variables. Given a batch of data x, y, the
encoder e together with its parameters φe, we calculate the latent variable z as:

z = e(φe, x) (1)

The latent variables contain local information and patterns for each batch with
unique time spans, and they will then be generalized in the inner meta-learning
layer process to produce the latent variable for the whole stock.

142 R. Chen et al.

Decoder. The decoder is designed to output proper prediction model parame-
ters θ based on different latent variables for different stocks. Instead of treating
all stocks uniformly, the proposed decoder makes every stock attached with its
own prediction model parameters, which makes the prediction module sensible
to the pattern of individual stocks. The decoder works as:

θ = d(φd, z) (2)

where d and φd represent the decoder and its parameters, z is the latent variable
fed into the decoder.

Fig. 2. A visualization of how the encoder-decoder framework interacts with the dual
meta-learning process. Note that in the inner layer, the encoder is only used to initialize
the latent variable z, linked by dashed line. In the outer layer, the encoder is not
involved. The gradients of the encoder parameters φe can be backpropagated through z.

3.2 Dual Meta-Learning Process

Different stocks and different time spans compose two major challenges for the
stock volume prediction task. Stocks are heavily influenced by the companies’
actual performance, while time span features can vary according to accidental
events or policies. Thus, we propose the dual meta-learning process to make
our model better utilize the specific characteristics of different stocks and time
periods.

Intuitively, we separate the process into two layers. The inner meta-learning
layer is intended to learn the pattern behind different time spans and to make the
model more precise and robust when handling new time spans in the future. The
outer layer focuses on different patterns behind different stocks and makes sure
the model gains sufficient global knowledge while learning individual features.

Note that our dual meta-learning process is fundamentally different from the
traditional bi-level setting in optimization-based techniques, as the inner layer
uses a meta-learning approach to meta-learn inside a single task, and the outer
layer resembles the classic bi-level problem. A tri-level setting among instance
level(time span), task level(single task) and task distribution level(all tasks) is
actually proposed and processed.

Stock Trading Volume Prediction with Dual-Process Meta-Learning 143

As we store latent variables zi for stocks, and optimize the model in the
latent space for zi and the parameter space for the encoder-decoder framework,
which will be shown in the following sections, our dual meta-learning process has
the feature for both model-based techniques and optimization-based techniques.
The detailed architectures of the dual-process meta-learning are shown in Fig. 2.

Inner Meta-Learning Layer. The inner meta-learning layer mainly functions
inside different time spans in one stock. To generate a stock latent variable that
is sensitive to time spans, we do not use the whole training data in the support
set, which can be large, time consuming and can omit the information for small
time scales. Instead, we sample a batch of data {xt1 , yt1} which are continuous
in time and represent the stock pattern during the given time span t1.

The inner layer works by incorporating the characteristics of latent variables
z for each batch into the stock latent variable zi. For each z initialized by the
encoder, we first optimize it by using inner meta-train loss L1, which is computed
as:

θ′ = d(φd, z) (3)

L1 = loss(f(θ′, xt1), yt1) (4)

Note that all other parameters like φe, φd are kept fixed in the inner layer’s
meta-learning procedure.

After a few steps, we add the underlying information for the certain time
span in optimized z into the latent variable for the i-th stock zi by:

zi = zi + β(z − zi) (5)

Outer Meta-Learning Layer. In contrast to the inner layer meta-learning
process, the outer layer is designed to learn the pattern behind different stocks.
The encoder-decoder framework and distinctive stock latent variables introduce
a large amount of uniqueness, and the outer meta-learning layer secures enough
global knowledge by learning and generalizing comprehensive patterns between
stocks, allowing quick adaptation to new tasks.

We keep global encoder parameters φe and decoder parameters φd across
different stocks in the outer meta-learning layer. To obtain the similarities in
different stocks, in every epoch we create unique decoder parameters φdi

for the
i-th stock and initialize it with φd. Similar to the inner layer, the outer layer also
uses optimized φdi

to carry stock-specific knowledge.
Note that in the outer meta-learning layer, we sample another batch of data

{xt2 , yt2} from a different time span t2. We do not directly use {xt1 , yt1} sampled
in the inner layer in order to avoid overfitting on the same time span and enhance
the generalization ability of the model. Given φdi

and optimized zi, the outer
meta-train loss L2 is computed as:

θi = d(φdi
, zi) (6)

144 R. Chen et al.

L2 = loss(f(θi, xt2), yt2) (7)

In the outer meta-learning layer, we only update φe, φdi
using L2 and keep zi

fixed. The alternate optimization separated in two layers similar to Generative
Adversarial Networks helps layers to reach local optima in each step and finally
move to global optima during the meta-training procedure.

After φdi
is optimized, we tune φd towards φdi

in the parameter space by:

φd = φd + γ(φdi
− φd) (8)

In this process, φd meta-learn the differences between different stocks with the
help of first-order gradients and become sensitive in the parameter space, mini-
mizing the expected loss across task distribution as Nichol et al. [17] discussed.

3.3 Inference

The meta-learning setup consists of meta-training, meta-development and meta-
test stages. Tasks for meta-development and meta-test are not seen during the
meta-train stage, thus evaluating the generalization ability of the trained model.
Considering the tri-level setting proposed in our dual meta-learning process, the
dataset segmentation can be done from the task level and instance level, and
different inference algorithms are proposed as follows.

Segmentation in the task level coincides with traditional settings, and in the
stock market prediction area, we can simply view different stocks as different
tasks. During meta-training, only part of the stocks are available, and the meta-
test stage focuses on results on unseen stocks. In this time, inner layer must
first be applied to acquire the latent variable zi for the new task, which can
be efficiently initialized by using the mean of latent variables of meta-training
tasks.

However, in application, the stock market prediction problems are mostly
time series analysis problems, where all stocks are available, but time spans are
restricted. We propose instance level dataset segmentation for this kind of data,
that all stocks are available but time spans are divided for meta-train, meta-
evaluate and meta-test in chronological order. This is more suitable in real work
application and we are more concerned with the performance on the unknown,
future time spans.

The inference algorithm is given in Algorithm 2. The meta-train process
provides a proper representation for each stock as different latent variables and
globally effective parameters for encoder and decoder. As φd are meta-learned
and sensitive to changes in the parameter space, we optimize the φd using the
support set for the corresponding stock for a few steps to make it quickly adapt
to the given task. Then we use the prediction model parameters produced by
the tuned decoder to evaluate and get the final prediction result. This process
is similar to meta-learning techniques like MAML and Meta-SGD.

Stock Trading Volume Prediction with Dual-Process Meta-Learning 145

Algorithm 2. Inference
Require: Stocks S, Decoder d, model f

For Si = (Dtrain
i ,Dtest

i)
φdi

= φd

for a few steps
Sample a time span t with batch {xt, yt} from Dtrain

i

θ′ = d(φdi
, zi)

Lt = loss(f(θ′, xt), yt)
Update φdi

using Lt

end for
θi = d(φdi

, zi)
Compute Ltest = loss(f(θi, x), y) for x, y in Dtest

i

3.4 Model Agnostic

An important feature of the encoder-decoder framework is that it can be easily
applied to any models. For example, we can replace the last fully-connected
(FC) layer with the encoder-decoder framework, where input data x are the
input vectors for the original last FC layer. In this situation, the given model
like LSTM or Transformer can be viewed as a feature extractor. The feature can
then be fed into the encoder-decoder framework to be processed. This makes
our approach model-agnostic, which means that existing models can leverage
our dual meta-learning process to improve performance. If a feature extractor
network F is used, we first pre-train the feature extractor on the meta-training
dataset. Then the input batch can be presented as {F (xt), yt} given time span
t. The feature extractor can be optimized in the outer layer using L2 during
meta-training stage.

4 Experiment

4.1 Tasks and Datasets

Dataset and Data Preprocessing. In this paper, we adopt five-minute and
ten-minute intra-day volume prediction dataset. The two datasets are extracted
from the Topix500 dataset with volumes and open, close, high, low prices. The
input data consists of log volumes and prices of the previous 12 time slots(in
the same day) and the same time slots in the previous 20 trading days. We
dropped the data instances which have missing volumes or prices. The target of
our prediction task is to regress the log volume.

Our data were collected between 2017 and 2018. We choose the proposed
instance level data segmentation to simulate the application scene. We adopt
the data of 2017 for meta-training set and meta-development set, and the data
of Jan.2018 and Feb.2018 as the test set. The training set and development set
are split by time. The statistics of the two datasets are shown in Table 1.

146 R. Chen et al.

Table 1. Statistic information on the two datasets

Dataset Five-minute Ten-minute
Split Meta-train Meta-dev Meta-test Meta-train Meta-dev Meta-test

Samples 106139 35359 27189 318383 81562 76418

Evaluation Metrics. We adopt three evaluation metrics for our volume pre-
diction task: mean squared error(MSE), mean absolute error(MAE) and accu-
racy(ACC). Given input data pair {x, y}, prediction result ŷ = f(θ, x), the
three metrics are defined as: MSE = E(x,y)∼D(ŷ − y)2, MAE = E(x,y)∼D|ŷ − y|,
ACC = P(x,y)∼D((ŷ − vlast)(y − vlast) > 0).

Here vlast represents the volume of the last time slot and ACC is the accuracy
of whether the predicted volumes vary in accordance with the ground truth
compared with the last time slot.

4.2 Baselines

Traditional Methods

– Naive forecasting. In our experiment, the naive forecasting algorithm uses
volumes of last time slot or the same slot in yesterday.

– Simple moving average (SMA). The simple moving average algorithm
calculates the naive average value. In our experiment, we adopt the 12-slot
average, 20-day average, and 12-slot and 20-day average.

– Exponential moving average (EMA). Given a series of data {x1, x2, ...},
the EMA series yn(y1 = x1) are computed by yn = 2xn+(n−1)yn−1

n+1 . In our
experiments, we tried 20-day EMA and 12-slot EMA.

Linear. Given input data x and model parameters θ = (w, b), the linear model
is formulated as f(θ, x) = wT x + b. We use the concatenation of 12-slot and
20-day history as x in our experiments.

LSTM. Following the widely use of LSTM [16,21] in stock market prediction
task, we implement two one-layer LSTM models for previous 12-slot and 20-day
history respectively. First, we project the input data to a feature space using
an FC layer. Then the features are fed into the LSTM models, followed by an
attentive pooling layer. Then another FC layer is used to get the prediction
result.

Transformers. We also implement a six-layer Transformer Encoder [26] model
as a baseline. The input data consists of a special [CLS] token and the concate-
nation of the 12-slot and 20-day data. The Positional Encoding is enabled. The
prediction result is computed by using the output vector of [CLS] token to feed
into a FC layer.

Stock Trading Volume Prediction with Dual-Process Meta-Learning 147

Table 2. Experimental results

Dataset Five-minute Ten-minute
Model MSE↓ MAE↓ ACC↑ MSE↓ MAE↓ ACC↑
Yesterday 1.203 0.797 0.665 0.517 0.532 0.719
20-day Average 0.698 0.607 0.709 0.433 0.503 0.720
20-day EMA 0.689 0.600 0.713 0.427 0.498 0.727
Last Time Slot 1.118 0.742 0.500 0.653 0.602 0.500
12-slot Average 0.982 0.710 0.630 0.975 0.782 0.445
12-slot EMA 0.888 0.668 0.642 0.846 0.718 0.457
20-day and 12-slot Average 0.689 0.581 0.713 0.377 0.469 0.698
Linear 0.694 0.638 0.681 0.303 0.419 0.740

Linear+ours 0.623 0.585 0.710 0.266 0.381 0.760

LSTM 0.623 0.583 0.706 0.272 0.391 0.745

LSTM+ours 0.586 0.556 0.724 0.252 0.370 0.765
Transformer 0.611 0.573 0.711 0.270 0.389 0.748

Transformer+ours 0.589 0.555 0.724 0.255 0.372 0.764

4.3 Settings and Hyperparameters

We repeat every experiment for 5 times and report the result on the meta-
test dataset on the checkpoint with the lowest meta-development MSE loss. For
hyperparameters in Algorithm 1, we set α = 1e-4, β = 1e-4, γ = 1 and the stock
latent variables are initialized to zeros. We adopt the SGD optimizer to optimize
encoder parameters φe and decoder parameters φdi

with the learning rate set
to 1e-5. For encoder e, decoder d, we adopt Multilayer Perceptron(MLP) with 3
layers. For prediction model f , we use a linear model. The loss function we used
in Algorithm 1 and Algorithm 2 is MSE loss. For baseline models and pre-train
stage for feature extractors, we adopt the Adam optimizer with the learning
rate initialized to 1e-4. The batch size we used is 32. In meta-development and
meta-test stages, we only conduct 10 steps in tuning φdi

and we use the SGD
optimizer with the learning rate set to 1e-6.

4.4 Experimental Results

After selecting the best hyperparameter configurations based on the results on
the meta-development set, the experimental results on meta-test set are shown
in Table 2. As the result illustrated, our methods successfully improves the per-
formance on three neural network baselines in both five-minute and ten-minute
tasks. They also remarkably outperform the traditional baseline results.

148 R. Chen et al.

(a) Small market capitalization stocks
on five-minute dataset

(b) Large market capitalization stocks
on five-minute dataset

(c) Small market capitalization stocks
on ten-minute dataset

(d) Large market capitalization stocks
on ten-minute dataset

Fig. 3. MSE loss on simulation of newly listed stocks. On both dataset our dual meta-
learning process enhance the performance of three baselines. Note that the loss for
stocks with small market capitalization is significantly higher than those with large
market capitalization, indicating that they are more sensitive and difficult to predict.

5 Analysis

5.1 Effectiveness of Meta-Learning

In Table 3, we show the experiment results on whether treating different stocks as
different tasks in the meta-learning framework(w/o tasks). We can see that mod-
eling different stocks with stock-specific parameters yield large gain on all the
metrics in both five-minute and ten-minute datasets. This testifies the assump-
tion that different stocks vary in the volume variation trend. Therefore, modeling
stocks with stock-specific parameters is necessary.

To test whether our meta-learning method can improve the model perfor-
mance on newly listed stocks, where the number of historical volume data is
small, we conduct experiments to simulate those cases on five-minute and ten-
minute datasets. We randomly sample 50 stocks with relatively large market
capitalization or small market capitalization and only keep their last 10% data
in chronological order. We report the meta-test MSE loss with lowest meta-
development MSE loss.

From the results shown in Fig. 3, we can see that applying the meta-learning
framework can indeed enhance the model performance on few-shot cases espe-
cially for less effective baseline models, linear and LSTM. Whereas the perfor-
mance of the Transformer baseline also improves. Furthermore, the gap between

Stock Trading Volume Prediction with Dual-Process Meta-Learning 149

stocks with large and small market capitalization proves that different patterns
exist in different stocks, which can be seized by the dual meta-learning process.

Table 3. Ablation study: Effectiveness of meta-learning

Dataset Five-minute Ten-minute
Model MSE↓ MAE↓ ACC↑ MSE↓ MAE↓ ACC↑
Linear 0.694 0.638 0.681 0.303 0.419 0.740

+our approach 0.623 0.585 0.710 0.266 0.381 0.760
w/o tasks 0.745 0.669 0.669 0.315 0.430 0.731

LSTM 0.623 0.583 0.706 0.272 0.391 0.745

+our approach 0.586 0.556 0.724 0.252 0.370 0.765
w/o tasks 0.635 0.592 0.701 0.271 0.391 0.745

Transformer 0.611 0.573 0.711 0.270 0.389 0.748

+our approach 0.589 0.555 0.724 0.255 0.372 0.764
w/o tasks 0.608 0.572 0.713 0.269 0.389 0.748

5.2 Effectiveness of Encoder-Decoder Framework

To test whether the encoder can extract useful information for volume predic-
tion, we remove the encoder, where latent variables are initialized by the input
features. From the results in Table 4, we can see that without the encoder mod-
ule, all the metrics decline, which shows the effectiveness of our proposed encoder
structure.

We further remove the design for latent variables in Eq. 2, where parameters θ
are generated by the input data using the decoder directly. The performance drop
indicates that latent variables z are more informative in the latent space, which
may work by denoising the raw input and extracting important features. On
ten-minute dataset the Transformer model performance gets slightly better. It
may be caused by data homogeneity in ten-minute dataset and the Transformer
model may partially learn the role of the encoder.

To examine whether the design for producing prediction parameters based on
the latent variables can help volume prediction, we further remove the decoder
in addition to the encoder. In this case, only first-order gradients for the param-
eters of prediction model f are exploited, degenerate into simple Reptile. In this
case, performance deteriorates greatly, proving the effectiveness of the encoder-
decoder framework.

150 R. Chen et al.

Table 4. Ablation study: effectiveness of encoder-decoder framework

Dataset Five-Minute Ten-Minute
Model MSE↓ MAE↓ ACC↑ MSE↓ MAE↓ ACC↑
Linear 0.694 0.638 0.681 0.303 0.419 0.740

+our approach 0.623 0.585 0.710 0.266 0.381 0.760
w/o encoder 0.700 0.642 0.681 0.288 0.405 0.748

w/o encoder, latent variables 0.661 0.610 0.697 0.272 0.387 0.758

w/o encoder, decoder 0.718 0.656 0.673 0.292 0.406 0.747

LSTM 0.623 0.583 0.706 0.272 0.391 0.745

+our approach 0.586 0.556 0.724 0.252 0.370 0.765
w/o encoder 0.630 0.587 0.704 0.265 0.383 0.755

w/o encoder, latent variables 0.614 0.576 0.711 0.270 0.384 0.756

w/o encoder, decoder 0.620 0.581 0.722 0.266 0.383 0.757

Transformer 0.611 0.573 0.711 0.270 0.389 0.748

+our approach 0.589 0.555 0.724 0.255 0.372 0.764

w/o encoder 0.610 0.573 0.712 0.260 0.378 0.760

w/o encoder, latent variables 0.599 0.564 0.719 0.252 0.370 0.768
w/o encoder, decoder 0.603 0.566 0.718 0.265 0.381 0.760

5.3 Analyzing Dual Meta-Learning Process

In Table 5, we analyze the effectiveness of the dual meta-learning process. We
first remove the inner meta-learning layer(w/o inner meta-learning) by gener-
ating the latent variable zi with the entire Dtrain

i from stock Si. Results show
that it reduces the performance on both five-minute and ten-minute dataset.
It proves that different time spans have distinct patterns and the inner meta-
learning process successfully captures and exploits the features behind a small
time scale.

For the outer meta-learning layer, if it is fully removed, the situation can be
viewed as there is only one single task and results collapse as we have discussed
before. We further probe the influence of unique decoders(w/o unique decoder).
Recall that in outer meta-learning layer, we implement stock-specific decoder
parameter φdi

in meta-training stage. If we replace it with a universal decoder
parameter, it can be seen that on five-minute dataset, all the metrics degrade,
showing that on this time scale stock-specific information can be valuable and
unique decoders are influential. But on ten-minute dataset, the accuracy metric
and the more effective Transformer model showed a marginal improvement in
performance, which may be caused by less noise and uncertainty in the data.

Stock Trading Volume Prediction with Dual-Process Meta-Learning 151

Table 5. Ablation study: Analyzing dual meta-learning process

Dataset Five-minute Ten-minute
Model MSE↓ MAE↓ ACC↑ MSE↓ MAE↓ ACC↑
Linear 0.694 0.638 0.681 0.303 0.419 0.740

+our approach 0.623 0.585 0.710 0.266 0.381 0.760

w/o inner meta-learning 0.664 0.599 0.705 0.284 0.398 0.751

w/o unique decoder 0.644 0.599 0.705 0.266 0.382 0.763
LSTM 0.623 0.583 0.706 0.272 0.391 0.745

+our approach 0.586 0.556 0.724 0.252 0.370 0.765

w/o inner meta-learning 0.588 0.557 0.723 0.253 0.371 0.764

w/o unique decoder 0.594 0.561 0.720 0.256 0.372 0.766
Transformer 0.611 0.573 0.711 0.270 0.389 0.748

+our approach 0.589 0.555 0.724 0.255 0.372 0.764

w/o inner meta-learning 0.664 0.611 0.699 0.256 0.374 0.761

w/o unique decoder 0.597 0.561 0.721 0.253 0.370 0.769

6 Conclusion

In this work, we propose the dual meta-learning process for stock trading volume
prediction, which are model agnostic and can be implemented on given models
without a meta-learning procedure to improve performance. We use the inner
meta-learning layer to mine the pattern behind different time spans and learn a
stock-specific latent variable. The outer meta-learning layer gains generalization
ability across stock (task) distributions. The dual meta-learning process success-
fully models the characteristics of stock data and outperforms various baselines.
Extensive analyses further show the effectiveness of each component of the dual
meta-learning process.

Acknowledgements. We thank all the anonymous reviewers for their valuable sug-
gestions. This work is supported by Mizuho Securities Co., Ltd. We sincerely thank
Mizuho Securities for the domain expert suggestions and the experiment dataset. Rui-
han Bao and Xu Sun are the corresponding authors.

References

1. Chen, H., Xiao, K., Sun, J., Wu, S.: A double-layer neural network framework
for high-frequency forecasting. ACM Trans. Manag. Inf. Syst. (TMIS) 7(4), 1–17
(2017)

2. Chen, R., Feng, Y., Palomar, D.: Forecasting intraday trading volume: a Kalman
filter approach (2016). SSRN 3101695

3. Ding, Q., Wu, S., Sun, H., Guo, J., Guo, J.: Hierarchical multi-scale Gaussian
transformer for stock movement prediction. In: IJCAI, pp. 4640–4646 (2020)

152 R. Chen et al.

4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, pp. 1126–
1135. PMLR (2017)

5. Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: Inter-
national Conference on Machine Learning, pp. 1920–1930. PMLR (2019)

6. Grant, E., Finn, C., Levine, S., Darrell, T., Griffiths, T.: Recasting gradient-based
meta-learning as hierarchical Bayes. arXiv preprint arXiv:1801.08930 (2018)

7. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural
networks: a survey. arXiv preprint arXiv:2004.05439 (2020)

8. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot
image recognition. In: ICML Deep Learning Workshop, vol. 2, Lille (2015)

9. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835 (2017)

10. Libman, D., Haber, S., Schaps, M.: Volume prediction with neural networks. Fron-
tiers Artif. Intell. 2, 21 (2019)

11. Liu, J., et al.: Transformer-based capsule network for stock movement prediction.
In: Proceedings of the First Workshop on Financial Technology and Natural Lan-
guage Processing, pp. 66–73 (2019)

12. Liu, J., Lu, Z., Du, W.: Combining enterprise knowledge graph and news sentiment
analysis for stock price prediction. In: Proceedings of the 52nd Hawaii International
Conference on System Sciences (2019)

13. Liu, X., Lai, K.K.: Intraday volume percentages forecasting using a dynamic SVM-
based approach. J. Syst. Sci. Complex. 30(2), 421–433 (2017)

14. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive
meta-learner. arXiv preprint arXiv:1707.03141 (2017)

15. Munkhdalai, T., Yu, H.: Meta networks. In: International Conference on Machine
Learning, pp. 2554–2563. PMLR (2017)

16. Nelson, D.M., Pereira, A.C., De Oliveira, R.A.: Stock market’s price movement
prediction with LSTM neural networks. In: 2017 International Joint Conference
on Neural Networks (IJCNN), pp. 1419–1426. IEEE (2017)

17. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999 2(3), 4 (2018)

18. Rajeswaran, A., Finn, C., Kakade, S.M., Levine, S.: Meta-learning with implicit
gradients. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

19. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv
preprint arXiv:1807.05960 (2018)

20. Sezer, O.B., Ozbayoglu, A.M.: Algorithmic financial trading with deep convolu-
tional neural networks: time series to image conversion approach. Appl. Soft Com-
put. 70, 525–538 (2018)

21. Siami-Namini, S., Tavakoli, N., Namin, A.S.: A comparative analysis of forecast-
ing financial time series using ARIMA, LSTM, and BILSTM. arXiv preprint
arXiv:1911.09512 (2019)

22. Sim, H.S., Kim, H.I., Ahn, J.J.: Is deep learning for image recognition applicable
to stock market prediction? Complexity 2019, 1–10 (2019)

23. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

24. Song, Y., Lee, J.W., Lee, J.: A study on novel filtering and relationship between
input-features and target-vectors in a deep learning model for stock price predic-
tion. Appl. Intell. 49(3), 897–911 (2019)

http://arxiv.org/abs/1801.08930
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1707.03141
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1807.05960
http://arxiv.org/abs/1911.09512

Stock Trading Volume Prediction with Dual-Process Meta-Learning 153

25. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning
to compare: relation network for few-shot learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

27. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: Advances in Neural Information Processing Systems, vol. 29
(2016)

Uncertainty Awareness for Predicting
Noisy Stock Price Movements

Yun-Hsuan Lien, Yu-Syuan Lin, and Yu-Shuen Wang(B)

National Yang Ming Chiao Tung University, Hsinchu, Taiwan
yushuen@cs.nctu.edu.tw

Abstract. Predicting stock price movements is challenging because
financial markets are noisy – signals and patterns in different periods are
dissimilar and often conflict with each other. Consequently, irrespective
of whether the price rises or falls, none of the previous methods achieve
high prediction accuracy in this binary classification task. In this study,
we consider aleatoric uncertainty and model uncertainty when training
neural networks to forecast stock price movements. Specifically, aleatoric
uncertainty is known as statistical uncertainty. It indicates that similar
historical price trajectories may not lead to similar future price move-
ments. On the other hand, model uncertainty is caused by the model’s
mathematical structures and parameter values, which can be used to
estimate whether the models are familiar with the testing sample. Con-
sidering that most of the existing uncertainty estimation methods focus
on model uncertainty, we transform the aleatoric uncertainty in financial
markets to model uncertainty by removing samples with similar historical
price trajectories and different future movements. The Bayesian neural
network is then adopted to estimate the model uncertainty during infer-
ence. Experiment results demonstrated that the networks achieved high
accuracy when they were certain about their predictions.

Keywords: Stock price movement prediction · Aleatoric uncertainty ·
Model uncertainty · Uncertainty quantification

1 Introduction

Stock price movement prediction has attracted intense attention in the research
field and the financial industry because investors can manage their portfolios to
earn substantial profits from price fluctuations. The prediction can be considered
as a binary classification problem, in which the inputs are historical prices, news,
and company statistics, and the output is a rise or a fall in price at the next period
(e.g., tomorrow). Theoretically, although price movements could exhibit a trend,
in practice, a high level of uncertainty remains. The trend also changes over time
so that knowledge learned from the past could be insufficient to predict future

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1_10.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 154–169, 2023.
https://doi.org/10.1007/978-3-031-26422-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_10
https://doi.org/10.1007/978-3-031-26422-1_10

Uncertainty Awareness for Predicting Noisy Stock Price Movements 155

price movements. In fact, even the state-of-the-art method [8] achieved accuracy
that was only slightly higher than a random guess in this binary classification
task when taking historical prices as inputs.

In this study, we aim to quantify the uncertainty of stock price movement pre-
diction, which is helpful for later investment strategies. On the one hand, stocks
that have similar price trajectories in the past may not result in similar move-
ments in the future, and we refer to the phenomenon as aleatoric uncertainty
[30]. Aleatoric uncertainty is known as statistical uncertainty, which indicates
that the outcomes of an experiment in different runs can be different because
of unknown or inherently random effects. A typical example is coin-flipping. In
other words, the price movement cannot be accurately predicted due to cur-
rently unavailable information. On the other hand, mathematical structures and
parameter values of a model that are used to map inputs to outputs result in
model uncertainty. It is known that neural networks are composed of tremendous
parameters, and the networks can be considerably dissimilar if they are trained
from different initializations, although on the same dataset and using the same
loss. In other words, given an input, particularly an input that is dissimilar to
all samples in the training set, networks trained from different initializations are
likely to output different results. This model uncertainty should also be consid-
ered when predicting stock price movements.

We transform the aleatoric uncertainty of stock price movements to model
uncertainty for quantification. Specifically, since similar historical price trajec-
tories do not necessarily lead to similar future movements, we treat rises and
falls in price in the next period as noisy labels. The noisy label training is then
applied to remove such samples from the training set. It deserves noting that,
when removing the samples with noisy labels, the aleatoric uncertainty becomes
model uncertainty because the network does not learn from these samples. We
then apply the Bayesian neural network to quantify model uncertainty – whether
the networks are familiar with a testing sample or they just guess the solution.
Unlike general neural networks, a Bayesian neural network takes a single sam-
ple as input but outputs a label distribution. The variance of the distribution
implies the level of uncertainty. We exploit the depth structure of neural net-
works to quantify uncertainty [2]. Our network contains multiple branches of
different depths and outputs multiple labels to forecast future price movements.
Since different branches imply different prediction functions, the predictions are
likely diverse if inputs are dissimilar to any training sample. For this reason, we
measure prediction entropy and variance to elucidate how certain the network
is about its output.

We estimate the uncertainty of stock price movement prediction. We argue
that our network is uncertainty-aware because it not only outputs the predic-
tion but also reveals the level of uncertainty. For evaluation, we trained neural
networks to predict stock price movements on the next day and after ten days
on the KDD17 and ACL18 benchmark datasets. We also evaluated the predic-
tion accuracy in terms of the network’s prediction uncertainty on our collected
dataset that contains bull, flat, and bear markets. Experiment results showed
that high certainty of our network’s prediction indeed leads to high accuracy.
Below, we summarize our contributions:

156 Y.-H. Lien et al.

– We estimate each prediction’s level of uncertainty, which can assist investors
to develop flexible investment strategies.

– We transform the aleatoric uncertainty of stock price movements to model
uncertainty by removing samples with noisy labels. Then, we apply the
Bayesian neural network to quantify model uncertainty.

– Our experiment results verified that high certainty of a network prediction
indeed leads to high accuracy.

2 Related Work

Financial Forecasting. Recently, neural networks gained considerable atten-
tion in financial forecasting [13]. They are trained to predict stock prices [1],
stock movements [5,24,27], and currency exchange rates [32]. Most of the net-
works considered historical prices and technical analysis [6] when making predic-
tions because of “the market discounts everything theory”, i.e., the price reflects
all information in the market. Considering that financial markets are noisy and
non-stationary, Feng et al. [7] applied adversarial training [16] to help networks
learn robust representations and facilitate generalization. In addition to prices,
several methods additionally considered limit order books [28,31,38], news events
[4], and texts from social media [26,34] for prediction. Their experiment results
confirmed the benefits of these metadata. Rather than predicting future trends,
Feng et al. [8] temporally captured stock relations and ranked the stocks accord-
ing to their return ratios. The back-test results demonstrated that trading based
on stock ranking were more effective than that based on future trends.

Uncertainty Estimation. In time series forecasting applications, training and
testing data are from different periods and are likely to contain varied prop-
erties. Since standard networks are trained by maximum likelihood estimation
(MLE), they are frequently over-confident with unfamiliar samples [25]. Due to
the non-stationarity of financial markets, it is essential to extend a standard
network to a Bayesian network with posterior inference from a probabilistic per-
spective. Under this formulation, the output becomes a distribution rather than
a single point. When the network takes a novel observation as input, its output’s
distribution will have a large variance. Generally, the posterior inference can be
approximated by dropout [9,10], model ensembles [17], subspace inference [14],
and depth [2]. The high variance of the outputs implies high uncertainty.

Noisy Labels. Since neural networks can fit even random variables [36], their
robustness easily degenerates when training data contain noisy labels. To ease
the problem, one of the directions taken was sample selection. These methods
train two networks with the same architecture and select samples according to
output disagreement [22], smaller loss values [12], and their combinations [35],
to update network parameters. Besides sample selection, Wei et al. [33] pointed
out that networks are likely to have the same outputs if the labels are correct.
Hence, they updated the network by label loss and distance loss, and expected
the two networks to become the same.

Uncertainty Awareness for Predicting Noisy Stock Price Movements 157

3 Method

Price movement prediction can be considered to be a binary classification
problem, which takes historical price movements as inputs and forecasts price
rises or price falls at the next period. Specifically, let the stock market data
be D = {(Xt, yt+1)}N

t=1, where Xt = [xt−T+1, ..., xt] ∈ RF×T×W with F -
dimensional features (e.g., high and low prices of a period, and the corresponding
technical analysis) in the lag of the past T time-steps, W is the number of mov-
ing averages, and yt+1 denotes the actual price movement at the next period.
The goal is to build a network f(·) with D. Specifically, f(Xt) forecasts the price
movement yt+1 based on the currently available features Xt.

3.1 Transforming Aleatoric Uncertainty to Model Uncertainty

Financial market prices constitute non-stationary time series data. The price
movements are drifting, and their distributions change over time. In addition,
when the market does not have a clear direction, the price moves up and down in
a small range, bringing many meaningless labels. In other words, although price
movements could exhibit a trend, they contain aleatoric uncertainty. Considering
that most existing methods focus on quantifying model uncertainty, we attempt
to transform aleatoric uncertainty into model uncertainty by removing samples
with noisy labels for quantification. Specifically, samples with noisy labels are
those with similar Xt but different yt+1. Since the network does not learn from
the samples with aleatoric uncertainty, it can only guess the results when such
samples appear during inference, and the uncertainty can thus be quantified.

Consistent and Inconsistent Labels. Differentiating correct and incorrect
labels in a traditional classification problem is simple. However, in financial
markets, there is no clear definition between them. All labels can be consid-
ered correct because the stock price movements indeed happen. Since prediction
implies choosing the price movement that likely occurs, financial data can be
partitioned into two groups: samples with consistent and inconsistent labels.
Consistent labels are those that appear more frequently than others under the
condition of similar historical patterns. This new definition fulfills the assump-
tion in the noisy label training that correct labels are the majority, and networks
can learn these labels at the early stage of training.

Let Xi, Xj be the price features in consecutive days with ⊂Xi − Xj⊂2 ≤ ε,
and yi, yj be the corresponding ground truth labels. Li et al. [19] defined that
the labels of Xi and Xj are inconsistent if ⊂yi − yj⊂ ≥ δ. They also proved that
the network f(·) with randomly initialized parameters has to traverse a long dis-
tance to fulfill inconsistent labels. In other words, in the early iterations, models
updated by the gradient descent method only fit samples with consistent labels,
essentially ignoring the inconsistent ones. This motivates us to remove samples
with inconsistent labels when training since they contain aleatoric uncertainty.

Sample Selection. Previous experiment results show that deep neural networks
tend to learn correct labels at the early stage of training and then memorize

158 Y.-H. Lien et al.

the incorrect ones [3]. In other words, at the early stage of training, the loss
of correct labels decreases quickly, whereas the loss of incorrect labels remains
high. Therefore, removing inconsistent labels is equivalent to removing samples
that have a large training loss [15,29]. In our implementation, we adopt the
co-teaching strategy in [12] and train two neural networks simultaneously. Each
network selects samples with a small loss to train the other. Let f and g be the
two networks with parameters ωf and ωg, respectively. Each mini-batch B will
be reduced to

B̃i = arg min
|B̃i|=r|B|

�(B, i), (1)

where i ∈ {f, g}, � is the loss function and r is the ratio of data that we want to
keep. To avoid accumulated error from the sample-selection bias, we train the
network f using samples in B̃g and the network g using samples in B̃f .

Deep neural networks tend to learn easy patterns first and gradually memo-
rize hard samples as the number of training epoch increases. Therefore, we keep
more samples at the early stage of training and gradually increase the filter out
ratio. Let R(n) ∈ [1− τ, 1] be the proportion of the mini-batch samples that will
be kept at the nth training iteration. We formulate the proportion as

R(n) = 1 − min
{

n

nk
τ, τ

}
, (2)

where n ∈ [1, N], nk ≤ N , N is the total number of epochs, and τ and nk are
hyperparameters. Therefore, we select samples

B̃i = arg min
|B̃i|=R(n)|B|

�(i, B) (3)

at every iteration for network training.

3.2 Model Uncertainty Estimation

Experiments have shown that deep neural networks frequently suffer from erro-
neous predictions with high confidence [11,25]. To remedy this problem in prac-
tice, methods were presented to estimate whether networks have learned how to
handle a testing sample or they just guess the solution. The idea is based on the
theory of Bayesian neural networks, and the output distribution can be used to
quantify model uncertainty.

While a standard network considers the input sample and determines one
predictive value, the Bayesian network computes a prediction distribution by

p(y|X, D) =
∫

p(y|X, θ)p(θ|D)dθ, (4)

where X and y are the input sample and the corresponding label, respectively,
θ indicates the network parameters, and D is the data set. Specifically, p(y|X, θ)
tells us how well the network parameters θ explain the observation. The predic-
tion p(y|X, D) considers all possible parameter configurations weighted by the

Uncertainty Awareness for Predicting Noisy Stock Price Movements 159

their posterior probabilities p(θ|D). Apparently, computing the exact posterior
distribution p(θ|D) is difficult due to the complexity of deep neural networks. In
practice, the distribution can be approximated by training multiple models, and
the disagreement of the models yields the uncertainty [17].

Bayesian Approximation. We adopt the method in [2] and exploit the net-
work’s depth to quantify uncertainty because of its accurate approximation and
computational efficiency. The main idea is to add an auxiliary output layer
at the back of each intermediate block. Then, we view each output as a sub-
network’s prediction result. This enables us to estimate uncertainty by checking
the consistency of the predictions. An intuitive explanation to this Bayesian
approximation is that the sub-networks’ outputs would be consistent if they
have learned the sample. Otherwise, the outputs would be diverse. To perform a
Bayesian inference on the depth of a neural network, we consider the network’s
depth to be a random variable. Let a categorical prior over network’s depth d be
pβ(d = i) = βi = 1/D, where i is the layer index and D is the number of network
layers. The marginal log likelihood of the model can be written as follows:

log p(D; θ) = log
D∑

i=1

(
pβ(d = i) ·

N

Π
t=1

p(yt|Xt, d = i, θ)
)

, (5)

where θ indicates the network parameters and p(y|X, d = i, θ) is the output
of the ith layer. The posterior over depth, p(d|D; θ) = p(D|d; θ)pβ(d)/p(D; θ),
represents how well each layer explains the data.

Training. An intuitive approach to train the network is to maximize the
marginal log likelihood through stochastic gradient descent. However, the app-
roach does not work because each layer is weighted by the depth posterior.
It leads gradients to vanish when the posterior collapses to a delta function.
Therefore, we adopt the strategy in [2] and optimize the network by stochastic
gradient variational inference. Let qα(d = i) = αi be an approximate posterior.
The evidence lower bound (ELBO) is written as

log p(D; θ) =
N∑

t=1

Eqα(d)[log p(yt|Xt, d; θ)] − KL(qα(d)||pβ(d)).

Let B and N be the batch size and the dataset size, respectively. We maximize
the ELBO of each mini-batch by using

N

B

B∑
t=1

D∑
i=1

(log p(yt|Xt, d = i; θ) · αi) −
D∑

i=1

(
αi log

αi

βi

)
. (6)

Inference. After network training, we marginalize depth with the variational
posterior to predict price movements. For each new sample X∗, the prediction
is computed using Bayesian model averaging [21]:

p(y∗|X∗,D; θ) =
D∑

i=1

p(y∗|X∗, d = i; θ)qα(d = i). (7)

160 Y.-H. Lien et al.

Regarding the uncertainty of the network’s output, we implement predictive
entropy and variance because they are common measures of the uncertainty
inherent in a distribution of possible outcomes. Then, we test their performances
on predicting stock price movements. Specifically, predictive entropy is defined
as

H(y∗|X∗,D; θ) =
1∑

c=0

p(y∗ = c|X∗,D; θ) log p(y∗ = c|X∗,D; θ) (8)

where c ∈ {0, 1} is the class label. Moreover, the prediction’s variance is formu-
lated as

σ2(y∗ = 0|X∗,D; θ) = Eqα(d)

(
p(y∗ = 0|X∗, d; θ)2

) −
Eqα(d) (p(y∗ = 0|X∗, d; θ))2 . (9)

For a binary classification problem p(y∗ = 0|X∗, d; θ) = 1 − p(y∗ = 1|X∗, d; θ)
and σ2(y∗ = 0|X∗,D; θ) = σ2(y∗ = 1|X∗,D; θ). Therefore, we only compute
σ2(y∗ = 0|X∗,D; θ).

3.3 Implementation Details

Features. Recall that the input of our network is a tensor Xt = [xt−T+1, ..., xt] ∈
RF×T×W , where F is the number of features, T indicates the past period that
the network considers, and W is the number of moving averages. In our imple-
mentation, F = 6, T = 30, and W = 4. The feature xt is composed of six
price attributes, including high, low, open, close, adjust close, and volume. For
each attribute, we computed the moving average according to four window sizes.
Specifically, the attributes of the past 1, 3, 7, and 14 days were averaged. We also
normalized the values in each sample individually to [0, 1] in the pre-processing
stage.

Network Architecture. We built a convolutional neural network (CNN) to
forecast stock price movements. The network contained four convolutional layers
and then two fully connected layers. The first three convolutional layers consider
features along the temporal dimension, whereas the fourth layer exchanges infor-
mation at the same period. In addition, we link the output of every convolutional
layer to the shared fully connected layers to implement the depth uncertainty
network. Figure 1 illustrates the detailed network architecture.

Parameters and Network Training. We initialized network parameters using
the Xavier initialization and set the batch size and the learning rate to 4096 and
0.003 for the KDD17 dataset, and 1024 and 0.001 for the ACL18 and our col-
lected datasets, respectively. Since price movement data of an individual stock
are rare, we followed the strategy in previous works and mixed samples of dif-
ferent stocks for training networks. The AdamW [20] optimizer was adopted to
minimize binary cross-entropy loss. We repeated the training process for 300
epochs in our implementation. Subsequently, we selected the model that per-
formed the best on the validation data and tested it on the testing data for
evaluation.

Uncertainty Awareness for Predicting Noisy Stock Price Movements 161

Fig. 1. The network architecture used in our study. Each intermediate layer has an
auxiliary output. The adaptive layer is set to adjust the resolution. By exploiting the
network’s depth, we obtain the approximation of a Bayesian inference by one forward.

4 Results and Evaluations

4.1 Comparison to Baselines

We evaluated the performance of our method on five datasets: the first two are
benchmark datasets ACL18 [34] and KDD17 [37], and the last three are our
collected datasets in which the testing periods are bull, flat, and bear markets,
respectively. We selected the stocks from the U.S. stock market that have the
highest trading volumes for evaluation. Specifically, they are GOOG, NVDA,
AMZN, AMD, QCOM, INTC, MSFT, AAPL, and BIDU. Table 1 shows the
description, and the ranges used for training, validation, and testing. Let xt

and xt+1 be the closing prices of consecutive days. We computed the movement
percent by pt+1 = (xt+1/xt) − 1. Typically, the label yi+1 = 1 if pt+1 > 0 and
yi+1 = 0 otherwise. However, to compare with the state-of-the-art methods,
we followed the setting of [8] and additionally defined the label yi+1 = 1 if
pt+1 ≥ 0.55% and yi+1 = 0 if pt+1 ≤ −0.5%. In other words, the samples with
flat price movements were ignored in the experiment.

Baselines. We briefly describe the baselines in the following paragraph. Two of
them were traditional technical analysis, and the others were the latest neural
networks.

– Time Series Momentum Strategy (MOM) [23] was based on the belief that
the current market trend will continue by taking the sign of returns over the
last period. We used the trend in the last 10 days as the momentum indicator.

162 Y.-H. Lien et al.

Table 1. The number of stocks and the data ranges for training, validation, and testing
in our experiments.

Dataset # stocks Training Validation Testing

ACL18 88 Jan-01-2014– Aug-01-2015– Oct-01-2015–
Aug-01-2015 Oct-01-2015 Jan-01-2016–

KDD17 50 Jan-01-2007– Jan-01-2015– Jan-01-2016–
Jan-01-2015 Jan-01-2016 Jan-01-2017

Bull 9 Oct-20-2006– Jun-21-2012– Mar-11-2013
Jun-20-2012 Mar-10-2013 –Nov-20-2013

Flat 9 Jun-19-2003– Jan-04-2010– Oct-26-2010-
Jan-03-2010 Oct-25-2010 Aug-19-2010

Bear 9 Jan-20-2001– Sep-27-2007– Jul-24-2008–
Sep-26-2007 Jul-23-2008 May-20-2009

– On-Line Moving Average Reversion (OLMAR) [18] was based on the belief
that prices will revert to the long-term mean by taking the opposite sign of
the difference between the last price and the moving average. We used the 30
days moving average as the mean reversion indicator.

– StockNet [34] was a variational autoencoder exploiting text and price signals
to capture the market stochasticity. In the comparison, we discarded the text
signals because they are often unavailable in practice.

– ADV-ALSTM [7] applied adversarial training to improve the generalization
of a prediction model. They generated additional samples by adding small
perturbations on input features and trained the model on both the origin and
perturbed samples.

Table 2. Mean accuracy of the baselines on the ACL18 and KDD17 datasets. All
of the methods performed only slightly better than a random guess. However, the
mean accuracy considerably increases if the top 10% certain samples are evaluated.
We highlight the highest accuracy in boldface.

Removing flat Containing flat
ACL18 KDD17 ACL18 KDD17

MOM 46.61 49.12 47.92 48.84
OLMAR 52.7 49.85 52.21 50.23
StockNet 54.96 51.93 – –
ADV-ALSTM 57.2 53.05 52.03 51.95
Ours 54.96 53.49 53.5 52.69
ADV-ALSTM (10%) 55.37 53.58 50.54 54.26
Ours (10%) 64.98 55.81 60.8 55.37

Experiment Results. Table 2 shows the comparison results on ACL18 and
KDD17 datasets. The reported statistics were the mean testing accuracy of
five different runs. From the numbers, one can realize that predicting stock

Uncertainty Awareness for Predicting Noisy Stock Price Movements 163

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

Bull

AdvLSTM Ours

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

Bear

AdvLSTM Ours

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

Flat

AdvLSTM Ours

Fig. 2. We compared our method to ADV-LSTM-Dropout on our collected datasets.
The testing periods are bull, flat, and bear markets, respectively. We report the predic-
tion accuracy from the cumulative lowest to highest uncertain samples for evaluation.

price movements is extremely difficult. Even the state-of-the-art, ADV-LSTM
[7], achieved an accuracy slightly higher than a random guess. Since, to the best
of our knowledge, there are no stock price prediction methods built upon deep
neural networks and consider uncertainty, we extend ADV-LSTM and selected
the top 10% certain samples for comparison. Because ADV-LSTM’s network can-
not exploit depth structures for uncertainty estimation, we apply the dropout
approach to approximate the posterior inference [9]. The final result is the aver-
age of its five predictions. We named the extended ADV-LSTM as ADV-LSTM-
Dropout. In our implementation, we set the dropout rate to 0.8; we also repeated
the experiments five times to estimate the output’s variance since our network
contains five branches. As indicated in Table 2, our selected top 10% certain
samples have higher prediction accuracy than the remains, whereas the samples
selected by ADV-LSTM do not. We suspect the reasons could be: (1) dropout
reduces the prediction accuracy during inference, and (2) the network cannot
learn effective knowledge from the training data that contain aleatoric uncer-
tainty. However, without theoretical proofs and thorough experiments, they may
not truly explain the phenomenon.

We additionally compared our method with ADV-LSTM-Dropout regarding
different degrees of uncertainty on our collected datasets. The testing periods are
bull, flat, and bear markets, respectively. We mixed all stocks in the testing data
and ranked the data based on the uncertainty of each sample in ascending order.
The mean accuracy of the cumulative lowest 10% to 100% uncertain samples
was computed. As indicated in Fig. 2, the mean accuracy of our results gradu-
ally decreased as the uncertainty increased, which implies that our network can
achieve higher accuracy when it is more certain about its prediction. Although
ADV-LSTM-Dropout had a similar trend, it was not as clear as ours.

In the following sections, we evaluated the system on the whole testing set
(i.e., containing flat movements) since removing them is unachievable in practice.
Namely, yi+1 = 1 if pt+1 > 0 and yi+1 = 0 otherwise.

164 Y.-H. Lien et al.

NL + Var NL + PE

50
51
52
53
54
55
56
57

KDD17

50
52
54
56
58
60
62

ACL18

50

55

60

65

KDD17 10-Days

50
55
60
65
70
75
80

ACL18 10-Days

Var PE

Fig. 3. The mean prediction accuracy of networks trained on a variety of conditions. We
evaluated the accuracy of predictions from the cumulative lowest to highest uncertain
samples. NL, Var, and PE are the abbreviations of noisy label training, uncertainty
estimated by variance, and uncertainty estimated by predictive entropy, respectively.
The line charts indicate the effectiveness of uncertainty awareness prediction. This
phenomenon appeared both in the predictions of the next day and the next ten days.

4.2 Uncertainty Estimation Using Variance and Predictive Entropy

We estimated the prediction uncertainty by computing the output’s variance
and predictive entropy. To evaluate the performance of these two strategies, we
compare the accuracy regarding different degrees of uncertainty. In this experi-
ment, we trained the network to predict the price movement of the next day and
the next 10 days and plotted the results in Fig. 3. All stocks in the testing data
are mixed and then ranked for evaluation. As indicated, the mean accuracy of
the stocks gradually decreased as the uncertainty increased. This phenomenon
appeared both in predictions of the next day and the next 10 days, irrespec-
tive of whether variance or predictive entropy was used to represent uncertainty.
Overall, the predictive entropy slightly performs better than the variance on the
ACL18 dataset, yet this advantage is not clear on the KDD17 dataset.

In addition to mixing all stocks together, we evaluated each stock’s mean
prediction accuracy under the ranking of uncertainty. Let hi

r be the mean accu-
racy of the r% lowest uncertain samples of stock i, where r = {0.1, 0.2, ..., 1.0}.
We compute the Pearson correlation coefficient between r and hi

r of each stock.
The coefficient ranges from -1 to 1, which indicates negative and positive cor-
relations, respectively. Figure 4 shows the correlation histogram results on the
KDD17 [37] and ACL18 [34] datasets. The x and y axes represent the Pearson
correlation coefficient and the number of stocks within each range, respectively.
As indicated, most of the stocks have negative coefficients, which fulfilled the

Uncertainty Awareness for Predicting Noisy Stock Price Movements 165

0

5

10

15

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

ACL - Uncertainty by Variance

0

2

4

6

8

10

12

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

ACL - Uncertainty by Predictive Entropy

0

5

10

15

20

25

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

KDD - Uncertainty by Variance

0

10

20

30

40

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

KDD - Uncertainty by Predictive Entropy

Fig. 4. The Pearson correlation coefficient between prediction uncertainty and accu-
racy. The x and y axes represent the range of the coefficient and the frequency, respec-
tively. Clearly, in most stocks, low prediction uncertainty leads to high accuracy.

Confidence Certainty by Variance Certainty by Predictive Entropy

Fig. 5. Comparison of the mean accuracy of the samples selected according to con-
fidence and two variants of certainty estimations. The lowest 20%, 50%, and 80%
non-confident and uncertain samples, and all samples, in the testing data set during
network training, were compared.

expectation, i.e., the lower is the uncertainty, the higher is the accuracy. Differ-
ent from the results of mixing all stocks together, the variance in this experiment
performs slightly better than the predictive entropy since samples in the bin of
0.8–1.0 are few.

4.3 The Effectiveness of Removing Aleatoric Uncertainty

We remove samples with aleatoric uncertainty by applying the noisy label
training. In addition to the benefits of uncertainty quantification, this strategy
improves network’s generalization because it was not forced to memorize samples
with inconsistent labels. To evaluate the effectiveness, we trained the networks
with and without removing inconsistent samples and compared their predictive
accuracy on the benchmark datasets. The lines in Fig. 3 verify that removing
aleatoric uncertainty was effective. The improvement was about 1% accuracy

166 Y.-H. Lien et al.

if the whole testing set is evaluated. It is worth noting that the testing data
were noisy. Even though the trained network achieved perfect generalization, it
was not guaranteed to predict price movements accurately. In addition, remov-
ing samples that have inconsistent labels could advance uncertainty awareness
of network predictions. The experiment results revealed that networks trained
to fulfill all training data did not learn how to predict price movements. Their
prediction accuracy was still low even though they were certain about the pre-
dictions of the selected samples.

Removing aleatoric uncertainty helps networks learn price trends in a dataset.
Since samples with inconsistent labels have been removed, the network will be
unfamiliar with them during testing. This strategy makes the network be certain
about only the samples similar to those appearing in the training data and having
consistent labels. That is why our system can considerably increase accuracy
when the network is certain about its prediction.

4.4 Confidence v.s. Certainty

Neural networks output the probability of each label to represent their predic-
tion. Since high probability is often interpreted as high confidence, we com-
pare the relationship of these two measures to accuracy. Because the predicted
probability in our implementation was a vector weighted from several outputs
(Eq. 7), which was an ensemble, we additionally trained a standard network
that has the same depth, but did not contain branches, for the comparison.
The parameters, such as kernel size, activation functions, and numbers of chan-
nels were unchanged. Let the output of this standard network be a 2D vec-
tor (p�, pf), where p� and pf are the probability of rise and fall, respectively,
0 ≤ p�, pf ≤ 1, and p� +pf = 1. We computed the non-confidence of a prediction
by min(1 − p�, 1 − pf). Overall, low values indicate high confidence. We then
ranked the testing data based on the non-confidence of each sample in ascend-
ing order, and computed the mean accuracy of the lowest 20%, 50%, and 80%
non-confident, and all samples. The accuracy of samples selected according to
confidence and certainty estimations was compared.

Figure 5 shows the mean test accuracy during network training. As indicated,
the accuracy lines of different uncertainties are clearly separated, while the lines
of different non-confidence are not. Moreover, the high certainty samples enjoy
high accuracy. This means that sample selection based on certainty was markedly
reliable. It is also worth noting that the selected samples in each epoch were
different because the network changed when training.

4.5 Compatibility to Other Network Structures

Our uncertainty framework is compatible with all types of network structures.
In our implementation, we build a CNN with multiple branches to approximate
a Bayesian network because of the balance between accurate approximation and
computational efficiency. The Bayesian approximation, however, can be achieved
by ensemble models [17] or dropouts [9,10]. Regarding the noisy label training,

Uncertainty Awareness for Predicting Noisy Stock Price Movements 167

we utilize two networks with the same structure to remove samples with incon-
sistent labels [12]. This training strategy is irrelevant to network structures.
Therefore, new uncertainty measures and noisy label training methods can be
seamlessly integrated into our system to improve prediction accuracy further.

4.6 Limitations and Future Works

Although our experimental results indicate that considering uncertainty when
forecasting stock price movements is effective, there is still a large space for
improvement. After all, financial markets are noisy and uncertain. In addition,
the amounts of daily stock price data are rare. While ancient samples could be
useless for predicting future price movements, removing samples with aleatoric
uncertainty would further reduce the data size. In our implementation, we mixed
samples of different stocks to enlarge the data set. However, since stocks are of
different properties, networks trained on the mixed data could be insufficient to
predict the price movements of a specific stock. Therefore, in the future, we will
consider stock relationships to overcome the problems caused by data mixing.

5 Conclusions

In this study, we consider aleatoric and model uncertainty when predicting stock
price movements. The uncertainty estimation allows the network to know how
certain the prediction is, which provides a high degree of freedom for invest-
ment strategies. While estimating aleatoric uncertainty during inference is chal-
lenging, we transform aleatoric uncertainty to model uncertainty by removing
samples with inconsistent labels. The Bayesian inference is then applied to eval-
uate whether networks are familiar with a testing sample for estimating model
uncertainty. In addition, removing samples with aleatoric uncertainty improves
the network’s generalization because networks only learn from samples with con-
sistent labels. They are only certain about samples that have been seen in the
training set and contain consistent labels. Experiment results verified that the
high certainty of our network prediction indeed results in high accuracy.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments. This work was supported by E. SUN Bank and the Ministry of Science and
Technology, Taiwan (110-2221-E-A49 -062 - and 109-2221-E-009 -097 -).

References

1. Adebiyi, A.A., Adewumi, A.O., Ayo, C.K.: Comparison of Arima and artificial
neural networks models for stock price prediction. J. Appl. Math. 2014, 1–7 (2014)

2. Antorán, J., Allingham, J., Hernández-Lobato, J.M.: Depth uncertainty in neural
networks. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

3. Arpit, D., et al.: A closer look at memorization in deep networks. In: International
Conference on Machine Learning, pp. 233–242 (2017)

168 Y.-H. Lien et al.

4. Ding, X., Zhang, Y., Liu, T., Duan, J.: Using structured events to predict stock
price movement: an empirical investigation. In: Conference on Empirical Methods
in Natural Language Processing, pp. 1415–1425 (2014)

5. Dixon, M., Klabjan, D., Bang, J.H.: Classification-based financial markets predic-
tion using deep neural networks. Algorithmic Finan. 6(3–4), 67–77 (2017)

6. Edwards, R.D., Magee, J., Bassetti, W.C.: Technical Analysis of Stock Trends.
CRC Press (2018)

7. Feng, F., Chen, H., He, X., Ding, J., Sun, M., Chua, T.S.: Enhancing stock move-
ment prediction with adversarial training. In: International Joint Conference on
Artificial Intelligence, pp. 5843–5849 (2019)

8. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.S.: Temporal relational
ranking for stock prediction. ACM Trans. Inf. Syst. 37(2), 1–30 (2019)

9. Foong, A.Y., Burt, D.R., Li, Y., Turner, R.E.: Pathologies of factorised Gaussian
and MC dropout posteriors in Bayesian neural networks. STAT 1050, 2 (2019)

10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050–1059 (2016)

11. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: International Conference on Learning Representations (2015). https://
arxiv.org/abs/1412.6572

12. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely
noisy labels. In: Advances in Neural Information Processing Systems, pp. 8527–
8537 (2018)

13. Heaton, J.B., Polson, N.G., Witte, J.H.: Deep learning for finance: deep portfolios.
Appl. Stoch. Model. Bus. Ind. 33(1), 3–12 (2017)

14. Izmailov, P., Maddox, W.J., Kirichenko, P., Garipov, T., Vetrov, D., Wilson, A.G.:
Subspace inference for Bayesian deep learning. In: Uncertainty in Artificial Intelli-
gence, pp. 1169–1179 (2020)

15. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: learning data-driven
curriculum for very deep neural networks on corrupted labels. In: International
Conference on Machine Learning (2018)

16. Kurakin, A., Goodfellow, J.I., Bengio, S.: Adversarial machine learning at scale.
In: International Conference on Learning Representations (2017)

17. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems, pp. 6402–6413 (2017)

18. Li, B., Hoi, S.C.: On-line portfolio selection with moving average reversion. arXiv
preprint arXiv:1206.4626 (2012)

19. Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In: Interna-
tional Conference on Artificial Intelligence and Statistics (2020)

20. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

21. Maddox, W., Garipov, T., Izmailov, P., Vetrov, D., Wilson, A.G.: A simple baseline
for Bayesian uncertainty in deep learning. arXiv preprint arXiv:1902.02476 (2019)

22. Malach, E., Shalev-Shwartz, S.: Decoupling “when to update” from “how to update”.
In: Advances in Neural Information Processing Systems, pp. 960–970 (2017)

23. Moskowitz, T.J., Ooi, Y.H., Pedersen, L.H.: Time series momentum. J. Financ.
Econ. 104(2), 228–250 (2012)

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1206.4626
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1902.02476

Uncertainty Awareness for Predicting Noisy Stock Price Movements 169

24. Nelson, D.M., Pereira, A.C., de Oliveira, R.A.: Stock market’s price movement pre-
diction with LSTM neural networks. In: International Joint Conference on Neural
Networks, pp. 1419–1426 (2017)

25. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 427–436 (2015)

26. Nguyen, T.H., Shirai, K., Velcin, J.: Sentiment analysis on social media for stock
movement prediction. Expert Syst. Appl. 42(24), 9603–9611 (2015)

27. Niaki, S.T.A., Hoseinzade, S.: Forecasting s&p 500 index using artificial neural
networks and design of experiments. J. Ind. Eng. Int. 9(1), 1 (2013)

28. Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Benchmark
dataset for mid-price forecasting of limit order book data with machine learning
methods. J. Forecast. 37(8), 852–866 (2018)

29. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for
robust deep learning. In: International Conference on Machine Learning (2018)

30. Shaker, M.H., Hüllermeier, E.: Aleatoric and epistemic uncertainty with random
forests. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol.
12080, pp. 444–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44584-3_35

31. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.:
Using deep learning to detect price change indications in financial markets. In:
European Signal Processing Conference, pp. 2511–2515 (2017)

32. Walczak, S.: An empirical analysis of data requirements for financial forecasting
with neural networks. J. Manag. Inf. Syst. 17(4), 203–222 (2001)

33. Wei, H., Feng, L., Chen, X., An, B.: Combating noisy labels by agreement: a joint
training method with co-regularization. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 13726–13735 (2020)

34. Xu, Y., Cohen, S.B.: Stock movement prediction from tweets and historical prices.
In: Annual Meeting of the Association for Computational Linguistics, pp. 1970–
1979 (2018)

35. Yu, X., Han, B., Yao, J., Niu, G., Tsang, I.W., Sugiyama, M.: How does disagree-
ment help generalization against label corruption? arXiv preprint arXiv:1901.04215
(2019)

36. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

37. Zhang, L., Aggarwal, C., Qi, G.J.: Stock price prediction via discovering multi-
frequency trading patterns. In: ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 2141–2149 (2017)

38. Zhang, Z., Zohren, S., Roberts, S.: DeepLOB: deep convolutional neural networks
for limit order books. IEEE Trans. Signal Process. 67(11), 3001–3012 (2019)

https://doi.org/10.1007/978-3-030-44584-3_35
https://doi.org/10.1007/978-3-030-44584-3_35
http://arxiv.org/abs/1901.04215
http://arxiv.org/abs/1611.03530

A Prescriptive Machine Learning
Approach for Assessing Goodwill

in the Automotive Domain

Stefan Haas1(B) and Eyke Hüllermeier2(B)

1 BMW Group, Munich, Germany
stefan.sh.haas@bmwgroup.com

2 Institute of Informatics, University of Munich (LMU), Munich, Germany
eyke@lmu.de

Abstract. Car manufacturers receive thousands of goodwill requests for
vehicle defects per year. At BMW, these requests for repair-cost contri-
butions are either assessed automatically by a set of fixed rules or man-
ually by human experts. To decrease manual effort, which is still around
50%, we propose a machine learning approach with the goal to discover
so far unknown assessment patterns in human decisions. Since the assess-
ment contribution data is heavily imbalanced, we structure the learning
task hierarchically: The first layer’s task is to predict the main rank of the
request (no contribution, partial contribution, or full contribution). Then,
in the case where partial contribution is suggested, the second layer pre-
dicts the concrete percentage using a regression model. To optimize our
model and tailor it to certain strategies (e.g., customer friendly or more
cost oriented), we make use of a custom-defined cost matrix. We also out-
line how the model can be used in a scenario in which it prescribes appro-
priate monetary contributions for requested repair-costs. This can initially
happen in the form of a decision support system (DSS) and, in the next
step, through automated decision making (ADM), where a certain part of
goodwill requests is processed automatically by the prescriptive model.

Keywords: Prescriptive machine learning · Decision support
systems · Automated decision making · Cost-sensitive learning ·
Hierarchical learning

1 Introduction

Rule-based expert systems are used widely in many fields, for example in industry
to assess financial credit risks or in medicine to detect diseases such as breast
cancer or diabetes [1,8]. They arguably constitute the simplest form of artificial
intelligence (AI), storing rules carefully assembled by domain-knowledge in the
form of if-then-else statements. They do not require any data and are naturally
interpretable [2]. This makes them a natural fit for automating decision processes
that need to be auditable, 100% accurate, and which comprise a certain risk,
either financially or for life and limb.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 170–184, 2023.
https://doi.org/10.1007/978-3-031-26422-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_11

Prescriptive Machine Learning for Assessing Goodwill 171

One such financial rule-based expert system is the central Goodwill system of
BMW. In cases of vehicle defects, dealers carry out goodwill repair on behalf of
customers and in turn get compensated by the original equipment manufacturer
(OEM) for their spare parts and labor efforts. Whether or not customers are
eligible for goodwill compensation is decided automatically on the basis of a
fixed set of expert rules. This automatic rule based assessment is only done
in countries where no legal restrictions against it apply. In case the goodwill
request is rejected in the first place, the final decision is transferred to a so-
called assessor, a human after-sales goodwill expert, who manually looks at the
individual case and determines the monetary contribution of the OEM, if any.
Although a decision matrix to support this manual process is in place in many
sales markets, it is still often a commercial gut decision and not standardized
across markets.

The need for human intervention is due to several problems of a rule-based
approach, notably the difficulty to maintain a coherent set of deterministic rules
capturing all eventualities of a complex commercial use case. Therefore, the data-
driven design of decision models by means of machine learning (ML) appears to
be an appealing alternative to increase the degree of automation. Over the years,
a good amount of historic human decision data has been collected, which can be
leveraged in this regard. The goal hereby is to deduce so far unknown assessment
patterns from observed human decisions that might be too complex to be put
into rules in the first place. Supervised machine learning models can be trained
on the observed decision data and later used in the manual decision process to
prescribe certain monetary contributions. This can either happen in the form
of a decision support system (DSS) or, if trust in the models is high enough,
through automated decision making (ADM), which helps decrease manual human
assessment effort and save costs in the long run.

The goodwill use case qualifies as what has recently been coined prescriptive
machine learning [7]. In contrast to the common setting of predictive machine
learning, the goal is not to predict some underlying ground-truth, but rather to
learn models that stipulate appropriate decisions or actions to be taken in order to
achieve a certain goal (i.e., to answer the question “How to make something hap-
pen?” rather than “What will happen?”). In fact, in the case of goodwill, there is
nothing like a “right” monetary contribution. Instead, a decision is more or less
appropriate, fair for the customer and strategically opportune for the company.
Such decisions are supposed to ensure customer satisfaction while remaining eco-
nomically reasonable from a manufacturer’s perspective. In addition to increasing
the degree of automation, prescriptive models may also contribute to the standard-
ization, consistency, and objectivity of the decision process.

The main contribution of this paper is a prescriptive ML approach to goodwill
assessment, which is based on real human decision data. In the next section,
we describe the goodwill assessment problem in more detail. Next, we outline
how prescriptive ML could be incorporated into the existing process. Then, we
propose an ML method for goodwill assessments, which is specifically tailored to
the use case and properties of the data. Finally, we conclude with related work,
identify challenges and outline directions of future work.

172 S. Haas and E. Hüllermeier

2 The Vehicle Goodwill Assessment Process

Assessing goodwill requests is an important topic for manufacturers. In case of
BMW, dealers yearly submit thousands of goodwill requests for vehicles that
must be assessed. The question whether goodwill is granted or not, and which
amount, is far from trivial. It is an individual commercial decision that must bal-
ance customer satisfaction and financial impact. In this regard, it is important
to distinguish between warranty, which is a legal obligation for manufacturers,
and goodwill, which is a non-obligatory service manufacturers provide to cus-
tomers outside the warranty time window (usually after 3–5 years). The goal of
compensating customers for product failures outside the warranty time window
is primarily to safeguard customer satisfaction and loyalty with the brand.

At the OEM, handling goodwill on system level is currently a hybrid approach
based on automatic and human manual assessment. The UML Use-Case diagram
in Fig. 1 depicts the process and its actors.

Submit Goodwill
Request

Automatic Rule-based
Assessment

<<include>>

Manual Assessment

<<extend>>

Dealer

Assessor

Goodwill System

Condition:
{Goodwill Request is rejected

in Automatic Rule-based
Assessment}

Fig. 1. UML use case diagram for the classic goodwill process.

The standard use case is as follows. Customers arrive at a dealership with
a vehicle defect and request a repair from the dealer. Next, the dealer checks
whether the manufacturer would grant goodwill for this particular defect by
submitting a goodwill request on the behalf of the customer. The data the dealer
has to enter ranges from certain vehicle information like vehicle mileage and
age to estimated labor and parts costs for the repair itself. On system side,
the request is first evaluated against a fixed set of rules (automatic rule-based
assessment). If it goes through and goodwill is granted, the process is finished
and the dealer will be compensated for the repair. If not, the goodwill request is
further processed through a manual assessment. In this case, a human goodwill
after-sales expert checks the request and makes the final decision. The manual
assessment step only extends the automatic rule-based assessment in case of an
automatic rejection in the first place but cannot be requested right from the
beginning. In case of a manual assessment, the dealer also has the possibility

Prescriptive Machine Learning for Assessing Goodwill 173

to send attachments (e.g., a video of rattling engine) and a free text comment
along with the request.

In tangible terms, the result of the goodwill process is a percentage of the
labor and parts cost contributions the dealer requests and the manufacturer is
willing to pay. The set of possible contribution percentages ranges from 0 to
100% in steps of 10%: C = {0, 10, 20, . . . , 100}. For instance, if the dealer has
labor and parts costs of e1,149.82 and e903.30, respectively, and requests labor
and parts cost contributions of 100%, the assessor decides which percentage of
contribution is appropriate by taking all the provided information into account.
He or she might first check the mileage and age of the vehicle, then the respective
defect, whether the vehicle was regularly serviced, and so on. Based on these
checks, he or she decides for a contribution, e.g., 50% for labor and 100% for
parts. In our example, this would lead to a monetary compensation of the dealer
of e574.91 for labor and e903.30 for parts.

To get an idea about the dimensions of automatic vs. manual goodwill assess-
ments, Fig. 2 shows the overall proportion of automatic and manual goodwill
assessments of some selected sales markets.

0 10 20 30 40 50 60 70 80 90 100

Manual Assessments

Automatic Assessments

49.27

50.73

Percentage (%) of goodwill assessment types

Fig. 2. Overall portions (%) of manual and automatic assessments.

Note that the period of data selection is veiled to allow no conclusions. The
portion of goodwill requests that need to be assessed manually is almost as high
(49.27%) as the portion of automatically processed goodwill requests (50.73%).
In total numbers, 688,879 goodwill requests have been created so far, 349,488 of
which were processed automatically by rules and 339,391 manually by a human
expert.

Table 1 breaks down the goodwill numbers per selected National Sales Com-
pany (NSC). The NSC names have been anonymized here by letters (A to E), to
prevent conclusions about goodwill strategies per country. The size of the sales
market naturally influences the number of goodwill cases. From an assessment
perspective it makes sense to look at the goodwill cases on a per sales market
basis, since sales markets have their own goodwill strategies. Therefore, goodwill
compensations is very market specific.

174 S. Haas and E. Hüllermeier

Table 1. Goodwill assessment numbers by National Sales Company (NSC).

NSC Goodwill requests Automatic Manual Degree of automation

A 35,624 20,998 14,626 58.94
B 76,461 48,666 27,795 63.65
C 84,030 47,278 36,752 56.26
D 437,656 200,831 236,825 45.89
E 55,108 31,715 23,393 57.55
∑

688,879 349,488 339,391 � 50.73 %

3 Prescriptive Machine Learning for Goodwill
Assessment

In this section, we propose to extend the standard goodwill assessment pro-
cess as outlined in the previous section, with prescriptive ML models. First, we
describe how ML models could be integrated into the existing goodwill use case.
Subsequently, we evaluate how well a complex human decision process such as
goodwill assessment can be covered by supervised ML.

3.1 Enhancing the Goodwill Assessment Process

Figure 3 shows a goodwill use case extended by ML in comparison with the
classic use case outlined in Fig. 1. The prescriptive model assessment can either
be included in the manual assessment process or extend the automatic rule-based
assessment.

Submit Goodwill
Request

Automatic Rule-based
Assessment

<<include>>

Manual Assessment
<<extend>>

Dealer

Assessor

Goodwill System

Condition:
{Goodwill Request is rejected in

Automatic Rule-based
Assessment}

Prescriptive Models
Assessment

<<extend>> <<include>>

Condition:
{Goodwill Request is rejected in

Automatic Rule-based
Assessment}

Fig. 3. UML use case diagram for the ML-enhanced goodwill process.

Prescriptive Machine Learning for Assessing Goodwill 175

In the inclusion scenario, the prescriptive model supports the manual assess-
ment through goodwill contribution suggestions that guide the assessor in his or
her decision process. The prescriptive model serves as a decision support system
(DSS) and only informs the assessor about the presumably most appropriate
decision. Accepting the decision is not compulsory for the assessor, who still
possesses the sovereignty over the goodwill decision. Nevertheless, the model
suggestions could help to harmonize and standardize decisions from a business
perspective. Including the prescriptive model assessment in the manual assess-
ment might be a good starting point for making use of ML in the goodwill
process, as the risk of wrong assessments is low and the final decision is still in
the hands of an expert.

In the extension scenario, the model extends the automatic rule-based assess-
ment and takes over cases not decidable by rules. The model assesses goodwill
decisions automatically and supports the process through automated decision
making (ADM). From a business perspective, this is the ultimate goal to aim for,
as it will directly reduce process costs. However, this approach also comes with
the greatest risk, as there is no human expert involved anymore who supervises
the final decisions. Customer satisfaction and financial impact for the manufac-
turer are left to the machine. Leaving the final goodwill decision to a prescriptive
model requires trust that can only be built through an evaluation by business
experts over a long term period.

A combination of inclusion and extension is also conceivable. While ADM
might be feasible in less complex cases, it might be advisable to just integrate
the model as a DSS in more complex scenarios, leaving the final decision to
a human expert. What exactly distinguishes less and more complex goodwill
scenarios is still an open research question.

3.2 Prescriptive Machine Learning

The setting of prescriptive ML deviates from the standard setting of predictive
ML in various ways [7]. This also includes the process of supervision. As already
mentioned, in prescriptive ML, there is not necessarily something like a “ground-
truth” or correct decision, and even if decisions might be compared in terms of
quality or desirability of their implications, there is no guarantee that decisions
made by human experts in the past were optimal. Therefore, taking them directly
as targets for a supervised learning method might not be advisable [11]. In the
case of goodwill, for example, a decision of 50% contribution appears to be
somewhat overrepresented (cf. Fig. 4), letting one suspect that this is often taken
as a default choice for a partial cost coverage, even if it might not necessarily be
the most appropriate percentage. In the following, we will nevertheless assume
that mimicking the expert is a reasonable strategy, at least as a first step toward
a data-driven goodwill assessment, leaving more elaborate approaches for future
work.

Under this premise, the problem is essentially reduced to a supervised learn-
ing task, with the observed human goodwill decisions

D =
{
(x1, y1), . . . , (xn, yn)

}

176 S. Haas and E. Hüllermeier

as training data. Instances are goodwill requests entered by the dealer and repre-
sented as a feature vector x ∈ X ⊆ R

m. These instances are labeled by assessed
contribution percentages, which serve as the target variable y ∈ Y ⊆ R. The
goal of the ML task is to learn a decision model h∗ ∈ H, where H is the class
of candidate models (referred to as hypothesis space in the common setting of
supervised learning). This model is a mapping X → Y supposed to approxi-
mate the training data and, more importantly, generalize well to new decision
problems. Like in supervised learning, we model the performance of a model h
in terms of a loss (error) function l : Y × Y → R+, so that l(y, ŷ) denotes the
penalty incurred by the learner for prescribing ŷ when the expert decides y. The
choice of a presumably optimal model h∗ is commonly guided by the empirical
risk

R(h) :=
1
n

n∑

i=1

l(yi, h(xi)) (1)

as an estimate of a model’s performance. This measure is normally not minimized
directly by the learner, however, because the empirical risk minimizer h∗ =
arg minh∈H R(h) is knowingly prone to overfitting the training data, and hence
to suboptimal generalization.

3.3 Human Goodwill Decision Data

Table 2 shows the features used for the ML task. In the first step, we will only
look at the hard facts, such as vehicle mileage, vehicle age, the defect code, the
costs, and the requested labor and part contributions. The raw data entered
by the dealer will be enriched with further vehicle data that can be derived
from the vehicle identification number (VIN), including the vehicle model type,
the series, the motor series, the order country of the vehicle, the sales country
of the vehicle, and whether the vehicle is a car or motorbike. The free-text
dealer comment and attachments will be ignored for now, because they can be
considered as “soft” facts. Besides, they are not immediately usable and require
sophisticated post-processing techniques such as NLP. The rest of the data is a
mixture of categorical and numerical data and qualifies as tabular data.

The features are pre-processed as follows: Numeric data is scaled using min-
max-scaling (e.g., Parts, Labor and Total Costs), low cardinality categorical
features are encoded using one-hot-encoding (e.g., Customer Type or Requested
Labor and Parts Contributions), and high cardinality features are hashed (e.g.,
Defect Code or Vehicle Series).

Turning our attention to the target variable, Fig. 4 shows how the overall con-
tributions are distributed over the possible percentages Y = {0, 10, 20, . . . , 100}.
Obviously, the data is heavily imbalanced, and contributions other than 0% and
100% are rarely used. Among the rare contributions, the 50% decision sticks
out and appears a bit more frequently, whereas 90% is the least frequent con-
tribution. As already said, this may reflect a common human pattern: If not
being exactly sure what to grant, people tend to opt for a compromise in the
middle. Another pattern one can observe is a kind of “generous rounding” to

Prescriptive Machine Learning for Assessing Goodwill 177

Table 2. Features used for model training.

Attribute Data type Description

Vehicle Mileage Numeric (continuous) 12,500
Vehicle Age Numeric (continuous) 48

Enquiry Indicator Categorical (ordinal) Request after or before the repair
Warranty Stage Categorical (nominal) Standard or Extended Goodwill
Product Type Categorical (nominal) Car or Motorbike

Regular Service Categorical (nominal) Yes or No
Sales Country Categorical (nominal) NL
Order Country Categorical (nominal) BE

External Guarantee Categorical (nominal) Yes or No
Vehicle registered to customer Categorical (nominal) Yes or No

Vehicle Model Type Categorical (nominal) FG81
Vehicle Series Categorical (nominal) G21
Motor Series Categorical (nominal) N57T

Mobility provided Categorical (nominal) Yes or No
Defect Code Categorical (nominal) 1178031500

Defect Code (Main and sub group only) Categorical (nominal) 1178
Shared last expenses Categorical (nominal) Yes or No

Customer Type Categorical (nominal) Regular, Transit or International
Requested Labor Contribution (per cent) Categorical (nominal) 60%
Requested Parts Contribution (per cent) Categorical (nominal) 60%

Dealer Labor Contribution (per cent) Categorical (nominal) 40%
Dealer Parts Contribution (per cent) Categorical (nominal) 40%

Parts Costs Numeric (continuous) e903.30
Labor Costs Numeric (continuous) e1,149.82

Requested Open Time Units Numeric (discrete) 5
Dealer Open Time Units Numeric (discrete) 2

Additional service costs, e.g., replacement car Numeric (continuous) e460.30
Total Costs Numeric (continuous) e3,682.89

“meaningful” contributions, namely, 0%, 30%, 50%, 70%, 100%. Other contri-
butions, such as 10% and 90%, are even more rare, probably because these are
considered somewhat pedantic. In any case, the rare contributions are likely to
carry important information, as they reflect subtle human instinct, and they are
key to safeguard customer satisfaction. There is also an apparent tendency to
contribute rather than not contribute from manufacturer’s perspective, as the
100% bar is noticeably higher than the 0% bar. This is the case for labor as well
as parts. However, for parts the tendency is stronger than for labor.

3.4 Hierarchical Cost-Sensitive Learning

From the description of the task and the data, it becomes clear that goodwill
assessment comes with a number of important challenges from a machine learn-
ing perspective. First, looking at the scale of the target variable (contribution
in percentage), the problem is somehow in-between ordinal classification and

178 S. Haas and E. Hüllermeier

0 0.5 1 1.5 2
·105

0
10
20
30
40
50
60
70
80
90

100

Number of Goodwill Cases

C
on

tr
ib

ut
io

ns

Labor
Parts

Fig. 4. Distribution of goodwill contributions for Labor and Parts at BMW.

regression: In principle, the target is numerical, but not all numbers between 0
and 100 are deemed valid prescriptions. Therefore, one may also think of tack-
ling the task as a problem of ordinal classification with 11 class labels sorted in
increasing order from lowest (0%) to highest (100%).

Related to the interpretation of the scale is the question of how a suitable loss
function should look like. Obviously, a standard measure such as misclassifica-
tion rate (0/1 loss) is inappropriate, even if the task is treated as a classification
problem, because the loss function should take the linear structure of the con-
tribution scale into account. Squared or absolute error as commonly used in
regression do not appear to be perfect choices either, as one may argue that
there is not only a quantitative but also a qualitative difference between the 0%
decision, the 100% decision, and the decision of a partial contribution. This sug-
gests a cost-sensitive approach, in which a cost (loss) function Y × Y → R+ is
explicitly defined in “tabular” form. As an additional advantage, this allows for
incentivising the learner in a strategic way, e.g., to constructing more customer-
friendly or more cost-oriented decision models.

Another challenge is the class imbalance. Imbalanced data makes learning
more difficult, and many algorithms have a tendency to compromise the accu-
racy of small classes in favor of bigger classes [12]. This would be especially
problematic in the case of goodwill assessment, enforcing extreme decisions at
the cost of partial contributions. Common approaches to deal with imbalanced
data include up-sampling of the minority classes or down-sampling of the pre-
dominant classes in order to balance the data [13]. Similar effects can be achieved
by adding weights to the training examples, making the underrepresented exam-
ples more important and the overrepresented less.

Prescriptive Machine Learning for Assessing Goodwill 179

To tackle both problems, cost-sensitivity and imbalance, we propose a hierar-
chical approach with a qualitative (categorical) first layer and a quantitative sec-
ond layer. In the first layer, we solve an ordinal 3-class classification (or ranking)
problem, distinguishing between classes NO (no contribution, rank 1), PARTIAL
(partial contribution, rank 2), and FULL (full contribution, rank 3). Obviously,
this problem is more balanced, because all contributions between 10% and 90%
are collected in a single class.

In the case where an instance is assigned to PARTIAL in the first layer, it is
forwarded to the second layer, where the concrete percentage of contribution is
determined. Thus, while an instance x is mapped to a rank r(x) ∈ {1, 2, 3} in
the first layer, x is mapped to any of the numbers {10, 20, . . . , 90} in the second
layer. The latter task can be formalized as a (constrained) regression problem.

The first problem, where an example (x, y) consists of an input vector x ∈ X
and an ordinal label y ∈ Y = {1, 2, ...,K} (in our case {NO,PARTIAL,FULL},
i.e., K = 3), provides us with the opportunity to use the cost-sensitive ranking
framework presented in [9]. This framework allows one to specify a cost matrix
in a flexible way, which is especially convenient in our case. In fact, by utilizing
a custom defined K × K cost matrix C, we can configure the mislabeling cost
according to our strategy, e.g., rather customer-friendly or more cost-oriented
from manufacturer’s perspective. The cost of predicting an example (x, y) as
rank k is given by the entry Cy,k in the cost matrix. Table 3 shows two distinct
strategies for goodwill assessments. The cost matrix on the left side shows a
customer-friendly strategy, where the learner is strongly penalized when pre-
scribing NO instead of FULL (C3,1 = 30). On the right side, the cost matrix
implements a more cost-orientated approach, where the learner is penalized the
most for the decision FULL instead of NO (C1,3 = 30). Note that the result of
the regression model for the PARTIAL values (k = 2) will be mapped back to
the interval C2,2 = [0, 5] to also integrate the regression into the overall cost-
sensitive ranking framework. By the width of the interval, we can configure how
much importance we give to the exact prediction of the values of the regression
layer. Figure 5 visualizes the structure of the proposed hierarchical approach.

Table 3. Different assessment strategies specified by different cost functions: customer-
oriented with higher penalization of contributions that are loo low (left) vs.
manufacturer-oriented with higher penalization of contributions that are too high
(right).

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 0 5 10

PARTIAL 10 [0,5] 5
FULL 30 10 0

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 0 10 30

PARTIAL 5 [0,5] 10
FULL 10 5 0

180 S. Haas and E. Hüllermeier

Preprocessing

Binary Classification

Binary Classification

Ranking Regressionx ŷ

1. NO
2. PARTIAL
3. FULL

[[1,0,0],
[0,1,0],
[0,0,1]]

Fig. 5. Overview of the hierarchical cost-sensitive approach.

The approach [9] to ordinal classification is based on a reduction to weighted
binary classification. More specifically, a binary classifier

f : X × {1, . . . , K − 1} → {0, 1}

is trained that accepts extended instances (x, k) as input. As output, the classifier
is supposed to produce 1 (answer “yes”) if the true rank of x exceeds k and
0 (answer “no”) otherwise. The actual rank of a query instance can then be
determined by applying the following ranking rule:

r(x) = 1 +
K−1∑

k=1

f(x, k). (2)

To train the classifier, the original data is extended as follows: Each original
example (x, y) is turned into extended examples (xk, yk) with weights wy,k,
where1

xk = (x, k), yk = �k < y�, wy,k = |Cy,k − Cy,k+1| .
The weights wy,k control the importance of an example during the training
phase of the binary classifier. The higher the cost difference between two adja-
cent ranks, the larger the weights and therefore the importance of a particular
example.

Incorporating domain knowledge, we propose the following small modification
of the ranking rule (2): As the proposed contribution essentially never exceeds
the contribution q requested for x, we set

r(x) = min
{
1 + f(x, 1) + f(x, 2), q

}
. (3)

For the second layer of our model, any regression method can in principle
be used. For the exact inference of the partial contribution values, we round
and constrain the regression model’s output to the set of possible contributions
{10, . . . , 90}. Also, like for the prescription of ranks, we make sure that the
prescription does not exceed the requested contribution q:

ŷ = min
{

�f(x)
10

� · 10, q

}
(4)

1 �·� denotes the indicator function returning 1 if the argument is true and 0 otherwise.

Prescriptive Machine Learning for Assessing Goodwill 181

4 Evaluation and Results

In this section, we evaluate our hierarchical cost-sensitive approach on BMW’s
goodwill data sets. For training the classifier f (and ranker r) in the first layer,
a learning algorithm is needed that is able to handle weighted examples. In our
experimental study, we used extreme gradient boosting (XGBoost) [3], a versatile
method that proved to work very well on tabular data and also outperforms deep
neural networks in this context [10]. Another advantage is that XGBoost can be
used for both classification and regression, hence we could use it for training the
first as well as the second layer of our model.

Tables 4 and 5 show the results of a ten-fold cross validation in terms of the
mean and standard deviation of various performance metrics. The first metric of
interest is the cost of the model’s prescriptions according to the underlying cost
function — here, we present results for the cost matrix (a) in Table 3 (those for
matrix (b) look very similar). The middle part of the matrix, i.e., the cost for
assessments involving a partial contribution, is filled with the absolute error of
the regression model scaled to the specified interval (in this case [0, 5]). As the
cost values are measured on an abstract scale without interpretable dimension,
we also report the mean accuracy (ACC) for the ranking part and the mean
absolute error (MAE) for the regression model (on a scale from 10 to 90), thereby
making the results more tangible. Overall, our model shows a quite satisfactory
performance.

Table 4. Evaluation metric results obtained for Labor.

Ranking Regression Costs

NSC ACC SD MAE SD C SD

A 0.887 0.032 0.942 0.24 1.133 0.303
B 0.904 0.014 5.094 0.524 1.018 0.221
C 0.926 0.028 4.519 0.454 0.725 0.271
D 0.857 0.009 1.306 0.19 1.321 0.09
E 0.881 0.047 7.161 1.755 1.064 0.398

Mean 0.891 0.026 3.8044 0.6326 1.0522 0.2566
Median 0.887 0.028 4.519 0.454 1.064 0.271

As already explained, the cost function can be used to tailor a decision
model to certain strategies, e.g., making it more customer-friendly or more
manufacturer-friendly (cost-oriented). To evaluate this feature, we looked at
the confusion matrices obtained for the cost functions in Table 3. As can be
seen in Table 6, the confusion matrix for the customer-friendly cost matrix is
indeed more geared to the right, showing a tendency toward higher ranks and
consequently higher contributions. In contrast, the matrix for the cost-oriented
strategy is more geared towards the left side, with lower ranks and thus less
contributions.

182 S. Haas and E. Hüllermeier

Table 5. Evaluation metric results obtained for Parts.

Ranking Regression Costs

NSC ACC SD MAE SD C SD

A 0.889 0.035 1.265 0.249 1.059 0.452
B 0.869 0.016 5.691 0.485 1.215 0.158
C 0.949 0.023 6.522 0.711 0.552 0.183
D 0.872 0.011 4.625 0.313 1.154 0.078
E 0.887 0.055 7.041 1.732 1.001 0.51

Mean 0.8932 0.028 5.0288 0.698 0.9962 0.2762
Median 0.887 0.023 5.691 0.485 1.059 0.183

Table 6. Different parts ranking confusion matrix depending on the assessment strat-
egy (for NSC A): customer-oriented (left) vs. manufacturer-oriented (right).

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 494 47 45

PARTIAL 0 286 34
FULL 2 13 541

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 526 40 20

PARTIAL 6 295 19
FULL 11 34 511

5 Conclusion and Future Work

In this paper, we described the existing rule-based and manual goodwill assess-
ment process at BMW and how it can be extended through prescriptive machine
learning models. This can either happen in the form of a decision support sys-
tem, automated decision making, or a combination of both. Furthermore, we
proposed a hierarchical, cost-sensitive approach for learning prescriptive models
from human goodwill decisions, which accounts for the specific structure of the
decision space, counteracts class imbalance, and allows for tailoring strategies
to different value systems and market situations (e.g., customer friendly vs. cost
oriented).

Motivated by our encouraging results, we plan to address the following chal-
lenges in future work.

– Trust and Explanation: We noticed that business experts do not immediately
trust a prescriptive ML solution. Therefore, involving business experts in the
development and evaluation process is important, not only to improve the ML

Prescriptive Machine Learning for Assessing Goodwill 183

solution itself, but also to foster trust in it. Explainability will play a key role
in this regard, making machine learning more transparent and accessible to all
stakeholders involved [5]. In fact, decisions need to be explained, and different
parties may have different needs for explanation. For a dealer, feedback about
the most important attribute that led to the rejection of the request might be
enough, whereas an auditor needs to understand the whole reasoning process
in detail.

– Uncertainty : Although the decision models we trained perform very well,
showing the high potential of automated decision making, not all decisions
appear to be perfect all the time. Therefore, it would be desirable to increase
the uncertainty-awareness of decision models, so that final decisions could be
transferred to the human expert in cases of high uncertainty [6].

– Weak supervision: As already mentioned, human goodwill decisions might
be biased in one way or the other and should not necessarily be taken as
a gold standard. Additionally, the data may contain concept drift due to
strategy changes in the assessment process over time. Therefore, past deci-
sions should be considered and modeled as weak information about the target
rather than an incontestable ground truth, suggesting the use of methods for
weakly supervised learning [14] in prescriptive modeling.

– Fairness: Another important question concerns the notion of fairness in the
goodwill decision process. There might be different strategies toward fair-
ness, depending on the sales market. For instance, some markets might want
to treat all customers equally, independently of the money they spent for a
vehicle, whereas others might want to prefer customers with higher priced
vehicles in the goodwill process. It needs to be investigated whether or not
models can be tailored to such strategies automatically, or if a manual inter-
vention is required [4].

References

1. Abu-Naser, S.S., Bastami, B.G.: A proposed rule based system for breasts cancer
diagnosis. World Wide J. Multidisc. Res. Dev. 2(5), 27–33 (2016)

2. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. J. Artif. Intell. Res. 70, 245–317 (2021)

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

4. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton,
E.P., Roth, D.: A comparative study of fairness-enhancing interventions in machine
learning. In: Proceedings of the Conference on Fairness, Accountability, and Trans-
parency (FAT*), pp. 329–338. Association for Computing Machinery, New York,
NY, USA (2019)

5. Hong, S.R., Hullman, J., Bertini, E.: Human factors in model interpretability:
industry practices, challenges, and needs. Proc. ACM Hum. Comput. Interact.
(CSCW1). 4, 1–26 (2020)

6. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506
(2021). https://doi.org/10.1007/s10994-021-05946-3

https://doi.org/10.1007/s10994-021-05946-3

184 S. Haas and E. Hüllermeier

7. Hüllermeier, E.: Prescriptive machine learning for automated decision making:
Challenges and opportunities. CoRR abs/2112.08268 (2021). https://arxiv.org/
abs/2112.08268

8. Karthikeyan, R., Geetha, P., Ramaraj, E.: Rule based system for better prediction
of diabetes. In: 3rd International Conference on Computing and Communications
Technologies (ICCCT), pp. 195–203 (2019)

9. Li, L., Lin, H.T.: Ordinal regression by extended binary classification. In: Schölkopf,
B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 19. MIT Press (2006)

10. Shwartz-Ziv, R., Armon, A.: Tabular data: deep learning is not all you need. Inf.
Fusion 81, 84–90 (2022)

11. Swaminathan, A., Joachims, T.: Counterfactual risk minimization: learning from
logged bandit feedback. In: Proceedings of ICML, International Conference on
Machine Learning, pp. 814–823 (2015)

12. Van Hulse, J., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on
learning from imbalanced data. In: Proceedings of ICML 24th International Con-
ference on Machine Learning, pp. 935–942. NY, USA, New York (2007)

13. Zhang, N.N., Ye, S.Z., Chien, T.Y.: Imbalanced data classification based on hybrid
methods. In: Proceedings of ICBDR 2nd International Conference on Big Data
Research, pp. 16–20. Association for Computing Machinery, New York, NY, USA
(2018)

14. Zhou, Z.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5,
44–53 (2018)

https://arxiv.org/abs/2112.08268
https://arxiv.org/abs/2112.08268

Risk-Aware Reinforcement Learning
for Multi-Period Portfolio Selection

David Winkel(B) , Niklas Strauß , Matthias Schubert , and Thomas Seidl

LMU Munich, Munich, Germany
{winkel,strauss,schubert,seidl}@dbs.ifi.lmu.de

Abstract. The task of portfolio management is the selection of portfolio
allocations for every single time step during an investment period while
adjusting the risk-return profile of the portfolio to the investor’s individ-
ual level of risk preference. In practice, it can be hard for an investor to
quantify his individual risk preference. As an alternative, approximat-
ing the risk-return Pareto front allows for the comparison of different
optimized portfolio allocations and hence for the selection of the most
suitable risk level. Furthermore, an approximation of the Pareto front
allows the analysis of the overall risk sensitivity of various investment
policies. In this paper, we propose a deep reinforcement learning (RL)
based approach, in which a single meta agent generates optimized port-
folio allocation policies for any level of risk preference in a given inter-
val. Our method is more efficient than previous approaches, as it only
requires training of a single agent for the full approximate risk-return
Pareto front. Additionally, it is more stable in training and only requires
per time step market risk estimations independent of the policy. Such
risk control per time step is a common regulatory requirement for e.g.,
insurance companies. We benchmark our meta agent against other state-
of-the-art risk-aware RL methods using a realistic environment based on
real-world Nasdaq-100 data. Our evaluation shows that the proposed
meta agent outperforms various benchmark approaches by generating
strategies with better risk-return profiles.

Keywords: Portfolio selection · Multi-objective optimization · Deep
RL

1 Introduction

The modern financial system offers investors the possibility to store wealth over
long time horizons. Typically, wealth is accumulated in times of productivity
and is then consumed in times of need. This can for example allow a private
investor to retire or allow an institutional investor, such as an insurance company,
to distribute funds to its clients at a later point in time. Thereby arises the
fundamental question of how to manage the stored wealth while it is not needed
for consumption. The task of portfolio management addresses this question and
deals with the most suitable selection of assets out of a basket of available assets.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 185–200, 2023.
https://doi.org/10.1007/978-3-031-26422-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_12&domain=pdf
http://orcid.org/0000-0001-8829-0863
http://orcid.org/0000-0002-8083-7323
http://orcid.org/0000-0002-6566-6343
http://orcid.org/0000-0002-4861-1412
https://doi.org/10.1007/978-3-031-26422-1_12

186 D. Winkel et al.

Besides the obvious goal of maximizing the expected economic return, often, the
investor’s capacity to bear risk, i.e., the uncertainty in his economic returns,
has to additionally be taken into account. This bearing capacity of risk for an
investor is summarized in his individual risk preference level. The individual risk
preference level can depend on various factors, such as the investor’s investment
horizon, his return expectations as well as his individual risk appetite.

While there are various works on short-term trading such as [3,30], we focus
on the long-term task of portfolio selection which brings multiple practical chal-
lenges for investors. According to requirements for many institutional investors
from regulatory frameworks, such as Solvency II1, the risk in returns needs to
be considered on a per time step basis. Professional investors are furthermore
generally evaluated by their customers on their periodical performance, includ-
ing the periodical risk taken on. The aforementioned individual risk preference
of an investor can be difficult to quantify. In practice, the identification of a
risk preference parameter is therefore often done by comparing alternative risk-
return optimized allocation policies to one another and by then selecting the
allocation policy fitting best. However, the identification of various optimized
allocation policies on the Pareto front is computationally expensive, especially
in multi-period settings which allow the investor to dynamically adjust his asset
allocation during the trajectory. A typical example for the high computational
demand is the extensive use of Monte Carlo simulations in the field of Asset
Liability Management (ALM) applications, which can be seen as a specific type
of the portfolio selection task, as discussed e.g., in [1].

In this paper, we frame the task of portfolio selection as a Markov decision
process (MDP) which we set up to allow the modelling of a complex multi-period
stochastic financial environment. To solve the MDP, we propose a risk-aware
RL approach, which is able to control the risk in returns for each time step over
the entire investment horizon. We choose to estimate the risk independently
from the agent’s current policy, making it only dependent on a market risk
estimator as well as on the agent’s current action. Contrary to policy dependent
estimators in RL, such as critics, which can suffer from a moving target problem,
our proposed risk estimator does not suffer from this issue, thereby allowing
for sample efficiency and accelerated convergence. We propose a meta agent
which uses the risk preference level as an inference parameter rather than as
a hyperparameter. This allows for the agent to be trained over an interval of
risk preference levels. In contrast, previous approaches have relied on training
different agents for each level of risk preference, which has the drawback of
requiring separate computationally expensive trainings, separate model networks
and separate sets of hyperparameters. The usage of the risk preference level as
an inference parameter further allows for approximating the Pareto front in
a computationally efficient manner. One single trained meta agent is able to
generate optimized asset allocation policies for any risk preference level within
the specified interval during inference time. The implementation of our agent is
based on PPO by [26], using a Dirichlet action distribution. In our experiments,

1 https://www.eiopa.europa.eu/browse/solvency-2 en.

https://www.eiopa.europa.eu/browse/solvency-2_en

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 187

our PPO based approach is able to outperform three alternative approaches:
firstly, a simple Equal Weight Buy and Hold strategy; secondly, a DDPG based
risk-aware RL approach by [1] and thirdly, a TD3 based risk-aware RL approach
by [32].

We benchmark all approaches in two different settings: on previously not
known data from the training environment and on a full year of unseen real
world Nasdaq-100 data in a backtesting setting.

The main contributions of this paper are:

– A computationally efficient way to approximate the risk-return Pareto front
for a continuous interval of risk preference levels by training only a single
meta agent

– A method that allows estimating the risk of returns independently from the
agent’s current policy

– A PPO based approach with a Dirichlet action distribution suitable for the
task of multi-period portfolio selection

2 Related Work

The related work to our approach can be categorized into four main areas: risk
measures in risk-aware RL, portfolio optimization, RL applications to financial
tasks, approximation of the Pareto front.

The related work on risk measures in risk-aware RL considers several
different risk measures. Early works use the standard deviation as a measure of
risk such as [29] who proposed a risk-adjusted objective function by subtract-
ing the standard deviation from the cumulated discounted rewards. However,
this formulation violates the temporal persistence property necessary to guaran-
tee the convergence to an optimum for policy iteration algorithms. Alternative
approaches such as [10] use the CVaR as a risk measure, thereby addressing the
risk of small probability events with high impact. Recent approaches have rec-
ognized the importance of measuring dispersion not solely in cumulated returns,
i.e., over the entire trajectory, but of also addressing the variability in rewards
per time step which can be highly relevant, e.g., for economic tasks such as trad-
ing or portfolio construction. A risk measure addressing this issue is the reward
volatility defined by [6] which captures the variability of rewards between steps.
[32] too proposed a framework optimizing the variance of a per-step reward.
Another risk measure aiming to capture the variability per time step was pub-
lished by [1] where it is defined as the variance in rewards per time step observed
in the current trajectory. In contrast to the approaches mentioned above, we
exploit the fact that in our setting, the risk of a step can be computed based
solely on the current action and the market risk which is estimated indepen-
dently from the policy. This in turn allows for the estimation of the risk in a
very sample efficient way.

The foundations for portfolio optimization in financial literature were laid
by the work of [16] who formulated the modern portfolio theory which is the basis
of many works such as the one by [7]. They too used a mean-variance (MV)

188 D. Winkel et al.

optimization approach in order to find the optimal weightings of investments in
a portfolio offering the best risk-return trade-off. Thereby, the risk is measured as
the variance in economic returns for a single time step. A more recent approach
by [11] introduces a regime-switching factor model which – while still in the MV
setup – allows for a single period optimization under different market regimes.
Such different market regimes correspond to different states of the market, e.g.,
optimistic and pessimistic market sentiments. Other works such as the one by
[8] introduce a framework extending the MV single-period optimization to a MV
multi-period optimization.

The area of RL applications to financial tasks has become more popular
in recent years, as RL methods can naturally handle multi-period problems as
well as different states, such as different market regimes, in the context of a MDP
and are thus well suited to tackle the requirements of financial tasks. Many of
the correspondingly published works, such as [3,30] focus on trading which is
characterized by a rather short term view. Other authors use RL methods to
find long term strategies to solve a portfolio selection task. [25] apply a policy
iteration algorithm to the portfolio selection problem in combination with a risk-
adjusted objective function. In order to model the actions of an investor in a MV
setup, [4] use a policy gradient method and propose the usage of the Dirichlet
distribution. [1] propose the usage of the DDPG algorithm to optimize the risk-
reward trade-off faced in a portfolio selection task for a life insurance company.
In contrast to the approaches mentioned above, our approach allows a single
meta agent to be trained over a continuous interval of risk preference levels,
instead of training different agents for each level of risk preference individually.

The approximation of a Pareto front multi-objective optimization
(MOO) is discussed by authors such as [18]. In contrast to our approach, they
focus on a supervised MOO problem instead of a RL one. Other authors such as
[22] propose the approximation of the Pareto front in a RL MOO setting. How-
ever, in their setting, they deal with a MOMDP with multiple reward functions,
while we formulate the task as an MDP using a scalarized objective function by
linearly combining the economic return objective and the economic risk objec-
tive. Thus, our method computes all Pareto optimal solutions on the convex hull
but neglects those being Pareto optimal for non-linear scalarization functions
[24]. Though this restriction systematically reduces the number of found Pareto
optimal policies, we argue that the approximation generated by our method
yields a sufficiently large and intuitive set of user options.

3 Background

A discrete-time MDP is described by a five tuple (S,A, R, P, γ), consisting of
the state space S, the action space A, a reward R which will be treated as a
random variable as well as the transition probability function P (s′|s, a) ∈ [0, 1]
for s, s′ ∈ S and a ∈ A and a discount factor γ discounting future rewards.

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 189

The random variables for the next state S′ and for the reward R are deter-
mined jointly and depend only on the preceding state s and action a. Their joint
probability distribution is described by

p(s′, r|s, a) = Pr(S′ = s′, R = r|S = s,A = a).

In the case that R is a continuous reward random variable, we obtain

R̂(s, a) := IE[R|S = s,A = a]
s′,r∼p(·,·|s,a)

=
∫

r

∫
s′

r p(s′, r|s, a)ds′dr.

A trajectory τ = (s0, a0, r1, s1, a1, ...) is a sequence of states and actions. Let

P (τ |π) = μ0(s0)
T−1∏
t=0

p(st+1, rt+1|st, at)π(at|st)

represent the probability of observing the trajectory τ given policy π. The term
μ0(s0) describes the probability of observing s0 as the initial state, i.e., s0 ∼ μ(·).

We define the return as the observed discounted cumulative rewards for the
trajectory τ , i.e.,

G(τ) :=
T−1∑
t=0

γtrt+1

where rt+1 are the observed rewards from time step t, given st, at and st+1.
The objective function is then defined as the expected return for a given

policy π and thus

J(π) := IE(G)
τ∼P (τ |π)

=
∫

τ

P (τ |π)G(τ)dτ.

4 Risk-Aware Portfolio Optimization

We consider an agent (i.e., investor) with a fixed investment horizon T who wants
to allocate his wealth into different assets in order to maximize the trade-off
between the expected return and the individual preference for risk for the periods
t = 0, . . . , T . The investable asset universe contains N assets. The discount
factor is set to γ = 1.

We define the state space of the MDP as S = T × W × V × U . Here, the
space T ⊆ R is populated by the parameter λ which is used to represent the
agent’s individual risk preference level. In contrast to other approaches [1,32],
we thus use λ as an inference parameter, rather than as a hyperparameter.
This parameter is crucial in enabling the agent to learn an interval of differ-
ent risk preference levels by being randomly sampled at the beginning of each
trajectory during training and then remaining constant until the end of the tra-
jectory. W ⊆ R

+
0 represents the current absolute wealth level of the agent while

190 D. Winkel et al.

the standard-simplex V =
{

v ∈ R
N :

∑N−1
i=0 vi = 1, vi ≥ 0 for i = 0, . . . , N − 1

}
represents the current relative portfolio allocation. U ⊆ R

N represents all the
observed single asset returns from the previous time step.

The action space A is also defined as a standard-simplex to represent the
weighting vector chosen by the agent as action at = [at,0, . . . , at,N−1] ∈ A at
time step t. The choice of the action space A as a standard-simplex represents
the need of the agent to allocate all available funds into its portfolio within
each period, i.e., aᵀ

t 1 = 1, whereby short-selling of assets is not permitted, i.e.,
ai ≥ 0 ∀i.

The random vector Θ = [Θ0, . . . , ΘN−1] ∈ U models the economic return
of each asset individually for each time step. The portfolio return is a random
variable with an expected value denoted as

IE [ΘPF] = IE [aᵀΘ] = aᵀIE [Θ] .

Changes in the portfolio weightings at in period t by the agent cause trans-
action costs, defined by

tct = (|at − vt|)ᵀ
c

where the vector c = [c0, .., cN−1] contains the asset-specific transaction costs
caused by a trade of the respective asset. Note that the transaction costs are
non-stochastic and fully determined by action at.

We then define the observed economic reward r as a combination of the trans-
action costs tc and a realization ϑPF of the random variable of the portfolio’s
economic return ΘPF , i.e.,

r = ϑPF − tc. (1)

To include the element of risk awareness in the reward of the MDP, we shape
the reward to include the economic reward as well as a risk measure weighted
by a penalty term:

r′(s, a) := r(s, a) − λfrisk,ΘP F
(s, a).

The term λ is the risk penalty factor which reflects the agent’s individual
preference to take on risk. Note that the risk in the reward, i.e., frisk,ΘP F

(s, a),
is measured per time step, cannot be observed directly and therefore has to be
estimated.

Subsequently, the risk-aware return is defined as:

G′(τ) :=
T−1∑
t=0

γt
(
rt+1 − λf̂risk,ΘP F

(st, at)
)

where f̂risk,ΘP F
(st, at) is an estimated function to measure the risk in rt+1 and

only depends on the state-action pair of time step t. With our approach, f̂risk,ΘP F

can therefore be estimated over different trajectories regardless of the agent’s
current policy.

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 191

4.1 Risk Measure

Based on the financial setting, we use the standard deviation as a risk measure.
This risk measure is widely accepted in finance, as e.g., discussed by [13]. Thus,
our approach requires estimating the risk per time step, i.e., the standard devi-
ation in returns associated with each state-action pair. In our setting and in
line with other authors such as [8], the returns of financial assets are assumed
to be independent between time steps. The only source of stochasticity in the
estimator for the portfolio’s risk is the market risk of the individual assets, while
the action is a deterministic component of the estimator function.

The variance of the economic portfolio return is defined as:

V ar(ΘPF) = aᵀΣΘa

where ΣΘ is the covariance matrix for asset-wise economic returns Θ and a
describes the weightings in the individual assets – which in our setting is the
action selected by the agent. Note that the standard deviation is a risk measure
free from assumptions about the underlying distribution. The N ×N covariance
matrix ΣΘ can be rewritten in terms of the first and second moment of Θ:

ΣΘ = IE[ΘΘᵀ] − IE[Θ]IE[Θ]ᵀ .

The covariance matrix can be estimated independently from both the agent’s
action as well as from his current policy and solely depends on the state of
the market environment from which the estimator receives the latest observable
information u ∈ U which is included in s ∈ S, and thus

f̂Cov(s) := Σ̂Θ .

Including action a in our estimator function, the estimator for the risk of the
portfolio return in a single time step is defined as

f̂risk,ΘP F
(s, a) :=

√
aᵀΣ̂Θa =

√
aᵀf̂Cov(s)a .

We use two neural networks, M̂1 and M̂2, to estimate the first and second
moment of Θ. Due to our multivariate setting with N individual assets, M̂1 has
to estimate N values. For the second moment, M̂2 has to estimate the unique
elements present in the symmetric matrix, i.e., (N + 1) · N · 0.5 elements. These
moment estimators are trained simultaneously with the agent’s policy.

4.2 Policy

As a policy function for our PPO based implementation, we use the Dirichlet
distribution as proposed in a similar context by [4]. The Dirichlet distribution is

192 D. Winkel et al.

a multivariate probability distribution governed by the concentration parameter
vector α = [α0, . . . , αN−1] where αi > 0 with i = 0, . . . , N − 1. Its probability
density function for a random vector is defined as

f (x;α) =
1

B(α)

N−1∏
i=0

xαi−1
i

where B(α) is the multivariate beta function. A sample x = [x0, . . . , xN−1]
drawn from a Dirichlet distribution satisfies the properties

∑N−1
i=0 xi = 1 and

xi > 0, and is thus a member of a standard simplex fulfilling the requirements
imposed on actions in the context of portfolio selection. In the experimental part,
we further examine for comparison purposes a DDPG based as well as a TD3
based implementation of our method. For both implementations, the natural
way of enforcing the sampled outputs to be members of a standard simplex is
by applying a softmax function in the output layer. The exploration is done
by adding the explorational noise to the parameters in the hidden layers of the
policy network, which is an approach described by [23].

4.3 Algorithm

The algorithm for the PPO based implementation can be found in Algorithm 1.
Note that in our setting the ability of the meta agent to learn asset allocation
policies for any level of risk preference on a continuous interval is enabled through
(a) the formulation of a policy independent risk measure and (b) the treatment
of the risk preference parameter λ as an inference parameter by inclusion in the
state s ∈ S. During training, at the beginning of each trajectory, the risk pref-
erence parameter λ is sampled from a continuous uniform distribution. Within
each trajectory i the initially sampled λi remains constant.

4.4 Network Architectures

For our PPO based framework, we have four different models: an actor network
π(a|s, θ), a critic network v(s) and two moment estimating neural networks M̂1

and M̂2, responsible for the estimation of the first and second moments of the
individual assets to form an estimated covariance matrix. The architecture of
the actor network and the critic network share the same body network of four
fully connected hidden layers of size 512, 256, 128 and 64 with ReLU activation
functions. These layers are followed by an attention based GTrXL architecture
by [21] allowing for also handling tasks requiring memory. The use of a GTrXL
element instead of the standard transformer architecture improves the architec-
ture’s optimization properties in RL settings significantly. The GTrXL element
consists of a single transformer unit with one encoder layer as well as one decoder
layer with four attention heads and an embedding size of 64. The network’s body
is then split into two heads, in which the actor network’s output layer utilizes an
exponential activation function. This enforces the output to be in the value range

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 193

Algorithm 1. Risk controlling PPO
Input: environment ε

1: init parameters: θ0,φ0, γ0, δ0 # policy, value function, 1st & 2nd moment
estimate

2: for k = 0, 1, . . . do
3: sample trajectories Dk = {τi} with policy πk = π(θk) in ε for T time steps;

at each trajectory start sample risk preference λi ∼ U(a, b).

4: Update risk estimator function f̂k(·, ·) =

√
M̂2,δk

(·, ·) −
(
M̂1,γk

(·, ·)
)2

.

5: Calculate the est. risk f̂k(st, at) and then the risk adjusted reward r′
t+1.

6: Calculate advantage estimates, Ât based on the current value function
Vφk

.
7: Update policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1
|Dk|T

∑
τ∈Dk

T∑
t=0

min
(

πθ(at|st)
πθk

(at|st)
Aπθk (st, at), g(ε, Aπθk (st, at))

)
.

8: φk+1 = arg minφ
1

|Dk|T
∑

τ∈Dk

∑T
t=0

(
Vφ(st) − r′

t+1

)2
. # update φ

9: γk+1 = arg minγ
1

|Dk|T
∑

τ∈Dk

∑T
t=0

(
M̂1,γk

(st, at) − rt+1

)2

. # update γ

10: δk+1 = arg minδ
1

|Dk|T
∑

τ∈Dk

∑T
t=0

(
M̂2,δk

(st, at) − r2
t+1

)2

. # update δ

11: end for

of R
+, to meet the requirements of the parameter input of the Dirichlet distri-

bution. The head of the critic network on the other hand is a basic linear layer
without activation function. We further need to estimate the covariance matrix
in order to estimate the risk associated with an action by estimating the ele-
ments of the multivariate expressions of the first and second moment, i.e. IE[Θ]
and IE[ΘΘᵀ]. Since this is a standard supervised learning problem, we apply
a standard transformer architecture to estimate a multivariate time series as
described by [31]. In our setting, this architecture consists of four encoder layers
and four decoder layers, each utilizing eight attention heads with an embedding
size of 512. Note that the actor and critic network are trained together, having
a joint loss function using the Adam optimizer with a learning rate of 5.0 · 10−5.
The moment estimating networks use a separate loss function and utilize the
Adam optimizer with a learning rate of 1.0 · 10−3.

194 D. Winkel et al.

5 Experiments

5.1 Environment

We use the qlib package2 to fetch and process real-world financial data for the
US market contained in the Nasdaq-100. The Nasdaq-100 is a modified market
value-weighted index containing the shares from the 100 largest non-financial
companies traded on the Nasdaq stock exchange. Over time, the composition
of the index changes. This is due to the (de)listing of shares and changes in
the market value of companies, which can then – according to the guidelines
of the Nasdaq-100 – lead to removal from or addition to the Nasdaq-100. We
consider the monthly single share closing prices for the period from January 1,
2010 to December 31, 2020. In order to avoid having to deal with missing data,
we filter out the companies that were not included in the Nasdaq-100 throughout
the entire period. From the remaining 35 companies, we randomly choose 16 to
represent the investable universe in the RL environment.

In literature, there is a multitude of approaches modelling the dynamics
in the time series of financial returns. One such approach is the application of
classical time series models, e.g., by [5,17]. Another approach is the usage of deep
learning based methods, e.g., by [15,20]. Furthermore, hidden markov models
(HMMs) are applied, e.g., by [14,19]. In our setup, we decide to model the market
dynamics by applying a HMM. However, any method capable of modelling the
dynamics in a time series of financial returns could be used interchangeably.

To choose the HMM fitting best, we follow [19] and use two criteria, namely
the Akaike information criterion (AIC) by [2] and the Bayesian information
criterion (BIC) by [27]. Both criteria suggest the use of a two state HMM. In
our environment, we set the length of a trajectory to twelve time steps, reflecting
the investment horizon of a year. The transaction costs are set to 0.2% of the
traded volume.

5.2 Experimental Setup

The implementation of our approach is based on the RLlib framework3 and the
agents were trained on a cluster utilizing various types of commercially available
single GPUs. For each evaluation step, we sample 1000 trajectories to calculate
the corresponding statistics.

For the implementation of our benchmark RL algorithms, we base [32] on
the publicly available GitHub code4 while for the approach proposed by [1], we
rebuild the architecture as described in their paper.

5.3 Evaluation

Benchmarking with Other Approaches. For our evaluation setup, we com-
pare our approach with three alternative approaches. The first one is an Equal
2 https://github.com/microsoft/qlib/tree/main.
3 https://docs.ray.io/en/master/rllib/index.html.
4 https://github.com/ShangtongZhang/DeepRL.

https://github.com/microsoft/qlib/tree/main
https://docs.ray.io/en/master/rllib/index.html
https://github.com/ShangtongZhang/DeepRL

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 195

Table 1. Evaluation results of 1000 trajectories from the environment (I) and back-
testing on the Nasdaq-100 data trajectory of 2021 (II).

Sharpe Ratio
(ex-post)

Total Econ.
Payoff

Est. Std.
Dev.

(I) Environment

Equal Weight B&H 1.232 0.218 0.177

Ours 1.347 0.240 0.178

Zhang et al. (2021) 1.283 0.229 0.178

Abrate et al. (2021) 1.158 0.209 0.180

(II) Backtesting

Equal Weight B&H 1.968 0.336 0.171

Ours 2.039 0.344 0.168

Zhang et al. (2021) 1.921 0.335 0.174

Abrate et al. (2021) 1.908 0.331 0.173

Weight Buy and Hold (Equal Weight B&H) policy, which is a simple investment
heuristic. At the beginning of the investment horizon, the funds are distributed
equally to all available assets. After buying the assets they are held until the
end of the investment horizon without any allocation adjustments. Despite its
low complexity, an Equal Weight policy is considered to be a performant allo-
cation policy. The second approach is a risk-aware RL DDPG based method
described by [1] which in their paper is specifically applied to the task of gener-
ating an optimized asset allocation policy for a single level of risk preference. In
the following, we will refer to their approach as Abrate et al. (2021). The third
approach is MVPI-TD3 by [32]. It is a state-of-the-art risk-aware RL method
based on the TD3 algorithm, originally introduced by [12]. In the following, we
will refer to the third approach as Zhang et al. (2021).

We evaluate two different settings: in setting (I) we evaluate the policies’
performances for 1000 unseen trajectories generated by the environment. Setting
(II) follows a backtesting approach by evaluating the policies’ performances for
the unseen historical trajectory of the Nasdaq-100 data for the entire year of
2021. To allow for a consistent comparison of the asset allocation policies, every
approach needs to be adjusted to bear a comparable amount of risk. All of our
evaluated RL approaches are able to control the risk of the optimized asset
allocation policy by adjusting their specific risk preference level parameter λ. In
contrast, the Equal Weight B&H approach does not have this feature, resulting
in the use of the risk level of the Equal Weight B&H approach as the baseline
level of risk to which the other approaches have to adapt. Accordingly, the λ
in the other approaches are set in such a way to generate strategies with a
standard deviation in returns comparable to the one produced by the Equal
Weight B&H approach.

For (I), the policies’ standard deviations in returns over the entire trajectory
are estimated as the empirical standard deviations. To estimate the standard

196 D. Winkel et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

To
ta

le
co

no
m

ic
pa

yo
ff

(a) Approx. Pareto front of strategies’
mean total economic payoff and their re-
spective 90% confidence interval in rela-
tion to the risk preference level λ.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.1

0.2

0.3

0.4

Emperical Standard Deviation

To
ta

le
co

no
m

ic
pa

yo
ff

(b) Approx. Pareto front of strategies’
mean total economic payoff in relation
to their empirical standard deviation.

Fig. 1. Evaluation of a single PPO based meta agent for different levels of risk prefer-
ence.

deviations in returns in (II), a different approach is needed, since the real-world
data offer only a single observation per month, which makes it difficult to esti-
mate the monthly variances in returns. To address this issue, we use the daily
observations within a month. After estimating the daily variance, this value is
scaled up by the number of trading days within the month in order to estimate
the assets’ monthly variance – a method commonly used in finance [9]. The root
of the sum of the monthly variances is then used to obtain an estimate for the
policies’ standard deviations in returns in the backtesting evaluation setting.

Table 1 provides the evaluation results of our experiments. We evaluate the
approaches in regards to their ex-post Sharpe ratio, an evaluation metric com-
monly used in finance to compare investment performances [8,28]. In addition,
Table 1 shows the individual components of the Sharpe ratio, which in our set-
ting are the total economic payoff and the estimated standard deviation. In both
evaluation settings (I) and (II), our approach is able to provide the asset alloca-
tion policy scoring the highest Sharpe ratio and – under an approximately equal
level of risk – therefore also the highest total economic payoff.

Note that the risk preference parameters λ of the different risk-aware RL
approaches cannot be compared directly, due to different definitions of risk and
different objective functions. For Zhang et al. (2021) we use a risk preference
parameter value of 0.55, for Abrate et al. (2021) a risk preference parameter
value of 0.3 and for our own approach a risk preference parameter value of 0.34.

Approximation of the Pareto Front. A multi-period asset allocation policy
for a given level of risk preference incorporates a suggested asset allocation for
each single time step. Our meta agent approach generates an entire set of asset
allocation policies, whereby each single one is linked to a specific level of risk
preference within a continuous interval. Figure 1a shows the performance of our

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 197

1 3 5 7 9 11 13 15 17 19 21
0

20

40

60

Amount desired asset allocation policies

C
om

pu
ta

ti
on

T
im

e
(i

n
da

ys
)

meta agent
non-meta agent

Fig. 2. Computation time required for
training.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.1

0.2

0.3

0.4

Empirical Standard Deviation

To
ta

le
co

no
m

ic
pa

yo
ff

PPO meta agent
PPO non-meta agents

DDPG meta agent
TD3 meta agent

Fig. 3. Comparison of meta agentap-
proaches and PPO non-meta agents.

approach with respect to different levels of risk preference λ. Each point rep-
resents an entire asset allocation policy evaluated over twelve time steps of the
trajectory. The y-axis shows the economic return including the transaction costs,
as defined in Eq. 1, cumulated over the entire trajectory. In the following, this
value will be referred to as the total economic payoff. In Fig. 1a we are evaluating
21 different asset allocation strategies with corresponding risk preference levels in
the interval of 0.0 to 1.0 in steps of 0.05 generated by the same meta agent. The
figure shows that our method is capable of approximating a monotonic decreas-
ing Pareto front with increasing levels of risk preference. In order to illustrate
the measured uncertainty of the total economic payoff, Fig. 1a also includes the
empirical 90% confidence interval. As in Fig. 1a, in Fig. 1b the 21 asset alloca-
tion strategies, evaluated in relation to their empirical standard deviation, form
a Pareto front.

Stability During Training. In order to find a suitable asset allocation policy,
the RL based approaches use their model specific risk preference parameter λ. To
allow for a consistent comparison of the approaches, each approach needs to gen-
erate a policy with a comparable level of risk, i.e., a comparable level of standard
deviation in returns measured over the trajectory. From this arises the need to
identify for each approach the corresponding individual risk preference param-
eter λ which produces a certain level of standard deviation. For the non-meta
agent approaches by Zhang et al. (2021) and Abrate et al. (2021), the identifi-
cation of a suitable risk preference parameter is done manually via an iterative
interval search. Thereby, single agents need to be trained and evaluated. Both
the DDPG and TD3 based approaches require a considerable amount of hyper-
parameter tuning for each single agent. When a suitable set of hyperparameters
is found, it is then often not transferable between agents with different levels of
risk preference. This leads to unstable training results combined with repeatedly
extensive hyperparameter tuning.

198 D. Winkel et al.

To further investigate the stability properties of the DDPG and TD3 algo-
rithm in our setting, we also implement our meta agent for the DDPG and the
TD3 algorithm. This allows for a direct comparison of all three implementations
trained with the same objective function with the same definition of risk. During
evaluation, neither the DDPG nor the TD3 implementation of a meta agent are
able to generate a meaningful Pareto front. Their proposed asset allocation poli-
cies are strictly dominated by the asset allocation policies generated by the PPO
implementation as shown in Fig. 3. We also apply the PPO based approach to
a non-meta agent, i.e., to the optimization of a single level of risk preference
solely. We emphasize that for this PPO based approach, we are able to use a
single set of hyperparameters for training, thereby transferable between agents
for different levels of risk preference. Figure 3 further shows the comparison to
the PPO meta agent. Due to computational limitations, we only train and eval-
uate 11 optimized allocation policies with PPO non-meta agents. Nevertheless,
it can be seen that for the PPO based methods, both the meta agent as well as
the non-meta agents are able to approximate a Pareto front, with the non-meta
agents performing slightly worse. We hypothesize that the superior stability in
hyperparameters for a PPO based approach over the DDPG and the TD3 based
approaches plays an important role when successfully training a meta agent.

Efficiency. One advantage of our method when approximating the Pareto front
is its computational efficiency. Once the meta agent has been trained, we are able
to generate any number of optimized asset allocation strategies by simply chang-
ing the risk preference levels as an inference parameter. Thereby, the respective
asset allocation strategies can be evaluated without further training. In con-
trast, previous approaches would need to train a different agent for each level of
risk preference. Figure 2 shows the training time required to generate different
optimized asset allocation strategies on the machine used for our experiments.
While the time required to train a single agent for an optimized asset allocation
using one single level of risk preference takes roughly 3 days, the training of a
meta agent for an interval of levels of risk preference takes roughly 4.5 days on a
system with an NVIDIA RTX 8000. When training multiple agents, the cumu-
lative computation time increases linearly with the amount of desired optimized
asset allocation strategies. In contrast, the training time of our approach stays
constant due to the need of only training a single meta agent to cover an entire
interval of risk preference levels.

Performance of Risk Measure Estimation. With our approach, we fur-
ther introduce a method to estimate the risk per time step, which can be done
independently from the agent’s current policy. The experiments show fast con-
vergence for both the first and the second moment estimators after roughly 6%
of the total training time, i.e., after 150 out of a total of 2500 training iterations.

6 Conclusion

In this paper, we train an agent to invest a given amount of wealth into a set of
assets on a monthly basis. In order to control the risk of the investment, the agent

Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 199

receives a risk preference parameter constraining the standard deviation in the
financial returns received per time step. This in turn also indirectly controls the
risk of the financial returns over the entire trajectory. Our method of estimating
the risk in a time step is independent of the agent’s current policy and only
requires the agent’s current action as well as an estimate of the market risk. In
our approach a single meta agent is trained for any risk preference level within
a continuous interval, enabling a computationally efficient approximation of the
Pareto front. We evaluate our PPO based approach combined with a Dirichlet
action distribution against other state-of-the-art risk-aware RL approaches in
a setting based on real-world Nasdaq-100 data. The results show that our new
method outperforms compared approaches w.r.t. stability during training as well
as generating asset allocation policies with better risk-return profiles. For future
work, we want to explore the setting of multiple competing meta agents able to
influence the market prices and their resulting interactions.

Acknowledgments. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibility for its content.

References

1. Abrate, C., et al.: Continuous-action reinforcement learning for portfolio allocation
of a life insurance company. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A.
(eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 237–252. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86514-6 15

2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
Control 19(6), 716–723 (1974)

3. Almahdi, S., Yang, S.Y.: An adaptive portfolio trading system: a risk-return port-
folio optimization using recurrent reinforcement learning with expected maximum
drawdown. Expert Syst. Appl. 87, 267–279 (2017)

4. André, E., Coqueret, G.: Dirichlet policies for reinforced factor portfolios. arXiv
preprint arXiv:2011.05381 (2020)

5. Ariyo, A.A., Adewumi, A.O., Ayo, C.K.: Stock price prediction using the Arima
model. In: 2014 UKSim-AMSS 16th International Conference on Computer Mod-
elling and Simulation, pp. 106–112. IEEE (2014)

6. Bisi, L., Sabbioni, L., Vittori, E., Papini, M., Restelli, M.: Risk-averse trust region
optimization for reward-volatility reduction. In: Twenty-Ninth International Joint
Conference on Artificial Intelligence Special Track, pp. 4583–4589. International
Joint Conferences on Artificial Intelligence Organization (2020)

7. Black, F., Litterman, R.: Global portfolio optimization. Finan. Analy. J. 48(5),
28–43 (1992)

8. Boyd, S., et al.: Multi-period trading via convex optimization. Found. Trends
Optim. 3(1), 1–76 (2017)

9. Brigham, E.F., Ehrhardt, M.C.: Financial Management: Theory & Practice. Cen-
gage Learning (2019)

10. Chow, Y., Ghavamzadeh, M., Janson, L., Pavone, M.: Risk-constrained reinforce-
ment learning with percentile risk criteria. J. Mach. Learn. Res. 18(1), 6070–6120
(2017)

https://doi.org/10.1007/978-3-030-86514-6_15
http://arxiv.org/abs/2011.05381

200 D. Winkel et al.

11. Costa, G., Kwon, R.: A regime-switching factor model for mean-variance optimiza-
tion. J. Risk (2020)

12. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: International Conference on Machine Learning, pp. 1587–
1596. PMLR (2018)

13. Guercio, D.D., Reuter, J.: Mutual fund performance and the incentive to generate
alpha. J. Financ. 69(4), 1673–1704 (2014)

14. Hassan, M.R., Nath, B.: Stock market forecasting using hidden Markov model: a
new approach. In: 5th International Conference on Intelligent Systems Design and
Applications (ISDA 2005), pp. 192–196. IEEE (2005)

15. Hiransha, M., Gopalakrishnan, E.A., Menon, V.K., Soman, K.: NSE stock mar-
ket prediction using deep-learning models. Procedia Comput. Sci. 132, 1351–1362
(2018)

16. Markowitz, H.: Portfolio selection. J. Finan. 7(1), 77–91 (1952)
17. Munim, Z.H., Shakil, M.H., Alon, I.: Next-day bitcoin price forecast. J. Risk Finan.

Manag. 12(2), 103 (2019)
18. Navon, A., Shamsian, A., Fetaya, E., Chechik, G.: Learning the pareto front with

hypernetworks. In: International Conference on Learning Representations (2021)
19. Nguyen, N.: Hidden Markov model for stock trading. Int. J. Finan. Stud. 6(2), 36

(2018)
20. Pang, X., Zhou, Y., Wang, P., Lin, W., Chang, V.: An innovative neural network

approach for stock market prediction. J. Supercomput. 76(3), 2098–2118 (2020)
21. Parisotto, E., et al.: Stabilizing transformers for reinforcement learning. In: Inter-

national Conference on Machine Learning, pp. 7487–7498. PMLR (2020)
22. Pirotta, M., Parisi, S., Restelli, M.: Multi-objective reinforcement learning with

continuous pareto frontier approximation. In: Twenty-Ninth AAAI Conference on
Artificial Intelligence (2015)

23. Plappert, M., et al.: Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905 (2017)

24. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. J. Artif. Intell. Res. 48, 67–113 (2013)

25. Sato, M., Kobayashi, S.: Variance-penalized reinforcement learning for risk-averse
asset allocation. In: Leung, K.S., Chan, L.-W., Meng, H. (eds.) IDEAL 2000. LNCS,
vol. 1983, pp. 244–249. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44491-2 34

26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

27. Schwarz, G.: Estimating the dimension of a model. Ann. Statist. 6, 461–464 (1978)
28. Sharpe, W.F.: The sharpe ratio. Streetwise Best J. Portfolio Manag. 3, 169–185

(1998)
29. Sobel, M.J.: The variance of discounted Markov decision processes. J. Appl.

Probab. 19, pp. 794–802 (1982)
30. Wang, H., Zhou, X.Y.: Continuous-time mean-variance portfolio selection: a rein-

forcement learning framework. Math. Financ. 30(4), 1273–1308 (2020)
31. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series

forecasting: the influenza prevalence case. arXiv preprint arXiv:2001.08317 (2020)
32. Zhang, S., Liu, B., Whiteson, S.: Mean-variance policy iteration for risk-averse

reinforcement learning. In: AAAI (2021)

http://arxiv.org/abs/1706.01905
https://doi.org/10.1007/3-540-44491-2_34
https://doi.org/10.1007/3-540-44491-2_34
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2001.08317

Applications

Waypoint Generation in Row-Based
Crops with Deep Learning
and Contrastive Clustering

Francesco Salvetti1,2,3(B), Simone Angarano1,2, Mauro Martini1,2,
Simone Cerrato1,2, and Marcello Chiaberge1,2

1 Politecnico di Torino, Turin, Italy
{francesco.salvetti,simone.angarano,mauro.martini,

simone.cerrato,marcello.chiaberge}@polito.it
2 PIC4SeR (PoliTo Interdepartmental Centre for Service Robotics), Turin, Italy

3 SmartData@PoliTo, Turin, Italy

Abstract. The development of precision agriculture has gradually intro-
duced automation in the agricultural process to support and rational-
ize all the activities related to field management. In particular, ser-
vice robotics plays a predominant role in this evolution by deploying
autonomous agents able to navigate in fields while executing different
tasks without the need for human intervention, such as monitoring,
spraying and harvesting. In this context, global path planning is the
first necessary step for every robotic mission and ensures that the navi-
gation is performed efficiently and with complete field coverage. In this
paper, we propose a learning-based approach to tackle waypoint gener-
ation for planning a navigation path for row-based crops, starting from
a top-view map of the region-of-interest. We present a novel methodol-
ogy for waypoint clustering based on a contrastive loss, able to project
the points to a separable latent space. The proposed deep neural network
can simultaneously predict the waypoint position and cluster assignment
with two specialized heads in a single forward pass. The extensive exper-
imentation on simulated and real-world images demonstrates that the
proposed approach effectively solves the waypoint generation problem
for both straight and curved row-based crops, overcoming the limita-
tions of previous state-of-the-art methodologies.

Keywords: Deep learning · Clustering · Global path planning ·
Precision agriculture

1 Introduction

Agriculture 4.0 is introducing digital tools and technologies in precision farm-
ing. According to this innovative paradigm, Big Data, Artificial Intelligence and
robotics play a key role in increasing the economic, environmental and social sus-
tainability of agricultural processes, thanks to the efficient and automatic data
collection and the processing tools they provide. In the last years, Deep Learn-
ing (DL) research has been substantially contributing to the development of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 203–218, 2023.
https://doi.org/10.1007/978-3-031-26422-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_13

204 F. Salvetti et al.

new technologies for precision agriculture applications [12,13,33,38]. In particu-
lar, several computer vision techniques have proven effective in supporting visual
agricultural tasks such as fruit detection and counting [23], plant disease identi-
fication [11,25], land coverage and vegetation index classification from satellite
and Unmanned Aerial Vehicles (UAVs) imagery [15,21,22].

Besides image processing systems, self-driving machines represent a cru-
cial component to reduce the costs of agricultural processes by providing
autonomous, full-time and weather-independent operators. In this regard, the
confidence in solutions based on autonomous Unmanned Ground Vehicles
(UGVs) and UAVs is drastically increasing [30,31], considering the competi-
tive advantage they can provide supporting tasks such as crop monitoring [35],
spraying [8], grasping [14], and harvesting [19]. In this context, designing a reli-
able autonomous navigation system in constrained row-based crops such as vine-
yards and orchards is fundamental. So far, many works proposed local planners
combining deep learning with computer vision [1,2] or other sensor processing
methods [3,4,28]. However, local planners provide a solution for intra-row navi-
gation only, and therefore a global path generator is always needed. In a complex
scenario such as a row-based environment, where traversing each row is the prac-
tical navigation goal, the problem of developing an efficient global path planner
has been quite neglected by the research community. Existing solutions usually
tackle the problem by clustering visual data obtained from satellites or UAVs.
For example, in [39] authors use a classical clustering method to identify vine-
yard rows from a 3D model of the terrain reconstructed from UAV data and
then compute the path accordingly. However, as pointed out in [34], the extrac-
tion of relevant information about rows geometry from images can be a complex
task, in addition to being extremely computationally expensive. This limitation
also holds considering other approaches besides clustering. For instance, in [7]
authors adopted 3D point cloud aerial photogrammetry to detect the structure
of vineyards.

Recently, the DeepWay method [24] has been proposed to efficiently combine
deep learning and clustering for the generation of start and end row waypoints
given an occupancy grid of the vineyard. Moreover, novel contributions adopted
the same paradigm and training procedure to extend the coverage to arbitrary
unstructured environments [17]. Despite being an important baseline for row-
based path generation, DeepWay leaves substantial space for improvement. In
particular, it applies DBSCAN clustering [9], followed by a complex heuristic
geometrical post-processing heavily based on angle estimation, to discriminate
start waypoints from end waypoints. However, this method performs poorly in a
wide range of real-world situations, including curved crops and rows of different
lengths.

In this work, we propose a novel solution for waypoint generation in row-
based crops, combining deep learning with a contrastive clustering approach.
To this end, we conceive a new DNN architecture to simultaneously predict the
position of the navigation waypoints for each row and cluster them in a single
forward step. Hence, we train our model with an additional contrastive loss on a
synthetic dataset of top-view vineyard maps and test it on manually-labeled real

Waypoint Generation in Row-Based Crops with Contrastive Clustering 205

satellite images. Our extensive experimentation demonstrates that the proposed
solution successfully predicts precise waypoints also in real-world crop maps. We
also consider complex conditions such as curved rows, differently from previous
solutions based on classical clustering algorithms.

The contributions of this work can be therefore summarized as follows:

– we propose a novel deep learning model to simultaneously predict the position
of navigation waypoints and cluster them in a unique forward step;

– we solve the limitations of classical clustering methodologies by adopting a
contrastive loss function;

– we present a method for synthetic generation of realistic curved occupancy
grids for row-based crops;

– we demonstrate that our model trained on synthetic data successfully gener-
alizes to challenging real-world satellite images.

The article is organized in the following sections. In Sect. 2, we introduce our
methodology, describing the backbone design, the waypoint estimation and the
contrastive clustering separately. In Sect. 3, we propose a thorough description
of our experimentation, defining the settings and procedures used to generate
the synthetic dataset and train the DNN. In Sect. 4, we report and discuss the
obtained results, comparing our solution with classical clustering baselines, and,
in Sect. 5, we draw some conclusions.

2 Methodology

Due to its intrinsic nature, every row-based crop is characterized by a set of
lines or curves that identify two regions comprising the starting and ending
points of each row, respectively. In this scenario, a robotic path should cover
the whole field, and it can be divided into intra-row segments, that connect the
starting region to the ending region, and inter-row segments, that connect two
starting or two ending points. Given an optimal estimation of these starting and
ending waypoints, it is possible to plan a full-coverage path in the row-based
environment simply by alternating intra-row and inter-row segments. Therefore,
the planning process heavily relies on two main steps: waypoint estimation, which
identifies candidates for the points of interest, and waypoint clustering, which
assigns each estimated point to one of the two regions.

Following the same approach presented in [24], we frame the waypoint gen-
eration process as a regression problem, in which we estimate the coordinates
of the points with a deep neural network, starting from a top-view map of the
environment. The map consists of a 1-bit single-channel occupancy grid that
identifies with 1 the plant rows and with 0 the free terrain. Therefore, this kind
of estimation process can be easily applied to geo-referenced segmented masks
of the target fields obtained from satellites or UAV imagery. The waypoints and
the planned path can then be converted from the image reference system to a
Global Navigation Satellite System (GNSS) reference frame to be used in real-
world navigation. In addition to waypoint detection, differently from classical

206 F. Salvetti et al.

Clustering Head

Estimation Head

Backbone

Residual
Reduction
Module

Transpose
Conv2D ConcatConv2D MishInput Sigmoid Tanh

Residual
Reduction
Module

Fig. 1. Architecture of the backbone and the two regression heads. The number of
residual reduction modules in the main block R determines the backbone compression
factor K = 2R+1.

Fig. 2. Residual reduction module architecture. The channel and spatial attentions are
implemented as in [36].

unsupervised methodologies for point clustering, we propose a supervised app-
roach based on a contrastive loss to perform point assignment. Therefore, the
proposed model simultaneously performs both estimation and clustering with
a single forward pass, without the need for complex post-processing operations
based on heuristic geometrical-based rules.

2.1 Backbone Design

We implement the model as a convolutional neural network characterized by
a feature extraction backbone, followed by two specialized heads. A head is
responsible for the estimation task, while the other deals with clustering.

The backbone is designed following the same architecture used in [24]. The
basic block of the network is the residual module, characterized by a stack of
a 2D convolution and spatial and channel attention [36]. Each residual block is
followed by a reduction module characterized by convolutions with stride 2 that
progressively halve the spatial dimensions. The backbone is a stack of R resid-
ual reduction modules, made by combining a residual module and a reduction
module. The final part of the network is made by an additional downsampling

Waypoint Generation in Row-Based Crops with Contrastive Clustering 207

Fig. 3. The input occupancy grid is subdivided into a grid of K × K cells. For each
cell, the waypoint estimation head outputs the probability p of a waypoint presence,
as well as the relative horizontal and vertical displacements with respect to the cell
center Δ = (Δx, Δy).

block, followed by a transposed convolution upsampling stage, all arranged in
a residual fashion. This combination of compression and expansion has been
proved very effective for different computer vision tasks such as segmentation
[29] and representation learning [32]. Overall, the model performs a dimensional-
ity compression of a factor of 2R+1, where R is the number of residual reduction
modules in the main block. The complete backbone structure is detailed in Fig. 1
and Fig. 2.

2.2 Waypoint Estimation

The waypoint estimation is framed as a regression problem, similarly to object
detection approaches in computer vision [27]. In particular, given an input occu-
pancy grid map X with dimensions H ×W , we subdivide it into a grid of K ×K
cells. Each cell is responsible for predicting the probability p that a waypoint falls
in that region, as well as its relative horizontal and vertical displacements with
respect to the cell center Δ = (Δx,Δy). The displacements are defined in the
range [−1,+1] and represent a shift relative to half of the cell dimension, with
−1 identifying the left/top borders and +1 the right/bottom ones. An example
of prediction with its correspondent displacements is shown in Fig. 3. Given a
prediction p̂out = (x̂out, ŷout) in the output reference frame, the waypoint coor-
dinates in the input reference frame p̂in can be reconstructed with the following
equation:

p̂in = p̂out K +
K

2
+ Δ

K

2
(1)

The waypoint estimation head maps the high-level features extracted with
the backbone to the output space with a 1× 1 convolution. The backbone com-
pression factor 2R+1 corresponds to the grid dimension K. Therefore, the output
tensor of the estimation branch has a dimension of H/K × W/K × 3. We apply
a sigmoid activation to the probability output and a tanh activation to the dis-
placement outputs. We optimize the network for the waypoint estimation task

208 F. Salvetti et al.

Fig. 4. In the latent space mapped by f(·), points of the same cluster appear closer
together with respect to points of the other cluster. The mapping function f(·) is
implemented with the backbone and the clustering head together. In this example, the
latent space has a dimensionality D = 2.

with a weighted mean squared error loss. For each output cell ui,j , the estimation
loss is therefore computed as:

l est
i,j = 1

wp
i,j λ‖ui,j − ûi,j‖2 + (1 − 1

wp
i,j)(1 − λ)‖ui,j − ûi,j‖2 (2)

where 1
wp
i,j ∈ {0, 1} is an indicator Boolean function evaluating 1 if a waypoint

is present in that cell, and λ is the relative constant that weights differently
positive and negative cells.

At inference time, we get the list of predicted waypoints by considering all
the cells with probability p over a certain threshold tp. As in standard object
detection methodologies, we also apply a suppression algorithm to decrease the
number of redundant predictions that typically occur when multiple adjacent
cells detect the same waypoint. The algorithm identifies all the groups of pre-
dictions with Euclidean distance within a certain threshold tsup in the input
reference frame. For each group, the point with highest confidence p is selected,
while the remaining predictions are discarded.

2.3 Contrastive Clustering

Once the waypoints are detected, they should be assigned to starting or ending
regions. This task can be seen as a simple binary classification, in which the
labels represent the two clusters. However, in this scenario the actual assigned
label is not relevant, as the only fundamental aspect is whether points of the
same group are assigned the same label. The aim is to discriminate the points
of the two regions without caring about which of them is classified as starting
or ending. Indeed, an optimal path can be successfully planned regardless of the
choice of the starting cluster. This invariance cannot be guaranteed by supervised
classification.

Waypoint Generation in Row-Based Crops with Contrastive Clustering 209

For this reason, we model the clustering problem as a supervised represen-
tation learning process. Given the two sets of points A = {p | p ∈ first cluster}
and B = {p | p ∈ second cluster}, we want to find a non-linear mapping f(·)
such that

d
(
f(pi), f(pj)

) � d
(
f(pi), f(pk)

)
for pi ,pj ∈ A , pk ∈ B (3)

and vice versa, where d is a distance measure. In the latent space mapped by
f(·), points of different clusters are well-separated according to distance d. This
means that a simple clustering method such as K-means [20] can successfully
discriminate the two groups in the latent space, as shown in Fig. 4. Inspired by
the contrastive framework used for unsupervised learning in [6], we select as
distance metric d the inverse of the cosine similarity:

sim(u,v) =
u�v

‖u‖2 ‖v‖2
(4)

For each image, we consider the N ground-truth waypoints as independent
samples. Given a point pi , we consider as positive examples all the other N/2−1
points in the same cluster, and as negative examples the N/2 points of the other
cluster. Therefore, we define the clustering loss contribution for the sample i as:

l clus
i =

1
N − 1

N∑

j=1
j �=i

[
1pi ,pj ∈A

∨ pi ,pj ∈B

log
(
sig

(
sim

(
f(pi), f(pj)

)))

+
(
1−1pi ,pj ∈A

∨ pi ,pj ∈B

)
log

(
1 − sig

(
sim

(
f(pi), f(pj)

)))
]

(5)

where 1pi ,pj ∈A
∨ pi ,pj ∈B

∈ {0, 1} is an indicator function evaluating 1 if pi and pj are

in the same cluster and 0 otherwise, while ‘sig’ represents the sigmoid function.
Basically, this loss computes the binary cross-entropy of the cosine similarity in
the latent space mapped by f(·) for the pair (pi ,pj). f(·) is optimized to push
the cosine similarity towards the maximum +1 if the points are in the same
cluster and towards the minimum –1 otherwise. The final loss is computed over
all the pairs (i, j) as well as (j, i) for each input image. This loss can be seen as
a variation of the one used in [6,26,37], but instead of N groups with 2 elements
each, optimized with categorical cross-entropy and softmax, we have 2 groups
with N/2 elements each, optimized with binary cross-entropy and sigmoid.

The mapping f(·) is modeled by the clustering head in the output space
reference system. The head is composed of two convolutional layers with Mish
activation and one final 1× 1 convolution with linear activation. The output
tensor of the clustering branch has a dimension of H/K × W/K × D, where D
is the latent space dimensionality.

210 F. Salvetti et al.

Fig. 5. Examples of curved occupancy grids: synthetic (a) and real-world from Google
Maps satellite database without (b) and with (c) manual annotation. Red and blue
points are the ground-truth waypoints divided in the two clusters. (Color figure online)

At inference time, for each waypoint detected in the estimation phase, we
select the correspondent feature from the clustering head output. We can predict
the clustering assignment by fitting a K-means predictor with two centroids on
the selected features. Since we use the cosine similarity in the loss computation,
we are optimizing the clustering in the normalized latent space. For this reason,
the features should be divided by their Euclidean norm before clustering. This
normalization decreases by one the latent space dimensionality, and therefore
the minimum number of dimensions D for the clustering head is 2.

3 Experimental Setting

In this section, we present all the details of our experimentation. We describe
the datasets used for network training and testing as well as the main hyperpa-
rameters adopted during the training phase.

3.1 Dataset Description

Considering the lack of open datasets of row crops bird-eye maps and the time
required to manually annotate a large set of real images, we define a method
to build realistic synthetic occupancy grids to train the model. We modify the
method presented in [24] to extend it to both straight and curved occupancy
grids. The generation process can be summarized as follows:

1. sample a uniformly random number of rows n ∈ [10, 50] and angle α ∈
[−π/2, π/2];

2. generate row centers with a random inter-row distance, along the line per-
pendicular to α and passing through the image center;

3. generate random field borders and find starting and ending points for each
row with orientation α;

Waypoint Generation in Row-Based Crops with Contrastive Clustering 211

4. to create curved maps, add a random displacement to the row centers and
compute a quadratic Bézier curve with the starting, ending and center points
as control points; this ensures that the curves are continuous and smooth;

5. generate the occupancy grid by drawing circles with random radius r ∈ [1, 2]
pixels to model irregularities in the row width

6. create random holes in the rows to emulate segmentation errors or missing
plants;

7. compute the N = 2n ground-truth waypoints as the mean points of the lines
connecting the ending points of the rows with the adjacent ones.

To further increase variability, we randomly add displacement noise every
time we sample a point coordinate during the generation process. We select
H = W = 800 pixels as input dimension for all the generated images. To inves-
tigate the effect of including synthetic curved images in the training set, we
randomly generate two independent datasets, one with straight rows only, the
other with both straight and curved rows. Overall, each dataset contains 3000
images for training, 300 for validation, and 1000 for testing. In addition to the
synthetic data, we manually annotate real row-based images of vineyards and
orchards from Google Maps (100 straight and 50 curved). These satellite images
are fundamental to test the ability of the network to generalize to real-world sce-
narios and to prove the effectiveness of the synthetic generation process. Figure 5
shows examples of both synthetic and manually-annotated images.

3.2 Network Training

To select the best hyperparameters, we perform a random search over a set
of reasonable values. For all the convolutional layers, we set a kernel size of
5 and channel dimension C = 16. For the main block of the backbone, we
set the number of residual reduction modules R = 2. Therefore, the backbone
compression factor and output cell dimension is K = 2(R+1) = 8. We set the
clustering space dimensionality to D = 3. Thus, the output tensors have both
a dimension of 100 × 100 × 3. The resulting network is a lightweight model
with less than 73,000 parameters. We select Adam [16] as optimizer with a
constant learning rate of η = 3e−4 and batch size of 16. Experimentally, we
find more effective to first train the estimation head and the backbone together
with the loss of Eq. 2. We set the loss weight to λ = 0.7 to compensate for
the high imbalance in the number of positive and negative cells and stabilize the
training. We then freeze the backbone weights and train the clustering head only
with the loss of Eq. 5. To highlight the challenge posed by curved scenarios, we
independently train the model on both the straight and curved training sets. We
train each model for a total of 200 epochs on an Nvidia 2080 Ti GPU using the
TensorFlow 2 framework. To obtain significant statistics, we run each training
session three times, so that the results can be described in terms of mean and
standard deviation.

212 F. Salvetti et al.

Table 1. Performance of waypoint estimation on both straight and curved test
datasets. We first test the model on our synthetic datasets (Straight Synth, Curved
Synth) and then validate the results on manually annotated occupancy grids obtained
from real satellite images (Straight Real, Curved Real). For each test set, we com-
pare the results of the model trained on straight rows with those obtained training
on curved rows. We report the mean and standard deviation for the Average Preci-
sion APr, where r is the maximum accepted distance in pixels between predicted and
ground-truth waypoints.

Test Train AP2 AP3 AP4 AP6 AP8

Straight synth Straight 0.6404 ± 0.0171 0.9284 ± 0.0088 0.9856 ± 0.0021 0.9991 ± 0.0001 0.9993 ± 0.0001

Curved 0.5751 ± 0.0241 0.8921 ± 0.0107 0.9743 ± 0.0022 0.9979 ± 0.0001 0.9984 ± 0.0001

Straight real Straight 0.5191 ± 0.0288 0.8155 ± 0.0109 0.9116 ± 0.0032 0.9482 ± 0.0017 0.9507 ± 0.0024

Curved 0.4597 ± 0.0166 0.7634 ± 0.0076 0.8788 ± 0.0089 0.9391 ± 0.0052 0.9433 ± 0.0049

Curved synth Straight 0.5143 ± 0.0193 0.8224 ± 0.0236 0.9232 ± 0.0166 0.9726 ± 0.0078 0.9768 ± 0.0065

Curved 0.5664 ± 0.0226 0.876 ± 0.0066 0.9632 ± 0.0009 0.9937 ± 0.0006 0.9949 ± 0.0006

Curved real Straight 0.4685 ± 0.0906 0.7110 ± 0.0625 0.8125 ± 0.0625 0.8802 ± 0.0374 0.8891 ± 0.0355

Curved 0.5327 ± 0.0269 0.8010 ± 0.0095 0.8881 ± 0.0094 0.9333 ± 0.0026 0.9374 ± 0.0033

4 Results

In this section, we report and comment the main results regarding both waypoint
detection and clustering. Visual examples are included as well, to give a quali-
tative idea of the performance of our model. We extensively test our approach
on both straight and curved rows, including a final evaluation on real satellite
data. All the related code is open source and available online1.

4.1 Waypoint Estimation

As regards waypoint estimation, we use Average Precision (APr) as principal
metric, considering different values of the range threshold r, such that a waypoint
is considered correctly detected if its Euclidean position error in pixels is smaller
than r. In this way, we can highlight the precision of the model at different levels
of proximity. The AP is commonly used for evaluating object detection tasks
[10,18] and is computed as the area-under-the-curve of the precision-recall plot
obtained varying the confidence threshold tp. The waypoint estimation results
are reported in Table 1, where each value is detailed with its mean and standard
deviation. All the tests are performed setting a waypoint suppression threshold
equal to the minimum inter-row distance of the synthetic datasets, tsup = 8
pixels.

The first important result is the model trained on curved crops being able to
reach an AP8 of about 94% on all four test scenarios. This achievement confirms
the effectiveness of our model far beyond the synthetic training scenario, as real
satellite data does not seem to create substantial performance drops (5.7% at
worst). Looking at lower values of r, the synthetic-to-real gap rises to 11.5%,

1 www.github.com/fsalv/ClusterWay.

www.github.com/fsalv/ClusterWay

Waypoint Generation in Row-Based Crops with Contrastive Clustering 213

Table 2. Performance of waypoint clustering on both straight and curved datasets,
comparing our approach with K-means and the DBSCAN pipeline proposed by [24].
We first test models on our synthetic datasets (Straight Synth, Curved Synth) and then
validate the results on real occupancy grids obtained from satellite images (Straight
Real, Curved Real). For each test, we compare the results of models trained on straight
rows with those obtained training on curved rows. We report the mean adjusted accu-
racy and clustering error with their standard deviations.

Test Method Train Adjusted accuracy Clustering error

Straight synth K-means Straight 1.0000 ± 0 0 ± 0

Curved 0.9913 ± 0.0076 0.6667 ± 0.5774

DBSCAN Straight 1.0000 ± 0 0 ± 0

Curved 0.9724 ± 0.0240 2.0000 ± 1.7321

Ours Straight 0.9994 ± 0.0003 0.0187 ± 0.0114

Curved 0.9985 ± 0.0006 0.0527 ± 0.0219

Straight real K-means Straight 0.4243 ± 0.1037 26.3333 ± 7.0238

Curved 0.4635 ± 0.0873 26.0000 ± 5.1962

DBSCAN Straight 0.9532 ± 0.0429 2.3333 ± 2.0817

Curved 0.9585 ± 0.0026 2.0000 ± 0

Ours Straight 0.9707 ± 0.0135 1.0400 ± 0.5197

Curved 0.9716 ± 0.0123 0.7700 ± 0.3012

Curved synth K-means Straight 0.9714 ± 0.0336 1.0000 ± 1.0000

Curved 0.9885 ± 0.0199 0.3333 ± 0.5774

DBSCAN Straight 0.9563 ± 0.0757 1.3333 ± 2.3094

Curved 0.8898 ± 0.0337 3.0000 ± 1.0000

Ours Straight 0.9823 ± 0.0138 0.3414 ± 0.3278

Curved 0.9992 ± 0.0006 0.0127 ± 0.0038

Curved real K-means Straight 0.2443 ± 0.0984 73.3333 ± 29.2632

Curved 0.2721 ± 0.1493 70.0000 ± 19.5192

DBSCAN Straight 0.7247 ± 0.2734 27.0000 ± 25.5343

Curved 0.5181 ± 0.1061 45.3333 ± 6.6583

Ours Straight 0.8571 ± 0.0924 3.4667 ± 2.4437

Curved 0.9344 ± 0.0116 1.1933 ± 0.1858

showing how the model is able to estimate synthetic waypoints with higher
precision. The model trained on straight crops achieves excellent performance
on its corresponding test set and even on real satellite data, but generalizes
poorly on curved rows: the precision drop reaches 11% on AP8 and even 22%
considering AP3. On the contrary, the model trained on curved crops scales very
well on straight scenarios. This outcome confirms the importance of training on
curved crops to obtain robust models able to cope with challenging situations.

214 F. Salvetti et al.

Fig. 6. Examples of clustering on a real-world curved sample: K-means and DBSCAN
pipeline [24] are not able to correctly cluster the predicted waypoints; on the other
hand, the proposed method correctly assigns the points.

4.2 Waypoint Clustering

As regards waypoint clustering, we adopt two separate metrics. The first is an
adjusted binary accuracy, assigning a score of 0 to the worst outcome (all the
points in the same cluster, meaning 50% of the points correctly clustered) and
1 to perfect clustering. However, the number of waypoints in a crop is variable
and accuracy alone does not give an insight of the distribution of errors among
different samples. For example, crops with a small number of waypoints tend
to be easier to cluster than dense ones. Considering the fact that full-coverage
path planning is possible only if every waypoint is correctly clustered, we add a
clustering error metric computing the average number of wrongly labeled points
per image. The results are detailed in Table 2. To have a baseline, we compare
our approach with the K-means algorithm directly applied in the image refer-
ence system and the DBSCAN clustering with geometrical assignment approach
proposed by [24]. All the clustering tests are performed setting the confidence
threshold to tp = 0.4 and the waypoint suppression threshold to tsup = 8 pixels.
As for the previous results, each value is reported with its mean and standard
deviation.

Our methodology achieves remarkable results, outperforming or at least
matching existing solutions in all the testing scenarios. In particular, both the
training strategies (based on straight and curved crops) approach perfect clus-
tering on the synthetic straight dataset and generalize well to real crops. On
the contrary, K-means, which perfectly works for the well-separated synthetic
samples, loses more than half of its adjusted accuracy and presents a very high
clustering error when switching to real test rows, mainly due to the irregular
shapes typical of real-world vineyards. The DBSCAN pipeline, instead, is able
to generalize to straight satellite crops, since the methodology was specifically
designed to cope with real-world straight rows.

Waypoint Generation in Row-Based Crops with Contrastive Clustering 215

Fig. 7. Examples of full-coverage path planning in real-world curved vineyards taken
from Google Maps satellite database.

As regards curved test sets, K-means clustering is totally unable to gener-
alize to the real dataset. At the same time, also the DBSCAN pipeline results
drop significantly when switching to real samples, due to its heavy dependence
on angle estimation. Our model, trained on straight rows, obtains 0.98 adjusted
accuracy and 0.34 clustering error on synthetic data, outperforming both the
baselines. However, it struggles to generalize to real crops, reaching an adjusted
accuracy of 0.86. On the other hand, the model trained on curved data outper-
forms the baselines in synthetic and real data, where it achieves an adjusted
accuracy of 0.93. This result can be considered extremely positive, taking into
account the strong challenges present in satellite data. In particular, a cluster-
ing error of 1.19 is remarkably smaller than those obtained by K-means and
DBSCAN. In conclusion, these results confirm how the proposed methodology,
combined with a well-devised generation process of curved synthetic samples,
allows path planning even in challenging scenarios.

4.3 Qualitative Results

To give further insight into the performance of the proposed methodology, we
present some qualitative examples on real-world curved samples. Figure 6 shows
a comparison between the three clustering methodologies. K-means and the
DBSCAN pipeline are clearly unable to correctly assign points in challenging
scenarios. Finally, Fig. 7 shows some examples of full-coverage path planning.

216 F. Salvetti et al.

The planning is performed by selecting the points in an A-B-B-A fashion and
using the planner proposed by [5]. With geo-referenced maps, the planned path
can be converted from the image reference system to a Global Navigation Satel-
lite System (GNSS) reference frame to be used in real-world navigation. All the
tests are performed with the model trained on the curved dataset and setting
the confidence threshold to tp = 0.4 and the waypoint suppression threshold to
tsup = 8 pixels.

5 Conclusions

In this work, we propose a novel solution for global path generation in row-based
crops using deep learning and contrastive clustering. The problem of path plan-
ning in geometrically constrained environments such as vineyards and orchards
has been solved through the identification of waypoints at the end of each row.
Our deep learning model can simultaneously predict the position of naviga-
tion waypoints and cluster them in a unique feed-forward step. To this aim, we
train the network on a synthetic dataset of top-view occupancy grids and test it
on real-world satellite images, outperforming previous methodologies based on
classical clustering by adopting a contrastive loss function. Our extensive exper-
imentation demonstrates that this model successfully generalizes to challenging
realistic conditions, including curved and incomplete rows.

Future works may seek the integration of the proposed waypoint generator in
a complete pipeline for row-based vineyard and orchard navigation, composed of
a first segmentation step to obtain the occupancy grid of the parcel from satellite
or UAV imagery and a local planner for intra-row navigation.

Acknowledgements. This work has been developed with the contribution of the
Politecnico di Torino Interdepartmental Centre for Service Robotics (PIC4SeR) and
SmartData@Polito.

References

1. Aghi, D., Mazzia, V., Chiaberge, M.: Autonomous navigation in vineyards with
deep learning at the edge. In: Zeghloul, S., Laribi, M.A., Sandoval Arevalo, J.S.
(eds.) RAAD 2020. MMS, vol. 84, pp. 479–486. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-48989-2 51

2. Aghi, D., Mazzia, V., Chiaberge, M.: Local motion planner for autonomous nav-
igation in vineyards with a RGB-D camera-based algorithm and deep learning
synergy. Machines 8(2), 27 (2020)

3. Astolfi, P., Gabrielli, A., Bascetta, L., Matteucci, M.: Vineyard autonomous nav-
igation in the echord++ grape experiment. IFAC-PapersOnLine 51(11), 704–709
(2018)

4. Barawid, O.C., Jr., Mizushima, A., Ishii, K., Noguchi, N.: Development of an
autonomous navigation system using a two-dimensional laser scanner in an orchard
application. Biosyst. Eng. 96(2), 139–149 (2007)

https://doi.org/10.1007/978-3-030-48989-2_51
https://doi.org/10.1007/978-3-030-48989-2_51

Waypoint Generation in Row-Based Crops with Contrastive Clustering 217

5. Cerrato, S., Aghi, D., Mazzia, V., Salvetti, F., Chiaberge, M.: An adaptive row
crops path generator with deep learning synergy. In: 2021 6th Asia-Pacific Confer-
ence on Intelligent Robot Systems (ACIRS), pp. 6–12. IEEE (2021)

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

7. Comba, L., Biglia, A., Aimonino, D.R., Gay, P.: Unsupervised detection of vine-
yards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput.
Electron. Agric. 155, 84–95 (2018)

8. Deshmukh, D., Pratihar, D.K., Deb, A.K., Ray, H., Bhattacharyya, N.: Design
and development of intelligent pesticide spraying system for agricultural robot. In:
Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, T.-P.
(eds.) HIS 2020. AISC, vol. 1375, pp. 157–170. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-73050-5 16

9. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

11. Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis.
Comput. Electron. Agric. 145, 311–318 (2018)

12. Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X.: A review on the practice
of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)

13. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Com-
put. Electron. Agric. 147, 70–90 (2018)

14. Kang, H., Zhou, H., Wang, X., Chen, C.: Real-time fruit recognition and grasping
estimation for robotic apple harvesting. Sensors 20(19), 5670 (2020)

15. Khaliq, A., Mazzia, V., Chiaberge, M.: Refining satellite imagery by using UAV
imagery for vineyard environment: a CNN based approach. In: 2019 IEEE Interna-
tional Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pp.
25–29. IEEE (2019)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Lei, T., Luo, C., Jan, G., Bi, Z.: Deep learning-based complete coverage path
planning with re-joint and obstacle fusion paradigm. Front. Robot. AI 9, 843816
(2022). https://doi.org/10.3389/frobt

18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

19. Luo, L., Tang, Y., Lu, Q., Chen, X., Zhang, P., Zou, X.: A vision methodology for
harvesting robot to detect cutting points on peduncles of double overlapping grape
clusters in a vineyard. Comput. Ind. 99, 130–139 (2018)

20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, pp. 281–297 (1967)

21. Martini, M., Mazzia, V., Khaliq, A., Chiaberge, M.: Domain-adversarial training
of self-attention-based networks for land cover classification using multi-temporal
sentinel-2 satellite imagery. Remote Sens. 13(13), 2564 (2021)

22. Mazzia, V., Comba, L., Khaliq, A., Chiaberge, M., Gay, P.: UAV and machine
learning based refinement of a satellite-driven vegetation index for precision agri-
culture. Sensors 20(9), 2530 (2020)

https://doi.org/10.1007/978-3-030-73050-5_16
https://doi.org/10.1007/978-3-030-73050-5_16
http://arxiv.org/abs/1412.6980
https://doi.org/10.3389/frobt
https://doi.org/10.1007/978-3-319-10602-1_48

218 F. Salvetti et al.

23. Mazzia, V., Khaliq, A., Salvetti, F., Chiaberge, M.: Real-time apple detection sys-
tem using embedded systems with hardware accelerators: an edge AI application.
IEEE Access 8, 9102–9114 (2020)

24. Mazzia, V., Salvetti, F., Aghi, D., Chiaberge, M.: Deepway: a deep learning way-
point estimator for global path generation. Comput. Electron. Agric. 184, 106091
(2021)

25. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based
plant disease detection. Front. Plant Sci. 7, 1419 (2016)

26. Van den Oord, A., Li, Y., Vinyals, O., et al.: Representation learning with con-
trastive predictive coding, vol. 2, no. 3, p. 4. arXiv preprint arXiv:1807.03748
(2018)

27. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

28. Riggio, G., Fantuzzi, C., Secchi, C.: A low-cost navigation strategy for yield esti-
mation in vineyards. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2200–2205. IEEE (2018)

29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

30. Sparrow, R., Howard, M.: Robots in agriculture: prospects, impacts, ethics, and
policy. Prec. Agric. 22(3), 818–833 (2021)

31. Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., Avizzano, C.A.: Towards smart
farming and sustainable agriculture with drones. In: 2015 International Conference
on Intelligent Environments, pp. 140–143. IEEE (2015)

32. Tschannen, M., Bachem, O., Lucic, M.: Recent advances in autoencoder-based
representation learning. arXiv preprint arXiv:1812.05069 (2018)

33. Ünal, Z.: Smart farming becomes even smarter with deep learning-a bibliographical
analysis. IEEE Access 8, 105587–105609 (2020)

34. Vidović, I., Scitovski, R.: Center-based clustering for line detection and application
to crop rows detection. Comput. Electron. Agric. 109, 212–220 (2014)

35. Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., Hawkesford, M.J.: Field scana-
lyzer: an automated robotic field phenotyping platform for detailed crop monitor-
ing. Funct. Plant Biol. 44(1), 143–153 (2017)

36. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention
module. In: Proceedings of the European conference on computer vision (ECCV),
pp. 3–19 (2018)

37. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

38. Zhai, Z., Mart́ınez, J.F., Beltran, V., Mart́ınez, N.L.: Decision support systems
for agriculture 4.0: survey and challenges. Comput. Electron. Agric. 170, 105256
(2020)

39. Zoto, J., Musci, M.A., Khaliq, A., Chiaberge, M., Aicardi, I.: Automatic path plan-
ning for unmanned ground vehicle using UAV imagery. In: Berns, K., Görges, D.
(eds.) RAAD 2019. AISC, vol. 980, pp. 223–230. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-19648-6 26

http://arxiv.org/abs/1807.03748
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1812.05069
https://doi.org/10.1007/978-3-030-19648-6_26
https://doi.org/10.1007/978-3-030-19648-6_26

Grasping Partially Occluded Objects
Using Autoencoder-Based Point Cloud

Inpainting

Alexander Koebler1,5(B), Ralf Gross5, Florian Buettner1,2,3,4,5, and Ingo Thon5

1 Department of Computer Science, Goethe University Frankfurt,
Frankfurt, Germany

2 Department of Medicine, Goethe University Frankfurt, Frankfurt, Germany
3 German Cancer Consortium, Frankfurt, Germany

4 German Cancer Research Center Heidelberg, Heidelberg, Germany
5 Siemens AG, Munich, Germany

{alexander.koebler,ralf.gross,buettner.florian,ingo.thon}@siemens.com

Abstract. Flexible industrial production systems will play a central
role in the future of manufacturing due to higher product individualiza-
tion and customization. A key component in such systems is the robotic
grasping of known or unknown objects in random positions. Real-world
applications often come with challenges that might not be considered in
grasping solutions tested in simulation or lab settings. Partial occlusion
of the target object is the most prominent. Examples of occlusion can be
supporting structures in the camera’s field of view, sensor imprecision,
or parts occluding each other due to the production process. In all these
cases, the resulting lack of information leads to shortcomings in calcu-
lating grasping points.

In this paper, we present an algorithm to reconstruct the missing
information. Our inpainting solution facilitates the real-world utilization
of robust object matching approaches for grasping point calculation. We
demonstrate the benefit of our solution by enabling an existing grasping
system embedded in a real-world industrial application to handle occlu-
sions in the input. With our solution, we drastically decrease the number
of objects discarded by the process.

Keywords: Autoencoder · Robotic grasping · Inpainting

1 Introduction

Recent research efforts are paving the way towards robotic grasping of randomly
positioned known [10] or unknown objects [12,13], with the potential to substan-

F. Buettner—Work done for Siemens AG.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 219–235, 2023.
https://doi.org/10.1007/978-3-031-26422-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_14
https://doi.org/10.1007/978-3-031-26422-1_14

220 A. Koebler et al.

tially increase the efficiency of many production processes. However, key chal-
lenges inhibiting the utilization of robot grasping in real-world production seem
to receive limited attention in research so far. For example, in settings where not
the entire target object is visible in the input scene, state-of-the-art approaches
for unknown objects can only sample grasping points in sub-regions of the object
captured by the vision system. Conventional object matching approaches for
known objects are even more affected by the lack of information and might not
be able to determine any grasping point. Missing parts of the object in the input
lead to a decline in the accuracy of the used surface or feature matching algo-
rithms [4]. Nevertheless, given complete input, conventional 3D object matching
approaches have proven themselves in many real-world applications and offer a
highly reliable calculation of grasping points. Their deterministic generation of
the grasping points is often crucial for precise actions in pick and place appli-
cations. Thus, we aim to use machine learning (ML) to impute the missing
information in the input such that robust conventional methods for grasping
point detection can be used in more application areas. Most often, the cause for
missing information in the input data is the partial occlusion of the target object
during the recording phase. A simple remedy is re-scanning the input scene after
removing the cause of the occlusion. However, in many real-world applications,
re-scanning is either undesirable as it usually causes an unproductive process
prolongation or might even be impossible due to existing process constraints.

In industrial applications, 3D models of the processed objects are commonly
available as computer-aided design (CAD) models created in the own or the
suppliers’ product design process. In addition to their use in object matching
approaches, these models can be utilized in combination with a simulation envi-
ronment to generate a synthetic dataset. In this work, we propose to use such
generated data to train an auxiliary autoencoder to inpaint occluded areas of
objects for robotic grasping. Our approach drastically reduces the impact on the
downtime of the real-world assembly machine during the design and training
phase.

Our main contribution consists of the development and real-world demon-
stration of a novel algorithm to recover occluded object information in robotic
grasping settings. This method enables the usage of established object matching
algorithms for stable grasping point calculation without re-scanning the product
or redesigning the production process.

We make the following technical contributions:

– We introduce a new algorithm to process unordered single-view point cloud
data generated by an industrial laser scanner with 2D convolutional networks.

– We evaluate the use of style- and perceptual loss functions [9,11] for
autoencoder-based inpainting networks in the context of robotic grasping.

– We demonstrate how we bridge the gap between training the model on sim-
ulated data and deploying it in the real world.

Grasping Partially Occluded Objects Using AEPCI 221

2 Related Work

Our work combines the two research areas of robotic grasping and machine
learning-based inpainting. To our knowledge, there are only a few approaches
[29] towards this combination. Therefore, we will first introduce current methods
for robotic grasping and discuss their robustness to occlusions in the input.
Afterward, we will briefly introduce ML-based image inpainting and the issues
associated with transferring those methods to point cloud data.

Robustness of Grasping Algorithms to Occlusions: Data-driven methods to deter-
mine grasping points vary widely in terms of their build-in robustness to missing
information in the input scene.

Known approaches can be distinguished by the required knowledge about the
objects that should be grasped [2]. If the exact object shape is known, common
solutions rely on manually labeling optimal grasping points for specific objects.
This can, for example, be done with the help of CAD models. The 3D models of
the objects and thereby the predetermined grasping points can then be matched
to input point clouds by various conventional algorithms or a combination of
them [4]. Examples include relying on a subset of the points as features such as
RANSAC [6] or the entirety of the point cloud such as ICP [20]. These matching
algorithms are heavily affected by missing information in the input point cloud
with respect to the object of interest since this can cause a lack of matching
key features between the recorded point cloud and the available 3D models.
This issue has motivated research efforts towards increasing the robustness of
those methods to occlusions and cluttered environments [16,17] as well as the
development of more recent ML-based pose estimation methods [23].

Recent approaches for handling unknown objects select grasping point candi-
dates on the visible areas based on local attributes and subsequently classify the
most promising grasping point by a trained ML model [12,13]. Although these
methods might be more robust in the case of cluttered and occluded scenes,
they lack the robustness of conventional matching algorithms in non-occluded
cases. For example, they do not generate deterministic grasping points for known
objects. Those, however, are required for subsequent processing steps, such as
the precise placing of known objects.

Inpainting Approaches for Point Clouds: Our solution aims to enhance existing
object matching solutions by an auxiliary autoencoder-based inpainting step.
This preprocessing step ensures that an object’s complete shape is present in
the point cloud.

The reconstruction of missing information in natural images or videos is a
well-researched task relying on ML- [11,24] and non-learning-based inpainting
[3].

Per-pixel reconstruction loss functions such as mean-squared-error (MSE) or
mean-average-error (MAE) in the ML-based inpainting methods often do not
satisfy the complicated semantic structure of the images. Thus, [9] utilizes a
loss network trained on a supervised classification task to evaluate high-level

222 A. Koebler et al.

abstractions of the reconstructed image. By using autoencoder architectures for
super-resolution and style-transfer [9] as well as for inpainting [11,24] of natural
images, these loss terms resulted in significant improvements in the removal of
image artifacts and in the visual perception of the results. Other approaches
[8,28] use additional adversarial loss functions, which are inspired by genera-
tive adversarial networks (GANs) [7], to include higher-level abstractions in the
reconstruction objective.

Using generative models for unordered 3D point clouds instead of images is a
less researched field [14,26]. The non-equidistant grid and irregular format of the
recorded point clouds do not allow for directly applying convolutional neural net-
works (CNNs) [18], which are often used in vision use-cases. The authors in [30]
are concerned with reconstructing small holes in point clouds rather caused by
noise than by occlusions. This does not satisfy our requirement of reconstructing
significant coherent portions of more than 80% of the object point cloud.

3 Problem Description

In the context of a real-world assembly machine that includes a grasping appli-
cation, we face the following problem: During the process, pairs of associated
objects drop onto a conveyor belt. The objects have a size of about 30 mm ×
25 mm and form the front and back parts of the assembled product. The objects
are transported towards a robot arm and should subsequently be grasped with
a suction gripper. For this purpose, a laser scanner prior to the robot arm scans
the objects on the conveyor belt as they pass through the beam. Re-scanning
the scene after the execution of a grasping process is not viable. It would require
a time-consuming retraction of the conveyor belt to pass the object through
the laser beam repeatably. The laser scanner generates unordered point clouds
from a single point of view. The geometry of the objects is known, and a system
capable of determining appropriate grasping points on the objects is in place.
In the following, this system will be referred to as the perception system. The
perception system uses a surface-based 3D matching algorithm and predefined
deterministic grasping points for the known objects. The system works reliably
if the laser scanner captures the entire geometry of the target objects.

When the objects drop on the conveyor belt, they can end up laying upon
each other. Thus in some cases, one object partly occludes the other one. The
resulting degree of occlusion is random and varies widely. The perception system
can not determine grasping points for a large majority of occurring occlusions.

Our objective, shown in Fig. 1, is to develop a solution to reconstruct the
missing parts of the lower object after the scanning process. The reconstruction
quality of object parts must be sufficient for the subsequent surface-matching
algorithm to match the object with acceptable accuracy. The perception system
requires well-restored key features of the objects, such as edges and corners.
These are often not sufficiently captured by common reconstruction metrics such
as the MSE or the MAE. For this reason, we evaluate the reconstruction quality
in a task-specific manner. Our final evaluation criterion for the overall system

Grasping Partially Occluded Objects Using AEPCI 223

is the rate of successful grasps in the case of occlusions. In addition, a visual
inspection of the reconstruction can offer an estimation of its quality and the
later gasping success rate.

The event that objects occlude each other in the input scene is frequent
enough that it causes a significant amount of discarded objects. However, gath-
ering a huge dataset for training a reconstruction model would require a long-
term operation of the production machine in a sub-optimal state. Therefore,
the amount of available real-world data is limited. Furthermore, collecting the
point cloud of the non-occluded lower object in the same pose and orientation
in the regular process is not possible. This is because the scanning of the input
scene and the grasping of the robot are locally separated. Moreover, after the
robot grasped the top object, re-scanning the scene with the no more occluded
lower object would not yield the ground truth for the previously occluded object
but a scan of the now isolated object after the robot operation or the conveyor
retraction potentially impacted its positioning.

Fig. 1. Investigated problem setting for point cloud inpainting. As shown on the left,
the laser scanner can only capture a small portion of the geometry of the occluded
object. This is insufficient for the 3D matching algorithm that calculates the grasping
points. Our inpainting solution outputs the complete point cloud on the right with
the reconstructed lower object. With that, the surface-based matching algorithm can
estimate the pose and orientation of both objects and determine corresponding grasping
points.

4 Methodology

We propose using a processing pipeline including an autoencoder-based inpaint-
ing step to reconstruct missing information in partially occluded point clouds. In
this section, we will elaborate on the components of the pipeline and substantiate
our design decisions.

The scanned scene’s height with two objects is less than 15 mm, even if
the objects fall on top of each other. This results in only small deviations in
the height-dependent spacing of the grid generated by the scanner. Thus, we
consider the information loss by interpolating the point clouds to an equidistant

224 A. Koebler et al.

grid in the (x, y)-coordinates as negligible. The representation of the object on
an equidistant grid allows for using regular image processing approaches such
as CNNs. Thus, we can circumvent the use of more complicated methods that
can handle unordered point clouds on non-equidistant grids [18]. In our case,
the considered objects are relatively simple, with only a few defining structures
that must be preserved. For this reason, we decided on an autoencoder U-Net
architecture [19] for the image inpainting process.

Fig. 2. Simulation environment for generating a synthetic training dataset of occluded
scenes. In (a), the green conveyor belt and the laser scanner are shown. (b) depicts the
scanning process of a single object, where the small grey cubes illustrate the beams
of the laser scanner. The resulting synthetic point cloud is shown in (c). (Color figure
online)

4.1 Dataset Generation

A method was developed to generate and record realistic instances of object
occlusions via simulation. This synthetically generated data allows us to train
the autoencoder model without the need to record a ground truth point cloud
of the complete lower object in the real process. The considered machine was
already available as a digital twin in a product lifecycle management software
with an integrated simulation toolkit. The relevant components shown in Fig. 2,
consisting of the conveyor belt, the laser scanner, and the product objects, could
be utilized to generate the training dataset. During the simulation, the objects
are placed upon each other in random relative positions within a predefined
design space. The integrated physics simulation subsequently causes objects to
fall into physically valid positions. This allows for realistic occlusion patterns.
The dataset is generated by recording the scene where both objects are present,
and parts of the lower object are hidden from the scanner’s view. Afterward, the
top object is removed and the scene only consisting of the lower object is re-
scanned, generating a ground truth point cloud of the complete lower object in
the corresponding pose. Furthermore, an assignment between points and objects
is generated for the point cloud with both objects.

4.2 Data Processing Pipeline

We aimed to simplify the inpainting task and thereby reduce the performance
gap we have to cross when we deploy our solution solely trained in simulation

Grasping Partially Occluded Objects Using AEPCI 225

to the real-world process. Hence, we split the overall task into multiple simpler
sub-tasks, which results in the processing pipeline depicted in Fig. 3.

Inpainting
U-Net

Segmentation
U-Net

Filter and
Interpolation

Point Cloud
Reconstruction

Perception
System

Raw
Point Cloud

Depth
Image

Depth Image of
Partially Occluded
Lower Object and

Masked Upper Object

Depth Image of
Reconstructed Lower

Object

Point Cloud with
Complete Lower and

Upper Object

Laser
Scanner

Masking

Segmentation
Masks

Original
Grid

Depth Image
of Upper
Object

Fig. 3. Data processing pipeline with resulting in- and outputs of the deployed point
cloud inpainting solution

Fig. 4. Filtering steps for the real point clouds. The laser scanner captures different
forms of noise and distractions in the raw input point cloud (a), such as the floor on
the lower right and the wall on the left side. After cropping the distractions from the
recorded view, sparse noise on the conveyor belt is left (b). By removing the sparse
noise, only the dense clusters of the objects themselves remain (c).

The in Fig. 4 depicted point clouds recorded by the real laser scanner suffer
from two kinds of noise. We apply predefined cropping windows to remove dense
clusters from the point cloud that are caused by the conveyor rails, the floor, or
the wall. The remaining noise after this step appears sparsely spread. Therefore,
a clustering algorithm is used to remove points that do not correspond to the
dense clusters formed by the objects. We use the DBSCAN algorithm [5] for this

226 A. Koebler et al.

purpose. The required parameters for the filtering operations are tuned manually
on a small amount of real input point clouds. The cropping boundaries in the
x-direction orthogonal to the conveyor are set to a frame of 92 mm to remove
the conveyor rails. Furthermore, only a window of 18 mm in depth direction z
is considered to remove artifacts caused by the wall and the floor. The maximal
distance of neighboring points for the DBSCAN algorithm is set to 4 mm. Since
the top objects often protrude at an angle, the two objects do not always form
one coherent cluster. Found sub-clusters are considered to correspond to one of
the objects if they include at least 500 points. The remaining complete object
cluster must consist of at least 6000 points after the filtering step to detect errors
in the scanning process.

In a consecutive step, the resulting point cloud is interpolated to an equidis-
tant grid. The generated grid has a resolution of 1.1 mm in y-direction orthogonal
to the laser beam and 0.3 mm in the x-direction parallel to the beam. These dis-
tances are independent of the z-value at a specific point. They represent the
original grid close to the height of a flat non-occluded object. Considering the
height and width of two objects in all occurring configurations, a grid with 256
points in x-direction and 64 points y-direction is generated. For the interpola-
tion step, the points in the unordered original point cloud are matched by their
(x, y)-coordinates with their nearest-neighbor in the generated equidistant grid
by using a k-d-tree algorithm [1]. The generated pairs between the (x, y)-values
of the original and the equidistant grid are subsequently used to interpolate the
z-values for the point cloud on the equidistant grid. The resulting point clouds
are interpreted as depth images, and only the z-values are used for further pro-
cessing steps.

We include a segmentation network to extract the top object for later recon-
structing the entire input scene. Furthermore, using the segmentation network’s
output, the pixels corresponding to the top object in the original image are set
to a constant value of 15 mm above the height of a single object. We expect this
step to support the inpainting network to distinguish between the image areas
that are relevant for the inpainting and to identify the structures corresponding
to the lower object.

After the inpainting model outputs the depth image of the reconstructed
lower object, a post-processing step is necessary to recombine the entire point
cloud.

The pixels in the output depth image that correspond to the occluded object
and not to the background or interpolation artifacts are identified by a dynamic
thresholding algorithm [15]. The top object segmented from the original depth
image and the reconstructed lower object are subsequently mapped back to the
original non-equidistant grid. For this purpose, the pixel-to-position mapping
generated by the k-d-tree in the interpolation step is reused. The resulting point
cloud can further on be processed by the perception system.

4.3 Segmentation

For the segmentation task, a commonly used approach is utilized and imple-
mented based on [27]. For the segmentation network we decided for a U-Net

Grasping Partially Occluded Objects Using AEPCI 227

architecture with an EfficientNetB2-backbone model [22]. For training, we only
use synthetic point clouds. The depth image of the scene where parts of the lower
object are occluded is provided as input. The labels are the simulated point-to-
object assignments that are also mapped to the generated equidistant grid. This
results in 2D segmentation maps with the three categories: top object, occluded
object, and background.

4.4 Inpainting

We also used a U-Net architecture with a VGG16-like [21] backbone for the
inpainting model. Especially if significant parts of key features such as edges
or corners are occluded and missing in the reconstruction, we assume that sim-
ple per-pixel loss functions such as MSE do not capture those differences suf-
ficiently. However, these features are essential for the perception system’s 3D
matching algorithm. Thus, we have evaluated the style and perceptual loss func-
tions applied for super-resolution and style-transfer in [9] and image inpainting
in [11].

The proposed loss function relies on high-level intermediate representations
extracted from a pretrained loss-network in addition to a per-pixel difference in
the input space. In contrast to [9,11] we do not apply these losses to natural
images similar to common public datasets. Thus, for our loss-network, we can
not use a model that is trained on a supervised classification task on a dataset
such as ImageNet.

For this reason, we train our VGG16 loss-network as an autoencoder in an
unsupervised manner. The autoencoder is trained such that the input and the
expected output are the synthetic depth images of the ground truth lower object.
The unsupervised task does not necessarily result in relevant features for a clas-
sification task. However, we expect the bottleneck to capture coherent high-level
features of the object, such as edges and corners. Those features should then be
represented by the intermediate representations generated by the network.

As shown in Fig. 5, the representations ψX
p used in the style and perceptual

loss are the output of the max-pooling layers. In particular, the first four convo-
lutional blocks p of the VGG16 loss-network are used. The perceptual loss is the
sum of the norm of the difference of the first four intermediate representations
for the ground truth image Xgt and the by the inpainting network generated
image Xout:

Lperceptual =
P∑

p=1

||ψXout
p − ψXgt

p ||1 · 1
CpHpWp

(1)

The feature maps ψX
p are of size Cp × Hp × Wp.

For the style loss, the auto-correlation matrix of the representations is calcu-
lated first. The norm of the resulting gram matrices of size Cp ×Cp is normalized
by the size of the feature maps

Lstyle =
P∑

p=1

1
CpCp

· || 1
CpHpWp

· ((ψXout
p)T · (ψXout

p) − (ψXgt
p)T · (ψXgt

p))||1. (2)

228 A. Koebler et al.

Inpainting
U-Net

Loss
Autoencoder

conv.
block 1

conv.
block 2

conv.
block 3

conv.
block 4

conv.
block 5

max.
pooling

dense
layer

Fig. 5. Training architecture for the inpainting model using a VGG16 loss-network.
The loss-network EL is trained unsupervised by learning equivalence on the depth
image of the complete lower object. The inpainting model I is trained to reconstruct
the complete lower object from the depth image, including the masked top object and
the partially occluded lower object. The intermediate representations of the ground
truth image ψ

Xgt
p and the reconstructed image ψXout

p for the style and perceptual loss
are taken after the first four convolutional blocks.

During our experiments we considered this loss with and without the normal-
ization factor of 1

CpCp
. As in [11] and different to [9] we have used the L1-norm

in the style and perceptual loss terms and the per-pixel loss component

Lpixel =
1

CHW
· ||Xout − Xgt||1. (3)

If we normalize the perceptual loss by the size of the feature maps and the style
loss by the size of the gram-matrix, we also have to normalize the per-pixel loss
term by the size of the image in input space C ×H ×W to keep all terms in the
same order of magnitude. The combined perceptual and style-based loss (PSBL)
results as:

Lpsbl = Lpixel + αLperceptual + βLstyle (4)

The weight of the perceptual and style loss is determined by the hyperparameters
α and β, respectively.

5 Experiments

In the experiments section, we want to focus on the performance of the inpainting
network before we end with a performance analysis of the entire pipeline on the
real machine.

Grasping Partially Occluded Objects Using AEPCI 229

5.1 Training Procedure

We first pretrain all models with MSE loss for 200 epochs to establish a proper
initialization of the network weights. Subsequently, we fine-tune the models for
the same amount of epochs on the evaluated loss functions. We use an Adam
optimizer and a learning rate of 0.0001 for both training phases.

The loss-network is trained for 300 epochs with MSE loss. The bottleneck
dimension for the autoencoder-based unsupervised pretraining is set to 16. This
value is empirically set so that the autoencoder can still learn sufficient equality
but must learn high-level abstractions to handle the narrow bottleneck at the
same time.

The generated synthetic dataset consists of 21 000 examples. It is split into
16 800 training samples and 4 200 test samples. Of the 16 800 training samples
3 360 are used as a validation set to find the best checkpoint based on the peak
signal-to-noise ratio (PSNR) during training. This results in an actual training
dataset of 13 440 samples.

5.2 Sensitivity to Initialization

We receive very unstable results for training the models from scratch with ran-
dom initialization. In case of a training collapse, the model’s outputs converge
within the first ten epochs to an empty image which can easily be detected
programmatically. For the different losses, this happens for a different subset of
random seeds. When we evaluate using the same 25 random seeds, the models
trained with MAE loss collapse in 80% of the time, with MSE loss in 50%, with
PSBL loss without normalization in 60%, and with layer-wise loss normalization
in 80%, we assume this is due to the high ratio of empty background in most
images. If the models are initialized by pretraining on MSE, they do not collapse
using other losses during the fine-tuning step.

5.3 Performance on Synthetic Data

In this section, we will compare the performance of the models trained on MSE,
MAE, and the PSBL loss. Lpsbl is evaluated with and without the per-layer
normalization. The parameters α and β are determined by random search in the
range [0.1, 1000], optimizing for the best PSNR on the evaluation set. With and
without normalization, the best loss function is given by:

Lpsbl = Lpixel + 0.715Lperceptual + 6.21Lstyle (5)

The visual comparison of the models’ outputs in Fig. 6 shows that the recon-
struction on synthetic point clouds is sufficient for all loss functions. However,
the performance of the models trained solely with MSE loss is worse than the
others, followed by the performance of the model with PSBL loss and layer-wise
loss normalization. MAE and PSBL loss without normalization generate very
similar results. The lack in performance by the models with MSE loss is also

230 A. Koebler et al.

ground
truth

MSE MAE PSBL
w\ norm

PSBL
w\o norm

Fig. 6. Examples for the reconstruction performance of models trained on different
losses on synthetic point clouds if significant parts of key features are occluded. The
first column shows the ground truth point clouds from the same view. The key features
are marked with a red circle. The visual performance on the synthetic images is very
similar for all losses. The model trained with MSE loss shows small artifacts, e.g., on
the lower left side of the upper example. The model with the normalized loss function
lacks behind its counterpart without normalization regarding the ramp-like edge in
the bottom example, which is flatter compared to the ground truth. The best visual
reconstruction is given by the models trained with the MAE and the PSBL loss function
without normalization. (Color figure online)

Table 1. Comparison of the performance of the models trained with different loss func-
tions evaluated on per-pixel metrics. The table shows the mean and variance using dif-
ferent random seeds. The models trained on MAE and MSE loss generate the best per-
formance on the corresponding metric. The best mean PSNR is achieved with the model
trained on the PSBL loss with layer-wise loss-normalization. The best SSIM index is
achieved by the model trained with PSBL without layer-wise loss-normalization.

MSE MAE PSBL w\ norm PSBL w\ o norm

MSE 7.63e-4±1.6e-10 7.84e-4 ± 1.9e-10 7.68e-4 ± 2.0e-12 7.69e-4 ± 1.9e-10

MAE 3.93e-3 ± 3.3e-7 3.16e-3±2.9e-11 3.78e-3 ± 2.1e-7 3.2e-3 ± 7.5e-9

PSNR 33.11 ± 2.0e-3 32.94 ± 7.5e-3 33.14±3.8e-3 33.13 ± 9.8e-3

SSIM 0.958 ± 2.5e-5 0.963±6.4e-6 0.961 ± 5.8e-6 0.963±4.1e-7

captured by the per-pixel metrics in Table 1. The visually perceived lower recon-
struction quality of the model trained with PSBL loss with normalization is only
indicated by the structural similarity (SSIM) index [25]. The per-pixel metrics
lack expressiveness as an evaluation metric. However, these are the most suitable
options for preselecting the best hyperparameters and model checkpoints with
reasonable effort. We decided to optimize our setup based on the PSNR.

Grasping Partially Occluded Objects Using AEPCI 231

5.4 Performance on Real Data

For the evaluation on the real data, no ground truth point clouds of the complete
lower objects in the proper position exist. For this reason, the per-pixel metrics
can not be evaluated. In Fig. 7 we show visual examples of the reconstruction
performance of the different models on real point clouds. The reconstruction
errors and performance differences are more significant than those on the syn-
thetic data.

synthetic
reference

MSE MAE PSBL
w\ norm

PSBL
w\o norm

Fig. 7. Examples for the reconstruction performance of models trained on different
losses on real point clouds if significant parts of key features are occluded. The first
column shows synthetic reference point clouds of the lower object. The key features
are marked with a red circle. The reference point clouds are generated by manually
positioning a synthetic object. The model trained with MSE loss performs worth in
reconstructing the marked key features in both shown examples. Especially in the
lower example, the quality of the reconstruction of the model with PSBL loss without
normalization outperforms the one with normalization. (Color figure online)

Although the models trained with MAE loss and with PSBL loss without
normalization have a very similar SSIM index on synthetic images, the latter
significantly outperforms the other models in the visual reconstruction quality
of the occluded features on real examples with severe occlusions. This difference
is expected to impact the capability of the perception system to match the 3D
objects. This directly transfers to the success rate for the calculation of the
grasping points and, finally, the grasping process. The performance on most
simpler examples with less severe occlusion is good for all models.

5.5 Performance of the Pipeline on the Real Process

We deployed our solution consisting of the processing pipeline and the models
for segmentation and inpainting to the real process. This enabled the grasping
application to also pick objects in configurations such as shown in Fig. 8 that
would previously be discarded. The deployed version is tested on 100 grasping

232 A. Koebler et al.

trials with varying occlusions. The occlusions are manually created by placing
one object upon the other in random configurations. In 76% of the examples
both objects could be grasped successfully. This shows that we can reduce the
amount of discarded objects by 76%, thereby drastically increasing the efficiency
of the process. The errors in the remaining 24% are distributed across all compo-
nents, mainly the segmentation model, the inpainting model, and the matching
algorithm. We observed that the matching algorithm produces most errors if
the surfaces of the reconstructed object and the top object are very close. This
happens if the upper object does not stand out at an angle. The real machine
was not available for comprehensive testing. The solution deployed on the real
machine uses an inpainting model with α = 24 and β = 240 and is trained
on 16 800 samples. Detailed tracking of the exact cause of the errors has not
been performed because the generation of the required ground truth in the real
process was not possible.

Fig. 8. Our solution deployed on the real machine. (a) shows the output of the percep-
tion system before the inpainting is executed. In this case, only the yellow 3D shape
of the top object is matched. The process detects this and our inpainting solution is
triggered and executed. Our pipeline returns the inpainted point cloud (b), where both
3D shapes can be matched. (c) shows the overlapping objects on the conveyor belt. In
(d), the grasping process of the lower object is illustrated after matching both objects
successfully. (Color figure online)

6 Conclusion

Conventional real-world grasping applications often face shortcomings if very
strict requirements are not met. With the discussed solution, we could solve one
of these shortcomings by inpainting missing information caused by occlusions
in single-view point clouds. We developed an auxiliary autoencoder model and
a sophisticated data processing pipeline. By reducing the task complexity, we
could train our model solely on synthetic data. The deployed solution achieved
to pick 76% of otherwise discarded objects in a real-world process.

Grasping Partially Occluded Objects Using AEPCI 233

We see many opportunities for facilitating well-established applications in
manufacturing environments using ML to handle cases they currently fall short.
At the same time, one could still rely on the tested performance of the established
methods in those cases where they already work reliably.

Acknowledgements. We would like to thank Robert Schmeisser, Harald Funk, and
all associated colleagues for making the project possible. We are especially grateful to
them for setting up the simulation and helping deploy the solution on a real machine.

References

1. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM. 18(9), 509–517 (1975). https://doi.org/10.1145/361002.361007

2. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis-a survey.
IEEE Trans. Rob. 30(2), 289–309 (2013)

3. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-
based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004).
https://doi.org/10.1109/TIP.2004.833105

4. Dantanarayana, H.G., Huntley, J.M.: Object recognition and localization from 3D
point clouds by maximum-likelihood estimation. R. Soc. Open Sci. 4(8), 160693
(2017). https://doi.org/10.1098/rsos.160693

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, pp. 226–231.
KDD 1996, AAAI Press, Portland, Oregon (1996)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, vol. 27 (2014)

8. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image com-
pletion. ACM Trans. Graph. 36(4), 1–14 (2017). https://doi.org/10.1145/3072959.
3073659

9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

10. Li, Y., Saut, J.P., Cortés, J., Siméon, T., Sidobre, D.: Finding enveloping grasps
by matching continuous surfaces. In: 2011 IEEE International Conference on
Robotics and Automation, pp. 2825–2830 (2011). https://doi.org/10.1109/ICRA.
2011.5979614

11. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image
inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 6

12. Mahler, J., et al.: Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312 (2017)

https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/TIP.2004.833105
https://doi.org/10.1098/rsos.160693
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/3072959.3073659
https://doi.org/10.1145/3072959.3073659
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/ICRA.2011.5979614
https://doi.org/10.1109/ICRA.2011.5979614
https://doi.org/10.1007/978-3-030-01252-6_6
http://arxiv.org/abs/1703.09312

234 A. Koebler et al.

13. Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-net 3.0: Com-
puting robust vacuum suction grasp targets in point clouds using a new analytic
model and deep learning. In: 2018 IEEE International Conference on robotics and
automation (ICRA), pp. 5620–5627. IEEE (2018)

14. Mandikal, P., Radhakrishnan, V.B.: Dense 3d point cloud reconstruction using
a deep pyramid network. In: 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1052–1060. IEEE (2019)

15. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.
4310076

16. Papazov, C., Burschka, D.: An efficient RANSAC for 3D object recognition in
noisy and occluded scenes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV
2010. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19315-6 11

17. Papazov, C., Haddadin, S., Parusel, S., Krieger, K., Burschka, D.: Rigid 3d geom-
etry matching for grasping of known objects in cluttered scenes. The International
Journal of Robotics Research 31(4), 538–553 (2012)

18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 652–660 (2017)

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

20. Schoenemann, P.H.: A generalized solution of the orthogonal procrustes problem.
Psychometrika 31(1), 1–10 (1966). https://doi.org/10.1007/BF02289451

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

23. Thalhammer, S., Patten, T., Vincze, M.: SyDPose: object detection and pose esti-
mation in cluttered real-world depth images trained using only synthetic data. In:
2019 International Conference on 3D Vision (3DV), pp. 106–115 (2019). https://
doi.org/10.1109/3DV.2019.00021

24. Vo, H.V., Duong, N.Q.K., Pérez, P.: Structural inpainting. In: Proceedings of the
26th ACM International Conference on Multimedia. ACM, October 2018. https://
doi.org/10.1145/3240508.3240678

25. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612
(2004). https://doi.org/10.1109/TIP.2003.819861

26. Xie, J., Xu, Y., Zheng, Z., Zhu, S.C., Wu, Y.N.: Generative pointnet: deep energy-
based learning on unordered point sets for 3d generation, reconstruction and clas-
sification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14976–14985 (2021)

27. Yakubovskiy, P.: Segmentation models (2019). https://github.com/qubvel/
segmentation models

28. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 4471–4480 (2019)

https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1007/978-3-642-19315-6_11
https://doi.org/10.1007/978-3-642-19315-6_11
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/BF02289451
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/3DV.2019.00021
https://doi.org/10.1109/3DV.2019.00021
https://doi.org/10.1145/3240508.3240678
https://doi.org/10.1145/3240508.3240678
https://doi.org/10.1109/TIP.2003.819861
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

Grasping Partially Occluded Objects Using AEPCI 235

29. Yu, Y., Cao, Z., Liang, S., Geng, W., Yu, J.: A novel vision-based grasping method
under occlusion for manipulating robotic system. IEEE Sens. J. 20(18), 10996–
11006 (2020). https://doi.org/10.1109/JSEN.2020.2995395

30. Zhao, Y., Xie, J., Qian, J., Yang, J.: PUI-net: a point cloud upsampling and inpaint-
ing network. In: PRCV (2020)

https://doi.org/10.1109/JSEN.2020.2995395

Is This Bug Severe? A Text-Cum-Graph
Based Model for Bug Severity Prediction

Rima Hazra(B), Arpit Dwivedi, and Animesh Mukherjee

Indian Institute of Technology Kharagpur, Kharagpur, India
{to rima,arpitdwivedi}@iitkgp.ac.in,

animeshm@cse.iitkgp.ac.in

Abstract. Repositories of large software systems have become common-
place. This massive expansion has resulted in the emergence of various
problems in these software platforms including identification of (i) bug-
prone packages, (ii) critical bugs, and (iii) severity of bugs. One of the
important goals would be to mine these bugs and recommend them to
the developers to resolve them. The first step to this is that one has to
accurately detect the extent of severity of the bugs. In this paper, we
take up this task of predicting the severity of bugs in the near future.
Contextualized neural models built on the text description of a bug and
the user comments about the bug help to achieve reasonably good per-
formance. Further information on how the bugs are related to each other
in terms of the ways they affect packages can be summarised in the form
of a graph and used along with the text to get additional benefits.

1 Introduction

Large software systems have become increasingly commonplace. As these repos-
itories grow, they become more and more complex. Malfunctions (aka bugs) in
such systems need to be tackled in a timely fashion. Such bugs can be reported
by the end-users (who are using the service), the developers or the testers. Since
these bugs need to be attended in a pipelined fashion, an important step is to
understand and prioritize the bug reports as per their severity. For instance, the
security related bug reports should possibly get more priority than any other
types of reports. Here, the term “severity” corresponds to the important bugs.
The importance can be of security, privacy, affecting users etc. Though the actual
definition of “severity” and “priority” from a business perspective is different,
the term “severity” has been used here to represent the critical bugs. Since the
number of bugs in a large software system could be in millions, it is difficult for
the developers to manually go through the list of bug reports and identify the
most important bug from that list. Not only is this a very tedious task but also
is prone to mistakes. Thus automatic methods to predict the severity of a bug
is very crucial. Such models can predict the bugs that are going to soon become
severe based on certain early indicators like the description and the comments
about the bug plus the number of packages that it already affects.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 236–252, 2023.
https://doi.org/10.1007/978-3-031-26422-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_15

Is This Bug Severe? A Text-Cum-Graph Based Model 237

Bug severity prediction is a task of predicting the severity/impact of
each bug from a huge list of bugs. Bug severity prediction task has been per-
formed on many software platforms such as mozilla1, eclipse2, GCC3 etc. by past
researchers [1–4]. Most earlier models for bug severity detection assumes it to be
a classification problem whereby the task is to predict one of the severity states
– critical, major, normal, minor, trivial, enhancement. None of the datasets con-
tains actual parameter based scores of the bugs. The other issue is that none of
these models leverage the usefulness of both text and graph information jointly.
Even while the state of a bug is predicted by earlier models, there might still
be many bugs that need to be manually sorted within each class. Hence in this
paper, we present a regression model that generates the rank of each bug in the
list, allowing the developers to set their priorities accurately. To this purpose,
we curate a new dataset consisting of bugs mapped to the Ubuntu packages
that affect those packages over time. This new dataset allows us to perform the
experiments in the regression setup. Further, unlike earlier models, we use sophis-
ticated neural architectures that suitably blend text and graph information to
harvest the benefits from both of these information sources.

Our Contributions and Results —

A New Dataset: We curate a new dataset4 consisting of ∼280K bugs along
with their meta data (e.g., the textual description of the bug, etc.). Further the
ground-truth severity scores of these bugs have been collected in two different
time points to facilitate the prediction experiments. In addition, we have also
curated the list of packages affected by these bugs over time.

Bug Severity Prediction: As noted earlier we perform the experiments in
the regression setup. In particular, we develop different neural models based on
the text obtained from the bug description and user/developer/maintainer com-
ments. We also use graph information in the form of how the bugs are related
to each other in terms of the packages they co-affect. This is one of the most
unique points of our approach. Of particular interest is the observation that
the use of the text-cum-graph based models outperform the text based models
in low training data settings. A summary of the key results are as follows –
with 70% training data the most competing text based method Sbert outper-
forms the text-cum-graph based methods like Gat and Gcn. However, in this
setting GraphSage performs the best. For the low data setting (≤ 25% train-
ing data), the text-cum-graph based models largely outperform the purely text
based models. Notably, for 5% training data, while Sbert achieves an MAE,
MSE and MAPE of 1.178, 2.268 and 0.1778 respectively while Gat reports an
MAE, MSE and MAPE of 0.849, 1.415 and 0.1101 respectively.

1 https://bugzilla.mozilla.org/home.
2 https://bugs.eclipse.org/bugs/.
3 https://gcc.gnu.org/bugzilla/.
4 https://doi.org/10.5281/zenodo.5554974.

https://bugzilla.mozilla.org/home
https://bugs.eclipse.org/bugs/
https://gcc.gnu.org/bugzilla/
https://doi.org/10.5281/zenodo.5554974

238 R. Hazra et al.

2 Related Work

Due to the large-scale of software project, many significant problems require auto-
mated systems. Some of the major problems of large-scale software systems include
identifying high impact bugs (security bug reports), recommending appropriate
developers to packages (/modules), identifying bug-prone packages, retrieving
duplicate bugs, predicting high priority bugs, predicting severe bugs. Most of these
problems were/are handled manually by developers/maintainers in the past, but
as the data increases, the automated system is the need of the hour. Some of these
problems have been studied for a long time. Researchers have used various meta-
data, textual information, underlying graph structures to build systems that can
solve certain problems. There are very few datasets available for each of the prob-
lems. In this section, first, we will discuss the datasets available, then we briefly
discuss the various earlier proposed methods into two parts – text based methods
and graph based methods. For high impact bug reports (security bug prediction),
there are four datasets – Ambari, Camel, Derby, and Wicket had been first manu-
ally labelled by [5] and then further relabelled (only mislabelled data) by [6,7]. Two
large scale projects – Chromium, and OpenStack datasets5 were constructed by
Wu et al. [6]. In [2], the authors collected bug reports and their severity levels from
GCC, OpenOffice, Eclipse, NetBeans, and Mozilla for bug severity prediction. For
predicting the severity of bug reports, Ramay et al. [8] used the bug reports of seven
open-source products – Platform, CDT, JDT, Core, Firefox, Thunderbird, and
Bugzilla from the repository created by [9]. So, the datasets available for severity
prediction are mostly around these open-source projects, and the severity has only
the label but not the scores. For most of the problems [3,4,7], researchers have used
textual information such as title, descriptions to solve problems like bug severity
prediction. In different papers [3,7,8], authors have used TF-IDF, word2vec [10],
glove embeddings, doc2vec, BM25 to represent the text. The bug severity predic-
tion is tackled as a classification problem in earlier works [3,4,11]. Authors have
used various classification algorithms like SVM, logistic regression, random forest
and XGboost to solve the problem. These studies have been performed on differ-
ent platforms like Mozilla, eclipse, GCC etc. In [2], the authors proposed a method
based on logistic regression to predict the severity of bugs. They used data from
all the above three platforms for their experiments. Ramay et al. [8] proposed a
deep learning approach to predict the severity of software bugs based on the text
present in the bug report. Umer et al. [1] proposed an emotion-based approach to
predict the priority of bug reports. There is very little research on the utility of
graphs in the software domain to solve major software system problems. In [12],
the authors studied in detail the problemof bug urgency ranking anddeveloper rec-
ommendation with the help of underlying graph structures. The authors curated
a dataset from the Ubuntu platform for their experiments and developed various
machine learning models for the ranking and recommendation problems. Our work
is unique in two different ways. The first and possibly simple point of difference
is that we formulate the problem in a regression setup and curate a new dataset

5 https://github.com/wuxiaoxue/cve-assisted.

https://github.com/wuxiaoxue/cve-assisted

Is This Bug Severe? A Text-Cum-Graph Based Model 239

Table 1. Released metadata of a bug.

Field Information

Bug Id 1663552

Reported On mysql-5.7

Description Hi, on one of our servers we noticed that under certain conditions
mysql-server can be caused to go berserk, i.e. run with 400% CPU load,
spit out extrem tons of log messages and denial it’s work completely when
contacted by a client, that is not (!) authorized to connect...

Comments [2017-02-10 20:37:45 UTC] Thanks for the bug user; I’m marking this
public so that administrators can more quickly learn that using tcpwrappers
for access control has the potential ...
[2017-03-06 11:19:44 UTC] user, could you report the package version
number of mysql-5.7 in which you are seeing this please? ...
[2017-03-06 23:22:02 UTC] user, I did not keep the virtual machine.
On a host where the problem occured first we have ...

Affected packages [10-02-2017]mysql-5.7

[30-03-2017] mysql server

Bug heat score 16

for this purpose. The second and the most unique point is that we propose a novel
graph formulation of the problem that allows us to do reasonably good predictions
even when very low training data points are available.

3 Dataset

We collect ∼280K bug reports related to Ubuntu repositories reported within
the time span of 2004 to 2019. These bug reports are collected from the launch-
pad6 bug tracking system. Each bug page consists of various meta information
such as the title, the description, the name of the bug reporter, reporting times-
tamp, comments with timestamp, activity log7, packages affected by the bug
with timestamp and the bug heat8 (or severity). Bug description consists of tex-
tual information written by the bug reporter. Given a bug, activity log keeps
track of each and every activity that are made on the bug. ‘Affected’ packages
are the packages that were affected by the given bug at a given time point. The
bug heat is the accumulated score based on factors like privacy issue, security
issue, duplicate nature, affected users and subscribers. This bug heat score is a
representative of the severity/urgency of a bug. The bug heat calculation score
is given in Table 2. An example of a bug entry is given in Table 1.

High bug heat represents a more severe bug. In our experiment, we have
considered only those bugs which have at least one comment. We have collected
the bug heat of the bugs at two different time points – in November 2019 and

6 https://launchpad.net/.
7 https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1945590/+activity.
8 https://bugs.launchpad.net/+help-bugs/bug-heat.html.

https://launchpad.net/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1945590/+activity
https://bugs.launchpad.net/+help-bugs/bug-heat.html

240 R. Hazra et al.

Table 2. Bug heat score calculation strategy

Attribute Calculation

Private Adds 150 points

Security issue Adds 250 points

Duplicates 6 points per duplicate bug

Affected users 4 points per affected user

Subscribers(a) 2 points per subscriber

(a) (incl. subscribers to duplicates)

Table 3. Dataset statistics.

Basic information Count

Total number of bugs 273,544

Average number of comments 5.241

Average number of words in description 80.93

Maximum number of words in description 4967

Average number of words in comments 10.959

Maximum number of words in comments 436

Average number of affected packages 1.28

again in November 2020. Table 3 notes the basic statistics of the data collected.
In Fig. 3, we show the distribution of bugs having a particular bug heat value.
The distribution is highly skewed with most bugs having low severity and a few
bugs with very high severity.

Bug-Package Network: From our dataset, we can conceive a bipartite network
where one set contains the list of bugs (B) and the other set contains the list of
packages (P). A bug b ∈ B can have a directed edge to a package p ∈ P if the bug
b affects the package p. An example of such a bipartite network shown in Fig. 1.
Given a bug, affected packages are added typically along with a timestamp.
However, in a few cases, this timestamp is not available. In such cases we replace
the unavailable timestamp with the time of the bug creation assuming that the
package is being affected since the creation of the bug report.

Degree Distribution: In Fig. 4, we illustrate the distribution of bugs affecting the
different number of packages while in Fig. 5 we show the distribution of pack-
ages affected by the different number of bugs. Both these distributions exhibit a
scale-free behaviour.

Bug-Bug Network: From the bug-package bipartite network we construct an
one-mode projection, i.e., a bug-bug network where B is the set of nodes in
this network and two nodes bi and bj are connected if they co-affect a package.
Figure 2 shows the corresponding of bug-bug network constructed from Fig. 1.

Is This Bug Severe? A Text-Cum-Graph Based Model 241

45702 64371 1022921 1566870 1298939

mono banshee rhythmbox

Fig. 1. Bipartite network between set of bugs
and set of packages. B ={45702, 64371, 1022921,
1566870 and 1298939}. P ={‘mono’, ‘banshee’,
‘rhythmbox’} are the affected packages.

45702

643711022921

1566870

1298939

Fig. 2. Bug-bug network.

Fig. 3. Distribution of
bugs having a specific
bug heat.

Fig. 4. Distribution of
bugs affecting a given
number of packages.

Fig. 5. Distribution of
packages affected by a
given number of bugs.

For instance, in this figure bug 45702 and 64371 are connected because both of
them affect the same package ‘mono’. We shall use the information from this
network for all our learning algorithms in the subsequent sections.
To understand how the bug-bug network structure is correlated with the bug
heat ranks, we analyze a few known network properties of 100 top and bottom-
ranked bugs based on bug heat rank. First, we compute three node centric mea-
sures: degree centrality, clustering coefficient, and PageRank. We have chosen
these measures because they will give us an idea of the neighbourhood quality
(i.e., how dense it is and how many neighbours a node has). Given a node cen-
trality measure, we rerank the bugs based on these measures and compute the
Spearman’s rank correlation with the actual 100 top-ranked and bottom-ranked
bugs based on bug heat. In Fig. 6, we plot the correlation values for the top 100
and bottom 100 bugs for all three measures. In all cases we observe that the top
ranked bugs are more strongly correlated with the network properties. This gives
us the first indication that it is important to leverage the network structure in
order to efficiently perform bug severity prediction.

4 Bug Severity Prediction

Given a set of bugs (B), our objective is to predict their ranks based on the bug
heat score. In particular, as is usual in a regression setup we are interested to

242 R. Hazra et al.

Fig. 6. (a) Spearman’s rank correlation between the (a) degree centrality, (b) clustering
coefficient and (c) PageRank and bug heat ranks for top 100 ranked bugs and bottom
100 ranked bugs based on bug heat.

predict the log(rank(bug-heat)). We do not directly predict the bug heat since
the distribution is very skewed (see Fig. 3). To begin with every bug is encoded
as a combination of the text description and the user comments. Often, the
description of the bug contains additional information like stack traces, code
fragments email ids and urls. We remove these pieces of information using some
simple heuristics.

Text Based Approach: In case of text based approach, we primarily use the
textual description and the user comments for a bug for the purpose of prediction.

Doc2Vec: Doc2Vec [13] algorithm is used to generate representation for a doc-
ument. It follows the same architecture as word2vec [10] along with a new vec-
tor called paragraph id. This paragraph id is used to represent each document
uniquely. While training, along with the word vectors, a document vector is also
trained and at the end it generates the representation of documents. We train the
doc2vec [13] model on our corpus. We construct 100 dimension embeddings for
the descriptions and the comments separately. Finally, a bug is a concatenation
of these two vectors. This is passed through an Mlp to obtain the regression
scores. The Mlp has one hidden layer followed by the output layer and the
activation function is RelU.

SBERT: SBERT [14] has the BERT [15] like architecture which can capture
better semantics in the sentence. It is the fine tuned BERT sentence embedding
model which can correctly capture the the semantic textual similarity (STS)
between a pair of sentences. We use the pretrained sentence BERT [14] model
(Sbert) to generate embeddings. For each bug, we pass the preprocessed descrip-
tion text and the comment text through the model and obtain separate embed-
dings for each of these. We then concatenate these two embeddings and pass it
through the same Mlp model discussed earlier to obtain the regression scores.

Graph Based Approaches:

GAT: Graph attention network (GAT) [16] algorithm can again be used for node
classification where the input features are linearly transformed to some output

Is This Bug Severe? A Text-Cum-Graph Based Model 243

features which is further followed by a self-attention layer on the nodes. This
self-attention mechanism captures the importance of one node on another. For
our purpose once again the bug-bug network is used as the input graph and each
node is initially encoded as a concatenated vector of the Sbert representations
of the bug description and the comments. Finally, the regression scores are once
again obtained using a linear layer and a RelU activation. Here again the model
is only shown the labels of the training nodes.

GCN: Graph convoluation network (Gcn) [17] is a transductive method for
node classification. For our purpose we have used the bug-bug network as the
input graph. To begin with each node is featurised as a concatenation of the
Sbert representations of the description and the comments. Finally, as earlier,
to obtain the regression scores, we pass the output features of the GCN layer to
a linear layer with RelU activation. Like before, we show the model only the
labels of the training nodes.

GRAPHSAGE: GraphSage [18] is a graph based algorithm for classifying
nodes. In this method, neighbourhood aggregation has been done using uniformly
sampled neighbours and aggregating their features. In our case we use the bug-
bug network and feed it to GraphSage. The initial representation of every bug
(read node) is a concatenated vector of the Sbert embeddings of the description
and the comments. For the purpose of training we provide the label of the nodes
(i.e., their log(rank(bug-heat)) that are part of the training set only (we shall
discuss more about this in the following section on experimental setup). We
obtain the final predictions using a linear layer with RelU activation.

5 Experiments and Results

Experimental Setup

Training: In order to train the models, we consider all the bugs that have been
posted in between January 2017–June 2017. We have considered only the bugs
which has at least one comment. This results in a total of 5835 bugs. Given a
bug in this time period, all comments posted about the bug in between January
2017–June 2018 are considered to compute the comment based embedding. This
ensures that each bug has at least one year span of comments for the computation
of the features. The ground truth bug heat scores that we use have been crawled
in November 2019. Out of the 5835 bugs obtained, we use different training set
sizes for our experiments ranging from 70% to 5%. The rest of the data is used
for validation in each case. For each of the training and the validation sets the
bugs selected are re-ranked within that set based on their heat scores.

Evaluation: In the test set, we consider all the bugs posted in between July
2018–December 2018. Comments have been considered if it is posted in between
July 2018–December 2019. This results in a total of 5302 bugs. Also, we have
considered only the bugs which has at least one comment. Once again this ensures

244 R. Hazra et al.

that each bug has one year of commenting time. Here, we use ground truth bug
heat scores crawled in November 2020. The bugs in the test data are ranked
based on these scores. We used the same test data across all the methods.

Graph Setup: While building the graph, we have considered only those packages
which were reported to be affected in time periods reported above. The graph
setup is transductive, i.e., we consider all the bugs in the training and the test
data to construct the graph. Thus the graph consists of around 11137 nodes and
∼ 1205682 edges. However, the model is made to observe the ground truth ranks
of the nodes present in the training data only. The ground truth ranks for all
the other nodes are hidden from the model.

Evaluation Metrics: In our experiments, we use three standard metrics to evalu-
ate all our models. These are MAE (mean absolute error), MSE (mean squared
error) and MAPE (mean average percentage error). Mean absolute error (MAE)
is calculated as the average of absolute difference between the true scores and
the predicted scores. Mean squared error (MSE) is calculated as the average of
the squared differences between true scores and predicted scores. Mean average
percentage error (MAPE) is calculated as the average of the absolute difference
between ground truth and predicted values expressed as a percentage of the
ground-truth value.

Hyperparameters – Text Based Approaches: In text based approaches,
we have run the models on 70% training data. Further, we choose the text based
model which performs best among all the text based models and compare it with
the graph based models.

Doc2Vec: In our experiment, the input feature is a concatenation of the 100
dimensional vector representations of the description and the comments. The
hyperparameters of the Mlp for the regression task are set as follows. The learn-
ing rate, α are set to 5e− 4, 1e− 5 respectively. The batch size and weight decay
are set to 64 and 0.01 respectively. The number of neurons in hidden layer is 128
unit. We run the model for 20 epochs and saved the model where the current
validation loss is better than the current best validation loss.

SBERT: Here, we have used the pretrained Sbert model called ‘paraphrase-
mpnet-base-v2’. We have generated the embeddings for the description and com-
ments of each bug separately. The dimension for each embedding is 768. The two
embeddings are then concatenated to construct the feature. For 70% setup, the
Mlp learning rate, α, batch size and weight decay are set to 5e − 3, 2e − 5, 64
and 0.3 respectively. We have used one hidden layer with 1024 unit neurons and
one output layer. For both the layers, we used RelU activation function. We
observed that Sbert performs better than Doc2Vec (see Sect. 5). We therefore
use Sbert as the competing text-based baseline. Therefore we had to carry out
experiments on Sbert for other training data setup (50%–5%). We use grid
search to obtain the best parameter for the different training setups. For a 50%
training setup, the learning rate is 1e − 3. The weight decay and α remains the
same as that of the 70% training setup. The hidden layer and batch size remains

Is This Bug Severe? A Text-Cum-Graph Based Model 245

the same for all the setups, i.e., 1024, 2e − 5, and 64 respectively. The α value
of 50% and 5% setups is the same as 70% setup. For 25% and 10% setups, the
α value is 1e − 5. In the 25% and 5% training data setup, the learning rate is
4e−3. In the 50% and 10% training data setup, the learning rate is set to 1e−3.
For 25%, 10% and 5%, the value of weight decay is 0.01. The weight decay value
for the 50% setup is the same as the 70% setup.

Table 4. Results from the text based models for 70% training setup. Best results are
marked in boldface.

Methods Text based

MAE MSE MAPE

Doc2Vec 7.585 58.503 3.42e − 16

Sbert 1.081 1.56 0.1649

Results from Text Based Approaches: The key results obtained from the
text-based models are noted in Table 4. The results show that the Sbert based
model outperforms the other models. Hence we have used this model to compare
the different graph-based approaches in the next section. The results of 50%–5%
data setup for the Sbert model are presented in Table 5.

Hyperparameters – Graph Based Approaches: In our graph based
approaches, we perform the experiments for different proportions of training
data: 70%, 50%, 25%, 10%, 5%. In each case, the rest of the data is used for
validation.

GAT: In this experiment, we use Adam optimizer, MAE, as the loss function
and patience of early stopping at 15 in all the setups. We use grid search again
to obtain the best parameters. For 70% and 5% setup, the attention head size
is 32. For 25% and 10%, the size of the attention head is 64. In the case of
50% setup, the attention head size remains 16. For 70%, 50% and 5% training
data, the Gat layer sizes are 32, 16 and 32 respectively, and for other setups,
it remains at 64. The best learning rate for 70%, 25% and 10% training data
setup are 0.01. The best learning rate for 50% and 5% training data is 0.015,
respectively. The parameter in dropout is 0.5 for 50% and 25% training setup,
respectively. For 70%, 10% and 5% training data, the in dropouts are 0.9, 0.85
and 0.6 respectively. The attention dropout parameter is 0.1 for 10% training
setup. For other setups, it is 0.3. For all the setups, the activation function used
in Gat layer is elU.

GCN: For all the setup, we have used Adam optimizer, MAE as loss function,
patience is 15 for early stopping and elU activation for Gcn layer. We use grid
search to obtain the best parameters. For 70%, 25% and 5% setup, we have
set the learning rate at 0.01. For 50% and 10% setup, the learning rate is set
to 0.015 and 0.008, respectively. For all the setup except 5% setup, Gcn layer

246 R. Hazra et al.

size is kept at 64. For the 5% setup, the Gcn layer size is 32. For 70% and 5%
training setup, the dropout value is set at 0.85. For 25% and 10% training setup,
the dropout is set to 0.8. For 50% setup, the dropout is 0.9.

GRAPHSAGE: For all the setup, we use Adam optimizer, MAE as loss func-
tion and the early stopping patience at 15. Activation function used in Graph-

Sage layer is elU. In the last layer, we have used RelU activation function,
and bias is set to true. The batch size is set to 64. For each training proportion,
we use grid search to obtain the best parameter setting. For 70% setup, the size
of the GraphSage layer is 64, and for other setups, the size of the Graph-

Sage layer is 128. For 70% and 10%, the learning rate is 1e − 2. For 50%, 25%
and 5%, the learning rate is 15e−3. For 70% and 5% setup, the number of nodes
sampled in each GraphSage layer is 5. For 50%, 25% and 10% setup, the num-
ber of nodes sampled in GraphSage layer is 6. For 50% setup, the dropout in
GraphSage layer are 0.6 and for other setups the dropout in GraphSage layer
is 0.9.

Table 5. Results of the bug severity prediction using graph based methods. For each
node the initial feature is a concatenation of the Sbert embeddings of the description
and the comments. The best results are indicated in boldface and second best are
underlined.

Training data Text based Graph based

Sbert Gat Gcn GraphSage

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

70% 1.081 1.56 0.1649 1.151 1.722 0.1736 1.183 1.83 0.1804 1.148 1.796 0.1752

50% 0.908 1.19 0.1334 0.812 0.998 0.1131 0.831 1.038 0.1165 0.795 0.94 0.1129

25% 1.069 1.688 0.1622 0.757 1.11 0.1007 0.833 1.256 0.1148 1.062 1.436 0.1569

10% 1.282 2.565 0.2070 0.812 1.124 0.1096 1.034 1.885 0.1461 1.756 3.658 0.3001

5% 1.178 2.268 0.1778 0.849 1.415 0.1101 1.089 2.09 0.1532 2.242 5.721 0.4213

Results from Graph Dased Approaches: Table 5 summarises the main
results of this section. We observe that for larger training data setup (70% and
50%), the text based model performs better than Gcn and Gat. However, in
this setting GraphSage performs the second best in terms of all the evalua-
tion metrics. For the low training data setup (5%–25%), the graph based models
Gcn and Gat outperform the text based model. In fact, in this setup, Gat per-
forms the best in terms of all the evaluation metrics. This shows that enabling
self-attention on the neighbourhood of a bug in the bug-bug network could be
very beneficial for predicting bug severity when the number of training data
points are severely low.

6 Ablation Study

In our experiments, we have used a concatenation of representations of both the
description and the comments. This section investigates the importance of each of

Is This Bug Severe? A Text-Cum-Graph Based Model 247

these separately for the text and graph-based methods. The results obtained by
using only the description are reported in Table 6. The results for both the text-
based and graph-based models obtained using only the comments are reported
in Table 7.

Only Description: We execute the text-based model (Sbert) and graph-based
models (Gat , Gcn , GraphSage) on only the description feature. In both
types of models, we have used the text of the description as a feature. Further,
we compute the results for all the training data setups (70%–5%). We wanted to
observe whether one can obtain the additional support from graph information
even if (s)he uses only one feature (i.e., description in this case).

Observations: Out of all the setups, Sbert has performed slightly better than
one of the graph-based models in the 70% setup. However, as the training
data reduces, the performance of Sbert drops. For the 50% setup, Graph-

Sage model outperforms the other models, and Gat is the second best. How-
ever, the MAE score difference between the best model (GraphSage) and
the Sbert is negligible (∼0.09). For 25% setup, GraphSage is again the
top performer and Gat is the second best. The difference in MAE scores of
Sbert and GraphSage models now are pretty large (∼0.27). For the 10%
setup, Gat model performs better than other models. The MAE score differ-
ence between Sbert and Gat is as large as 0.38. For 5% setup, once again
Gat performs better than other models. Here the second-best model is Gcn.
It is visible that if the training data is reduced, then the text-based model does
not perform well as was also observed in our original results (see Table 5). Nev-
ertheless, the additional graph structure helps the model to predict better in a
low training data setup.

Table 6. Ablation study: MAE, MSE and RMSE values are reported to compare
best text based methods with different graph based methods. Only description of the
bugs are used to generate the embedding.

Training data Text based Graph based

Sbert Gat Gcn GraphSage

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

70% 1.035 1.474 0.1530 1.152 1.735 0.1738 1.194 1.931 0.1841 1.093 1.629 0.1635

50% 0.905 1.205 0.1294 0.821 1.03 0.114 0.85 1.081 0.1193 0.812 1.019 0.1125

25% 0.987 1.555 0.144 0.784 1.119 0.1049 0.934 1.465 0.1341 0.717 0.954 0.0949

10% 1.275 2.458 0.2082 0.892 1.607 0.1164 1.067 2.026 0.154 1.677 3.286 0.2782

5% 1.183 2.401 0.1731 0.87 1.54 0.1153 1.057 2.004 0.1531 2.213 5.566 0.412

248 R. Hazra et al.

Table 7. Ablation study: MAE, MSE and RMSE values are reported to compare
best text based methods with different graph based methods. Only comments of the
bugs are used to generate the embedding.

Training data Text based Graph based

Sbert Gat Gcn GraphSage

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

70% 0.958 1.298 0.1414 1.103 1.621 0.1651 1.195 1.89 0.1838 1.107 1.66 0.1660

50% 0.908 1.196 0.1337 0.802 0.984 0.1109 0.806 0.996 0.112 0.782 0.925 0.1113

25% 1.018 1.677 0.1537 0.743 1.044 0.0984 0.871 1.334 0.1226 1.081 1.489 0.1603

10% 1.431 3.35 0.2348 0.924 1.322 0.1305 1.122 2.128 0.1682 1.724 3.518 0.2916

5% 1.485 3.601 0.2618 1.004 1.809 0.1420 1.171 2.244 0.1794 2.205 5.531 0.4099

Only Comments: Here we carry out the experiments using only one feature,
i.e., comments. Once again the idea is to verify whether the graph structure
is useful even when one of the feature types are available. We have taken the
texts of the comments in this experiment. We ran the experiments for all the
text-based and graph-based models. We perform these experiments for all the
training setups (70%-5% training data).

Observations: For 70% training setup, like in the previous experiment (Sub-
sect. 6), Sbert is performing well than other graph-based models. But the
MAE score difference between the Sbert and best performing graph model
(Gat) is quite less (∼0.145). For the 50% training setup, all the three graph
models are performing better than the Sbert model. Out of three graph models,
GraphSage performed best (MAE 0.782), and Sbertis performs the worst
(MAE 0.908). For the 25% setup, the Gat model outperforms other mod-
els, and the MAE difference between the Sbertand Gatmodel is quite high
(∼0.275). Here, the GraphSage performs the worst, and Sbert performs
better than the GraphSagemodel. For 10% setup, again Gat model tops the
list and Gcn comes as second best. For 5% setup, Gat outperforms other mod-
els, and Gcn is the second in the list. Overall once again we observe that the
graph structure is always helpful whatever be the text feature especially in the
low data setting.

Table 8. Outcomes of the error analysis. Results are only shown for the low data setup
to investigate the importance of the graph neighborhood.

Training data ΔGat < ΔSbert ΔGat < ΔSbert #nodes in training

(has neighbor in training)

25% 3485 (65.72%) 2609 (74.86%) 1458

10% 3712 (70.01%) 2359 (63.55%) 583

5% 3324 (62.69%) 1998 (60.10%) 291

Is This Bug Severe? A Text-Cum-Graph Based Model 249

7 Error Analysis

In this section, we will test our models for various cases and identify which models
fail when and why. First, we shall test the importance of the graph structure.
Second, we shall study some cases where Sbert fails, but Gat wins and vice
versa. From the description+comments results, we observe that for low data, the
GraphSage performs poorer than Gat (best) model. Hence we shall consider
some use cases to analyze this fact first.

Testing the Importance of Graph Structure: We perform error analysis for
low training data setup (5%–25%) to understand the importance of the graph
structure. Among all the models, Gat performs better for low training data
setup. In order to carry out the analysis, given a model, we first calculate the
absolute difference (i.e., Δ) between the predicted rank and the true rank of
the bugs. Further, we compute the number of bugs where absolute difference
(ΔGat) in Gat is lesser (i.e., better) than (ΔSbert) in Sbert. The results
of this analysis are summarised in Table 8. As we can observe, for 5% data, in
62.69% of test cases, ΔGat < ΔSbert. Out of these, 60.10% of the test bugs
have a neighbor in the bug-bug network that was part of the training node of
Gat. Similar results hold for the other cases. This shows that the graph structure
indeed helps in improving the predicted ranks in low data settings.

Usecase: Gat Wins Sbert Fails: In Table 9, we present a few example test
bugs where the Gat model predicts a better rank value than the Sbert model.
For this analysis, we use the prediction value from the models trained with 5%
training data. We have chosen 5% training data because, especially for low data,
the graph-based method outperforms the text-based model. For each of the test
bugs, we calculate the number of neighbours present in training set. We observe
that in case of test bugs with a large number of neighbours in the training set
for Gat predicts nearer ranks to the ground truth rank compared to Sbert . In
these examples, most of the test bugs have 27–29 neighbouring nodes in training
data (note: the total number of nodes in training data is 291).

Table 9. Few test examples where the Gat model predicts a nearer value to the
true rank compared to Sbert. In all these cases the instances have a lot of neighbors
present in training data.

Bug Id True rank Prediction Prediction Gat ΔSbert ΔGat #neighbors

Sbert (in training)

1799406 7.669 8.450 8.050 0.780 0.380 29

1792783 7.920 5.804 8.048 2.116 0.128 28

1798690 7.920 6.086 8.251 1.833 0.330 28

1788045 8.338 7.354 8.252 0.983 0.085 27

Usecase: Sbert Wins Gat Fails: Converse to the data points in the previous
section, here we find that there are a set of test points for which Gat fails even

250 R. Hazra et al.

in the low (i.e., 5%) training data setup, i.e., the ranks predicted by Gat are
further from the ground truth compared to Sbert. In all these cases we observe
that the number of nodes in the training set for each of these test points is 0 (see
Table 10). The absence of neighbours of these points in the training set does not
allow the Gat model to take the advantage of the graph structure and hence
the worse rank.

Table 10. Few test examples where the Sbert model predicts a nearer value to the
true rank compared to Gat. In all these cases the instances have 0 neighbors present
in training data.

Bug Id True rank Prediction Prediction Gat ΔSbert ΔGat #neighbors

Sbert (in training)

1797179 7.397 8.332 9.005 0.934 1.607 0

1788706 6.772 7.881 8.511 1.108 1.738 0

1810154 6.050 7.127 7.759 1.076 1.708 0

1791333 8.338 8.556 7.509 0.218 0.828 0

Usecase: Gat Wins GraphSage Fails: In Table 11, we list a few test cases
where the Gat wins but GraphSage fails for low data setup (5%). We list those
cases where there is a sufficient number of neighbours in training data, but still,
the performance of GraphSage is poor. The ΔGat is much lesser than the
ΔGraphSage for all the cases. We pick up every instance and try to understand
the 1.5 hop neighbourhood structure. We focus on those neighbours specifically
who are present in the training set. So, for each test bug (say the anchor node), we
build a 1.5 neighbourhood (taking only those neighbours which are present in the
training data) graph. 1.5 neighbourhood graph contains the anchor node and its
neighbours and connection among themselves (i.e., anchor to neighbours as well
as among neighbours). We observe that the degree centrality of the neighbours
vary. Thus one can hypothesize that all the neighbours (present in training set)
are not equally important for the prediction of the rank of the anchor node.
In the Gat architecture, the model provides different attention coefficients to
different neighbours of each anchor node to compute the representation of the
node. Also, the feature aggregation has been done based on the importance

Table 11. Test examples where the Gat model predicts ranks closer to the ground
truth compared to the GraphSage model.

Bug Id True rank Prediction Prediction Gat ΔGraphSage ΔGat #neighbors

GraphSage (in training)

1799406 7.669 5.609 8.050 2.060 0.380 29

1793137 8.338 5.564 8.055 2.773 0.282 28

1798690 7.920 5.614 8.251 2.305 0.330 28

1788045 8.338 5.619 8.252 2.718 0.085 27

Is This Bug Severe? A Text-Cum-Graph Based Model 251

(attention coefficient) of immediate neighbours of the anchor node. However, in
case of the GraphSage model, a certain number of nodes has been uniformly
sampled from the set of neighbours. Further, the feature aggregation for each
anchor node is done based on the sampled neighbourhood. Using the differences
in the attention coefficients the Gat model possibly leverages more information
from the high degree neighbors in order to predict the rank of the anchor node
thus outperforming the GraphSage model which gives uniform importance to
all the neighbors of the anchor node.

8 Conclusion

In this paper, we presented a new dataset comprising bugs, its metadata and
ground truth severity scores (i.e., bug heat) from two time points. Further, we
collected the list of affected packages by a bug along with the timestamp. We
build regression models for bug severity prediction which is one of the well known
problems in the software community. We performed the experiments using two
type of models – (i) text based models, and (ii) graph based models. We observed
that the Sbert model performed better (/similar) for high training data (70%,
50%) setup than graph based models. However, for low training data setup, the
Gat model outperformed Sbert by a large margin. Error analysis shows that
the performance of Gat is due to the nodes in the training set of the model that
are in the neighbourhood of the bug-bug network of the test bugs. In future, we
would like to carry out the studies such as how the packages are being affected
temporally using our new dataset.

References

1. Umer, Q., Liu, H., Sultan, Y.: Emotion based automated priority prediction for
bug reports. IEEE Access 6, 35743–35752 (2018)

2. Tan, Y., Xu, S., Wang, Z., Zhang, T., Xu, Z., Luo, X.: Bug severity prediction
using question-and-answer pairs from stack overflow. J. Syst. Softw. 165, 110567
(2020)

3. Arokiam, Jude and Bradbury, Jeremy S.: Automatically predicting bug severity
early in the development process. In: Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
pp. 17–20 (2020)

4. Wu, X., Zheng, W., Chen, X., Yu, Z., Yu, T., Mu, D.: Improving high-impact
bug report prediction with combination of interactive machine learning and active
learning. Inf. Softw. Technol. 133, 106530 (2021)

5. Ohira, M., et al.: A dataset of high impact bugs: manually-classified issue reports.
In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pp. 518–521 (2015)

6. Wu, X., Zheng, W., Chen, X., Wang, F., Mu, D.: CVE-assisted large-scale security
bug report dataset construction method. J. Syst. Softw. 160, 110456 (2020)

7. Peters, F., Tun, T.T., Yu, Y., Nuseibeh, B.: Text filtering and ranking for security
bug report prediction. IEEE Trans. Softw. Eng. 45, 615–631 (2019)

252 R. Hazra et al.

8. Ramay, W.Y., Umer, Q., Yin, X.C., Zhu, C., Illahi, I.: Deep neural network-based
severity prediction of bug reports. IEEE Access 7, 46846–46857 (2019)

9. Lamkanfi, A., Pérez, J., Demeyer, S.: The eclipse and mozilla defect tracking
dataset: a genuine dataset for mining bug information. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, pp. 203–206 (2013)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: 1st International Conference on Learning Represen-
tations (ICLR) (2013)

11. Goseva-Popstojanova, K., Tyo, J.: Identification of security related bug reports
via text mining using supervised and unsupervised classification. In: 2018 IEEE
International Conference on Software Quality, Reliability and Security (QRS), pp.
344–355 (2018)

12. Hazra, R., Aggarwal, H., Goyal, P., Mukherjee, A., Chakrabarti, S.: Joint autore-
gressive and graph models for software and developer social networks. In: Advances
in Information Retrieval (ECIR), pp. 224–237 (2021)

13. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on Machine Learning, vol. 32, pp.
1188–1196 (2014)

14. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (2019)

15. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186 (2019)

16. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

17. Kipf, T.N., Welling, M.: Semi-Supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) (2017)

18. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

Physically Invertible System
Identification for Monitoring System

Edges with Unobservability

Jingyi Yuan and Yang Weng(B)

Arizona State University, Tempe, AZ 85281, USA
{jyuan46,Yang.Weng}@asu.edu

Abstract. Nowadays, the data collected in physical/engineering sys-
tems allows various machine learning methods to conduct system mon-
itoring and control, when the physical knowledge on the system edge
is limited and challenging to recover completely. Solving such problems
typically requires identifying forward system mapping rules, from sys-
tem states to the output measurements. However, the forward system
identification based on digital twin can hardly provide complete moni-
toring functions, such as state estimation, e.g., to infer the states from
measurements. While one can directly learn the inverse mapping rule,
it is more desirable to re-utilize the forward digital twin since it is rela-
tively easy to embed physical law there to regularize the inverse process
and avoid overfitting. For this purpose, this paper proposes an invert-
ible learning structure based on designing parallel paths in structural
neural networks with basis functionals and embedding virtual storage
variables for information preservation. For such a two-way digital twin
modeling, there is an additional challenge of multiple solutions for system
inverse, which contradict the reality of one feasible solution for the cur-
rent system. To avoid ambiguous inverse, the proposed model maximizes
the physical likelihood to contract the original solution space, leading
to the unique system operation status of interest. We validate the pro-
posed method on various physical system monitoring tasks and scenarios,
such as inverse kinematics problems, power system state estimation, etc.
Furthermore, by building a perfect match of a forward-inverse pair, the
proposed method obtains accurate and computation-efficient inverse pre-
dictions, given observations. Finally, the forward physical interpretation
and small prediction errors guarantee the explainability of the invertible
structure, compared to standard learning methods.

Keywords: Inverse system identification · Invertible neural network ·
System edge · System unobservability

1 Introduction

Monitoring is essential for the sustainable operation of physical systems. How-
ever, physical knowledge may be partially unknown, and sensor measurements
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 253–269, 2023.
https://doi.org/10.1007/978-3-031-26422-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_16&domain=pdf
http://orcid.org/0000-0002-2850-1582
http://orcid.org/0000-0002-5267-1303
https://doi.org/10.1007/978-3-031-26422-1_16

254 J. Yuan and Y. Weng

are limited for system identification on the system edges [10,11,19,22]. Such
weak knowledge on the edge challenges traditional monitoring approaches based
on accurate physical models. To bridge the gap, there are works on machine
learning models using collected data for system identification [1,4,36]. However,
although the data-driven method can mimic the behavior of a physical system,
they are not indeed a digital twin to be used for system operation at any oper-
ating point [5], e.g., at new operating points never happened in the past. The
problems have two causes. One is the lack of physical interpretation, and the
other is the mismatch between forward and inverse mapping. These two are
natural properties when the physical governing function is available. Therefore,
it is essential to build the digital twin with both logical check (consistency of
two-way mappings) and physics for an actual replica of the physical counterpart.
This paper looks into the inverse learning for state estimation that is consistent
with the forward mapping and has physics embedded.

Specifically, an intuitive way for inverse learning is to directly learn the
inverse mapping rule from collected data in a discriminative manner. However,
it easily causes poor performance due to overfitting. Even worse, the inverse
mapping is usually more complex than the forward. For example, unlike the
physical priors of the forward system model, the inverse model usually does not
have a pre-defined physical form as a reference. Therefore, it is hard to maintain
high accuracy directly using fitting models like deep neural networks (DNNs),
especially in the extrapolation scenario.

Therefore, this paper aims to learn an accurate forward system with physical
regularization while enforcing invertibility. As the prior physical knowledge is
embedded into the forward mapping, the physics will regularize the inverse pro-
cess automatically against overfitting in the second. Such an idea has some sim-
ilarities to the (variational) auto-encoder [13,15,25,33]. However, the forward-
inverse pair in the auto-encoder is forced by the reconstruction loss instead of the
interoperability. So, the auto-encoder has neither a decoder providing a perfect
inverse nor a physical interpretability. Thus, we would like to build a forward
mapping with physics and inverse the forward DNN if possible.

For invertible transformation, we propose splitting the input variables into
two groups with a swap of DNN links in the forward mapping to invert the for-
ward DNN for system states. Such a method is much better than auto-encoder,
as it can create a perfect pair of encoder and decoder without the approximation
errors in typical auto-encoder [7,8]. Now that we know the principles of designing
invertible DNN, we want to systematically embed physicals with three consid-
erations. First, we aim to embed physical functionals to reveal similar forms as
the physical laws. Second, we aim to embed the physical size of input/output
variables into the functionals. Third, we aim to have a unique solution, since the
current system state is unique no matter how many possible algebraic solutions
there can be according to the mathematical function.

To achieve the first goal, we split the input into a twin set so that we not only
provide all possible candidates as input to the physical DNN to maximize the
physical gains but also preserve the structural requirement of having separated
inputs for the invertible DNN. For the second goal, we propose to add storage

Physically Invertible System Identification for Edge Monitoring 255

variables into the output of the forward mapping rule. This step is to ensure no
physical information loss, e.g., when the output of the forward mapping is with
a smaller dimension than the input. But, how to pick up the correct output size
in the forward mapping? The answer is the network size. The minimum number
of states is the network size according to the definition of state estimation.
For the third goal, we will utilize the Bayesian framework and the maximum
likelihood estimation, for which we use the historical indicator to select the best
outcome and avoid the confusion of multiple solutions [14,18]. For example,
Fig. 1 shows the collected data in a power system case. The curves of power
generation, consumption loads, and node voltages indicate the standard data
pattern during system operations. Different quantities stay within the standard
operation limit of physical systems. We incorporate such a pattern in the inverse
learning problems to ensure a feasible solution and physical uniqueness.

The proposed model can be implemented on various physical/engineering
systems for monitoring with unobservability, including manipulator inverse
kinematics, structural health monitoring of high-rise buildings, position esti-
mation of robotic system, state estimation of power and water system, etc.
[11,14,18,27,29,32,35]. For example, photovoltaic (PV) and electric vehicle (EV)
penetrations change the power distribution system dramatically, where a fast-
monitoring tool like state estimation (SE) is necessary for operation. Never-
theless, it is hard to conduct traditional SE due to unavailable power system
modeling, and partial observability [6,20]. Thus, we conduct experiments to
demonstrate how the designed invertibility efficiently infers hidden system states
of interest and how the embedded physics in the forward system identification
leads to consistently better performance compared to the state-of-art learning
methods.

Our main contributions include 1) designing an invertible system that can
ensure strict consistency between forward and inverse mapping for edge systems
with unobservability; 2) embedding the physical information in the forward map-
ping to indirectly regularize the inverse learning and avoid overfitting so that
the state estimation can be conducted at an arbitrary operating point; and 3)
showing how to embed the physical property comprehensively (functionals and
variable size) so that information won’t get lost due to dimension reduction for
some use cases on the system edge.

2 Related Work

2.1 Solve the Inverse Problem of Physical Systems

It has been a basic task of interest to analyze the inverse process of physi-
cal/engineering system, which is to extract true states from observations for
system operation and control [3,9]. In traditional works, researchers solve such
problems by iterative simulations or algorithms based on models. These meth-
ods typically require prior system knowledge, e.g., solving power flow using the
Newton-Raphson method with a detailed system model and estimating unknown
states using Kalman Filter with system dynamics model [17,28,30,34]. However,

256 J. Yuan and Y. Weng

Fig. 1. Example of power distribution system to show the standard data pattern in
spring and summer operations: (Top) generation of system-wide photovoltaics (PVs),
(middle) aggregated commercial and residential loads, and (bottom) average voltage
per unit values.

the complete system information can often be unavailable or inaccurate in com-
plex physical/engineering systems, especially on the system edge [10,11,19,22].
While traditional methods are limited, some studies propose to leverage machine
learning tools, approximating the (inverse) mapping rule with data observations
[14,23,26,35,37]. However, the data-driven methods either oversimplify the com-
plex physical model or directly use intractable black-box approximation, lack-
ing the interpretability and correctness for system operators to understand and
trust. This calls for an invertible structure for learning the forward and inverse
processes together with one-to-one mapping.

2.2 Enforce Inverse in Representation Learning

For the idea of unifying the forward and inverse learning, we trace back to
the early work in conventional NN inversion that iteratively finds the optimal
solutions [21,31]. However, inverting the highly nonlinear and implicit NN for
optimum is difficult and computationally inefficient. Therefore, the family of rep-
resentation learning uses a similar criterion but approximates inference instead of
extensive optimization iterations. For example, the popular auto-encoders [15]
connect two neural network models in sequence and in symmetry to approx-
imate the inverse correlation while simultaneously training the forward NN.

Physically Invertible System Identification for Edge Monitoring 257

Specifically, the auto-encoder minimizes the reconstruction mismatch of inputs
to enforce an imperfect decoder that approximately inverts the encoder. In fact,
the approximation error is unavoidable so that the true inverse counterpart can-
not be reached in training. Moreover, as both the forward and inverse functions
are black-box models, there is 1) no physical guarantee over implicit learning
and 2) no physical meaning of the quantities in latent space.

In contrast, the flow-based models [7,8] construct a sequence of invertible
transformations as the forward mapping. Compared to auto-encoders, they lever-
age the change of variable theorem to ensure a deterministic inverse of the for-
ward mapping without any approximation. Previous work usually uses such a
model for complex density estimation tasks like image generation, which are
quite different from our target cases. To better represent complex image data,
they map images to latent space with a simple distribution in the forward process
first and then obtain an “easy” inverse. These models are trained by maximiz-
ing the likelihood, in an unsupervised learning manner, to find the solution in a
high-density region, which can be viewed as the inverse of dataset [2]. Though
the models show good performance in image generation, the design has a strong
requirement for splitting the input and output, which is hard to be satisfied fully
in physical systems. Also, the design doesn’t reveal any physical interpretability,
which is necessary for physical system identification. Finally, the design does not
consider the unobservability issue, either. Such problems require a comprehen-
sive way to embed all possible physics knowledge from different perspectives.

3 Problem Formulation for Two-Way System Monitoring
with Unobservability

Fig. 2. Example: (a) geometry of the 3-DOF kinematics system in 2D space and (b)
geometry of the 5-DOF kinematics system in 3D space.

The physical system identification is a supervised learning task to recover
the forward system model f in y = f (x), mapping input variables x ∈ X
to output variables y ∈ Y. Subsequently, to infer desired states of physi-
cal systems, we aim to find an inverse mapping g : Y → X that satisfies

258 J. Yuan and Y. Weng

x = g (y) = f−1 (y) , ∀y ∈ Y. For instance, Fig. 2 shows the end-effector posi-
tion of a robot arm following forward kinematics functions of joint degrees of
freedom. The inverse kinematics is to control the joint motions to reach the
desired end-effector positions. For such a system, system information is usually
required to understand the forward process, e.g., physical function types. When
system information is unavailable, one can use machine learning to approximate
the forward mapping in a data-driven manner. Unlike the forward mapping,
state estimation is another monitoring tool based on inverse learning. However,
the inverse learning process is even harder for problems like (1) hard to embed
physical law, (2) can have multiple solutions, and (3) information loss due to
uneven dimensions between input and output.

To solve these problems, we propose unifying the learning of two-way map-
pings in an invertible system identification. The two-way mappings indicate
learning the forward-inverse pair. Specifically, we aim to learn the function of
inverse mapping x = g (y) so that it work in a pair with the forward mapping
y = f (x). Therefore, our goal is to let y = g−1 (x) approximate the analyt-
ical model y = f (x). invertible structure in the approximation model g−1 (·)
to enforce an automatic inverse x = g (y) for state inference. In this learning
process, we have two major targets: 1) to obtain a forward mapping rule that
accurately approximates the system model and preserves physical interpretation
as much as possible, and 2) to find a perfectly matched forward-inverse pair and
estimate the most possible states under the partially observable scenario.

3.1 Optimization Objectives to Identify Invertible System Model

To reach the first goal, we form an optimization problem to find g−1 (·) as close
as possible to the ground truth of the forward model f (·). For simple notation,
we represent g−1 as hypothesis function h,

h∗ = argmin
h∈H

N∑

i=1

ψ1 (h (xi) ,yi) , (1)

where H is a predefined class of hypothesis functions, e.g., parameterized neural
networks. Since it is a supervised learning task, ψ1(·) represents the regression
loss function. We use mean square error to measure the mismatch in forward
system model recovery. Moreover, for a perfect match of the two-way mappings,
we follow the reconstruction loss used by auto-encoder,

h∗ = argmin
h∈H

N∑

i=1

ψ2
(
xi, h

−1 (h (xi))
)
, (2)

where ψ2(·) is the square loss and h−1 (h (xi)) denotes the reconstructed xi at
the output of inverse mapping.

While the supervised learning loss penalizes errors in point estimates during
training, it can not easily bypass the ill-conditioned problem for the inverse. For-
tunately, physical/engineering systems have operation standards, as the power

Physically Invertible System Identification for Edge Monitoring 259

system example in Fig. 1 shows. Only one solution is feasible to stay within
the operating limits or satisfy specific patterns. To promote physically feasible
solutions as the second target, we leverage the common criterion for statisti-
cal inference. In particular, estimating the probabilistic states x is to maximize
likelihood of the posterior probability density [7], which is

x̂ = argmax
x

p(x|y). (3)

This process is to learn the invertible representation of real dataset. As long as
we design an invertible function hypothesis function h, increasing the likelihood
as in (3) contracts the original output data space to the high-density regions.
Namely, it tends to locate a high-density data region and estimates the states
that stay within the standard operation limit of physical systems

3.2 Virtual Storage Variables to Compensate System
Unobservability

For system identification, the recovery of the forward model is sensitive to the
data availability in the system. Unfortunately, modern physical/engineering sys-
tems are hard to guarantee full observability. Even worse, limited sensors behind
the unobservability may lead to information reduction in the forward map-
ping, making inverse mapping with insufficient knowledge. Therefore, we propose
adding virtual storage variables to the output of the forward mapping. All the
input knowledge is preserved in the storage variables in the output of the forward
mapping. For example, we propose using the network size to decide the number
of storage variables. This is because the number of system states indicates the
size of the minimum number of variables in a system that can recreate all the
measurements in the network, according to the definition of state estimation.
And, the number of state variables is typically the same as the network size.
Using these variables will not only preserve information, but also format the
physical units in the latent layer, which is due to a perfect match on the num-
ber of state variables. To exhibit such inherent properties in invertible system
identification, we introduce virtual variables y′ on the output side. y′ is used to
compensate the dimension reduction caused by unobservability while imitating
the hidden quantities for homogeneous units in the final expression.

During training, the virtual quantities y′ are generated from simple orthog-
onal random variables, e.g., samples from standard isotropic Gaussian distribu-
tions. We observed that, compared to directly using Gaussian random variables,
it’s better to update the generation by a parameterized neural network. Specifi-
cally, we convert the virtual variables via a fully-connected NN and update this
NN simultaneously with minimizing the reconstruction error in (2). It can better
compensate for the information loss caused by unobservability. Thus, the inverse
model changes to x = g (y,y′). y′ are independent from observable y and serve
as factorial prior of system uncertainties to estimate the posterior.

260 J. Yuan and Y. Weng

4 Physically Invertible System Identification

Fig. 3. Illustrate invertible transformation (top) and the structure of the proposed
INN.

4.1 Invertible Transformation

To unify the learning of forward and inverse mappings, the key idea is to provide
an invertible structure for system identification that find a pair of matched map-
pings. Enforcing the inversion of g(·) and g−1(·), we consider change of variables,
shown below. With x = g (y,y′), the change of variables theorem shows

p(y′) = p
(
x = g (y,y′) |y)∣∣ det

∂g (y,y′)
∂y,y′

∣∣,

p(x|y) = p(y′)
∣∣ det

∂g (y,y′)
∂y,y′

∣∣−1
,

(4)

where
∂g (y,y′)

∂y,y′ is the Jacobian matrix of function g (·) at x and det (·) repre-

sents the determinant of Jacobian. (4) serves as the theoretical basis of invertible
function design. And, we need to find easily invertible functions with non-zero
Jacobian determinant.

One intuitive way of invertible design is the linear and addictive function,
e.g., the forward y = ax + b and the inverse x = 1

ay − b
a . The determinant of

Jacobian is constant a to ensure invertibility. Motivated by the simple inverse,
we follow the invertible design in [7] to split the multi-variate inputs and outputs
and construct the following transformation unit:

Physically Invertible System Identification for Edge Monitoring 261

y∗
1 = a1x1,y∗

2 = a2x2 + t1(x1), (5)

x1 =
1
a1

(y∗
1),x2 =

1
a2

(
y∗
2 − t1(x1)

)
, (6)

where y∗ = [y,y′] for simple notation. Similar to the linear and addictive func-
tion, the inverse mapping (6) is easy to derive and the determinant of Jacobian
is a1a2. Such a split formula is flexible that the nonlinear functions t1(·) can be
arbitrarily complex for representation, without affecting the invertible property.

The unit transforms one part of inputs for invertibility and leaves the other
untouched. To enable complete coupling of all dimensions, we composite several
units and transform each part in turn. We show in the following Proposition 1
that more than three compositions are necessary to completely transform all
inputs dimensions and coupling with the output.

Proposition 1. With each transformation unit in (5), more than three compo-
sitions are necessary to completely transform all input dimensions and coupling
with the output.

The proof is intuitive by deriving the Jacobian matrix of the composited invert-
ible functions. For the kth unit, the Jacobian is

Jk =

⎡

⎢⎣
∂y1

(k)

∂x
(k)
1

∂y
(k)
1

∂x
(k)
2

∂y
(k)
2

∂x
(k)
1

∂y
(k)
2

∂x
(k)
2

⎤

⎥⎦ =

⎡

⎣
a
(k)
1 I1 0

∂t
(k)
1 (x1)

∂x
(k)
1

a
(k)
2 I2

⎤

⎦ . (7)

For every other layer, the columns exchange due to the in-turn transformation.
Using the chain rule, the Jacobian of the composited function is ΠkJk. Only
when k ≥ 3, the 0’s are eliminated from Jacobian matrix and thus indicate a
full transformation of all dimensions.

Figure 3 (top) illustrates the invertible transformation. As for the NN struc-
ture in the bottom, with each unit to be invertible, the sequence of composited
units is invertible, and the Jacobian determinant is easily computed for optimiz-
ing (3).

4.2 Building Invertible NN Structure for Physical Interpretability

The sequence of invertible transformations is trained to maximize the likelihood
of the training data. However, the unsupervised learning manner performs poorly
in generalizing to the out-of-range dataset and reaching global optimum [16].
Furthermore, unlike image density estimation, extrapolation is often the primary
concern in the physical system when new operation points occur and have never
been recorded in the historical data. In such cases, an accurate inverse solution
requires perfect forward mapping learning to recover the governing function of a
physical system. Thus, we aim to find a hypothesis that not only minimizes the
empirical prediction error (1) but also reveals the underlying analytical function.

262 J. Yuan and Y. Weng

However, it is challenging to meet the latter target as any large physical
systems (e.g., power, water, traffic systems) have limited sensor deployment for
full observability. For these cases, we need to simultaneously recover govern-
ing functions in the observable region and approximate hidden correlation in
data whenever physical recovery is impossible. According to [36], we express the
ground truth f(·) in the form y = f (x) = f1 (x) + f2 (x) = W1φ(x) + f2 (x).
f1(·) denotes the recoverable physical law of the observable, and f2(·) denotes
the mapping regarding the unobservable region. Learning f1(x) only is a sys-
tem identification problem, where φ(x) are the physical features of specific sys-
tems (e.g., coupling of quadratic and sinusoidal terms for power system) and
W1 represents unknown system parameters to be recovered. To enable physical
interpretability, we embed φ(x) into the invertible hypothesis function (5). In
this way, the invertible unit can reveal physics and match the underlying model
during learning.

Thus, the proposed invertible NN structure unifies the forward and inverse
mappings. The model is trained by optimizing two loss functions simultaneously
to reach the optimal inverse solution. On one hand, using the supervised learning
loss aims to minimize the mismatch of sample predictions and makes the forward
mapping as close to the governing function as possible. On the other hand,
using the unsupervised learning loss focuses on a high-density region to avoid
ill-conditioned problems in an inverse process. In practice, we observe a trade-off
between the two loss terms. Therefore, a hyperparameter is adopted to balance
the penalization. The hyperparameter is chosen through cross-validation in the
experiments. By training the invertible NN structure, if we find the optimal
forward mapping that reveals physics, we naturally obtain the inverse following
physical laws.

5 Experiments

The proposed invertible NN is applicable for various inverse problems in phys-
ical systems. We validate the algorithm on kinematics systems, power systems,
robotic systems, and high-rise buildings (structural health). The results are sim-
ilar, so we focus on the two most representative systems for in-depth evaluation
with respect to each of the proposed designs. They are the inverse kinematics,
where hidden states follow one-way cascading correlation, and the inverse power
flow, where states yield two-way interactive correlation.

Evaluation Criteria: Learning the inverse mapping in physical system can be
seen as a regression problem. Therefore, we use the evaluation metric mean
square error (MSE) for state estimation. For the physical system analysis, the
interpretability is essential so that we evaluate by the accuracy of learning system
parameters for the forward system model. The higher the accuracy, the more
reducible is the learned model.

Physically Invertible System Identification for Edge Monitoring 263

Baselines: We compare the proposed model with the following state-of-the-
art baselines on learning the inverse system mapping: support vector regres-
sion (SVR) with polynomial kernel or RBF kernel [35], residual neural net-
work (ResNet) [12], variational autoencoder (VAE) to approximate the forward-
inverse pair [15], NICE/RealNVP to learn the invertible transformation [7,8].
The first two methods directly learn the inverse mapping while the other two
methods enforce the inverse model from forward model to obtain inverse solu-
tions [13,37]. In particular, we use the same architecture (depth, width, and acti-
vation) for the NN t1(·) in invertible structure, ResNet, and auto-encoder. We
showed previously that at least three invertible units are required to completely
transform all dimensions. Therefore, the depth of NNs is a hyper-parameter
selected from 3 − 10 layers in validation, and the width depends on the problem
size of the test system.

The Adam optimizer is used to train NNs for 200 epochs for each experiment,
where we set up a learning rate hyper-parameter set {0.001, 0.0002, 0.00005},
and momentum parameters β1 = 0.5, β2 = 0.999. All the experiments are imple-
mented on a computer equipped with Inter(R) Core(TM) i7-9700k CPU and
Nvidia Geforce RTX 3090 GPU.

Table 1. The prediction errors (MSE×10−3) of invertible kinematics system identifi-
cation: the inverse solution and forward mapping recovery.

Case Model Joint angle prediction Forward model prediction

3-DOF SVR 0.0004 ± 0.00 N/A

ResNet 0.001 ± 0.00 N/A

VAE 0.001 ± 0.01 0.0015 ± 0.00

RealNVP 0.0005 ± 0.00 0.0004 ± 0.00

Proposed INN 0.0002 ± 0.00 0.0001 ± 0.00

5-DOF SVR 0.19 ± 0.07 N/A

ResNet 0.12 ± 0.03 N/A

VAE 0.10 ± 0.04 0.09 ± 0.02

RealNVP 0.08 ± 0.01 0.04 ± 0.02

Proposed INN 0.06 ± 0.02 0.02 ± 0.00

5.1 Inverse Kinematics Problem

To test the applicability of the proposed model on physical inverse process,
we start with a basic inverse kinematics problem, where instruments are not
fully equipped to collect all the data. As shown in Fig. 2(a), the movement of
end-effectors is determined by multiple degrees of freedom (DOF) chains in the
robotic systems. The manipulator in 2D space moves with the rotations of three

264 J. Yuan and Y. Weng

joints (3 DOFs) that connect 4 rigid parts. The task is to find the most likely
joint motions to reach the desired end-effector position. Given the configuration
of joint angles, the forward kinematics equations describe the motion of the hier-
archical skeleton structure. However, the system parameters, e.g., joint lengths,
are unknown. We aim to identify the possible rotation angles of three joints given
the expected end-effector coordinates. In this case, 1000 different configurations
are sampled for training and random Gaussian noises are added (N (0, 0.01)).

For a more complex setup, we consider the manipulator in 3D space with 5
DOFs (Fig. 2(b)). The new DOFs in the added dimension are intractable where
measurements of θ4 and θ5 are unavailable. In this case, we evaluate the pre-
diction of joint rotations in inverse process. Moreover, we evaluate the partial
recovery of the governing function on observable parts in the forward system
identification. Table 1 compares the numerical results of the proposed physics-
interpretable invertible NN with the baselines.

For the 3-DOF setup, both SVR and the proposed model have good esti-
mation results. Specifically, our physics-interpretable invertible NN outperforms
the original RealNVP due to the physics embedding in the forward mapping.
It can also be verified by the accuracy of system parameter recovery, where the
proposed INN reaches near 100% for this fully observable case. For the 5-DOF
case that has some unobservables, the variational auto-encoder and RealNVP
have much lower errors than the first two models that directly approximate the
inverse process. Although the proposed invertible neural network can not recover
all the system parameters due to the unobservability, it shows a generally lower
error in estimating inverse solution than the original RealNVP.

5.2 Inverse Power Flow Problem: Distribution System State
Estimation

After the demonstration of the basic kinematics problem, we test the proposed
model on more complex and larger systems. Different from the single link in the
manipulator, the standard power system can be seen as a graph with many inter-
nal couplings. The real utility feeder usually has more complex connections and
a larger scale. For an N -node power system, the governing physical law is the
classic power flow equations (PF) [35]. The power system state estimation (SE)
is of great interest for many downstream operation applications [24,37]. Estimat-
ing voltage phasor states from standard measurements (e.g., power injections,
branch power flows, and current magnitudes) is an inverse process of power
flow analysis. Test feeders IEEE 8- and 123-bus networks, and a utility feeder
(2721 nodes with 371 active ones) are used for experiments, shown as 8-bus,
123-bus, and Utility in Table 2. Since ground truth data is not directly available,
we conduct traditional simulations with one-year real power data (15-min inter-
val) in MATPOWER [38]. The model information is only available to prepare
the dataset and remains unknown during training. The real-world measurements

Physically Invertible System Identification for Edge Monitoring 265

usually have errors due to communication issues. We add random Gaussian noise
with a 1%–2% standard deviation to simulate the measurement errors (as usu-
ally used by state estimation). Moreover, we prepare out-of-range data (3× PV
generation and loads) to validate extrapolation capability.

Table 2. The prediction errors (MSE×10−3/p.u.) of power system cases: the inverse
state estimation and the forward power flow mapping.

(a) Testing on the in-range data scenario.

Scenario Case SVR ResNet VAE RealNVP Proposed INN

SE
8-bus 0.08 ± 0.02 0.04 ± 0.00 0.03 ± 0.01 0.008 ± 0.00 0.006 ± 0.00

(In-Range)
123-bus 0.21 ± 0.04 0.17 ± 0.02 0.13 ± 0.03 0.09 ± 0.01 0.05 ± 0.03

Utility 0.27 ± 0.12 0.23 ± 0.05 0.16 ± 0.03 0.13 ± 0.07 0.11 ± 0.02

PF
8-bus N/A N/A 0.05 ± 0.01 0.007 ± 0.00 0.002 ± 0.00

(In-Range)
123-bus N/A N/A 0.11 ± 0.06 0.06 ± 0.03 0.02 ± 0.01

Utility N/A N/A 0.15 ± 0.01 0.13 ± 0.02 0.04 ± 0.03

(b) Testing on the out-of-range data scenario for extrapolation.

Scenario Case SVR ResNet VAE RealNVP Proposed INN

SE
8-bus 0.14 ± 0.04 0.09 ± 0.03 0.09 ± 0.02 0.03 ± 0.01 0.009 ± 0.00

(Extrapolation)
123-bus 0.29 ± 0.11 0.22 ± 0.06 0.25 ± 0.02 0.15 ± 0.03 0.07 ± 0.02

Utility 0.43 ± 0.19 0.35 ± 0.02 0.31 ± 0.09 0.19 ± 0.06 0.15 ± 0.04

PF
8-bus N/A N/A 0.07 ± 0.03 0.04 ± 0.02 0.004 ± 0.00

(Extrapolation)
123-bus N/A N/A 0.21 ± 0.03 0.18 ± 0.07 0.06 ± 0.03

Utility N/A N/A 0.24 ± 0.06 0.22 ± 0.05 0.11 ± 0.05

The numerical results of estimation are included in Table 2 and Fig. 4 to
compare different methods. As we explained, SE denotes the inverse process
while PF denotes the forward mapping recovery. First, we observe a general
decrease in MSEs for forward-inverse learning methods compared to the direct
inverse learning methods (SVR and ResNet).

While the errors of inverse solutions are small, we look back to the forward
learning. VAE has a relatively poor result as the reconstruction errors cannot
reach zeros in approximation. Although RealNVP naturally has the perfect cor-
respondence to learn an explicit forward, the proposed INN outperforms it by
a large margin for forward mapping recovery. This could also be explained by
the ablation study of our proposed model. For the observable region, the gov-
erning PF function can be recovered by the proposed INN. The ablation study

266 J. Yuan and Y. Weng

results (Table 3) demonstrate how physics embedding greatly impacts the for-
ward model recovery. Without physics consistency in learning model, both the
MSEs of inverse estimation and forward output prediction are higher. Further,
the comparison of state estimation given in-range and out-of-range inputs in
Fig. 4a and Fig. 4b reveals a better extrapolation capability of the proposed INN.
During the experiments, we observe that, when there is no physics embedding,
increasing the weight of the density estimation loss can lower the MSE slightly.

(a) Estimated voltage magnitudes given in-range inputs (generation and load)

(b) Estimated voltage magnitudes given out-of-range inputs for extrapolation evalua-
tion.

Fig. 4. Validating estimation results of all the nodes (from feeder head to end) on one
phase of 123-bus system.

Physically Invertible System Identification for Edge Monitoring 267

Table 3. Ablation study of the proposed invertible neural network.

Scenario Case Proposed INN W/o physics embedding W/o virtual variables

SE
8-bus 0.006 ± 0.00 0.01 ± 0.00 0.02 ± 0.01

(In-Range)
123-bus 0.05 ± 0.03 0.08 ± 0.02 0.07 ± 0.01

Utility 0.11 ± 0.02 0.15 ± 0.05 0.17 ± 0.03

PF
8-bus 0.002 ± 0.00 0.003 ± 0.00 0.002 ± 0.00

(In-Range)
123-bus 0.02 ± 0.01 0.05 ± 0.02 0.02 ± 0.01

Utility 0.04 ± 0.03 0.15 ± 0.06 0.05 ± 0.02

SE
8-bus 0.009 ± 0.00 0.04 ± 0.01 0.04 ± 0.00

(Extrapolation)
123-bus 0.07 ± 0.02 0.13 ± 0.05 0.16 ± 0.03

Utility 0.15 ± 0.04 0.23 ± 0.03 0.23 ± 0.07

PF
8-bus 0.004 ± 0.00 0.03 ± 0.02 0.005 ± 0.00

(Extrapolation)
123-bus 0.06 ± 0.03 0.21 ± 0.05 0.08 ± 0.02

Utility 0.11 ± 0.05 0.26 ± 0.02 0.15 ± 0.04

6 Conclusion

In this paper, we propose a physics-interpretable inverse learning method to
tackle the challenge of solving the inverse process of physical systems. Rather
than a direct approximation, we unify the forward and inverse learning, and
simultaneously optimize over the pair of mappings. The proposed method takes
advantage of the flexible NN structure and the recent advances in density esti-
mation to guarantee a perfect forward-inverse pair and solve the ill-conditioned
physical systems problem. Moreover, since the generative model has limitations
in the adversarial task of physical system identification, we embed physics into
the invertible structure to enable interpretability and further enforce the inverse
solution following physical laws. Numerical experiments have been conducted
on physical/engineering systems with typical couplings to evaluate the proposed
method. Our model outperforms the baseline methods on both the inverse pro-
cess learning and the forward model recovery and output prediction.

References

1. Abdel-Majeed, A., Tenbohlen, S., Schöllhorn, D., Braun, M.: Development of state
estimator for low voltage networks using smart meters measurement data. In: IEEE
Grenoble Conference, pp. 1–6 (2013)

2. Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep represen-
tations. In: International Conference on Machine Learning, pp. 552–560. PMLR
(2013)

3. Benning, M., Burger, M.: Modern regularization methods for inverse problems.
arXiv preprint arXiv:1801.09922 (2018)

4. Bhela, S., Kekatos, V., Veeramachaneni, S.: Enhancing observability in distribution
grids using smart meter data. IEEE Trans. Smart Grid 9(6), 5953–5961 (2018).
https://doi.org/10.1109/TSG.2017.2699939

http://arxiv.org/abs/1801.09922
https://doi.org/10.1109/TSG.2017.2699939

268 J. Yuan and Y. Weng

5. Bot́ın-Sanabria, D.M., et al.: Digital twin technology challenges and applications:
a comprehensive review. Remote Sens. 14(6), 1335 (2022)

6. Deka, D., Backhaus, S., Chertkov, M.: Learning topology of the power distribution
grid with and without missing data. In: European Control Conference, pp. 313–320
(2016)

7. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516 (2014)

8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. arXiv
preprint arXiv:1605.08803 (2016)

9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol.
375. Springer, Heidelberg (1996)

10. Hamdan, S., Ayyash, M., Almajali, S.: Edge-computing architectures for internet
of things applications: a survey. Sensors 20(22), 6441 (2020)

11. Haque, M.E., Zain, M.F., Hannan, M.A., Rahman, M.H.: Building structural health
monitoring using dense and sparse topology wireless sensor network. Smart Struct.
Syst. 16(4), 607–621 (2015)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016)

13. Hu, X., Hu, H., Verma, S., Zhang, Z.L.: Physics-guided deep neural networks for
powerflow analysis. arXiv preprint arXiv:2002.00097 (2020)

14. Karlik, B., Aydin, S.: An improved approach to the solution of inverse kinematics
problems for robot manipulators. Eng. Appl. Artif. Intell. 13(2), 159–164 (2000)

15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

16. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect
out-of-distribution data. arXiv preprint arXiv:2006.08545 (2020)

17. Kucuk, S., Bingul, Z.: Robot kinematics: Forward and inverse kinematics. INTECH
Open Access Publisher (2006)

18. Kuo, Y.L., Tang, S.C.: Dynamics and control of a 3-dof planar parallel manipulator
using visual servoing resolved acceleration control. J. Low Freq. Noise Vib. Active
Control, 1461348419876154 (2019)

19. Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi tracking: location
estimation using sparse and noisy sensor data. In: Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453), vol. 1, pp. 723–728. IEEE (2003)

20. Liao, Y., Weng, Y., Liu, G., Zhang, Z., Tan, C.W., Rajagopal, R.: Unbalanced
three-phase distribution grid topology estimation and bus phase identification.
IET Smart Grid 2(4), 557–570 (2019)

21. Linden, A., Kindermann, J.: Inversion of multilayer nets. In: Proceedings of Inter-
national Joint Conference on Neural Networks, vol. 2, pp. 425–430 (1989)

22. Liu, M.Z., et al.: Grid and market services from the edge: using operating envelopes
to unlock network-aware bottom-up flexibility. IEEE Power Energy Maga. 19(4),
52–62 (2021)

23. Liu, Y., Zhang, N., Wang, Y., Yang, J., Kang, C.: Data-driven power flow lineariza-
tion: a regression approach. IEEE Trans. Smart Grid 10(3), 2569–2580 (2019)

24. Mestav, K.R., Luengo-Rozas, J., Tong, L.: Bayesian state estimation for unob-
servable distribution systems via deep learning. IEEE Trans. Power Syst. 34(6),
4910–4920 (2019)

25. Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks.
In: International Conference on Machine Learning, pp. 1791–1799 (2014)

http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/2002.00097
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2006.08545

Physically Invertible System Identification for Edge Monitoring 269

26. Müller, H.H., Rider, M.J., Castro, C.A.: Artificial neural networks for load flow
and external equivalents studies. Electr. Power Syst. Res. 80(9), 1033–1041 (2010)

27. Pan, S., Bonde, A., Jing, J., Zhang, L., Zhang, P., Noh, H.Y.: Boes: building occu-
pancy estimation system using sparse ambient vibration monitoring. In: Sensors
and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
2014, vol. 9061, p. 90611O. International Society for Optics and Photonics (2014)

28. Pei, Y., Biswas, S., Fussell, D.S., Pingali, K.: An elementary introduction to kalman
filtering. Commun. ACM 62(11), 122–133 (2019)

29. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

30. Tinney, W.F., Hart, C.E.: Power flow solution by newton’s method. IEEE Trans.
Power Apparat. Syst. 11, 1449–1460 (1967)

31. Varkonyi-Koczy, A.R., Rovid, A.: Observer based iterative neural network model
inversion. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ
2005, pp. 402–407 (2005)

32. Vitus, M.P., Tomlin, C.J.: Sensor placement for improved robotic navigation. In:
Robotics: Science and Systems VI, p. 217 (2011)

33. Wang, L., Zhou, Q., Jin, S.: Physics-guided deep learning for power system state
estimation. J. Mod. Power Syst. Clean Energy 8(4), 607–615 (2020)

34. Weng, Y., Negi, R., Ilić, M.D.: Historical data-driven state estimation for electric
power systems. In: 2013 IEEE International Conference on Smart Grid Communi-
cations (SmartGridComm), pp. 97–102. IEEE (2013)

35. Yu, J., Weng, Y., Rajagopal, R.: Robust mapping rule estimation for power flow
analysis in distribution grids, pp. 1–6 (2017)

36. Yuan, J., Weng, Y.: Physics interpretable shallow-deep neural networks for physical
system identification with unobservability. In: IEEE International Conference on
Data Mining (ICDM) (2021)

37. Zamzam, A.S., Sidiropoulos, N.D.: Physics-aware neural networks for distribution
system state estimation. IEEE Trans. Power Syst. 35, 4347–4356 (2020)

38. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state
operations, planning, and analysis tools for power systems research and education.
IEEE Trans. Power Syst. 26(1), 12–19 (2011)

GALG: Linking Addresses in Tracking
Ecosystem Using Graph Autoencoder

with Link Generation

Tianyu Cui1,2, Gang Xiong1,2, Chang Liu1,2(B), Junzheng Shi1,2, Peipei Fu1,2,
and Gaopeng Gou1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{cuitianyu,xionggang,liuchang,shijunzheng,fupeipei,gougaopeng}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Online tracking technology is a critical tool for user-centric
platform practitioners to link users across multiple web pages and make
detailed user profiles for the improvement of recommender systems like
targeted advertising. Recently, due to the dynamic address allocation and
security upgrade, mitigations indirectly make prior tracking techniques
unreliable. To overcome the problem, traffic-based tracking techniques
are proposed to link users’ dynamic addresses through similarity learn-
ing of user behaviors in their traffic interaction. However, prior work
either provides poor similarity learning ability or is impractical when
applied to a large scale. In this paper, we propose GALG, a graph-based
artificial intelligence approach to link addresses for user tracking on TLS
encrypted traffic. GALG uses the framework of graph autoencoder and
adversarial training to learn the user embedding with semantics and dis-
tributions. Employing a new theory – link generation, GALG could link
all the addresses of target users based on the knowledge of address-service
links. When evaluated on real-world user datasets, GALG outperforms
existing approaches in both performance and practicality.

Keywords: Online tracking · Graph neural networks · Link prediction

1 Introduction

Websites and third-party services such as search engines, advertising networks,
and network providers collect user interests across multiple web pages to improve
the quality of recommender systems and user experiences in the area including
targeted advertising and content personalization. Under the background, online
tracking has been ubiquitous on the web [3]. The tracking mechanism could link
records of a user’s browsing activity across numerous websites to make infer-
ences about the user’s demographics and interests, or observe the conversion
that whether an advertisement on a website leads to the desired user activity on
another website [17]. Until recently, over four-fifth of websites have enabled track-
ing systems [25]. Big players like Google and Facebook leverage the widespread
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 270–285, 2023.
https://doi.org/10.1007/978-3-031-26422-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_17

GALG: Linking Addresses in Tracking Ecosystem 271

use of their advertising networks and social plugins to track users across websites
and gain detailed user profiles.

The core objective of online tracking is to link historical users across multiple
contexts. Refer to Fig. 1. When a user generates browsing records on a website,
the tracking system could utilize the information in the incoming records to
search all records linking to the user in a tracking database. The database is
a knowledge base owned by a tracker that contains numerous user records on
multiple websites. The linked records of each user are finally used in user profiling
for a better recommendation. In this setting, the traceable information in records
is critical for the tracking system.

Tracking
System

Tracking
SystemWebsite A

Website B

Website C Website DIncoming User
Records

Linking

Tra c-Based Tracking Technique

Tracking Ecosystem Database

C4 C5

C1 C2 C3
C1

C2

C1
C2

C3

C4 C5

Tra c Interaction

Client Address Changes in Historical Tra c Address Linking
Address Time t

Fig. 1. The illustration of the tracking ecosys-
tem. The traffic-based tracking method links
users’ addresses across multiple traffic interac-
tions.

Promoted by the huge track-
ing ecosystem, researchers have
tried to leverage types of infor-
mation to track real-world users,
including IP addresses, cookies,
and browser fingerprints. Track-
ing based on IP addresses is the
primary tracking method because
all online behaviors must come
from users’ client addresses. How-
ever, the dynamic address allo-
cation causes frequent changes of
users’ addresses, making address-
to-user correlation unreliable. Tracking based on cookies [19] and browser fin-
gerprints [7] could produce and store the identifier and features of user browsers.
Nevertheless, as users are increasingly aware of privacy protection, they start to
encrypt communication sessions with Transport Layer Security (TLS) [20], use
private browsing modes, and enable privacy-friendly browser extensions to obfus-
cate traceable features. Although the majority of users only intend to protect
their sensitive information rather than deliberately confronting recommender
systems, the situation indeed leads to data loss and model failure in the track-
ing ecosystem. Microsoft reported that they could no longer track 32% of users
under their services due to these mitigations [24].

To address these problems, recently, traffic-based user tracking techniques
[1,4,8,14] have been proved to have a strong performance by analyzing the pat-
terns in the traffic. As a worldwide information system, the Internet maintains
users’ daily online activities through traffic transmission. Though the critical
payload consisting of user data is encrypted in the TLS session under HTTPS
communication, the traffic contains considerable meta-information associated
with user behaviors and online interaction. In Fig. 1, banding the address with
these traffic characteristics, researchers could link multiple client addresses to
achieve long-term user tracking. However, the extensive knowledge hidden in
the traffic raises the questions that how to effectively leverage the complicated
information to reach high tracking accuracy, and, separately, how to fast link the
real-world users in such a huge knowledge volume. Previous works either could

272 T. Cui et al.

only track a specific subset of users on a closed-world dataset due to the unreli-
able similarity learning [1,8,14], or expense considerable time with an unsuitable
framework [4], remaining the problem that the traffic-based tracking technique
is impractical when applied to a large scale.

In this paper, we develop a more sophisticated approach to overcome these
limitations, juggling performance and practicality. In particular, we introduce
GALG, a graph-based artificial intelligence approach to link addresses for
user tracking on TLS encrypted traffic. GALG is short for “Graph Autoencoder
with Link Generation”. The framework of our approach consists of three steps
as follows. First, GALG constructs a graph with client address-to-online service
links and the user preference distribution of each client address to model the
traceable information. Second, for better similarity learning, using the theory of
Graph Neural Networks [12,13,18,23] and adversarial training, GALG employs a
stack attention-based encoder and a discriminator to learn the latent embedding
of jointing semantics and distributions. Third, innovating from the task of link
prediction [16] in social networks, we propose link generation, which could
learn from address-service links to generate address-address links. Benefiting
from the new theory, GALG could achieve effective few-shot learning, finally
taking large-scale user tracking to reality.

In summary, our contributions can be summarized as follows:

– Application. We implement reliable user tracking in the tracking ecosystem
to link addresses through address embedding learning with a traffic-based
tracking system.

– Theory. We propose link generation to generate a new type of links from the
original type of links in heterogeneous graphs, which is more effective in user
tracking tasks than link prediction.

– Models. We introduce two novel tracking models GALG and VGALG, which
could jointly learn semantics and distributions through an adversarial archi-
tecture with a graph autoencoder.

– Experiments. We conduct experiments on real-world datasets. Results indi-
cate that GALG outperforms the state-of-the-art tracking techniques and link
prediction-based methods in both performance and practicality.

2 Related Work

We overview the related work of our paper from the objective and technical
perspectives, including the prior work of user tracking and link prediction.

2.1 User Tracking

User tracking on the Internet could come in various forms. Over the past years,
through HTTP cookies [19] and browser fingerprinting [7]. However, recently,
traffic-based tracking techniques have been proved to have stronger performance
and longer tracking time, which can be extensively applied in various scenarios.

GALG: Linking Addresses in Tracking Ecosystem 273

Kumpost et al. [14] used the target IP addresses of each user to build user
profiles for tracking them in the future. Banse et al. [10] trained a Bayesian
classifier with DNS requests to track users on a university network. Following
the deployment of HTTPS, the interaction between users and websites tends
to be protected under the wide-used TLS traffic. Anderson et al. [1] extracted
field values in TLS ClientHello messages to build traceable fingerprints, which
could be easily enhanced with machine learning. Nonetheless, due to the strong
variation of different users in the open-world scenarios, these approaches usually
perform a poor generalization on unseen users. To address the problem, Cui et al.
[4] proposed a knowledge graph-based approach SiamHAN to track users on TLS
encrypted traffic. Since the approach requires calculating the similarity between
every two addresses, the time cost is impractical at scale. Different from prior
work, GALG aims to provide a better learning framework of user embeddings,
which could work on unseen users with less time cost.

2.2 Link Prediction

Link prediction [16] is a critical task for graph-structured data. By predicting the
relationship of two nodes in a graph, the task has many applications such as rec-
ommendation and graph reconstruction. The prior approaches for link prediction
mainly include heuristic methods, latent feature methods, and explicit feature
methods. Heuristic methods [16] are a class of simple yet effective approaches
to calculating node similarity scores with heuristic assumption. Latent feature
methods such as spectral clustering [21] and node2vec [9], have been proposed to
use the knowledge of graph structure for graph embedding learning. Using the
powerful performance of GNNs [12,13,18,23] , explicit feature methods [12,18]
could aggregate node attributes built from side information to obtain more mean-
ingful knowledge from the graph. While the techniques for link prediction have
many variants, the theory of the task is never changed – using the known links
to predict the same type of unknown links. The framework limits that link pre-
diction requires learning considerable annotation links to supplement the lost
links in one specific graph. In the tracking database, there is a large ratio of test
user nodes and we cannot always keep enough labels in a graph. In this paper,
we employ link generation to overcome the limitation in the tracking ecosystem.

3 Preliminaries

This section introduces the definition of the problem and the link generation
theory to help readers understand this paper.

3.1 Problem Definition

On the Internet, users could use clients to access various online services. The
manifestation in the traffic is that the client address and the server address

274 T. Cui et al.

establish connections. However, to facilitate the address acquisition process, net-
work administrators have widely deployed dynamic address allocation policies
like DHCP [5]. Within a period of time, a user might use multiple client addresses
for external communication. The relationship between users and addresses can-
not be detected using payloads due to TLS encryption.

In the tracking ecosystem, a tracker aims to link user across multiple web
pages to make detailed user profiles. To obtain the user traffic, the tracker could
be a network provider with a vantage traffic observation point, an advertis-
ing network provider with wide-used traffic plugins deployed in numerous Apps
and websites, or a content provider like Google owning multiple websites. Using
the meta-information in the traffic, tracking systems could link multiple client
addresses to find out the target user. Given a period of TLS historical traffic as
background knowledge Kt, the set of all client addresses in the traffic is S, the
set of client addresses of a target user is Y = {y0, y1, ..., yn}. A tracking system
F could use one client address y0 to trace the whole address set Y :

F ((S, y0)|Kt; θ) = Y (1)

where θ is the parameters of the tracking model. After obtaining the address
set Y , researchers could master all activities associated with these addresses to
analyze the target user. Holding the long sequences across websites, trackers
could infer global user demographics for service policy updates or use the inter-
action records between addresses and accounts for targeted recommendations.

3.2 Link Generation

The link generation task we proposed is innovated from the link prediction.

Definition 1. Link Prediction. Given a graph G, which contains at least one
type of node and one type of link. The link prediction task requires learning a
type of links and complementing the missing links of this type in graph G. If Ai

is the adjacency matrix of the links with type i, the goal of a model F for link
prediction could be shown as follows:

Ai
F (G;θ)−−−−→ ∑Ai (2)

where θ is the trained parameters. ∑Ai is the ground truth of the type-i links.

Definition 2. Link Generation. Given a heterogeneous graph Gh, which con-
tains at least two types of nodes and one type of link. The link generation task
requires learning a type of links and generating a new type of links in graph Gh.
If Ai is the adjacency matrix of the links with type i, the goal of a model F for
link generation could be shown as follows:

Ai
F (Gh;θ)−−−−−→ Aj (3)

where i �= j. Aj is the ground truth of the type-j links. Unlike link prediction,
link generation tasks can generate types of links that never appear in the graph.
In this paper, we show that link generation is more effective and practical than
link prediction by using address-service links to generate address-address links.

GALG: Linking Addresses in Tracking Ecosystem 275

Fig. 2. The address-service graph and user preference distributions: (a) Users might
use multiple client addresses (c1, c2, and c3 for user u1; c4 and c5 for user u2) to
access online services (s1, s2, and s3) in a period of time; (b) The connection relation-
ship between c and s could build the address-service graph; (c) Each node c/s uses
client/service fingerprints built from TLS traffic as the node attribute; (d) The cumu-
lative visits of a client address to each service could build the preference distribution.

4 Design of GALG

This section proposes the overall framework of GALG, including (1) graph and
distribution construction and (2) GALG’s model architecture.

4.1 Graph and Distribution Construction

To implement traffic-based tracking technology, GALG extracts two kinds of
knowledge from the traffic to help track real-world users – an address-service
graph and user preference distributions.

Address-Service Graph. To model the user activities behind the traffic,
GALG uses a heterogeneous graph to capture the meta-information in the traf-
fic. Figure 2(a)-(c) shows the detail of building the address-service graph. In the
historical traffic over a period of time, since users use multiple client addresses to
access online services, the connection relationship between these addresses and
services could be used to build the heterogeneous graph. The graph contains
two types of nodes and one type of link – address node c, service node s, and
address-service link c-s. Whenever a user accesses a web service over HTTPS,
their communication will generate many available data in TLS traffic such as
ClientHello, ServerHello, and Certificate message. GALG extracts client finger-
prints and service fingerprints from these messages to model the attributes of
the address nodes and the service nodes in the graph. Table 1 shows the notions
of these fingerprints. In each TLS connection, the fingerprints are bound to an
address node and a service node respectively. The client address and the server
name identifier (SNI) are used as the node identifier to distinguish different
address nodes and service nodes. Finally, these node attributes are learned by
doc2vec [15] to obtain the semantic representation of fingerprints under the fea-
ture space.

276 T. Cui et al.

Table 1. The client fingerprints and the service fingerprints used to build the attributes
of address nodes and service nodes. Different address nodes or service nodes are dis-
tinguished by the client address or the server name identifier (SNI).

Type Fingerprint name Notion Label

Address node c Client address* The address of the client in the TLS traffic Fc1

Record version The TLS version employed by the client Fc2

Client version The version by which the client wishes to connect Fc3

Cipher suites A list of the cryptographic options supported Fc4

Compression A list of the compression methods supported Fc5

Service node s SNI* The domain name that the client wants to reach Fs1

Server address The address of the server in the TLS traffic Fs2

Record version The TLS version employed by the server Fs3

Server version The version finally chosen by the server Fs4

Cipher suite The single cipher suite selected Fs5

Algorithm ID The identifier for the cryptographic algorithm Fs6

Issuer The entity that has signed and issued the certificate Fs7

Subject The entity associated with the public key stored Fs8

User Preference Distributions. In addition to knowing which services the
user accessed in the horizontal analysis, a vertical eye to master how much the
user prefers these services could also contribute to identifying the user. GALG
uses the cumulative access volume of a client address to each service to build its
user preference distribution. Figure 2(d) shows the detail of building the distri-
bution. For each client address, we collect the number of TLS connections of the
address to each service to build a distribution vector. The length of the vector
is the total number of service nodes in the address-service graph. Finally, to
reduce the overlong dimension of the vector, GALG employs PCA [6] to obtain
the representation of the distribution for each address node in the graph.

4.2 Model Architecture

Figure 3 shows the overall architecture of GALG. GALG employs an adversarial
architecture with a graph autoencoder to implement reliable user tracking.

Encoder Learning. In the task of user tracking, the heterogeneous graph Gh

built from TLS traffic contains address-service links A and node attributes X.
By learning the meta-information, the goal of the encoder in GALG is to obtain
the latent embedding Z of the address nodes for address-address link generation.

To implement the encoder model, GALG leverages stack attention to inte-
grate complex semantic knowledge into the embeddings of the address nodes. The
stack attention contains two levels – fingerprint-level attention (FA) and service-
level attention (SA). The fingerprint-level attention first learns the weights of
all fingerprints in a node attribute Xu and aggregates them to obtain the

GALG: Linking Addresses in Tracking Ecosystem 277

Fig. 3. The overall architecture of GALG. The encoder aggregates meta-information
in the knowledge graph to obtain the latent embedding through stack attention. The
discriminator distinguishes between the representation of real preference distributions
and the latent embedding. The decoder finally generates the address-address links.

first-level node embedding. The fingerprint importance αu and the first-level
node embedding Z1

u of a node u are shown as follows:

αui =
exp(h�

uiWh)
∑|Xu|

i=1 exp(h�
uiWh)

, here hui = tanh(WwXui + Wb)

Z1
u =

̂|Xu|
i=1

αuiXui (4)

where Ww, Wb, and Wh are the parameter matrices. Xui is a client fingerprint of
an address node c or a service fingerprint of a service node s in the heterogeneous
graph Gh. Using these fingerprints, the fingerprint attention aims to learn the
unique client or service representation from the client or service profiles.

The service-level attention then employs a Graph Attention Network (GAT)
[23] based approach to learn the latent embedding of the address nodes. For
an address node ci, Sci

includes node ci and the service nodes linked to it.
The service-level attention could calculate the importance of the services to
identifying the user behind the address node ci and aggregates them to obtain
the latent embedding Z2

ci
of the address node:

βcisj
=

exp(hcisj
)

∑

sj∈Sci
exp(hcisj

)
, here hcisj

= LeakyReLU(Ws[Z1
ci

‖Z1
sj

])

Z2
ci

=
K̂
̂

k=1

ELU(
̂

sj∈Sci

βcisj
Z1

sj
) (5)

where Ws is the parameter matrix. ‖ represents the concatenation operation. K
is the number of heads using the multi-head attention mechanism [22]. Using the
first-level embeddings, the service-level attention aims to capture the semantics
of the user behavior through the communication relationships.

Finally, the stack attention of GALG realizes stacking the two-level semantics
into the latent embedding. Through semantic learning, the three-layer meta-
information of fingerprints, services, and client addresses are orderly squeezed in

278 T. Cui et al.

the final representation. We collect the latent embedding of all address nodes in
the graph to form the latent embedding Z:

Z =
∏

ci∈Vc

Z2
ci

(6)

where Vc is the set of address nodes in the graph Gh. Similar to previous work
[12,18], GALG could be extended to a variational autoencoder version VGALG
for link generation. The encoder of VGALG is defined as follows:

Z =
∏

ci∈Vc

N (zci
|μci

,diag(σ2)) (7)

where μ = Z2 and log σ = Z2′
are the matrices of the mean and log variance

vectors output by two stack attention networks. Using the two vectors, the model
is modified to sample the latent embedding Z to improve the robustness.

Decoder Learning. Using the latent embedding Z, GALG’s decoder aims to
generate the address-address links Â for tracking. We could predict whether
two client addresses belong to the same user by judging whether there is a link
between the two address nodes. The work is implemented by an inner product
between their latent embeddings:

Âij =
∏

ci∈Vc

∏

cj∈Vc

sigmoid(Z�
ci

Zcj
) (8)

where ci and cj are two address nodes in the graph Gh.

Adversarial Training. To model the complex user behaviors behind the client
addresses, in addition to the semantic knowledge, GALG is also required to use
the distribution knowledge to fully grasp the users’ activities. Using a multi-layer
perceptron (MLP) based discriminator, GALG employs adversarial training to
embed the distribution knowledge into the latent embedding Z.

Through the distribution analysis for each address node c, GALG obtain
the user preference distribution Z∗. The goal of discriminator is to distinguish
whether an input is from the prior distribution or from GALG’s encoder.

During the adversarial training, GALG’s discriminator aims to identify the
real distribution and classify the latent embedding into the fake class. Therefore,
we could optimize the discriminator by minimizing the cross-entropy cost JD:

JD = −Ez∼pz
logD(Z∗) − Ez∼Fen log(1 − D(Z)) (9)

where pz is the real user preference distribution formed by all client addresses
in the historical TLS traffic. D(Z) is the discrimination score. To deceive the
discriminator, in addition to minimizing the error between the ground truth A∗

and the adjacency matrix Â generated from the latent embedding Z, the encoder
is also required to imitate the real preference distributions. Therefore, the cost
of the encoder JE during the adversarial training could be defined as follows:

JE = EÂ∼Fen
log|Â − A∗| − Ez∼Fen logD(Z) (10)

GALG: Linking Addresses in Tracking Ecosystem 279

Table 2. The composition of graphs built from three datasets.

Dataset Nodes c Nodes s Links c-s Users

P-AllService 1,016 5,597 7,022 450

P-Google 723 313 4,134 550

CSTNET 958 5,517 6,840 685

where the ground-truth adjacency matrix A∗ only contains links between training
nodes. The encoder cost J ′

E of the variational autoencoder variant VGALG could
also be defined as follows:

J ′
E = EÂ∼Fen

log|Â − A∗| − Ez∼Fen logD(Z) − KL[Z‖q(z)] (11)

where KL is the Kullback-Leibler divergence. q(z) =
�

ci
N (zci

|0, I) is a Gaussian
prior that we followed Kingma et al. [11]. Finally, we use the adjacency matrix
Â to track users in the tracking ecosystem.

5 Experiment Setup

Datasets. In this work, our evaluation datasets consist of a public dataset
CSTNET and two participant datasets P-AllService and P-Google generated
from 1k participants in two months in our experiments. Table 2 provides the
graph composition built from the three datasets.

(1) CSTNET. CSTNET is a public dataset collected from March to July 2018
on China Science and Technology Network. Cui et al. [4] monitored the traffic
on a vantage point to achieve tracking on IPv6 networks. In the network,
80% of IPv6 users change their client addresses at least once a month. We
use the dataset to track real-world users from the perspective of a network
provider.

(2) P-AllService and P-Google. To conduct extensive experiments, we invited
1k participants to join the traffic collection work under mobile networks. We
installed the traffic plugin in participants’ devices to record their daily online
behaviors with consent. The participants are divided into two groups. For one
group, we recorded all the TLS interaction traffic generated by participants to
imitate a third party who tracked users with traffic plugins deployed on numer-
ous Apps and build the P-AllService dataset. For the other group, the par-
ticipants are required to access Google services following their online habits.
These activities cannot be fully tracked by Google accounts since many ser-
vices or web pages are not required to log in for browsing, such as Google
Scholar and blogs. We recorded the traffic to form the P-Google dataset to
track users from the perspective of a content provider like Google.

Baselines. The baselines in our experiments for comparison mainly include
representative link prediction approaches and tracking techniques.

280 T. Cui et al.

(1) Link Prediction Approaches. We compare types of link prediction
approaches in this paper. Common Neighbors (CN) [16], Jaccard [16],
and Preferential Attachment (PA) [2] are three heuristic methods to
determine a link between two nodes. Spectral Clustering (SC) [21] and
node2vec [9] are two latent feature methods to learn graph embeddings.
GAE [12], VGAE [12], ARGA [18], and ARVGA [18] are four explicit
feature methods to aggregate node features through graph autoencoder or
its variational version.

(2) Tracking Techniques. We implement four representative tracking tech-
niques, which use multiple characteristics in the TLS traffic. User IP Pro-
filing [14] and User SNI Profiling [8] are methods to build user profiles
through the destination IPs of the client addresses or the SNIs and track
users through a Bayesian classifier. Client Fingerprinting [1] is a method
to extract fields in ClientHello messages as client fingerprints and learn the
fingerprints through Random Forest. SiamHAN [4] is a method to build
graphs for each client address and learn the similarity of each two graphs
through siamese networks.

Implementation. During the data preprocessing, we limit the maximum fin-
gerprint length to 50. To train the doc2vec model, we set the vector size as 50
and the window size as 5 to obtain the representations of the fingerprints. The
output dimension of PCA is 32 for the representations of the distributions. When
training GALG, we randomly initialize parameters and optimize the model with
the Adam algorithm. The learning rate is set as 0.005. The number of e-steps is
5 and the number of d-steps is 1. The number of attention head K is 4. We use
four metrics including TPR, FPR, AUC, and AP to evaluate the models.

6 Evaluation

This section presents all experimental results to implement online user tracking.

6.1 Distribution Analysis

Fig. 4. The preference distributions of
client addresses coming from 15 users.

We provide the result of distribution
analysis to indicate the effectiveness
to leverage the distribution knowledge.
Figure 4 shows the representation of
distributions in P-AllService dataset.
Results indicate that the preference
distributions of the client addresses
belonging to the same user are simi-
lar, demonstrating that exploiting this
knowledge could help distinguish the
client addresses of different users to a
certain degree. For instance, Address0

GALG: Linking Addresses in Tracking Ecosystem 281

C2653

S569 S45 S2655

C2654

(a) a graph case for
attention analysis.

(b) c2653’s finger-
print attention.

(c) s569’s fingerprint
attention.

(d) service attention
of c2653 and c2654.

Fig. 5. A case study of stack attention to help track users through semantic knowledge.

and Address1 keep similar distribution representations because they both belong
to User0. While the representation of Address2 belonging to User1 is obviously
different from the former addresses in visual. With deeper analysis, we find
that Address0 and Address1 have accessed many common domains with sim-
ilar visit volumes, including google, cloudflare, eroimg, and share-videos.
While Address2 has never accessed these domains. GALG could embed the dis-
tribution knowledge into the embedding to help link the client addresses.

6.2 Attention Analysis

Figure 5(a) shows a knowledge graph case, including two address nodes (c2653
and c2654), three service nodes (s569, s45, and s2655), and the address-service
links between them. In this setting, c2653 and c2654 both belong to the user
u1. Figure 5(b) and Fig. 5(c) show the fingerprint attention of the address node
c2653 and the service node s569 respectively. The label corresponding to each
fingerprint is shown in Table 1. For the client fingerprints of c2653, Fc4 con-
tributes more to the task obviously since it is the significant browser parameter
that could be used to identify the client used by a user. Due to the change of
the client address, Fc1 surely obtains the lowest attention for tracking users.
For the service fingerprints of s569, Fs1 becomes the critical service fingerprint
to indicate the attribute of the service accessed by users. The fingerprint-level
attention finally obtains unique client and service embeddings through learning
semantic information. The service attention of c2653 and c2654 is illustrated in
Fig. 5(d). The high attention value of s45 indicates that service attention could
find the same service accessed by both two client addresses to help link them to
the same user. Finally, the service-level attention could learn the semantics of
address-service communication and obtain the meaningful embeddings.

6.3 Link Generation

To explore the effectiveness, we first measure the link generation performance
by evaluating the correctness of the links generated between the test nodes.

Few-shot Learning. In Fig. 6(a), we show GALG’s performance on the P-
AllService dataset with different ratios of training users. With only 20% train-
ing users, GALG could obtain an acceptable performance with 81% AUC.

282 T. Cui et al.

Fig. 6. The link generation performance of GALG on different training ratios and the
advantage of link generation (LG) compared to link prediction (LP) methods.

This advantage comes from the graph structure of address-service links to prop-
agate the knowledge of labeled address nodes to the other non-labeled address
nodes. Finally, GALG could achieve 92% AUC with an 80% training ratio. To
demonstrate the advantage of link generation, we implement two frameworks of a
representative model GAE under link prediction and link generation. Figure 6(b)
shows the performance of the two frameworks on 20% and 80% training ratios
compared with GALG. With 20% training users, the link prediction method
could only obtain 55% AUC. However, with the link generation framework, GAE
could achieve 75% AUC under this training ratio. Since link prediction methods
require learning the graph with address-address links, when limiting the number
of the labeled address nodes, the graph will lose considerable links to propa-
gate the label knowledge. For link generation methods, since the address-service
links of each address node are easy to obtain regardless of whether the nodes are
labeled, the always complete graph structure help link generation more effective.

Overall Performance. Finally, we modify link prediction baselines with the
link generation framework and show the performance of all link prediction base-
lines under the frameworks of link prediction and link generation in Table 3.
Results indicate that the performance of link generation is better than link pre-
diction for all baselines on the three user datasets. It demonstrates that learning
the online behaviors behind the address-service links is more effective than infer-
ring the neighbor relationships through address-address links. Our two models
GALG and VGALG outperform all baselines using the theory of link generation.

6.4 User Tracking

To test the tracking performance, we set one address node of each test user as
the known nodes to evaluate whether we could link all address nodes belonging
to the same users with the known nodes.

GALG: Linking Addresses in Tracking Ecosystem 283

Table 3. The overall performance of all link prediction baselines under the frameworks
of link prediction and link generation.

Method Link prediction Link generation

CSTNET P-AllService P-Google CSTNET P-AllService P-Google

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

CN 0.528 0.515 0.619 0.606 0.600 0.596 0.632 0.617 0.623 0.615 0.728 0.724

Jaccard 0.502 0.495 0.610 0.605 0.582 0.577 0.619 0.611 0.632 0.606 0.759 0.763

PA 0.524 0.524 0.470 0.508 0.595 0.653 0.526 0.557 0.593 0.594 0.603 0.661

SC 0.648 0.680 0.490 0.641 0.396 0.547 0.661 0.687 0.615 0.686 0.589 0.635

node2vec 0.511 0.516 0.514 0.532 0.444 0.476 0.516 0.539 0.633 0.686 0.626 0.641

GAE 0.888 0.887 0.840 0.850 0.933 0.942 0.978 0.985 0.920 0.942 0.941 0.955

VGAE 0.842 0.840 0.850 0.857 0.893 0.901 0.970 0.977 0.929 0.946 0.930 0.951

ARGA 0.918 0.924 0.915 0.937 0.889 0.931 0.938 0.949 0.934 0.945 0.940 0.950

ARVGA 0.867 0.879 0.881 0.909 0.881 0.887 0.886 0.889 0.916 0.936 0.902 0.904

GALG – – – – – – 0.980 0.984 0.957 0.969 0.940 0.959

VGALG – – – – – – 0.988 0.990 0.937 0.954 0.965 0.974

Table 4. The overall tracking performance and the inference time of all tracking tech-
niques to predict 1 million link relationships from 0.5k users

Method CSTNET P-AllService P-Google One Total

AUC AP AUC AP AUC AP Inference Time

User IP Profiling 0.563 0.001 0.611 0.000 0.596 0.000 0.0006 s 623.0840 s

User SNI Profiling 0.611 0.001 0.645 0.000 0.535 0.000 0.0005 s 592.0129 s

Client Fingerprinting 0.790 0.005 0.740 0.001 0.755 0.001 0.0091 s 9157.4099 s

SiamHAN 0.948 0.723 0.967 0.824 0.976 0.727 0.0013 s 1323.6057 s

GALG - Attention 0.967 0.230 0.968 0.479 0.949 0.201 0.1604 s 0.1604 s

GALG - Distribution 0.990 0.890 0.975 0.889 0.966 0.826 0.1893 s 0.1893 s

GALG 0.995 0.925 0.981 0.906 0.982 0.911 0.1923 s 0.1923 s

VGALG 0.996 0.896 0.982 0.926 0.971 0.844 0.2030 s 0.2030 s

Overall Tracking Performance. The overall tracking performance of all exist-
ing tracking techniques is shown in Table 4. Results indicate that the former
three methods obtain bad performance on the AP metric since they can not be
applied to the open-world dataset to track the users who are not in the training
set. When replacing the stack attention layer in the encoder with a 1-d convo-
lutional layer and a graph convolutional layer (GALG - Attention) or removing
the discriminator in GALG (GALG - Distribution), the performance drasti-
cally degrades. Compared with the state-of-the-art tracking approach SiamHAN,
GALG and VGALG could outperform the method by significant margins. For
a deeper analysis, Fig. 7(a) and Fig. 7(b) show the ROC curves of GALG, link
generation-based methods, and existing tracking techniques. Using the link gen-
eration framework, explicit feature methods like GAE and ARGA could reach
the similar performance of SiamHAN. For a target FPR = 2 × 10−2, GALG

284 T. Cui et al.

Fig. 7. The tracking performance of the state-of-the-art tracking techniques and the
link prediction baselines with the link generation framework.

could provide a TPR of 0.99. To explore the inference time, we measure the
performance on a single GeForce GTX 1080 Ti GPU. Since GALG is to output
the whole adjacency matrix, the inference time for one link is equal to the time
for all links. However, prior techniques expense considerable time to infer links
between every two nodes in the graph. Therefore, the advantage of our frame-
work helps GALG track 0.5k users in 1 s, which is dramatically faster than the
state-of-the-art approach SiamHAN in half an hour.

7 Conclusion

In this work, we explore the implementation to track users on TLS encrypted
traffic. We propose GALG, a graph-based artificial intelligence approach to link
changed client addresses for finding out the target user. Using the adversar-
ial architecture with a graph autoencoder, GALG could jointly learn the user
embedding with semantics and distributions. With a new theory - link genera-
tion, GALG could more effectively infer address-address links than the frame-
work of link prediction. Extensive experiments indicate that the performance
of our models outperform state-of-the-art methods by significant margins. We
published the source code of GALG at https://github.com/CuiTianyu961030/
GALG.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China No. 2020YFE0200500 and the Strategic Priority
Research Program of Chinese Academy of Sciences, Grant No. XDC02040400.

References

1. Anderson, B., McGrew, D.A.: OS fingerprinting: new techniques and a study of
information gain and obfuscation. In: CNS, pp. 1–9 (2017)

https://github.com/CuiTianyu961030/GALG
https://github.com/CuiTianyu961030/GALG

GALG: Linking Addresses in Tracking Ecosystem 285

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
(5439), 509–512 (1999)

3. Bashir, M.A., Farooq, U., Shahid, M., Zaffar, M.F., Wilson, C.: Quantity vs. qual-
ity: evaluating user interest profiles using ad preference managers. In: NDSS (2019)

4. Cui, T., Gou, G., Xiong, G., Li, Z., Cui, M., Liu, C.: SiamHAN: IPv6 address corre-
lation attacks on TLS encrypted traffic via siamese heterogeneous graph attention
network. In: USENIX Security, pp. 4329–4346 (2021)

5. Droms, R.E.: Dynamic host configuration protocol. RFC 2131, 1–45 (1997)
6. Dunteman, G.H.: Principal components analysis (1989)
7. Gómez-Boix, A., Laperdrix, P., Baudry, B.: Hiding in the crowd: an analysis of

the effectiveness of browser fingerprinting at large scale. In: WWW, pp. 309–318
(2018)

8. Gonzalez, R., Soriente, C., Laoutaris, N.: User profiling in the time of HTTPS. In:
IMC, pp. 373–379 (2016)

9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD,
pp. 855–864 (2016)

10. Herrmann, D., Banse, C., Federrath, H.: Behavior-based tracking: exploiting char-
acteristic patterns in DNS traffic. In: Computer Security, pp. 17–33 (2013)

11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
12. Kipf, T.N., Welling, M.: Variational graph auto-encoders. CoRR (2016)
13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: ICLR (2017)
14. Kumpost, M., Matyas, V.: User profiling and re-identification: case of university-

wide network analysis. In: TrustBus, pp. 1–10 (2009)
15. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:

ICML, pp. 1188–1196 (2014)
16. Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks.

J. Am. Soc. Inf. Sci. Technol. 7, 1019–1031 (2007)
17. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: policy and technology. In:

SP, pp. 413–427 (2012)
18. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized

graph autoencoder for graph embedding. In: IJCAI, pp. 2609–2615 (2018)
19. Papadopoulos, P., Kourtellis, N., Markatos, E.P.: Cookie synchronization: every-

thing you always wanted to know but were afraid to ask. In: WWW, pp. 1432–1442
(2019)

20. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
pp. 1–160 (2018)

21. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Mining
Knowl. Disc. 3, 447–478 (2011)

22. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph

attention networks. In: ICLR (2018)
24. Yen, T., Xie, Y., Yu, F., Yu, R.P., Abadi, M.: Host fingerprinting and tracking on

the web: privacy and security implications. In: NDSS (2012)
25. Yu, Z., Macbeth, S., Modi, K., Pujol, J.M.: Tracking the trackers. In: WWW, pp.

121–132 (2016)

Automatic Grading of Student Code
with Similarity Measurement

Dongxia Wang, En Zhang, and Xuesong Lu(B)

East China Normal University, Shanghai, China
{dxwang,zhangen}@stu.ecnu.edu.cn, xslu@dase.ecnu.edu.cn

Abstract. Nowadays, online judges are extensively used for automati-
cally grading student code. However, they grade code by only counting
the number of passed test cases, which is not fair for assessing the over-
all quality of a code snippet. On the other hand, existing studies have
used machine learning techniques for code grading. However, they usu-
ally require large amounts of labeled code to enable supervised learning
and heavily rely on feature engineering. In this work, we design Sim-
Grader, a code grading system that grades student code based on the
measurement of similarity to the “good” code, and thus save the effort for
code labeling. We extract three types of features to capture the overall
quality of a code snippet, and design specific methods to enhance the
feature discrimination, which facilitates the similarity measurement. We
conduct extensive experiments to show the superiority of SimGrader
over existing methods and justify the effect of the its system compo-
nents. We deploy SimGrader to grade the student code submitted in
an introductory programming course.

Keywords: Code grading · Discriminative feature · Contrastive
learning · Tree edit distance

1 Introduction

Online judge (OJ) systems [23] have been extensively used in programming edu-
cation [7,10,21,22,27]. The systems can automatically assess the correctness of
student code by executing them with a set of pre-defined test cases, which greatly
reduces teachers’ burden of grading student code. However, for students, grading
their code by simply counting the number of passed test cases is less informative
and sometimes unfair with respect to the quality of the code. For instance, a
code snippet passing all test cases may have awful code style or high time/space
complexity, whereas a nearly correct code snippet may fail all test cases only
due to one variable misuse. A good programming education should encourage
students not only to write correct programs, but also to write concise programs
with good style. As such, a fair code grading system should consider as many of
the above factors as possible and give students a composite score to guide them
in optimizing their code. A potential solution is to extract a set of code features
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 286–301, 2023.
https://doi.org/10.1007/978-3-031-26422-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_18

Automatic Grading of Student Code with Similarity Measurement 287

pertaining to the grading factors and train machine learning models based on
the features to predict the code grade.

Several related studies have investigated automatic code grading with
machine learning techniques [14,18–20]. However, there exist following issues
in these methods. First, they mainly construct the semantic features reflecting
the functionality of a code snippet for grade prediction, e.g., expression features
and data-dependency features [19,20], and rarely consider the features related
to code style such as variable naming and indent use. These style features are
actually crucial for assessing the quality of source code in terms of readability
and ease of maintenance. Second, most existing methods manually construct
the semantic features of source code, e.g., by counting the occurrences of key
expressions and tokens [18,20], or calculating the number of specific nodes in the
abstract syntax tree of a code snippet [14]. Manual feature engineering is ad-hoc
for each programming question and may introduce noise into the features. Last,
existing methods build supervised grading models and therefore require large
amounts of labeled source code [11,14,16,18–20]. This not only imposes a lot of
human labors but also leads to the underuse of massive unlabeled source code
in the OJ system.

In this work, we implement the SimGrader system, which grades student
code based on the measurement of similarity to the “good” code and therefore
avoids the overhead of labeling the student code. For each programming question,
“good” code is defined as a concise code snippet with good style to solve the
question. Compared to labeling the student code, preparing the good code is
much cheaper because the number of questions in an OJ system is often limited
and we may find the good code from correct student submissions. For newly
added questions, standard code snippets have to be composed for generating the
test cases, which can be used as the good code. Note that each programming
question may have multiple good code snippets. Then, we can generate the grade
for a student code snippet based on its similarity (or distance) to the nearest
good code. This is motivated by the human grading process where the teachers
often compare a student code snippet with the nearest standard solution and
give the grade based on the defects in the student code.

To implement SimGrader, at the core of the system is extracting the dis-
criminative feature vector of student code that is used for code similarity mea-
surement. We propose to extract the following three types of features. The first
type are the static features such as the number of blank lines, improper spaces
and indents, and the ratio of improperly named variables. This type of features
mainly reflect whether a code snippet is concise and has good style. The second
type of features are the runtime statistics such as execution time, memory usage
and the percentage of passed test cases. This type of features mainly capture the
efficiency and correctness of a code snippet. The last type are the semantic fea-
tures of a code snippet, which reflect the functionality of a code snippet and thus
are important for evaluating whether the code complies with the requirements
of the programming question. Inspired by the recent advances in program rep-
resentation learning [1,5,12,25], we propose to learn the features from massive
student code using deep learning techniques rather than manually constructing

288 D. Wang et al.

them as in previous studies. To improve the discrimination of semantic features,
we further design a contrastive learning task followed by a fine-tuning task to
obtain the final semantic feature vectors. The above three types of features are
concatenated to form the complete feature vector. Finally, we calculate the sim-
ilarity between the complete feature vector of a student code snippet and that
of the nearest good code, based on which the code is graded. We deploy Sim-
Grader in the OJ system used for an introductory programming course and
demonstrate how we use it to grade student code.

Our contribution is summarized as follows:

– We design SimGrader, a system that grades student code based on the mea-
surement of similarity to the “good” code and therefore avoids the expensive
code labeling overhead. For similarity measurement, we propose to extract
three types of code features including the static feature, runtime feature and
semantic feature, which capture not only the functional information of a code
snippet but also the conciseness and the style information. Moreover, the
semantic feature is automatically learned from massive student code, avoid-
ing the ad-hoc feature engineering and possible human-injected noise (See
Sect. 3.1).

– To improve the discrimination of semantic features, we design a contrastive
learning task to train the semantic feature vectors, so that the vectors of
more similar code snippets are closer to each other. We further fine-tune
the semantic feature vectors by predicting the closeness of each pair of code
snippets, where the closeness is calculated based on the tree edit distance
between the abstract syntax trees (ASTs) of the snippets (See Sect. 3.2).

– We conduct extensive experiments to show the effectiveness of SimGrader.
We compare it with existing grading systems using the similarity measure-
ment strategy as well as by training supervised prediction models with a small
labeled dataset. We also conduct ablation studies to show the effect of the
contrastive learning and fine-tuning sub-steps. The experimental results not
only show the superiority of the extracted features but also justify the com-
ponent design of SimGrader (See Sect. 4). We deploy SimGrader in an OJ
system used for an introductory programming course and demonstrate some
use cases (See Sect. 5).

2 Related Work

Existing studies mainly design supervised learning models for automatic code
grading and heavily rely on feature engineering. For instance, Srikant and Aggar-
wal [19] construct six types of code semantic features by counting corresponding
patterns. The patterns are extracted from the token sequence, the ASTs, the
control flow graphs (CFG) and data dependency graphs (DDG) of a code snip-
pet, and depend on each programming question. Based on the features, they
train three regression models to predict code grade, including ridge, SVM and
random forests. Later, Singh et al. [18] extend this work and propose a ques-
tion independent method for code grading. They design a transformation which

Automatic Grading of Student Code with Similarity Measurement 289

would transform a question specific feature matrix pertaining to a set of code
snippets into a structure invariant feature matrix. This matrix is further used as
input to learn a question independent grading model. They use the similar fea-
ture engineering method with [19] and still need to label large amounts of code
for learning the transformation. A related study [20] attempts to grade uncom-
pilable code. Their focus is how to use feature engineering to extract semantic
features from uncompilable code snippets.

Recent studies develop deep learning solutions for code grading. For instance,
Orr and Russell [14] use feed-forward neural networks to predict code grade.
However, they still use manually constructed features and need to label the
code for supervised learning. Qin et al. [16] adopt a Bi-GRU network to learn
from the intermediate code representation obtained using LLVM. They design
a selection function to pick important features from the intermediate represen-
tation. The model is trained with labeled code snippets. A related but different
study is conducted by Johnson-Yu et al. [9], where they design a model to find
the unmarked code submissions that are mostly similar to the submissions that
have been marked by a grader. Then they assign the unmarked submissions to
the graders based on the similarity distribution, so that the efficiency of manual
grading can be improved.

3 The SIMGRADER System

Fig. 1 shows the overview of the SimGrader system consisting of three main
steps. In the first step as shown in Fig. 1(a), three types of features are extracted
for each code snippet, including static features, runtime features and seman-
tic features. Section 3.1 describes the details of feature extraction. In the sec-
ond step as shown in Fig. 1(b), two sub-steps including contrastive learning and
fune-tuning are designed to enhance the discrimination of the semantic features.
Section 3.2 describes the details of these two sub-steps. In the final step as shown
in Fig. 1(c), the concatenation of the three types of features is used to output the
grading score for a code snippet based on similarity measurement with the good
code. Section 3.3 describes this strategy. In the experiments, we also invite two
experts to grade a small set of student code and show the results of supervised
learning using the dataset.

Fig. 1. Overview of the SimGrader system.

290 D. Wang et al.

3.1 Feature Extraction

Static Features. We construct the static features by traversing the text and
the AST of a code snippet, without executing the code. The AST of a code
snippet is an tree-based abstract representation of the grammatical structure,
which is composed of semantic structure (internal) nodes and token (leaf) nodes.
Figure 2(a) shows a simple code snippet and Fig. 2(b) shows the corresponding
AST. It can be observed that the leaf nodes correspond to the tokens in the code
text, and the internal nodes indicate the semantic structure of (i.e., relationship
between) the tokens. We use pycparser1 to obtain the ASTs of student code.
In addition, we also use static analysis tools such as cpplint2 and cppcheck3 to
obtain some of the features. The static features obtained by traversing the code
text and AST mainly capture the conciseness and style information of the code.
The details of the features are described as follows:

int sum(int a, int b)
{

return a+b;
}

(a) Code Statements (b) Abstract Syntax Tree

Fig. 2. A Code Snippet and its AST.

– Special lines: Count the number of comments and blank lines. The intu-
ition is that a code snippet with good style should have a certain number of
comments and few blank lines.

– Improper spaces and indents: Count the number of improperly used
spaces or indents (including too many or too few indents). We use cpplint
to calculate the numbers.

– Variables: Count the number of variables and the number of times each
variable is used. The intuition is that a concise code snippet should not have
too many unnecessary and repeatedly used variables.

– Variables naming: Calculate the ratio of properly named variables over all
variables, except the variables in the control statements. A properly named
variable can be a word, an abbreviation, or the combination of words and
abbreviations. Proper variable naming can enhance the readability and ease
of maintenance of code [8,15].

1 https://github.com/eliben/pycparser.
2 https://github.com/cpplint.
3 https://cppcheck.sourceforge.io/.

https://github.com/eliben/pycparser
https://github.com/cpplint
https://cppcheck.sourceforge.io/

Automatic Grading of Student Code with Similarity Measurement 291

– Unused elements: Count the number of unused variables and non-executed
code lines. These elements commonly present in the code written by novice
students. We use Cppcheck to calculate the numbers.

– Cyclomatic complexity: Count the number of judgement nodes in an AST.
Common judgement nodes include ForStatement, WhileStatement, IfState-
ment, BinaryOp of boolean logic, etc. Cyclomatic complexity measures the
complexity of code logic. For each programming question, a higher cyclomatic
complexity indicates that the code is less concise and readable.

– Halstead metrics: Count the number of unique and total operators and
operands, and use them in the Halstead formulas to calculate the metrics.
These metrics mainly capture the static complexity of a code snippet.

Runtime Features. The runtime features of the statistics obtained by execut-
ing student code with the test cases. The features capture the correctness and
efficiency of the code pertaining to a specific programming question, which are
described as follows:

– Test cases: Calculate the ratio of passed test cases over all test cases.
– Execution time: Calculate the maximum, average and minimum execution

time of all test cases. The feature captures the time efficiency of code.
– Memory usage: Calculate the maximum, average and minimum memory

usage of all test cases. The feature captures the space efficiency of code.

Semantic Features. In previous studies [18–20], the semantic features pertain-
ing to the functionality of a code snippet are obtained with feature engineering.
This strategy needs to construct ad-hoc features for each question and may intro-
duce noise into the features. A recent study [16] uses a Bi-GRU model [24] to
learn from the token sequence of source code and output a distributed vector
to represent the semantic features. However, learning from the token sequence
leads to a significant effort to learn the syntactic nature of source code from
scratch, which reduces the efficiency of learning the semantic features. Inspired
by recent studies in program representation learning [1,5,12,25], we choose to
learn the semantic features from the AST of a code snippet. The AST struc-
ture is shown to preserve the syntactic nature of a code snippet and therefore
significantly lower the learning effort of semantic features [2,3]. In the current
study, we experiment with two representative models, namely, TBCNN [12] and
ASTNN [25], respectively. TBCNN applies tree-based convolution kernels on an
AST to gather the information of child nodes into the parent nodes, and uses
dynamic pooling to aggregate the feature vectors of all nodes. The resulted vec-
tor is used to represent the entire code snippet. ASTNN splits an AST into a set
of subtrees corresponding to the statements in the code snippet. The subtrees
are organized into a sequence in accordance with the order of the corresponding
statements in the original code. Then it adopts a Bi-GRU network to encode
the sequence and uses max pooling to aggregate all hidden states to form the
semantic feature vector.

292 D. Wang et al.

3.2 Enhancing the Discrimination of Semantic Features

Since we grade student code based on the measurement of similarity to the good
code, the discrimination of the code feature is critical, i.e., the feature vectors
of similar code snippets should be close to each other and the feature vectors of
dissimilar code snippets should be far away from each other. To enhance feature
discrimination, we design two sub-steps after extracting the semantic features
for obtaining the final semantic feature vectors.

Contrastive Learning. The first sub-step is to train more discriminative
semantic feature vectors using contrastive learning [6]. Contrastive learning rep-
resents a category of self-supervised learning methods whose optimization objec-
tive is to simultaneously maximize the similarity among positive (close) data
points and minimize the similarity among negative (distant) data points. As
such it can be used to increase the discrimination of feature vectors. Our design
of contrastive learning is as follows. For each code snippet in a random batch,
we first construct its positive counterpart based on small random transforma-
tion to the source code. We adopt the method in [4] and transform the original
source code into a code snippet with equivalent semantic. The transformation has
four types including variable renaming, statement swapping, statement insertion
and for-while interchanging. Figure 3 shows an example of the transformations,
where Fig. 3(a) is the original code snippet, and Fig. 3(b)–(e) show the trans-
formed elements in red for all the transformation types. Note that none of the
transformations changes the semantic of the original code snippet. For each code
snippet, we transform it with the four types and randomly choose a transformed
snippet as its positive counterpart during training.

int main(){

int number;

int sum = 0;

scanf("%d", &number);

while (number > 0){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum);

}

(a) Original Code (b) Variable Renaming (c) Statement Swapping (d) Statement Insertion (e) for-while Interchanging

int main(){

int x;

int sum = 0;

scanf("%d", &x);

while (x > 0){

if (x % 2 == 1)

sum += x;

scanf("%d", & x);

}

printf("%d", sum);

}

int main(){

int sum = 0;

int number;

scanf("%d", &number);

while (number > 0){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum);

}

int main(){

int number;

int sum = 0;

int count;

scanf("%d", &number);

while (number > 0){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum); }

int main(){

int number;

int sum = 0;

scanf("%d", &number);

for (; number > 0;){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum);

}

Fig. 3. An example of the code transformation.

The construction of the negative counterpart is relevant to the contrastive
loss used for optimization. We experiment with two types of loss functions in
the current study, namely, the InfoNCE loss [13] and the Triplet loss [17]. In the
former case, for each code snippet, we use all other code snippets in the same
batch as the negative counterparts. In the latter case, each code snippet is just
paired with one negative counterpart, selected as follows. We first use TBCNN
or ASTNN to obtain the encodings of the code snippets. Then for each snippet,
we calculate the L2 distances between its encoding and all other encodings and
sort all the distances in either order. We pick the distance in the middle and

Automatic Grading of Student Code with Similarity Measurement 293

use the other snippet in the distance calculation as the negative counterpart, as
suggested in [17]. Denote by ci, posi and negi the ith code snippet in a batch,
the corresponding positive counterpart and negative counterpart, respectively.
For both types of contrastive loss, the objective function of contrastive learning
ci is depicted as follows:

Li
con = − log

exp(eci
·eposi

τ)
exp(eci

·eposi

τ) +
∑

negi∈batch

exp(eci
·enegi

τ)
, (1)

where eci
denotes the encoding of ci, · denotes the dot product and τ is the

temperature parameter. Note that for the Triplet loss, there is only one negi for
each ci and the

∑
symbol could be omitted.

Predicting Code Closeness Based on Tree Edit Distance. The second
sub-step is to further fine-tune the feature vectors obtained in the contrastive
learning sub-step using a supervised prediction model. Remember that in con-
trastive learning, we form a random batch from the student code submitted to
all programming questions. As a result, for each code snippet, we equally treat
the negative counterparts of the same question and those of a different ques-
tion. Because the code snippets of the same question are semantically similar,
the resulted feature vectors of the same question are still very close to each
other. Therefore, we consider to further separate the feature vectors of the code
snippets submitted to the same question.

To this end, we train a supervised model to predict the closeness of each
pair of code snippets for the same question. We define the closeness of two code
snippets as the ratio of the tree edit distance [26] between their ASTs to the
number of nodes in the AST with more nodes. Once we obtain the closeness
between every pair of code snippets, we set a threshold 0.05 according to the
distribution. The pairs with a closeness below the threshold are labeled with 1
(close pairs), and the other pairs are labeled with 0 (non-close pairs). Note that
the labels are automatically calculated and do not require any manual labeling
effort. Then we train a three-layer fully-connected neural network to predict the
labels of the pairs. Each input is a pair of code feature vectors obtained from
the contrastive learning sub-step. Because most code pairs are non-close pairs,
we use focal loss as the loss function to mitigate the imbalanced distribution
problem. Denote by pi and yi the predicted probability and label of the ith code
pair. The focal loss is depicted as follows:

Li
foc =

∑ −α(1 − pi)γ log(pi), if yi = 1
−(1 − α)pγ

i log(1 − pi), if yi = 0,
(2)

where the α is weighting factor and the γ is the focusing parameter.
At inference time, the output layers of the contrastive learning model and the

fine-tuning model are discarded, and the remaining architectures are connected
to generate the semantic feature vector for each code snippet.

294 D. Wang et al.

3.3 Grading Student Code

The above three types of features are concatenated to form the complete fea-
ture vector, where each type of feature vector is normalized in the range [0, 1]
before concatenation. When grading a code snippet, we first calculate the cosine
similarity between its feature vector and the nearest feature vector of a “good”
code snippet of the same programming question. Since the similarity score is
between −1 and 1, we convert it by adding 1 and then dividing 2 to obtain a
score between 0 and 1. To show the grade to the student, we further multiply
the score by 100 as the final grade. Denote by vs and vg the feature vector of
the code snippet and the nearest feature vector of a “good” snippet, respectively.
The final grade is calculated as:

Grade =
sim(vs, vg) + 1

2
× 100, (3)

where sim(vs, vg) = vT
s vg/∈vs∈∈vg∈ is the cosine similarity between vs and vg.

4 Performance Evaluation

We conduct four experiments to determine the model settings, evaluate feature
discrimination, evaluate the performance of similarity-based and learning-based
grading strategies, respectively. We implement SimGrader using Python 3.7.6
and Pytorch 1.7.0. All source code is available at https://github.com/wangDxia/
SimGrader.

4.1 The Datasets and Evaluation Metrics

Datasets. We collect 46,949 compilable C code snippets from an OJ system used
for an introductory programming course in our university. They are submitted
by 146 fresh students in one semester to solve 479 programming questions. We
use all the code snippets for feature extraction, contrastive learning and grading.

For the fine-tuning sub-step that predicts code closeness, we extract 73 ques-
tions with more than 200 submissions and obtain in total 27,462 code snippets.
We form the code pairs for each question and obtain 219000 code pairs, where
41011 pairs are labeled with 1 (close pairs) and 177989 pairs are labeled with 0
(non-close pairs). We randomly divide the pairs with proportion 3:1:1 to form
the training, validation and testing set, respectively.

To verify the effectiveness of SimGrader, we construct a small dataset that
are labeled by experts. We randomly select 30 questions among the 73 questions
with more than 200 submissions, and randomly select 15 submissions for each
question. As such we obtain a small dataset with 450 code snippets. We invite
two teachers of C programming courses and ask them to independently grade
each code snippet on a scale between 1 and 5, which is depicted below. If the
two teachers give different grades to a snippet, we ask them to further discuss
and make an agreement on the final grade.

https://github.com/wangDxia/SimGrader
https://github.com/wangDxia/SimGrader

Automatic Grading of Student Code with Similarity Measurement 295

– 5 - Correct and graceful: The code passes all test cases, and the style is
clean and clear. There are no redundant variables and code lines, and the
variable names are very standardized.

– 4 - Correct with some flaws: A correct implementation but often accom-
panied by poor style or complex solution.

– 3 - Nearly correct and neat: The code does not pass all test cases, but the
overall logic is the same as the correct solution, and the code style is clean
and clear.

– 2 - Incorrect and confusing: The code is incorrect and very different from
the correct solution. The code style is not good and the logic seems confusing.

– 1 - Incorrect and awful: The code is incorrect and the code style is awful.

Evaluation Metrics. We use multiple metrics to evaluate SimGrader. First,
we use the fine-tuning sub-step to determine the best settings for the semantic
feature extraction model (i.e., TBCNN or ASTNN) and the contrastive loss
(i.e., InfoNCE or Triplet loss). We choose the settings when the model has the
best prediction performance on the validation set. The evaluation metric is the
accuracy of code closeness prediction.

Second, to evaluate the discrimination of the feature vectors, we cluster the
vectors and use two internal metrics to assess the clustering results, namely,
Davies-Bouldin Index (DBI) and Silhouette Coefficient (SC). DBI finds for each
cluster the most similar cluster based on their diameters, and then computes the
average similarity over all the clusters. A smaller DBI value means the clusters
are less similar to each other, therefore indicating the vectors are more discrim-
inative. SC is a measure of how similar an object is to the objects within the
same cluster compared to the objects outside the cluster. A higher SC value
means each object is better matched to the objects inside the same cluster and
less matched to the objects outside the cluster, therefore indicating the vectors
are more discriminative.

Third, to evaluate the grading performance using similarity measurement,
we calculate the correlation between the grades produced by SimGrader and
the grades marked by the two experts, on the 450 labeled source code. The
used correlation metrics are the Pearson correlation coefficient (PCC) and the
Spearman’s rank correlation coefficient (SRCC). Furthermore, we use the 450
labeled source code to train and evaluate several supervised models, so that we
can compare with existing code grading systems. The evaluation metrics are
precision, recall and F1 score.

4.2 The Comparative Methods

We compare SimGrader with three existing supervised learning methods. The
LASSO [18,20] method uses feature engineering and trains a LASSO regression
model. The Ensemble [14] method trains an ensemble of feed-forward neural net-
works on the manually constructed features. The SCG_FBS[16] method trains
a Bi-GRU network using the intermediate representation of source code.

296 D. Wang et al.

4.3 The Hyperparameter Setting

In the contrastive learning sub-step, the output embedding size is set to 64 and
the temperature parameter τ is set to 0.1. When training, we set the batch size to
32, the learning rate to 0.001. We use Adamax for optimization. In the fine-tuning
sub-step, we set α in the focal loss to 0.25 and γ to 0.98. In the supervised models,
the Neural Network model has 4 layers, the number of GBDT’s estimators is set
to 150, and the SVM kernel is set to linear.

4.4 Experiment 1: Predicting Code Closeness

Table 1 shows the performance of predicting code closeness on the testing set in
the fine-tuning sub-step for different model settings. We observe that ASTNN
with InfoNCE contrastive learning yields the highest accuracy. In particular,
the ASTNN variants perform better than the TBCNN variants. This may be
because ASTNN uses the order information of the source code in addition to
the AST structural information. The InfoNCE variants perform better than the
Triplet variants, which may indicate using more negative counterparts improves
the discrimination of the feature vectors. All in all, we use the variant of ASTNN
with InfoNCE loss in the subsequent experiments.

Table 1. The performance of different settings for predicting code closeness.

Model TBCNN ASTNN

Variants InfoNCE Triplet InfoNCE Triplet
Accuracy 0.8265 0.8220 0.8551 0.8360

4.5 Experiment 2: Evaluating Feature Discrimination

After the fine-tuning sub-step, the three types of features are concatenated for
grading student code. Before we use them for grading, we evaluate their discrim-
ination since the property is critical for similarity measurement. We cluster the
27,462 code snippets of the 73 questions with more than 200 submissions and
use DBI and SC to evaluate the clustering performance. We use k-means and set
k = 73. We compare the results of SimGrader (Full) with the results obtained
using the feature vectors produced by the three comparative methods. Also,
we remove the contrastive learning (w/o CL) and fine-tuning (w/o FT) sub-
step from SimGrader, respectively, and evaluate the features produced by the
remaining system. Note that the comparative methods have only a full model,
since they do not have a contrastive learning or fine-tuning step as ours. Table 2
shows the results. Remember that a lower DBI and a higher SC indicate the bet-
ter performance. We observe that SimGrader constantly performs much better
than existing methods for both metrics. Moreover, the clustering performance
of SimGrader drops when either sub-step for enhancing feature discrimination
is removed. This shows the effect of these two sub-steps. Note that we need at
least one of the sub-steps to train the semantic features.

Automatic Grading of Student Code with Similarity Measurement 297

Table 2. The performance of clustering the code feature vectors.

Metrics DBI SC
Model Variants w/o CL w/o FT Full w/o CL w/o FT Full

Ensemble [14] – – 1.145 – – 0.257
SCG_FBS[16] – – 1.7718 – – 0.1644
LASSO [18] – – 0.4844 – – 0.5435
SimGrader 0.3243 0.3233 0.2948 0.7059 0.7058 0.7471

4.6 Experiment 3: Grading with Similarity Measurement

Our primary contribution is to grade student code based on the measurement
of similarity to the good code, so that we don’t need large amounts of labeled
code and may sufficiently use the massive unlabeled code. To evaluate the accu-
racy of the grades, we calculate the correlation between the grades produced
by SimGrader and the grades marked by the two experts on the 450 code
snippets. Table 3 shows the results. We observe that SimGrader constantly
performs much better than existing methods for both correlation metrics. Note
that for both correlations, a value greater than 0.8 indicates strong correla-
tion. The results indicate the grades produced by SimGrader are very reliable.
Moreover, the correlation drops when either contrastive learning or fune-tuning
sub-step is removed.

Table 3. The correlation between the grades marked by SimGrader and the experts.

Metrics PCC SRCC
Model Variants w/o CL w/o FT Full w/o CL w/o FT Full

Ensemble [14] – – 0.652 – – 0.645
SCG_FBS[16] – – 0.7518 – – 0.7363
LASSO [18] – – 0.8238 – – 0.8027
SimGrader 0.8701 0.8626 0.8723 0.8168 0.7867 0.8438

4.7 Experiment 4: Grading with Supervised Learning

Finally, we compare SimGrader with existing supervised learning solutions
using the 450 labeled code snippets. We feed the feature vectors produced by
SimGrader into different supervised models and pick the best one for compari-
son. For the comparative solutions, we also use the best settings reported in the
original papers [14,16,18]. Table 4 shows the results. We observe that GBDT
performs better than other models. For each model, we observe the performance
drop when either contrastive learning or fine-tuning sub-step is removed.

298 D. Wang et al.

Table 4. Performance of different supervised models using code features extracted by
SimGrader.

Models w/o CL w/o FT Full
Precision Recall F-score Precision Recall F-score Precision Recall F-score

Neural Network 0.7334 0.7388 0.7329 0.7514 0.7455 0.7377 0.7548 0.7466 0.7408

SVM 0.7420 0.7311 0.7293 0.7446 0.7444 0.7415 0.7357 0.7311 0.7320

DecisionTree 0.6963 0.6888 0.6918 0.6649 0.6688 0.6620 0.7005 0.7044 0.7014

RandomForest 0.7936 0.7833 0.7840 0.7238 0.7333 0.7329 0.7843 0.7844 0.7747

GBDT 0.7970 0.7988 0.7918 0.7677 0.7733 0.7666 0.8197 0.8222 0.8194

We use GBDT (Full) to compare with existing supervised learning solutions.
Table 5 shows the results. We observe that SimGrader performs much better
than comparative methods, which indicates that the features extracted by Sim-
Grader can better capture the static, runtime and semantic property of student
code.

Table 5. Comparing SimGrader with existing supervised learning solutions.

Precision Recall F-score

SimGrader (GBDT) 0.8197 0.8222 0.8194
Ensemble [14] 0.5438 0.5511 0.5491
LASSO [18] 0.6285 0.6177 0.6094
SCG_FBS[16] 0.6048 0.5977 0.5827

5 Application: Using SIMGRADER in an OJ System

We deploy SimGrader in the online judge system used for an introductory C
programming course in our university. Originally, whenever a code snippet is
submitted for a programming question, the OJ executes it with the pre-defined
test cases and gives the feedback in one of the five main types: accepted, wrong
answer, time limit exceeded, memory limit exceeded, runtime error. After the
deployment of SimGrader, the OJ can in addition give out a grade score to
show the overall quality of the code. Figure 4 shows an example, where four code
snippets submitted to the same question are graded. The question is to read
three integer values as the side lengths of a triangle and calculate the area of the
triangle using Heron’s formula.

Automatic Grading of Student Code with Similarity Measurement 299

Fig. 4. An example of four code snippets graded by SimGrader.

In the top-left corner, we observe a concise and correct code snippet and
SimGrader gives a grade score 99. In the top-right corner, the code snippet
is nearly correct except that it fails to convert the integer type into the double
type before division (line 9). As such it fails most of the test cases. However,
SimGrader finds it very close to the good code and gives a grade score 86.
In the bottom-left corner, although the code may pass some cases, it has severe
semantic errors. As such SimGrader only grades it as 81. Finally in the bottom-
right corner, although the code passes all test cases, SimGrader finds it not
concise enough and grades it as 88.

6 Conclusion and Future Work

We design a code grading system, SimGrader, to grade student code based on
the measurement of similarity to the good code. As such, we save the expensive
overhead to label large amounts of student code required by existing methods.
We extract the static features, runtime features and semantic features to cap-
ture the overall quality of each code snippet. To enhance the discrimination
of the features, we design the contrastive learning and fine-tuning sub-steps to
learn more discriminative semantic features. Finally, the three types of features

300 D. Wang et al.

are concatenated for grading prediction. Experimental results show that Sim-
Grader outperforms existing methods in both unsupervised and supervised
learning settings, and justify the effect of each step designed in the system.

The current study shows that the discrimination of the features is critical
for code grading based on similarity measurement. As such, we will investigate
other methods to produce more discriminative code features in future. Moreover,
we plan to collect student code in other programming languages and extend
SimGrader to support multiple languages.

Acknowledgement. This work is supported by the grants from the National Natural
Science Foundation of China (Grant No. 62137001, 62072185).

References

1. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: generating sequences from
structured representations of code. In: International Conference on Learning Rep-
resentations (2018)

2. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: learning distributed rep-
resentations of code. Proc. ACM Program. Lang. 3(POPL), 1–29 (2019)

3. Bielik, P., Raychev, V., Vechev, M.: PHOG: probabilistic model for code. In: Inter-
national Conference on Machine Learning, pp. 2933–2942. PMLR (2016)

4. Bui, N.D., Yu, Y., Jiang, L.: Self-supervised contrastive learning for code retrieval
and summarization via semantic-preserving transformations. In: Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 511–521 (2021)

5. Bui, N.D., Yu, Y., Jiang, L.: TreeCaps: tree-based capsule networks for source code
processing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 30–38 (2021)

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

7. Dong, Yu., Hou, J., Lu, X.: An intelligent online judge system for programming
training. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.)
DASFAA 2020. LNCS, vol. 12114, pp. 785–789. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59419-0_57

8. Hofmeister, J., Siegmund, J., Holt, D.V.: Shorter identifier names take longer to
comprehend. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 217–227. IEEE (2017)

9. Johnson-Yu, S., Bowman, N., Sahami, M., Piech, C.: SimGrade: using code similar-
ity measures for more accurate human grading. In: Proceedings of the 14th Inter-
national Conference on Educational Data Mining, EDM 2021, virtual, 29 June–2
July 2021 (2021)

10. Kim, S., Park, J., Jeon, S., Seo, D.: Web-based online judge system for online
programming education. In: 2022 IEEE International Conference on Consumer
Electronics (ICCE), pp. 1–3. IEEE (2022)

11. Li, Z., Li, L., Wu, Y., Liu, Y., Chen, X.: Automated student code scoring by ana-
lyzing grammatical and semantic information of code. In: 2021 16th International
Conference on Computer Science & Education (ICCSE), pp. 963–968. IEEE (2021)

https://doi.org/10.1007/978-3-030-59419-0_57
https://doi.org/10.1007/978-3-030-59419-0_57

Automatic Grading of Student Code with Similarity Measurement 301

12. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 30 (2016)

13. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv e-prints pp. arXiv-1807 (2018)

14. Orr, J.W., Russell, N.: Automatic assessment of the design quality of python pro-
grams with personalized feedback. In: Proceedings of the 14th International Con-
ference on Educational Data Mining, EDM (2021)

15. Peruma, A., Arnaoudova, V., Newman, C.D.: Ideal: an open-source identifier name
appraisal tool. In: 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 599–603. IEEE (2021)

16. Qin, Y., Sun, G., Li, J., Hu, T., He, Y.: Scg_fbs: a code grading model for students’
program in programming education. In: 2021 13th International Conference on
Machine Learning and Computing, pp. 210–216 (2021)

17. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

18. Singh, G., Srikant, S., Aggarwal, V.: Question independent grading using machine
learning: the case of computer program grading. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
263–272 (2016)

19. Srikant, S., Aggarwal, V.: A system to grade computer programming skills using
machine learning. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1887–1896 (2014)

20. Takhar, R., Aggarwal, V.: Grading uncompilable programs. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 9389–9396 (2019)

21. Wang, G.P., Chen, S.Y., Yang, X., Feng, R.: OJPOT: online judge & practice
oriented teaching idea in programming courses. Eur. J. Eng. Educ. 41(3), 304–319
(2016)

22. Wang, M., Han, W., Chen, W.: MetaOJ: a massive distributed online judge system.
Tsinghua Sci. Technol. 26(4), 548–557 (2021)

23. Wasik, S., Antczak, M., Badura, J., Laskowski, A., Sternal, T.: A survey on online
judge systems and their applications. ACM Comput. Surv. 51(1), 1–34 (2018)

24. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480–1489 (2016)

25. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X.: A novel neural source
code representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), pp. 783–794. IEEE (2019)

26. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

27. Zhou, W., Pan, Y., Zhou, Y., Sun, G.: The framework of a new online judge
system for programming education. In: Proceedings of ACM Turing Celebration
Conference, China, pp. 9–14 (2018)

Meta Hierarchical Reinforced Learning
to Rank for Recommendation: A
Comprehensive Study in MOOCs

Yuchen Li1, Haoyi Xiong2, Linghe Kong1(B), Rui Zhang1, Dejing Dou2,
and Guihai Chen1

1 Shanghai Jiao Tong University, Shanghai, China
{yuchenli,linghe.kong,zhang_rui}@sjtu.edu.cn, gchen@cs.sjtu.edu.cn

2 Baidu Inc., Beijing, China
{xionghaoyi,doudejing}@baidu.com

Abstract. The rapid development of Massive Open Online Courses
(MOOCs) surges the needs of advanced models for personalized online
education. Existing solutions successfully recommend MOOCs courses
via deep learning models, they however generate weak “course embed-
dings” with original profiles, which contain noisy and few enrolled
courses. On the other hand, existing algorithms provide the recom-
mendation list according to the score of each course while ignoring
the personalized demands of learners. To tackle the above challenges,
we propose a Meta hierarchical Reinforced Learning to rank approach
MRLtr, which consists of a Meta Hierarchical Reinforcement Learn-
ing pre-trained mechanism and a gradient boosting ranking method
to provide accurate and personalized MOOCs courses recommendation.
Specifically, the end-to-end pre-training mechanism combines a user pro-
file reviser and a meta embedding generator to provide course embed-
ding representation enhancement for the recommendation task. Further-
more, the downstream ranking method adopts a LightGBM-based rank-
ing regressor to promote the order quality with gradient boosting. We
deploy MRLtr on a real-world MOOCs education platform and evaluate
it with a large number of baseline models. The results show that MRLtr
could achieve ΔNDCG4= 7.74%–16.36%, compared to baselines. Also,
we conduct a 7-day A/B test using the realistic traffic of Shanghai Jiao
Tong University MOOCs, where we can still observe significant improve-
ment in real-world applications. MRLtr performs consistently both in
online and offline experiments.

Keywords: Online education · MOOCs recommendation · Meta
learning · Hierarchical reinforcement learning · Learning to rank

This work was supported in part by National Key R&D Program of China (No.
2021ZD0110303), NSFC grant 62141220, 61972253, U1908212, 72061127001, 62172276,
61972254, the Program for Professor of Special Appointment (Eastern Scholar) at
Shanghai Institutions of Higher Learning, Open Research Projects of Zhejiang Lab
No. 2022NL0AB01.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 302–317, 2023.
https://doi.org/10.1007/978-3-031-26422-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_19

MRLtr: Meta Hierarchical Reinforced Learning to Rank 303

1 Introduction

With the rapid development of online education, many Massive Open Online
Courses (MOOCs) platforms (e.g., Coursera, edX and Udacity) have been built
around the world to offer convenient and low-cost opportunities to access high
qualified courses from elite universities. The rapid development of MOOCs surges
the needs of advanced models and algorithms for personalized course recommen-
dation. Nowadays, deep learning techniques have made significant achievements
in many areas, such as computer vision, natural language processing and rec-
ommendation system. The MOOCs recommendation can be considered as a
sequential recommendation problem. We can formulate the problem as recom-
mending the most probable course to be enrolled by certain user (the user’s
preference) at time t+1, given a set of historical enrolled courses (the user’s
profile) before time t. To tackle such issue, existing works have proposed vari-
ous methods to model users’ preferences. For example, factored item similarity
model (FISM) [1] represents each course as an embedding vector and averages
the embedding of all historical courses as the user’s preference without capturing
the order of the courses. In order to use the order of historical courses, [2] pro-
poses a gated recurrent unit model adding a temporal sequence of the historical
courses, whose output is the last vector of the user preference. However, its per-
formance is compromised by assigning all the historical courses with the same
weight when calculating the similarity between the target course and the user
profile. To distinguish the weights of different courses, two attention-based mod-
els (neural attentive item session-based recommendation (NASR) [3] and neural
attentive item similarly (NAIS) [4]) are proposed. NAIS and NASR can estimate
the attention coefficient of each enrolled course as the importance indicator.

While existing attempts have made significant progress, there still exists three
technical challenges as follows. Firstly, existing solutions using deep learning
models could fit the original user profiles well, they however contain noises. For
instance, there are some enrolled courses whose watching duration is terribly
short in a user profile, which represents that the user shows little interest in the
courses or enrolls them mistakenly. Once these noisy courses are fed into deep
learning models, they will dilute the importance of the contributing courses,
which will make the recommendation model performance poorly. Secondly, exist-
ing solutions successfully extract features from course materials for recommen-
dation via “course embeddings”, they however fail to extract informative features
for recommendation when the training data is limited (e.g., cold-start courses).
For some courses with many enrolled users, their features will be learned suffi-
ciently. In such case, it will be a higher chance for them to be recommended.
On the contrary, for new courses with relatively few enrollments, their special
features will be ignored, which leads to lower recommendation probability. More-
over, for cold-start case, when a new course is added into the platform, or the
trained model is deployed on a new platform, the recommendation accuracy will
be compromised significantly since the embeddings of the new courses can not
be represented well. Finally, existing course recommendation systems usually
score the courses and provide the recommendation order directly according to

304 Y. Li et al.

the scores [1]. However, this pointwise method only considers a single course at
a time in the loss function, which essentially recasts the problem as a regression
task. The score of each candidate course is independent without contemplating
the potential relationship between the courses. For the MOOCs recommenda-
tion, it is necessary to provide more accurate and personalized recommendation
order for students.

In order to tackle the above three issues, we propose a three-step approach:
(1) Reinforced User Profiling with Items Filtering ; (2) End-to-end Pre-training
with Meta Enhancing ; (3) Gradient Boosting with Order Promoting. Specially,
the first step adopts a hierarchical reinforcement learning method to conduct a
user profile reviser, which aims to avoid deep learning models overfitting the noise
courses. To enhance the representation of course embeddings, a meta embed-
ding generator is proposed, which can not only adapt fast for new courses, but
also perform well on few-shot enrolled data. Instead of using the original course
embeddings directly, MRLtr fuses the features learned from the user profile
reviser and the meta embedding generator to provide an end-to-end pre-training
for the downstream recommendation models. After the basic recommendation
model, the final step replaces the pointwise loss function with a LightGBM [17]-
based Learning To Rank (LTR) model, which chooses the listwise loss function
to capture the comprehensive user-course relevance for the sake of promoting
more accurate and personalized course order for student users.

We conduct extensive offline and online experiments on a real-world MOOCs
platform. The results show the effectiveness of MRLtr and the consistent per-
formance in the real-world MOOCs platform. To the best of our knowledge, this
is the first work to propose an end-to-end pre-trainning mechanism with a LTR
promoting method for the MOOCs recommendation task. Our main contribu-
tions can be summarized as follows:

– We study the problem of online recommendation in the context of Online Edu-
cation, where we particularly focus on the technical challenges on embedding
representation and order promotion. To the best of our knowledge, this work
is the first to investigate course embedding representation with an end-to-
end pre-traininng mechanism and order promotion with a LightGBM-based
ranking regressor.

– We design and implement MRLtr, incorporating the end-to-end pre-training
mechanism and the order promotion model in the basic recommendation task.
Specifically, MRLtr consists of three steps: (1) Reinforced User Profiling
with Item Filtering that removes the noisy courses with hierarchical rein-
forcement learning, (2) End-to-end Pre-training with Meta Enhancing that
adopts a gradient-based meta learning approach to search a better embed-
ding representation and average the embeddings generated from step (1) to
feed recommendation models, (3) Gradient Boosting with Order Promoting
that promotes the course recommendation order via a ranking regressor.

– We deploy MRLtr on the Shanghai Jiao Tong University (SJTU) MOOCs
and evaluate it using both offline experiments and online A/B tests in com-
parison with baseline algorithms. The experiment results show that, com-

MRLtr: Meta Hierarchical Reinforced Learning to Rank 305

pared to the state of the art algorithms, MRLtr could achieve ΔNDCG4 =
7.74%∼16.36% in offline experiments and significant improvement in online
A/B tests under fair comparisons. Extensive ablation studies further confirm
the effectiveness of MRLtr for the MOOCs recommendation.

2 Background and Formulation

In this section, we introduce the background of the basic MOOCs recommenda-
tion problem and formulate the basic MOOCs recommendation model.

2.1 Background

Like all the recommendation tasks, users and items are two basic elements in
MOOCs recommendation problem. We use U =

{
u1, · · · , u|U |

}
to denote the

user set and C =
{
c1, · · · , c|C|

}
to denote the course set of a MOOCs platform.

The set of historical enrolled courses is defined as Eu =
(
eu
1 , · · · , eu

tu

)
, which also

denotes the user profile. We formulate the problem as recommending the most
probable course u to be enrolled at tu +1, given a set of user’s historical enrolled
courses Eu before time t.

2.2 Formulations

Like all general recommendation tasks, characterizing the user’s preference based
on its profile Eu is critical. We utilize a valued low dimensional embedding vector
pu

t to represent each historical enrolled course eu
t . User u’s preference is denoted

as qu, which aggregates the embeddings of all historical enrolled courses. An
embedding vector pi is utilized to represent the target course ci. The probability
p of recommending ci to u can be represented as

p = P (y = 1 | Eu, ci) = σθ

(
qT

u pi

)
, (1)

where σθ (·) is the sigmoid function which transforms the input embedding vec-
tors into a probability, θ is its parameters. The key issue for solving the rec-
ommendation task is to calculate qu, i.e., the aggregated embedding. There are
some existing methods to obtain qu. For example, we can average the embeddings
of all the historical enrolled courses. However, this method treats all historical
enrolled courses equally, which neglects the importance of different courses and
cannot represent the real interest of users. Hence, an existing work utilizes the
attention mechanism to estimate an attention coefficient au

it for each course eu
t

[4]. Moreover, there is also a method using attentive recurrent neural network
to capture the order of historical courses [3].

In this paper, we adopt the method that parameterizes the attention coeffi-
cient au

it as a function, whose inputs are pu
t and pi. Then the embeddings are

calculated based on their attentions as,

qu =
tu∑

t=1

au
itp

u
t , au

it = z (pu
t ,pi) , (2)

306 Y. Li et al.

User Profiles

Courses

User Profile
Reviser

Meta-Embedding
Generator

Revised Embeddings

Meta Embeddings

Basic
Recommendation

model

Step 1: Reinforced User Profiling with Item Filtering

Step 2: End-to-end Pre-training with Meta Enhancing

Step 3: Gradient Boosting
with Order Promoting

AVG Ranking
Regressor

Fig. 1. The pipeline of MRLtr. Firstly, we pre-train the basic recommendation
model. Then, we train Step 1 with the basic recommendation model. Next, we train
Step 2 with the basic recommendation model. Finally, we jointly train all the parts
together with the frozen parameters of Step 2.

where z (·) can be instantiated by a multi-layer perception on the concatenation
or the element-wise product of the two embeddings pu

t and pi.

3 Methodology

In this section, we present the technical details of MRLtr. As illustrated in
Fig. 1, MRLtr consists of three steps: (1) Reinforced User Profiling with Item
Filtering, (2) End-to-end Pre-training with Meta Enhancing, and (3) Gradient
Boosting with Order Promoting. We first introduce Reinforced User Profiling
with Item Filtering which adpots a hierarchical reinforcement learning algorithm
to remove the noisy courses. Second, we propose the End-to-end Pre-training
with Meta Enhancing which utilizes a gradient-based meta learning algorithm
to enhance the representation of course embeddings. Finally, we introduce Gra-
dient Boosting with Order Promoting which deploys a LightGBM-based ranking
regressor to replace the pointwise loss function for the course recommendation.

3.1 Reinforced User Profiling with Item Filtering

The whole profile revising process can be formulated as a hierarchical Markov
Decision Process (MDP), which contains a high-level task and a low-level task.
The training process of the profile reviser is shown in Fig. 2.

Formulating the Item Filtering Task as a Hierarchical MDP. An MDP
can be represented as a 5-tuple 〈S,A, π,P,R〉, with S denoting the state space,
A denoting the action space, π denoting the policy, P denoting the state tran-
sition probability matrix, and R denoting the reward. Specifically, the agent
observes an environment state s ∈ S, takes an action a ∈ A based on a certain
policy π(a|s), which is the conditional probability density of choosing action a
under state s. After applying a, the agent receives a reward r ∈ R, then the
state transfers to s′ with probability p(s′|s, a) ∈ P. The proposed approach
reformulates the profile revising task as an MDP 〈S,A, π,P,R〉, which is given
as:

MRLtr: Meta Hierarchical Reinforced Learning to Rank 307

1) state S. We catrgorize S into the low-level task and the high-level task:
– low-level task: For each historical course eu

t , the state feature sl
t con-

tains four aspects: the effort taken in the course eu
t , cosine similarity

and element-wise product between the embedding vectors of eu
t and ci,

and the average of the previous features over all historical courses in Eu.
Notice that the embedding vector is obtained from a pre-trained basic
recommendation model.

– high-level task: For each user profile, the state feature of high-level task sh

contains: the average cosine similarity and element-wise product between
the embedding vectors of all eu

t in Eu and ci, the probability of recom-
mending eu

t to user u obtained by a basic recommendation model.
2) action A. We categorize A into the low-level task and the high-level task:

– low-level task: The low-level action al
t ∈ {0, 1} for each historical course

eu
t is defined as a binary value to indicate whether to remove it or not.

– high-level task: The high-level action ah ∈ {0, 1} is defined as a binary
value to indicate whether to revise the profile Eu of user u or not.

3) policy π. We utilize policy networks parameterized by θl and θh for low-
level policy π(sl

t, a
l
t|θl) and high-level policy π(sh, ah|θh), respectively.

4) reward R. We first define a delayed reward for each low-level action as

r(al
t, s

l
t) =

{
log p(y = 1|Êu, ci) − log p(y = 1|Eu, ci), ift = tu

0 otherwise
, (3)

where Êu is the revised profile. The delayed reward shows the difference between
the log-likelihood of recommending ci after and before the profile is revised.

– high-level task: A delayed reward is used to evaluate the high-level action,
Rh = r(al

t, s
l
t). When the high-level task determines to revise the user profile,

Rh will be received after the last low-level action is performed.
– low-level task: An internal reward g(al

t, s
l
t) is defined as follows: First, obtain

the average cosine similarity between each historical course eu
t and ci after and

before the profile is revised. Then, calculate the difference between them as
g(al

t, s
l
t). Finally, the reward for low-level task is obtained by Rl = r(al

t, s
l
t) +

g(al
t, s

l
t).

Algorithm Workflow. With the formulated hierarchical MDP above, the task
of profile reviser is to find a set of optimal parameters θ = {θl, θh} to maximize
the expected reward as

θ∗ = argmaxθ

∑

τ

pθ(τ)R(τ), (4)

where τ is the sampled sequence (i.e., τ = {sl
1, a

l
1, s

l
2, · · · , sl

t, a
l
t, · · · sl

tu
, al

tu
} for

low-level tasks, and τ = {sh, ah} for high-level tasks), pθ(τ) denotes the sampling
probability, and R(τ) denotes the reward for τ .

308 Y. Li et al.

Fig. 2. The training process of the profile reviser.

We invoke monto-carlo policy gradient method to solve the above profile
revising task, which is trained jointly with the basic recommendation model.
First, we pre-train the basic recommendation model based on the unrevised user
profile. With the pre-trained recommendation model, we then train an initialized
profile reviser. Specifically, for each user profile Eu in one training episode, we
first execute the high-level task to get ah. If the high-level task determines to
revise the user profile (i.e., ah = 1), the low-level task will be performed. Then,
We sample a low-level sequence τ , and compute r(al

t, s
l
t) and g(al

t, s
l
t). After

collecting M trajectories, we update θl according to the loss function as

Lθl =
1
m

M∑

m=1

tu∑

t=1

∇θl log πθl(sm
t , am

t)Rl, (5)

while the loss function for updating θh is given as

Lθh =
1
m

M∑

m=1

∇θh log πθh(sm, am)Rh. (6)

Finally, based on the revised profile, we train the recommendation model and
start another training episode.

3.2 End-to-End Pre-training with Meta Enhancing

In this section, we first propose the meta embedding generator that captures the
skill of learning course embeddings through meta-learning. Then, we describe
the end-to-end pre-training mechanism with feature fusion.

View of Meta Learning. The essence of MOOCs recommendation is to learn
the function σ(·) with inputs of the course embedding vectors as shown in (1).

MRLtr: Meta Hierarchical Reinforced Learning to Rank 309

Before learning the function σ(·), we need to transform the course into a real-
valued vector. From a meta-learning perspective, we reintroduce the notation of
the MOOCs recommendation model as

p = h (ci) = σθ (φi, ci) , (7)

where θ is the parameters of function σ(·) and φi is the embeddings for course
ci. Actually, h(·) is the same function as σθ(·). Then we can recast the MOOCs
recommendation as a meta-learning problem via viewing each course as a dis-
tinguished task. Specifically, for course i = {1, 2, · · · }, each task ti corresponds
to a specific function h(·). Each task has its own parameters φi and shares the
same parameters θ of the basic recommendation model. We aim to train the
model to learn how to learn φi. This is the analysis that we recast the MOOCs
recommendation as meta-learning.

Train the Meta Embedding Generator. We choose some courses as the
prior tasks with many training samples to pre-train the MOOCs recommendation
model. In this way, we can get a well-trained parameter set θ and task-specific
parameters φi for each prior task. In order to train the meta embedding generator
to learn how to learn course embeddings, we choose a course with few enrollments
as the new task î. Due to the fact that the task-specific parameter φi can not
be shared with a new task, we have to train a meta embedding generator to
replace its place. For a new course (i.e., a new task t̂i), we use φinit

î
as the initial

embedding
φinit
î

= fv(cî), (8)

where v is the meta-parameter and fv(·) is the meta embedding generator. The
recommendation problem can be shown as

p̂ = hmeta

(
ĉi

)
= σθ

(
φinit
i , ĉi

)
. (9)

As for each task ti (i.e., course ci), we can get the training set as Di = {ci}Ni

j=1

with Ni samples. We choose two disjoint mini-batches such as D1
i and D2

i , each
with K samples. To simulate the course with relatively few enrollments, we
assume the mini-batch size K is far less than half of Ni. Then we take a two-
step strategy to train the meta embedding generator and get the meta-parameter
v: (1) We use hmeta(·) on the first mini-batch D1

i and get the recommendation
result as

p̂1 = hmeta (ci) = σθ

(
φinit
i , ci

)
. (10)

Meanwhile, we obtain the average loss as

l1 =
1
K

K∑

k=1

[−y1 log p̂1 − (1 − y1) log (1 − p̂1)] , (11)

where k is of the k-th sample from batch D1
i . (2) We execute the learning process

with the second batch of data D2
i and then compute the gradient of l1 and take

a step of gradient descent,

310 Y. Li et al.

φ′
i = φinit

i − α
∂l1

∂φinit
i

, (12)

where α is the learning rate. Next, we test the trained model on the second batch
D2

i . Specifically, we obtain the recommendation result as

p̂2 = h′
meta (ci) = σθ (φ′

i, ci) . (13)

Meanwhile, we obtain the average loss as

l2 =
1
K

K∑

k=1

[−y2 log p̂2 − (1 − y2) log (1 − p̂2)] . (14)

Next we propose the final loss function lfinal unified l1 and l2 as

lfinal = al1 + bl2, (15)

where a, b ∈ [0, 1] are the weight coefficients of the loss functions and the sum
of a and b is 1 (i.e., a + b = 1). The aims for defining the final loss function as
(15) is summarized as: (1) For the new courses, we aim to reduce the error of
the MOOCs recommendation. Hence, we calculate l1 in the final loss function
different from MAML, which takes l2 as the final loss function. (2) For the courses
with few enrollments (i.e., small number of labeled data), we aim to make them
learn fast through gradient updates. Then we calculate the gradient by the chain
rule:

∂lfinal

∂v
=

∂lfinal

∂φinit
i

∂φinit
i

∂v
=

∂lfinal

∂φinit
i

∂fv

∂v
, (16)

where
∂lfinal

∂φinit
i

= a
∂l1

∂φinit
i

+ b
∂l2
∂φ′

i

− ab
∂l2
∂φ′

i

∂2l1

∂φinit2
i

. (17)

Eventually, we propose the training algorithm for the meta embedding generator
as shown in Algorithm1. Specifically, we design a neural network as the meta
embedding generator. The inputs of the generator is the course features. In our
work, we use the embedding layers of the basic recommendation model in the
generator instead of training it from scratch. In order to reduce the number of
parameters, we use the parameters of reused layers directly. Then the embeddings
from different fields are aggregated by average pooling. Eventually, we use a fully
connected layer to get the outputs.

End-to-end Pre-training with Feature Fusion. In this section, we propose
a simple yet useful design to fuse the embeddings from the meta embedding
generator and the user profile reviser. First, we make sure the output embed-
ding from the profile reviser and the meta embedding generator have the same
dimension. If a historical course is revised by the profile reviser, the correspond-
ing item of the original output of the profile reviser will be set as 0. Then we
average the sum of the corresponding parts of the profile reviser and the meta
embedding generator to obtain the new course embedding.

MRLtr: Meta Hierarchical Reinforced Learning to Rank 311

Algorithm 1. Training Meta Embedding Generator
Input: The base model σθ, course dataset C, hyper-parameter a,b, learning rate α,β.
1: Randomly initialize v;
2: while not done do
3: Randomly samples n courses {i1, i2, . . . , in} from C;
4: for i ∈ {i1, i2, . . . , in} do
5: Generate the initial embedding: φinit

i = fv (ci);
6: Sample mini-batch D1

i and D2
i each with K samples;

7: Evaluate loss l1 on D1
i ;

8: Compute adapted embedding: φ′
i = φinit

i − α ∂l1
∂φinit

i

;

9: Evaluate loss l2 on D2
i ;

10: Compute loss: lfinal = al1 + bl2;
11: end for
12: v ← v − β

∑
i∈{i1,...,in}

∂lfinal
∂v

;
13: end while

3.3 Gradient Boosting with Order Promoting

Given the new fusion embedding to the basic recommendation models, MRLtr
replaces the fully connected layer of the basic recommendation model with a
LightGBM-based ranking regressor, which adpots the listwise loss function. We
denote a set of user-course pairs with the ranking score as a set of triple such as
T = {(u1, e1,y1), (u2, e2,y2), (u3, e3,y3), . . . }. We aim to gain a LTR scoring
function fs. Therefore, the goal is recast to learn a scoring function f which
minimizes the loss as

L(f) =
1

|T |

|T |∑

i=1

⎛

⎝ 1
|ei|

|ei|∑

j=1

(yi
j , fs(ui

j , e
i
j))

⎞

⎠ , (18)

where
 represents the loss of the ranking prediction of course ei
j of user ui

against the ground truth yi
j .

4 Experiments

To demonstrate the effectiveness of MRLtr, we present extensive experiments
on the SJTU MOOCs platform comparing with a large number of baseline meth-
ods. Firstly, we detail the experimental settings. Then, we introduce the results
of offline experiments. Finally, the performance of online A/B Test shows the
effectiveness of MRLtr.

4.1 Experimental Settings

Dataset and Evaluation Methodology. We collect the dataset from SJTU
MOOCs, a large MOOCs platform with significant number of users. Specifically,

312 Y. Li et al.

we collect a portion of the student users who enrolled courses from September 1st,
2016 to September 1st, 2021. Moreover, we make some standardized processing,
such as defining the courses with the same name in different years as the same
one. For instance, we unity “Computer Network” from 2016 to 2020 into the
same course named “Computer Network”. The collected dataset consist of 1,452
courses, 65,649 users, 313,492 users enrolled behaviors, and 23 categories.

To evaluate the performance of MRLtr, we use Normalized Discounted
Cumulative Gain (NDCG) [16], which has been widely adopted to evaluate
the ranking performance. Before introducing NDCG, we first introduce the Dis-
counted Cumulative Gain (DCG) as

DCGN =
N∑

i=1

Gi

log2(i + 1)
, (19)

where Gi denotes the weight assigned to the item’s label at position i. A higher
Gi indicates that the item is more relevant to the user and correspondingly
a better LTR model. However, due to the different lengths of various users, it
makes no sense to compare the DCG among them. Then, we utilize the following
implementation of NDCG to take a mean across all scores as

NDCGN =
DCGN

IDCGN
, (20)

where IDCGN is the ideal order to normalize the scores. Moreover, the value of
NDCG is in the range of [0, 1]. Similarly, a higher NDCGN indicates a better
LTR model. In this paper, we consider the NDCG of top 10 and 4 ranking results,
i.e., NDCG@10 and NDCG@4.

Experiment Setups. In this work, all the offline experiments are implemented
on a server with 32G Memory, 1 NVIDIA Tesla V100 GPU and 2T Disk. The
online experiments are deployed on SJTU MOOCs platform. In order to evaluate
the effectiveness of MRLtr comprehensively, we adopt seven related models
proposed by previous researches as competitors:

– Bayesian Personalized Ranking (BPR). This model uses a Bayesian
method to optimize the pairwise ranking loss in recommendation tasks.

– Multi-layer Perception (MLP). The model use a multi-layer perceptron
on a pair of user and course embeddings to learn the probability of recom-
mending the course to the user.

– Factorization Machine (FM). FM is a principled approach that can easily
incorporate any heuristic features.

– Factored Item Similarity Model (FISM). FISM is an item-to-item col-
laborative filtering (CF) algorithm which recommends courses via averaging
embedding of all enrolled courses and embedding of the target courses.

– Gated Recurrent Unit (GRU). GRU is a gated recurrent unit model that
receives a sequence of historical courses as input, then output the last hidden
vector as the representation of a user’s preference.

MRLtr: Meta Hierarchical Reinforced Learning to Rank 313

Fig. 3. Offline comparative results of MRLtr and baselines on ΔNDCG10

and ΔNDCG4. We use MRLtr∗ and MRLtr∗∗ to represent the MRLtr+NAIS and
MRLtr+NASR, respectively.

– Neural Attentive Item Similarity (NAIS). NAIS is a collaborative fil-
tering algorithm which utilizes an attention mechanism to distinguish the
weights of different historical enrolled courses.

– Neural Attentive Session-based Recommendation (NASR). NASR
is an improved model GRU model that estimates attention coefficients for
historical enrolled courses based on the corresponding hidden vector outputs.

4.2 Offline Experimental Results

To comprehensively evaluate MRLtr, we conduct experiments to answer the
following research questions:

RQ1: How does MRLtr perform compared with state-of-the-art models for
MOOCs recommendation tasks?
RQ2: Is the Reinforced User Profiling with Item Filtering in MRLtr neces-
sary for improving performance?
RQ3: Is the End-to-end Pre-training with Meta Enhancing in MRLtr vital
for improving performance?
RQ4: How does the Gradient Boosting with Order Promoting impact the
performance of MRLtr?

Comparative Results: RQ1. In Fig. 3, we report the offline performance of
MRLtr compared with other baselines on NDCG10 and NDCG4. In order to
represent the combination of MRLtr with two basic recommendation models
briefly, we use MRLtr1 and MRLtr2 to represent the combination of MRLtr
with NAIS and NASR, respectively. Intuitively, we could see that MRLtr gains
the best performance compared with other baselines on both two metrics. Specif-
ically, MRLtr2 improves the performance of the baseline models from 7.74% to
16.36% on NDCG4 and from 8.24% to 18.24% on NDCG10. Moreover, there
are some findings from the comparative experiments. Firstly, all the user-to-item
based collaborative models (i.e., BPR, MLP and FM) show poor performance
since most of the users in our dataset enrolled a few courses, and the embed-
dings can not be extracted from the sparse data. Secondly, item-to-item based

314 Y. Li et al.

Fig. 4. Ablation studies of Reinforced User Profiling with Item Filtering
(RL), End-to-end Pre-training with Meta Enhancing (Meta) and Gradient
Boosting with Order Promoting (GB) for MRLtr on NDCG4 and NDCG10.
To briefly represent the models, we use MLP+, FISM+, GRU+, MRLtr1 and MRLtr2

to represent the combinations of MRLtr with MLP, FISM, GRU, NAIS, and NASR,
respectively. Moreover, “w/w/o” is the abbreviation of “with or without”.

collaborative filtering models (i.e., FISM and GRU) perform better than user-to-
item based collaborative models, but they still perform worse than the attention
models. Because FISM and GRU treat all historical courses equally. As for NAIS
and NASR, we find that they perform better than all the above collaborative
filtering models, as they can distinguish the importance of different courses via
attention mechanism.

Ablation Study: RQ2. We conduct a series of ablation studies to prove the
effectiveness of Reinforced User Profiling with Item Filtering, End-to-end Pre-
training with Meta Enhancing and Gradient Boosting with Order Promoting for
MRLtr. Figure 4 (a) and (b) illustrates that all the models with the Reinforced
User Profiling with Item Filtering based user profile reviser could obtain bet-
ter performance compared with the models without the user profile reviser. As
shown in Fig. 4 (a), Reinforced User Profiling with Item Filtering achieves the
improvement with 3.91% for MRLtr2 on NDCG4, which is the largest improve-
ment in this study.

MRLtr: Meta Hierarchical Reinforced Learning to Rank 315

Fig. 5. Online comparative performance on NDCG4 of MRLtr and baselines
for 7 d. (t-test with p < 0.05 over the baseline).

Ablation Study: RQ3. In order to demonstrate the usefulness of End-to-end
Pre-training with Meta Enhancing, we conduct a serious of ablation studies. As
shown in Fig. 4 (c) and (d), the chosen models with End-to-end Pre-training with
Meta Enhancing (Meta) based the meta embedding generator perform better
than the models without the meta embedding generator. Specifically, the meta
embedding generator obtains the largest margin with 4.72% on NDCG10. These
phenomenons prove that End-to-End Pre-training with Meta Enhancing could
enhance the representation of course embdeddings. There are many users enrolled
few courses in the dataset. The meta embedding generator can not only adapt
fast for new courses, but also perform well on few-shot enrolled data.

Ablation Study: RQ4. In Fig. 4 (e) and (f), we report the ablation study of
Gradient Boosting with Order Promoting of MRLtr. Similarity, all the models
with the Gradient Boosting with Order Promoting based ranking regressor could
obtain better performance compared with the models without the ranking regres-
sor. As depicted in Fig. 4 (f), Gradient Boosting with Order Promoting achieves
the improvement of 5.48% for GRU+ on NDCG10. These results demonstrate
that the listwise-based ranking regressor performs better. The listwise function
treats the whole document list as a sample and directly optimizes the evaluation
metrics, such as the utilized metric NDCG in this work.

4.3 Online Experimental Results

To demonstrate the effectiveness of MRLtr, we conduct a series of online A/B
tests with real-world web traffics and compare it with the baseline models on
SJTU MOOCs platform. According to the offline experimental results, we con-
duct the online experiments with full real-world web traffic, which last for 7 d.
Figure 5 illustrates the comparison of MRLtr with the baselines on ΔNDCG4.
Firstly, MRLtr could boost the performance compared with the online base
system in all days, which demonstrates that MRLtr is practical for improv-
ing the performance of SJTU MOOCs. Furthermore, we can find that MRLtr
achieves significant improvements on the real-world MOOCs platform. Specifi-
cally, we observe that MRLtr outperforms the online base model (FISM) by a
large margin on ΔNDCG4 with 13.8% relative improvement, which reveals the
effectiveness of MRLtr. Finally, we observe that MRLtr performs stably in all

316 Y. Li et al.

days, which demonstrates the soundness and usefulness of our proposed model.
Basically, the online performance is consistent with offline experiment results.

5 Related Work

CF has been widely used in sequential recommendation problems, where each
user-item interaction data naturally forms a sequence for being associated with
timestamp information. For example, bayesian personalized ranking [5], matrix
factorization [6] and factorization machine [7] are all user-to-item based CF
methods. However, the performances of the above models are limited when data
is sparse. By contrast, the item-to-item CF models can handle the above prob-
lem. [1] is proposed to calculate the item similarity via dot product of item
embeddings. To retrieve the main preference in the sequential data, attention
mechanism was proposed in NASR [3] and NAIS [4]. Moreover, RNN [8] and
GRU [2] are used to capture the temporal factor of the user-item iteration data.

Recently, some researches attempt to adapt meta-learning algorithm to solve
issues. Meta-learning aims to adapt a trained model to new tasks quickly and
effectively by using the prior experience learned from the related tasks [9]. For
example, Model-Agnostic Meta-Learning (MAML) are proposed to solve the
cold-start problem [10]. Recently, motivated by the aforementioned benefits of
meta-learning, it has been invoked into the recommendation tasks [11]. Moreover,
λOpt [12] is proposed to optimize regularization hyper-parameters based on
validation performance.

According to the loss function, we could categorize the LTR models into
three families: pointwise [13], pairwise [14]and listwise [15]. The listwise model
treats the whole document list as a sample and directly optimizes the evaluation
metrics, such as the utilized metric in this work, i.e., NDCG.

6 Conclusion

In this paper, we design, implement and deploy a novel MOOCs recommenda-
tion approach MRLtr on a real-world MOOCs platform to address the problems
which contains course data noises, weak representation for few enrolled courses
and the poor recommendation order. MRLtr contains three steps: (1) Reinforced
User Profiling with Item Filtering that removes the noisy courses with hierar-
chical reinforcement learning, (2) End-to-end pre-training with Meta Enhancing
adopts a gradient-based meta learning approach to search a better embedding
representation, and (3) Gradient Boosting with Order Promoting promotes the
course recommendation order via a LightGBM-based ranking regressor. To verify
the effectiveness of MRLtr, we conduct extensive offline and online experiments
compared with a large number of baseline methods. Offline experiment results
show that MRLtr could achieve significant gain over baselines on NDCG4

compared with other baselines. Furthermore, MRLtr significantly boosts the
online MOOCs recommendation performance in real-world applications, which
is consistent with the offline results.

MRLtr: Meta Hierarchical Reinforced Learning to Rank 317

References

1. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n
recommender systems. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 659–667 (2013)

2. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. CoRR abs/1511.06939 (2016)

3. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 1419–1428 (2017)

4. He, X., He, Z., Song, J., Liu, Z., Jiang, Y.G., Chua, T.S.: Nais: neural attentive
item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30(12),
2354–2366 (2018)

5. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

6. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

7. Rendle, S.: Factorization machines with libfm. ACM Trans. Intell. Syst. Technol.
(TIST) 3(3), 1–22 (2012)

8. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, pp. 17–22 (2016)

9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, pp. 1126–
1135. PMLR (2017)

10. Bharadhwaj, H.: Meta-learning for user cold-start recommendation. In: 2019 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019)

11. Ren, Y., Chi, C., Jintao, Z.: A survey of personalized recommendation algorithm
selection based on meta-learning. In: Xu, Z., Choo, K.-K.R., Dehghantanha, A.,
Parizi, R., Hammoudeh, M. (eds.) CSIA 2019. AISC, vol. 928, pp. 1383–1388.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15235-2_191

12. Chen, Y., et al.: λopt: learn to regularize recommender models in finer levels. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 978–986 (2019)

13. Li, P., Wu, Q., Burges, C.: Mcrank: Learning to rank using multiple classification
and gradient boosting. In: Advances in Neural Information Processing Systems,
pp. 65–72 (2008)

14. Zheng, Z., Chen, K., Sun, G., Zha, H.: A regression framework for learning ranking
functions using relative relevance judgments. In: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 287–294 (2007)

15. Taylor, M., Guiver, J., Robertson, S., Minka, T.: Softrank: optimizing non-smooth
rank metrics. In: Proceedings of the 2008 International Conference on Web Search
and Data Mining, pp. 77–86 (2008)

16. Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant
documents. In: ACM SIGIR Forum, vol. 51, pp. 243–250. ACM New York, NY,
USA (2017)

17. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

http://arxiv.org/abs/1205.2618
https://doi.org/10.1007/978-3-030-15235-2_191

Recognizing Cognitive Load by a Hybrid
Spatio-Temporal Causal Model

from Multivariate Physiological Data

Zirui Yong1, Guoxin Su2, Xiaohu Li1, Lingyun Sun3, Zejian Li3, and Li Liu1(B)

1 School of Big Data and Software Engineering, Chongqing University,
Chongqing, China

{yongzirui,xhlee,dcsliuli}@cqu.edu.cn
2 School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
guoxin@uow.edu.au

3 International Design Institute, Zhejiang University, Hangzhou, China
{sunly,zejianlee}@zju.edu.cn

Abstract. Cognitive load recognition is challenging due to the inherent
diversity and causality of multivariate physiological changes, with each of
its instances having its own style of physiological events and their spatio-
temporal causal dependencies. This leads us to define a hybrid model that
employs Granger causality (GC) and Gramian angular difference fields
(GADF) to discover diverse varieties of multivariate physiological events.
In particular, our model introduces a GC network to explicitly charac-
terize the unique temporal causal configurations of a particular cogni-
tive state as a variable number of nodes and links . In addition, GADF
maps are constructed to capture the inherit spatio-temporal dependency
among multivariate signals in a 2D structural space. A capsule network is
designed to merge these two heterogenous types of features together in a
uniform way, and as a result, all local causal and spatio-temporal depen-
dencies are globally consistent. Empirical evaluations on one benchmark
dataset and two in-house datasets collected by ourselves in virtual real-
ity learning environment suggest our model significantly outperforms the
state-of-the-art approaches.

Keywords: Cognitive load recognition · Physiological signal · Granger
causality · Gramian angular difference fields

1 Introduction

Cognitive load recognition, aiming to estimate the amount of an individual’s
mental labor when a specific task is imposed on her/his cognitive system [21], has

The original version of this chapter was revised: the name of the author Li Liu has
been corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-031-26422-1_53

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1_20.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023, corrected publication 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 318–334, 2023.
https://doi.org/10.1007/978-3-031-26422-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_53
https://doi.org/10.1007/978-3-031-26422-1_20
https://doi.org/10.1007/978-3-031-26422-1_20

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 319

become an active field, given its role in facilitating a broad range of applications.
Although psychological experiment-based approaches are becoming mature to
estimate cognitive load by adopting various subjective scales, they are still lim-
ited to obtain the objective states of cognitive load changes in real time. Since
an individual’s cognitive load state is often accompanied by the changes of phys-
iological characteristics such as EEG, ECG, EMG, blood pressure and respira-
tion, it is possible to achieve a deeper understanding of the correlations between
long-term measurements of physiological features and cognitive loads. The main
focus of this work is on causal learning of multiple physiological features, since a
fundamental assumption for research on cognitive load assessment is the causal
relationship between the physiological characteristics and cognitive load states.

Despite being a very challenging problem, in recent years there has been a
rapid growth of interest in physiologically-based cognitive load recognition. One
popular paradigm might be that of the knowledge-driven approaches, which
are capable of representing rich relations among physiological events. These
approaches are often semantically clear, logically elegant, and easy to inter-
pret. However, physiological features and their causal relations need to be man-
ually defined and extracted, and subsequently they are limited to scale up. For
instance, an alarm of a physiological event (e.g., heart rate deviation from a nor-
mal range) is triggered by setting a threshold obtained from the psychological
domain knowledge or expert experience. It could be rather difficult to hand-
craft all the signs of features accurately for many practical scenarios where such
knowledge embedded in signals are intricate. In addition, these knowledge-driven
models are sensitive to sensor noise or body movement, which occurs frequently
when performing a task.

On the other hand, data-driven approaches, especially the deep learning-
based models, which may overcome the aforementioned shortcomings by
automating feature extraction from raw physiological signals. As the funda-
mental issue in machine learning, current techniques are becoming mature to
analyze physiological time series. We refer interested readers to a recent compre-
hensive review of varied representative physiological data-driven algorithms [20].
With the great success being achieved, these data-driven models are capable of
handling an astonishing number of correlations between features and are often
robust to errors caused by incorrect physiological detection. However, these con-
ventional approaches have the assumption that physiological features are inde-
pendent without taking into account the causality between them. Their results
are hard to interpret, and therefore, they are rather limited in further uncov-
ering rich cause-effect relationships among features. For instance, the variation
of the amplitudes of ECG P-QRS-T waves (P-QRS-T) or the EEG based zero-
phase phase-locking value (PLV) is the reaction of high load state in cognitive
processes [5]. In fact, most of existing data-driven models may find that there is
a heavy correlation between P-QRS-T and PLV but unfortunately cannot dis-
cover the further interpretation that the high load state is the common cause of
these two symptoms, which leads to their extrinsic association. As a result, it
could be rather difficult to examine the determinant factors, which is extremely
important in cognitive load assessment because a wrong release of an individual
can have bad consequences in some vital scenarios such as aerospace manipula-
tion, surgical rescue, nuclear control and air traffic command. Moreover, since

320 Z. Yong et al.

a single channel of physiological sensor data is often not faithful in cognitive
load assessment, e.g., a student may learn in a physical environment with high
level of noise or high temperature, it is nonetheless difficult for these algorithms
to specify only one kind of physiological signals like heart rate for desired load
levels. This inspires us to recognize cognitive load states by discovering casual
features from multivariate physiological sensor data.

To address these issues in cognitive load recognition, we present a hybrid
spatio-temporal causal model by employing Granger causality (GC) and
Gramian angular difference fields (GADF) to discover and combine multivariate
physiological features. In particular, our approach considers a principled way of
dealing with the inherent spatio-temporal causal variability within physiological
signals. Briefly speaking, to discover causal structures in a single physiological
channel such as heart rate, we present to introduce a temporal causal network
(or GC network) generated from Granger causality test among physiological
events. Now each resulting casual network contains its unique set of directed
links together with their weights that represent cause-effect relations, charac-
terizing a certain instance of a single channel that possess similar physiological
features and their temporal causal dependencies. In addition, to combine the
representative physiological features from multiple channels, we treat multivari-
ate physiological signals as video-like continuous 2D objects (or called GADF
map) by adopting GADF to characterize the inherit spatio-temporal dependency
among different signals. Specifically, a capsule network is designed to merge the
two heterogenous types of features, i.e., GC network and GADF map, together
by leveraging the encoder-classifier mechanism to efficiently capture their spatio-
temporal causal relations in a uniform way. In this way, our hybrid model is more
capable of characterizing the inherit causal structural variability together with
the spatio-temporal dependencies in cognitive load recognition when compared
to existing methods, which is also verified during empirical evaluations on one
publicly-available dataset and two in-house datasets under virtual reality (VR)
environment collected by ourselves to be detailed in later sections.

2 Related Work

2.1 Knowledge-driven Associations Between Physiological Signals
and Cognitive Load

There has been a fair amount of work on learning and recognizing cognitive load
states by employing physiological signal data, much of them addressed from a
“univariant” perspective. The first study can be traced back to 1963 when Kals-
beek [12] used ECG to analyze cognitive load. Nowadays, a variety of physiolog-
ical events are studied to associate with the cognitive load states. For instance,
different frequency bands in EEG spaces can achieve cognitive load discrimina-
tion within tasks [4,25]. The ECG median absolute deviation and median heat
flux are found to be the most accurate measurements at distinguishing levels of
cognitive load [10]. HRV and PPG that reflect the states of heart activity and
blood vessels behave different trends under different levels of cognitive load [27].

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 321

Other physiological signals such as galvanic skin response (GSR), respiration
(RESP) and electrodermal activity (EDA) have also been used as a measure-
ment criterion for cognitive load assessment [2]. These approaches are capable of
capturing rich relations, but unfortunately the semantic rules and their weights
are typically hand-coded or based on domain knowledge. In particular, it is not
practicable to handcraft the rules whose relations among physiological events
are intricate especially for the multivariate signals.

2.2 Data-driven Models for Cognitive Load Assessment

Feature selection-based methods utilize features extracted from one or more
specific signals to detect cognitive load. Most of these methods [22,28] use tradi-
tional machine learning methods such as SVM and KNN as classifiers. Moreover,
these methods need prior knowledge to decide which features are appropriate in
cognitive load recognition. Currently, deep network-based approaches have been
at the forefront of this research field. RNN [15] and LSTM [11] are widely imple-
mented for cognitive load assessment, which are adopted to capture the tempo-
ral features. However, neither of them takes into account the spatio-temporal
connections between physiological signals, and they are computationally expen-
sive and difficult for parallel computing due to their sequential structures. To
fully exploiting spatio-temporal dependencies, a series of CNN-based model and
its variants such as FCN [24], MCDCNN [30], MCNN [6], CNN-LSTM [13] and
MLSTM-FCN [13] are introduced to manage both spatial relationship from phys-
iological signals. However, these approaches are limited to capture the spatio-
temporal features from multiple physiological signals and ignore the causality
among physiological events.

2.3 Granger Causality

As aforementioned in the previous section, currently either knowledge-driven
models or data-driven models are rather limited in further uncovering rich cause-
effect relationships. Granger causality [9] is a way that can investigate causality
between two physiological events that combines temporal relations with prob-
abilistic description. GC-based model can capture event interactions and their
temporal dependencies. Especially, it demonstrates the effectiveness in explor-
ing causal event sets. In the field of cognitive load assessment existing GC-based
models [18] exploit temporal dependencies between time series from raw physio-
logical signals and use them to detect physiological events. However, they usually
lack the expressive power to capture and propagate rich temporal dependencies
in physiological events. Most importantly, since cause and effect are unidirec-
tional, these models have to check triangle relationships to maintain causal con-
sistency, which implies temporal consistency in the meantime. These methods
often uses GC as a tool to discover temporal dependencies but fail to maintain
causal consistency, which are computationally expensive or even intractable in
discovering causal dependencies, where the event size is large. Moreover, it is dif-
ficult or even meaningless to understand the causes and effects that are learned

322 Z. Yong et al.

from raw time series. It is worth clarifying that Granger causality does not imply
“true” causality since the question of “true causality” is deeply philosophical. It
can be thought of as a tool of specifying a necessary condition for a temporal
causal relation. To address the problems in these models, we present our hybrid
model to explicitly capture the inherent causal structural varieties by combining
physiological event-based causal networks together with spatio-temporal depen-
dency map of multivariate physiological signals under consistency.

3 Problem Formulation

Given a dataset D collected from C channels of physiological signals, a hybrid
model is constructed with respect to the temporal causal relations as well as
spatio-temporal maps among multivariate physiological events. Each sample
is a sequence of T physiological events, denoted by S =< s1, s2, . . . , sT >.
A physiological event (or event for short) st is a vector of C attributes at
time interval t, with each being associated with a certain physiological chan-
nel. We denote it as st = (st1, st2, . . . , stC), where stc is a vector of K data
points collected from the c-th channel measured within the t-th time inter-
val, written by stc =< stc(1), . . . , stc(K) >. In addition, a sequence of k
(k ≤ K) continuous observations in an individual channel event stc is denoted
by s̄tc(k) =< stc(1), . . . , stc(k) >. It is worth noting that all events are syn-
chronized for any channel and are spaced at a uniform time interval of length
K.

GC Network. For each individual channel c, a GC network can be used to
represent the temporal causal relationships between physiological events, where
a node vtc represents the corresponding physiological event stc and a directed
link describes the temporal causality between two related events. In what follows,
we ignore the subscript c in the network for simplicity. Denote a GC network
Xgc = (V,E) the corresponding network of a sample S, where V is a set of T
nodes. An event si is a direct cause of sj if there is a directed link from vi to vj

in E, denoted by vi → vj , where vi, vj ∈ V. Any link vi → vj in a GC network
Xgc must satisfy Granger causality test, which defines vi as the cause of vj if
the past values of vi contain helpful information for predicting the future value
of vj . More formally, for each channel c, given the sequences of k observations
of sic and sjc (k < K), vi is the cause of vj with respect to data point k if
P (sjc(k + 1) | s̄ic(k), s̄jc(k)) �= P (sjc(k + 1) | s̄jc(k)), and also states that vi

is not the cause of vj if P (sjc(k + 1) | s̄ic(k), s̄jc(k)) = P (sjc(k + 1) | s̄jc(k)).
Since causality is transitive, irreflexive and anti-symmetric, it can be verified
that the resulting GC network is a directed acyclic graph. A GC network should
be consistent that the temporal causal relations on every triangle of nodes �ijk
in the network satisfy the transitivity property such that if vi → vj and vj → vk

then vk � vi. In this way, for each channel a network can characterize only a
possible style (or an instance) of a cognitive load state.

GADF Map. To capture the spatio-temporal correlation between physiological
events, a unique feature map Xgadf is generated for each event stc. Here, each

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 323

data point stc(i) can be represented in polar coordinates by encoding its corre-
sponding angular cosine value φ(i) = arccos (stc(i)) with the radius ρ(i) = i

I ,
where I is a constant factor to regularize the span of the polar coordinate sys-
tem. Due to the monotonicity of the cosine function in [0, π], each channel of
an event can be used to generate a unique polar map. Moreover, the temporal
dependence between elements in a event can be preserved through the prop-
erty of the varying radius ρ(i). In this way, for any physiological event, we can
readily identify spatial-temporal correlations by measuring the trigonometric dif-
ferences between any pair of its corresponding points, i.e., a GADF map, defined
as Xgadf = [sin (φ(i) − φ(j))]i,j=1,...,T , which is a T × T matrix.

Fig. 1. Illustration of physiological events and their corresponding GC network and
GADF map.

As shown in Fig. 1, GC network and GADF map can form a mixing feature
space that describes a unique cognitive load states. This inspires us to present in
what follows a hybrid model where these temporal causal and spatio-temporal
features can be systematically discovered and combined to characterize the cog-
nitive states of interests.

4 Our Approach

Let us consider a dataset D of M samples {(Sm, ym)} over Y classes (i.e. different
levels of cognitive load states), where ym is the label of the sample Sm, 1 ≤ m ≤
M . Here each sample Sm ∈ D is associated with C-channel sequences of T
physiological events st = {stc}C

c=1, 1 ≤ t ≤ T . Our objective is to construct
GC networks and GADF maps and encode them in a uniform way from these
physiological events for cognitive load recognition tasks. The overview of our
approach is illustrated in Fig. 2.

324 Z. Yong et al.

Fig. 2. The overall framework of our approach.

4.1 GC Network Generation

There are two steps to generate a GC network, i.e., network skeleton construction
and causal link orientation.

Network Skeleton Construction. We first determine the network skeleton,
i.e., which pairs of nodes (events) and their links (temporal causal relations)
should be considered as candidates in the network. Formally, given two events of
K observations of data points of c-th channel sic and sjc, which are individually
and jointly stationary, sjc causes sic if adding sjc helps predict sic, according
to the definition of Granger causality. Subsequently, the jointly autoregressive
model can be expressed as follows:

sic(k) =
L∑

τ=1

bii(τ)sic(k − τ) +
L∑

τ=1

bij(τ)sjc(k − τ) + βki, βki ∼ N (0, Σi), (1)

sjc(k) =
L∑

τ=1

bjj(τ)sjc(k−τ)+
L∑

τ=1

bji(τ)sic(k−τ)+βkj , βkj ∼ N (0, Σj), (2)

where bii(τ), bjj(τ), bij(τ) and bji(τ) are regression coefficients, βki and βkj

are regression estimation residuals, and Σi = var(βki) and Σj = var(βkj). L
is a finite value called lag order, which can generally determined by Akaike
Information Criterion (AIC).

More generally, for an individual channel c, we define the vector autoregres-
sion model regarding all pairs of physiological events (or nodes) as follows:

s(k) =
L∑

τ=1

B(τ)s(k − τ) + βk, (3)

where B(τ) is the T ×T coefficient matrix at lag τ where its entry bji(τ) ∈ B(τ)
is the regression coefficient that indicates the effect on link vi → vj , and βk is

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 325

its corresponding residual vector of size T . We adopt the LASSO algorithm [1]
to estimate these parameters as follows:

b̂j = arg min
bj

K∑

k=L+1

‖sjc(k) −
T∑

i=1

b�
jiṡ(k, L)‖2

2 + λ‖bj‖1

= arg min
bj

K∑

k=L+1

‖sjc(k) −
T∑

i=1

L∑

τ=1

bji(τ)sic(k − τ)‖2
2 + λ‖bj‖1

(4)

where bji is the i-th vector of coefficients bj , i.e., bji = [bji(1), . . . , bji(L)],
and ṡ(k, L) is the concatenated vector of L lagged observations, i.e. ṡ(k, L) =
[sjc(k−L), . . . , sjc(k−1)]. In this way, the links that have little influence between
any pair of events (i.e., bji ≈ 0) can be eliminated by the regularization in
LASSO algorithm, and thereby ensuring the sparsity in the network, avoiding
the exhaustive computation. Now we can construct the initial network skeleton
X∗

gc by setting vi → vj ∈ E if and only if b̂ji is a nonzero vector.

Causal Link Orientation. Now there still exists the awkward situations where
bidirectional links such as vi ↔ vj or cyclic triangles (e.g., vi → vj → vk → vi)
exist in X∗

gc, which may lead to causal inconsistence. To this end, we further
orientate the links in X∗

gc through the d-separation criterion, that is, if vi and
vj are d-separated by vk, then vi and vj are independent given vk; otherwise, vi

and vj are interdependent given vk. Here, we consider four types of d-separation
based on the orientation rules [17]. After applying these rules, we can finally
obtain a resulting GC network Xgc that is causally inconsistent.

Besides, the weight on each link vi → vj can be estimated in terms of its
causal power, as defined by:

wij =
{

ln(Φj/Ψij), if vi → vj ∈ E and i �= j
0, otherwise. (5)

where Φj measures the prediction accuracy of vj based on its own previous values,
and Ψij measures it from the previous values of both vi and vj . If Ψij < Φj , which
means vi have a causal influence on vj . Theoretically, the larger wij , the stronger
the causal influence.

4.2 GADF Map Construction

It is straightforward to construct a GADF map from an individual channel of
an event stc. Specifically, an approximate representation of sic, written as ŝtc,
can be calculated by applying a simple piecewise aggregation approximation [14],
that is, ŝtc = 1

K

∑K
j=1 stc(j) (t = 1, . . . , T). Here, each ŝtc is normalized within

the range of [−1, 1]. Next, we transform each event representation ŝtc to a pair
(φ(t), ρ(t)) in the polar coordinate system. Formally, a GADF map Xgadf is a
T × T matrix with its entry being calculated as:

Xgadf (i, j) = sin(φ(i) − φ(j)) = (ŝic − ŝjc)
√

1 − ŝ2
ic

√
1 − ŝ2

jc. (6)

326 Z. Yong et al.

It is verified that GADF maps can provide intuitive spatio-temporal details as
well as a cross-boundary division [23].

4.3 Capsule Network-Based Recognition Model

Now we are ready to build a hybrid model that can merge these two types of
encoded features (i.e., Xgc and Xgadf) together as new inputs for cognitive load
state recognition. Here we design an encoder-classifier model, which consists of
two parts: a hybrid feature encoder that discovers the deep features by combining
GC network and GADF maps, and a capsule network-based classifier to achieve
the tasks of classifying different levels of cognitive load states [29].

Hybrid Feature Encoder. The input feature tensor X is a concatenation
of Xgc,Xgadf ∈ R

C×T×T of all the channels, and thus X ∈ R
C×2×T×T . First,

a convolution layer Fconv aims to transform these causal and spatio-temporal
information jointly into a higher-level feature space, where the output feature
tensor is denoted by Z ∈ R

C′×2×T×T (C ′ < C), as defined:

Layer 1© : Fconv : X = (x1, . . . ,xC) �→ Z = (z1, . . . ,zC′)

with zc′ = κc′ ∗ X =
∑C

c=1
κc′ ∗ xc, c

′ = 1, . . . , C ′,
(7)

where κc′ is a filter kernel and ∗ is the convolution operator.
Next, we compress the global spatial information from several separate chan-

nels by adopting the global average pooling (gap) layer, and its output is fed
into two fully-connected (fc) layers with ReLU activation function and sigmoid
function σ, as formulated:

Layers 2© − 4© :ω = F2
fc(Fgap(Z)) = σ(W 2 · ReLU(W 1 · (avg(zc))c=1,...,C′))

(8)
where W 1,W 2 ∈ R

C′×C′
are the corresponding weights.

The last layer of our encoder is defined by a channel-wise soft-threshold oper-
ation:

Layer 5© : M = X + Z ↓ τ

with τ = ω � Fgap(Z),Z ↓ τ = (zc ↓ τc)1≤c≤C′
(9)

where � is the element-wise product, and ↓ is the soft-threshold operation. In
this way, ω and τ contain the scaling weights and the thresholds for all the
channels, respectively.

CapsNet-Based Classifier. The capsule network is used as a classifier of cog-
nitive load levels, where it takes the previous encoder’s output M ∈ R

C′×T×T as
its input and output a vector of size Y indicating the different levels of cognitive
load states. Our classifier consists of three layers: a standard convolutional layer,
a primary capsule layer and a cognitive capsule layer.

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 327

In details, the standard convolutional layer has 64 different 3 × 3 filters with
a stride of 2 and a ReLU activation function. The primary capsule layer has
64 types of primary capsules U i (i = 1, . . . , 64). Each U i is generated by a
convolutional operation with 8 different 2 × 2 filters and then is reshaped as a
tensor of 8D vectors Ũ i = [ũi,1, . . . , ũi,d] where d = 8K2. Last, the cognitive
capsule layer transforms these vectors to Y different 16D vectors by employing
a specific weighting and routing procedure as follows:

Fwr : Ũ = (ũi,k)i=1,...,64,k=1,...,d �→ Y = (yj)j=1,...,Y (10)

More specifically, Fwr includes two steps. First, for each i (i = 1, . . . , 64), the pri-
mary capsules in Ũ i = (ũi,1, . . . , ũi,d) pass through a shared 8×16 weight matrix
W i,j to generate Û j|i = (ûj|i,1, . . . , ûj|i,d) (j = 1, . . . , Y). Next, a dynamic
routing procedure routes each primary capsule output ûj|i,k to the j-th cogni-
tive capsule and produces the output yj for all i = 1, . . . , 64 and k = 1, . . . , d. A
squashing function is employed to ensure that short vectors get shrunk to almost
zero length while long vectors get shrunk to almost a unit length, as defined as
follows:

yj = squash(ej) =
‖ej‖2

1 + ‖ej‖2 × ej

‖ej‖ , (11)

where ej =
∑

i,k

exp(qj|i,k)
∑n

j=1 exp(qj|i,n) · ûj|i,k and qj|i,k is an internal parameter which

is updated by qj|i,k ← qj|i,k + ûj|i,k · yj at each iteration. The loss function of
our CapsNet-based classifier is defined below:

Lossj = Ij max
(
0,m+ − ∥∥yj

∥∥)2 + γ (1 − Ij) max
(
0,

∥∥yj

∥∥ − m−)2 (12)

where Ij is an indicator function that indicates whether the true label of a sample
is class j, m+ (resp. m−) refers to the upper (resp. lower) boundary, and γ is
a regularization weight.

∥∥yj

∥∥ ∈ [0, 1] and ĵ = maxj{
∥∥yj

∥∥} indicates the final
result is recognized as the class of ĵ.

5 Empirical Evaluations

5.1 Datasets and Preprocessing

Three cognitive load assessment datasets are considered in our experiments,
including one publicly-available cognitive load datasets and two in-house dataset
on VR learning environment collected by ourselves.

CLAS [16]: This is a publicly-available dataset, which contains synchronized
ECG, PPG, and EDA signals (256Hz) captured from 62 subjects with each
30-minute recording involved in purposely designed interactive or perceptive
task indicating two cognitive load states. According to the description of related
paper, when the subjects were in the sub-task session, the cognitive load was
high, while in the neutral stimulus session, the cognitive load was low. For a

328 Z. Yong et al.

better comparison with our data set, we set the original CLAS dataset as a
sample set with a sliding window size of 5 s.

3s-COGSET and 5s-COGSET: To our best knowledge, the above mentioned
dataset is so far the only one publicly available and suitable for deep learning
methods in the field of cognitive load assessment. In particular, the instances
of the cognitive tasks in the experiments of CLAS are relatively simple without
considering the practicality of the test scenario. To this end, we conducted a new
experiment, which is still an ongoing effort, and at the moment 16 subjects (8
male and 8 are female) with their ages ranging from 18 to 24 were recruited to
learn 50 modules of courses that are designed by ourselves in VR environment.
Each module is performed 10 runs by each participant. Three types of physio-
logical signals, i.e., PPG, RESP and EDA, were recorded during performing the
tasks by means of wearable sensors with the sampling rate 64Hz. Our experi-
ment contains around 5, 000 annotated samples about three levels of cognitive
load states (i.e., low, medium and high.) on VR learning environment. A subset
of samples are provided in the supplementary material, and once ready we plan
to share the entire dataset in the community. Considering the different settings
of physiological events, our records were divided into two new datasets by using
the event sizes K of 3 s and 5 s, respectively.

5.2 Experimental Set-Ups

Our model is implemented by Keras with backend of Tensorflow. It is optimized
by Adam optimizer (β1 = 0.9 and β2 = 0.999) with the learning rate of 1× 10−4

and the step size of e−0.1 on one GeForce GTX 750Ti GPU. We set the parameter
K = 28, m+ = 0.9, m− = 0.1, γ = 0.5. The batch size is fixed to 14. We compare
the classification performance of our model with 7 conventional models and 11
deep models. To make a fair comparison, we did not use any data augmentation
or pre-trained weights to improve performance. The ratio of training and testing
sequences is 4 : 1. Accuracy was used as the evaluation metric, which is calculated
as the proportion of true results among the total number of samples.

5.3 Experimental Results

Comparison Against Conventional Models. Table 1 depicts the compar-
ison results under different settings of physiological channels. In order to inte-
grate various existing feature extraction methods, we extracted 787 features (e.g.
Fast Fourier Transformation coefficients, etc.) in total, which however need to
be manually encoded from prior knowledge. Generally, our model outperforms
these models by a large margin. This is because our hybrid model is capable of
capturing causal dependencies and spatio-temporal features among multivariate
physiological events.

Comparison Against Other Deep Models. Table. 2 shows the comparison
results with other deep models that recognize cognitive load states directly from

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 329

Table 1. Accuracy comparisons on three datasets under different settings of physio-
logical channels.

Conventional models Accuracy
LR SVM GNB DT RF XGBoost KNN Ours

CLAS 0.60 0.61 0.59 0.55 0.60 0.64 0.66 0.75
3s-COGSET 0.49 0.58 0.57 0.55 0.67 0.63 0.70 0.86
5S-COGSET 0.58 0.65 0.51 0.61 0.54 0.75 0.77 0.92
under different combinations of physiological signals

5S-COGSET (PPG) 0.49 0.49 0.54 0.51 0.48 0.54 0.57 0.70
5S-COGSET (RESP) 0.48 0.50 0.54 0.56 0.55 0.60 0.59 0.65
5S-COGSET (EDA) 0.49 0.50 0.49 0.48 0.51 0.55 0.58 0.62
5S-COGSET (PPG+EDA) 0.60 0.54 0.54 0.46 0.63 0.70 0.69 0.79
5S-COGSET (PPG+RESP) 0.60 0.60 0.62 0.66 0.65 0.64 0.70 0.76
5S-COGSET (RESP+EDA) 0.62 0.60 0.64 0.59 0.67 0.66 0.74 0.81

raw physiological signals. Apparently, it can be observed that our model can is
significantly more accurate than other models with around 5%–30% performance
boost. Notably, MLP and MCDCNN get relatively acceptable results of identi-
fying states. This is mainly due to their abilities to take advantage of the rich
hierarchical and temporal dependency information between various physiologi-
cal events. It is also clear that our model is superior to other models including
those that combine CNN and LSTM (or RNN) structures that can also capture
spatio-temporal dependencies among multivariate signals. This is mainly due to
the reason that GC network can describe the temporal causal relation between
any pair of events.

Table 2. Accuracy comparisons against other deep models. The percentage in the
bracket shows the accuracy change taken our approach as a baseline.

Deep models Accuracy
CLAS 3s-COGSET 5s-COGSET

MLP [24] 0.67(−0.08) 0.80(−0.06) 0.85(−0.07)
FCN [24] 0.69(−0.06) 0.57(−0.29) 0.58(−0.34)
ResNet [24] 0.70(−0.05) 0.61(−0.25) 0.56(−0.36)
Inception [8] 0.61(−0.14) 0.67(−0.19) 0.70(−0.22)
MCDCNN [30] 0.60(−0.15) 0.76(−0.10) 0.84(−0.08)
MCNN [6] 0.54(−0.21) 0.57(−0.29) 0.56(−0.36)
1D-CapsNet [3] 0.50(−0.25) 0.75(−0.11) 0.60(−0.32)
Parallel CNN-LSTM [13] 0.63(−0.12) 0.76(−0.10) 0.83(−0.09)
Serial CNN-LSTM [19] 0.56(−0.19) 0.50(−0.46) 0.49(−0.43)
MLSTM-FCN [13] 0.61(−0.14) 0.57(−0.29) 0.61(−0.31)
Grid-CNNs [26] 0.45(−0.30) 0.49(−0.37) 0.56(−0.36)

Ours 0.75 0.86 0.92

330 Z. Yong et al.

Convergence Speed. Figure 3(a) displays the training time of our model. It
can be seen that our model converges after 30 epochs. Figure 3(b) reports the
comparison results of convergence speeds among different models. Notably, our
model converges faster than other methods, which is beneficial to the train-
ing and optimization process. Theoretically, the time complexity of our mod-
els consists of three parts O(MTK2), O(MTK2) and O(

∑H
l=1 M2

l K2
l Hl−1Hl),

indicating the GC network generation, GADF map construction and capsule
network-based classifier, respectively. H represents the number of layers of the
classifier, and Hl−1 and Hl refer to the sizes of input and output feature tensors
at the l-th layer, respectively.

Fig. 3. Convergence speed comparison.

5.4 Ablation Study

In this section, we conduct three ablation studies to measure the effectiveness of
the modules in our model.

Feature Encoding. We compared our hybrid features of GC network and
GADF map with other three commonly used encoded features, i.e., Markov
Transition Fields (MTF) [23], Recurrence Plot(RP) [26] and a simple grid struc-
ture (Grid) [7]. Figure 4(a) shows that our hybrid features clearly outperform
other encoded features in accuracy on the two in-house datasets. This is because
the hybrid features contain not only the temporal causal configurations of a par-
ticular cognitive state but also the inherit spatio-temporal dependency among
multivariate signals.

Optimum Parameter Selection. We also compared various settings of lag
order L in our model. Here we increase the lag order L from 1 to 10 with a step
of 1. The result shows that changing the lag order cannot lead to negative effects
on the performance of our model on the datasets. This is mainly because the
duration of cognitive load responses in a subsequence is very short. For instance,

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 331

(a) Accuracy comparisons of fea-
ture encoding methods

(b) Accuracy changes on different
λ (L = 3)

Fig. 4. Convergence speed comparison.

there are instantaneous loads, which fluctuate every moment from the beginning
to the end of performing a task or set of tasks, such as cognitive dissonance and
cognitive overload in a certain subsequence, so the variation of L is limited to
affect the final results. Although the selection of lag order still remains an open
issue, we suggest to set the lag order with a value that is slightly larger than the
ordinary length of physiological events. Note that a very large value of L may
result in computational burden.

The sparsity regularization parameter λ in Eq. (4) is an important parameter
for link sparsity optimization. Its effect on classification performance on the three
datasets is shown in Fig. 4(b) by fixing the lag order to L = 3. It is clear that
increasing the value of λ strengthens the regularization effect. On the other hand,
a small value of λ will bring about a great number of noisy links in the network,
which may also be unfavorable to the recognition results.

Encoder-Classifier Component Effectiveness. The effectiveness of different
components in encoder-classifier mechanism are separately evaluated by remov-
ing or replacing them with other conventional models. We evaluated two types
of modules, including the encoder (i.e., remove the encoder and directly use
the raw GC network and GADF map as input) and the classifier (i.e. remove
the CapsNet-based classifier and only adopt a one-dense-layer for classification).
Table 3 reports the comparison results on the two in-house datasets, which indi-
cates that changing the components may have a negative impact on the perfor-
mance of our model. Obviously, classification performance degrades when either
component is removed. This might be due to the hybrid encoding of both causal
and spatio-temporal information in a uniform way in our model. Besides, when
removing both components, the model gives worse performance than that using
either our encoder or classifier, which indicates that our model is more effec-
tive to capture causal and spatio-temporal dependencies at the same time than
obtaining either of them individually.

332 Z. Yong et al.

Table 3. The impact of the components in our model. � means no such component,
while � denotes the reservation of it.

No. Encoder Classifier Accuracy
3s-COGSET 5s-COGSET

1 � � 0.54 0.52
2 � � 0.55 0.53
3 � � 0.76 0.85
4 � � 0.86 0.92

6 Conclusion and Future Work

In this paper, we present a hybrid cognitive load recognition model by merging
Granger causality network and Gramian angular difference fields map together
for multivariate physiological data, which can capture the inherit causal and
spatio-temporal varieties of physiological events in a uniform way. It is more
efficient and flexible than existing methods on cognitive load recognition. As for
future work, we will explore the applications of our model on more VR learning
classes, and we will consider extending our model to detect multiple cognitive
states with probabilities and will instead learn a model under uncertainty.

Acknowledgement. This work was supported by grants from the National Major
Science and Technology Projects of China (grant no. 2018AAA0100703), the National
Natural Science Foundation of China (grant nos. 61977012, 61977054), the Central
Universities in China (grant no. 2021CDJYGRH011).

References

1. Arnold, A., Liu, Y., Abe, N.: Temporal causal modeling with graphical granger
methods. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 66–75 (2007)

2. Barua, S., Ahmed, M.U., Begum, S.: Towards intelligent data analytics: a case
study in driver cognitive load classification. Brain Sci. 10(8), 526 (2020)

3. Butun, E., Yildirim, O., Talo, M., Tan, R.S., Acharya, U.R.: 1d-CADCapsNet:
one dimensional deep capsule networks for coronary artery disease detection using
ECG signals. Phys. Med. 70, 39–48 (2020)

4. Chakladar, D.D., Dey, S., Roy, P.P., Dogra, D.P.: EEG-based mental workload esti-
mation using deep BLSTM-LSTM network and evolutionary algorithm. Biomed.
Signal Process. Control 60, 101989 (2020)

5. Critchley, H.D., Garfinkel, S.N.: The influence of physiological signals on cognition.
Current Opin. Behav. Sci. 19, 13–18 (2018)

6. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time
series classification. arXiv preprint arXiv:1603.06995 (2016)

7. Eckmann, J.P., Kamphorst, S.O., Ruelle, D., et al.: Recurrence plots of dynamical
systems. World Sci. Ser. Nonlinear Sci. Ser. A 16, 441–446 (1995)

http://arxiv.org/abs/1603.06995

Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model 333

8. Fawaz, H.I., et al.: InceptionTime: finding Alexnet for time series classification.
Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

9. Granger, C.W.J.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37(3), 424–438 (1969)

10. Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures
for assessing cognitive load. In: Proceedings of the 12th ACM International Con-
ference on Ubiquitous Computing, pp. 301–310 (2010)

11. Hefron, R.G., Borghetti, B.J., Christensen, J.C., Kabban, C.M.S.: Deep long short-
term memory structures model temporal dependencies improving cognitive work-
load estimation. Pattern Recogn. Lett. 94, 96–104 (2017)

12. Kalsbeek, J., Ettema, J.: Continuous recording of heart rate and the measurement
of perceptual load. Ergonomics 6(3), 306–307 (1963)

13. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNS for
time series classification. Neural Netw. 116, 237–245 (2019)

14. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining appli-
cations. In: Proceedings of the sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 285–289 (2000)

15. Kuanar, S., Athitsos, V., Pradhan, N., Mishra, A., Rao, K.R.: Cognitive analy-
sis of working memory load from EEG, by a deep recurrent neural network. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2576–2580. IEEE (2018)

16. Markova, V., Ganchev, T., Kalinkov, K.: CLAS: a database for cognitive load, affect
and stress recognition. In: 2019 International Conference on Biomedical Innovations
and Applications (BIA), pp. 1–4. IEEE (2019)

17. Meek, C.: Causal inference and causal explanation with background knowledge.
arXiv preprint arXiv:1302.4972 (2013)

18. Ning, Y., et al.: Assessing cognitive abilities of patients with shift work disorder:
insights from RBANS and granger causality connections among resting-state net-
works. Front. Psych. 11, 780 (2020)

19. Oord, A., et al.: Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499 (2016)

20. Rim, B., Sung, N.J., Min, S., Hong, M.: Deep learning in physiological signal data:
a survey. Sensors 20(4), 969 (2020)

21. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci.
12(2), 257–285 (1988)

22. Wang, C., Guo, J.: A data-driven framework for learners’ cognitive load detec-
tion using ECG-PPG physiological feature fusion and xgboost classification. Proc.
Comput. Sci. 147, 338–348 (2019)

23. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation.
In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

24. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: a strong baseline. In: 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

25. Xiong, R., Kong, F., Yang, X., Liu, G., Wen, W.: Pattern recognition of cognitive
load using EEG and ECG signals. Sensors 20(18), 5122 (2020)

26. Ye, Y., Jiang, J., Ge, B., Dou, Y., Yang, K.: Similarity measures for time series
data classification using grid representation and matrix distance. Knowl. Inf. Syst.
60(2), 1105–1134 (2019)

27. Yu, J., Liu, G.Y., Wen, W.H., Chen, C.W.: Evaluating cognitive task result through
heart rate pattern analysis. Healthc. Technol. Lett. 7(2), 41–44 (2020)

http://arxiv.org/abs/1302.4972
http://arxiv.org/abs/1609.03499

334 Z. Yong et al.

28. Zhang, X., et al.: Photoplethysmogram-based cognitive load assessment using
multi-feature fusion model. ACM Trans. Appl. Percept. (TAP) 16(4), 1–17 (2019)

29. Zhao, M., Zhong, S., Fu, X., Tang, B., Pecht, M.: Deep residual shrinkage networks
for fault diagnosis. IEEE Trans. Industr. Inf. 16(7), 4681–4690 (2019)

30. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using
multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S.,
Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08010-9_33

https://doi.org/10.1007/978-3-319-08010-9_33

Placing (Historical) Facts on a
Timeline: A Classification Cum Coref

Resolution Approach

Sayantan Adak(B) , Altaf Ahmad , Aditya Basu ,
and Animesh Mukherjee

Indian Institute of Technology Kharagpur, Kharagpur, India
sayantanadak.skni@kgpian.iitkgp.ac.in, {altafahmad3037045,

aditya.basu1}@iitkgp.ac.in, animeshm@cse.iitkgp.ac.in

Abstract. A timeline provides one of the most effective ways to visu-
alize the important historical facts that occurred over a period of time,
presenting the insights that may not be so apparent from reading the
equivalent information in textual form . By leveraging generative adver-
sarial learning for important sentence classification and by assimilating
knowledge based tags for improving the performance of event coreference
resolution we introduce a two staged system for event timeline generation
from multiple (historical) text documents. We demonstrate our results
on two manually annotated historical text documents. Our results can
be extremely helpful for historians, in advancing research in history and
in understanding the socio-political landscape of a country as reflected
in the writings of famous personas. The dataset and the code are avail-
able at https://github.com/sayantan11995/Event-Timeline-Generation-
from-Documents.

1 Introduction

Timeline serves as one of the most effective and easiest means to contextualize
and visualize a complex situation ranging from grasping spatio-temporal facts
in historical studies to critical decision making in businesses. With the stupen-
dous increase of textual resources for many historical contents in several online
platforms it has become imperative for the history researchers to understand the
chronological orderings of the incessant historical phenomenon. The fact timeline
can be an extremely useful aid to highlight the temporal and causal relation-
ships among several facts and the interactions of the characters over time, that
results in identifying common themes that arise over the period of interest in a
historical document (see Fig. 2 in Appendix A.1).

In this paper we present a full pipeline to build a chronology of facts extracted
from historical text. Our contributions are as follows.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 21.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 335–352, 2023.
https://doi.org/10.1007/978-3-031-26422-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_21&domain=pdf
http://orcid.org/0000-0001-5307-8811
http://orcid.org/0000-0002-6211-8237
http://orcid.org/0000-0003-1004-6507
http://orcid.org/0000-0003-4534-0044
https://github.com/sayantan11995/Event-Timeline-Generation-from-Documents
https://github.com/sayantan11995/Event-Timeline-Generation-from-Documents
https://doi.org/10.1007/978-3-031-26422-1_21
https://doi.org/10.1007/978-3-031-26422-1_21

336 S. Adak et al.

– We curate a first of its kind dataset from two different historical texts – the
Collected Works of Mahatma Gandhi (CWMG) and the Collected Works of
Abraham Lincoln (CWAL) for our experiments. For each of these datasets
we manually annotate sentences that correspond to important facts. Next for
each of these annotated sentences we also further annotate the coreferences
to the same fact; we call these fact coreferences. Upon acceptance we shall
release this data for future research.

– We introduce a novel divide-and-conquer based approach to generate fact
timeline from timestamped historical texts. In the first step, we classify sen-
tences as containing facts or not using a generative adversarial learning setup.
In the subsequent step we compute fact coreferences using both unsupervised
and supervised methods. The main novelty here is that inclusion of world
knowledge in the form of tag embeddings results in higher performance gains.

– We present a rigorous evaluation of both the steps as well as the full system
which was absent in previous literature [7]. Further we compare our results
to the closely related fact timeline summarization tasks by suitably adapting
them so that the comparison is fair.

– In order to determine the readability and usefulness of the timeline, we con-
duct an online crowd-sourced survey. 93% survey participants found it to be
effective in summarizing historical timeline of facts.

– We also show that our method is generic by evaluating it against a COVID-19
news related dataset which is not a historical text per se.

2 Related Work

Important Sentence Classification and Sentence Coreference Resolu-
tion: Our proposed approach combines important sentence classification, filter-
ing historically important sentences from a bunch of texts, and sentence coref-
erence resolution, merging factually similar sentences. [39] used CNN to anal-
yse sensitivity for text classification. [27] and [38] introduced virtual adversarial
training methods for robust text classification from a small number of training
data points.
Recent works like [10,18] have used neural network based architecture to train
their model on benchmark coreference dataset (ECB+ [12]). [21] attempted to
create an end-to-end event coreference resolution system based on the standard
KBP dataset1.

Timeline of Historical Facts: [5] proposed an unsupervised generative model
to construct the timeline of biographical life-facts leveraging encyclopaedic
resources such as Wikipedia. [3] also uses Wikipedia for timeline construction
of historical facts. [7] attempted to construct a fact timeline from history text-
books considering the sentences having temporal expressions. [29] proposed an
automatic approach to capture and visualize temporal ordering of interactions
between multiple actors. [2] created an AI-enabled web portal based on CWMG
dataset.

1 https://www.ldc.upenn.edu/collaborations/past-projects/tac-kbp.

https://www.ldc.upenn.edu/collaborations/past-projects/tac-kbp

Placing (Historical) Facts on a Timeline 337

Timeline Summarization (TLS): The timeline summarization task aims
to summarize time evolving documents. [15] evaluated existing state-of-the-art
methods for news timeline summarization and proposed datewise and cluster-
ing based approaches on the TLS datasets. [8] demonstrated the potential of
employing several IR methods on TLS tasks based on a large news dataset. [20]
proposes a new approach by generating date level summaries, and then selecting
the most relevant dates for the timeline summarization.

The Present Work: Our paper is closest in spirit to the work done by [7].
In this paper the authors outlined the challenges related to fact coreference for
timeline generation; however, they did not suggest ways to effectively tackle
these challenges and, thereby, solve the problem. We close this gap in our paper
by proposing an efficient approach to resolve fact coreference. Our work has also
close parallels with the fact timeline summarization (TLS) task. Nevertheless,
previous TLS researchers mostly worked on the documents containing multiple
news articles, which are rich in facts. These works have not focused much on prior
fact detection and have not addressed how they can be effectively generalized in
historical text documents such as biographies. Our work for the first time shows
that fact detection could largely benefit TLS tasks in the context of historical
texts.

3 Data Preparation

In this section we present the details of the datasets that we prepare for our
experiments. We also outline the overall annotation process of these datasets.

3.1 Datasets

Collected Works of Mahatma Gandhi: We leverage the Collected Works of
Mahatma Gandhi (CWMG) available at [32], an assortment of 100 volumes
consisting of the books, letters, telegrams written by Mahatma Gandhi and also
the compiled writings of the speeches, interviews engaging Gandhi. This data
covers many important historical facts within the time period of 1884–1948 in
British colonised India.

Collected Works of Abraham Lincoln: The second dataset we have use to demon-
strate our system is based on the life-long writings of the 16th president of the
United States, Abraham Lincoln, formally known as the Collected Works of
Abraham Lincoln (CWAL)2 comprising a total of 8 volumes.

COVID-19 Fact Dataset: In addition, to establish the generalizability of the
approach, we collect 140 major facts, that happened in India during the COVID-
19 pandemic from different sources such as Wikipedia3, Who.int4 to be placed
on a timeline for elegant visualisation using our system.
2 https://quod.lib.umich.edu/l/lincoln/.
3 https://en.wikipedia.org/wiki/COVID-19 pandemic in India.
4 https://www.who.int/india/emergencies/coronavirus-disease-(covid-19)/india-

situation-report.

https://quod.lib.umich.edu/l/lincoln/
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_India
https://www.who.int/india/emergencies/coronavirus-disease-(covid-19)/india-situation-report
https://www.who.int/india/emergencies/coronavirus-disease-(covid-19)/india-situation-report

338 S. Adak et al.

3.2 Pre-processing

From the 100 volumes of text files from CWMG we first extract all the letters
containing the publication dates and recipients name. There were a total of 28531
letters in the entire CWMG. We primarily use the letters for our experiments
as we observe that they contain the best temporal account of the facts. From
the overall set of letters, we select the year range 1930–1935 since this range has
the largest collection of letters. In order to further choose the right data sample,
we categorize the letters into formal and informal types based on the recipients
of the letters. A simple heuristic that we follow is – the letters written to gov-
ernment officials and famous historic personalities can be categorized as formal
while those written to the family members can be classified as informal ones.
We collect the list of Mahatma Gandhi’s family member names from Gandhian
experts for identifying the informal letters. We manually notice that the formal
letters contain much more useful historic information than the informal ones.
We therefore only consider the formal letters for manually annotating the useful
sentences. In addition, we only consider the letters which have more than 1000
words in its content. This results in 41 letters with substantial content (Table 1).

Table 1. Sample list of sentences from CWMG after the sentence classification. The
explicit temporal expression inside the sentence is highlighted.

Doc creation time
(Initial reference
time)

Important sentences Updated reference
time

May 4, 1930 He was arrested at 12.45 a.m.
on May 5.

May 5, 1930

May 4, 1930 In Karachi, Peshawar and
Madras the firing would appear
to have been unprovoked and
unnecessary

May 4, 1930

3.3 Annotation

In this section we outline the data annotation procedure for the two phases.
Recall that our method has two important steps – fact classification and corefer-
ence resolution. While the fact classification phase is supervised (Level I annota-
tions), the coreference resolution is done using both unsupervised and supervised
techniques. The annotations for the coreference resolution (Level II annotations)
are therefore required to (a) train the supervised approach and (b) test the effi-
cacy of both the unsupervised and the supervised approaches.

Level I – Important Sentences: Finally, out of these filtered letters we
manually annotate all the sentences of 18 letters (i.e., 979 sentences in all).
The remaining sentences (i.e., 1689 in total) from the rest of the letters were

Placing (Historical) Facts on a Timeline 339

left unlabelled. Both of these labelled and unlabelled sentences were used for
training the classifier. The classes in which the sentences were classified were
based on their historical importance. In specific, we identify two such important
classes – (a) the facts or factful sentences, which typically represent that some
important historical phenomena or event [33] happened or took place , e.g., ‘A
vegetable market in Gujarat has been raided because the dealers would not sell
vegetables to officials’5, (b) the demands, which represent the demands Mahatma
Gandhi had made to the British government through his writings, e.g., ‘The
terrific pressure of land revenue, which furnishes a large part of the total, must
undergo considerable modification in an independent India.’ and (c) others (i.e.,
not important). As the examples suggest, each individual sentence is annotated
as important (i.e., containing a fact/demand) or not. In order to further enrich
the dataset we collect gold standard facts related to Mahatma Gandhi from
an additional reliable and well maintained resource6. We obtain 86 additional
sentences thus making a total of 1065 (i.e., 979 + 86) important sentences (see
Table 2 for the classwise distribution.).

Table 2. Sample list of sentences from CWMG after the sentence classification. The
explicit temporal expression inside the sentence is highlighted.

Classes Count

CWMG CWAL

Fact 716 242

Demand 81 96

Other 268 382

For the CWAL we simply extract all the sentences from volume 2 and follow
similar approaches to annotate important sentences as in the case of CWMG.
Without considering any filtering criteria we consider all the 111 articles of
volume 2 including his letters and propositions which consist of a total of 1386
sentences. Out of these 720 sentences were manually annotated (see Table 2).

Annotator Details and Annotation Guidelines: For both the datasets three anno-
tators annotated the sentences. The annotation process was led by one PhD
student along with two undergraduate students. The PhD student had substan-
tial experience in historical text analysis and will be referred to as the expert
annotator henceforth. The first level of annotation was carried out for each of
the sentences and based on the assumption that a full sentence corresponds to
a fact/demand. All the annotators annotated the sentences independently. For
the training of the two undergraduate annotators, they were provided with the
examples of 25 gold standard facts and demands each. The gold standard facts

5 Such sentences would typically consist of participants and locations.
6 https://www.gandhiheritageportal.org/.

https://www.gandhiheritageportal.org/

340 S. Adak et al.

were collected from the reliable resource mentioned in the earlier paragraph and
the gold standard demands were collected from the formal letters of Mahatma
Gandhi which were first annotated by the expert annotator and verified by a
Gandhian scholar (see Table 9 in Appendix A.2 for example annotations). The
inter-annotator agreements, i.e., Cohen’s κ were 0.66 and 0.58 for the former
and the latter datasets respectively. Table 2 shows the category distribution for
both the datasets. The Level I annotation was not carried out for the COVID-19
dataset because, each sentence collected were presented as facts in the mentioned
portals and thus we considered all the sentences as important facts.

Level II – Coreference Resolution: The second round of annotation was
carried out for evaluating the fact coreference detection task on the same dataset.
For this case we only annotate the texts which were marked important during
the Level I annotation. In addition, the Level II annotation was also carried out
for the COVID-19 fact dataset.

Annotator details and annotation guidelines: The same annotators annotated for
the Level II phase. The annotators were provided with sentences, the reference
documents (letters) from which the sentences were extracted and the reference
time (document publication date). Based on the perception of the annotators,
the sentences that potentially referred to the same fact were placed in the same
cluster. The coreferences have been placed by the annotators in different clusters
based on different factors like the commonness of the mentioned times, entities
and the fact name/composition. Consider these two sentences - ‘The crowd that
demanded restoration of the flag thus illegally seized is reported to have been
mercilessly beaten back.’ and ‘Bones have been broken, private parts have been
squeezed for the purpose of making volunteers give up, to the Government val-
ueless, to the volunteers precious salt ’. Although there is no explicit mention
of time in either of the sentences, both of them are from the same document
and thus their reference dates would be the same as the publication date of the
document. Also both of them refer to similar types of atrocities. So these two
sentences should be placed in the same cluster. We first carried out a trial round
for the two undergraduate annotators by using 100 randomly chosen impor-
tant sentences from the Level I phase and the trial annotations were verified by
the expert annotator. Finally for the complete Level II annotations, the inter-
annotator agreements were 0.74, 0.61, and 0.78 for the CWMG, the CWAL and
the COVID-19 dataset respectively using MUC [37] based F1-score [14] (see
Table 10 in Appendix A.2 for example annotations and Appendix A.3 for other
agreement metrics.).

4 Methodology

Our method consists of three major components (see Fig. 1): (i) important sen-
tence extraction, (ii) sentence coreference resolution, and (iii) timeline visualiza-
tion. The arrows represent the direction of data flow. In this section we describe
in detail the methods used for each of these components.

Placing (Historical) Facts on a Timeline 341

Fig. 1. The overall architecture for generating the timeline.

4.1 Important Sentence Extraction

Baselines: As baselines, we use SVM [16] and Multinomial Näıve Bayes [19] on
simple bag-of-words feature. For SVM we use linear kernel. For the evaluation
of the classifiers we use a 70:30 train-test split of the annotated data.

Fine-Tuned BERT: Apart from the above two baselines, we try BERT [13]
neural network based framework for the classification. We train the model using
the PyTorch [30] library, and apply bert-base-uncased pre-trained model for text
encoding. We use a batch size of 32, sequence length of 80 and learning rate of
2e − 5 as the optimal hyper-parameters for training the model.

GAN-BERT Text Classifier: In search for further enhancement of the per-
formance based on our limited sets of labelled data, we employ the GAN-BERT
[11] deep learning framework for classifying the important sentences. It uses
generative adversarial learning to generate augmented labelled data for semi-
supervised training of the transformer based BERT model. It improves the per-
formance of BERT when training data is scarce and is therefore highly suited for
our case. Here we also feed the unlabeled data sample, as discussed in Sect. 3.3,
to help the network to generalize the representation of input texts for the final
classification [11].

4.2 Sentence Coreference Resolution

Once the classification was done we end up with ’factful’ sentences linked to its
corresponding document creation time in the format noted in Table 2.

Time Within Sentences: For generating the accurate fact timeline we need
to assign a valid date to a particular sentence (i.e. fact/demand). For example,
in the first sentence in Table 2, although the document publication time is men-
tioned to be May 4, 1930, the sentence clearly has embedded in it the exact fact
date May 5, 1930 apparent from the snippet ‘arrested on May 5 ’. Therefore,
if the explicit time is present in the sentence we use it directly, else we use the
creation/publication date of the document. We extract the explicit mention of
time in the text using the HeidelTime [36] tool. This tool is capable of identify-
ing embedded mentions of temporal expressions such as ‘yesterday’, ‘next day’
etc..

342 S. Adak et al.

Tag Generation from World Knowledge: An individual sentence does not
always contain much information about the fact/demand which it is getting
referred to. So we attempt to incorporate world knowledge for each individual
sentence. By using each sentence as a query we gather the top five Google search
results using the googlsearch api7 and also consider the document from which the
sentence was being extracted. Next we analyse the search result using TextRank8,
Rake9 and pointwise mutual information10 to generate top keywords present in
the search result. Although these methods produce reasonably good results, in
many cases we needed to manually filter out certain noisy tags. For each sentence
we therefore land up with one or more tags. We retain the top ten tags for
every sentence which means that the number of tags for a sentence could vary
between one and ten. The details of the tag generation procedure mentioned
in Appendix A.4. We do not use encyclopaedic resources such as Wikipedia to
get the search results because the datasets we are using, are only available in a
few very specific websites. We fed the list of keyword(s) or tag(s) obtained for a
sentence to the pre-trained sentence-bert model for obtaining a 768 dimensional
embedding representation of the keywords.

Unsupervised Sentence Clustering: We employ several unsupervised
approaches for sentence coreference resolution. As baselines, we choose two com-
monly used approaches for coreference resolution – (a) Lemma: It attempts to
put the sentence pairs in same coreference chain which share the same head
lemma, (b) Lemma-δ: In addition to same head lemma as a feature, it also com-
putes the cosine similarity (δ) between the sentence pair based on tf-idf features,
and only places the sentence pairs in the same coreference chain if δ exceeds some
threshold. Then the sentence clusters were created using agglomerative clustering
method. To extract the head lemma of a sentence, we use the SpaCy dependency
parser.

Apart from these two common baselines, we vectorize the sentences using tf-
idf vectorization technique and then apply different clustering techniques such
as Gaussian-Mixture11 model, agglomerative clustering to cluster the sentences
corresponding to similar facts. We also use the pre-trained sentence-bert [35]
model to encode the sentences and apply similar clustering techniques. Finally,
we concatenate the sentence embedding with the tag embedding generated from
that particular sentence. We again cluster the sentences based on this new rep-
resentation. This, as we shall later see, significantly improves the performance
of the clustering phase. We evaluate the clustering results on the basis of the
annotated data which had been obtained in the second phase of data annota-
tion. We used the elbow method to find the optimal number of clusters in case
of Gaussian-Mixture and used dendogram to select the optimal distance thresh-
old for the suitable number of clusters in case of agglomerative clustering. The

7 https://github.com/MarioVilas/googlesearch.
8 https://github.com/DerwenAI/pytextrank.
9 https://pypi.org/project/rake-nltk/.

10 https://www.nltk.org/howto/collocations.html.
11 https://scikit-learn.org/stable/modules/mixture.html.

https://github.com/MarioVilas/googlesearch
https://github.com/DerwenAI/pytextrank
https://pypi.org/project/rake-nltk/
https://www.nltk.org/howto/collocations.html
https://scikit-learn.org/stable/modules/mixture.html

Placing (Historical) Facts on a Timeline 343

distance threshold we selected were 0.25, 0.6 and 0.6 for CWMG, CWAL and
COVID-19 data respectively.

Supervised Fact Mention-Pair Model: A fact mention is a sentence or
phrase that defines a fact and one fact may contain multiple fact mentions [9].
We first create a dataset containing all the possible pairs of factful (i.e., fact or
demand) sentences from the ground-truth annotations. We set the coreference
label to 1 if the sentence pair is contained in the same cluster as per the Level II
annotation and 0 otherwise. Here we again use a 70:30 split to generate training
and test instances. The overall architecture is inspired from [6] (see Appendix
A.5). The inputs to the model are the two sentences (i.e. S1 and S2) and their
corresponding actions (i.e., A1 and A2), time (i.e., T1 and T2) and tags (i.e.,
K1 and K2). We extract actions (i.e., Ai) for each of the sentences using SpaCy
dependency parser12.

Mention Pair Construction: We used Tensorflow [1] tokenizer to vectorize each
feature (i.e., sentences, actions, time and tags) to convert it into sequence of
integers after restricting the tokenizer to use only the top most common 5000
words. For the sentences we limit the sequence length to 64. For the other features
- actions, time and tags - we limit the sequence length to 10. We always use zero
padding for smaller sequences. We next encode the words present in each of
these sequences using a pre-trained GloVe [31] embedding (100 dimensions).
Thus each sentence comes out as a 64 ∗100 size vector representation while each
of the other features come out as a 10 ∗ 100 size vector representation. Now each
of these vectors are separately passed through a LSTM [17] layer with default
hyperparameters to transform them into 128 size vectors each. Next each of these
128 size vectors are passed through separate dense layers to obtain 32 size vectors.
Finally, these 32 size vectors are concatenated using a concatenation layer. The
output of the concatenation layer is what we term as a mention representation.
Two mention representations are concatenated to get a pairwise representation
(i.e., an fact mention pair) and passed through a feed forward network to return
a score denoting the likelihood that two mentions are coreferent (see Fig. 3 in
Appendix A.5). Based on the predicted pairwise score on the test instances we
used a threshold (0.5 in our case) to generate a similarity matrix of the mentions,
and then applied agglomerative clustering to partition the similar mentions into
the same clusters.

4.3 Timeline Visualization

Once the sentence coreference resolution phase was successfully executed, we
generated visualization for the given fact/demand sequence using vis-timeline13,
a dynamic, browser based visualization library.

12 We consider the root verb as action for a sentence.
13 https://visjs.github.io/vis-timeline/docs/timeline/.

https://visjs.github.io/vis-timeline/docs/timeline/

344 S. Adak et al.

Table 3. Results (accuracy and macro F1-score) for the important sentence classifica-
tion using our approaches on the two datasets. MNB: Multinomial Näıve Bayes. Best
results are marked in boldface and highlighted in green cells.

Dataset Model
Evaluation metric

Accuracy F1

CWMG MNB 0.74 0.45

SVM 0.79 0.5

Fine-tuned BERT 0.8 0.57

GAN-BERT 0.9 0.69

CWAL MNB 0.6 0.3

SVM 0.6 0.34

Fine-tuned BERT 0.61 0.56

GAN-BERT 0.7 0.65

5 Experiments

5.1 Evaluation Metrics

We have used separate evaluation metrics for the two phases.

Important Sentence Classification: In this case we use the standard accuracy and
F1-score values.

Sentence Coreference Resolution: Here we conduct the evaluation based on the
widely used coreference resolution metrics – (a) MUC [37], (b) B3 [4], (c) CEAF
[22], and (d) BLANC [34]. Due to the inconsistency of each of these evaluation
metrics [28] we shall also report the average outcomes of all the metrics.

5.2 Results

We evaluate the two different phases separately. Ground-truth data was used
from each phase for respective evaluations.

Important Sentence Classification: The key results for the two datasets
(CWMG and CWAL) are summarised in Table 3. Our approach based on GAN-
BERT by far outperforms the standard baselines. For the CWMG dataset, the
macro F1-score shoots from 0.50 (SVM) to 0.69 on the three class classification
task. Likewise for the CWAL dataset, the macro F1-score shoots from 0.34 (Näıve
Bayes) to 0.65.

Evaluation of Coreference Resolution: For the evaluation of coreference
resolution we use several coreference resolution metrics to analyse the model
performance. It is apparent from Table 4 that the approach based on cluster-
ing with sentence-bert embeddings by far outperforms the baselines lemma and
lemma-δ. For the CWMG dataset, sentence-bert + agglomerative clustering is

Placing (Historical) Facts on a Timeline 345

Table 4. Sentence coreference results before and after tag embedding. GM: Gaussian
Mixture based clustering; AC: Agglomerative Clustering; s-bert: sentence-bert; m-pair:
supervised mention-pair model. Best results including the tag embedding are marked
in boldface and highlighted in green cells. Best results excluding the tag embedding
are marked by underline and highlighted in blue cells.

Dataset System
MUC B3 CEAF E BLANC Avg (overall)

Time taken
F1 F1 F1 F1 Recall Precision F1

CWMG Lemma 0.45 0.38 0.20 0.49 0.39 0.38 0.38 45 s

Lemma-δ 0.53 0.41 0.19 0.48 0.48 0.40 0.41 7 min 22 s

tf-idf + GM 0.53 0.53 0.36 0.60 0.49 0.52 0.50 26 min 14 s

tf-idf + AC 0.55 0.50 0.42 0.57 0.50 0.53 0.51 5 min 13 s

s-bert + GM 0.61 0.54 0.41 0.60 0.54 0.54 0.54 29 min 34 s

s-bert + AC 0.63 0.57 0.40 0.61 0.55 0.56 0.55 7 min 42 s

+ tag embedding

tf-idf + GM 0.64 0.57 0.45 0.64 0.57 0.60 0.58 28 min 19 s

tf-idf + AC 0.62 0.61 0.51 0.66 0.58 0.63 0.60 6 min 57 s

s-bert + GM 0.65 0.62 0.48 0.66 0.60 0.60 0.60 30 min 28 s

s-bert + AC 0.75 0.70 0.52 0.73 0.65 0.71 0.68 8 min 36 s

m-pair model 0.91 0.59 0.83 0.53 0.83 0.69 0.72 2 hr 10 min 32 s

CWAL Lemma 0.28 0.11 0.17 0.49 0.26 0.27 0.27 58 s

Lemma-δ 0.31 0.15 0.14 0.48 0.28 0.27 0.18 9 min 41 s

tf-idf + GM 0.53 0.37 0.35 0.49 0.42 0.45 0.43 41 min 25 s

tf-idf + AC 0.57 0.42 0.38 0.49 0.45 0.49 0.46 8 min 5 s

s-bert + GM 0.43 0.39 0.40 0.54 0.43 0.46 0.44 46 min 18 s

s-bert + AC 0.51 0.42 0.40 0.54 0.46 0.48 0.47 11 min 15 s

+ tag embedding

tf-idf + GM 0.74 0.52 0.40 0.63 0.56 0.59 0.57 43 min 23 s

tf-idf + AC 0.72 0.51 0.48 0.64 0.57 0.61 0.59 9 min 27 s

S-bert + GM 0.74 0.41 0.34 0.67 0.51 0.57 0.54 47 min 12 s

s-bert + AC 0.82 0.53 0.44 0.72 0.60 0.66 0.63 11 min 42 s

m-pair model 0.96 0.42 0.78 0.35 0.82 0.65 0.64 2 hr 11 min 40 s

COVID-19 Lemma 0.55 0.39 0.28 0.55 0.51 0.42 0.44 9 sec

Lemma-δ 0.34 0.29 0.25 0.51 0.35 0.34 0.35 1 min 8 s

tf-idf + GM 0.56 0.41 0.36 0.60 0.47 0.50 0.48 6 min 37 s

tf-idf + AC 0.59 0.45 0.36 0.62 0.49 0.54 0.51 1 min 44 s

s-bert + GM 0.63 0.45 0.32 0.57 0.47 0.51 0.49 8 min 41 s

s-bert + AC 0.61 0.44 0.35 0.57 0.48 0.50 0.49 2 min 25 s

+ tag embedding

tf-idf + GM 0.44 0.33 0.28 0.54 0.39 0.40 0.39 7 min 31 s

tf-idf + AC 0.44 0.34 0.32 0.44 0.4 0.42 0.41 2 min 38 s

s-bert + GM 0.57 0.41 0.35 0.59 0.47 0.49 0.48 9 min 35 s

s-bert + AC 0.63 0.46 0.39 0.59 0.51 0.52 0.52 3 min 19 s

m-pair model 0.86 0.80 0.97 0.65 0.80 0.84 0.82 29 min 18 s

the best overall; for the other two datasets no single method is a clear win-
ner. However, the primary point that we wish to emphasize in the table is the
result after incorporating tag embedding. It can be clearly observed that this
intuitive, albeit hitherto unreported, technique almost always produces better
results (see Appendix A.4 and the Table 12 therein describing the tag genera-
tion process in more details). In fact, the assimilation of the tag embeddings with
the sentence-bert embeddings boosted the overall F1-score by 13%, and 16% for

346 S. Adak et al.

the CWMG and the CWAL datasets respectively. Note that these results hold
even if the manual filtering step in the tag generation is completely omitted (see
Table 7). An interesting observation is that the benefit of the tag embedding is
best leveraged by the sentence-bert + agglomerative clustering. For the COVID-
19 dataset, since search results are generic, the benefit of tag embedding is less.
Furthermore, the supervised model consistently outperforms the unsupervised
results across all three datasets. Note that the tag generation is done only once
and therefore takes a fixed amount of time. It took 3.26 s, 3.47 s, and 1.96 s per
sentence on average to generate knowledge-based tags for CWMG, CWAL, and
COVID-19 datasets respectively. The time that the model takes to inference in
presence of the tag embeddings is negligible as compared to the model without
these embeddings (see the last column of Table 4). For the supervised models
though, the major chunk of time is required for the mention pair generation.

Full System Evaluation: So far, the assessment for the two components was
carried out separately, i.e., the evaluation for the important sentence extraction
was based on Level I annotated data while the evaluation for sentence corefer-
ence resolution was on the basis of Level II annotations independently. We also
conduct the full system evaluation for CWMG and CWAL datasets, i.e., the com-
plete evaluation was only dependent on Level II annotated data. For this case
we trained the GAN-BERT classifier with 30% of the labeled data along with
the unlabeled data (discussed in Sect. 3.3), and had predictions for the rest of
70% data. Now, we consider only the true positives (labeled as important, and
also predicted important), before performing the coreference resolution. This
task is evaluated based on the Level II annotated data. The primary reasons
for considering only true positive samples are - (1) we do not have ground-truth
Level II annotated data for the non-important sentences (i.e., the false posi-
tives), (2) for all practical purposes we are only interested in the coreferences
present in the positive predictions (i.e., in the predicted important sentences).
Table 5 shows the comparison between the full system evaluation result and the
standard result (see Appendix A.8 for results w/o tags). The results shown here
are the average value of the four different standard metrics (MUC, B3, CEAF E
and BLANC) corresponding to the best performing unsupervised model as well
as the mention-pair based supervised model.

Comparison with TLS: Since our method has some parallels with TLS, in this
section we perform a thorough comparison with state-of-the-art TLS systems.
Note that the output of our system is not similar to that of the standard TLS
output. In order to make the comparison possible and fair we added a simple
summarization step at the end of our pipeline. We used the BERT extractive
summarizer [26] to extract the two most important sentences as the summary
for each of the fact clusters generated by our method. We evaluated the sum-
maries using the alignment-based ROUGE (AR) F-Score [24]. Unlike [15], we
did not use any date ranking method to rank the dates of the predicted timeline
and compared the ground-truth with the top-k predicted timeline. We tested all

Placing (Historical) Facts on a Timeline 347

Table 5. Full system evaluation result. Type: Coref-resolution type, MA: Important
sentences obtained through manual annotation, MP: Important sentences obtained
from model prediction, Su: Supervised, Un: Unsupervised. Appendix A.8 shows the
same results without using tag embeddings.

Dataset Type M R P F1

CWMG Su MA 0.83 0.69 0.72

MP 0.74 0.63 0.64

Un MA 0.65 0.71 0.68

MP 0.62 0.65 0.63

CWAL Su MA 0.82 0.65 0.64

MP 0.74 0.59 0.60

Un MA 0.60 0.66 0.63

MP 0.55 0.59 0.57

the approaches using our Level I annotated data as the ground-truth reference.
Table 6 shows the detailed comparison of our approach with few of the exist-
ing state-of-the-art TLS approaches on two of our datasets. In order to perform
these experiments we considered pre-selected 41 formal letters from CWMG in
the time period 1930–1935 with more than 1000 words and all the documents
of volume 2 from CWAL (from which the Level I annotations were performed)
and directly passed through the TLS pipeline using the codes provided by the
respective authors. In order to make the comparison further fair, we also per-
formed an experiment by first carrying out important sentence classification
using our method and then feeding the filtered data into the TLS pipeline pro-
vided by the authors. In order to benefit the TLS models the fact detection for
this pre-filtering was performed using the model fine-tuned on our dataset. This
modification results in superior performance of the TLS. In fact, fact detection
prior to summarization always helps – our method as well as one of the baseline
methods [15] where fact detection can be easily incorporated show significantly14

improved performance. In Table 13 of Appendix A.6 we also show that this fact
detection step brings benefits to a standard TLS dataset which has not been built
from historical text. The reason for this inferior performance could be that the
summary in the standard TLS approaches are highly sensitive to the keywords
used for the particular dataset and generating quality keywords for a dataset
consisting of diverse facts like ours requires domain-expertise (see Table 14 in
Appendix A.7).

6 Ablation Study

We performed two ablation studies - first, to check the effectiveness of manual
filtering of noisy tags, second, to assess the added value of each component in
the mention-pair model.
14 Statistical significance were performed using Mann-Whitney U test [23].

348 S. Adak et al.

Table 6. Comparison of our method for the with the existing state-of-the-art TLS
methods - (1) MM (submodularity based method): [25] and (2) DT: datewise and (3)
CLUST: clustering based TLS by [15], FD: Fact detection. †, *, • show that our results
are significantly different from MM, FD + DT, FD + CLUST respectively. In turn,
any method with FD (*, •) is significantly better than MM.

System
CWMG Dataset CWAL Dataset

AR1-F AR2-F AR1-F AR2-F

MM 0.023 0.001 0.052 0.024

DT 0.008 0.001 0.022 0.002

FD (our)
+ DT

0.015* 0.006* 0.026* 0.002

CLUST 0.028 0.02 0.055 0.040

FD (our)
+ CLUST

0.034• 0.025• 0.086• 0.071•

Our
method

0.062†*• 0.043†*• 0.069†*• 0.042†*•

Sentence Coreference Resolution Results Without Manual Filtering of
Tags: Table 7 shows result obtained from different coreference resolution tech-
niques when we do not include any manual filtering steps to the generated tags.
It can be noticed that there is not much difference in the results even when we
omit this step.

Added Value of Each Element in the Mention-Pair Model: Table 8 shows
the added value of each feature in the mention-pair model. For both the historical
texts we observe that inclusion of each feature improves the overall performance.
The best improvement is observed on the inclusion of the external knowledge in
the form of tag embeddings.

7 Timeline Visualization

Generating a timeline would not be that impactful unless it is visualized in an
interpretable and convenient way. We incorporate an elegant visualization for the
generated fact/demand timelines using vis-timeline javascript library (Appendix
A.9 shows an example timeline).

Survey: In order to understand the effectiveness of the interface we ran an online
crowd-sourced survey. Out of 33 participants with different educational back-
grounds, overall 93% agreed that the interface was very useful for summarization
of historical timeline of facts. 88% participants found some information which
would have been hard for them to fathom just by reading the CWMG plaintext
(more results in Appendix A.10).

Placing (Historical) Facts on a Timeline 349

Table 7. Sentence coreference results without using manual filtering for the tags.
D: dataset, M: model, GM: Gaussian Mixture based clustering; AC: Agglomerative
Clustering; s-bert: sentence-bert, m-pair: mention-pair model, B: BLANC, C: CEAF E.
The results mostly remain unaffected.

D M MUC B3 C B Avg (overall)

F1 F1 F1 F1 R P F1

CWMG tf-idf+GM 0.61 0.55 0.51 0.58 0.62 0.57 0.56

tf-idf+AC 0.64 0.59 0.51 0.66 0.58 0.64 0.60

s-bert+GM 0.68 0.61 0.44 0.63 0.62 0.60 0.59

s-bert+AC 0.76 0.71 0.50 0.72 0.65 0.72 0.67

m-pair 0.92 0.61 0.85 0.53 0.85 0.70 0.73

CWAL tf-idf+GM 0.76 0.51 0.44 0.65 0.55 0.59 0.59

tf-idf + AC 0.75 0.50 0.49 0.65 0.56 0.63 0.59

S-bert+GM 0.76 0.40 0.35 0.69 0.51 0.59 0.55

s-bert+AC 0.81 0.59 0.47 0.70 0.63 0.72 0.64

m-pair 0.95 0.43 0.76 0.36 0.81 0.67 0.62

COVID-19 tf-idf+GM 0.40 0.33 0.26 0.55 0.39 0.44 0.38

tf-idf+AC 0.42 0.35 0.34 0.43 0.41 0.39 0.38

s-bert+GM 0.56 0.43 0.36 0.57 0.44 0.49 0.48

s-bert+AC 0.65 0.44 0.37 0.59 0.52 0.50 0.51

m-pair 0.84 0.80 0.95 0.66 0.79 0.82 0.81

Table 8. Added value of each component in the mention-pair model for each dataset;
F: features, S: considering sentence embedding as the only feature, D: date, A: action,
T: tag.

D F Avg F1 Inc

CWMG S 0.613 -

S+D 0.657 0.044

S+D+A 0.688 0.031

S+D+A+T 0.720 0.038

CWAL S 0.394 -

S+D 0.544 0.15

S+D+A 0.560 0.016

S+D+A+T 0.640 0.008

Covid-19 S 0.791 -

S+D 0.778 −0.013

S+D+A 0.811 0.033

S+D+A+T 0.820 0.009

350 S. Adak et al.

8 Conclusion

In this work we presented a framework to generate fact timeline from any times-
tamped document. The entire pipeline has two parts – important sentence detec-
tion and sentence coreference resolution. We achieve very encouraging results for
both these tasks. While it is true that our evaluations are based on two histori-
cal texts, our methods are generic and can be easily extended to other datasets.
The system that we developed is not limited to any actor specific fact (human
or location) which, in fact, made the coreference resolution task even more chal-
lenging. We believe that our work will open up new and exciting opportunities
in history research and education.

References

1. Abadi, M., Agarwal, A., et al.: TensorFlow: large-scale machine learning on het-
erogeneous systems (2015). https://www.tensorflow.org/

2. Adak, S., et al.: Gandhipedia: A one-stop AI-enabled portal for browsing Gandhian
literature, life-events and his social network. In: JCDL, pp. 539–540, New York,
NY, USA (2020)

3. Aprosio, A., Tonelli, S.: Recognizing biographical sections in Wikipedia, pp. 811–
816, January 2015

4. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vec-
tor space model. In: Coling, vol. 1, p. 79 (2000)

5. Bamman, D., Smith, N.A.: Unsupervised discovery of biographical structure from
text. Trans. Assoc. Comput. Linguist. 2, 363–376 (2014)

6. Barhom, S., Shwartz, V., Eirew, A., Bugert, M., Reimers, N., Dagan, I.: Revisiting
joint modeling of cross-document entity and event coreference resolution (2019)

7. Bedi, H., Patil, S., Hingmire, S., Palshikar, G.: Event timeline generation from
history textbooks. In: Proceedings of the 4th Workshop on Natural Language Pro-
cessing Techniques for Educational Applications (NLPTEA 2017), pp. 69–77. Asian
Federation of Natural Language Processing, Taipei, Taiwan, December 2017

8. Born, L., Bacher, M., Markert, K.: Dataset reproducibility and IR methods in
timeline summarization. In: LREC 2020 (2020)

9. Chen, Z., Ji, H., Haralick, R.: A pairwise event coreference model, feature impact
and evaluation for event coreference resolution. In: Proceedings of the Workshop
on Events in Emerging Text Types, pp. 17–22. Association for Computational
Linguistics, Borovets, Bulgaria, September 2009

10. Choubey, P.K., Huang, R.: Event coreference resolution by iteratively unfolding
inter-dependencies among events. In: Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2124–2133. Association for Com-
putational Linguistics, Copenhagen, Denmark, September 2017

11. Croce, D., Castellucci, G., Basili, R.: GAN-BERT: generative adversarial learning
for robust text classification with a bunch of labeled examples. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp.
2114–2119. Association for Computational Linguistics, July 2020

12. Cybulska, A., Vossen, P.: Using a sledgehammer to crack a nut? Lexical diver-
sity and event coreference resolution. In: Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC 2014), pp. 4545–4552.
European Language Resources Association (ELRA), Reykjavik, Iceland, May 2014

https://www.tensorflow.org/

Placing (Historical) Facts on a Timeline 351

13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding (2019)

14. Ghaddar, A., Langlais, P.: Wikicoref: an English coreference-annotated corpus of
Wikipedia articles. In: Chair, N.C.C., et al. (eds.) Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC 2016). European
Language Resources Association (ELRA), Paris, France, May 2016

15. Gholipour Ghalandari, D., Ifrim, G.: Examining the state-of-the-art in news time-
line summarization. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 1322–1334. Association for Computational Lin-
guistics, July 2020

16. Hearst, M.A.: Support vector machines. IEEE Intell. Syst. 13(4), 18–28 (1998)
17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
18. Kenyon-Dean, K., Cheung, J.C.K., Precup, D.: Resolving event coreference with

supervised representation learning and clustering-oriented regularization (2018)
19. Kibriya, A.M., Frank, E., Pfahringer, B., Holmes, G.: Multinomial naive Bayes for

text categorization revisited. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI),
vol. 3339, pp. 488–499. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30549-1 43

20. La Quatra, M., Cagliero, L., Baralis, E., Messina, A., Montagnuolo, M.: Summarize
dates first: a paradigm shift in timeline summarization, pp. 418–427. Association
for Computing Machinery, New York, NY, USA (2021)

21. Lu, Y., Lin, H., Tang, J., Han, X., Sun, L.: End-to-end neural event coreference
resolution. Artif. Intell. 303, 103632 (2020)

22. Luo, X.: On coreference resolution performance metrics, January 2005
23. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is

stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)
24. Martschat, S., Markert, K.: Improving ROUGE for timeline summarization. In:

Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics, vol. 2, Short Papers, pp. 285–290. Association for
Computational Linguistics, Valencia, Spain, April 2017

25. Martschat, S., Markert, K.: A temporally sensitive submodularity framework for
timeline summarization. In: Proceedings of the 22nd Conference on Computational
Natural Language Learning, pp. 230–240. Association for Computational Linguis-
tics, Brussels, Belgium, October 2018

26. Miller, D.: Leveraging BERT for extractive text summarization on lectures (2019)
27. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-

supervised text classification (2017)
28. Moosavi, N.S., Strube, M.: Which coreference evaluation metric do you trust? A

proposal for a link-based entity aware metric. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, vol. 1, Long Papers,
pp. 632–642. Association for Computational Linguistics, Berlin, Germany, August
2016

29. Palshikar, G., Pawar, S., Patil, et al.: Extraction of message sequence charts from
narrative history text. In: Proceedings of the First Workshop on Narrative Under-
standing, pp. 28–36. Association for Computational Linguistics, Minneapolis, Min-
nesota, June 2019

30. Paszke, A., Gross, S., et al.: PyTorch: an imperative style, high-performance deep
learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems,
vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

https://doi.org/10.1007/978-3-540-30549-1_43
https://doi.org/10.1007/978-3-540-30549-1_43

352 S. Adak et al.

31. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

32. Preservation, S.A., Trust, M.: The Collected Works of Mahatma Gandhi (2013).
https://www.gandhiheritageportal.org/the-collected-works-of-mahatma-gandhi.
Accessed 22 Feb 2020

33. Pustejovsky, J., et al.: TimeML: robust specification of event and temporal expres-
sions in text, pp. 28–34, January 2003

34. Recasens, M., Hovy, E.: Blanc: Implementing the rand index for coreference eval-
uation. Nat. Lang. Eng. 17, 485–510 (2011)

35. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-networks (2019)

36. Strötgen, J., Gertz, M.: HeidelTime: high quality rule-based extraction and normal-
ization of temporal expressions. In: Proceedings of the 5th International Workshop
on Semantic Evaluation, pp. 321–324. Association for Computational Linguistics,
Uppsala, Sweden, July 2010

37. Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L.: A model-
theoretic coreference scoring scheme, pp. 45–52, January 1995

38. Zhang, W., Chen, Q., Chen, Y.: Deep learning based robust text classification
method via virtual adversarial training. IEEE Access 8, 61174–61182 (2020)

39. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification (2016)

https://www.gandhiheritageportal.org/the-collected-works-of-mahatma-gandhi

‘John Ate 5 Apples’ != ‘John Ate Some
Apples’: Self-supervised Paraphrase

Quality Detection for Algebraic Word
Problems

Rishabh Gupta(B), V. Venktesh, Mukesh Mohania, and Vikram Goyal

Indraprastha Institute of Information Technology, Delhi, India
{rishabh19089,venkteshv,mukesh,vikram}@iiitd.ac.in

Abstract. This paper introduces the novel task of scoring paraphrases
for Algebraic Word Problems (AWP) and presents a self-supervised
method for doing so. In the current online pedagogical setting, para-
phrasing these problems is helpful for academicians to generate multiple
syntactically diverse questions for assessments. It also helps induce vari-
ation to ensure that the student has understood the problem instead of
just memorizing it or using unfair means to solve it. The current state-of-
the-art paraphrase generation models often cannot effectively paraphrase
word problems, losing a critical piece of information (such as numbers or
units) which renders the question unsolvable. There is a need for para-
phrase scoring methods in the context of AWP to enable the training
of good paraphrasers. Thus, we propose ParaQD, a self-supervised para-
phrase quality detection method using novel data augmentations that can
learn latent representations to separate a high-quality paraphrase of an
algebraic question from a poor one by a wide margin. Through extensive
experimentation, we demonstrate that our method outperforms existing
state-of-the-art self-supervised methods by up to 32% while also demon-
strating impressive zero-shot performance.

1 Introduction

Algebraic Word Problems (AWPs) describe real-world tasks requiring learners
to solve them using mathematical calculations. However, providing the same
problem multiple times may result in the learner memorizing the mathematical
formulation for the corresponding questions or exchanging the solution approach
during exams without understanding the problem. Hence, paraphrasing would
help prepare diverse questions and help to evaluate whether the student can
arrive at the correct mathematical formulation and solution1.
1 https://cutt.ly/MWqHsN8.

R. Gupta and V. Venktesh—Contributed equally.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1_22.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 353–369, 2023.
https://doi.org/10.1007/978-3-031-26422-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_22&domain=pdf
https://cutt.ly/MWqHsN8
https://doi.org/10.1007/978-3-031-26422-1_22
https://doi.org/10.1007/978-3-031-26422-1_22

354 R. Gupta et al.

The paraphrasing task can be tackled using supervised approaches like in [3]
or self-supervised approaches like in [8]. As shown in Fig. 1, we observed that
the generated paraphrases are of low quality as critical information is lost and
the solution is not preserved. Some common issues that arose for the paraphras-
ing models were replacement or removal of numerical terms, important entities,
replacement of units with irrelevant ones and other forms of information loss.
These issues result in the generated question having a different solution or being
rendered impossible to solve. Thus, there exists a need to automatically evalu-
ate if a paraphrase preserves the semantics and solution of the original question.
This is a more challenging problem than detecting similarity for general sen-
tences. The existing state-of-the-art semantic similarity models give a relatively
high score even to very low-quality paraphrases of algebraic questions (where
some critical information has been lost), as seen in Fig. 1 and Table 1. In Fig. 1,
our approach ParaQD assigns the cosine similarity as −0.999, thereby preventing
the low-quality paraphrases from getting chosen. There is a need for solutions
like ParaQD because poor paraphrases of algebraic questions cannot be given to
the students as they are either unsolvable (as observed in the figure) or do not
preserve the original solution.

Fig. 1. Paraphrases by SOTA generation models. a is output from PEGASUS fine-
tuned on PAWS, b is from T5 fine-tuned on Quora Question Pairs dataset and c
is from PARROT paraphraser built on T5. x represents the cosine similarity scores
assigned by the pretrained encoder MiniLM, while y represents the scores with our
proposed approach, ParaQD.

To tackle the issues mentioned above, we need a labelled dataset for training
a proper scoring model. However, there does not exist a dataset for AWP with
labelled paraphrases. Therefore, we propose multiple unsupervised data aug-
mentations to generate positive and negative paraphrases for an input question.

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 355

To model our negative augmentations, we identify crucial information in AWPs
like numbers, units and key entities and design operators to perturb them. Simi-
larly, for the positive augmentations, we design operators that promote diversity
and retain the crucial information, thereby yielding a semantically equivalent
AWP. On the other hand, existing augmentation methods like SSMBA [9] and
UDA [15] do not capture the crucial information in AWPs. Using the positive and
negative paraphrases, we train a paraphrase scoring model using triplet loss. It
explicitly allows for the separation of positives and negatives to learn representa-
tions that can effectively score paraphrases. In summary, our core contributions
are:

– We formulate a novel task of detecting paraphrase quality for AWPs, which
presents a different challenge than detecting paraphrases for general sen-
tences.

– We propose a new unsupervised data augmentation method that drives our
paraphrase scoring model, ParaQD.

– We demonstrate that our method leads to a scoring model that surpasses the
existing state-of-the-art text augmentation methods like SSMBA and UDA.

– We evaluate ParaQD using test sets prepared using operators disjoint from
train augmentation operators and observe that ParaQD demonstrates good
performance. We also demonstrate the zero-shot performance of ParaQD on
new AWP datasets.

Code and Data are available at: https://github.com/ADS-AI/ParaQD.

2 Related Work

This section briefly discusses prior work in text data augmentation methods.
One of the notable initial works in data augmentation for text [19] replaced
words and phrases with synonyms to obtain more samples for text classification.
In the work [16], the authors propose noising methods for augmentations where
words are replaced with alternate words based on unigram distribution, but it
introduces a noising parameter. A much easier text augmentation method, EDA,
was proposed in the work [14]. The authors propose several operators such as
random word deletion and synonym replacement to generate new sentences. The
above works are based on heuristics and depend on a hyperparameter for high-
quality augmentations.

More recently, self-supervised text augmentation methods have provided a
superior performance on multiple tasks. In UDA [15], the authors propose two
text augmentation operators, namely backtranslation and TF-IDF based word
replacement, where words with low TF-IDF scores are replaced. In SSMBA
[9], the authors propose a manifold-based data augmentation method where
the input sentences are projected out of the manifold by corrupting them with
token masking, followed by a reconstruction function to project them back to the
manifold. Another self-supervised augmentation method named InvDA (Inverse
Data Augmentation) was proposed in Rotom [8] which was similar to SSMBA

https://github.com/ADS-AI/ParaQD

356 R. Gupta et al.

in that it tried to reconstruct the original sentence from the corrupted version.
Several rule-based text augmentation methods have also been proposed, like [5]
which uses Natural Language Inference (NLI) for augmentation, and [1] leverages
linguistic knowledge for the question-answering task.

3 Methodology

In this section, we describe the proposed method for paraphrase quality detection
for algebraic word problems. The section is divided into two components: Data
Augmentation and Paraphrase Quality Detection.

3.1 Data Augmentation

For data augmentation, we define 10 distinct operators to generate the training
set. Out of the 10, 4 are positive (i.e. information preserving) transformations,
and 6 are negative (information perturbing) transformations. Our negative oper-
ators are carefully chosen after observing the common mistakes made by various
paraphrasing models to explicitly teach the quality detection model to assign a
low score for incorrect paraphrases.

Let Q = {Q1, Q2, Q3, . . . Qn} denote the set of questions. Each question Qi
can be tokenized into sentences Qi1, Qi2 . . . Qip where p denotes the number of
sentences in question Qi. Let an augmentation be denoted by a function f , such
that fi(Qj) represents the output of the ith augmentation on the jth question.

The function λ : Q×Q �→ {0, 1} represents a labelling function which returns
1 if the input (Qi, Q′

i) is a valid paraphrase, and 0 if not. Based on the design of
our augmentations (explained in the next section), we work under the following
assumption for the function f :

λ(Qa, fi(Qa)) =

{
1, 1 ≤ i ≤ 4
0, 5 ≤ i ≤ 10

For the purposes of explanation, we will use a running example with question
Q0 = Alex travelled 100 km from New York at a constant speed of 20 kmph. How
many hours did it take him in total?

3.2 Positive Augmentations

f 1: Backtranslation. Backtranslation is the procedure of translating an exam-
ple Qi from language A to language B, and then translating it back to language
A, yielding a paraphrase Q′

i. In our case, given an English question Qi comprised
of precisely p sentences Qi1 . . . Qip, we translate each sentence Qij to German
Q∗

ij , and then translate Q∗
ij back to English yielding Q′

ij ∀j ∈ {1, 2, . . . p}. Fur-
ther details are provided in Appendix A.

f1(Qi) = concat(Q′
i1, Q

′
i2 . . . Q′

ip)

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 357

f1(Q0) : Alex was driving 100 km from New York at a constant speed of 20 km /
h. How many hours did it take in total?

f 2: Same Sentence. Inspired by SimCSE [4], we explicitly provide the same
sentence as a positive augmentation as the standard dropout masks in the
encoder act as a form of augmentation.

f2(Q0) : Alex travelled 100 km from New York at a constant speed of 20 kmph.
How many hours did it take him in total?

f 3: Num2Words. Let α be a function that converts any number to its word
form. Given a question Qi, we extract all the numbers Ni = {ni1, ni2 . . . nik}
from Qi. For each number nij ∈ Ni, we generate its word representation α(nij),
and replace nij by α(nij) in Qi to get f3(Qi). This is done because paraphrasing
models can replace numbers with their word form, and thus to ensure the scoring
model does not consider it as a negative, we explicitly steer it to consider it a
positive.
f3(Q0): Alex travelled one hundred km from New York at a constant speed of
twenty kmph. How many hours did it take him in total?

f 4: UnitExpansion. Let υ be a function that converts the abbreviation of a
unit into its full form. We detect all the abbreviated units Ui = {ui1, ui2 . . . uik}
from Qi (using a predefined vocabulary of units and regular expressions). For
each unit uij ∈ Ui, we generate its expansion υ(uij), and replace uij by υ(uij) in
Qi. This transformation helps the model to learn the units and their expansions,
and consider them as the same when scoring a paraphrase.

f4(Q0): Alex travelled 100 kilometre from New York at a constant speed of 20
kilometre per hour. How many hours did it take him in total?

3.3 Negative Augmentations

f 5: Most Important Phrase Deletion. The removal of unimportant words
like stopwords (the, of, and) from an algebraic question will not perturb the
solution or render it impossible to solve.

Thus, to generate hard negatives, we chose the most critical phrase, pimp in
any question, deleting which would generate Q′

i such that λ(Qi, Q
′
i) = 0. Let

Ψ : Q �→ P denote a function which returns the set of k most critical phrases
(p1, p2, . . . , pk) in the input Qi.

pimp = argmin
p

(cossim(Qi, Qi\p)) ∀p ∈ Ψ(Qi)

f5(Qi) = Qi\pimp

where cossim denotes cosine similarity and Qi\p denotes the deletion of p from
Qi. Further details are present in Appendix A.

f5(Q0): Alex travelled 100 km from New York at a constant speed of 20 kmph.
How did it take him in total?

358 R. Gupta et al.

f 6: Last Sentence Deletion. When using existing paraphrasing models such
as Pegasus, the last few words or even the complete last sentence of the input
question got deleted in the generated paraphrase in some cases. Thus, to account
for this behaviour, we use this transformation as a negative. More formally, let
the input Qi be tokenized into p sentences Qi1, Qi2 . . . Qip and the sentence Qi1

be tokenized into k tokens Qi11, Qi12 . . . Qi1k. Then,

f6(Qi) =

{
concat(Qi11, Qi12 . . . Qi1(k−3)) p = 1
concat(Qi1, Qi2 . . . Qi(p−1)) p > 1

f6(Q0): Alex travelled 100 km from New York at a constant speed of 20 kmph.

f 7: Named Entity Replacement. Since named entities are an important part
of questions, we either replace them with a random one of the same category
(from a precompiled list) or with the empty string (deletion). Let ε : Q �→
E denote a function which returns a set of all named entities present in the
input Qi, such that (e1, e2, . . . , ek) = ε(Qi). We randomly sample w elements
Ei = (ea, eb . . . ew) from (e1, e2, . . . , ek) and replace/delete the entities. We set
w = rand(1,min(3, k)) where rand(a, b) represents the random selection of a
number from a to b (inclusive). This restricts w from being more than 3, thus
increasing the difficulty of the generated negative.

f7(Q0): Sarah travelled 100 km from at a constant speed of 20 kmph. How many
hours did it take him in total?

f 8: Numerical Entity Deletion. Since numbers are critical to algebraic ques-
tions, their removal perturbs the solution and helps generate hard negatives. Let
ν : Q �→ N represent a function which returns a set of all numbers present in
the input Qi, such that (n1, n2, . . . , nk) = ν(Qi). We randomly sample a subset
of numbers Ni from (n1, n2, . . . , nk), and sample a string s from S = ("some",
"a few", "many", "a lot of", ""). For each number nj ∈ Ni, we replace it by
s in Qi. We set |max(Ni)| = 2. Similar to f7, this makes it more challenging
for the scoring model as we don’t necessarily delete all the numbers, thereby
generating harder negatives. This allows the model to learn that even the loss of
one number renders the resultant output as an invalid paraphrase, thus getting
assigned a low score.

f8(Q0): Alex travelled some km from New York at a constant speed of some
kmph. How many hours did it take him in total?

f 9: Pegasus. Pegasus [18] is a transformer-based language model, fine-tuned
on PAWS [20] for our purpose. Pegasus consistently gave poor results for para-
phrasing algebraic questions, as shown in Fig. 1. This provided the impetus for
using it to generate hard negatives.

f9(Q0): = The journey from New York to New Jersey took Alex 100 km at a
constant speed.

f 10: UnitReplacement. Paraphrasing models sometimes have a tendency to
replace units with similar ones (such as feet to inches). Since this would change

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 359

the solution to an algebraic question, we defined this transformation to replace
a unit with a different one from the same category. We identified 5 categories,
C = [Currency, Length, Time, Weight, Speed] to which most units appearing
in algebraic problems belong. Our transformation was defined such that a unit
ua belonging to a particular category Ci is replaced with a unit ub, such that
ub ∈ Ci and ua �= ub. For instance, hours could get converted to minutes or
days, grams could get converted to kilograms.

Let C be the set of identified unit categories and Υ : U �→ U be a function
that takes as input unit ua ∈ Ci and returns a different unit ub ∈ Ci, where
Ci ∈ C. Given the input Qi containing units Ui = (ua, ub . . . un), we sample
a set of units Uis = {ux, . . . uz} and replace them with {Υ(ui) ∀ui ∈ Uis} to
generate f10(Qi).

f10(Q0): Alex travelled 100m from New York at a constant speed of 20 kmph.
How many hours did it take him in total?

In the next section, we will detail our approach to training a model to detect
the quality of paraphrases and how it can be used to score paraphrases.

3.4 Paraphrase Quality Detection

For detecting the quality of the paraphrases, we use MiniLM [13] as our base
encoder (specifically, the version with 12 layers which maps the input sentences
into 384-dimensional vectors)2. We utilize the implementation from Sentence-
Transformers [11], where the encoder was trained for semantic similarity tasks
using over a billion training pairs and achieved high performance with a fast
encoding speed3.

We train the model using triplet loss. For each question Qi, let the positive
transformation Q+

i be denoted by pos(Qi) and the negative transformation Q−
i

by neg(Qi) where pos ∈ (f1, . . . f4) and neg ∈ (f5, f6 . . . f10). Let the vector
representation of any question Qi when passed through the encoder be denoted
as ENC(Q). Then the loss is defined as

Loss(Q,Q+, Q−) =
∑

i

max(0, α − dist(Qi, Q
−
i) + dist(Qi, Q

+
i))

where α is the margin parameter, dist(Qi, Q
l
i) = 1 − cossim(ENC(Qi),

ENC(Ql
i)) and l ∈ {+,−}. The loss ensures that the model yields vector repre-

sentations such that the distance between Qi and Q+
i is smaller than the distance

between Qi and Q−
i .

At inference time, to obtain the paraphrase score of Qi and Q′
i, we use cosine

similarity. Let score : Q × Q �→ [−1, 1] denote the scoring function, then for a
pair of questions (Qi, Q

′
i):

2 https://bit.ly/3F2c9vH.
3 https://sbert.net/docs/pretrained_models.html.

https://bit.ly/3F2c9vH
https://sbert.net/docs/pretrained_models.html

360 R. Gupta et al.

ρi, ζi = ENC(Qi), ENC(Q′
i)

score(Qi, Q
′
i) = cossim(ρi, ζi) =

ρi · ζi

|ρi| · |ζi|

4 Experiments

All the experiments were performed using a Tesla T4 and P100. All models,
including the baselines, were trained for 9 epochs with a learning rate of 2e−5
using AdamW as the optimizer with seed 3407. We used a linear scheduler, with
10% of the total steps as warm-up having a weight decay of 0.01.

4.1 Datasets

The datasets used in the experiments are:
AquaRAT [6] (Apache, V2.0) is an algebraic dataset consisting of 30,000

(post-filtering) problems in the training set, 254 problems for validation and 220
problems for testing. After applying the test set operators to yield paraphrases,
we get 440 samples for testing with manual labels.

EM_Math is a dataset consisting of mathematics questions for students
from grades 6–10 from our partner company ExtraMarks. There are 10,000 ques-
tions in the training set and 300 in the test set. After applying the test operators,
we get 600 paraphrase pairs.

SAWP (Simple Arithmetic Word Problems) is a dataset that we collected
(from the internet) consisting of 200 algebraic problems. We evaluate the pro-
posed methods in a zero-shot setting on this dataset by using the model trained
on the AquaRAT dataset. After applying the test set operators, we get 400
paraphrase pairs.

PAWP (Paraphrased Algebraic Word Problems) is a dataset of 400 alge-
braic word problems collected by us. We requested two academicians from the
partnering company (paid fair wages by the company) to manually write para-
phrases (both valid and invalid) rather than using our test set operators. We
use this dataset for zero-shot evaluation to demonstrate the performance of our
model on human-crafted paraphrases.

Our data can also be used as a seed set for the task of paraphrase generation
for algebraic questions.

4.2 Test Set Generation

For generating the synthetic test set (for AquaRAT, EM_Math and SAWP), we
define a different set of operators to generate positive and negative paraphrases
to test the ability of our method to generalize to a different data distribution.
For any question Qi in the test set, we generate two paraphrases and manually
annotate the question-paraphrase pairs with the help of two annotators. The
annotators were instructed to mark valid paraphrases as 1 and the rest as 0. We
observed Cohen’s Kappa values of 0.79, 0.84 and 0.70 on AquaRAT, EM_Math
and SAWP, respectively, indicating a substantial level of agreement between the
annotators.

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 361

Operator Details. We defined two positive (fa, fb) and three negative (fc, fd,
fe) test operators. For each question, we randomly chose one operator from each
category for generating paraphrases. These functions are:

fa: Active-Passive: We noticed that most algebraic questions are written in the
active voice. We used a transformer model for converting them to passive voice4,
followed by a grammar correction model5 on top of this to ensure grammatical
correctness.

fb: Corrupted Sentence Reconstruction: We corrupt an input question by
shuffling, deleting and replacing tokens, similar to ROTOM [8] but with addi-
tional leniency (Appendix A). We then train a sequence transformation model
(t5-base) to reconstruct the original question from the corrupted one, which
yields a paraphrase.

fc: TF-IDF Replacement: Instead of the usual replacement of words with
low TF-IDF score [15], we replace the words with high TF-IDF scores with
random words in the vocabulary. This helps us generate negative paraphrases as
it removes the meaningful words in the original question rendering it unsolvable.

fd: Random Deletion: Random deletion is the process of randomly removing
some tokens in the input example [14] to generate a paraphrase.

fe: T5: We used T5 [10] fine-tuned on Quora Question Pairs to generate neg-
atives as it was consistently resulting in paraphrases with missing information
(Fig. 1).

4.3 Baselines

We compare against two SOTA data augmentation methods, UDA and SSMBA.
For all the baselines, we use the same encoder (MiniLM) as for our method to
maintain consistency across the experiments and enable a fair comparison.

UDA: UDA uses backtranslation and TF-IDF replacement (replacing words
having a low score) to generate augmentations for any given input.

SSMBA: SSMBA is a data augmentation technique that uses corruption and
reconstruction functions to generate the augmented output. The corruption is
performed by masking some tokens in the input and using an encoder (such as
BERT [2]) to fill the masked token.

Since the baselines are intended to generate positive paraphrases, we consider
other questions in the dataset (in-batch) as negatives to train using the triplet
loss. Alongside the direct implementation of UDA and SSMBA, we also com-
pare pseudo-labelled versions of these baselines. The version of baselines without
pseudo-labelling is used in all the experiments unless stated with suffix (with pl).
The details of pseudo labelling are provided in Appendix B.

4 https://bit.ly/3FbPIEu.
5 https://bit.ly/3HGOMcQ.

https://bit.ly/3FbPIEu
https://bit.ly/3HGOMcQ

362 R. Gupta et al.

Table 1. Precision, Recall, F1 and Separation across all methods and datasets.

Dataset Method Macro Weighted µ+ µ− µs

P R F1 P R F1

AquaRAT Pretrained 0.658 0.502 0.569 0.784 0.318 0.453 0.977 0.897 0.080
UDA 0.661 0.512 0.577 0.786 0.332 0.467 0.995 0.966 0.029
UDA (w pl) 0.659 0.507 0.573 0.785 0.325 0.460 0.996 0.973 0.023
SSMBA 0.645 0.554 0.596 0.757 0.395 0.520 0.965 0.829 0.137
SSMBA (w pl) 0.663 0.522 0.584 0.787 0.345 0.480 0.997 0.928 0.069
ParaQD (ours) 0.678 0.695 0.687 0.762 0.625 0.687 0.770 -0.010 0.780

EM_Math Pretrained 0.694 0.534 0.604 0.773 0.415 0.540 0.955 0.796 0.158
UDA 0.648 0.523 0.579 0.716 0.403 0.516 0.991 0.912 0.079
UDA (w pl) 0.683 0.587 0.631 0.751 0.485 0.589 0.963 0.751 0.213
SSMBA 0.615 0.564 0.588 0.669 0.470 0.552 0.871 0.729 0.142
SSMBA (w pl) 0.655 0.586 0.619 0.716 0.492 0.583 0.937 0.629 0.308
ParaQD (ours) 0.665 0.665 0.665 0.708 0.622 0.662 0.667 0.012 0.655

SAWP Pretrained 0.162 0.500 0.245 0.106 0.325 0.159 0.964 0.896 0.068
UDA 0.557 0.514 0.535 0.636 0.358 0.458 0.958 0.912 0.046
UDA (w pl) 0.667 0.519 0.583 0.783 0.350 0.484 0.990 0.929 0.061
SSMBA 0.662 0.594 0.626 0.763 0.460 0.574 0.929 0.758 0.172
SSMBA (w pl) 0.649 0.537 0.588 0.757 0.378 0.504 0.978 0.864 0.115
ParaQD (ours) 0.636 0.645 0.640 0.709 0.582 0.640 0.656 0.068 0.589

PAWP Pretrained 0.749 0.502 0.602 0.751 0.500 0.600 0.948 0.905 0.042
UDA 0.558 0.507 0.532 0.559 0.505 0.530 0.960 0.948 0.012
UDA (w pl) 0.668 0.510 0.578 0.669 0.507 0.577 0.988 0.961 0.026
SSMBA 0.536 0.512 0.524 0.536 0.510 0.523 0.874 0.853 0.021
SSMBA (w pl) 0.551 0.510 0.530 0.552 0.507 0.529 0.939 0.913 0.026
ParaQD (ours) 0.703 0.669 0.685 0.703 0.668 0.685 0.749 0.076 0.673

4.4 Metrics

Our main goal is to ensure the separation of valid and invalid paraphrases by a
wide margin. This allows for extrapolation to unseen and unlabelled data (the
distribution of scores for positive and negative paraphrases is unknown, thus
threshold can be set to the standard 0.5 or a nearby value due to wider mar-
gins). It allows for the score to be used as a selection metric using maximization
strategies like Simulated Annealing [7] or as reward using Reinforcement Learn-
ing [12,17] to steer generation. To this end, along with Precision, Recall, and
F1 (both macro and weighted), we compute the separation between the mean
positive and mean negative scores. More formally, let the score of all (Qi, Q

+
i)

pairs be denoted by score(Q,Q+) and the score of all (Qi, Q
−
i) pairs be denoted

by score(Q,Q−) where λ(Qi, Q
+
i) = 1 and λ(Qi, Q

−
i) = 0. Then,

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 363

μs (separation) = μ+ − μ−

μl = E[score(Q,Ql)] ∀ l ∈ {+,−}

4.5 Test Set Details

The number of positive and negative pairs are (139, 301) in AquaRAT, (223, 377)
in EM, (130, 270) in SAWP and (199, 201) in PAWP. The details of the success
of test set operators are shown in the form of confusion matrices in Fig. 6 (sup-
plementary). The average precision, recall and accuracy of the operators across
the datasets are 0.4, 0.59 and 0.56. The low precision is due to the inability
of positive operators to generate valid paraphrases consistently, as the task of
effectively paraphrasing algebraic questions is challenging. This further demon-
strates the usefulness of a method like ParaQD that can be effectively used to
distinguish the paraphrases as an objective to guide paraphrasing models (4.4).

Table 2. Summarizing the top-2 positive (Op+) and negative (Op−) operators across
datasets.

Dataset Op+ Op−
1 2 1 2

AquaRAT f3 f1 f9 f5

EM_Math f4 f1 f9 f8

SAWP f2 f1 f9 f6

PAWP f1 f2 f10 f9

5 Results and Analysis

The performance comparison and results of all methods are shown in Table 1.
Across all datasets, for the measures macro-F1, weighted-F1 and separation,
ParaQD outperforms all the baselines by a significant margin. For instance,
the margin of separation in ParaQD is 5.69 times the best baseline SSMBA.
To calculate the precision, recall and F1 measures, we threshold the obtained
scores at the standard τ = 0.5. Since this is a self-supervised method, there are
no human-annotated labels available for the training and validation set. This
means that the distribution of scores is unknown, and thus, the threshold can
not be tuned on the validation set.

5.1 Performance

Our primary metric is separation (for reasons detailed in 4.4). Weighted F1 is
more representative of the actual performance than macro F1 due to imbalanced
data (4.5), and the results are discussed further.

364 R. Gupta et al.

AquaRAT and EM_Math. ParaQD outperforms the best-performing base-
line by 32.1% weighted F1 on AquaRAT and 12.4% weighted F1 on EM_Math.
The separation achieved by ParaQD on AquaRAT is 0.78 while the best perform-
ing baseline achieves 0.137, and on EM_Math, our method achieves a separation
of 0.655 while the best performing baseline achieves a separation of 0.308.

SAWP: Evaluating zero-shot performance on SAWP, ParaQD outperforms the
best performing baseline by 11.5% weighted F1 and achieves a separation of
0.589 as compared to the 0.172 achieved by the best baseline. This demonstrates
the ability of our method to perform well even on zero-shot settings, as the
distribution of this dataset is not identical to the ones that the model was trained
on.

PAWP: Our method beats the best performing baseline by 14% weighted F1 on
the manually created dataset PAWP, which also consists of a zero-shot setting. It
demonstrates an impressive separation of 0.673, while the best performing base-
line only has a separation of 0.042. This is practically applicable as it highlights
that our method can also be used to evaluate paraphrases that have been man-
ually curated by academicians (especially on online learning platforms) instead
of only on automatically generated paraphrases.

To analyze and gain a deeper insight into these results, we plotted the confu-
sion matrices (Fig. 4), and observed that ParaQD is able to consistently recognize
invalid paraphrases to a greater extent than the baselines as it learns to estimate
the true distribution of negative samples more effectively through our novel data
augmentations.

5.2 Embedding Plots

To qualitatively evaluate ParaQD, we use t-SNE to project the embeddings into
a two-dimensional space (Appendix C) as seen in Fig. 2. We observe that the
separation between anchors and negatives of triplets is minimal for the base-
lines, while ParaQD is able to separate them more effectively. Perhaps a more
interesting insight from Fig. 2a is that our method is able to cluster negatives
together, which is not explicitly optimized by triplet loss as it does not account
for inter-sample interaction. We note that our negative operators (with the possi-
ble exception of f7 and f10) are designed to generate unsolvable problems serving
as good negatives for training the scoring model (ParaQD).

5.3 Operator Ablations

To measure the impact of all operators, we trained the model after removing
each operator one by one. The summary of the results is in Table 2 (complete
in Table 4 (supplementary)). We note that f1 (defined in Sect. 3.2) seems to
be the most consistently important operator amongst the positives, while f9

(defined in Sect. 3.3) is the most consistently important operator amongst the
negatives. One possible reason for the success of f1 could be that it is the only

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 365

(a) ParaQD

(b) Pretrained

Fig. 2. Embedding plots on AquaRAT. Figure 5 in supplementary covers remaining
plots.

positive operator that actually changes the words and sentence structure, which
is replicated by our test operators and by the human-generated paraphrases.

Also, for the synthetically generated test sets (for AquaRAT, EM_Math and
SAWP), since f9 is a transformer model, it might generate paraphrases with a
closer distribution (especially to fe), but it also performs well on the human
crafted paraphrases on PAWP. f4 performs really well on EM_Math as the
dataset involves more mathematical symbols, and thus the distribution of the
data is such that technical operators (like f4 and f8) would have a more profound
impact on the dataset.

The results also show that operator importance depends on the data, as
certain data distributions might possess patterns that are more suitable to a
certain set of operators. We also note that all operators are critical as removing
any operator reduces performance for multiple datasets, thus demonstrating the
usefulness of the combination of augmentations as a general framework.

366 R. Gupta et al.

Fig. 3. Embedding plots for different loss functions on AquaRAT

Table 3. Analysis of model scores for different examples

Original Paraphrase Label ParaQD

A bag of cat food weighs 7 pounds
and 4 ounces. How much does the
bag weigh in ounces?

A bag of cat food weighs 7 pounds
and ounces. How much does the bag
in ounces?

0 −0.922

A cart of 20 apples is distributed
among 10 students. How much apple
does each student get?

20 hats in a cart are equally
distributed among 10 students. How
much apple does each student get?

0 −0.999

A cart of 20 apples is distributed
among 10 students. How much apple
does each student get?

20 hats in a cart are equally
distributed among 10 students. How
many hats does each student get?

1 0.999

John walked 200 kilometres. How
long did he walk in terms of metres?

John walked 200 centimetres. How
long did he walk in terms of metres?

0 −0.999

John walked 200 kilometres. How
long did he walk in terms of metres?

John walked 200 km. How long did
he walk in terms of metres?

1 0.999

5.4 Effects of Loss Functions, Encoder and Seed

We analyzed the impact of the loss function by performing an ablation with
Multiple Negative Ranking Loss (MNRL) (Appendix D) when training ParaQD.
Since MNRL considers inter-sample separation, rather than explicitly distancing
the generated hard negative, it is not able to provide a high margin of separation
between the positives and negatives (μs = 0.416) as high as the triplet loss (μs =
0.78) but does result in a minor increase in the F1 scores. This can be observed in
Fig. 3 and Table 5 (supplementary). We also analyzed the effects of the encoder
and seed across methods on AquaRAT (Tables 6 and 8; detailed analysis in
Appendix F) to demonstrate the robustness of our approach. We observe that we
outperform the baselines on all the metrics for three encoders we experimented
with, namely MiniLM (12 layers), MiniLM (6 layers) and MPNet for different
seeds.

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 367

(a) ParaQD (b) SSMBA with PL

(c) UDA w pl (d) Pretrained (e) SSMBA

(f) UDA

Fig. 4. Confusion matrices for all methods on AquaRAT. Others can be found in
supplementary (Figs. 9 and 10)

5.5 Error Analysis and Limitations

Does the Model Check for the Preservation of Numerical Quantities?:
From example 1 in Table 3, we observe that the number 4 is missing in the
paraphrase rendering the problem unsolvable. Our model outputs a negative
score, indicating it is a wrong paraphrase. This general phenomenon is observed
in our reported results.

Does the Model Check for Entity Consistency?: We also observe that our
model checks for entity consistency. For instance, in example 2, we observe that

368 R. Gupta et al.

the paraphraser replaces apples with hats in the first sentence of the question.
However, it fails to replace it in the second part of the question retaining the
term apple which leads to a low score from ParaQD due to inconsistency. We
observe from example 3 that when entity replacement is consistent throughout
the question (apple replaced by hats, the model outputs a high score indicating
it is a valid paraphrase.

Does the Model Detect Changes in Units?: Changing the units in alge-
braic word problems sometimes may render the question unsolvable or change
the existing solution requiring manual intervention. For instance, from example
4 in Table 3, we observe that the unit kilometres is changed to centimetres in
the paraphrase, which would change the equation to solve the question and by
consequence the existing solution. Since we prefer solution preserving transfor-
mation of the question, ParaQD assigns a low score to this paraphrase. However,
when kilometres is contracted to km in example 5, we observe that our model
correctly outputs a high score.

Does the Model Make Errors Under Certain Scenarios?: We also ana-
lyzed the errors made by the model. We noted that samples that have valid
changes in numbers are not always scored properly by the model. Thus, a lim-
itation of this approach is that it is not robust to changes in numbers that
preserve the solution. For instance, if we change the numbers 6 and 4 to 2 and
8 in Fig. 1, the underlying equation and answer would still be preserved. But
ParaQD may not output a high score for the same. We must note, however, that
generating these types of paraphrases is something that is beyond the ability of
general paraphrasing models. As a potential solution (in the future), we propose
that numerical changes can be handled through feedback from an automatic
word problem solver.

6 Conclusion

In this paper, we formulated the novel task of scoring paraphrases for algebraic
questions and proposed a self-supervised method to accomplish this. We demon-
strated that the model learns valuable representations that separate positive
and negative paraphrases better than existing text augmentation methods and
provided a detailed analysis of various components. In the future, we plan to
use the scoring model as an objective to steer language models for paraphrasing
algebraic word problems and also investigate the usage of our method for the
novel task of solvable problem detection.

Acknowledgements. We would sincerely like to thank Extramarks Education India
Pvt. Ltd., SERB, FICCI (PM fellowship) and TiH Anubhuti (IIITD) for supporting
this work.

References

1. Asai, A., Hajishirzi, H.: Logic-guided data augmentation and regularization for
consistent question answering (2020)

‘John Ate 5 Apples’ != ‘John Ate Some Apples’ 369

2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv:1810.04805 (2018)

3. Egonmwan, E., Chali, Y.: Transformer and seq2seq model for paraphrase gener-
ation. In: Proceedings of the 3rd Workshop on Neural Generation and Transla-
tion, pp. 249–255. Association for Computational Linguistics, Hong Kong (2019).
https://doi.org/10.18653/v1/D19-5627,https://aclanthology.org/D19-5627

4. Gao, T., Yao, X., Chen, D.: Simcse: Simple contrastive learning of sentence embed-
dings (2021)

5. Kang, D., Khot, T., Sabharwal, A., Hovy, E.: Adventure: Adversarial training for
textual entailment with knowledge-guided examples (2018)

6. Ling, W., Yogatama, D., Dyer, C., Blunsom, P.: Program induction by rationale
generation: Learning to solve and explain algebraic word problems (2017)

7. Liu, X., Mou, L., Meng, F., Zhou, H., Zhou, J., Song, S.: Unsupervised paraphras-
ing by simulated annealing. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 302–312. Association for Computa-
tional Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.28, https://
aclanthology.org/2020.acl-main.28

8. Miao, Z., Li, Y., Wang, X.: Rotom: A Meta-Learned Data Augmentation Frame-
work for Entity Matching, Data Cleaning, Text Classification, and Beyond, pp.
1303–1316. Association for Computing Machinery, New York (2021). https://doi.
org/10.1145/3448016.3457258

9. Ng, N., Cho, K., Ghassemi, M.: Ssmba: Self-supervised manifold based data aug-
mentation for improving out-of-domain robustness (2020)

10. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer (2020)

11. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong (2019)

12. Stiennon, N., et al.: Learning to summarize from human feedback (2020)
13. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: Deep self-

attention distillation for task-agnostic compression of pre-trained transformers
(2020)

14. Wei, J., Zou, K.: Eda: Easy data augmentation techniques for boosting performance
on text classification tasks (2019)

15. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation
for consistency training (2020)

16. Xie, Z., et al.: Data noising as smoothing in neural network language models (2017)
17. Yasui, G., Tsuruoka, Y., Nagata, M.: Using semantic similarity as reward for rein-

forcement learning in sentence generation. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: Student Research Work-
shop, pp. 400–406. Association for Computational Linguistics, Florence (2019).
https://doi.org/10.18653/v1/P19-2056, https://aclanthology.org/P19-2056

18. Zhang, J., Zhao, Y., Saleh, M., Liu, P.J.: Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization (2019)

19. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification (2016)

20. Zhang, Y., Baldridge, J., He, L.: Paws: Paraphrase adversaries from word scram-
bling (2019)

http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-5627
https://aclanthology.org/D19-5627
https://doi.org/10.18653/v1/2020.acl-main.28
https://aclanthology.org/2020.acl-main.28
https://aclanthology.org/2020.acl-main.28
https://doi.org/10.1145/3448016.3457258
https://doi.org/10.1145/3448016.3457258
https://doi.org/10.18653/v1/P19-2056
https://aclanthology.org/P19-2056

Looking Beyond the Past: Analyzing
the Intrinsic Playing Style of Soccer Teams

Jeroen Clijmans, Maaike Van Roy(B), and Jesse Davis

Department of Computer Science, Leuven.AI, KU Leuven, Leuven, Belgium
jeroen.clijmans@student.kuleuven.be,

{maaike.vanroy,jesse.davis}@kuleuven.be

Abstract. Analyzing the offensive playing style of teams is an impor-
tant task within soccer analytics that has various applications in match
preparation and scouting. Existing data-driven approaches typically
quantify style by looking at individual events that occur during a match
in isolation. This approach has two shortcomings. First, it ignores the
sequential aspect of the game, as patterns of play are a crucial aspect
of playing style. Second, it fails to generalize over the limited amount
of data in order to model slight variations of the observed patterns that
a team may employ in the future. This is particularly important when
considering rare actions like shots and goals, which are the key success
criteria of an offensive style. This paper proposes a novel approach for
analyzing playing style that addresses these shortcomings. First, it cap-
tures the sequential patterns of a team’s style by modeling the observed
behavior of a team as a discrete-time Markov chain. Second, it character-
izes the offensive style of teams in a number of features that are based on
domain knowledge. It applies a combination of analytical techniques and
probabilistic model checking to reason about a team’s model in order to
extract values for these features. As the model allows for a generalization
of a team’s past behavior, the extracted style is less influenced by the rar-
ity of shots and goals. Using event stream data of the 2019/20 English
Premier League, we empirically show that the proposed approach can
capture a team’s positional and sequential style, as well as reason about
the style’s efficiency and similarities with other teams.

Keywords: Markov model · Probabilistic model checking · Playing
style · Soccer analytics

1 Introduction

Analyzing the in-game behavior of teams (i.e., their playing style) has several
important use cases in professional soccer. For example, identifying a team’s
typical patterns of movement or strategies can be used to aid match prepara-
tions such as designing a game plan that exploits the weaknesses of the oppo-
nent, or scheduling pre-tournament friendlies based on the similarity between the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 370–385, 2023.
https://doi.org/10.1007/978-3-031-26422-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_23

Analyzing the Intrinsic Playing Style of Soccer Teams 371

pre-tournament and in-tournament opponent’s playing styles.1 Additionally, it
can also be used for player acquisition, where a club may be interested in tar-
geting players that currently play for a team that is stylistically similar.

Consequently, an important question is how to characterize a team’s style of
play. One way to do this is based on manual video analysis of matches. However,
this is inherently subjective and time-consuming, making it impossible to do
this for a large number of matches or teams. Hence, a data-driven approach
can play a role by, for example, identifying a shortlist of teams most similar to
an upcoming opponent or identifying insights that are difficult for humans to
pick up on. Existing approaches mainly focus on quantifying style at the level of
individual events in a match [3,5,7]. This has two important limitations. First, it
ignores the sequential nature of the game which is crucial for modeling patterns
of play. Second, it fails to generalize over the limited amount of data in order to
capture slight variations of the observed patterns that a team may employ in the
future. As a season is relatively short and players rarely perform the exact same
actions multiple times, the data is inherently limited. Using data of previous
seasons is often not useful, as changes in players and management, and thus in
style, happen regularly. Especially when analyzing the offensive style of teams,
in which rare actions such as shots and goals play an important role, being able
to generalize over the limited amount of data and capturing the intrinsic playing
style of teams becomes particularly important.

This paper proposes a novel approach for playing style analysis based on
a learned model that captures a team’s intrinsic offensive behavior from his-
torical event stream data.2 In particular, we model the behavior of a team as
a discrete-time Markov chain (DTMC). This has the inherent advantages that
the sequential nature of the game is taken into account and observed patterns
are interleaved allowing for generalization beyond past behavior. Additionally,
we define a number of features that characterize playing style based on domain
knowledge. Intuitively, these features capture how often teams employ certain
stylistic parameters and how effective they are doing so. Then, we show how a
combination of analytical techniques and probabilistic model checking can be
used to reason about each team’s learned model to obtain values for the features
we defined, thereby characterizing their intrinsic playing style.

We illustrate our approach on event stream data of the 2019/20 English
Premier League. Our approach indicates that Manchester City is the least likely
to launch a counterattack and the most likely to eventually arrive at a shot by
using combination play; Bournemouth should have considered using their left
side more often, as the model considers it a side from which much more danger
could have been created than the right side; and Leicester City’s playing style
was, out of all smaller teams, the most similar to the possession-based playing
style that is often employed by big clubs such as Manchester City and Liverpool.

1 https://www.reuters.com/article/socccer-euro-bel/soccer-belgium-coach-martinez-
outlines-euro-2020-warm-up-plans-idUKL8N29V0Q4.

2 The implementation is publicly available: https://github.com/JeroenClijmans/
MarkovSoccer.

https://www.reuters.com/article/socccer-euro-bel/soccer-belgium-coach-martinez-outlines-euro-2020-warm-up-plans-idUKL8N29V0Q4
https://www.reuters.com/article/socccer-euro-bel/soccer-belgium-coach-martinez-outlines-euro-2020-warm-up-plans-idUKL8N29V0Q4
https://github.com/JeroenClijmans/MarkovSoccer
https://github.com/JeroenClijmans/MarkovSoccer

372 J. Clijmans et al.

2 Capturing Team Behavior as a DTMC

The goal of this work is to capture and characterize the intrinsic playing styles
of soccer teams. To this end, we propose to model the in-game offensive behav-
ior of each team using a team-specific discrete-time Markov Chain (DTMC).
Specifically, this model represents the behavior of the team during a posses-
sion sequence and will be learned from the team’s historical on-the-ball actions.
Next, we describe the data set used and outline the models and how they can
be learned from historical data.

2.1 Data Set

The models are constructed using historical event stream data. This type of
data typically contains all on-the-ball actions (e.g., passes, dribbles, shots) that
occur during a match and records various features about these actions such as
location, involved players, timestamp, etc. In this work, we use event stream
data from the 2019/20 English Premier League, which consists of 380 matches.
We encode this data set to SPADL3, which is a vendor-independent format to
describe on-the-ball player actions and which facilitates the analysis [4].

2.2 Retrieving Possession Sequences

As a first step, before constructing the models, we extract all possession
sequences from the data. We exclude possession sequences resulting from cor-
ners, crossed free-kicks, goal attempts from free-kicks and penalties, as these
often involve custom tactics that are beyond the scope of this work.

We define a possession sequence as a maximal uninterrupted sequence of
consecutive actions by the same team that either 1) starts with an action bringing
the ball into play (e.g., a throw-in), or 2) involves three or more deliberate ball-
moving actions4 by the team under consideration. The former indicates that
the team surely has control over the ball as it signifies the start of a possession
sequence. The latter indicates that the team has established ball control during
the sequence, otherwise they would be unable to execute these actions.

2.3 Constructing Team-Specific DTMCs

The extracted possession sequences of each team are used as input to learn
each team’s model. Specifically, the proposed model captures (1) how and where
the ball is gained, (2) where the team tends to move the ball to, and (3) how
and where the possession sequence eventually ends. The model is schematically
sketched in Fig. 1 and is defined by the following set of states and transitions:

3 https://github.com/ML-KULeuven/socceraction.
4 We define a deliberate ball-moving action as an action in which the main objective

is to deliberately move the ball to a certain position. This includes actions such as
passes, crosses, carries, and shots, but excludes actions such as clearances.

https://github.com/ML-KULeuven/socceraction

Analyzing the Intrinsic Playing Style of Soccer Teams 373

Fig. 1. Schematic overview of the states and transitions of the DTMC used to model
the in-game offensive behavior of a team.

Transient States T . This set of states can be entered and exited during a
possession sequence. We define two types of transient states: start states and field
states. Start states represent how possession of the ball is gained. We include five
types: a throw-in, a short free-kick, a goal kick, a kick-off, and an open-play ball
regain. Field states represent the particular locations on the pitch in which the
ball can be situated during the possession sequence. We use discretized locations
and divide the field up into 192 field states using a 12 × 16 grid.

Absorbing States A. This set of states cannot be left once entered and indi-
cates how a possession sequence can end. We include a move not successful
(mns), a shot not successful (sns), and a goal (g) state, which represent losing
the ball when trying to move it to another location, an unsuccessful shot and a
successful shot, respectively.

Transitions. How a team moves the ball from one state to another during a
possession sequence is modelled by the transitions. Each transition is associated
with a probability, which corresponds to the frequency of the corresponding
action in the extracted sequences of the team. Concretely, we include the below
transitions and calculate the probabilities as follows:

– Initial state init to start state st: These probabilities are calculated as
P (st|init) = cseq,st

/cseq where cseq,st
is the number of sequences starting

with an action corresponding to the start state of type t and cseq is the total
number of sequences.

– Start state st to field state fi: These probabilities are calculated as
P (fi|st) = cst,fi

/cst
where cst,fi

is the number of actions that correspond
to the start state of type t and after which the ball ends up in state fi, and
cst

is the total number of actions that correspond to the start state of type t.

374 J. Clijmans et al.

– Field state fi to field state fj: These probabilities are calculated as
P (fj |fi) = cfi,fj

/cfi
where cfi,fj

is the number of ball-moving actions start-
ing in state fi that successfully end up in state fj , and cfi

corresponds to the
total number of actions (i.e., failed or successful) initiated in state fi.

– Field state fi to an absorbing state: Actions from field states can also
result in the end of the sequence (i.e., failed actions or a goal). The prob-
abilities for these transitions are calculated as P (mns|fi) = cfi,mns/cfi

,
P (sns|fi) = cfi,sns/cfi

, and P (g|fi) = cfi,g/cfi
. Here, cfi,mns is the num-

ber of unsuccessful ball-moving actions from state fi, cfi,sns is the number of
unsuccessful shots from fi, cfi,g is the number of goals scored from fi, and
cfi

is the total number of actions initiated in fi.
– Absorbing state: This is equal to a self loop with probability one.

Using a DTMC confers several advantages for trying to capture a team’s style
of play. First, DTMCs go beyond considering a single action in isolation by mod-
eling sequences of consecutive actions. As interplay between actions is important,
this gives a more comprehensive perspective on a team’s style. Second, they are
able to generalize over the different actions that a team has performed in the
past. Thus, these models allow us to reason about ways in which the team could
combine different actions during a possession sequence, even though it was not
explicitly observed in the data. This also means that the model is less influenced
by the rarity of events such as shots or goals.

3 Characterizing a Team’s Playing Style

From a soccer perspective, there are a number of potential behavioral patterns
and characteristics of play that are relevant and indicative of style such as:

Preference for Certain Locations. Teams like to work the ball through cer-
tain zones on the pitch. This may arise due to tactical instructions, such as
Manchester City’s use of half spaces, or because teams have strong players in
certain positions, which may manifest itself as preference for using one side of
the pitch.

Preference for Certain Sequences. Teams like to use and reuse various com-
binations of actions which allow them to move the ball between locations. Some
teams have a preference for playing the ball wide and down the flanks, while
other teams predominantly use sequences going through the center of the field.

Directness of Play. Some teams like Manchester City will employ a patient
and structured style that methodologically tries to build up to a goal scoring
opportunity. Other teams like Everton like to sit deeper and rely on a more
direct counter attacking style of play.

Ability to Create Shots. Generating (high-quality) shots is extremely impor-
tant and is often done by employing particular patterns of play. Capturing how
effective teams are at generating shots from various locations on the pitch can
give some indications of style.

Analyzing the Intrinsic Playing Style of Soccer Teams 375

For each of the aforementioned categories we define a number of different fea-
tures that can be computed by reasoning about our learned model of a team’s
behavior. Intuitively, each feature either captures how often a team employs a
strategy or how effective a team is at applying a given strategy. These features
can also capture relative strengths of a team such as their effectiveness of gen-
erating shots when attacking from the left vs. right flank. Next, we describe for
each category the different features we defined and how they can be computed
using the model.

3.1 Features Regarding a Team’s Preference for Certain Locations

One indicator of style of play is a team’s preference for working the ball into
certain locations. We consider a team’s locational preferences in two situations:
general possession sequences, and more promising possession sequences that end
with a shot. These two situations provide insights into both a team’s regular
playing style and their style when playing in a more successful manner. Using
these situations, we derive six features that allow us to characterize a team’s
playing style based on their preferred locations. We compute these features in
two steps. First, we construct heatmaps containing the expected number of times
a team will possess the ball in each location of the pitch during both situations.
Second, using these heatmaps, we derive three concrete features for each situation
indicating a team’s preference for the left, right, and middle part of the pitch.

Step 1: Constructing Heatmaps: We compute the expected number of visits
to each location using the fundamental matrix N of the model:

N =
∞∑

k=0

Qk = (I − Q)−1. (1)

Here, I is the identity matrix and each entry qij of Q is the transition prob-
ability from transient state i to transient state j. Each entry nij is equal to
the expected number of visits to transient state j when starting the posses-
sion sequence from state i. We compute this matrix both for general possession
sequences as well as for only those ending with a shot. Computing the fundamen-
tal matrix N̂ that solely generates those sequences of the original model which
end in a shot requires a slight alteration to the model. More specifically, we
restrict the set of absorbing states Â to only include the shot not successful and
goal states. The fundamental matrix N̂ of the new model can be computed as
in Eq. 1 with the new transition probabilities from transient to transient states
given by the matrix Q̂:

Q̂ = D−1
0 QD0. (2)

Here, D0 is the diagonal matrix with, for each transient state i, an entry biâ:

biâ =
∑

j∈Â
bij (3)

376 J. Clijmans et al.

B = NR (4)
with N the fundamental matrix of the original model and R the matrix contain-
ing the original transition probabilities from transient to absorbing states.

The entries of the fundamental matrix yield a heatmap which is already
interesting in its own right because it allows us to analyze which exact locations
teams prefer to use. Additionally, contrasting a team’s preference during general
possession sequences with their preference during more promising ones will allow
us to identify locations from which a team is more/less efficient.

Step 2: Computing Features: Second, we derive three concrete features from
each of the two heatmaps. More precisely, we derive a team’s preference for the
left side, the right side, and the central part of the field by calculating the relative
percentage that the team uses each zone (illustrated in Fig. 2), as given by the
heatmaps. This gives an indication of which parts of the field a team tends to
use more often (e.g., left side over the right side, or predominantly through the
center), both during general play and when playing more successfully.

Fig. 2. Illustration of the three zones used to compute a team’s locational preference.
The left and right sides of the field (yellow) have a width equal to a quarter of the
field. The remaining part of the field (blue) is defined as the central zone. (Color figure
online)

3.2 Features Regarding a Team’s Preference for Certain Sequences

A second indicator of style of play is a team’s preference for combinations of
consecutive locations, i.e., sequences. This provides insights into which locations
of the pitch are often used together to move the ball from one location to the
next. For example, whether a team prefers to move the ball wide and attack
down the flanks or move it more centrally. We capture this aspect in two steps.

First, we generate the 200 most likely two-action sequences. The number of
sequences to generate was empirically determined, and using more than 200 does
not influence the results. The likelihood of a sequence is computed by multiplying
the transition probabilities between the states of the sequence and weighing it
by the expected number of visits to the first state of the sequence starting from
the initial state. This weight is given by the fundamental matrix.

Second, we define two concrete features: inward/outward preference, which is
the fraction of the 200 most likely sequences that move the ball inwards towards
the middle of the pitch/outwards towards the touchlines.

Analyzing the Intrinsic Playing Style of Soccer Teams 377

3.3 Features Regarding the Directness of Play

A third indicator of style is the directness of play. Namely, how fast a team
tends to go from recovering the ball to creating a shooting opportunity, and how
directly they do this. While some teams prefer a steady build up from the back
using many short on-the-ball actions, other teams prefer to utilize long balls or
to sit back and counter. We capture this aspect of style in four concrete features.

The first feature captures the team’s speed of play during dangerous attacking
sequences by measuring the average number of actions in a sequence that ends
in a shot according to the model. We compute this feature in two steps. First,
a new model is constructed which only takes into account possession sequences
that end in a shot (see Sect. 3.1). Second, we use probabilistic model checking
techniques (i.e., PRISM [10]) to compute the average number of actions in such
sequences. The higher the number of actions needed, the more a team prefers a
slower possession-based style over a faster direct style of play.

The second feature captures the team’s probability of performing long goal
kicks, which we define as goal kicks that end in the opponent half. This provides
insights into a team’s directness of build up play. We compute the probability
of a team performing these long goal kicks by a summation over all transition
probabilities that originate from the goal kick start state and end in any field
state that is in the opponent’s half.

The third feature captures the team’s probability of performing long balls.
We define these as actions that originate from the defensive half, bypass midfield,
and end up in the final third of the pitch. The probability of a team performing
these long balls can be computed by a weighted summation over all transition
probabilities from states in the defensive half to states in the final third of the
pitch. The weight assigned to each state is the relative usage of each location,
given by the fundamental matrix. This is scaled so that the entries corresponding
to the own half sum to 1, yielding a probability.

The fourth feature captures the team’s probability of performing a successful
counterattack. We define these as possession sequences that start in the team’s
own half, after an open-play ball regain, and yield a shot within eight actions. To
calculate this probability, we first use a probabilistic model checker to compute
the probability of arriving at a shot within eight actions for all locations in the
own half. Next, we weight these locations by the probability of recovering the
ball there, scaled so that these sum to 1.

3.4 Features Regarding the Ability to Create Shots

A final indicator of style that we consider is the team’s ability to create shots.
More specifically, we capture the team’s probability of creating non-opportunistic
shots. We define these as shots in a possession sequence that started in the
team’s own half. In contrast to generating a shot after recovering the ball in the
opponent’s half after they made a mistake, these shots better capture a team’s
ability to generate shots via smart ball movements. We capture this in two steps.

378 J. Clijmans et al.

First, we compute a heatmap in which each entry is equal to the team’s
probability of generating a shot later on in the possession sequence when starting
from the corresponding location on the field. This heatmap is computed using
the formula B = NR, where N is the fundamental matrix and R the matrix
containing all the transition probabilities from transient to absorbing states. As
there are two absorbing states that entail that a shot has happened in our model
(i.e., the shot not successful and goal state), the values of these two absorbing
states are summed to calculate the final probability for each possible start state.

Second, we capture the non-opportunistic shot probability in one feature
by means of a weighted average over all obtained probabilities for states in
the team’s own half. The weight of each location is the relative usage of that
location, given by the fundamental matrix of the model and scaled so that the
entries corresponding to the own half sum to 1.

Teams who lose the ball often will achieve a lower score because there is a
higher probability of being absorbed in the move not successful state. This is
influenced by both the technical ability of a team as well as their behavior. While
the influence of the technical ability is obvious, the influence of the behavior
can be seen by means of an example. Consider a team that often attempts
long balls. The probability of losing the ball when executing these passes will
be higher because these tend to be more difficult. On the other hand, if these
succeed, then the team is much closer to the shooting area and the likelihood
of eventually arriving at a shot increases in this case. This is a trade-off that a
team makes by adopting a specific playing style.

4 Use Cases

The previously defined features can be used to easily characterize and compare
the intrinsic playing styles of teams. Using the event stream data of the 2019/20
English Premier League (EPL), we illustrate their use on three use cases: finding
teams with similar playing styles, identifying mismatches in the relative efficiency
of a team’s style, and performing a more in-depth analysis of a teams’ style.

4.1 Finding Similar Teams

Identifying teams with similar playing styles can be useful during match prepa-
ration, e.g., for measuring how similar your next opponent is to a team that you
have played before and for scheduling pre-tournament friendlies against teams
that behave similarly to in-tournament opponents. We propose three different
options of combining the features into playing style vectors. For each of these
options, we visualize the vectors in a 2D-plane using t-SNE [17]. Similar data
points will lie close to each other, allowing us to visually identify similar teams.

Analyzing the Intrinsic Playing Style of Soccer Teams 379

(a) Using all features (b) Using directness features

(c) Using positional features

Fig. 3. t-SNE visualization of all teams of the 2019/20 EPL using the three different
options of combining the features. Teams which are visualized close to each other have
a similar playing style.

Option 1: Using All Features. We can distinguish two clusters of teams when
combining all 13 features defined in Sect. 3 into one playing style vector for each
team (Fig. 3a). One clear cluster is visible in the bottom right of the figure with
teams like Sheffield United and Newcastle. These teams tend to have a more
direct playing style and like to use their flanks. More possession-based teams like
Manchester City can be found in the top part of the figure. Leicester City can be
found the closest from all smaller teams to the big teams like Manchester City,
Chelsea, and Liverpool. In the analyzed season, Leicester had a possession-based
build up with quality players that were good at creating shooting opportunities.
This resulted in them finishing in 5th place and playing the Europa League.

Option 2: Using All Features Regarding Directness of Playing Style.
We can distinguish two clear clusters of teams when only taking into account the
features regarding the directness of play (Fig. 3b). The cluster in the upper left
corner contains teams that tend to have more possession, possibly because their
styles of play focus on trying to maintain it. Manchester City is the extreme
example, but teams such as Leicester and Brighton also preferred to maintain
possession. Additionally, the majority of teams in this cluster have strong players.

380 J. Clijmans et al.

In contrast, weaker teams may be inclined to sit deep, absorb pressure and try
to hit on the counter. The cluster in the bottom right of the figure contains
teams with a more direct counter attacking style of play such as Aston Villa and
Newcastle United. That season, Aston Villa preferred to play long balls to get
the ball forward quickly, which was also made possible by the fast Jack Grealish.
Under management of Steve Bruce, Newcastle United preferred to camp around
their own goal, allowing the other team to take possession, and often attacked
on the counter, which did not prove very fruitful for them.

Option 3: Using All Features Regarding the Positional Nature of
Teams. We can distinguish three clusters of similar teams when only taking
into account the features regarding the locational preferences of teams (Fig. 3c).
The top of the figure contains teams such as Sheffield United and Crystal palace
that tend to frequently use the flanks. Their ratio of inward/outward pointing
sequences also indicates that they actively try to move the ball to the outside of
the pitch. In contrast, the right side of the figure contains teams like Manchester
City and Tottenham that tend to use the center of the field most often and
also actively try to move the ball there. A last cluster of teams can be found
in the bottom center of the figure containing Arsenal, Everton, Watford, and
Wolverhampton. These teams divide their use of the field more equally. This
could possibly be due to the teams changing tactics throughout the season as
three out of these four teams (Arsenal, Everton, and Watford) changed managers
mid-season.

4.2 Assessing Mismatch in Efficiency of the Sides

Identifying possible mismatches in the efficiency of a team’s playing style can be
useful to create a game plan when playing against them, or to propose improve-
ments when analyzing one’s own style. To illustrate this, we inspect whether
Bournemouth’s expected usage of the sides and center of the field match up
with their expected efficiency. Bournemouth use their flanks slightly more often
than the league average (56.9% vs. 54.2%) and have a preference for the left
over right flank with 21% more ball movements taking place on the former dur-
ing their regular possession sequences (Fig. 4a). However, when only considering
possession sequences that end in a shot, there are 64% more actions taking place
on their left vs. right side, which is much more than the 21% that would be
expected if the sides were equally efficient (Fig. 4b). Perhaps the team should
have considered focusing even more on the left side when trying to attack. This
could have been useful, as Bournemouth was relegated after the 2019/20 season.

Analyzing the Intrinsic Playing Style of Soccer Teams 381

(a) All sequences (b) Shot sequences

Fig. 4. Relative use of the left side, right side and central zone for Bournemouth accord-
ing to their model when (a) all sequences and (b) only the sequences that end in a shot
are taken into account.

4.3 In-depth Analysis of Playing Style

Finally, we perform an in-depth analysis of the identified playing styles of Manch-
ester City and Sheffield United.

Regarding locational preference, City seems to prefer utilizing the half spaces
during their build-up play, with a particular preference for the left half space
(Fig. 5). Their usage of the central zone is further emphasized when aggregating
their usage of the left, right, and central zones (Fig. 6). City uses the central
zone more often (54.1%) than any other team with the league average being
45.8%. Consequently, they are also the team that is the least likely to use the
sides, and when they do, they prefer the left side over the right side. On the
other hand, Sheffield predominantly prefers the flanks and uses them more than
any other team. This corresponds with their 3-5-2 formation where the outside
center backs would overlap the wing backs to overload situations on the flanks.5

Regarding directness of play, City has the most elaborate buildup of all teams,
with no other team having a higher average number of actions in sequences
ending in a shot (14.2), or with lower probabilities of performing a long goal
kick (4.3%) or using a long ball in the own half (0.9%). In contrast, Sheffield
is one of the teams with the most direct playing style according to the model.
Only Bournemouth has a lower average number of actions in possession sequences
ending in a shot (7.2 vs. 8.0), and no team has a higher probability of performing
a long goal kick (43.0%) or using a long ball in their own half (2.8%).

Regarding the ability to create shots, City has the highest probability of cre-
ating a shooting opportunity when possessing the ball in their own half (15.7%),
with the league average being 9.0%. There is also no clear mismatch visible
in their efficiency of the sides (Fig. 6), which is not the case for all teams (see
Sect. 4.2). Interestingly, City is the least likely team to generate a shot on a coun-
terattack (1.7%) after regaining the ball in their own half. This emphasizes that
they are extremely picky about when to launch a counterattack and do not risk
losing the ball as they know how adept they are at generating shots with a patient

5 https://themastermindsite.com/2020/08/29/overlapping-centre-backs-tactical-
analysis/.

https://themastermindsite.com/2020/08/29/overlapping-centre-backs-tactical-analysis/
https://themastermindsite.com/2020/08/29/overlapping-centre-backs-tactical-analysis/

382 J. Clijmans et al.

build up. In contrast, Sheffield does not turn out to be good at creating shooting
opportunities. When possessing the ball in their own half, they have the worst
probability of generating a shot (5.6%). Traditional statistics for the 2019/20
season confirm the model’s pessimistic view of their chance creation: they had
the lowest average number of shots per game and only four teams scored fewer
goals. Their ability to create successful counterattacks (2.2%) is also just below
the league average of 2.3%. This suggests that the obtained 9th place during
that season was generous based on their style of play and performance, and they
were indeed relegated after the next season.

(a) All sequences (MC) (b) Shot sequences (MC)

(c) All sequences (SU) (d) Shot sequences (SU)

Fig. 5. Average number of visits to each location in a possession sequence for Manch-
ester City (top row) and Sheffield United (bottom row) according to their model when
all sequences (left column) and only the sequences that end in a shot (right column)
are taken into account.

5 Related Work

Playing style analysis has already been approached from many different angles.
Some works simply aim to retrieve the most common action patterns of a team
by e.g., a combination of clustering and pattern mining [6,19] or inductive logic
programming [18]. Other works adopt a more generalized view of playing style.
For example, some apply clustering methods to the team’s (ball) movements to
identify the different behavior styles or prototypical actions that are used [1,7,8].
Other works aim to utilize compression methods such as Principal Component
Analysis or non-negative matrix factorization to identify factors in the data of
players that represents their playing style [2,5,9,11]. More recently, deep learning
techniques have also been used to characterize a player’s passing style [3].

Analyzing the Intrinsic Playing Style of Soccer Teams 383

(a) All sequences (MC) (b) Shot sequences (MC)

(c) All sequences (SU) (d) Shot sequences (SU)

Fig. 6. Relative use of the left side, right side and central zone for Manchester City (top
row) and Sheffield United (bottom row) according to their model when all sequences
(left column) and only the sequences that end in a shot (right column) are taken into
account.

Most of these methods do not only try to analyze the playing style of teams,
but also identify the different types of style. This is in contrast to the approach
adopted in this paper. The identification of the different types of style according
to the discussed techniques has two main disadvantages: 1) the identified cate-
gories are not always interpretable, and 2) the categorization ultimately depends
on the choice of included features, and whether each feature is as significant to
get a classification according to the intuitive and practical notion of playing
style is often ignored. In contrast, we first define high-level indicators of playing
style, break these down into a set of concrete features and then use analytical
approaches and model checking techniques to derive values for these features.
This has the advantage that the features are and remain interpretable from the
start. Additionally, computing the feature values based on a model of the team’s
intrinsic offensive behavior yields values that are less influenced by rare actions.

Regarding the use of Markov models for soccer analytics tasks, there are
many different applications with playing style analysis being the least researched.
Rudd [14] first introduced the use of Markov models to the field of soccer ana-
lytics by using them to value player actions. The general idea was built upon by
others [16,23]. In particular, the Expected Threat (xT) framework of Singh has
been illustrated to be useful for analyzing the playing style of teams based on
where teams generate threat from [16]. Our work encompasses this framework,
as the same xT values can be computed using our proposed models. Peña [12]
discusses how Markov models can be used to model possession sequences which
yield faithful approximations of the distribution of passing sequences. Van Roy et

384 J. Clijmans et al.

al. [20–22] use a Markov Decision Process instead to model possession sequences
in which the policy reflects a team’s historical action behavior. These models
can be used to measure the effect of adjusting this behavior, to reason about
defensive strategies, and to value a player’s decision making. Markov models are
also used in other sports. An example is the valuation of player actions in the
National Hockey League using a model representing ice hockey games [13,15].

6 Conclusion

This paper proposed a novel approach to carry out playing style analysis. Instead
of carrying out data analysis based directly on historical data, it first learns an
intermediate team-specific Markov chain representing the offensive behavior of a
team. These models can both capture the sequential patterns of a team’s style as
well as generalize over a team’s historical behavior. That is, they capture slight
variations on the playing style of teams, even when these are not explicitly
observed in the limited amount of data. Additionally, we defined a number of
features that characterize playing style and showed how analytical approaches
and probabilistic model checking can be used to reason about each team’s learned
model to obtain values for these features. We illustrated our approach on teams in
the 2019/20 English Premier League and showed how our approach can be used
to 1) find teams with similar playing styles, 2) find inefficiencies in the playing
style, and 3) perform an in-depth analysis of the playing style. The resulting
insights can be used to guide coaches and managers when preparing for their
next opponent or when scouting new players. Future work can propose more
fine-grained models by including temporal information, additional states, and
the intentions of actions, and by distinguishing between different action types.

Acknowledgements. This work was supported by the Research Foundation - Flan-
ders under EOS No. 30992574. We thank the RBFA Knowledge Centre for their valu-
able feedback.

References

1. Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Sridharan, S., Matthews, I.: Identifying
team style in soccer using formations learned from spatiotemporal tracking data.
In: IEEE International Conference on Data Mining Workshop, pp. 9–14 (2014)

2. Castellano, J., Aguilar Pic, M.: Identification and preference of game styles in
Laliga associated with match outcomes. Int. J. Environ. Res. Publ. Health 16(24),
5090 (2019)

3. Cho, H., Ryu, H., Song, M.: Pass2vec: Analyzing soccer players’ passing style using
deep learning. Int. J. Sports Sci. Coach. 17(2), 355–365 (2021)

4. Decroos, T., Bransen, L., Van Haaren, J., Davis, J.: Actions speak louder than
goals: Valuing player actions in soccer. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1851–1861
(2019)

Analyzing the Intrinsic Playing Style of Soccer Teams 385

5. Decroos, T., Davis, J.: Player vectors: Characterizing soccer players’ playstyle from
match event streams. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 569–584 (2019)

6. Decroos, T., Van Haaren, J., Davis, J.: Automatic discovery of tactics in spatio-
temporal soccer match data. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 223–232 (2018)

7. Decroos, T., Van Roy, M., Davis, J.: Soccermix: Representing soccer actions
with mixture models. In: Proceedings of the 2020 Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 459–474 (2020)

8. Diquigiovanni, J., Scarpa, B.: Analysis of association football playing styles: An
innovative method to cluster networks. Statist. Model. 19(1), 28–54 (2019)

9. Fernandez-Navarro, J., Fradua, L., Zubillaga, A., Ford, P.R., McRobert, A.P.:
Attacking and defensive styles of play in soccer: Analysis of Spanish and English
elite teams. J. Sports Sci. 34(24), 2195–2204 (2016)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

11. Lago-Peñas, C., Gómez-Ruano, M., Yang, G.: Styles of play in professional soccer:
An approach of the Chinese soccer super league. Int. J. Perform. Anal. Sport 17(6),
1073–1084 (2017)

12. Peña, J.L.: A markovian model for association football possession and its outcomes.
arXiv preprint arXiv:1403.7993 (2014)

13. Routley, K., Schulte, O.: A Markov game model for valuing player actions in ice
hockey. In: Uncertainty in Artificial Intelligence Conference, pp. 782–791 (2015)

14. Rudd, S.: A framework for tactical analysis and individual offensive production
assessment in soccer using Markov chains. In: New England Symposium on Statis-
tics in Sports (2011). https://nessis.org/nessis11/rudd.pdf

15. Schulte, O., Khademi, M., Gholami, S., Zhao, Z., Javan, M., Desaulniers, P.: A
Markov game model for valuing actions, locations, and team performance in ice
hockey. Data Mining Knowl. Discov. 31(6), 1735–1757 (2017)

16. Singh, K.: Introducing expected threat (2019). https://karun.in/blog/expected-
threat.html

17. Van Der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2625 (2008)

18. Van Haaren, J., Dzyuba, V., Hannosset, S., Davis, J.: Automatically discovering
offensive patterns in soccer match data. In: Proceedings of the 14th International
Symposium on Intelligent Data Analysis, IDA, vol. 9385, pp. 286–297 (2015)

19. Van Haaren, J., Hannosset, S., Davis, J.: Strategy discovery in professional soccer
match data. In: KDD-16 Workshop on Large-Scale Sports Analytics, pp. 1–4 (2016)

20. Van Roy, M., Robberechts, P., Yang, W.C., De Raedt, L., Davis, J.: Learning a
Markov model for evaluating soccer decision making. In: RL4RealLife Workshop
at ICML (2021)

21. Van Roy, M., Robberechts, P., Yang, W.C., De Raedt, L., Davis, J.: Leaving goals
on the pitch: Evaluating decision making in soccer. In: Proceedings of the 15th
Annual MIT Sloan Sports Analytics Conference (2021)

22. Van Roy, M., Yang, W.C., De Raedt, L., Davis, J.: Analyzing learned Markov
decision processes using model checking for providing tactical advice in professional
soccer. In: AI for Sports Analytics (AISA) Workshop at IJCAI (2021)

23. Yam, D.: Attacking contributions: Markov models for football (2019). https://
statsbomb.com/2019/02/attacking-contributions-markov-models-for-football/

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://arxiv.org/abs/1403.7993
https://nessis.org/nessis11/rudd.pdf
https://karun.in/blog/expected-threat.html
https://karun.in/blog/expected-threat.html
https://statsbomb.com/2019/02/attacking-contributions-markov-models-for-football/
https://statsbomb.com/2019/02/attacking-contributions-markov-models-for-football/

Recognizing Non-small Cell Lung Cancer
Subtypes by a Constraint-Based Causal

Network from CT Images

Zhengqiao Deng1, Shuang Qian1, Jing Qi2, Li Liu1(B), and Bo Xu2,3

1 School of Big Data and Software Engineering, Chongqing University,
Chongqing 401331, China

{20161630,202024131068,dcsliuli}@cqu.edu.cn
2 Department of Biochemistry and Molecular Biology, Key Laboratory of Cancer
Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s
Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute

and Hospital, Tianjin 300060, China
3 Center for Intelligent Oncology, Chongqing University Cancer Hospital,

Chongqing University School of Medicine, Chongqing 401331, China

Abstract. The primary goal of non-small cell lung cancer (NSCLC)
recognition from CT images is to discover representative features, with
each being responsible for NSCLC diagnosis. A key challenge in CT
image feature selection is the fact that rich causal dependencies are often
neglected among either radiomics or deep learning-based features. This
leads us to present a constraint-based model to construct a causal net-
work that explicitly discovers and leverages the inherent local causal
variability of these deep and radiomics features under a global view. In
particular, an identified network skeleton is generated to characterize a
unique causal configuration of a particular NSCLC subtype as a variable
number of nodes and links, and as a result, the resulting causal network
satisfies the causal Markov property and all local cause-effect dependen-
cies are globally consistent. Furthermore, a representative node selector is
devised to select the most representative causal features from the causal
network for NSCLC subtype recognition. Empirical evaluations on one
benchmark dataset and one in-house dataset suggest our model signifi-
cantly outperforms the state-of-the-art methods.

Keywords: Non-small cell lung cancer recognition · Constraint-based
network · Cause-effect dependency · Feature selection

1 Introduction

Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths all over the
world, has different characteristics such as adenocarcinoma (ADC) and squamous

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1_24.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 386–402, 2023.
https://doi.org/10.1007/978-3-031-26422-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_24
https://doi.org/10.1007/978-3-031-26422-1_24

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 387

cell carcinoma (SCC), and thus its subtype recognition has become an impor-
tant research field, given its role in guiding the subsequent treatment for patients
with lung cancer. The golden standard for NSCLC diagnosis is pathological diag-
nosis, which has not yet been fully elucidated and are commonly expensive and
time-consuming. Although experienced doctors can make an initial diagnosis from
radiographic data, there are still urgent needs for data-driven models that can
detect different subtypes from CT images. Currently, these models can be divided
into two categories: conventional models which are required to manually encode
radiological features, and deep models which can automatically discover features
from images. However, these image data generally has the properties of high-
dimensional but small samples, which may bring about degradation in accuracy
and efficiency of recognition model by curse of dimensionality and overfitting [8].
In addition, most features of CT images are unrelated to NSCLC subtypes and
have no effect on their diagnosis or even have negative impacts. Therefore, feature
selection is especially significant for the recognition of NSCLC subtypes [9].

Current techniques are becoming mature to select features. Here, a review [17]
reports a repository of near 40 representative feature selection algorithms, which
have been used in the field of radiomics, such as LASSO [2], PCA [2], RFE [27],
mutual information [23] and other deep-based features. It is worth noting that
these approaches commonly assume that features are independent without con-
sideration of their causal relationships [10]. However, rich causal relations exist
among radiological features in CT images with their unique values in cancer diag-
nosis [7,18]. For example, as illustrated in Fig. 1, it is known that pleural tag or air
bronchogram is the cause of the NSCLC subtype adenocarcinoma in CT image-
based detection. In fact, most of the existing data-driven models may find that
there is a heavy correlation between pleural tag and air bronchogram but unfortu-
nately cannot discover the further interpretation that the adenocarcinoma is the
common effect of these two symptoms, which leads to their extrinsic association.
As a result, it could be rather difficult to determine the significant factors, which is
extremely important to NSCLC diagnosis because a wrong release of a patient can
have bad consequences. The main focus of this paper is on causal discovery of fea-
tures in CT images, since an important assumption for lung cancer diagnosis is the
causal relationships between the radiological imaging data and cancer types [4].

Despite being a very challenging problem, there has been a rapid growth of
interest in selecting causal features in recent years. The most popular modeling
paradigm might be that of the graphical causal modeling, where the Bayesian
network is the most commonly used structure in causal discovery that calculates
the relationships of all features by constructing nodes (e.g., imaging features or
NSCLC subtypes) and edges (i.e. their causal relations) as well as their joint prob-
ability distributions under certain constraints, often entailed by Markov blanket
property. In a typical manner, they can be divided into two main categories, score-
based models which maximize a score criterion to learn a causal network, and
constraint-based models which use conditional independence and dependence con-
straints to discovery causal structures of observed variables [11]. However, imag-
ing features are often not causally sufficient (i.e. there exist unobserved causes for
two observed variables [26]). If without assuming causal sufficiency, score-based

388 Z. Deng et al.

Fig. 1. An example of a causal network representing lung cancer and features of CT
images.

models must require a predeterminate number of such latent variables, which is
almost unavailable in CT images. In contrast, the constraint-based algorithms are
more capable of handling the awkward situation of the lack of such prior knowl-
edge. Moreover, constraint-based algorithms are more computationally efficient
than score-based methods, which are NP-hard in terms of complexity [6].

In this work, we adopt a constraint-based model to discover causal features
in CT images for NSCLC recognition. Normally, most of such models construct
causal structures under Markov blanket property among features by leveraging
exhaustively global search to learn from a complete graphical network. Unfor-
tunately, the main challenge is their computational cost as the number of such
relations and possible causal networks is super-exponential to the number of
variables (i.e., node) [11]. In fact, checking Markov blanket consistency becomes
intractable with the growth of network size. Besides, since Bayesian network
structure is a directed acyclic graph, some highly correlated relations has to
be removed from the network in order to maintain causal consistency, which
nevertheless would result in information loss. For example, air bronchogram is
the most relevant feature of adenocarcinoma, which is important in NSCLC
diagnosis, but it cannot be identified as a causal variable by existing constraint-
based approaches due to the Markov blanket inconsistency. Subsequently, these
approaches are rather limited in identifying feature variables with meaningful
cause-effect relationships between them in the network [5].

To address these aforementioned issues, we present a constraint-based causal
network model for NSCLC subtypes recognition. Specifically, our model consid-
ers a principled way of discovering and applying causal relations of CT imaging
features associated with NSCLC subtypes. In short, by generating from an iden-
tified network skeleton with highly correlated nodes (features) under the con-
straint of causal Markov property, a causal network is constructed to discover
representative causal features from CT images. Note that the node set in the
identified network is composed of both deep-based features and representative
radiomics features. Now each resulting causal network contains its unique set

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 389

of directed links that represent cause-effect relations, together with other com-
monly used radiomics features such as shape, texture and statistical information
of the tumor lesion. Moreover, we design a representative node selector to choose
the most representative causal features from the causal network for NSCLC sub-
type recognition. In this way, our causal network-based method is more capable
of characterizing the inherit cause-effect dependencies of CT imaging features in
a non-invasive NSCLC diagnosis when compared to existing approaches, which
is also verified during empirical evaluations to be detailed in later sections.

2 Related Work

Existing approaches for NSCLC recognition can be divided into two categories.

2.1 Conventional Models with Radiomics Features

It is commonly known that conventional models can be adopted for diagnosis
of lung cancer with radiomics features, which include high-throughput quantita-
tive metrics from medical images related to tumor pathobiology and the creation
of minable high dimensional database [13,14,19]. Since radiomics data contains
a large number of features describe intensity distribution, spatial relationships
between the various intensity levels, texture heterogeneity patterns, shape and
the relations of the tumour with the surrounding tissues, it is necessary to apply
feature selection to eliminate redundant features that are not relevant to the
label [15]. Wang et al. [22] compared the performance of several conventional
machine learning methods in predicting the prognostic recurrence of NSCLC
using PCA to select features. Zhu et al. [28] successfully performed a radiomics
analysis with LASSO logistic model to distinguish ADCs from SCCs. Han et
al. [12] evaluated ten feature selection techniques as well as ten conventional
models for NSCLC classification. These studies demonstrated that the man-
ually encoded radiological features are capable of characterizing properties as
potential biomarkers for recognizing NSCLC subtypes. However, such features
are normally hand-coded or defined based on domain knowledge, which would
be not practicable since tumor pathobiology in NSCLC is not completely eluci-
dated and its corresponding radiomics images are often intricate. Moreover, the
causal relationships between features cannot be exploited by these conventional
methods, leading to the significant information loss.

2.2 Deep Model-Based Recognition from Raw CT Images

Different from conventional models, deep models have been at the forefront of
this research field, which can automatically quantify radiographic characteristics
of tumor and its surroundings without handcraft from CT images for NSCLC
diagnosis. Among them, CNNs have achieved excellent performance, and not
surprisingly an increasing amount of CNN-based variants are presented in CT
image-based classification. These algorithms provide a great aid in the diagnosis

390 Z. Deng et al.

of lung cancer, including segmentation of the lung and tumor area, prediction
of invasiveness and survival analysis, etc. [20,21,24]. Aonpong et al. [3] found
that the deep models such as ResNet can achieve better result in the diagnosis
of NSCLC compared to conventional models using radiomics features. However,
deep models only take raw CT images as input, which are limited to manage
radiomics information such as texture, shape and density. Several recent studies
attempted to merge such radiomics features in deep models instead of merely
using CT images. Han et al. [12] designed a fusion algorithm that can combine
radiomic and deep-based features to help radiologists to differentiate the sub-
types of NSCLC via PET/CT images. Aonpong et al. [2] embedded selected
radiomics features in a deep network for recurrence prediction of NSCLC. It was
shown that these fusion models can achieve better performance than deep mod-
els that use raw images alone. However, a major limitation of these deep models
concerns that the relationships that are learned from raw images are often hard
to understand by human beings, which are extremely crucial in cancer diag-
nosis. In addition, they usually lack the expressive power to characterize and
propagate rich causal dependencies in NSCLC recognition, and thus they are
limited to capture the inherent causal variability of radiological image features
in a global view. To address the issues, we present a constraint-based causal net-
work to discover and utilize the cause-effect relations of both radiomics features
and deep features extracted from CT images to discriminate NSCLC subtypes.

3 Preliminaries

3.1 Data Acquisition

In this study two NSCLC datasets are considered, including one in-house dataset
and one publicly-available benchmark dataset.

A public dataset named NSCLC-Radiomics-Lung (P-NSCLC) [1], which
includes 422 NSCLC patients is used in this study. It contains CT images with
manually segmented gross tumor volumes and contour annotations for each
patient. A number of 203 patients were eventually selected in our study (51
patients were diagnosed with ADC, and 152 patients were diagnosed with SCC).

To our best knowledge, the above mentioned dataset is so far the only ones
publicly available for the field of NSCLC recognition. To this end, we propose
a new NSCLC dataset (named I-NSCLC) collected from a hospital between
May 2018 and September 2019, which includes 466 NSCLC patients’ computed
tomography scans. The inclusion criteria were as follows: (1) Patients were diag-
nosed with a primary NSCLC subtype, i.e., ADC or SCC; (2) Patients received
no treatment before pathological diagnosis; (3) Patients were considered with
available thoracic enhanced CT images. In the entire dataset, 368 patients were
diagnosed with ADC, and 98 patients were diagnosed with SCC. The collected
CT images are consecutive thoracic series in digital imaging and communica-
tions in medicine (DICOM) format. The corresponding CT system we used in

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 391

this study is a 64-channel multi-detector CT scanning system (64-slice Light-
Speed VCT, GE Medical Systems, Milwaukee, WI, USA), with the same scan-
ning parameters (120 kV; 400mAs; detector coverage: 40mm; rotation time: 0.6 s;
matrix size: 512 × 512). A subset of samples are provided in the supplementary
material, and once ready we plan to share the entire dataset in the community.

3.2 CT Image Preprocessing

All the CT images of the enrolled patients in both the in-house and public-
available NSCLC dataset were manually annotated by an experienced radiologist
using ITK-snap software using a standard clinical delineation protocol. Each sin-
gle CT image was checked for delineating the corresponding tumor solid lesions.
Then regions of interest (ROI) of those patients were stored separately as the
mask information of the original CT image.

For each raw CT image, an intensity normalization was applied to rescale the
pixel intensity to [0, 255]. Combined with the mask information, each CT image
with tumor lesion was center cropped to 128 × 128 pixels. Radiomics features
were extracted from the ROIs of the CT images. These features were divided into
the following seven categories: 19 first order statistics features, 16 shape-based
(3D) features, 10 shaped-based (2d) features, 34 gray level co-occurrence matrix
(GLCM) features, 16 gray level run length matrix (GLRLM) features, 16 gray
level size zone matrix (GLSZM) features and 14 gray level dependence matrix
(GLDM) features. All the features were extracted from the raw CT images except
for shape that are independent of gray value. For each raw image, a set of filters
were leveraged to generate derived images, which could also be used for feature
extraction. In particular, most of the features are consistent with the standard
definitions as described by the Imaging Biomarker Standardization Initiative
(IBSI) [29].

3.3 Problem Formulation

Given a NSCLC dataset D of N samples from a set of C subtypes, with each
sample representing a patient consisting of a series of CT images of size C×W×H
(indicating channels, width and height, respectively) and a mask of tumor lesion.
Each sample consists of M features extracted from patients’ CT images and a
corresponding NSCLC subtype. A causal network G = (X,E) indicates the
causal dependencies of a variable set (including NSCLC feature variable and
label variable), where a node in X represents a variable and a link in E between
any two nodes represents their causal relationship [25]. There are two types of
link in E: directed links (→) and undirected links (↔) (can also be seen as two-
way links). A directed link (→) in E describes that the head node xi is a direct
cause of the tail one, denoted by xi → xj , where xi, xj ∈ X. An undirected link
xi ↔ xj means that there exist two Markov equivalence class of G containing
xi → xj and xj → xi respectively, indicating a cause-effect relation between xi

and xj with uncertain direction.

392 Z. Deng et al.

A causal network is a fully completed partially directed acyclic graph (i.e.,
its directed subgraphs does not contain a directed cycle) because causality is
transitive, irreflexive and anti-symmetric. For any {xi, xj} ∈ V, xi and xj are
conditionally independent if there is a set of variables X′ ⊆ X\ {xi, xj} over the
dataset D satisfying P (xi, xj | X′,D) = P (xi | X′,D) P (xj | X′,D), denoted by
xi ⊥⊥ xj | (X′,D).

A causal network G must satisfy causal Markov condition. That is, give a
node xi ∈ X and its parents Pa (xi), if xi is not a cause of xj , then xi is
conditionally independent of xj given Pa (xi), i.e., xi ⊥⊥ xj | Pa (xi), where xj ∈
V\ {xi,Pa (xi)}. There are three important structures on a triplet 〈xi, xj , xk〉 in
the causal network, v-structure, chain and fork, as illustrated in Table 1. The d-
separation criterion captures exactly the conditional independence relationships
that are implied by the Markov condition. Let A, B and C be disjoint subsets
of the nodes of X. P is a acyclic path between node xi and xj , where xi ∈ A,
xj ∈ B. We say P is blocked by the subset C if and only if (1) there is a chain
xi → xk → xj or a fork xi ← xk → xj such that xk ∈ C; or (2) P contains
a v-structure xi → xk ← xj and neither xk nor any of its descendants are in
C. The causal networks constructed according to the conditional independence
determined by d-separation are not unique, they are Markov equivalence classes
of the real Bayesian network with the same skeleton and v-structures.

Table 1. Orientation rules in d-separation. Adj(nonAdj) means two nodes do(not) have
a link

Structure Probability Definition

v-structure
xi → xk ← xj

P (xk | xi, xj) =
P (xk | xi) P (xk | xj)

xk is a common effect of xi and xj .
xk is called a collider

chain
xi → xk → xj

P (xk | xi, xj)
= P (xk | xi)

xi is an indirected cause of xk

fork
xi ← xk → xj

P (xj | xk, xi)
= P (xj | xi)

xk is a common cause of xi and xj

Generally, the constraint-based algorithms consist of two key steps to deter-
mine a causal network: (1) identifying the network skeleton (the candidate nodes
and links); (2) orienting links as many as possible. Notice that we assume the
node set X (observed variables) is causal sufficient, i.e., all the relevant features
in the network have been observed and there is no unobserved common cause.
A causal network characterizes the relationships between variable features and
labels. This inspires us to present in what follows a constraint-based method
where these networks can be systematically discovered to construct the final
causal network characterizes the causal relationships among various radiomics
and deep features for the NSCLC subtypes.

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 393

4 Our Model

To generate a causal network for histologic subtypes of NSCLC, two types of
features (nodes) are considered in our model. That is, deep features are learned
from a deep model while representative radiomics are selected as the nodes of the
skeleton. A causal network is then generated by causal link orientation. Finally,
the most important causal features are selected for the classification of NSCLC
histologic subtypes. The main procedure of our approach is illustrated in Fig. 2.

Fig. 2. The framework of our approach.

4.1 Skeleton Identification

To discover causal relationships between features using a constraint-based app-
roach, a network skeleton consist of candidate nodes and links of the final causal
network needs to be extracted first.

Learning Deep Features. A homogeneous deep model is constructed to
extract deep features related to NSCLC subtypes from CT images automati-
cally. It consists of two main components: convolution layer and residual block.
First, a convolution layer is defined as:

394 Z. Deng et al.

ConvLayer: Y = Fc(A) = ReLu(W · BNγ,β(Conv(A))),
with Conv(A) : A = (a1, ...,ain)
→ Y = (y1, ...,yout),

(1)

where W is the corresponding weight vector of the ReLu function, γ and β are
the internal parameters in the BatchNorm function. Conv is the convolution
function with the sizes of the input channels in and output channels out. Note
that yc = Ks

c ∗ A (c = 1, ..., out), where Ks
c is the c-th convolution kernel of

the size s and ∗ is the convolution operator. Subsequently, a residual block is
constructed as follows:

ResBlk: Y = Fr(A) = A +
Cad∑

i=1

FT (A),

with FT (A) = F3
c(A),

(2)

where FT is a transformation including 3 ConvLayers with the kernel sizes of
1 × 1, 3 × 3 and 1 × 1 consecutively. Cad is the cardinality that is introduced to
control the number of complex transformations. In this way, the split-transform-
merge strategy is exploited in the block to reduce the number of parameters in
an easy and extensive way.

Given a CT image I ∈ R
C×W×H and its corresponding label c, our deep

model aims to discover the deep features by leveraging the following structures:

I1 = MaxPool(Fc(I)),

I2 = F4
r(I1),

VMd
= FC(GAP(I2)),

c = softmax(FC(VMd
)),

(3)

where GAP is the global average pooling and FC is a fully connected layer.
Finally, VMd

represents the vector of Md deep features learned from our model.

Selecting Nodes from Radiomics Features. Now let us consider a radiomics
feature set R = {(s1, c1), ..., (si, ci), ..., (sN , cN)} where si is the i-th sample
composed of R radiomics features denoted by [si1, ..., siR], ci ∈ {1, ..., C} is its
corresponding NSCLC subtype and N is the number of samples. Our goal is
to find a weighting vector w that reflects the importance of each feature to the
corresponding label. The weighting vector could be denoted as w = [w1, . . . , wR],
where wr represent the importance weight of the r-th feature.

Here, the probability Pij of si and sj with the same NSCLC subtype can be
defined as follows:

pij =

{ K(dw(xi,xj))∑
k �=i K(dw(xi,xk)) , if i �= j

0, if i = j
(4)

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 395

where K(z) = exp
(− z

σ

)
is a kernel function with a kernel width of σ and

dw(si, sj) =
∑R

r=1 w2
r |sir − sjr| is a weighting distance function. To this end,

the optimal radiomics feature weight vector ŵ over dataset R can be computed:

ŵ = argmin
w

{L(w,R)} = argmin
w

⎧
⎨

⎩
1
N

N∑

i=1

N∑

j=1,j ∗=i

Pij (1 − cij) + λ

R∑

r=1

w2
r

⎫
⎬

⎭ ,

(5)
where λ > 0 is regularization parameter to alleviate overfitting, and cij = 1 when
si and sj are of the same class, otherwise cij = 0. A gradient based optimizer
can be used to optimize the above objective function, such as delta-bardelta or
conjugate gradients. It is worth noting that the larger the weight value in ŵ,
the greater the importance it has in NSCLC classification task. We select top
Mr features with the largest weight values as the skeleton nodes of radiomics
features.

Skeleton Initialization. A complete undirected graph G1 = (X,E1)is con-
structed to initial the skeleton for causal link orientation, where X composed
of Md deep features nodes, Mr radiomics features nodes and their correspond-
ing NSCLC subtype label, and K = |V| = Md + Mr + 1. Then, conditional
independence test is performed for each edge xi ↔ xj in the graph. xi and
xj are not independent given any subset of nodes in X except xi and xj , i.e.,
E1 = {xi ↔ xj : ∀U ⊆ V \ {xi, xj} , xi �⊥⊥ xj | U}. In consequence, all links that
with two conditionally independent nodes are removed from the graph to satisfy
causal Markov condition.

4.2 Causal Link Orientation

Now we have a causal network skeleton G1 which is an undirected graph without
any determined causal relation. We continue to direct the links in G1. First
we construct a network G2 = (X,E2) by analyse the v-structures in G1. For
any triplets 〈xi, xj , xk〉 with the structure of xi ↔ xk ↔ xj in E1, if E1 dose
not contain such a link xi ↔ xj and xk dose not belong to any subset U ⊆
V\ {xi, xj} so that xi ⊥⊥ xj | U, then we add the link xi → xk ← xj to E2;
otherwise, we still keep the undirected link xi ↔ xk ↔ xj in E2. After analysing
all v-structures in E1, we get a partially directed acyclic graph G1, which satisfies
causal Markov condition.

Next, we further orientate other undirected links in G2 according to the d-
separation criterion, where if xi and xj are d-separated by xk. then xi and xj are
independent given xk; otherwise, xi and xj are interdependent given xk. Four
orientation rules of the corresponding sub-graph are illustrated in Fig. 3. With
these rules, we get a set of different networks G by orientating specific undirected
links. These networks in G are Markov equivalent due to their same skeleton and
same v-structures.

The final causal network G = (X,E) is the union of the networks in G, where
a directed link xi → xj exists in E if and only if it exists in every network in G,

396 Z. Deng et al.

Fig. 3. Four types of orientation rules in d-separation. A red cross means there does
not exist any link between the two nodes.

otherwise xi ↔ xj remains in E. Note that G is a completed partially directed
acyclic graph representing a Markov equivalence class of G and thus satisfies
causal Markov condition. Besides, the causal probability ξij of any two nodes xi

and xj can be calculated in term of standard deviations:

ξij =
σ2

axi+bxj
− σ2

axi−bxj

σ2
axi+bxj

+ σ2
axi−bxj

, (6)

where σX =
√

Var(X).

4.3 Representative Node Selection

To estimate the cause-effect level of each feature node on label node in the
causal network G, we introduce a representative node selector that estimates
the regression coefficients [16] defined as follows:

Ls (ws, λ1, λ2) = ‖C − Sws‖2
2 + λ1 ‖ws‖1 + λ2wT

s Φws, (7)

where ws = [ws1, . . . , wsK] is a vector, referred as to causal weights, representing
the cause-effect level of each feature node in G. S ∈ R

N×K is a sample matrix
from dataset D where its (i,m)-th entry is the m-th feature of i-th sample
sim and C ∈ R

N is its corresponding vector of labels of the NSCLC subtypes.
Φ ∈ R

K×K is a Laplacian matrix for the network G with the (i, j)-th element
defined by:

Φij =

⎧
⎪⎨

⎪⎩

1/degi, if i = j and degi �= 0
−ξij/

√
degi degj , if Adj (xi, xj) ∈ E

0, otherwise,
(8)

where degi =
∑

Adj(xi,xk)∈E ξik and Adj (xi, xk) means that there exists a link
between the two nodes. The first term in Ls only seeks to minimize regression
errors by regrading each node (variable) individually. The last term considers
the coefficient and correlation of two neighboring variables having cause-effect

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 397

relations. The tuning parameters λ1, λ2 control the amount of regularization for
sparsity and smoothness, respectively.

Now we are ready to evaluate the causal weights by minimizing the following
function using the sparse Laplacian shrinkage with the graphical Lasso estimator:

ŵs = argmin Ls
ws

(ws, λ1, λ2) = (C − Sws)
T (C − Sws) +

λ1

∑

i

|wsi| + λ2

∑

Adj(xi,xj)∈E

(
wsi√
degi

− wsj√
degj

)2

ξij .
(9)

To recognize NSCLC subtypes, we select the features whose causal weight ŵs is
greater than a threshold θ1 as well as the features whose important weight ŵ is
greater than a threshold θ2.

5 Experiments

In our experiments, all the competing models for NSCLC histologic subtypes
are evaluated over accuracy, sensitivity, specificity and area under the curve
(AUC) of receiver operating characteristic (ROC). The accuracy measures the
proportion of the correctly classified samples among the total tested samples.
The sensitivity and specificity show the ability to correctly identify samples
with ADC or with SCC. The AUC is employed to measure the quality of the
model’s predictions.

5.1 Comparison Results Against Other Competing Models

Three types of models for NSCLC classification have been taken into account
in this part, i.e., five conventional classifiers merely using radiomics (LR, KNN,
SVM, RF and GBDT), two deep models directly learning from raw CT images
(VGG16 and ResNet) and two fusion models that combine the radiomics and
deep features (ResNet_Fusion [2] and VGG16_Fusion [12]). Table 2 shows the
accuracy, sensitivity, specificity and AUC performance. Our approach clearly
outperforms other NSCLC classification methods on both datasets with a more
stable performance with around 2% − 20% boost. This is mainly due to our
approach utilized a combination of deep and radiomics features to generate the
causal skeleton and subsequently take advantage of the causal-effect dependency
information. Also, it is obvious that the two fusion models that merge deep net-
work (for image features) and conventional models (for radiomics features) have
better performance than either of them. This might explain why our approach
achieves the best performance by a large margin with nearly 20% boost at most
compared with LR on I-NSCLC dataset where a large number of features exist
but only a few causal features are discovered, which are extremely significant for
NSCLC recognition.

398 Z. Deng et al.

Table 2. Performance of different models in NSCLC Classification. The value in the
bracket shows the metric change taken our model as a baseline.

Dataset Method Metrics (%)
Accuracy Sensitivity Specificity AUC

P-NSCLC LR 74.5(−9.1) 76.9(−7.7) 70.6(−12.6) 76.8(−8.9)
KNN 75.9(−7.7) 78.3(−6.3) 68.6(−14.6) 77.5(−8.2)
SVM 70.8(−12.8) 72.4(−12.2) 66.7(−16.5) 74.6(−11.1)
RF 74.2(−9.4) 76.3(−8.3) 68.8(−14.4) 76.1(−9.6)
GBDT 72.1(−11.5) 73.7(−10.9) 70.6(−12.6) 75.4(−10.3)
VGG16 76.5(−7.1) 80.3(−4.3) 65.9(−17.3) 78.3(−7.4)
ResNet 79.4(−4.2) 81.4(−3.2) 73.8(−9.4) 82.5(−3.2)
VGG16_Fusion 78.8(−4.8) 80.2(−4.4) 75.1(−8.1) 80.2(−5.5)
ResNet_Fusion 81.7(−1.9) 82.5(−2.1) 79.7(−3.5) 83.3(−2.4)
Ours 83.6 84.6 83.2 85.7

I-NSCLC LR 86.9(−3.5) 70.1(−19.9) 91.3(+0.8) 90.0(−2.1)
KNN 86.1(−4.3) 84.2(−5.8) 86.4(−4.1) 86.3(−5.8)
SVM 85.2(−5.2) 82.7(−7.3) 86.0(−4.5) 87.5(−4.6)
RF 86.9(−3.5) 86.5(−3.5) 88.7(−1.8) 90.9(−1.2)
GBDT 88.7(−1.7) 73.9(−16.1) 92.3(+1.8) 90.0(−2.1)
VGG16 85.9(−4.5) 77.3(−12.7) 89.1(−1.4) 88.6(−3.5)
ResNet 87.1(−3.3) 73.9(−16.1) 92.3(+1.8) 90.6(−1.5)
VGG16_Fusion 88.9(−1.5) 72.2(−17.8) 96.5(+6.0) 90.1(−2.0)
ResNet_Fusion 87.7(−2.7) 78.9(−11.1) 90.1(−0.4) 90.9(−1.2)
Ours 90.4 90.0 90.5 92.1

5.2 Comparison Results Against Other Radiomics Feature Selection
Approaches

To further explore the role of constraint-based method on feature selection, we
compared the performance of four commonly used feature selection approaches
in radiomics (i.e., LASSO, RFE, PCA, MI) [2,23,27]. Since the features selected
by these approaches including ours can be employed in arbitrary classifiers.
They were evaluated in several individual classifiers. The results are reported
in Fig. 4. Overall, the constraint-based model outperforms other conventional
approaches as being capable to capture causal features. This is mainly because
the other approaches are greatly affected by outliers, including confounding fac-
tors and hidden variables, which often appear in medical datasets. Note that
other approaches mainly consider the correlation between features, while ignor-
ing those causal relationships. In addition, it can be seen that the samples gener-
ated by our approach are more classifier-agnostic than those of other approaches,
which can be adopted by various classifiers. Theoretically, the time complexity
of our model is O(K3 + NK2) + O(N2RMr) + Odf , where the first value repre-
sents the complexity of causal network construction, while the latter two values
indicate the complexity of radiomics feature selection and deep feature learning,
respectively, and thus it is affordable for practical usage in NSCLC recognition.

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 399

Fig. 4. Accuracy and AUC comparison against other feature selection methods.

5.3 Ablation Study

In this section, we conducted ablation studies to measure the effectiveness of
the modules in our model. We evaluate the impact of the respective sizes of
deep and radiomics feature nodes in the network skeleton on causal relation
discovery and final classification performance. As shown in Fig. 5, it is clear
that the combination of both types of features can achieve better classification
performance than merely the usage of either of them. It is worth noting that
Md = 0 (resp. Mr = 0) represents that the skeleton is completely composed of
radiomics features (resp. deep features). There is an improvement in accuracy
when Md and Mr grow to 32 and 24 on I-NSCLC, respectively. Similarly, it can
be seen that the best setting on P-NSCLC is Md = 24 and Mr = 24. In addition,
a large value of Md and Mr will bring about a very complicated network structure
with a great number of nodes (features), which results in a huge computational
complexity.

400 Z. Deng et al.

Fig. 5. Accuracy comparison of different settings of our model.

6 Conclusion

In this paper, we present a constraint-based network approach where causal
Markov condition is incorporated to exploit the causal-effect dependencies among
a combination of deep and radiomics features for NSCLC recognition from CT
images. It is more reliable and flexible than existing methods on NSCLC sub-
type classification by explicitly discovering representative features under a causal
view. As for future work, we will further consider utilizing not only the selected
variables (nodes) but also their causal relations (links) as features to train our
model, and we will explore the applications of our approach on other types of
cancers.

Acknowledgements. This work was supported by grants from the National Major
Science and Technology Projects of China (grant no. 2018AAA0100703), the National
Natural Science Foundation of China (grant nos. 61977012, 61977054), the Central
Universities in China (grant no. 2021CDJYGRH011).

References

1. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a
quantitative radiomics approach. Nat. Commun. 5(1), 1–9 (2014)

2. Aonpong, P., Iwamoto, Y., Han, X.H., Lin, L., Chen, Y.W.: Genotype-guided
radiomics signatures for recurrence prediction of non-small cell lung cancer. IEEE
Access 9, 90244–90254 (2021)

3. Aonpong, P., Iwamoto, Y., Wang, W., Lin, L., Chen, Y.-W.: Hand-crafted and deep
learning-based radiomics models for recurrence prediction of non-small cells lung
cancers. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in
Medicine and Healthcare. SIST, vol. 192, pp. 135–144. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-15-5852-8_13

4. Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat.
Commun. 11(1), 1–10 (2020)

https://doi.org/10.1007/978-981-15-5852-8_13

Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 401

5. Chaudhary, M.S., et al.: Causality-guided feature selection. In: Li, J., Li, X., Wang,
S., Li, J., Sheng, Q.Z. (eds.) ADMA 2016. LNCS (LNAI), vol. 10086, pp. 391–405.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49586-6_26

6. Coumans, V., Claassen, T., Terwijn, S.: Causal discovery algorithms and real world
systems. Ph.D. thesis, Masters thesis (2017)

7. Debbi, H.: Causal explanation of convolutional neural networks. In: Oliver, N.,
Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021.
LNCS (LNAI), vol. 12976, pp. 633–649. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86520-7_39

8. Duangsoithong, R., Phukpattaranont, P., Windeatt, T.: Bootstrap causal feature
selection for irrelevant feature elimination. In: The 6th 2013 Biomedical Engineer-
ing International Conference, pp. 1–5. IEEE (2013)

9. Fan, X., Wang, Y., Tang, X.Q.: Extracting predictors for lung adenocarcinoma
based on granger causality test and stepwise character selection. BMC Bioinfor-
matics 20(7), 83–96 (2019)

10. Feng, X., et al.: Selecting multiple biomarker subsets with similarly effective binary
classification performances. JoVE (J. Visual. Exp.) 140, e57738 (2018)

11. Guo, R., Cheng, L., Li, J., Hahn, P.R., Liu, H.: A survey of learning causality with
data: Problems and methods. ACM Comput. Surv. (CSUR) 53(4), 1–37 (2020)

12. Han, Y., et al.: Histologic subtype classification of non-small cell lung cancer using
pet/CT images. Eur. J. Nucl. Med. Molecul. Imaging 48(2), 350–360 (2021)

13. Kumar, V., et al.: Radiomics: The process and the challenges. Magnet. Resonan.
Imaging 30(9), 1234–1248 (2012)

14. Lambin, P., et al.: Radiomics: The bridge between medical imaging and personal-
ized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

15. Lambin, P., et al.: Radiomics: Extracting more information from medical images
using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

16. Li, C., Li, H.: Variable selection and regression analysis for graph-structured covari-
ates with an application to genomics. Ann. Appl. Stat. 4(3), 1498 (2010)

17. Li, J., et al.: Feature selection: A data perspective. ACM Comput. Surv. 50(6),
1–45 (2017)

18. Raghu, V.K., et al.: Feasibility of lung cancer prediction from low-dose CT scan
and smoking factors using causal models. Thorax 74(7), 643–649 (2019)

19. Shayesteh, S., et al.: Treatment response prediction using MRI-based pre-, post-,
and delta-radiomic features and machine learning algorithms in colorectal cancer.
Med. Phys. 48(7), 3691–3701 (2021)

20. Shaziya, H., Shyamala, K., Zaheer, R.: Automatic lung segmentation on thoracic
CT scans using u-net convolutional network. In: 2018 International Conference on
Communication and Signal Processing (ICCSP), pp. 0643–0647. IEEE (2018)

21. Wang, X., et al.: Predicting the invasiveness of lung adenocarcinomas appearing
as ground-glass nodule on CT scan using multi-task learning and deep radiomics.
Transl. Lung Cancer Res. 9(4), 1397 (2020)

22. Wang, X., Duan, H.H., Nie, S.D.: Prognostic recurrence analysis method for non-
small cell lung cancer based on CT imaging. In: 2019 International Conference on
Image and Video Processing, and Artificial Intelligence, vol. 11321, p. 113211T.
International Society for Optics and Photonics (2019)

23. Wang, Y., et al.: Comparison study of radiomics and deep learning-based methods
for thyroid nodules classification using ultrasound images. IEEE Access 8, 52010–
52017 (2020)

https://doi.org/10.1007/978-3-319-49586-6_26
https://doi.org/10.1007/978-3-030-86520-7_39
https://doi.org/10.1007/978-3-030-86520-7_39

402 Z. Deng et al.

24. Wu, Y., Ma, J., Huang, X., Ling, S.H., Su, S.W.: Deepmmsa: A novel multimodal
deep learning method for non-small cell lung cancer survival analysis. In: 2021
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.
1468–1472. IEEE (2021)

25. Yan, X., Liao, J., Luo, H., Zhang, Y., Liu, L.: Predicting cancer risks by a
constraint-based causal network. In: 2020 IEEE International Conference on Mul-
timedia and Expo (ICME), pp. 1–6. IEEE (2020)

26. van der Zander, B., Liśkiewicz, M., Textor, J.: Separators and adjustment sets in
causal graphs: Complete criteria and an algorithmic framework. Artif. Intell. 270,
1–40 (2019)

27. Zhang, Y., et al.: Radiomics analysis for the differentiation of autoimmune pancre-
atitis and pancreatic ductal adenocarcinoma in 18f-fdg pet/ct. Med. Phys. 46(10),
4520–4530 (2019)

28. Zhu, X., et al.: Radiomic signature as a diagnostic factor for histologic subtype
classification of non-small cell lung cancer. Eur. Radiol. 28(7), 2772–2778 (2018)

29. Zwanenburg, A., Leger, S., Vallières, M., Löck, S.: Image biomarker standardisation
initiative. arXiv preprint arXiv:1612.07003 (2016)

http://arxiv.org/abs/1612.07003

Detection of ADHD Based on Eye
Movements During Natural Viewing

Shuwen Deng1(B), Paul Prasse1, David R. Reich1, Sabine Dziemian2,
Maja Stegenwallner-Schütz1,3, Daniel Krakowczyk1, Silvia Makowski1,

Nicolas Langer2, Tobias Scheffer1, and Lena A. Jäger1,4

1 Department of Computer Science, University of Potsdam, Potsdam, Germany
shuwen.deng@uni-potsdam.de

2 Department of Psychology, University of Zurich, Zurich, Switzerland
3 Department of Inclusive Education, University of Potsdam, Potsdam, Germany

4 Department of Computational Linguistics, University of Zurich, Zurich, Switzerland

Abstract. Attention-deficit/hyperactivity disorder (ADHD) is a neu-
rodevelopmental disorder that is highly prevalent and requires clinical
specialists to diagnose. It is known that an individual’s viewing behavior,
reflected in their eye movements, is directly related to attentional mecha-
nisms and higher-order cognitive processes. We therefore explore whether
ADHD can be detected based on recorded eye movements together with
information about the video stimulus in a free-viewing task. To this end,
we develop an end-to-end deep learning-based sequence model which we
pre-train on a related task for which more data are available. We find
that the method is in fact able to detect ADHD and outperforms rele-
vant baselines. We investigate the relevance of the input features in an
ablation study. Interestingly, we find that the model’s performance is
closely related to the content of the video, which provides insights for
future experimental designs.

Keywords: ADHD detection · Eye movements · Free-viewing · Deep
learning · Deep sequence models

1 Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common
neurodevelopmental disorders of childhood affecting approximately 5 to 13 per-
cent of the children of an age cohort, depending on the diagnostic procedure
used [26,37,42]. ADHD is characterized by persistent inattention, high levels of
hyperactivity, and impulsivity [2].

The diagnosis of ADHD requires clinical assessment by specialists and typi-
cally involves self- and informant reports through clinical interviews and the use
of rating scales. Informant reports can be obtained from close family members,
teachers, or partners, depending on the age of the candidate. Since the clini-
cal assessment is heavily influenced by subjective reports and ratings, it also
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 403–418, 2023.
https://doi.org/10.1007/978-3-031-26422-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_25

404 S. Deng et al.

incurs the risk to reflect social or cognitive biases. The Strengths and Weak-
nesses of ADHD-Symptoms and Normal-Behavior (SWAN) rating scale [36] is
a well-established screening tool based on a questionnaire that has to be filled
out by parents or teachers. The SWAN scale registers symptoms of inattention,
hyperactivity, and impulsivity yielding the so-called SWAN score. Specifically,
the SWAN rating scale probes behaviors according to the full spectrum of symp-
tom severity, which ranges from functionality to dysfunctionality [5,36].

The lack of comprehensive, objective assessment tools, developmental
changes in the presentation of symptoms [4], and the high rates of co-
morbidities [2] present a major challenge to ADHD assessment and ultimately
increases the risk of under- or overdiagnosis. While a false negative can lead to
the denial of treatment, a false positive can lead to inappropriate treatment,
both of which may have detrimental effects on an individual’s ability to function
at school, professionally and socially as well as on their overall well-being. This
motivates the development of fully automatic screening tools that can be applied
at large to people at-risk or with a suspicion of having ADHD, thereby increasing
the accessibility of ADHD screening opportunities as well as the objectivity of
the screening method prior to specialist assessment.

Eye movements can be classified into so-called oculomotor events. These
include fixations (≈200–300ms), during which the eye is relatively still and
visual information is obtained, and saccades, which are fast relocation move-
ments of the eye gaze between any two fixations (≈30–80ms) [12]. A sequence of
fixations is referred to as a scanpath. As eye movements are known to reflect cog-
nitive processes including attentional mechanisms [10,17], they are considered a
window on mind and brain [40]. For several decades, they have been used as a
gold-standard measure in cognitive psychology [27]. Researchers from the field
of cognitive psychology typically treat eye movements as the dependent variable
to investigate the effect of experimental manipulation of the stimulus and hence
model it as the target variable. By contrast, more recent research has demon-
strated the potential of treating eye movements as the independent variable (i.e.,
the model input) to infer the properties of the viewer. For example, it has been
shown that eye-tracking data can be used to discriminate between different cog-
nitive states [11], personal traits [13], or cognitive load [31]. A major challenge
in using eye movements to make inferences about a viewer is the high degree
of individual variability in the eye-tracking signal. The dominance of individual
characteristics in the eye-tracking data explains why machine-learning meth-
ods for viewer identification perform very well [22,24], whereas models for other
inference tasks typically perform at best at a proof-of-concept level or slightly
above chance level. Another major challenge for the development of machine
learning methods for the analysis of eye-tracking data is data scarcity. Since the
collection of high-quality eye-tracking data is resource-intensive, only very few
large data sets exist.

Differences in viewing behavior between individuals with and without ADHD
have been found using eye-tracking tasks in which participants were required
to make voluntary eye movements towards or away from a stimulus (so-called

Detection of ADHD Based on Eye Movements During Natural Viewing 405

pro- or anti-saccade tasks) [18,25]. These findings motivate our approach of
developing a screening tool that processes each individual’s eye movements and
simultaneously takes into account information about the visual stimulus.

The contribution of this paper is fourfold. First, we provide a new state-of-
the-art model to detect ADHD from eye movements in a natural free-viewing task
and evaluate the performance of this model and relevant reference methods on a
real-world data set. Second, we provide an extensive investigation of the relevance
of the different input features in i) an ablation study and ii) by computing feature
importances. Third, we demonstrate that transfer learning bears the potential
to overcome the problem of data scarcity in eye-tracking research. Last but
not least, we release a preprocessed free-viewing eye-tracking data set for the
detection of ADHD.

The remainder of this paper is structured as follows. Section 2 discusses
related work and Sect. 3 lays out the problem setting. We develop a model archi-
tecture for the detection of ADHD in Sect. 4 and introduce the dataset in Sect. 5.
In Sect. 6 we present the experimental findings while in Sect. 7, we discuss the
results. Section 8 concludes.

2 Related Work

Machine learning methods have been applied for the purpose of ADHD detec-
tion to different types of diagnostic data; e.g., data of Conners’ Adult ADHD
Rating Scales [6], EEG signals [38], and functional Magnetic Resonance Imag-
ing (fMRI) data [8] recorded in resting state. The rapid development of affordable
eye-tracking hardware offers new possibilities for non-invasive, rapid, and even
implicit screenings that do not have to rely on self-, parent, or teacher reports.
In the following section, we briefly review the work related to the use of machine
learning methods with the purpose of identifying individuals with ADHD, with
a particular focus on eye movement data.

ADHD detection has been conducted based on eye movements collected dur-
ing different types of tasks, such as reading [7], a reading span task [14], or
continuous performance tests [21]. These tasks impose certain requirements on
the participants in order to ensure the validity of the measurement; e.g., partic-
ipants need to have already acquired a certain level of reading skills or have to
understand and comply with complex task instructions. Moreover, it has been
shown that under instructed conditions, eye movements are less affected by the
type of content (e.g., emotional content) that is displayed than in natural viewing
[19]. In order to reduce such limitations, first attempts have been made to detect
ADHD on the basis of their eye movements in task-free viewing. In contrast to
previous methods, this approach bears the potential to be applied already to
very young children, which, in turn, allows them to gain access to treatment
from a young age onwards. Early identification and treatment are crucial for
mitigating the development of ADHD and its negative long-term consequences
on individuals’ functioning and overall well being [15,28].

406 S. Deng et al.

Galgani et al. [9] proposed three methods for ADHD detection through an
image viewing task that they evaluated on participants with a comparatively
wide age range (9–59 years). Among these methods, the best-performing app-
roach is based on the Levenshtein distance. This method uses regions of interest
(ROI)-based alphabet encoding, which transforms a sequence of fixations into a
sequence of symbols by assigning symbols to different ROIs. To classify a new
instance, they compute the Levenshtein distance of the corresponding symbol
sequence to instances in the ADHD group and the control group. A smaller
average distance to a group indicates greater similarity to that group, and thus
the corresponding group label is assigned to the instance. While this approach
takes into account the spatial information of the sequence of fixations, it fails to
consider the temporal information of fixations; i.e., the fixation duration.

Instead of using a binary classifier for ADHD detection only, Tseng et al. [39]
proposed a three-class classifier to differentiate between children with ADHD,
children with fetal alcohol spectrum disorder, and control children, based on
eye movements recorded during watching video clips of 15 min. They combined
gaze features with visual saliency information of the stimulus computed with a
saliency model. However, they rely on engineered features that aggregate the eye
gaze events over time (e.g., median saccade duration or saccade peak velocity)
at the cost of the sequential information in the eye gaze signal not being used.

More research has focused on using machine learning to detect other neu-
rodevelopmental disorders [16,41]. For example, Jiang et al. [16] proposed to
detect autism spectrum disorder (ASD) from eye-tracking data collected while
viewing images, in which they used a neural network to explicitly model the dif-
ferences in eye movement patterns between two groups. The main limitation of
this method is that for each image only a fixed number of fixations are analyzed,
which potentially causes information loss.

3 Problem Setting

We study the problem of ADHD detection. While watching a video, the eye
gaze of the j-th individual is recorded as a sequence of fixations, denoted as
Pj = {(x1, y1, t1), . . . , (xM , yM , tM)}, where xm, ym are the m-th fixation loca-
tion, tm is the fixation duration, and M is the total number of recorded fixa-
tions. Provided a fixed video frame rate, we can use the temporal information
to map the fixations to the corresponding video frames V , such that seman-
tic information can be associated with eye-gaze. The training set consists of
D = {(P1, V, c1), . . . , (PJ , V, cJ)}, where Pj and V represent the j-th individ-
ual’s aligned fixation sequences and video frames, and cj is the label for whether
an individual has ADHD. The objective is to train a classifier that identifies
individuals with ADHD, which is a binary classification problem.

By varying the decision threshold for a learned model, we can plot the receiver
operating characteristic (ROC) curve of the true positive rates versus false-
positive rates, and finally compute the area under the curve (AUC) which is the
area under the ROC curve and is used as a quantitative indicator of classification

Detection of ADHD Based on Eye Movements During Natural Viewing 407

performance. We use the AUC as the evaluation metric, which is insensitive to
the uneven distribution of classes.

4 Method

In this section we introduce our model and the pre-training task used to initialize
the weights for the final task of ADHD classification.

4.1 Model

We propose an end-to-end trained neural sequence model to classify gaze
sequences as belonging to an individual with or without ADHD. Figure 1 shows
an overview of our proposed method. We preprocess the raw eye-tracking, which
consists of horizontal and vertical screen coordinates recorded with a sampling
rate of 60 120Hz into sequences of fixations using the Dispersion-Threshold
Identification algorithm [29]. The model takes as input the eye gaze sequence
(scanpath) and the video clip on which this scanpath has been generated.

Based on our review of the literature, we hypothesized that the eye gaze of
individuals with ADHD interacts differently with the visual stimulus in compar-
ison to typically developing controls. We therefore use saliency maps to highlight
possible regions of interest in a scene. We use a state-of-the-art saliency model,
DeepGaze II [20], to compute saliency maps for our video stimuli. DeepGaze II
uses VGG-19 features that were trained on an object recognition task [34] and
feeds them into a second network that is trained to predict a probability distri-
bution of fixation locations on a given image.

For each video frame i of size (W,H), the pre-trained DeepGaze II model
generates a saliency map S(i) ∈ R

H×W . We then apply min-max normalization
to transform S(i) to the range of [0, 1]. To extract the normalized saliency value of
each fixation location, we create an extraction mask, E

(i)
m ∈ R

H×W , for the m-th
fixation on the i-th video frame. More specifically, E

(i)
m is generated by setting the

fixation location to one and all other cells to zero. We then smooth the extraction
mask with a Gaussian kernel (standard deviation σ = 1.5◦) and normalize it.
The Gaussian kernel is applied to account for the parafoveal information intake
around the center of the fixation [12]. Eventually, the saliency value for the m-th
fixation is given by:

sm = 1H

(
E(i)

m � S(i)
)

1T
W , (1)

where � is the Hadamard product and 1d is an all-ones row vector of dimension d.
In case a fixation spans multiple frames, we use the central frame for the saliency
computation. The extracted sequence of saliency values is concatenated with
the fixation locations (represented in degrees of visual angle) and the fixation
durations (see Fig. 1). Finally, we apply z-score normalization to each of these
feature channels.

408 S. Deng et al.

Video frames Saliency maps

Fixations

Saliency
model

CNN

Step 2: Fine-tuning

CNN input

Eye tracking

Step 1: Pre-training

CNNSaliency value:

Gaze location:

Duration:

(a) Model overview.

D

Co
nv

(k
=9

,s
=2

,f
=1

6)
Av

g
Po

ol
in

g(
k=
2)

Co
nv

(k
=9

,s
=1

,f
=3

2)
Av

g
Po

ol
in

g(
k=
2)

Co
nv

(k
=9

,s
=2

,f
=3

2)
Av

g
Po

ol
in

g(
k=
2)

Co
nv

(k
=3

,s
=1

,f
=3

2)
Av

g
Po

ol
in

g(
k=
2)

Dr
op

ou
t(

0.
4)

Fu
ll

y
Co

nn
ec

te
d(

64
)

Fl
at

te
n

(b) Detailed view of the CNN.

Fig. 1. Proposed network architecture. Panel (a) shows the complete architecture and
Panel (b) shows the 1D-CNN denoted as “CNN” in Panel (a). The model is pre-trained
to predict the viewer’s SWAN score (regression task) and fine-tuned for ADHD classi-
fication.

We then feed these feature channels into a 1D-convolutional neural net-
work (CNN) to perform the ADHD classification. Panel (b) of Fig. 1 depicts
the details of the CNN architecture. The CNN consists of four one-dimensional
convolutional layers with rectified linear unit (ReLU) activation functions, fol-
lowed by two linear fully-connected layers. We apply ReLU to the first layer
and sigmoid to the last layer. Each convolutional layer is followed by a batch
normalization layer and an average pooling layer with a pooling size of 2. The
parameters k, s and f , specify the kernel size, the stride size, and the number
of filters for the convolutions, respectively. A dropout layer with a rate of 0.4
is added before the first dense layer to prevent over-fitting. Finally, the neural
network is optimized using the binary cross-entropy metric.

4.2 Pre-training

The number of data points from individuals with diagnosed ADHD and
negatively-diagnosed controls in the dataset is limited. We therefore pre-train
our model on a relevant task for which more data is available. Specifically, we pre-
train our neural network on a regression task predicting an individual’s SWAN
score. An individual’s SWAN score is highly relevant to the diagnosis of ADHD;
using the SWAN score to classify individuals with and without ADHD yields an

Detection of ADHD Based on Eye Movements During Natural Viewing 409

AUC of 0.878 (standard error= 0.007). We therefore capitalize on the SWAN
score to enable the model to detect ADHD-related patterns in the eye move-
ments and perform pre-training on the SWAN prediction dataset (see Sect. 5 for
details on the datasets).

For pre-training, we replace the sigmoid output unit with a linear output unit
for the regression setting. We apply the mean squared error as loss function. The
pre-trained weights are then used to initialize the ADHD classification model.

5 Datasets

The data for this study is part of the ongoing Healthy Brain Network (HBN)1
initiative by the Child Mind Institute [1], establishing a biobank of multi-modal
data of children and adolescents. The data analyzed here includes all participants
of the HBN up to the 6th release. Participants from the 7th release were included
if their data acquisition took place until the end of the season “Spring 2019”.

Naturalistic Stimuli Paradigm. The tasks analyzed in this study include all
free-viewing naturalistic stimuli paradigms of the test battery. Participants were
shown four different age-appropriate videos with audio track: (1) an educational
video clip (Fun with Fractals, 2:43min), (2) a short animated film (The Present,
3:23min), (3) a short clip of an animated film (Despicable Me, 2:50min), and (4)
a trailer for a feature-length film (Diary of a Wimpy Kid, 1:57min). There were
no instructions given for watching the videos. The order of the videos within the
test battery was randomized for each participant except for The Present always
being shown last.

Eye-Tracking. Monocular eye gaze data of the right eye was recorded with
an infrared video-based eye tracker (iView-X Red-m, SensoMotoric Instruments
[SMI] GmbH, spatial resolution: 0.1◦, accuracy: 0.5◦). The eye gaze was recorded
at a sampling rate 60Hz 120Hz, depending on the testing site. In between each
task, the eye tracker was calibrated using a 5-point grid.

Participants. The recruited participants were initially screened for having
symptoms of any mental disorder. Clinical diagnoses were provided in accordance
with the current edition of the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-V) [2], and based on a consensus by multiple licensed clinicians.
A total of 1,246 participants were included in the study, whose tracker loss was
less than 10%. 232 participants (178 were male and 54 were female) with an age
range of 6–21 years (mean age 9.97 years ± 3 years) were selected on the basis of
having received an ADHD diagnosis (including the predominantly inattentive
presentation, predominantly hyperactive-impulsive presentation, and combined
presentation of ADHD) and having no past or current co-morbidity according

1 https://healthybrainnetwork.org/.

https://healthybrainnetwork.org/

410 S. Deng et al.

to the DSM-V. These participants were assigned to the ADHD group. A group
of 152 participants (71 were male and 81 were female) with an age range of
6–21 years (10.42 years± 3.31 years) were assigned to the control group whose
psychological assessment indicated no past or current presence of any mental
disorder according to the DSM-V. All remaining 862 participants are included
for hyperparameter tuning and pre-training the models. Hereafter, we refer to
the subset of the data that contains recordings from the ADHD and control
groups as ADHD classification dataset and the subset used for hyperparameter
tuning and pre-training as SWAN prediction dataset. Note that for some partici-
pants recordings are available only from a subset of the four videos, as detailed in
Table 1. In addition to the diagnostic assessment, SWAN scores for participants
were obtained through the SWAN scale as a measure of ADHD-related symptom
severity [36].

Table 1. Number of individuals in the data. Numbers in parentheses show the number
of ADHD (A) and healthy controls (C).

Video ADHD classification dataset SWAN prediction dataset

Fun with Fractals 67 (48 A, 19 C) 276
The Present 159 (111 A, 48 C) 444
Despicable Me 315 (187 A, 128 C) 656
Diary of a Wimpy Kid 340 (202 A, 138 C) 736

6 Experiments

In this section, we describe the experiments we conducted to evaluate our pro-
posed approach and compare it with relevant reference methods. The code and
data are available online.2

6.1 Evaluation Protocol

We perform 10 resamplings of 10-fold cross-validation while splitting the data
by individuals. That means we test the model on the gaze sequence of unknown
individuals, while the video stimulus has already been seen during training. We
use the same data splits for all models to ensure a fair comparison.

To evaluate the different models for different videos, we train a separate
model for each video with and without pre-training. All neural network models
are trained, using the Keras and Tensorflow libraries with the Adam optimizer
on an NVIDIA A100-SXM4-40GB GPU.

2 https://github.com/aeye-lab/ecml-ADHD.

https://github.com/aeye-lab/ecml-ADHD

Detection of ADHD Based on Eye Movements During Natural Viewing 411

6.2 Reference Methods

We compare our model with two relevant baseline methods. The first is the
Levenshtein distance-based method proposed by Galgani et al. [9] (see Sect. 2).
This method was originally intended for the image domain, which is not directly
applicable to our video-based data. Therefore, instead of considering only the
fixation sequences on a single image, we adapt it to a video-based classifier by
calculating the Levenshtein distance based on the fixation sequences across the
whole video.

Our second reference method is an approach proposed by Tseng et al. [39],
in which a support vector machine (SVM) classifier is trained on aggregated
engineered features extracted from eye gaze data collected while watching a 15-
min video composed of 2–4 s unrelated clip snippets. Tseng et al. focuses on
ADHD detection in young children only, while the data collected from young
adults is used as a reference to compute group-based features. Due to the lack of
young individuals in the control group, we are not able to compute these group-
based features and thus exclude them in our implementation. Nevertheless, we
implement all the remaining saliency- and gaze-based features and report the
results of the model that is trained with recursive feature elimination as proposed
by Tseng et al. [39]. To extract the saliency maps used by Tseng et al. we use
the publicly available toolkit3.

6.3 Hyperparameter Tuning

To find the optimal parameter setup for the architecture introduced in Sect. 4.1
we perform a random grid search using 5-fold cross-validation on the SWAN pre-
diction dataset. Table 2 shows the search space for the parameters used during
hyperparameter optimization where we restrict the kernel size of the convolu-
tional layers to be less than or equal to the kernel size of the previous layer and
the number of filters to be greater than or equal to the number of filters in the
previous layer. Furthermore, the stride size is set to 1 when the kernel size is
less than or equal to 5, and is restricted to be smaller than or equal to 2 when
the kernel size is equal to 7. We use the data from the SWAN prediction dataset
and predict the SWAN score to evaluate the stated hyperparameter configura-
tions. The best performing configuration can be found in Fig. 1 and is used for
all subsequent experiments.

6.4 Results

In Table 3, we present the evaluation results of our proposed models and the
reference methods on all available videos. Except for the video Diary of a Wimpy
Kid, our proposed method (with and without pre-training) performs significantly
above chance level (p < 0.05). The best results are achieved for the video Fun
with Fractals. With regard to this video, the model trained from scratch achieves

3 http://ilab.usc.edu/toolkit/.

http://ilab.usc.edu/toolkit/

412 S. Deng et al.

Table 2. Parameter used for hyperparameter optimization.

Parameter Search space

conv layers {3, 4, 5, 6, 7, 8, 9}
Kernel size {3, 5, 7, 9, 11}
filters {8, 16, 32, 64}
Stride size {1, 2, 3}
fully connected layers {1, 2, 3}
hidden units {8, 16, 32, 64}
Dropout rate {0.2, 0.3, 0.4, 0.5, 0.6}
Pooling layer type {max pooling, average pooling}

an AUC of around 0.58, and the pre-training further increases the performance
by around 10%. Also for the Fun with Fractals video, the results show that the
proposed method with pre-training outperforms both baselines. The comparison
between the four videos further shows that all methods except for the model
by Galgani et al. [9] perform best on the Fun with Fractals video. This may
indicate that certain properties of the stimulus video have an impact on how
well the models can distinguish between individuals with ADHD and controls.

To characterize the differences between the videos, we extracted content-
related features from each video which arguably quantify the video’s degree
of contingency [30]: scene cut frequency, the proportion of frames showing at
least one face, and the total number of characters that appear in the video (see
Fig. 2). The movie trailer Diary of a Wimpy Kid has a large number of charac-
ter appearances, a higher proportion of frames showing faces, and more frequent
scene transitions. This arguably renders the video more engaging also for the
ADHD group, which, in turn, may make their viewing behavior similar to the
control group. The educational video Fun with Fractals, by contrast, shows a low
level of exciting content: The video mostly consists of relatively static scenes.
According to the distinction between intact contingency-shaped and impaired
predominantly self-regulatory processes of sustained attention among individ-
uals with ADHD [3], their viewing behavior should be impacted by the video
characteristics. Since the educational video contains less contingency, eye move-
ments of individuals with ADHD may display more distinctive information for
this video.

6.5 Ablation Study and Feature Importance

In this section, we investigate the impact of each input feature of the proposed
model with pre-training (CNN@Pre-tr) on the performance of the four different
videos (see Table 4). In a second experiment, we look into the distribution of
attribution scores using the attribution method DeepLIFT [32], which is designed
to explain model predictions.

Detection of ADHD Based on Eye Movements During Natural Viewing 413

Table 3. AUC values ± standard error for ADHD detection of the CNN model with
(CNN@Pre-tr.) and without (CNN@Scratch) pre-training. Galgani et al. and Tseng et
al. refer to our re-implementation and adaptation to the data of their proposed method
(see Sect. 6.2). The asterisk * indicates that the performance is significantly better than
random guessing. The dagger † shows models significantly worse than the best model.

Method Fun with fractals The present Despicable me Diary of a
Wimpy kid

CNN@Scratch 0.583 ± 0.026* 0.553 ± 0.017* 0.55 ± 0.01* 0.486 ± 0.01
CNN@Pre-tr 0.646±0.025* 0.554±0.016* 0.544 ± 0.01* 0.503 ± 0.01
Galgani et al. [9] 0.33 ± 0.022† 0.526 ± 0.017 0.523 ± 0.012* 0.515±0.01
Tseng et al. [39] 0.608 ± 0.023* 0.418 ± 0.015† 0.561±0.011* 0.465 ± 0.01

Fig. 2. Video features of different video stimuli.

Our proposed model consumes three different types of inputs: saliency, fixa-
tion duration, and fixation location. Table 4 shows the results for models trained
without the saliency, fixation duration, and fixation location input in compar-
ison to the model using all inputs. From Table 4 we can conclude that remov-
ing any of the input channels lowers the model’s performance for the Fun with
Fractals video. The drop in AUC is similar for each of the three components.
Despite the drop in performance, we see that our model still outperforms both
the model trained from scratch (CNN@Scratch) and the baseline models (see
Table 3), which underlines the benefit of pre-training as well as the advantage
of using multiple input channels. For the other three videos, we observe that
removing one of the input channels does not have a systematic impact on the
model’s performance.

In the second set of experiments, we investigate the feature importance of
each input channel. To this end, we employ the post-hoc attribution method
DeepLIFT [32], which belongs to the family of reference-based attribution meth-
ods. For each model prediction, these methods explain the difference in model
output with respect to a previously chosen reference input. The explanations are
provided as attribution values for each input feature and quantify the relevance
to the model output. The resulting attributions can then be interpreted as a com-
putationally less expensive approximation of SHAP values [23]. Figure 3 displays
two example instances for an individual with and without ADHD, respectively.
These examples indicate that i) the attributions are spread relatively evenly over

414 S. Deng et al.

Table 4. Results of the ablation study. The table shows AUC values ± standard error
for our proposed model (CNN@Pre-tr.) trained with and without specific input fea-
tures.

Model Fun with fractals The present Despicable me Diary of a
Wimpy kid

Complete 0.646±0.025* 0.554 ± 0.016* 0.544 ± 0.01* 0.503 ± 0.01
w/o saliency 0.623 ± 0.026* 0.556±0.016* 0.545±0.01* 0.494 ± 0.011
w/o fix. duration 0.619 ± 0.027* 0.534 ± 0.016* 0.536 ± 0.011* 0.51 ± 0.01
w/o fix. location 0.622 ± 0.026* 0.551 ± 0.015* 0.542 ± 0.01* 0.526±0.009*

(a) Individual with ADHD. (b) Individual without ADHD.

Fig. 3. Example attributions for individual instances (ADHD and control group). The
black lines represent the values of the input channel labelled on the y-axis. Red back-
ground colors show attribution relevance for ADHD, blue background colors show attri-
bution relevance for the control group. Dark colors represent a high relevance, light
colors a low relevance. (Color figure online)

time and ii) the model uses all the available input channels. This is in line with
our observation from the first part of the ablation study and confirms that all
the input channels add valuable information.

To determine the overall importance of each input channel we compute attri-
butions for all instances of the ADHD classification dataset. We take the absolute
values of the attributions and normalize the attributions for each instance to the
range from zero to one. Figure 4 depicts the resulting box plot grouped by chan-
nels and videos. For all videos, the saliency channel is attributed with the highest
relevance overall. While for the videos Despicable Me and Diary of a Wimpy Kid
the fixation location channels are about as relevant as fixation duration, the rel-
evance is noticeably higher for the Fun with Fractals video. Fixation duration is
among the lowest attributed channels for all four videos. Note that the attribu-
tion of the two individual positional channels for the fixation location will add
up to more relevance when not treated individually.

Detection of ADHD Based on Eye Movements During Natural Viewing 415

Fig. 4. Attribution box plot. Each video has a separate column with boxes for all four
channels. Median value is represented by the horizontal black line in each box, mean
value by the centered white dot. Whiskers are set to a 1.5 IQR value.

7 Discussion

Our proposed model achieves state-of-the-art results in the detection of ADHD
from eye movements. We developed a deep neural network that integrates a
sequential stimulus, a video clip, with the corresponding gaze sequence. In con-
trast to previous research, we do not aggregate the eye gaze sequence over time,
but rather developed a sequence model, that processes the unaggregated scan-
path together with the saliency information of the visual stimulus that is cur-
rently around the center of the visual field (parafoveal vision). Our investigation
of feature attributions revealed that the unaggregated information in the data
is indeed used by the model. We have further demonstrated the advantage of
pre-training the model on a different task with additional data obtained from
individuals diagnosed with other neurodevelopmental disorders. Whereas trans-
fer learning approaches for predicting eye movements exist [35], to the best of
our knowledge, this is the first transfer learning approach processing eye-tracking
data as input. As the recording of eye-tracking data is resource-intensive, data
scarcity poses a major challenge to the development of machine learning methods
for the analysis of eye movements. Our work demonstrates that transfer learning
approaches with pre-training on a different domain or a different task offers the
potential to fully exploit the information that is available in eye-tracking data.

The task-free nature of the viewing setting allows us to interpret eye move-
ments to reflect differences in visual attention allocation between individuals
with and without ADHD [19]. With regard to clinical implications for ADHD-
specific behavior, the model’s successful prediction of ADHD group member-
ship corroborates previous reports of distinctive eye movements displayed by
individuals with ADHD in contrast to typically developing individuals. This
interpretation is also supported by comparisons between the different videos.
When comparing the model’s performance for the different videos, we noted a
substantial improvement for the educational Fun with Fractals video in com-
parison to the other three video clips. According to a distinction between intact
contingency-shaped and impaired predominantly self-regulatory processes of sus-
tained attention among individuals with ADHD [3], their viewing behavior
should be impacted by the video characteristics. Since the educational video

416 S. Deng et al.

contains less contingency, eye movements from individuals with ADHD should
exhibit a larger degree of dissimilarity from controls on this video. Our finding
that differences in eye movements between individuals with and without ADHD
are most pronounced on a less engaging video supports previous clinical find-
ings [33], according to which the demand of self-regulatory functioning impacts
the performance of individuals with ADHD.

8 Conclusion

We developed a neural sequence model that reaches state-of-the-art performance
in the classification of viewers with and without ADHD based on their eye gaze
on a given video stimulus. Our method is widely applicable for the analysis of
eye gaze data: It can be applied to any inference task that uses eye movements
and a static or moving visual stimulus as input. We have further demonstrated
that the problem of data scarcity in eye-tracking research can be alleviated by
pre-training on a different task for which more labeled data is available and by
fine-tuning on the target setting. In conclusion, our method bears the prospective
advantage of systematically exploiting eye movements in naturalistic settings for
diagnostic purposes that includes, but is not limited to ADHD detection, and at
the same time broadens our behavioral understanding of the disorder.

Acknowledgements. This work was partially funded by the German Federal Min-
istry of Education and Research (grant 01|S20043) and a ZNZ PhD grant.

References

1. Alexander, L.M.: An open resource for transdiagnostic research in pediatric mental
health and learning disorders. Sci. Data 4(1), 1–26 (2017)

2. American Psychiatric Association: Diagnostic and Statistical Manual of Mental
Disorders, 5th edn. Arlington, VA (2013)

3. Barkley, R.A.: Behavioral inhibition, sustained attention, and executive functions:
constructing a unifying theory of ADHD. Psychol. Bull. 121(1), 65–94 (1997)

4. Biederman, J., Mick, E., Faraone, S.V.: Age-dependent decline of symptoms of
attention deficit hyperactivity disorder: impact of remission definition and symp-
tom type. Am. J. Psychiatry 157(5), 816–818 (2000)

5. Brites, C., Salgado-Azoni, C.A., Ferreira, T.L.L., Lima, R.F., Ciasca, S.M.: Devel-
opment and applications of the SWAN rating scale for assessment of attention
deficit hyperactivity disorder: a literature review. Braz. J. Med. Biol. Res. 48,
965–972 (2015)

6. Christiansen, H., et al.: Use of machine learning to classify adult ADHD and other
conditions based on the Conners’ adult ADHD rating scales. Sci. Rep. 10(1), 1–10
(2020)

7. De Silva, S., et al.: A rule-based system for ADHD identification using eye move-
ment data. In: MERCon 2019, pp. 538–543 (2019)

8. Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B.: Fully connected cas-
cade artificial neural network architecture for attention deficit hyperactivity disor-
der classification from functional magnetic resonance imaging data. IEEE Trans.
Cybern. 45(12), 2668–2679 (2015)

Detection of ADHD Based on Eye Movements During Natural Viewing 417

9. Galgani, F., Sun, Y., Lanzi, P.L., Leigh, J.: Automatic analysis of eye tracking
data for medical diagnosis. In: IEEE CIDM 2009, pp. 195–202 (2009)

10. Henderson, J.M.: Human gaze control during real-world scene perception. Trends
Cogn. Sci. 7(11), 498–504 (2003)

11. Henderson, J.M., Shinkareva, S.V., Wang, J., Luke, S.G., Olejarczyk, J.: Predicting
cognitive state from eye movements. PloS ONE 8(5) (2013)

12. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van
de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and Measures.
Oxford University Press, Oxford (2011)

13. Hoppe, S., Loetscher, T., Morey, S.A., Bulling, A.: Eye movements during everyday
behavior predict personality traits. Front. Hum. Neurosci. 12 (2018)

14. Jayawardena, G., Michalek, A., Jayarathna, S.: Eye tracking area of interest in the
context of working memory capacity tasks. In: IEEE IRI 2019, pp. 208–215 (2019)

15. Jensen, P.S., et al.: Findings from the NIMH multimodal treatment study of ADHD
(MTA): implications and applications for primary care providers. J. Dev. Behav.
Pediatr. 22, 60–73 (2001)

16. Jiang, M., Zhao, Q.: Learning visual attention to identify people with autism spec-
trum disorder. In: IEEE ICCV, pp. 3267–3276 (2017)

17. Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cogn. Psychol.
12(4), 441–480 (1976)

18. Klein, C., Raschke, A., Brandenbusch, A.: Development of pro- and antisaccades
in children with attention-deficit hyperactivity disorder (ADHD) and healthy con-
trols. Psychophysiology 40(1), 17–28 (2003)

19. Kulke, L., Pasqualette, L.: Emotional content influences eye-movements under nat-
ural but not under instructed conditions. Cogn. Emot. 36(2), 332–344 (2022)

20. Kummerer, M., Wallis, T.S., Gatys, L.A., Bethge, M.: Understanding low-and high-
level contributions to fixation prediction. In: IEEE ICCV, pp. 4789–4798 (2017)

21. Lev, A., Braw, Y., Elbaum, T., Wagner, M., Rassovsky, Y.: Eye tracking during a
continuous performance test: utility for assessing ADHD patients. J. Atten. Disord.
26(2), 245–255 (2022)

22. Lohr, D., Griffith, H., Aziz, S., Komogortsev, O.: A metric learning approach to
eye movement biometrics. In: IEEE IJCB 2020, pp. 1–7 (2020)

23. Lundberg, S., Lee, S.I.: An unexpected unity among methods for interpreting model
predictions. arXiv preprint arXiv:1611.07478 (2016)

24. Makowski, S., Prasse, P., Reich, D.R., Krakowczyk, D., Jäger, L.A., Scheffer, T.:
Deepeyedentificationlive: oculomotoric biometric identification and presentation-
attack detection using deep neural networks. IEEE Trans. Biometrics Behav. Iden-
tity Sci. (2021)

25. Munoz, D.P., Everling, S.: Look away: the anti-saccade task and the voluntary
control of eye movement. Nat. Rev. Neurosci. 5(3), 218–228 (2004)

26. Polanczyk, G., De Lima, M.S., Horta, B.L., Biederman, J., Rohde, L.A.: The world-
wide prevalence of ADHD: a systematic review and metaregression analysis. Am.
J. Psychiatry 164(6), 942–948 (2007)

27. Rayner, K.: Eye movements in reading and information processing: 20 years of
research. Psychol. Bull. 124(3), 372–422 (1998)

28. Rubia, K., Alegria, A., Brinson, H.: imaging the adhd brain: disorder-specificity,
medication effects and clinical translation. Expert Rev. Neurother. 14(5), 519–538
(2014)

29. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking
protocols. In: ETRA 2020, pp. 71–78 (2000)

http://arxiv.org/abs/1611.07478

418 S. Deng et al.

30. Schwenzow, J., Hartmann, J., Schikowsky, A., Heitmann, M.: Understanding videos
at scale: how to extract insights for business research. J. Bus. Res. 123, 367–379
(2021)

31. Shojaeizadeh, M., Djamasbi, S., Paffenroth, R.C., Trapp, A.C.: Detecting task
demand via an eye tracking machine learning system. Decis. Support Syst. 116,
91–101 (2019)

32. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: ICML 2017, pp. 3145–3153 (2017)

33. Silverstein, M.J., Faraone, S.V., Leon, T.L., Biederman, J., Spencer, T.J., Adler,
L.A.: The relationship between executive function deficits and DSM-5-defined
ADHD symptoms. J. Atten. Disord. 24, 41–51 (2020)

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR) (2015)

35. Sood, E., Kögel, F., Müller, P., Thomas, D., Bace, M., Bulling, A.: Multimodal
integration of human-like attention in visual question answering. arXiv 2109.13139
(2021)

36. Swanson, J.M., et al.: Categorical and dimensional definitions and evaluations of
symptoms of ADHD: history of the SNAP and the SWAN rating scales. Int. J.
Educ. Psychol. Assess. 10(1), 51 (2012)

37. Thomas, R., Sanders, S., Doust, J., Beller, E., Glasziou, P.: Prevalence of attention-
deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics
135(4), e994–e1001 (2015)

38. Tor, H.T., et al.: Automated detection of conduct disorder and attention deficit
hyperactivity disorder using decomposition and nonlinear techniques with EEG
signals. Comput. Methods Programs Biomed. 200, 105941 (2021)

39. Tseng, P.H., Cameron, I.G., Pari, G., Reynolds, J.N., Munoz, D.P., Itti, L.: High-
throughput classification of clinical populations from natural viewing eye move-
ments. J. Neurol. 260(1), 275–284 (2013)

40. van Gompel, R.P.G., Fischer, M.H., Murray, W.S., Hill, R.L. (eds.): Eye Move-
ments: a Window on Mind and Brain. Elsevier, Amsterdam (2007)

41. Wang, S., et al.: Atypical visual saliency in autism spectrum disorder quantified
through model-based eye tracking. Neuron 88(3), 604–616 (2015)

42. Willcutt, E.G.: The prevalence of DSM-IV attention-deficit/hyperactivity disorder:
a meta-analytic review. Neurotherapeutics 9(3), 490–499 (2012)

FFBDNet: Feature Fusion and Bipartite
Decision Networks for Recommending

Medication Combination

Zisen Wang1,2, Ying Liang1(B), and Zhengjun Liu1,2

1 Research Center for Ubiquitous Computing Systems, Institute of Computing Technology,
Chinese Academy of Science, Beijing, China

liangy@ict.ac.cn
2 School of Computer Science and Technology, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Recommending medication combinations for patients is an essential
part of artificial intelligence in the healthcare field. Existing approaches improve
the effect of recommendations by considering how to make full use of patients’
electronic health records or by introducing additional external knowledge, but
there is still room for improving the fusion of heterogeneous and diverse knowl-
edge and the effect between accuracy and drug-drug interaction (DDI) rate. To
fill this gap, we propose the Feature Fusion and Bipartite Decision Networks
(FFBDNet) to leverage external knowledge and improve accuracy and DDI rate.
FFBDNet is equipped with a patient feature encoder which extract useful informa-
tion from current and historical visits of patient to supplement the patient’s health
status, a medication feature encoder which can easily fuse the heterogeneous and
diverse external knowledge of medications as feature, and a bipartite decision
module to give medication recommendation results. FFBDNet also has a greedy
loss function to improve accuracy and DDI rate. We demonstrate the effectiveness
of FFBDNet by comparing with several state-of-the-art methods on a benchmark
dataset. FFBDNet outperformed all baselines in all effective measures, reduced
relatively the DDI rate by 97.65% from existing EHR data, and also is shown to
improve 1.02% on Jaccard similarity.

Keywords: Medication combination prediction · External knowledge ·
Drug-drug interaction · Data mining · Attention

1 Introduction

Today, abundant health data, such as longitudinal electronic health records (EHR) and
massive medical data available on the web enable researchers and doctors to build better
predictive models for clinical decision making [1, 2]. Among other things, recommend-
ing effective and safe medication combinations is an important task, in particular to help
patients with complex medical conditions [3, 4], and the primary objective is to person-
alize a safe combination of medications for a particular patient based on the patient’s

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 419–436, 2023.
https://doi.org/10.1007/978-3-031-26422-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_26&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_26

420 Z. Wang et al.

electronic health records. In recent years, more and more researchers try to use neural
network to model the recommendation process, so as to assist doctors make better and
more efficient clinical decisions when facing a large number of patients. There are basi-
cally two types of these approaches: 1) Sequential decision-making models that look
at recommending medication combinations to patients as a multi-step decision-making
task, see [5–8]. However, most decision-making tasks require a predetermined order or
an appropriate reward function, which is difficult to define and will eventually affect the
effect of the recommendation. 2) Multi-label classification models such as [4, 9–11] that
view the medication combination recommendation as a multi-label classification task,
so as to avoid the rationality of the order of the medication recommendation in the model
prediction. However, they still suffer from the following limitations.

Fuse of External Knowledge. External knowledge refers to the medical data other than
EHR, such as age and gender of patients, conflict relationship and molecular structure
of medications, and in the medication combination recommendation, it usually refers
to the external knowledge of medications. Existing works [4, 12] improve the effect of
recommendation by introducing additional external knowledge of medications, but they
have poor scalability for new external knowledge. New external knowledge can usu-
ally introduce new information for recommendation tasks, and better fusion of external
knowledge can better support the model.

Effect Between Accuracy and DDI Rate. In medication combination recommenda-
tion, it is very important to avoid unnecessary drug-drug interaction as much as pos-
sible, so as to ensure the safety of recommendation results. Some existing works [8,
13] improve the accuracy and DDI rate for recommendation by explicitly or implicitly
introducing DDI knowledge into training, such as implicitly adjusting DDI rate through
reward function, or directly designing DDI loss to reduce DDI rate. However, there is
still room for improvement in the effect between accuracy and DDI rate. Especially for
the DDI rate, as the essential factor to measure the safety of medication combination
recommendation, the DDI rate of the existing works is still at a high level.

To address these, we propose a Feature Fusion and Bipartite Decision Networks
for medication combination recommendation, named FFBDNet, to fuse the external
medical knowledge and to improve recommend effect. We believe that different external
knowledge can introduce new information to assist recommendation. Our FFBDNet has
the following contributions.

We propose a feature fusion module to fuse heterogeneous and diverse knowledge.
The attention mechanism is used to extract the previous medical visit information related
to the patient’s current visit. A variety of non Euclidean space features of medications
are encoded by graph convolution network. By concatenating new external knowledge
in the feature coding stage, it can easily realize the fusion of external features.

We propose a bipartite decision module to make a joint decision for medication rec-
ommendation. It consists of two doctor models: direct doctor and recombination doctor.
The direct doctor directly uses the patient’s representation for recommendation, and the
recombination doctor recombines the medications based on the similarity between the

FFBDNet: Feature Fusion and Bipartite Decision Networks 421

patient and the drugs. Finally, the recommendation results of the two doctor models are
fused to complete the joint decision-making.

We design a greedy loss to reduce the DDI rate of medication combination recom-
mendation results. The greedy mask is used to filter high conflict medications in greedy
loss, and experiments show that, compared with several state-of-the-art methods on real
EHR data, greedy loss can avoid almost all DDI in the medication combination, while
still maintaining a good recommendation accuracy.

2 Related Works

2.1 Medication Recommendation

The existing medication combination recommendation methods can be basically divided
into two types: sequential decision-making and multi-label classification. Sequential
decision-making models decompose one recommendation process into multi-step med-
ication decision-making, see [5–8, 14]. For example, LEAP [6] uses recurrent neural
network (RNN) to model the decision-making process, and uses content-based attention
mechanism to capture label instance mapping to predict medication at each step. COMP-
Net [8] transforms the medication combination recommendation task into a disordered
Markov decision process (MDP) problem, and designs a deep Q-learning (DQL) mecha-
nism to learn the correlation and adverse interactions between medications. Multi-label
classification models realize medication combination recommendation by predicting
multiple labels for patients at one time, see [4, 10–13, 15]. Among them, GAMENet
[4] customizes a memory storage module for external knowledge and extract external
features from EHR graph and DDI graph by graph convolution network, so as to improve
the effect of multi-label classification for medication recommendation. SafeDrug [12]
specially designs an encoder to capture drug molecular knowledge, which is composed
of global message passing neural network (MPNN) and local bipartite learning module,
explicitly models the medication conflict process, and realizes medication recommen-
dation to patients. Despite their initial success, there is still room for improvement in the
effect between accuracy and DDI rate, as well as the poor fusion of additional external
knowledge caused by structural customization.

In view of the success of the existing works through the use of external knowledge, in
this paper, we design a feature fusion module that is easy to fuse the external features for
the medication combination recommendation task, and design a greedy loss to optimize
the effect between accuracy and DDI rate.

2.2 Medication Representation

The medical data related to medication is often non Euclidean space structure, which
is often modeled by graph convolution neural network (GCN) in the existing works.
Initializing each node in non Euclidean space data, GCN uses neighbor iterative aggre-
gation to update nodes, and finally obtains the informative latent feature representations

422 Z. Wang et al.

of each node [16–20]. At the beginning, it achieved good results in social networks.
And with the development, it has been successfully applied in the field of medicine in
recent years. For example, Ma et al. [21] use GCN to encode each node in the medical
graph to obtain an interpretable embedded representation of the medication. Zitnik et al.
[22] construct a two-layer multimodal medication interaction graph, and use GCN to
capture the conflict relationship between medications. The representations of medica-
tion molecules are commonly modeled by molecular descriptors [23] and medication
fingerprint [24], and David et al. [25] use GCN to capture the deep semantic features
of medication fingerprint. Huang et al. [26] use medication pairs to capture medical
features, and directly model medication molecule graph based GCN [27].

In this paper, we will use GCN to encode a variety of non Euclidean space medical
data of medications, so as to capture and utilize the medication feature of different
knowledge sources.

3 Problem Formulation

Electrical Health Records (EHR). In longitudinal EHR data, each patient n can be
represented as a sequence of multivariate observations: R(n) = [r(n)

1 , r(n)
2 , · · · , r(n)

T (n)]
where n ∈ {1, 2, · · · , N }, N is the total number of patients; T (n) is the number of
visits of the n-th patient. To reduce clutter, the algorithms will be described for a single
patient and drop the superscript (n) whenever it is unambiguous. Each history record rt =
[cd

t , cp
t , cm

t](t < T) of a patient for t-th visit is concatenation of corresponding diagnoses
codes cd

t , procedure codes cp
t and medications codes cm

t . And current record rT =
[cd

T , cp
T] of a patient is concatenation of corresponding diagnoses codes cd

T , procedure
codes cp

T . For simplicity, c∗
t is used to indicate the unified definition for different type

of medical codes. c∗
t ∈ {0, 1}|C∗| is a multi-hot vector, where C∗ is the medical code set

and |C∗| is size of set C∗.

External Knowledge of Medication. In this paper, there are three kinds of exter-
nal knowledge of medication: EHR graph, DDI graph and molecule graph. EHR
graph contains the co-occurrence knowledge of medications, and can be denoted as
GE = {V E, EE}, where V E = Cm is the node set of all medications and EE is the edge
set of known combination medication in EHR database. DDI graph contains the con-
flict knowledge between medications, and can be denoted as GD = {V D, ED}, where
V D = Cm is the node set of all medications and ED is the edge set of known DDIs
between a pair of medications. Molecule graph A contains the molecular composition
knowledge of medications, which is similar to the root word in natural language pro-
cessing, and can be denoted as Gmi = {V mi , Emi }, where V mi is the node set of all
molecular units of medication mi ∈ Cm and Emi is the edge set of known molecular
structure of Mi. For simplicity, G∗ is used to indicate the unified definition for different
type of medical knowledge graphs, and adjacency matrix A∗ ∈ R

|V ∗|×|V ∗| is defined to
clarify the construction of edge E∗.

Medication Combination Recommendation. Given medical codes of the current visit
at time T (excluding medication codes) cd

T , cp
T , patient history [r1, r2, · · · , rT−1] and

FFBDNet: Feature Fusion and Bipartite Decision Networks 423

external knowledge graph GE , GD, Gmi , we want to recommend multiple medications
by predicting multi-label output, while the predicted results are as close to the ground
truth as possible and the DDI rate is as low as possible.

4 The FFBDNet

As illustrated in Fig. 1, FFBDNet includes the following components: a patient feature
encoder, a medication feature encoder, and a bipartite decision module. Next, we will first
introduce these modules and then provide details of training and inference of FFBDNet.

1 0 . . . 1 0 1 . . . 1 1 0 . . . 1 0 1 . . . 1 0 1 . . . 1

...

*
* *

EHR Graph DDI Graph Mole Graph

...

...

. Lbce
Lmulti

loss back

diagnose
Patient History

procedure diagnose procedure medication
Current Visit

Patient Feature Encoder Medication Feature Encoder
Base Medication External Knowledge

#

.

READOUT

Bipartite Decision Module

cTd cTp

eTd eTp

pcur

c td c tp c tm

et
d et

p et
m

qd
qp

qm

T-1 T-1 T-1

phisd phisp phism

hpat

Wemb
m

ME MD Z

Hmed

simDirect Doctor Recombination Doctor

o1

o2w1 w2

ô
greedy mask

zm1

zm2

zm3

zm|C |m

Mole EncodingsDDI EncodingsEHR Encodings
M D

1
M D

2
M D

3

M D
|C |m

M E
1

M E
2

M E
3

M E
|C |m

Fig. 1. The FFBDNet: We first encode current visit and patient history by attention mechanism
to generate the patient health representation hpat in Eq. (1–5). Then, we encode and concatenate
the basic and external knowledge of medications to generate the medication representation Hmed
in Eq. (6–9). Direct doctor model is used to make medication recommendation o1 based on the
patient’s representation directly in Eq. (10), and recombination doctor model recombines medi-
cations based on the similarity between patient and each medication to generate recommendation
result o2 in Eq. (11–12). Finally, we make a joint decision o

∧

based on the results of the bipartite
doctor model in Eq. (13).

4.1 Patient Feature Encoder

From EHR data, patient health can be encoded by their current visit, which includes
diagnosis and procedure information, and patient history, which includes diagnosis,
procedure and medication information. Firstly, through EHR embedding, the sparse
EHR data is mapped to the dense vector space. Then, current visit encoder is used to

424 Z. Wang et al.

encode the patient’s current health status. And by taking the patient’s current visit code
as a query, patient history encoder is used to capture the historical visit information from
EHR based on the attention mechanism. Finally, by fusing the patient visit and history
code, the patient representation is generated to represent the final medical feature of the
patient.

EHR Embedding. As mentioned before, a visit rt consists of [cd
t , cp

t , cm
t] where each of

c∗
t is a multi-hot vector at the t-th visit. The multi-hot vector c∗

t is binary encoded showing
the existence of each medical codes recorded at the t-th visit. Like [4] used a linear
embedding of the input vector, we derive EHR embeddings for cd

t , cp
t , cm

t separately at
the t-th visit as follows.

e∗
t = c∗

t W ∗
emb (1)

where W ∗
emb ∈ R|C∗|×dim is the embedding matrix to learn. Thus the t-th visit rt is

transformed to rt
∧ = [ed

t , ep
t , em

t].
Current Visit Encoding. Then, concatenate the diagnosis and procedure of the patient
at time T to encode the current visit of the patient as follows:

pcur = NN cur(e
d
T #ep

T) (2)

where NN cur(·) : R
2dim → R

2dim is a feed-forward neural network and # is the con-
catenation operation. The patient’s current health status is encoded by the current diag-
nosis and procedure, so as to provide necessary information support for medication
recommendation.

Patient History Encoding. We believe that the patient history can supplement the cur-
rent health status, but not all history will help the current recommendation. Therefore,
we use the attention mechanism to extract the current helpful information from patient
history (including diagnosis, procedure and medication) to reduce the noise caused by
unnecessary historical data. We derive history encodings for ed

t , ep
t , em

t separately as
follows

q∗ = NN ∗
qry(pcur) (3)

p∗
his =

∑T−1

t=1
NN ∗

val

(
e∗

t

)
Softmax(NN ∗

key(e
∗
t)q

∗) (4)

where NN ∗
qry(·) : R

2dim → R
dim is the feed-forward neural network of query transform,

NN ∗
key(·) : R

dim → R
dim is the feed-forward neural network of key transform and

NN ∗
val(·) : R

dim → R
dim is the feed-forward neural network of value transform.

Patient Representation. The final patient representation is generated by concatenating
the current and historical information of the patient. We follow a common and effective
approach to first concatenate two vectors as a double-long vector, and then apply a
feed-forward neural network as follow,

hpat = NN pat(pcur#pd
his#pp

his#pm
his) (5)

FFBDNet: Feature Fusion and Bipartite Decision Networks 425

where NN pat(·) : R
5dim → R

dim is a feed-forward neural network and # is the concatena-
tion operation. For the fusion of external knowledge, the existing work usually introduces
external knowledge by customizing a feature encoder for specific external knowledge,
which leads to poor scalability of new external knowledge. And for our method, it is
convenient to expand new useful information sources, such as the patient’s age, gender
and others that may be helpful to the description of the patient’s health, by using the
attention mechanism and concatenate operation. Finally, the effect of recommendation
will be improved easily by introducing the new and effective external knowledge.

4.2 Medication Feature Encoder

In order to make use of the attributes and dependence of medications to further improve
the recommendation effect, we additionally use EHR graph, DDI graph and molecule
graph to encode medications and generate the feature representations. Firstly, for base
encoding, the medication embedding matrix in the EHR embedding is used to repre-
sent the basic information of medication in recommendation. Then, through external
knowledge encoding, the non Euclidean space external knowledge of the medication is
coded based on the graph convolution network and a readout pooling function. Finally,
by fusing the medication base and external code, the medication information table is
generated to represent the final medical feature of all medications.

Base Encoding. In order to represent the basic information of medications in the rec-
ommendation process, W m

emb is directly used to represent the basic attribute matrix of
medications, which is the same as in Eq. (1), and each row vector in the matrix represents
one medication.

External Knowledge Encoding. As mentioned before, the external knowledge of med-
ication includes EHR graph, DDI graph and molecule graph, which is represented by
AE , AD and Ami . Firstly, each A∗ ∈ R

|V ∗|×|V ∗| is preprocessed respectively as follows:

A
∧∗ = D

∧∗− 1
2
(
I + A∗)D

∧∗− 1
2 (6)

where D
∧∗

is the diagonal matrix of A∗ and I is identity matrix. Then we apply GCN on
each A

∧∗
to learn improved embeddings respectively,

M ∗ = A
∧∗

σ(A
∧∗

W ∗
g1)W

∗
g2 (7)

where σ is a nonlinear activation function and W ∗
g1 ∈ R

|V ∗|×dim, W ∗
g2 ∈ R

dim×dim are the
graph convolution matrix to learn. And the model depth can be deepened by increasing
the number of convolution matrix layers. Then, each node in the external knowledge
graph is encoded into M ∗, where each row vector of M E ∈ R

|Cm|×dim and M D ∈
R

|Cm|×dim represents one medication, and each matrix represents one medication for
M mi ∈ R

|Vmi |×dim. In order to get the molecule representation of medications, referring
to [12], M mi is pooled by a readout function to obtain the representation of the molecule

426 Z. Wang et al.

knowledge of the medication, which calculates the average of all molecule nodes as
follows:

zmi = READOUT({M mi
j |j = 1, . . . , |V mi |}) (8)

where zmi is the molecule representation of the medication mi, M mi
j is the row vector

of M mi and |V mi | is the total number of the constructed molecule of the medication
mi. Then, the zmi of all medications are stacked to obtain the molecule matrix Z =
[zm1, zm2 , . . . , zm|Cm|]T of medications.

Medication Information Table. Finally, we concatenate the different encodings of
medications as the medication information table,

Hmed = NN med (W m
emb#M E#M D#Z) (9)

where each row vector of Hmed ∈ R
|Cm|×dim is the representation of one medication,

NN med (·) : R
4dim → R

dim is a feed-forward neural network to learn and # is the
concatenation operation. For the fusion of external knowledge, similar to the patient
representation, it is easy to realize the fusion by adding new external features during
vector concatenating.

4.3 Bipartite Decision Module

We use two doctor models to recommend medication combinations. Different doctor
models use different encoding features to support the flexible fusion of external knowl-
edge. Firstly, the direct doctor model only considers the patient representation to directly
recommend the medication combination. And the recombination doctor model calculates
the similarity between patient and each medication based on the patient representation
and medication information table, and then recombines the medications based on the
similarity calculation results to realize recommendation. Finally, we combine the rec-
ommendation results of the two doctor models to make a joint decision and complete
the final recommendation for the patient.

Direct Doctor. For this doctor model, we directly use the patient representation for rec-
ommendation, and it can work when the feature of medications is missing. We use double-
layer feed-forward neural network to project the patient representation and generate the
probability of each medication in the recommended combination,

o1 = NN o1(hpat) (10)

where o1 ∈ R
|Cm| is directly retrieved using patient representation and NN o1(·) : R

dim →
R

|Cm| is a feed-forward neural network to learn. When implemented, NN o1(·) is a two-
layer network and its hidden layer is activated by relu.

FFBDNet: Feature Fusion and Bipartite Decision Networks 427

Recombination Doctor. Recombination doctor calculate the similarity between patient
and each medication, recombine medications based on the similarities and patient’s
representation, and generate the patient’s medication combination result. We first use
the patient representation hpat and the medication information table Hmed to calculate
the similarity between the patient and each medication,

sim = cosine(Hmed , hpat) (11)

where sim ∈ R
|Cm| is the similarity of all medications and cosine(·) is the function of

cosine similarity. Then, input the similarity results into a double-layer feed-forward neu-
ral network to calculate the recombination, and input the patient representation together
to adjust and guide the recombination process, and generate the recommendation results
of the recombination doctor,

o2 = NN o2(αsim#βhpat) (12)

where o2 ∈ R
|Cm| is the result of recombination based on similarity and NN o2(·) :

R
|Cm|+dim → R

|Cm| is a feed-forward neural network to learn. α, β ∈ R
1 are trainable

fusion weights, which are used to adjust the effect of similarity and patient representation
on doctor model decision-making.

Joint Decision-Making. Finally, the attention mechanism is used to adjust the decision
weight of the two doctor models to realize joint decision-making,

ô = sigmoid(w1 � o1 + w2 � o2) (13)

where w1, w2 ∈ R
|Cm| are trainable weight vectors, which integrate and adjust the

importance of two doctors’ decisions on different medications.

4.4 Model Training and Inference

In the training phase, the FFBDNet is trained end-to-end. We need to find the optimal
parameters to realize medication combination recommendation. In order to improve the
accuracy and DDI rate, we propose greedy loss to adjust the process of model training.
And in the inference phase, we set a threshold δ, and determine the final medication
combination to be recommended by picking those medications whose model prediction
probability is greater than δ.

Multi-label Prediction Loss. We view the medication combination recommendation as
a multi-label classification task. Therefore, we use two common multi-label classification
loss functions as the objective function of our model, namely the binary cross entropy
loss Lbce and the multi-label margin loss Lmulti. Lbce makes the prediction result of the
model closer to the growth truth, and Lmulti makes the predicted probability of ground

428 Z. Wang et al.

truth labels has at least 1 margin larger than others. Thus, threshold value is easier to be
fixed when predicting.

Lbce =
∑|Cm|

i
yilog

(
o
∧

i
) + (1 − yi)log(1 − o

∧

i) (14)

Lmulti =
∑|Cm|

i

∑

j∈Y

max(0, 1 − (
o
∧

j − o
∧

i
)
)

|Y| (15)

where y is the ground truth of the medication combination and Y is the index set of
ground truth label.

Greedy Loss. We achieve greedy loss by multiplying Lbce and Lmulti by greedy mask,
which is used to shield high conflict medications,

L
∧

bce =
∑|Cm|

i
maskiyilog

(
o
∧

i
) + (1 − maskiyi)log(1 − o

∧

i) (16)

L
∧

multi =
∑|Cm|

i

∑

j∈Y

max(0, maskj
(
1 − (

o
∧

j − o
∧

i
))

)

|Y | (17)

Lgreedy = λ1L
∧

bce + λ2L
∧

multi (18)

where λ1, λ2 > 0 are the mixture weights and maski is the greedy mask of the i-th
medication of the patient. The essence of greedy loss is to explicitly reduce the co-
occurrence frequency of conflict medications, so that the model can reduce the impact
of conflict medications on parameters in the back-propagation process when learning
statistical knowledge. In detail, the greedy mask can be obtained by Algorithm 1, in
which the balance between accuracy and DDI rate can be adjusted by setting different
greedy scale.

Inference. In inference phase, we apply a threshold δ = 0.5 on the output in Eq. (13)
to predict medication combination.

Y
∧

= {i|o∧i > δ, 1 ≤ i ≤ |Cm|} (19)

where o
∧

i is the probability of each medication predicted by the model. Before the final
inference, based on the loss function of Eq. (18), the model will be calibrated through
the back-propagation algorithm to make the predictive scores as close as possible to
the probabilities of medications occurrence in the actual scene. The effect of calibration
will be affected by the data difference between training samples and actual scene, but
it can be alleviated by limiting the number of training iterations or other methods to
prevent over fitting. And then, we choose all medications with o

∧

i greater than δ as the
recommendation result.

FFBDNet: Feature Fusion and Bipartite Decision Networks 429

5 Experiment

We compare FFBDNet with the patient’s actual EHR data, take the medication combina-
tion actually accepted by the patient as the ground truth, and take the output by FFBDNet
as the prediction, and measure the accuracy of recommendations by comparing the dif-
ferences between the ground truth and prediction. We also calculate the DDI rate in the
prediction of FFBDNet by using the real medication confliction. In addition, we eval-
uate FFBDNet by comparing against other baselines on recommendation accuracy and
DDI rate. FFBDNet is implemented in PyTorch [28] and trained with 8GB memory and
Nvidia 2060 GPU.

Dataset. The experiments are carried out on MIMIC-III [29]. We follow the procedure
similar to [12] to process the medical codes in the experiments. The NDC drug code in
MIMIC-III is mapped to third level ATC code as prediction label. The statistics of the
postprocessed data is reported in Table 1.

430 Z. Wang et al.

Baselines. We compare our model with the following baseline and state-of-the-art
algorithms.

• Logistic Regression (LR), multi-label classification model, is a logistic regression
with L2 regularization. Binary relevance technique [30] is used to handle multi-label
output.

Table 1. Statistics of the data.

patients
clinical events
diagnosis
procedure
medication

6,350
15,016
1,958
1,426
145

avg # of visits
avg # of diagnosis
avg # of procedure
avg # of medication

2.36
10.51
3.84
8.80

medication in DDI knowledge base
DDI types in knowledge base

123
40

• RETain [14], sequential decision-making model, can integrate recent visits through
reverse time attention, and provide sequential prediction of medication combination.

• Leap [6], sequential decision-making model, decomposes medication recommenda-
tion into a continuous decision-making process, models the decision-making pro-
cess with a cyclic decoder, and automatically determines the appropriate amount of
medications.

• GAMENet [4], multi-label classification model, integrates the drug-drug interactions
knowledge by a memory module, and models longitudinal patient records as the query.
By using query vector to extract the information in the memory module of medications,
medication combination recommendation is carried out.

• CompNet [8], sequential decision-making model, views the medication combina-
tion recommendation as an order-free Markov Decision Process (MDP) problem
and designs a Deep Q Learning (DQL) mechanism to learn correlative and adverse
interactions between medicines.

• AMANet [10], multi-label classification model, integrate both attention and memory
to realize asynchronous multi-view learning, and focus on the dual-view sequences.
The sequence is saved as the patient’s historical memory, and the medication
combination is recommended by querying the memory.

• SafeDrug [12], multi-label classification model, uses the medications’ molecular
structure and models DDIs to make safe medication recommendation as much as
possible. Finally, the model combines and decodes the medication information for
medication combination recommendation.

FFBDNet: Feature Fusion and Bipartite Decision Networks 431

Metrics. We use five efficacy metrics: DDI rate, Jaccard Similarity Score (Jaccard),
Average F1 (F1), Precision Recall AUC (PRAUC), and # of medications to evaluate the
recommendation efficacy.

To measure the prediction accuracy, we use Jaccard, F1, PRAUC and # of medications
to calculate the gap between the ground truth and the model prediction to describe the
treatment efficacy of recommendation [10, 12, 13]. Jaccard is defined as the size of the
intersection divided by the size of the union of ground truth and predicted medication
set,

Jaccard = |Y ∩ Y
∧

|
|Y ∪ Y

∧

| (20)

where Y is the index set of ground truth label and Y
∧

is the index set of model predicted
label. Precision (P), Recall (R), and F1 are defined as:

P = |Y ∩ Y
∧

|
|Y | , R = |Y ∩ Y

∧

|
|Y
∧

| (21)

F1 = 2PR

P + R
(22)

To measure medication safety, we use DDI Rate and relative DDI Rate (� DDI Rate
%),

DDI Rate =
∑

i,jA
m[i, j]

∑
i,j1

(23)

�DDI Rate% = DDI Rate − DDI Rate (EHR)

DDI Rate (EHR)
(24)

where Am is the adjacency matrix of DDI graph and DDI Rate (EHR) is the DDI rate of
the ground truth in EHR. And We randomly divide the dataset into training, validation,
and test with ratio 4:1:1 and report the performance from the test set.

Knowledge Source Support. Table 2 lists the support of the baseline methods for dif-
ferent knowledge sources. For these methods that use external knowledge, they cus-
tomize the feature encoder for specific external knowledge to capture the effective infor-
mation, which limits the scalability of other external knowledge. For our method, we can
support the integration of all different external knowledge of patients and medications,
so that we can easily improve the amount of model information by introducing external
knowledge, so as to improve the effect of recommendation.

Performance Comparison. Table 3 compares the performance of different approaches
on accuracy and DDI rate. Compared with the baselines, FFBDNet can introduce more

432 Z. Wang et al.

Table 2. Knowledge source support of baselines.

Methods Knowledge source support

LR EHR

RETAIN EHR

Leap EHR

GAMENet EHR, DDI graph, EHR graph

CompNet EHR, DDI graph

AMANet EHR

SafeDrug EHR, molecule graph

information into the final decision-making process through the fusion of multiple exter-
nal knowledge, so as to improve the discrimination ability of the model. Results show that
FFBDNet has the highest score with respect to Jaccard, PR-AUC and F1. For FFBD-
Net(greedy), by using the greedy mask, the co-occurrence frequency of high conflict
medications can be reduced. And results show that it can not only avoid almost all DDI
while reaching the lowest DDI rate, but also still maintain the accuracy at a high level
compared with the SafeDrug that emphasizes security.

As for the baseline, sequential decision-making models such as Leap, Retain and
CompNet yield poor results. Similar to the conclusion of previous work [12], multi-label
prediction model (GAMENet, AMANet, SafeDrug) might be more straightforward and
effective in the medication recommendation task. The accuracy of AMANet can reach a
high level, but it does not consider the problem of DDI. Both GAMENet and SafeDrug
consider DDI in the process of model training. Although SafeDrug can get low DDI
rate, it has low accuracy compared with our greedy method.

Multi Feature Ablation Study. We control the introduction of different knowledge to
observe the effect of increasing information sources on the model results. It can be
observed in Table 4 that some external knowledge bring new information to the model,
so as to improve the final effect. FFBDNet can integrate the medication feature into
the recommendation by using the recombination doctor model in the bipartite decision
module, and it finally achieves the best results when all the information is used. Thus, in
medication combination recommendation task, the effect of introducing new information
sources by fusing heterogeneous and diverse external knowledge is verified.

Greedy Ablation Study. We evaluate greedy loss and show that accuracy and DDI rate
can be controlled by greedy scale. The ground truth DDI rate in MIMIC-III is 0.0808.
Table 5 shows the results of different greedy scales. It can be found that the larger the
greedy scale, the greater the accuracy of the model and the greater the DDI rate. When
the greedy scale is infinite, the accuracy of the model is the highest. The greedy loss
provides a way for doctors to control the tradeoff between accuracy and DDI rate in
recommendation.

FFBDNet: Feature Fusion and Bipartite Decision Networks 433

Table 3. Performance comparison on MIMIC-III (ground truth DDI rate is 0.0808).

Methods DDI rate �DDI Jaccard PRAUC F1 # of
med.

of
parameters

LR 0.0724
±0.0009

−10.40%
±1.11%

0.4543
±0.0021

0.7550
±0.0018

0.6142
±0.0019

14.23
±0.09

–

RETAIN 0.0810
±0.0025

+0.25%
±3.07%

0.4882
±0.0020

0.7529
±0.0014

0.6487
±0.0018

15.83
±0.31

291,034

Leap 0.0693
±0.0010

−14.23%
±1.67%

0.4442
±0.0025

0.6452
±0.0030

0.6071
±0.0024

18.83
±0.17

439,196

GAMENet 0.0798
±0.0011

−1.24%
±1.32%

0.5146
±0.0024

0.7657
±0.0015

0.6694
±0.0021

19.77
±0.34

455,002

CompNet 0.0761
±0.0008

−5.82%
±1.01%

0.4933
±0.0019

0.7573
±0.0020

0.6587
±0.0017

19.33
±0.21

961,412

AMANet 0.0879
±0.0023

+8.79%
±2.82%

0.5195
±0.0021

0.7772
±0.0027

0.6739
±0.0020

20.13
±0.25

1,799,575

SafeDrug 0.0267
±0.0009

−66.95%
±0.16%

0.4030
±0.0025

0.6991
±0.0024

0.5582
±0.0020

25.56
±0.11

406,170

FFBDNet(greedy) 0.0019
±0.0002

−97.65%
±0.28%

0.4361
±0.0014

0.7061
±0.0021

0.5978
±0.0015

14.31
±0.12

227,750

FFBDNet 0.0717
±0.0016

−11.26%
±2.01%

0.5292
±0.0020

0.7777
±0.0010

0.6833
±0.0017

19.69
±0.30

227,750

Table 4. Multi feature ablation study.

Patient Medication DDI rate �DDI Jaccard PRAUC F1 # of med.

Current – 0.0641
±0.0009

−20.67%
±1.11%

0.5039
±0.0018

0.7593
±0.0019

0.6611
±0.0016

18.95
±0.24

Current,
history

– 0.0771
±0.0012

−4.58%
±1.48%

0.5173
±0.0015

0.7661
±0.0018

0.6732
±0.0014

20.36
±0.16

Current,
history

Base 0.0735
±0.0014

−9.03%
±1.72%

0.5204
±0.0013

0.7712
±0.0007

0.6751
±0.0012

19.90
±0.17

Current,
history

Base, EHR 0.0739
±0.0006

−8.54%
±0.73%

0.5239
±0.0019

0.7754
±0.0013

0.6790
±0.0017

19.65
±0.16

Current,
history

Base, EHR,
DDI

0.0726
±0.0016

−10.15%
±1.98%

0.5241
±0.0017

0.7761
±0.0015

0.6816
±0.0016

19.33
±0.21

Current,
history

Base, EHR,
DDI,
molecule

0.0717
±0.0016

−11.26%
±2.01%

0.5292
±0.0020

0.7777
±0.0010

0.6833
±0.0017

19.69
±0.30

434 Z. Wang et al.

Table 5. Greedy ablation study.

Greedy
scale

DDI rate Jaccard PRAUC F1 # of med.

1 0.0019 ± 0.0002 0.4361 ± 0.0014 0.7061 ± 0.0021 0.5978 ± 0.0015 14.31 ± 0.12

2 0.0105 ± 0.0005 0.4748 ± 0.0015 0.7287 ± 0.0014 0.6356 ± 0.0015 16.25 ± 0.18

3 0.0208 ± 0.0004 0.4957 ± 0.0018 0.7421 ± 0.0014 0.6544 ± 0.0016 17.64 ± 0.19

4 0.0277 ± 0.0008 0.5032 ± 0.0021 0.7528 ± 0.0017 0.6608 ± 0.0019 18.09 ± 0.24

5 0.0349 ± 0.0005 0.5072 ± 0.0012 0.7615 ± 0.0013 0.6646 ± 0.0011 18.43 ± 0.20

6 0.0410 ± 0.0006 0.5145 ± 0.0026 0.7694 ± 0.0021 0.6709 ± 0.0023 18.57 ± 0.23

+∞ 0.0717 ± 0.0016 0.5292 ± 0.0020 0.7777 ± 0.0010 0.6833 ± 0.0017 19.69 ± 0.30

6 Conclusion

In this paper, we propose FFBDNet for medication combination recommendation, which
is equipped with a patient feature encoder, a medication feature encoder and a bipartite
decision module. Based on the attention mechanism and the concatenating operation,
the feature encoders can easily fuse external knowledge to increase the model infor-
mation source. With using the encoder results of patient and medications, the bipartite
decision module make a joint decision to realize medication combination recommenda-
tion through two doctor models. And we design a greedy loss, which uses the greedy
mask to filter high conflict medications, to reduce the DDI rate. We evaluated FFBDNet
using benchmark data. The experimental results show that FFBDNet outperforms the
state-of-the-art methods. Besides, using greedy loss to participate in the model training,
FFBDNet can avoid almost all DDI, while still maintaining a good recommendation
accuracy. In the future, we will study how to efficiently extract and fuse the multi-
feature of medications to further improve the accuracy of representation while ensuring
the scalability of external knowledge. Code related to this paper is available at https://
github.com/wangzssdwh/FFDBNet.

References

1. Edward, C., Mohammad, T.B., Andy, S., Walter F.S., Sun, J.M.: Doctor AI: predicting clin-
ical events via recurrent neural networks. In: Machine Learning for Healthcare Conference,
pp. 301–318 (2016)

2. Xiao, C., Choi, E., Sun, J.M.: Opportunities and challenges in developing deep learning
models using electronic health records data: a systematic review. J. Am. Med. Inform. Assoc.
25(10), 1419–1428 (2018)

3. Shang, J.Y., Ma, T.F., Xiao, C., Sun, J.M.: Pre-training of graph augmented transformers for
medication recommendation. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 1907–1913 (2018)

4. Shang, J.Y., Xiao, C., Ma, T.F., Li, H.Y., Sun, J.M.: GameNet: graph augmented memory
networks for recommending medication combination. In: Proceedings of the 33rd AAAI
Conference on Artificial Intelligence, pp. 1126–1133 (2019)

https://github.com/wangzssdwh/FFDBNet

FFBDNet: Feature Fusion and Bipartite Decision Networks 435

5. Li, C., Wang, B.Y., Pavlu, V., Aslam, J.A.: Conditional Bernoulli mixtures for multi-label
classification. In: Proceedings of the 33rd International Conference on Machine Learning,
pp. 2482–2491 (2016)

6. Zhang, Y., Chen, R., Tang, J., Stewart, W.F., Sun, J.: Leap: learning to prescribe effective and
safe treatment combinations for multimorbidity. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1315–1324 (2017)

7. Le, H., Tran, T., Venkatesh, S.: Dual memory neural computer for asynchronous two-view
sequential learning. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1637–1645 (2018)

8. Wang, S., Ren, P., Chen, Z., Ren, Z., Ma, J., Rijke, M.: Order-free medicine combination
prediction with graph convolutional reinforcement learning. In: Proceedings of the 28th
Conference on Information and Knowledge Management, pp. 1623–1632 (2019)

9. Jacek, M.B., Thomas, A.L.: Predicting medications from diagnostic codes with recurrent
neural networks. In: Proceedings of the International Conference on the 5th Learning
Representations, pp. 100–119 (2017)

10. He, Y., Wang, C., Li, N., Zeng, Z.: Attention and memory-augmented networks for dual-view
sequential learning. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 125–134 (2020)

11. Bhoi, S., Lee, M.L., Hsu, W., Fang, H.S., Tan, N.C.: Personalizing medication recommenda-
tion with a graph-based approach. ACM Trans. Inf. Syst. 40(3), 55–79 (2021)

12. Yang, C., Xiao, C., Ma, F., Glass, L., Sun, J.: SafeDrug: dual molecular graph encoders for
recommending effective and safe drug combinations. In: Proceedings of the 30th International
Joint Conference on Artificial Intelligence, pp. 3735–3741 (2021)

13. Wang, Y., Chen, W., Pi, D., Yue, L., Wang, S., Xu, M.: Self-supervised adversarial distribution
regularization for medication recommendation. In: Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, pp. 3134–3140 (2021)

14. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an interpretable
predictive model for healthcare using reverse time attention mechanism. In: Advances in
Neural Information Processing Systems, pp. 3504–3512 (2016)

15. An, Y., Zhang, L., Yang, H.: Prediction of treatment medicines with dual adaptive sequential
networks. IEEE Trans. Knowl. Data Eng. 34, 5496–5509 (2021)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (2017)

17. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In:
Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 1024–
1034 (2017)

18. Petar, V., Guillem, C., Arantxa, C., Adriana, R., Pietro, L., Yoshua, B.: Graph attention
networks. In: International Conference on Learning Representations (2018)

19. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via
importance sampling. In: International Conference on Learning Representations (2018)

20. Xue, H., Yang, L., Rajan, V.: Multiplex bipartite network embedding using dual hypergraph
convolutional networks. In: Proceedings of the 30th Web Conference, pp. 1649–1660 (2021)

21. Ma, T., Xiao, C., Zhou, J., Wang, F.: Drug similarity integration through attentive multi-view
graph autoencoders. CoRR abs/1804.10850 (2018)

22. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics 34(13), 457–466 (2018)

23. Mauri, A., Consonni, V., Pavan, M.: Dragon software: an easy approach to molecular
descriptor calculations. Commun. MCC 56(2), 237–248 (2006)

24. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–
754 (2010)

436 Z. Wang et al.

25. David, K.D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In:
Proceedings of the 29th Conference on Neural Information Processing Systems (2015)

26. Huang, K.X., Fu, T.F., Xiao, C., Glass, L., Sun, J.M.: DeepPurpose: a deep learning based
drug repurposing toolkit. Bioinformatics (2020)

27. Huang, K.X., Xiao, C., Hoang, T., Glass, L., Sun, J.M.: Caster: predicting drug interactions
with chemical substructure representation. In: Proceedings of the 34th AAAI Conference on
Artificial Intelligence, pp. 702–709 (2020)

28. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
29. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1),

1–9 (2016)
30. Luaces, O., Díez, J., Barranquero, J., del Coz, J.J., Bahamonde, A.: Binary relevance efficacy

for multilabel classification. Progress Artif. Intell. 1(4), 303–313 (2012)

Towards Federated COVID-19 Vaccine
Side Effect Prediction

Jiaqi Wang1, Cheng Qian2, Suhan Cui1, Lucas Glass2, and Fenglong Ma1(B)

1 College of Information Sciences and Technology,
The Pennsylvania State University, State College, USA

{jqwang,sxc6192,fenglong}@psu.edu
2 Analytics Center of Excellence, IQVIA, Durham, USA

alextoqc@gmail.com, Lucas.Glass@iqvia.com

Abstract. We propose FedCovid, a new federated learning system based
on electronic health records (EHR), to predict COVID-19 vaccination
side effects. Federated learning allows diverse data owners to work
together to train machine learning models without sharing data, ensur-
ing the privacy of EHR data. However, because EHR data is unique,
directly using existing federated learning models may fail. The EHR
data is diverse, with numerical and categorical characteristics as well as
consecutive visits. Furthermore, each client’s data size is unequal, and
the data labels are skewed due to the small number of patients that
experience serious side effects. We present an adaptive approach to fuse
heterogeneous EHR data and apply data augmentation techniques work-
ing with a margin loss to overcome the data imbalance issue in the client
model training to address both challenges simultaneously in FedCovid.
We recommend that when the server is updated, the data size of each
client be taken into account to lessen the impact of clients with small data
volumes. Finally, in order to train a stable and successful federated learn-
ing model, we suggest a new ordinal training technique. Experiments on a
real-world dataset reveal that the suggested model is effective at predict-
ing COVID-19 vaccination adverse effects. The performance increases by
14.35%, 17.81%, and 129.36% on the F1 score, Cohen’s Kappa, and PR-
AUC, respectively, compared with the best baseline (The source code of
the proposed FedCovid is available at https://github.com/JackqqWang/
FedCovid.git).

Keywords: COVID-19 vaccination · Side effect prediction · Federated
learning · Electronic health records

J. Wang—This work was done when Jiaqi Wang interned at IQVIA.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 27.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 437–452, 2023.
https://doi.org/10.1007/978-3-031-26422-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_27&domain=pdf
https://github.com/JackqqWang/FedCovid.git
https://github.com/JackqqWang/FedCovid.git
https://doi.org/10.1007/978-3-031-26422-1_27
https://doi.org/10.1007/978-3-031-26422-1_27

438 J. Wang et al.

1 Introduction

The COVID-19 pandemic has led to 486,761,597 confirmed cases and 6,142,735
deaths globally as of April 1, 20221. One of the preventive measures to reduce
the chances of infection is getting vaccinated. There are three widely-applied
COVID-19 vaccines, i.e., Moderna, Pfizer-BioNTech, and Johnson & Johnson’s
Janssen. According to a recent report in [15], during September 22, 2021 to
February 6, 2022, approximately 82.6 million U.S. residents aged ≤ 18 years had
received COVID-19 vaccine doses. Although COVID-19 vaccines are safe and
effective, some people may still have a few side effects after receiving the vac-
cines [3,25,31]. The common side effects include, but are not limited to, swelling,
redness, fever, headache, tiredness, muscle pain, chills, and nausea. In fact, these
symptoms are normal and are signs that the body is building immunity. A small
number of people may experience serious health events after the COVID-19
vaccination, such as anaphylaxis [30], thrombosis with thrombocytopenia syn-
drome (TTS) [28], myocarditis and pericarditis [9], and Guillain-Barre syndrome
(GBS) [27]. These rare yet serious side effects may cause death. Therefore, a chal-
lenging but practical question arises: Is it possible to predict whether people will
have COVID-19 vaccine side effects after their vaccination?

To answer this question, the first challenge that we may face is what kinds of
data can be used to learn the vaccine side effect predictor. Existing work shows
that the side effects of the COVID-19 vaccine may be related to gender and
underline diseases [10]. The Centers for Disease Control and Prevention (CDC)
also points out that women over the age of 30–49 years should be aware of the
increased risk of the TTS side effect2. Thus, the data used for predicting vaccine
side effects should contain patient demographics and historical disease infor-
mation. Fortunately, electronic health records (EHR) consist of patient demo-
graphics, historical visit records, and corresponding laboratory results, which
have been commonly used for the medical predictive modeling task in recent
years [5,19–21]. Each visit record includes multiple diagnosis codes, procedure
codes, and medication codes. Each diagnosis code represents a disease, a symp-
tom, or an abnormal finding. Therefore, these characteristics make EHR data
suitable for being used for predicting the COVID-19 vaccine side effects.

Due to the privacy issue and the high sensitivity of EHR data, hospitals, health
insurance companies, or medical research institutes usually do not allow others
to share them with others. The second challenging issue is how to train an accu-
rate predictive model when stakeholders do not share their own data. Towards this
end, we propose to use an advanced technique in the machine learning field, i.e.,
federated learning (FL), which enables different clients to work cooperatively to
learn a global model by only sharing model parameters, instead of sharing data
with others [24,37]. In our case, a local client, e.g., a hospital, a research insti-
tute, or a data center in one state, trains its own model with the local patient
EHR data. After that, selected clients only need to upload their model parame-
ters to the server for the global model aggregation. After aggregation, the server

1 https://covid19.who.int/.
2 https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html.

https://covid19.who.int/
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html

Towards Federated COVID-19 Vaccine Side Effect Prediction 439

will distribute the global model back to active clients. The active clients will then
train their local models starting from the global model they received with their
local data. During this iterative process, local clients collaborate to maintain a
global model by acquiring concealed information from each client while maintain-
ing data privacy. Although federated learning approaches such as FedAvg [24] have
shown their effectiveness on the image datasets such as MNIST3, CIFAR-104, and
CIFAR-1005, they may not work well on the EHR data.

First, EHR data are heterogeneous. As we mentioned before, EHR data
contains not only demographic information but also visit information. The static
demographics include discrete gender and numerical age. The visits are time-
ordered sequential data, and each visit consists of a set of unordered discrete
codes. Thus, how to automatically integrate these types of data is a challenge.
Second, federated learning prevents each client from uploading its EHR data to
the central server, and only allows each client to solely update the prediction
model with its own data. However, the size of EHR data stored for each
client is unequal. In other words, the EHR data are not distributed in a
uniform and independent manner among customers. Each state in the United
States is treated as a data center or client in our work. The amount of EHR data
taken from each state varies due to the uneven distribution of the population
throughout the 50 states. Clients with limited data may end up with an over-
fitted model. Aggregating these ”poor” client models on the server side may
jeopardize the learning of the global predictive model. Third, our goal is to
forecast the side effects of the COVID-19 vaccine. The patients who had side
effects are labeled as positive cases, whereas those who did not are labeled as
negative cases. According to existing research [3,25,31], only a small percentage
of persons have side effects. This means that the number of positive cases should
be smaller than that of negative cases in the real world. As a result, the EHR
data used for training the predictive model are imbalanced.

To address these challenges simultaneously, in this paper, we propose a novel
Federated learning framework (named FedCovid) for predicting COVID-19
vaccine side effects using EHR data extracted from the database of IQVIA6. In
particular, to address the heterogeneous data challenge, we first map each type
of data to a latent representation and then use the proposed adaptive fusion
mechanism to obtain the aggregated patient representation. Moreover, to tackle
the data imbalance issue, we propose to use the data augmentation technique
to increase the number of positive patient representations and incorporate the
metric or contrastive learning loss into the client model training. Finally, we
designed an ordinary training strategy to deal with the Non-IID issue. In contrast
to existing federated learning models such as FedAvg [24] to treat each client
equally, we classify clients into two categories according to the amount of EHR
data they have.We first train the clients with a larger size to obtain an initialized
global model. After the global model becomes stable, we then allow the clients

3 http://yann.lecun.com/exdb/mnist/.
4 https://www.cs.toronto.edu/∼kriz/cifar.html.
5 https://www.cs.toronto.edu/∼kriz/cifar.html.
6 https://www.iqvia.com/.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.iqvia.com/

440 J. Wang et al.

with a smaller amount of data to participate in the model training. In addition,
we take the size of clients into consideration when aggregating the global model.

To sum up, the contributions of this work are listed as follows:

– To the best of our knowledge, we are the first to investigate the feasibility
of using advanced machine learning techniques to predict COVID-19 vaccine
side effects with EHR data.

– We propose a novel federated learning framework FedCovid to protect EHR
data privacy, fuse different types of EHR data, handle the imbalance data
issue, and tackle the Non-IID data distribution challenge simultaneously.

– We conducted extensive experiments to show the effectiveness and efficiency
of the proposed framework compared with state-of-the-art baselines. Fur-
thermore, we provide comprehensive results for hyperparameter exploration,
ablation study, and convergence analysis.

2 Related Work

Since COVID-19 was declared as a worldwide pandemic, artificial intelligence
(AI) has been applied to conduct related research, such as developing novel diag-
nostic approaches [34], drug discovery [35], spread monitor [14], and e-pharmacy
supply chain optimization [23]. There are also several reviews [1,2,26] summa-
rizing the roles of AI during the fight with COVID-19.

There are also several research studies applying federated learning (FL)
techniques on COVID-19 related topics. In [13], the authors applied a GAN-
augmented FL for COVID-image segmentation. In [8], a fL model was proposed
to predict the future oxygen requirements of symptomatic patients with COVID-
19 based on chest X-ray images. In [32], a model was trained using dispersed
raw clinical data to predict death in COVID-19-infected hospitalized patients.

Current COVID-19-related FL research, however, has a number of limita-
tions. (1) The majority of FL frameworks and models are designed for medical
picture data solely, ignoring heterogeneous EHR data. (2) In several previous
research, the present centralized machine learning approaches are simply embed-
ded into the FL architecture. Such a simplistic mix overlooks the distributed
paradigm’s merits and limitations. (3) To our knowledge, no published research
effort has investigated the COVID-19 vaccine side effect prediction utilizing dis-
tributed EHR data in a FL scenario, specifically to address the problems of
imbalanced data and Non-IID concerns in the real-world setting.

3 COVID-19 Vaccine EHR Data

3.1 Dataset Overview

We extracted the EHR data from the health insurance claims database of IQVIA.
Similar to other types of data [36,38], EHR data are heterogeneous, which
include patients’ age, gender, zip code, diagnosis codes within each visit, the
vaccine brand, and a binary label of the side effects. In this extracted dataset,

Towards Federated COVID-19 Vaccine Side Effect Prediction 441

Table 1. Data statistics of the extracted EHR dataset.

Patient count 6,526 Moderna 3,355

Positive patient count 1,097 Pfizer-BioNTech 2,159

Negative l 5,429 Janssen 1,012

Male 1,761 ICD code count 803

Female 4,765 State count 29

1409

576

469

480

422

418

258
338

236

219

154

141

146

135

130

122

120

111

91

78

78

64

63

62
5150

35 35

35

Fig. 1. Patient geographical distribution across states. The states marked in green
color are the ones with the total number of data larger than 200. (Color figure online)

there are 6,526 patients with COVID-19 vaccinated. 1,097 of them have side
effects who are labeled as 1, and 5429 of them have no side effects who are
labeled as 0 on the record. The imbalanced label ratio is around 1:5 (# of
positive labels : # of negative labels). The vaccine brands include Moderna,
Pfizer-BioNTech, and Johnson & Johnson’s Janssen. The number of patients
with the brands of vaccines is 3,355, 2,159, and 1,012, respectively. The basic
statistic of the dataset is shown in Table 1.

The dataset also provides geographic visualization via the zip codes. Based
on the zip code information, patients are from 29 states. However, the data
distribution of states is extremely unequal. There are 1,409 patients from
CA, while there are only 35 patients in MD, OK, and UT in the dataset. We
highlight the 10 states with more than 200 patients in green and visualize the
data with geological information in Fig. 1. There are 19 states where the data is
less than 200 patients, which raises a small data challenge. When we do global
model aggregation for federated learning, how we treat the models trained by the
small clients appropriately will be a new practical challenge for the COVID-19
vaccine side effect prediction task.

3.2 Training and Test Data Construction

As it is not a benchmark dataset with a well-established training and test split,
we will introduce how we create our training and test datasets. To keep as much

442 J. Wang et al.

Table 2. Training and testing data statistics.

Training Testing

Patient 5,006 # Patient 1,520

Positive lnt 879 # Positive patient 218

Negative patient 4,127 # Negative patient 1,302

Fig. 2. Training and test data label ratio for each state.

of the original information as possible, we split the data based on the geological
information and label distribution. To preserve data privacy, we treat each state
as an individual client in our framework. For each state, we randomly sample
80% data for training and 20% data for testing on positive labels and negative
labels accordingly.

After that, we keep the training data of each state locally for each client to
train the local model. We merge the test data from each state into a large dataset
for testing the performance of the global model. In such a way, we preserve the
data privacy for each state without sharing patients’ data for model training. On
the other hand, we construct the training and test data while preserving as much
of the geologically similar label distribution as possible. The basic statistics of
the training and test data are shown in Table 2. The label ratio of training and
test data from different states is visualized in Fig. 2.

4 Task and Notation

In this paper, we focus on a real-world application scenario where each state
holds its patients’ EHR data and cooperates with other states’ data to obtain a
COVID-19 vaccine side effect prediction model. Assume that we have K clients
or state data centers, and the EHR dataset on the k-th client is denoted as
Dk = {Xk

i , yk
i }Nk

i=1, where Xk
i represents the EHR data of the i-th patient in

the k-th client, yk
i is the corresponding binary label, and Nk is the number of

patient EHR data stored in the k-th client.
As we mentioned before, EHR data are heterogeneous, and Xk

i :=
{Zk

i ; ak
i ;V k

i }, where Zk
i is the categorical feature set including gender gk

i and
vaccine brand bk

i , ak
i is the numerical feature age, and V k

i is the time-ordered
visit information. V k

i = {xk
i,1, x

k
1,2, · · · , xk

i,Mi
}, where xk

i,m represents the medical

Towards Federated COVID-19 Vaccine Side Effect Prediction 443

Table 3. Notations table.

Symbol Definition and description

Dk The set of dataset on the k-th client

Xk
i The EHR record of patient i at client k

yk
i ∈ {0, 1} Vaccine side effect label of patient i on the k-th client

gk
i Gender of patient i on the the k-th client

ak
i Age of patient i on the the k-th client

bk
i Vaccine brand information of patient i on the k-th client

xk
i,m Medical code of patient i at visit m on the the k-th client

K The number of clients

B The number of active/selected clients

code set that patient i received at visit m, and Mi denotes the number of visits
of patient i.

There are 29 states in our dataset, which are treated as 29 clients in our FL
framework. The goal of this paper is to jointly train client models [w1, · · · ,wK]
using the data {Dk}K

k=1 stored in all clients, where K = 29. Furthermore, we
consider the challenges of local model training and global model aggregation
raised by the imbalanced labels, Non-IID issue, and small data. We summarize
the key notations used in the following sections in Table 3.

5 Methodology

5.1 Model Overview

Figure 3 shows the overview of the proposed federated learning framework
FedCovid, which mainly contains the local update and the server update. During
the local update, each client k will use the local training data Dk to update the
model parameter wk. In particular, we propose to learn each patient’s embedding
by aggregating multiple types of EHR data via an adaptive fusion mechanism.
Furthermore, to address the imbalance issue, we propose augmenting the embed-
dings for the positive patients. Finally, a hybrid fusion loss is used to train the
local model wk. After the local update, active client parameters [w1, · · · ,wB]
will be uploaded to the server. In the server update, the global model wg is
obtained by aggregating [w1, · · · ,wB] as well as taking the contribution score
βk of each local model wk. Note that we first use the clients with larger size
to learn the warm-up global model wg, and then all the clients will be added
into the model learning. This new ordinal training strategy aims to alleviate the
small data issue. Next, we show the details of each component of the proposed
FedCovid framework.

5.2 Local Update: Patient Representation Learning

Patient EHR data contains categorical, numerical, and sequential information.
For each type of information, we need to map it to a latent vector representation.

444 J. Wang et al.

Fig. 3. Overview of the proposed FedCovid model.

Embedding Numerical and Categorical Features. We first handle
patients’ demographic information, including age, gender, and COVID-19 vac-
cine brand. We treat the age information aik as a numerical feature. For the
gender gk

i and COVID-19 vaccine brand information bk
i , we treat them as the

categorical features. We feed these two kinds of features into multi-layer per-
ceptrons (MLPa and MLPc) to learn the latent representations for patient i at
client k as given by Eq. (1) as follows:

hk
i,a = MLPa(ak

i); hk
i,c = MLPc(gk

i , bk
i). (1)

Embedding Sequential Visit Data. EHR data also contain the time-ordered
sequential visit information V k

i = {xk
i,1, x

k
1,2, · · · , xk

i,Mi
}. Several approaches [5,

19–22] are proposed to embed the visit data built upon long short-term memory
network (LSTM) [16], bidirectional LSTM (Bi-LSTM) [29], convolutional neural
network (CNN) [17], and Transformer [33]. Using these backbone models, we
can learn the visit embedding as follows:

hk
i,v = Mb

(
V k

i

)
, (2)

where Mb denotes the backbone approach used for embedding the visit data.

Adaptive Embedding Fusion. The three latent embeddings are obtained
from different types of data and models. Here we design an embedding fusion
approach to combine the three embeddings in an adaptive approach via a
gated linear unit (GLU) [7]. We first concatenate these embeddings as hk

i =
[hk

i,a,hk
i,c,h

k
i,v] and then map hk

i to a new representation as follows:

hk
i

′
= Wk

i h
k
i , (3)

Towards Federated COVID-19 Vaccine Side Effect Prediction 445

where Wk
i is a learnable weight matrix. We then learn a weight for each element

in hk
i

′ via a Sigmoid function, i.e.,

φk
i = sigmoid(hk

i

′
). (4)

Finally, the element-wise multiplication ◦ is used to generate the patient repre-
sentation as follows:

pk
i = φk

i h
k
i

′
. (5)

5.3 Local Update: Data Augmented Hybrid Local Training

Using Eq. (5), we can fuse different types of EHR data together to learn an aggre-
gated patient representation, which can be directly used for prediction. However,
as mentioned before, there is another challenge for our setting – imbalanced data.
To address this problem, we propose using data augmentation techniques to bal-
ance the data, as well as a margin loss to differentiate between positive and
negative patient representation learning.

EHR Data Augmentation. Data augmentation approaches have been widely-
used for image classification tasks such as rotating, flipping, or mixup tech-
nique [4], and natural language processing tasks, e.g., example interpolation
techniques and model-based techniques [12]. However, EHR data is heteroge-
neous, with categorical features, numerical features, and discrete EHR sequence
data, making it difficult to directly add small noise to the raw data. To address
this issue, we implement the augmentation on the learned embeddings via Eq. (5)
rather than the raw input Xk

i . The assumption is that if the patients are similar
to each other, then the learned patient representations should also be similar.

Since the number of positive patients is much smaller than that of nega-
tive ones, we only need to increase the number of positive cases to make these
two classes balanced. In particular, we add a noise vector Δk

i generated from
a Gaussian distribution with parameters {μ, σ} to the learned positive patient
embeddings via Eq. (5), where μ is the mean value and σ is the standard devia-
tion for the Gaussian distribution, i.e., p̂k

i+ = pk
i+ + Δk

i . Due to the 1:5 ratio of
positive and negative labels in our dataset, for each positive data, we will add
four randomly generated noise vectors, respectively.

Hybrid Local Training Loss. Let P̂k
+ represent the representation matrix of

the augmented positive data, Pk = [Pk
+,Pk

−] denote the real data representation
matrix, where Pk

+ represents the matrix of the real positive data and Pk
− is the

matrix of the real negative data. Using P̂k
+ and Pk, we can directly train our

local model using the cross entropy (CE) loss. To avoid the influence of noise, we
will assign different weights to the loss terms of the real data and the augmented
data as follows:

Lk
c =

1
Nk

CE(f(Pk),yk) +
λc

N+
k

CE(f(P̂k
+),yk

+), (6)

446 J. Wang et al.

where λc is a hyperparameter, yk = [yk
+,yk

−] is the ground truth label vector of
all real data, yk

+ is the positive label vector, yk
− is the negative label vector, and

N+
k is the total number of augmented data.

To further learn the distinguishable patient representations, we also add a
pair-wise margin loss to Lk

c as follows:

Lk
m =

1
Nk + N+

k

Nk+N+
k∑

i=1

max(d(p̃k
i , p̄k

j+) − d(p̃k
i ,pk

j′−) + δ, 0), (7)

where d(·, ·) is the Euclidean distance function, p̃k
i ∈ {Pk, P̂k

+} presents any data
representation (i.e., the anchor sample), p̄k

j+ ∈ {Pk
+, P̂k

+} is any positive real or
augmented representation, pk

j′− ∈ Pk
− is a negative patient representation, and

δ is the predefined margin value.
These two loss terms Lk

c and Lk
m all consider to update the local parameters

based on the data. However, when the amount of data on the k-th local client
is extremely small, only optimizing these two terms may cause the overfitting
problem. To avoid this issue, we add an extra regularization term, which forces
the local parameters wk to be as close as the global model wg, i.e., ‖wk − wg‖2.
In such a way, we can obtain the final hybrid loss as follows:

Lk = Lk
c + λmLk

m +
λw

Nw
‖wk − wg‖2

, (8)

where λm and λw are trade-off hyperparameters, and Nw is the number of model
parameters. Using Eq. (8), we can learn the local parameter set wk and then
upload it to the server side.

5.4 Server Update: Client Size-Aware Aggregation

At each communication round, the server side will receive B client models
[w1, · · · ,wB]. In general, we can follow FedAvg [24] to directly average them
to obtain the global model wg. As we discussed before, the data size of each
local client is unequally. The client with small size may not learn an accurate
model by optimizing Eq. (8), and the average operation may destroy the learning
of wg.

To avoid this problem, we propose to upload the size of each client and
quantify the contribution of each client according to its size. The larger size, the
more reliable, and the greater weight. Let βk denote the contribution weight of
the k-th client, which is defined as follows:

βk =
log(Nk)

[B
i=1 log(Ni)

. (9)

Using [β1, · · · , βB], we can obtain the updated global model as follows:

wg =
1
B

B∑

k=1

βk ∗ wk. (10)

Towards Federated COVID-19 Vaccine Side Effect Prediction 447

wg will be downloaded to each selected or active client for the next round local
model training. This procedure will iteratively run until the model converges or
achieves the maximum number of communication round.

5.5 Ordinal Training Strategy

As shown in Fig. 2, most of clients only contain a small number of data and they
have a higher probability to be selected if we use traditional federated learning
training strategy. This may lead to a bad global model learning. To address this
issue, we propose to divide the clients into two groups according to their size. We
first train the model with the larger size clients. This stage can be considered as
model warmup or initialization. After we get the initialized model wg, we then
allow smaller clients to join the training. In particular, we lower the number of
epochs and learning rates when training their local models compared with those
used for the larger ones. This straightforward training strategy tries to make the
negative effect caused by the smaller clients as low as possible.

6 Experiment

6.1 Experiment Setup

Dataset. In our experiments, we use the dataset that is introduced in Sect. 3.

Baselines. We use the following federated learning approaches as baselines:

– FedAvg [24] is the classical baseline. Active local clients train their own
models and upload the model parameters to the server. The server averages
the parameters of local models and re-distributes the updated global model
back to active clients for the next round local training.

– FedProx [18] adds a reference loss in local training for each client to measure
the distances between the local model and the global model, which constrains
the local personalized optimization process not to drift excessively.

– Per-FedAvg [11] is a personalized federated learning algorithm inspired by
meta learning to find an initial shared model that can be easily adapted to
local datasets within limited steps of updates.

Implementation Details. We implement all models with Pytorch on Ubuntu
20.04 with NVIDIA RTX A6000 GPU. We leverage the training and testing
datasets constructed in Sect. 3.2. The hyperparameters δ, λc, λm, and λw in the
loss function Eq. (8) are set to 1

5 , 1
2 , 1

6 , and 1
3 , respectively.

The total communication round is 400, where we set the warmup round as
200 to train the clients’ models with larger clients (i.e., CA, NY, FL, OH, TX,
KY, MI in Fig. 2). We set the learning rate as 0.001 at the warmup stage and
0.01 after the warmup stage. For the small clients, we set the learning rate as
0.001 after the 200 communication round when they are selected to contribute

448 J. Wang et al.

Table 4. Performance comparison

Setting Algorithm F1 score Cohen’s Kappa PR-AUC

Central training CNN 0.4855 0.4279 0.4270

Transformer 0.4680 0.3842 0.4382

Federated training FedAvg 0.4081 0.3138 0.1376

FedProx 0.4083 0.3129 0.1368

Per-FedAvg 0.3722 0.2669 0.1361

FedCovid 0.4669 0.3697 0.3156

to the model updates. Baselines do not use the ordinal training strategy, they
treat all client equally and use the same learning rate 0.001. In this paper, we
apply Transformer as Mb in Eq. (2) to embed the visit data. In particularly,
we employ a two layer Transformer with hidden dimension of 16 and number of
heads 8, and apply max-pooling to the output sequence to get the EHR latent
embedding. All approaches use Adam as the optimizer, except for Per-FedAvg
that uses the SGD optimizer.

6.2 Performance Evaluation

We conduct experiments on the dataset introduced in Sect. 3.2 to validate the
proposed approach and baselines. Since the dataset is imbalanced, we use F1
score, Cohen’s Kappa, and Area Under the Precision-Recall Curve (PR-AUC)
as the evaluation metrics following [6]. We report the average values of the last
10 rounds of the test results at the server side in Table 4.

To explore the performance upper bound of the federated setting, in this
experiment, we also put all the training data together to train a prediction
model in the central training setting. We use CNN and Transformer as Mb to
embed the visit data. The network structure of Transformer is the same as that
of FedCovid. For the CNN model, we use a 1D CNN with kernel size 3 and
step size 1. The output channel dimension is set to 2, and we apply a flatten
operation to get the visit latent embedding. In Table 4, we can observe that the
performance of central training-based approaches is better than that of federated
learning approaches.

In the federated setting, FedAvg and FedProx have similar performance,
which demonstrates that the reference loss in FedProx may not work for the
clients with small size. Due to the unique challenges of the EHR datasets as we
discussed in Sect. 3, the personalized federated learning approach Per-FedAvg
does not outperform FedAvg and FedProx. We can also observe that the pro-
posed FedCovid achieves the best performance in terms of three metrics. Com-
pared with the best performance of baselines (with underline in Table 4), the
performance of our proposed FedCovid model increases 14.35%, 17.81%, and
129.36% on F1 score, Cohen’s Kappa, and PR-AUC, respectively.

Towards Federated COVID-19 Vaccine Side Effect Prediction 449

Table 5. Ablation study

Approach F1 Cohen’s Kappa PR-AUC

EHR concatenation in Sect. 5.2 0.4365 0.3356 0.2832

CE loss only in Sect. 5.3 0.4150 0.2775 0.2204

Average aggregation in Sect. 5.4 0.4486 0.3093 0.2996

Normal federated training in Sect. 5.5 0.4306 0.3266 0.2817

FedCovid 0.4669 0.3697 0.3156

6.3 Ablation Study

In the proposed FedCovid model, we design several novel mechanisms. To inves-
tigate the contribution of each component, we conduct the following ablation
study and the results are shown in Table 5. To validate the benefit of the pro-
posed adaptive EHR fusion mechanism in Sect. 5.2, we use the simple EHR
concatenation operation to learn patient representation. CE Loss Only aims
to validate the power of data augmentation and the margin loss for handling
the imbalance issue in Sect. 5.3. The approach of Average Aggregation is to
prove the usefulness of the proposed client size-aware aggregation in Sect. 5.4.
The goal of Normal Federated Training is to show the advantage of ordinal
training strategy proposed in Sect. 5.5.

From the results listed in Table 5, we can observe that compared with the
proposed FedCovid, the performance of all comparison approaches drops, espe-
cially for the CE Loss Only. However, they all outperform the best baselines in
Table 4. These results can clearly confirm that each mechanism used in FedCovid
is necessary and essential to improve the prediction performance. The contribu-
tion descending order in boosting performance is (1) data augmented hybrid loss
for training client model, (2) ordinal training strategy, (3) adaptive EHR fusion,
and (4) client size-wise model aggregation.

6.4 Convergence Analysis

Figure 4 show the performance changes with regards to each communication
round. We can observe that the F1 score also increases dramatically at the begin-
ning and then become stable until 200 communication round. In this warmup
stage, we use clients with larger size to train the global model. After the 200th
communication round, the performance sharply increases again. This shows that
even using the small size of client data, FedCovid can still boost the performance
can make the model converge.

6.5 Hyperparameter Sensitivity Analysis

In this subsection, the number of communication rounds for warm-up is very
important. To investigate the affect of this parameter on the performance change,

450 J. Wang et al.

Fig. 4. Model convergence Fig. 5. Hyperparameter analysis

we conduct the following experiment. Let γ controls the warmup round for
the large states. Ideally, with the increase of γ, model performance will first
increases and then decreases, as there is a trade-off between a well-trained
global model and the generalization. To validate this assumption, we alter γ as
{100, 150, 200, 250, 300}, and the results are shown in Fig. 5. We observe that the
performance increases first and then decreases with the increase of the warmup
round. The reason is that the warmup stage lasts too long, which makes the
global model not able to capture enough information from the small states given
a fixed communication round and further affects the generalization of the global
model. This observation is in accord with our assumption.

7 Conclusion

In this study, we propose FedCovid, a new federated learning model for predict-
ing COVID-19 vaccination side effects. As far as we know, this is the first work to
apply a federated learning framework using EHR data to predict COVID-19 side
effects. FedCovid solves the following challenges caused by EHR data, including
EHR data heterogeneity issue, label imbalanced problem, and client size differ-
ence challenge, in a single framework. We conduct experiments on a real world
EHR dataset provided by IQVIA. Experimental results show that the proposed
FedCovid outperforms baselines in terms of three different metrics, including F1
score, Cohen’s Kappa, and PR-AUC. An ablation study demonstrates that all
designed mechanisms are useful to improve the prediction performance. Finally,
the model insight analysis shows the convergence and hyperparameter sensitivity
of the proposed FedCovid model.

References

1. Abiodun, K.M., Awotunde, J.B., Aremu, D.R., Adeniyi, E.A.: Explainable ai for
fighting covid-19 pandemic: Opportunities, challenges, and future prospects. In:
Computational Intelligence for COVID-19 and Future Pandemics, pp. 315–332.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-981-16-3783-4 15

https://doi.org/10.1007/978-981-16-3783-4_15

Towards Federated COVID-19 Vaccine Side Effect Prediction 451

2. Almars, A.M., Gad, I., Atlam, E.-S.: Applications of AI and IoT in COVID-19
vaccine and its impact on social life. In: Hassanien, A.E., Bhatnagar, R., Snášel,
V., Yasin Shams, M. (eds.) Medical Informatics and Bioimaging Using Artificial
Intelligence. SCI, vol. 1005, pp. 115–127. Springer, Cham (2022). https://doi.org/
10.1007/978-3-030-91103-4 7

3. Borriello, A., Master, D., Pellegrini, A., Rose, J.M.: Preferences for a covid-19
vaccine in australia. Vaccine 39(3), 473–479 (2021)

4. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A
review of medical image data augmentation techniques for deep learning applica-
tions. J. Med. Imaging Radiat. Oncol. 65(5), 545–563 (2021)

5. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predict-
ing clinical events via recurrent neural networks. In: MLHC, pp. 301–318 (2016)

6. Cui, L., Biswal, S., Glass, L.M., Lever, G., Sun, J., Xiao, C.: Conan: complementary
pattern augmentation for rare disease detection. In: AAAI, pp. 614–621 (2020)

7. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: Proceedings of ICML, pp. 933–941. PMLR (2017)

8. Dayan, I., et al.: Federated learning for predicting clinical outcomes in patients
with covid-19. Nat. Med. 27(10), 1735–1743 (2021)

9. Diaz, G.A., Parsons, G.T., Gering, S.K., Meier, A.R., Hutchinson, I.V., Robic-
sek, A.: Myocarditis and pericarditis after vaccination for covid-19. Jama 326(12),
1210–1212 (2021)

10. Elnaem, M.H., et al.: Covid-19 vaccination attitudes, perceptions, and side effect
experiences in Malaysia: do age, gender, and vaccine type matter? Vaccines 9(10),
1156 (2021)

11. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-
learning approach. arXiv preprint arXiv:2002.07948 (2020)

12. Feng, S.Y., et al.: A survey of data augmentation approaches for nlp.
arXiv:2105.03075 (2021)

13. Georgiadis, A., Babbar, V., Silavong, F., Moran, S., Otter, R.: St-fl: Style transfer
preprocessing in federated learning for covid-19 segmentation. arXiv (2022)

14. Gupta, A., Gharehgozli, A.: Developing a machine learning framework to determine
the spread of covid-19. Available at SSRN 3635211 (2020)

15. Hause, A.M., et al.: Safety monitoring of covid-19 vaccine booster doses among
adultsâ” United States, september 22, 2021-february 6, 2022. Morb. Mortal. Weekly
Rep. 71(7), 249 (2022)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

18. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450
(2020)

19. Luo, J., Ye, M., Xiao, C., Ma, F.: Hitanet: hierarchical time-aware attention net-
works for risk prediction on electronic health records. In: KDD, pp. 647–656 (2020)

20. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis prediction
in healthcare via attention-based bidirectional recurrent neural networks. In: KDD,
pp. 1903–1911 (2017)

21. Ma, F., Gao, J., Suo, Q., You, Q., Zhou, J., Zhang, A.: Risk prediction on electronic
health records with prior medical knowledge. In: KDD, pp. 1910–1919 (2018)

22. Ma, F., et al.: A general framework for diagnosis prediction via incorporating
medical code descriptions. In: BIBM, pp. 1070–1075. IEEE (2018)

https://doi.org/10.1007/978-3-030-91103-4_7
https://doi.org/10.1007/978-3-030-91103-4_7
http://arxiv.org/abs/2002.07948
http://arxiv.org/abs/2105.03075

452 J. Wang et al.

23. Mariappan, M.B., Devi, K., Venkataraman, Y., Lim, M.K., Theivendren, P.: Using
AI and ml to predict shipment times of therapeutics, diagnostics and vaccines in
e-pharmacy supply chains during covid-19 pandemic. Int. J. Logist. Manag. (2022)

24. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

25. Mohamed, K., et al.: Covid-19 vaccinations: the unknowns, challenges, and hopes.
J. Med. Virol. 94(4), 1336–1349 (2022)

26. Napolitano, F., Xu, X., Gao, X.: Impact of computational approaches in the fight
against covid-19: an AI guided review of 17 000 studies. Brief. Bioinf. 23(1),
bbab456 (2022)

27. Rahimi, K.: Guillain-barre syndrome during covid-19 pandemic: an overview of the
reports. Neurol. Sci. 41(11), 3149–3156 (2020)

28. Schultz, N.H.: Thrombosis and thrombocytopenia after chadox1 ncov-19 vaccina-
tion. New Engl. J. Med. 384(22), 2124–2130 (2021)

29. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

30. Shimabukuro, T.T., Cole, M., Su, J.R.: Reports of anaphylaxis after receipt of mrna
covid-19 vaccines in the usâ”december 14, 2020-january 18, 2021. Jama 325(11),
1101–1102 (2021)

31. Sprent, J., King, C.: Covid-19 vaccine side effects: the positives about feeling bad.
Science Immunol. 6(60), eabj9256 (2021)

32. Vaid, A., et al.: Federated learning of electronic health records to improve mortality
prediction in hospitalized patients with covid-19: Machine learning approach. JMIR
Med. Inf. 9(1), e24207 (2021)

33. Vaswani, A., et al.: Attention is all you need. In: NeurIPS 30 (2017)
34. Wang, Y., Hu, M., Li, Q., Zhang, X.P., Zhai, G., Yao, N.: Abnormal respiratory

patterns classifier may contribute to large-scale screening of people infected with
covid-19 in an accurate and unobtrusive manner. arXiv preprint arXiv:2002.05534
(2020)

35. Zhavoronkov, A., et al.: Potential non-covalent sars-cov-2 3c-like protease inhibitors
designed using generative deep learning approaches and reviewed by human medic-
inal chemist in virtual reality (2020)

36. Zhou, Y., He, J.: A randomized approach for crowdsourcing in the presence of
multiple views. In: ICDM, pp. 685–694. IEEE Computer Society (2017)

37. Zhou, Y., Wu, J., Wang, H., He, J.: Adversarial robustness through bias variance
decomposition: a new perspective for federated learning. arXiv (2020)

38. Zhou, Y., Ying, L., He, J.: Multic2: an optimization framework for learning from
task and worker dual heterogeneity. In: SDM, pp. 579–587. SIAM (2017)

http://arxiv.org/abs/2002.05534

MepoGNN: Metapopulation Epidemic
Forecasting with Graph Neural Networks

Qi Cao1, Renhe Jiang1(B), Chuang Yang1, Zipei Fan1, Xuan Song1,2,
and Ryosuke Shibasaki1

1 The University of Tokyo, Tokyo, Japan
{caoqi,jiangrh,chuang.yang,songxuan,shiba}@csis.u-tokyo.ac.jp,

fanzipei@iis.u-tokyo.ac.jp
2 Southern University of Science and Technology, Shenzhen, China

Abstract. Epidemic prediction is a fundamental task for epidemic con-
trol and prevention. Many mechanistic models and deep learning mod-
els are built for this task. However, most mechanistic models have dif-
ficulty estimating the time/region-varying epidemiological parameters,
while most deep learning models lack the guidance of epidemiologi-
cal domain knowledge and interpretability of prediction results. In this
study, we propose a novel hybrid model called MepoGNN for multi-step
multi-region epidemic forecasting by incorporating Graph Neural Net-
works (GNNs) and graph learning mechanisms into Metapopulation SIR
model. Our model can not only predict the number of confirmed cases
but also explicitly learn the epidemiological parameters and the under-
lying epidemic propagation graph from heterogeneous data in an end-to-
end manner. Experiment results demonstrate our model outperforms the
existing mechanistic models and deep learning models by a large margin.
Furthermore, the analysis on the learned parameters demonstrates the
high reliability and interpretability of our model and helps better under-
standing of epidemic spread. Our model and data have already been
public on GitHub https://github.com/deepkashiwa20/MepoGNN.git.

Keywords: Epidemic forecasting · Hybrid model · Metapopulation
epidemic model · Graph Neural Networks · Deep learning · COVID-19

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has caused around 500 mil-
lion confirmed cases and more than 6 million deaths in the global, and it is still
ongoing. Due to this circumstance, epidemic forecasting has been a key research
topic again as it can guide the policymakers to develop effective interventions
and allocate the limited medical resources. Many mechanistic models and deep
learning models have been built for the epidemic prediction task. In particu-
lar, human mobility is seen as one of the most important factors to understand
and forecast the epidemic propagation among different regions. In this study, we

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 453–468, 2023.
https://doi.org/10.1007/978-3-031-26422-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_28&domain=pdf
https://github.com/deepkashiwa20/MepoGNN.git
https://doi.org/10.1007/978-3-031-26422-1_28

454 Q. Cao et al.

Fig. 1. Illustration of metapopulation epidemic propagation among regions [1].

employ metapopulation SIR model [1,2] as the base model for our task, which
extends the most fundamental compartmental model (i.e., SIR [11]) in epidemiol-
ogy with metapopulation epidemic propagation. As illustrated in Fig. 1, it divides
the total population under the epidemic into several sub-populations (e.g., by
regions). Each sub-population consists of three compartments, S (susceptible
individuals), I (infectious individuals), R (removed individuals, including deaths
and recovery cases), and the human mobility between sub-populations is mod-
eled as a directed graph. Thus, it can well model the epidemic propagation in a
large-scale area. The metapopulation epidemic models have achieved great suc-
cess in modeling and analyzing the propagation of epidemic diseases, such as
SARS, H1N1, and Malaria [3–5].

However, it is always a non-trivial task to build a metapopulation epidemic
model, especially for new emerging epidemics such as the COVID-19 due to
the following reasons. First, the epidemiological parameters in metapopulation
model keep varying from region to region and time to time. As we all know,
the Coronavirus keeps evolving, and the transmissibility and mortality of the
variants (e.g., Alpha, Delta, and Omicron) are significantly different. Besides, the
intervention policies and the human movements also vary over different periods
and regions. Second, due to the mixed factors mentioned above, the epidemic
propagation effects via human mobility in metapopulation model are also difficult
to be obtained or estimated. In the case of prefecture-level prediction in Japan,
we need to collect the large-scale human mobility data of the entire Japan and
obtain the amount of human movements between each pair of prefectures. Then
how to accurately infer the underlying disease propagation network becomes
another intractable task. Third, besides the daily infection data, external features
such as date information (e.g., dayofweek) and daily movement change patterns
should also be involved.

To tackle these challenges, we incorporate deep learning modules into
metapopulation SIR model to form a novel hybrid epidemic model. Specifically,
we first learn the time/region-varying epidemiological parameters from multi-
ple data features through a spatio-temporal module, which consists of Tempo-
ral Convolutional Networks (TCN) and Graph Convolutional Networks (GCN).

MepoGNN: Metapopulation Epidemic Graph Neural Networks 455

Next, we design two types of graph learning module to automatically approx-
imate the underlying epidemic propagation graph based on the countrywide
human mobility data. Furthermore, we let the learned latent graph be shared
by the spatio-temporal module and the metapopulation SIR module, which fur-
ther enhances the model interpretability and reliability. Previous deep learning
methods [6–10] simply treat the epidemic forecasting as time-series prediction
task or spatio-temporal prediction task, which can only output the predicted
number of infections in a pure black-box manner. Recent study [29] involves
the classical epidemic modeling into deep neural networks, however, it does not
explicitly consider the epidemic propagation among regions via metapopulation
modeling like ours, which largely limits the model interpretability for multi-
region epidemic forecasting. To the best of our knowledge, our work is the first
hybrid model that couples metapopulation epidemic model with spatio-temporal
graph neural networks. In summary, our work has the following contributions:

– We propose a novel hybrid model along with two types of graph learning mod-
ule for multi-step multi-region epidemic prediction by mixing metapopulation
epidemic model and spatio-temporal graph convolution networks.

– Our model can explicitly learn the time/region-varying epidemiological
parameters as well as the latent epidemic propagation among regions from
the heterogeneous inputs like infection related data, human mobility data,
and meta information in a completely end-to-end manner.

– We collect and process the big human GPS trajectory data and other COVID-
19 related data that covers the 47 prefectures of Japan from 2020/04/01 to
2021/09/21 for countrywide epidemic forecasting.

– We conduct comprehensive experiments to validate not only the superior
forecasting performance but also the high interpretability of our model. Our
model and data have already been public on GitHub https://github.com/
deepkashiwa20/MepoGNN.git.

2 Related Work

The models for epidemic simulation and forecasting can be divided into two
types: mechanistic approaches and deep learning approaches.

Mechanistic approaches are built based on the domain knowledge of epi-
demiology which employ pre-defined physical rules to model infectious diseases’
transmission dynamics, mainly classical compartmental models [11,12], metapop-
ulation models [2,13–15] and agent-based models [16–18]. The classical compart-
mental models simulate the spread of infectious diseases in a homogeneous popu-
lation which are unable to model epidemic spread between regions. The metapop-
ulation models assume the heterogeneity of sub-populations and use the human
mobility pattern between regions to model the spread of the epidemic [1,2]. The
agent-based models directly use the individual-level movement pattern [16,17]
or trajectories [18] to emulate the contagion process. Our work is related to the
metapopulation model which is most suitable for multi-region epidemic forecast-
ing task. To implement epidemic modeling, it needs to be calibrated first using

https://github.com/deepkashiwa20/MepoGNN.git
https://github.com/deepkashiwa20/MepoGNN.git

456 Q. Cao et al.

historical observations and use the optimized or manually modified parameters
to make prediction. These efforts are hardly applicable for multi-step forecasting
tasks. The parameters calibration process needs high computational complexity,
especially when facing huge parameter state space [13,16]. Moreover, in most
mechanistic models, epidemiological parameters keep fixed during forecasting.
The variation of parameters through time is not considered which leads to the
problem of cumulative error on multi-step prediction.

Deep learning approaches have shown excellent performance in the modeling
and forecasting on time series prediction tasks. As a typical time series, sev-
eral research efforts utilizing deep learning techniques, such as LSTM [6,8], have
been conducted for epidemic forecasting over a single region [6,8,19,20]. Never-
theless, the epidemic propagation is often spatially dependent, i.e., co-evolving
over regions. Thus, treating epidemic forecasting as a multivariate time-series
prediction task, performing collaborative forecasting over multiple geographi-
cal units should be a more reasonable choice. For such tasks, a key challenge
is to model the complex and implicit spatio-temporal dependencies among the
observations, on which much evidence shows that GNN can perform very well
for modeling the inter-series relationships. A series of state-of-the-art solutions
based on GNN have been proposed for multivariate time-series prediction tasks,
such as STGCN [21], DCRNN [22], GraphWaveNet [23], ColaGNN [9], and
CovidGNN [10]. In particular, ColaGNN [9] and CovidGNN [10] were explicitly
designed for the epidemic prediction. However, these works ignore the domain
knowledge of epidemiology and are hard to interpret from the epidemiological
perspective. STAN [19] incorporates epidemiological constraints into deep learn-
ing models, but it can only predict infections of a single region. CausalGNN [29]
embeds single-patched SIRD model into GNN for multi-region epidemic fore-
casting.

Overall, we distinguish our work from existing ones in the following ways:
Compared with the mechanistic models, MepoGNN adopts an end-to-end frame-
work that can predict the dynamic change of epidemiological parameters and
use predicted parameters to produce multi-region and multi-step prediction;
Compared with the deep learning models for the multi-region prediction task,
MepoGNN incorporates the domain knowledge of epidemiology and enhances
the interpretability by combining spatio-temporal deep learning model with
the metapopulation model; Furthermore, MepoGNN can output the prediction
of infections through the metapopulation epidemic model and learn the inter-
pretable epidemiological parameters and the latent graph of epidemic propaga-
tion simultaneously.

3 Problem

In this study, we focus on forecasting the number of daily confirmed cases
for multi-region and multi-step simultaneously. For a single region, the his-
torical daily confirmed cases from timestep t − Tin + 1 to t can be rep-
resented as xt−(Tin−1):t ∈ R

Tin . Then, the historical daily confirmed cases

MepoGNN: Metapopulation Epidemic Graph Neural Networks 457

of N regions can be denoted as Xt−(Tin−1):t = {xt−(Tin−1):t
1 ,xt−(Tin−1):t

2 , ...,

xt−(Tin−1):t
N } ∈ R

N×Tin . Besides the historical observations, we also incor-
porate the external factors to form a multi-channel input as X t−(Tin−1):t =
{Xt−(Tin−1):t

1 ,Xt−(Tin−1):t
2 , ...,Xt−(Tin−1):t

C } ∈ R
N×Tin×C . Details of the input

features will be introduced in Sect. 5.1. Additionally, human mobility between
regions (static flow data U ∈ R

N×N or dynamic flow data Ot−(Tin−1):t ∈
R

N×N×Tin) is used as another type of input. The prediction target is the daily
confirmed cases of N regions in next Tout timesteps Yt+1:t+Tout ∈ R

N×Tout . The
problem can be formulated as follows:

{X t−(Tin−1):t,U} or {X t−(Tin−1):t,Ot−(Tin−1):t} f(·)−−−−−−→ Yt+1:t+Tout (1)

4 Methodology

We present Metapopulation Epidemic Graph Neural Networks (MepoGNN),
demonstrated in Fig. 2, for spatio-temporal epidemic prediction. MepoGNN con-
sists of three major components: metapopulation SIR module, spatio-temporal
module and graph learning module. These three components tightly cooperate
with each other. Graph learning module learns the mobility intensity between

Fig. 2. Proposed metapopulation epidemic graph neural networks (MepoGNN) for
spatio-temporal epidemic prediction.

458 Q. Cao et al.

regions as a graph and output it to spatio-temporal module and metapopulation
SIR module. Spatio-temporal module captures the spatio-temporal dependency
to predict the sequences of parameters for metapopulation SIR module. Then,
metapopulation SIR module takes the learned graph and the predicted param-
eters to produce the multi-step prediction of daily confirmed cases.

4.1 Metapopulation SIR Module

SIR model is one of the most fundamental compartmental models in epidemi-
ology, used for modeling the epidemic spread [11]. However, it can only model
the epidemic spread for a homogeneous population, which ignores the epidemic
propagation between sub-populations. Metapopulation SIR model [2] fills this
gap by assuming the heterogeneity of sub-populations and using human mobility
to model the propagation between sub-populations. Metapopulation SIR model,
consists of three compartments for each sub-population: St

n for number of sus-
ceptible individuals, It

n for number of infectious individuals, Rt
n for the number

of recovered or deceased individuals of sub-population n at time t. Pn represents
the size of sub-population n which is assumed to be a constant number, where
Pn = St

n + It
n + Rt

n. β is the rate of infection, and γ is the rate of recovery
and mortality. Furthermore, it uses hnm to represent the epidemic propagation
from sub-population (also called patch) n to m. The original metapopulation
SIR model [2] is shown as follows:

dSt+1
n

dt
= −β · St

n

N∑

m=1

(
hmn

Pm
+

hnm

Pn
)It

m

dIt+1
n

dt
= β · St

n

N∑

m=1

(
hmn

Pm
+

hnm

Pn
)It

m −γ · It
n

dRt+1
n

dt
= γ · It

n

(2)

In this study, we model population of each region as sub-population in metapop-
ulation SIR model. So, the hnm can be represented by human mobility between
regions. Because of different characteristics of regions, policy changes with time
and so on, there is spatio-temporal heterogeneity of epidemic spread. In our
model, β, γ and hnm are assumed to vary over time and regions. In addition, to
prevent β to be extremely small and make it be in a relatively stable magnitude,
St

n is omitted from the equations. Thus, we extend the original metapopulation
SIR in Eq. 2 as follows:

dSt+1
n

dt
= −βt+1

n

N∑

m=1

(
ht+1

mn

Pm
+

ht+1
nm

Pn
)It

m

dIt+1
n

dt
= βt+1

n

N∑

m=1

(
ht+1

mn

Pm
+

ht+1
nm

Pn
)It

m −γt+1
n · It

n

dRt+1
n

dt
= γt+1

n · It
n

(3)

MepoGNN: Metapopulation Epidemic Graph Neural Networks 459

With predicted βt+1
n , γt+1

n and Ht+1 (the epidemic propagation matrix
formed by {ht+1

nm |n,m ∈ {1, 2, ..., N}}), S, I, R can be updated iteratively:

[St
n, It

n, Rt
n]

Eq.(3)−−−−−−−−−−→
βt+1

n ,γt+1
n ,Ht+1

[St+1
n , It+1

n , Rt+1
n] (4)

The final prediction output of daily confirmed cases can be formed as:

ŷt+1
n = βt+1

n

N∑

m=1

(
ht+1

mn

Pm
+

ht+1
nm

Pn
)It

m

Ŷ =

⎡

⎢⎣
ŷt+1
1 . . . ŷt+Tout

1
...

. . .
...

ŷt+1
n . . . ŷt+Tout

n

⎤

⎥⎦

N×Tout

(5)

4.2 Spatio-Temporal Module for Epidemiological Parameters

Spatio-temporal module takes the node input features X ∈ R
N×Tin×C and the

weighted adjacency matrix A ∈ R
N×N as input and output the predicted param-

eters β ∈ R
N×Tout and γ ∈ R

N×Tout . We use the spatio-temporal layer (ST layer)
combining Gated TCN and GCN (same as in GraphWaveNet [23]) to capture
the spatio-temporal dependency. Gated TCN [24] is used to capture temporal
dependency:

Ql = g(Θl1 Ψ Zl + bl1) � σ(Θl2 Ψ Zl + bl2) (6)

where Zl is input of l-th layer, Θ1 and Θ2 are temporal convolution kernels, b1

and b2 are biases, g(·) is tanh activation function for output, σ(·) is sigmoid
function to form the gate, Ψ is convolution, � is element-wise product. Next,
we model the regions and the interactions between regions as a graph and use
diffusion graph convolution [22,23] to capture the spatial dependency:

Pf = A/rowsum(A), Pb = AT/rowsum(AT) (7)

Z̃l =
K∑

k=0

Pk
fQlWlk1 + Pk

bQlWlk2 (8)

where A ∈ R
N×N is weighted adjacency matrix, Pf is forward transition matrix,

Pb is backward transition matrix, Z̃l is output of l-th layer.
Multiple ST layers can be stacked to capture the spatio-temporal dependency

in different scales. We use a gated dense connection to bridge different ST layers.
It can extract important information from previous ST layers and pass it to next
layer:

Dl =

)
X , if l = 1,
Dl−1 + Zl, otherwise.

(9)

460 Q. Cao et al.

Zl+1 =

)X , if l = 0 ,

Z̃l � σ(Z̃l) + Dl � (1 − σ(Z̃l)), otherwise.
(10)

where Dl stores the information from previous layers. Then, we concatenate the
output from different layers through skip connections to fuse the information
of different scales. Finally, the parameters β ∈ R

N×Tout and γ ∈ R
N×Tout are

produced through two fully connected layers, respectively.

Fig. 3. Two types of graph learning: adaptive and dynamic.

4.3 Graph Learning Module for Epidemic Propagation

There are two different graphs used in metapopulation SIR module and spatio-
temporal module, respectively. Unlike the trivial method which input two fixed
graphs to each module separately, we make two modules share a single learnable
graph. With the shared learnable graph, the spatial dependency used in spatio-
temporal module would be consistent with epidemic propagation in metapop-
ulation SIR module which can improve the interpretability of our model. Fur-
thermore, the parameters of graph learning module can be updated by gradients
from both spatio-temporal module and metapopulation SIR module which make
learned graph more realistic.

As shown in Fig. 3, there are two types of graph learning module to deal
with different input data. The first type is adaptive graph learning module which
takes the static flow data (e.g., commuter survey data) as input. Intuitively, we
initialize an adaptive graph G with static flow matrix U and make it learnable
through training. Then, the adaptive graph can be output to spatio-temporal
module (Eq. 7) as A ∈ R

N×N and to metapopulation SIR module (Eq. 3) as
H ∈ R

N×N×1 (which means we use same hnm for all timesteps). The second
type is dynamic graph learning module which takes the dynamic OD flow tensor
as input. Although the OD flow and epidemic spread status are both dynamic,

MepoGNN: Metapopulation Epidemic Graph Neural Networks 461

but they are not necessarily one-to-one temporally corresponding. Considering
the delayed effect, influence of mobility on epidemic spread can be seen as a
weighted average of the given past values (Tin days). So, we initialize a learnable
time weight matrix L ∈ R

Tout×Tin and normalize it as L̃ through a softmax
function. The normalized time weight matrix can map the historical dynamic
flow Ot−(Tin−1):t ∈ R

N×N×Tin to its influence on future epidemic spread. The
output of Ht+1:t+Tout ∈ R

N×N×Tout and A ∈ R
N×N can be calculated as follows:

L̃ = Softmax:,j(L) (11)

Ht+1:t+Tout = L̃Ot−(Tin−1):t, A =
∑Tout

i=1 Ht+i

Tout
(12)

Why Propose Two Types of Graph Learning? Dynamic graph learn-
ing module can illustrate the dynamic change of epidemic propagation. But
it requires dynamic flow data which is not available in most cases. To improve
the applicability of our model, we propose adaptive graph learning module to
address this problem. With two types of graph learning module, our model can
handle different situations of data availability in the best way possible.

5 Experiment

5.1 Data

We set 47 prefectures of Japan and 2020/04/01 ∼ 2021/09/21 (539 d) as
our study area and time period, respectively. The number of daily confirmed
cases and cumulative cases and deaths are collected from the NHK COVID-19
database1. The number of recovered cases is collected from Japan LIVE Dash-
board2 [25] (original data source is from Ministry of Health, Labour and Welfare,
Japan). The population of each prefecture is collected from 2020 census data.
With above-mentioned data, daily S, I, R of each prefecture can be calculated.
Apart from the number of daily confirmed cases, the input node features also
include daily movement change, the ratio of daily confirmed cases in active cases,
and dayofweek. The movement change data is collected from Facebook Move-
ment Range Maps3. It records the change of people movement range compared
to a baseline period. Because it is not provided at prefecture level, we use pop-
ulation weighted average to get data at prefecture level. The input static flow
data for adaptive graph learning module is the number of commuters between
prefectures, which is collected from 2015 census data. The input dynamic flow
data for dynamic graph learning module is the daily OD flow data among 47
prefectures, which is generated from human GPS trajectory data provided by

1 https://www3.nhk.or.jp/news/special/coronavirus/data/.
2 https://github.com/swsoyee/2019-ncov-japan.
3 https://data.humdata.org/dataset/movement-range-maps.

https://www3.nhk.or.jp/news/special/coronavirus/data/
https://github.com/swsoyee/2019-ncov-japan
https://data.humdata.org/dataset/movement-range-maps

462 Q. Cao et al.

Blogwatcher Inc. To mitigate the spatio-temporal imbalance in our data, we use
stay put ratio (ratio of people staying in a single location all day) in Facebook
Movement Range Maps to get the ratio of active users and use it to normalize
the OD flow. Finally, the input features of 47 prefectures are generated as a (539,
47, 4) tensor, the static flow is a (47, 47) matrix, and the dynamic flow is a (539,
47, 47) tensor.

5.2 Setting

The input time length Tin and output time length Tout are both set to 14 d which
means we use two-week historical observations to do the two-week prediction of
daily confirmed cases. Then, we split the data with ratio 6:1:1 to get train-
ing/validation/test datasets, respectively. The fifth wave of infection in Japan
is included in test dataset to test the model performance on a real outbreak
situation. During training, we use the curriculum learning strategy [26] which
increases one prediction horizon every two epochs starting from one day ahead
prediction. The batch size is set to 32. The loss function is set as MAE (Mean
Absolute Error). Adam is set as the optimizer, where the learning rate is 1e-3
and weight decay is 1e–8. The training algorithm would either be early-stopped
if the validation error did not decrease within 20 epochs or be stopped after
300 epochs. PyTorch is used to implement our model. Then experiments are
performed on a server with four 2080Ti GPUs. Finally, we evaluate the perfor-
mance of model on 3 d, 7 d, 14 d ahead prediction and overall 14 steps prediction.
The four metrics are used to qualify the performance: RMSE (Root Mean Square
Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error)
and RAE (Relative Absolute Error). To mitigate the influence of randomness,
we perform 5 trials for each model and calculate the mean and 95% confidence
interval of results. The used random seeds are 0, 1, 2, 3, 4.

5.3 Evaluation

We implement three classes of baselines to compare and evaluate our model on
epidemic prediction task:

Mechanistic Models: (1) SIR [11]. SIR model is one of most basic com-
partmental models in epidemiology. We use optimized β and γ of each regions
to produce the prediction. (2) SIR(Copy). Because of weekly periodicity, we
copy the β and γ of last week to produce the prediction. (3) MetaSIR [2].
Metapopulation SIR model considers the heterogeneity of sub-populations and
models the interaction between sub-populations. We use the commuter survey
data as H and optimize β and γ for each region to produce the prediction. (4)
MetaSIR(Copy). We copy the β and γ of last week to produce the prediction.

Spatio-Temporal Deep Learning Models: (5) STGCN [21]. STGCN is one
of the earliest models which applies GCN and TCN to do spatio-temporal pre-
diction. (6) DCRNN [22]. DCRNN proposes a variant of GCN, called diffusion

MepoGNN: Metapopulation Epidemic Graph Neural Networks 463

Table 1. Performance comparison with baselines

Model 3 d Ahead 7 d Ahead

RMSE MAE MAPE RAE RMSE MAE MAPE RAE

SIR 429.4 ± 23.2 153.9 ± 5.2 83.8 ± 0.7 0.47 ± 0.02 507.5 ± 29.6 191.4 ± 7.7 111.4 ± 3.8 0.57 ± 0.02

SIR(Copy) 248.1 97.4 57.4 0.29 318.5 127.1 67.2 0.38

MetaSIR 336.0 ± 21.6 126.8 ± 3.5 72.2 ± 0.9 0.38 ± 0.01 429.8 ± 25.5 166.9 ± 3.7 92.9 ± 0.8 0.50 ± 0.01

MetaSIR(Copy) 236.5 92.2 54.1 0.28 307.6 120.0 62.7 0.36

STGCN 375.6 ± 18.8 118.6 ± 10.8 45.3 ± 2.8 0.36 ± 0.03 381.1 ± 17.7 128.0 ± 6.6 52.5 ± 3.0 0.38 ± 0.02

DCRNN 305.0 ± 9.8 89.3 ± 4.4 37.3 ± 0.7 0.27 ± 0.01 323.8 ± 15.9 107.6 ± 5.3 47.3 ± 1.4 0.32 ± 0.02

AGCRN 223.5 ± 28.5 80.0 ± 7.8 56.6 ± 13.2 0.24 ± 0.02 253.1 ± 37.7 97.9 ± 7.6 60.8 ± 10.1 0.29 ± 0.02

GraphWaveNet 223.8 ± 46.6 70.6 ± 11.7 35.4 ± 1.2 0.21 ± 0.04 259.9 ± 52.2 89.2 ± 15.2 42.3 ± 1.5 0.27 ± 0.05

MTGNN 297.6 ± 19.2 102.4 ± 6.7 40.6 ± 0.8 0.31 ± 0.02 363.5 ± 37.9 130.9 ± 13.1 49.1 ± 1.7 0.39 ± 0.04

CovidGNN 261.9 ± 55.5 88.4 ± 16.7 43.3 ± 3.8 0.27 ± 0.05 305.4 ± 70.6 116.5 ± 23.8 60.9 ± 5.3 0.35 ± 0.07

ColaGNN 221.7 ± 40.7 72.7 ± 7.2 38.9 ± 1.5 0.22 ± 0.02 300.6 ± 61.2 109.4 ± 16.4 49.3 ± 1.5 0.33 ± 0.05

MepoGNN(Adp) 141.0 ± 7.2 54.3 ± 2.3 34.9 ± 0.8 0.16 ± 0.01 174.6 ± 10.1 69.7 ± 4.2 41.4±1.6 0.21 ± 0.01

MepoGNN(Dyn) 135.9±17.8 52.7±4.6 34.2±0.7 0.16±0.01 160.6±4.5 67.6±1.2 41.7 ± 0.9 0.20±0.00

Model 14 d Ahead Overall

RMSE MAE MAPE RAE RMSE MAE MAPE RAE

SIR 890.2 ± 83.8 314.5 ± 16.9 228.3 ± 11.8 0.94 ± 0.05 595.0 ± 43.5 210.0 ± 9.2 128.2 ± 4.7 0.63 ± 0.03

SIR(Copy) 835.5 332.6 183.2 1.00 539.1 190.2 102.7 0.57

MetaSIR 766.1 ± 58.5 279.1 ± 8.2 177.4 ± 4.5 0.84 ± 0.02 500.4 ± 33.9 182.1 ± 4.4 104.9 ± 1.3 0.55 ± 0.01

MetaSIR(Copy) 786.4 302.7 161.9 0.91 503.7 175.6 92.7 0.53

STGCN 430.2 ± 15.8 159.4 ± 6.0 74.7 ± 3.7 0.48 ± 0.02 389.5 ± 7.9 132.0 ± 2.9 55.6 ± 2.4 0.40 ± 0.01

DCRNN 377.9 ± 11.1 146.0 ± 5.0 69.5 ± 4.0 0.44 ± 0.01 335.0 ± 11.8 112.5 ± 4.5 49.5 ± 1.3 0.34 ± 0.01

AGCRN 390.4 ± 105.8 149.0 ± 11.4 88.0 ± 12.8 0.45 ± 0.03 322.7 ± 136.7 108.0 ± 9.9 67.9 ± 15.6 0.32 ± 0.03

GraphWaveNet 389.8 ± 20.8 144.4 ± 7.3 60.2 ± 4.2 0.43 ± 0.02 294.7 ± 40.9 100.1 ± 11.1 44.7 ± 1.4 0.30 ± 0.03

MTGNN 443.5 ± 15.4 168.3 ± 8.1 68.0 ± 2.9 0.50 ± 0.02 363.2 ± 20.5 130.0 ± 8.3 50.7 ± 1.6 0.39 ± 0.03

CovidGNN 414.7 ± 59.8 177.4 ± 15.9 111.2 ± 6.6 0.53 ± 0.05 329.6 ± 59.8 124.2 ± 19.2 66.9 ± 4.2 0.37 ± 0.06

ColaGNN 388.3 ± 23.2 153.4 ± 10.2 75.5 ± 10.8 0.46 ± 0.03 310.7 ± 31.4 110.2 ± 7.2 51.9 ± 3.7 0.33 ± 0.02

MepoGNN(Adp) 261.1 ± 16.0 105.1±7.3 60.1±3.2 0.32±0.02 196.2 ± 11.3 75.4 ± 4.7 44.0±1.6 0.23 ± 0.01

MepoGNN(Dyn) 253.2±7.5 107.0 ± 3.0 62.0 ± 2.0 0.32 ± 0.01 186.1±5.0 74.3±2.0 44.4 ± 0.8 0.22±0.01

convolution and combines it with gated recurrent unit (GRU) to build a spatio-
temporal prediction model. (7) GraphWaveNet [23]. GraphWaveNet proposes
an adaptive learnable graph and uses GCN and TCN to capture spatio-temporal
dependency. (8) MTGNN [26]. MTGNN uses a graph learning module to learn
spatial correlation and fuse different spatial hops and different TCN kernels to
enhance the model capacity. (9) AGCRN [27]. AGCRN uses GCN and GRU
along with a graph learning module and a node adaptive parameter learning
module to capture spatio-temporal dependency.

GNN-Based Epidemic Models: (10) CovidGNN [10]. CovidGNN is one
of the earliest GNN-based epidemic models. It embeds temporal features on
node and uses GCN with skip connections to capture spatial dependency. (11)
ColaGNN [9]. ColaGNN uses the location-aware attention to extract spatial
dependency and uses GCN to integrate the spatio-temporal information.

Performance Evaluation: In Table 1, we compare the performance on three
different horizons and overall performance for multi-step prediction among the
above-mentioned three classes of baseline models and proposed MepoGNN with
two types of graph learning module. Generally, the spatio-temporal deep learning
models and GNN-based epidemic models outperform the mechanistic models,

464 Q. Cao et al.

Table 2. Ablation study

Graph Model Mean RMSE Mean MAE Mean MAPE Mean RAE

Adaptive w/o glm 209.51 ± 22.70 81.85 ± 6.69 47.51 ± 2.62 0.25 ± 0.02

w/o propagation 203.23 ± 24.70 82.05 ± 8.05 45.84 ± 1.68 0.25 ± 0.02

w/o SIR 318.05 ± 16.30 108.53 ± 5.26 46.07 ± 0.53 0.33 ± 0.02

MepoGNN 196.16±11.33 75.45±4.65 44.02±1.55 0.23±0.01

Dynamic w/o glm 194.50 ± 17.65 76.84 ± 6.04 43.63±1.59 0.23 ± 0.02

w/o propagation 200.55 ± 17.00 80.73 ± 5.54 45.16 ± 1.24 0.24 ± 0.01

w/o SIR 290.78 ± 33.92 102.00 ± 9.93 45.79 ± 1.61 0.31 ± 0.03

MepoGNN 186.07±4.99 74.30±1.99 44.43 ± 0.77 0.22 ± 0.01

especially for long horizons. Among all baseline models, GraphWaveNet gets
the best performance. However, our proposed two MepoGNN models get the
very significant improvement over all baseline models. For two types of graph
learning module, dynamic one gets slightly better performance than adaptive
one. Figure 4 compares the 7 d ahead prediction results of Tokyo and Hyogo of
the top two baseline models and MepoGNN model with dynamic graph learning
module. From the prediction results, GraphWaveNet and ColaGNN can not
produce accurate predictions for high daily confirmed cases during the outbreak.
This phenomenon could be explained by different data distributions of daily
confirmed cases in training dataset and test dataset. The test dataset covers
the period of fifth epidemic wave in Japan which is much more severe than
previous ones. Deep learning models have difficulty to predict these high daily
confirmed cases that never happened before the fifth wave. However, with the
help of metapopulation SIR module, our proposed MepoGNN model can handle
this problem and make significantly better prediction for unprecedented surge
of cases. This capability is very crucial for a trustworthy epidemic forecasting
model.

Ablation Study: To demonstrate the effect of different components of our
model, we conduct an ablation study for MepoGNN models with two differ-
ent graph learning modules, respectively. The variants are as follows: (1) w/o
glm: Remove the graph learning module of MepoGNN model; (2) w/o prop-
agation: Remove the metapopulation propagation from metapopulaiton SIR
module (which means metapopulation SIR model is reduced to SIR model); (3)
w/o SIR: Remove the metapopulation SIR module completely. Table 2 demon-
strates that all three components can bring significant boost of performance
for our model. Particularly, it is easy to find that the biggest performance drop
happens when removing the metapopulation SIR module. Because the metapop-
ulation SIR module enables the capability of MepoGNN model to handle the
unprecedented surge of cases.

MepoGNN: Metapopulation Epidemic Graph Neural Networks 465

Fig. 4. Predicted daily confirmed cases of Tokyo and Hyogo with horizon = 7.

Fig. 5. 7-day moving average of predicted β of Tokyo with horizon = 7.

Fig. 6. Learned time weight matrix in dynamic graph learning module.

466 Q. Cao et al.

Fig. 7. Learned adaptive mobility graph of the 47 prefectures of Japan with log trans-
formation (left) and its difference with static commuter graph (right).

5.4 Case Study

The final output of MepoGNN model is fully produced by metapopulation SIR
module. It brings significant interpretability for our model. We conduct an anal-
ysis for the predicted parameters of metapopulation SIR module to demonstrate
the interpretability. As shown in Fig. 5, we plot weekly average of predicted β of
Tokyo at 7 d ahead horizon in validation and test dataset and label major events
and policy changes on timeline. β starts to increase when state of emergency
ends and starts to decrease when state of emergency starts. β rapidly increases
during Tokyo Olympics, and decreases after it. It demonstrates the predicted
β is consistent with reality. Figure 6 shows the learned time weight matrix of
dynamic graph learning module. The most significant time lag of mobility effect
on epidemic spread is 22 d. This result is consistent with a public health research
[28] which states that the effective reproduction number significantly increased
3 weeks after the nightlife places mobility increased in Tokyo. Although the used
indicator is different from our research, the mechanisms behind time lag could
be similar. Figure 7 shows the learned graph of adaptive graph learning module
and the difference between it and commuter graph. The learned adaptive mobil-
ity graph keeps the major structure of commuter graph. And the minor change
from initialization can reflect the difference between commuter graph and spatial
epidemic propagation.

6 Conclusion

Since the outbreak of COVID-19, epidemic forecasting has become a key research
topic again. In this study, we propose a novel hybrid model for epidemic forecast-
ing that incorporates spatio-temporal graph neural networks and graph learning
mechanisms into metapopulation SIR model. Our model can not only predict
the number of confirmed cases but also explicitly learn the time/region-varying
epidemiological parameters and the underlying epidemic propagation graph from
heterogeneous data in an end-to-end manner. Then, we evaluate our model by

MepoGNN: Metapopulation Epidemic Graph Neural Networks 467

using real COVID-19 infection data and big human mobility data of 47 prefec-
tures in Japan. The evaluation results demonstrate the superior performance as
well as the high reliability and interpretability of our model.

Acknowledgment. This work was partially supported by JST SICORP Grant Num-
ber JPMJSC2104.

References

1. Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview.
Chin. Sci. Bull. 59(28), 3511–3522 (2014)

2. Wang, J., Wang, X., Wu, J.: Inferring metapopulation propagation network for
intra-city epidemic control and prevention. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
830–838 (2018)

3. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven
contagion phenomena. Science 342(6164), 1337–1342 (2013)

4. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a
globalized world. Proc. Natl. Acad. Sci. 101(42), 15124–15129 (2004)

5. Wesolowski, A., Eagle, N., Tatem, A.J., Smith, D.L., Noor, A.M., Snow, R.W.,
et al.: Quantifying the impact of human mobility on malaria. Science 338(6104),
267–270 (2012)

6. Venna, S.R., Tavanaei, A., Gottumukkala, R.N., Raghavan, V.V., Maida, A.S.,
et al.: A novel data-driven model for real-time influenza forecasting. IEEE Access
7, 7691–7701 (2018)

7. Wu, Y., Yang, Y., Nishiura, H., Saitoh, M.: Deep learning for epidemiological
predictions. In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, pp. 1085–1088 (2018)

8. Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of covid-19 positive
cases using deep learning models: a descriptive case study of India. Chaos, Solitons
Fractals 139, 110017 (2020)

9. Deng, S., Wang, S., Rangwala, H., Wang, L., Ning, Y.: Cola-gnn: cross-location
attention based graph neural networks for long-term ili prediction. In: Proceedings
of the 29th ACM International Conference on Information & Knowledge Manage-
ment, pp. 245–254 (2020)

10. Kapoor, A., Ben, X., Liu, L., Perozzi, B., Barnes, M., Blais, M., et al.: Examining
covid-19 forecasting using spatio-temporal graph neural networks. arXiv preprint
arXiv:2007.03113 (2020)

11. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of
epidemics. In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721
(1927)

12. Dehning, J., Zierenberg, J., Spitzner, F.P., Wibral, M., Neto, J.P., Wilczek, M.,
et al.: Inferring change points in the spread of covid-19 reveals the effectiveness of
interventions. Science 369(6500), eabb9789 (2020)

13. Chang, S., Pierson, E., Koh, P.W., Gerardin, J., Redbird, B., Grusky, D., et al.:
Mobility network models of covid-19 explain inequities and inform reopening.
Nature 589(7840), 82–87 (2021)

14. Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S.,
et al.: The effect of travel restrictions on the spread of the 2019 novel coronavirus
(covid-19) outbreak. Science 368(6489), 395–400 (2020)

http://arxiv.org/abs/2007.03113

468 Q. Cao et al.

15. Jiang, R., et al.: Countrywide origin-destination matrix prediction and its appli-
cation for covid-19. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds.)
ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 319–334. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86514-6 20

16. Aleta, A., Martin-Corral, D., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chi-
nazzi, M., et al.: Modelling the impact of testing, contact tracing and household
quarantine on second waves of covid-19. Nat. Hum. Behav. 4(9), 964–971 (2020)

17. Chang, S.L., Harding, N., Zachreson, C., Cliff, O.M., Prokopenko, M.: Modelling
transmission and control of the covid-19 pandemic in Australia. Nat. Commun.
11(1), 1–13 (2020)

18. Yang, C., Zhang, Z., Fan, Z., Jiang, R., Chen, Q., Song, X., et al.: Epimob: interac-
tive visual analytics of citywide human mobility restrictions for epidemic control.
IEEE Trans. Vis. Comput. Graph. 1 (2022)

19. Gao, J., Sharma, R., Qian, C., Glass, L.M., Spaeder, J., Romberg, J., et al.: Stan:
spatio-temporal attention network for pandemic prediction using real-world evi-
dence. J. Am. Med. Inf. Assoc. 28(4), 733–743 (2021)

20. Cui, Y., Zhu, C., Ye, G., Wang, Z., Zheng, K.: Into the unobservables: a multi-
range encoder-decoder framework for covid-19 prediction. In: Proceedings of the
30th ACM International Conference on Information & Knowledge Management,
pp. 292–301 (2021)

21. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pp. 3634–3640 (2018)

22. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. In: International Conference on Learning Rep-
resentations (2018)

23. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. In: Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence, pp. 1907–1913 (2019)

24. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: International conference on machine learning, pp. 933–
941. PMLR (2017)

25. Su, W., Fu, W., Kato, K., Wong, Z.S.Y.: “Japan live dashboard” for covid-19:
a scalable solution to monitor real-time and regional-level epidemic case data.
In: Context Sensitive Health Informatics: The Role of Informatics in Global Pan-
demics, pp. 21–25. IOS Press (2021)

26. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
multivariate time series forecasting with graph neural networks. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 753–763 (2020)

27. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recur-
rent network for traffic forecasting. Adv. Neural Inf. Process. Syst. 33, 17804–17815
(2020)

28. Nakanishi, M., Shibasaki, R., Yamasaki, S., Miyazawa, S., Usami, S., Nishiura, H.,
et al.: On-site dining in Tokyo during the covid-19 pandemic: time series analysis
using mobile phone location data. JMIR mHealth and uHealth 9(5), e27342 (2021)

29. Wang, L., Adiga, A., Chen, J., Sadilek, A., Venkatramanan, S., Marathe, M.:
Causal-gnn: causal-based graph neural networks for spatio-temporal epidemic fore-
casting. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

https://doi.org/10.1007/978-3-030-86514-6_20

EpiGNN: Exploring Spatial Transmission
with Graph Neural Network for Regional

Epidemic Forecasting

Feng Xie, Zhong Zhang, Liang Li, Bin Zhou(B), and Yusong Tan

College of Computer, National University of Defense Technology, Changsha, China
{xiefeng,zhangzhong,liliang98,binzhou,ystan}@nudt.edu.cn

Abstract. Epidemic forecasting is the key to effective control of epi-
demic transmission and helps the world mitigate the crisis that threat-
ens public health. To better understand the transmission and evolution of
epidemics, we propose EpiGNN, a graph neural network-based model for
epidemic forecasting. Specifically, we design a transmission risk encod-
ing module to characterize local and global spatial effects of regions in
epidemic processes and incorporate them into the model. Meanwhile, we
develop a Region-Aware Graph Learner (RAGL) that takes transmission
risk, geographical dependencies, and temporal information into account
to better explore spatial-temporal dependencies and makes regions aware
of related regions’ epidemic situations. The RAGL can also combine with
external resources, such as human mobility, to further improve prediction
performance. Comprehensive experiments on five real-world epidemic-
related datasets (including influenza and COVID-19) demonstrate the
effectiveness of our proposed method and show that EpiGNN outper-
forms state-of-the-art baselines by 9.48% in RMSE.

Keywords: Epidemic forecasting · Graph neural network · Spatial
transmission modeling · Public health informatics

1 Introduction

Epidemics spread through human-to-human interaction and circulate worldwide,
seriously endangering public health. The World Health Organization (WHO)
estimates that seasonal influenza annually causes approximately 3–5 million
severe cases and 290,000-650,000 deaths.1 Recently, the coronavirus disease 2019
(COVID-19) has spread over more than 200 countries and territories,2 causing
heavy human losses and economic burdens. Accurate prediction of epidemics is
the key to effective control of epidemic transmission and plays an essential role in
driving administrative decision-making, timely allocating healthcare resources,
and helping with drug research.

1 https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal).
2 https://covid19.who.int/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 469–485, 2023.
https://doi.org/10.1007/978-3-031-26422-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_29&domain=pdf
https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)
https://covid19.who.int/
https://doi.org/10.1007/978-3-031-26422-1_29

470 F. Xie et al.

A number of studies have investigated epidemic forecasting for decades, aim-
ing to help the world mitigate the crisis that threatens public health. In statistics
community, autoregressive (AR) models are widely used in epidemic forecasting
[3,15]. In compartment models, the susceptible-infected-recovered (SIR) is the
most basic one, many cumulative works in this category are based on its exten-
sions [2,16]. However, the above methods are limited in accuracy and general-
ization due to their oversimplified or fixed assumptions. Recently, deep learning
has achieved tremendous success in many challenging tasks, and various deep
learning-based epidemic prediction models [1,7,17] have been proposed, espe-
cially models based on emerging graph neural networks (GNNs) [4,11,14]. The
core insight behind GNNs is to capture correlations between nodes and model
the signal propagation of neighbor nodes. In regional epidemic prediction task,
GNN-based approaches model the spread of epidemics by regarding regions as
nodes and hidden correlations between regions as edges in a graph structure.

Although both spatial dependencies and temporal information are well
exploited, existing methods still face two main challenges. First, the key to
GNN-based models is to capture high-quality connections between regions. Using
explicit graph structures, such as geographic topology (Fig. 1(a)), does not neces-
sarily reflect the true dependencies or is hard to capture the hidden relationships
[19]. Some effective works [11,22] capture potential relationships between regions
using specific data (e.g., human mobility) that require struggling with data avail-
ability, data accuracy, and data privacy. Due to the excellent feature extraction
capability of the attention mechanism [13], several studies [4,7] are mainly ded-
icated to combining attention mechanism and the latent representation of each
region to capture correlations between regions based on similarity. However,
owing to the global receptive field of attention mechanism, during aggregating
features from other regions, it is prone to causing oversmoothing [9], or bringing
noise especially when the data is noisy and sparse in epidemic surveillance [14],
which will damage the forecasting performance. Therefore, capturing underlying
transmission dependencies between regions reasonably and accurately is cru-
cial to facilitate further improving the prediction performance of GNN-based
methods. At the same time, the method we expect should flexibly support both
scenarios when rich external information can be collected or not.

hop = 1

hop = 2 local area

social

connections
flights

(a) Geographic topology. (b) Local transmission effects. (c) Global transmission effects.

Fig. 1. The illustration of geographic topology, local and global spatial transmission
effects, where nodes represent regions and edges represent the relationships.

EpiGNN: Exploring Spatial Transmission with GNN 471

Second, some studies [5,10] have paid much attention to mining the transmis-
sion factors of epidemics and assessing the spatial transmission risks of regions,
and they suggest transmission risks are meaningful information that provides
more practical insights for understanding the spread of epidemics. Spatial trans-
mission risk implies a potential ability that the epidemic in one region impacts
other regions from a spatial perspective, which is not only important property of
regions but also reveals the spatial effects between regions. As shown in Fig. 1,
in typical epidemic processes, virus tend to firstly spread in a local range due to
intensive mobility of internal elements (e.g., human mobility) between geograph-
ically adjacent regions [22] (Fig. 1(b)). Moreover, the epidemic in one region has
not only local effects but also spillover effects across regions through complicated
social connections [5] (Fig. 1(c)). Thus, modeling spatial effects of regions are
beneficial for understanding the spread and evolution of epidemics, which moti-
vates us to investigate how to leverage regional transmission risk to enhance the
accuracy and interpretability of epidemic prediction.

To tackle the aforementioned challenges and better understand the spread
of epidemics, we propose a novel neural network model, termed EpiGNN, which
handles temporal and spatial information through Convolution Neural Network
and Graph Convolution Network. In this model, we propose a transmission risk
encoding module to characterize spatial effects of regions. Meanwhile, we develop
a Region-Aware Graph Learner which takes transmission risk, geographical infor-
mation, and temporal dependencies into consideration to capture correlations
between regions. Our contributions are summarized as follows:

– We design a novel graph neural network-based model for epidemic prediction
in which a transmission risk encoding module is proposed that shows how we
incorporate local and global spatial effects of regions into the model.

– We introduce a Region-Aware Graph Learner which takes transmission risk,
geographical information, and temporal dependencies into account to better
explore underlying spatio-temporal correlations between regions.

– We evaluate our model on five epidemic-related datasets. Experimental results
show the proposed method achieves state-of-the-art performance and demon-
strate the effectiveness of our model. The source code and datasets are avail-
able at https://github.com/Xiefeng69/EpiGNN.

The remainder of this paper is organized as follows. We review related works
in Sect. 2. Then we explain the details of our contributions in Sect. 3 and present
experiments and results in Sect. 4. At last, we conclude in Sect. 5.

2 Related Work

Epidemic Forecasting Methods. As mentioned above, there has been a large
body of work focusing on epidemic forecasting. Essentially, the aim of epidemic
forecasting is to predict the number of infection cases for a region at a timestamp
based on historical data. In statistics community, autoregressive (AR) models are
widely used in epidemic forecasting [3,15]. In compartment models, susceptible-
infected-recovered (SIR) is the most basic one that divides a population into three

https://github.com/Xiefeng69/EpiGNN

472 F. Xie et al.

groups: susceptible, infected, and recovered, and simulates the variations over
time between groups. Many cumulative works in this category are based on its
extensions [2,16]. Although these methods have a solid mathematical foundation,
their accuracy and generalization are limited due to their oversimplified or fixed
assumptions, pre-supposed functional form, and careful feature engineering. In
recent years, due to its powerful data learning capability, deep learning has been
widely adopted in various fields, including epidemic prediction tasks. Wu et al. [17]
proposed CNNRNN-Res that firstly applied deep learning for epidemic forecast-
ing. Adhikari et al. [1] adopted deep clustering to help determine the historical
season closest to the predicted time point to aid prediction. Jin et al. [6] intro-
duced an inter-series attention-based model to capture similar progression pat-
terns between time series to assist in COVID-19 prediction. Jung et al. [7] designed
a self-attention-based approach that cooperates with Long Short-Term Memory
(LSTM) for regional influenza prediction.

Graph Neural Network-Based Models. Graph neural networks (GNNs)
have emerged in recent years, such as GCN [8], ST-GCN [20], and demonstrated
promising results for extracting the correlation of irregular, non-Euclidean graph
data, which make them become powerful tools for understanding the spread
and evolution of epidemics. GNN-based epidemic prediction approaches create
a graph where nodes correspond to regions of a country, and edge weights corre-
spond to correlations between regions. Deng et al. [4] proposed Cola-GNN that
applied an attention mechanism to learn the dependencies between regions based
on the latent state of each region learned through Recurrent Neural Networks
(RNNs). Panagopoulos et al. [11] took advantage of mobility data across differ-
ent regions to explore the underlying correlations between regions and adopted
message passing neural network (MPNN) combined with LSTM to capture the
spatial and temporal evolution of COVID-19. Zhang et al. [22] developed a
multi-modal information fusion-powered method that took social connections
and demographic information into account to improve COVID-19 forecasting.
Wang et al. [14] designed CausalGNN which employed a causal module to pro-
vide epidemiological context for guiding the learning of spatial and temporal
disease dynamics. Inspired by these works, we aim to explore spatial transmis-
sion in typical epidemic processes with GNNs for regional epidemic forecasting.

3 The Proposed Method

3.1 Problem Formulation

We formulate the epidemic prediction problem as a graph-based propagation
model. We have a total of N regions (e.g., cities or states). We denote the his-
torical cases data X = [x1, ...,xt] as training data, where xz ∈ R

N represents
the observed cases value of N regions at time z. Our goal is to predict the future
cases value, i.e. xt+h, where h is a fixed horizon with respect to different tasks (e.g.,
short- or long-term prediction). For every task, we use [xt−T+1...,xt] ∈ R

N×T for
a look-back window T to predict xt+h. For a region i, it is associated with a time

EpiGNN: Exploring Spatial Transmission with GNN 473

LTR Encoding

Region-Aware
Graph Learner

Linear

Linear
S Linear

CNN

Multi-Scale
Convolutions

region 1

region N

. . .

Region Correlation Graph

GTR Encoding

GCN

Prediction

Extra Resources

CNN
CNN

dot product & normalization

summation by rowsS
+

residual link

autoregressive

Geographical Matrix

Fig. 2. The overview of our proposed method: EpiGNN.

series xi: = [xi,t−T+1, ..., xi,t]. The proposed method is drawn in Fig. 2. In follow-
ing sections, we introduce the building blocks for EpiGNN in detail.

3.2 Multi-scale Convolutions

Convolutional Neural Networks (CNNs) have demonstrated strong feature rep-
resentation ability and efficient parallel computation in grid data and sequence
data that apply learnable filters to capture information behind data. Some works
[4,18] suggest that using a set of multi-scale convolutions can capture com-
plex temporal patterns simultaneously. Therefore, in this work, we also adopt
multi-scale convolutions with different filter sizes and dilated factors as a feature
extractor. We denote convolution filter as f1×s,d, where s is filter size, d is dilated
factor, both s and d are empirically selected. The convolution operation of series
xi: with f1×s,d at step j is represented as:

xi: λ f1×s,d(j) =
s−1∑

i=0

f1×k(i)x(j − d × i), (1)

where λ is convolution operator. We use m parallel convolutional layers, each
scale with k filters, to generate different feature vectors, and concatenate them
after an adaptive pooling layer. We denote D = (m × k × p) as the output
dimension of multi-scale convolutions, where p is the output dimension of adap-
tive pooling layer. At last, we obtain the final temporal feature representation
htemp

i ∈ R
D for region i.

3.3 Transmission Risk Encoding Module

The epidemic in one region has not only local effects but also spillover effects
across regions through complicated social connections [5]. Therefore, We assess
local and global transmission risks for regions respectively and encode them as
important properties of regions. Essentially, transmission risk encodings indicate
spatial structure information which reflects potential spread influence of regions.

474 F. Xie et al.

Local Transmission Risk (LTR) Encoding. The proximity between regions
will lead to a rapid increase in the mobility of internal elements between regions
(e.g., human mobility), which will exacerbate local transmission risk. In the
geographical network topology, the degree is a valuable signal for understand-
ing network structure and describing the centrality of nodes. The more central
regions will potentially interact with their surrounding regions more frequently,
which leads to significant local spatial effects and is more likely to cause the virus
to spread. Hence, we use the degree of each region in geographical topology to
measure its local transmission risk. We generate local transmission risk encoding
hl

i ∈ R
D by following equation:

hl
i = Wl · di + bl, (2)

where di =
∑

j ageo
i,j means the degree of region i, and Ageo is the geographical

adjacency matrix that indicates the spatial connectivity of regions: ageo
i,j = 1

means region i and region j are neighbors (by default, ageo
i,i = 1). Wl and bl are

the parameters to transform degree vector d ∈ R
N to encodings.

Global Transmission Risk (GTR) Encoding. Besides geographical adja-
cent, there are also potential correlations between disjoint regions (e.g., social
connections). During the spread of epidemics, it is highly likely that similar
progression patterns are shared among related regions because they suffer from
the same virus. We believe that if a region has a similar progression pattern to
another region, there is probably a dependency between them. Therefore, for
global transmission risk assessment, we measure it by the sum of the dynamic
correlations based on temporal features of regions, and we call it the global cor-
relation coefficient in this paper. Inspired by the self-attention [13], we obtain
global correlation coefficients and GTR encodings by following equations:

A = (HtempWq)(HtempWk)T , (3)

ai,j =
ai,j

max(→ai:→2 , ρ)
, (4)

gi =
∑

j

ai,j , (5)

hg
i = Wg · gi + bg, (6)

where Wq, Wk ∈ R
D×F , and Wg ∈ R

D are weight matrices, ρ is a small value
to avoid division by zero. More precisely, we first feed temporal features Htemp

to two parallel dense layers and apply a dot product to obtain a correlation
distribution matrix A. Then we adopt normalization for each row in A and
calculate global correlation coefficient vector g ∈ R

N . At last, we feed gi to a
dense layer to form global transmission risk encoding hg

i ∈ R
D.

EpiGNN: Exploring Spatial Transmission with GNN 475

3.4 Region-Aware Graph Learner

Capturing correlations between regions by simulating all factors related to the
spread of epidemics is troublesome, so we design a Region-Aware Graph Learner
(RAGL), which considers both temporal and spatial information to generate a
region correlation graph, where nodes correspond to regions, and edge weights
correspond to the correlations between regions. We fuse temporal features and
transmission risk encodings as nodes’ initial attributes Hfeat ∈ R

N×D:

hfeat
i = htemp

i + hl
i + hg

i . (7)

Existing methods for learning correlations based on attention mechanisms are
often symmetric or bidirectional [18]. However, the epidemic transmission is often
spread from one region to another, or one region impacts another, so we expect
that the learned region correlation graph should not be a completely bidirectional
graph. First, we extract dynamic temporal relationships by following equations:

M1 = tanh(HtempW1 + b1), M2 = tanh(HtempW2 + b2), (8)

Â = ReLU(tanh(M1MT
2 − M2MT

1)), (9)

where W1, W2 ∈ R
D×F are weight matrices. The subtraction term and ReLU(·)

regularize the connectivity of temporal correlation matrix Â. Next, we capture
spatial dependencies utilizing Ageo, where we also introduce the degree to assess
local spatial effects. Specifically, we use the product of the degrees of two adjacent
regions as a gate that measures the impacts of local interactions between regions
to control spatial dependencies:

Ds = sigmoid(Ws ◦ ddT), (10)

Ã = Ds ◦ Ageo + Â, (11)

where ◦ is element-wise (Hadamard) product, and Ws ∈ R
N×N is a learn-

able parameter matrix. The spread of epidemics is associated with many factors
(e.g., human mobility, climate). RAGL can flexibly take advantage of external
resources that are available to extract dependencies between regions more accu-
rately. We denote external resources as E = [E1,E2, ...,Et] where Ez ∈ R

N×N

represents external correlation between regions at time step z (e.g., the weight
of edge ez

i,j represents the total number of people that moved from region i to
region j), we can calculate external correlation matrix by following equation:

Ae = We ◦
e−1∑

i=0

Et−e, (12)

where e is the look-back window of external resources, and We is a learnable
matrix. At last, we sum them up to obtain the region correlation matrix Ã.

476 F. Xie et al.

3.5 Graph Convolution Network

Graph Convolution Networks (GCNs) as a kind of GNNs have been proven to
be effective methods for learning node representations. In this work, we apply
GCN to investigate the epidemic propagation among different regions [4,8,18].
We apply the following equation to update node representations:

H(l) = σ(D̃−1ÃH(l−1)W(l−1)), (13)

where D̃ =
∑

j ãi,j , W(l) ∈ R
D×D is a layer-specific weight matrix, and H(l) ∈

R
N×D is the node representation matrix at lth layer, with H(0) = Hfeat. σ(·) is

the nonlinear function (e.g., exponential linear unit (ELU)).

3.6 Prediction and Objective Function

Due to the nonlinear characteristics of CNNs and GNNs, the scale of neural
network outputs is not sensitive to the input. Moreover, the historical infection
cases of each region are not purely nonlinear, especially in COVID-19 datasets,
showing linear characteristics on the progression patterns of many regions, which
cannot be fully handled well by neural networks [21]. To address these drawbacks,
some models [3,12] retain the advantages of traditional linear models and neural
networks by combining a linear part to design a more robust prediction frame-
work. Therefore, EpiGNN can optionally integrate a traditional AutoRegressive
(AR) component as a linear part to obtain the linear result ŷl

t+h ∈ R
N :

ŷl
i,t+h =

q−1∑

m=0

War
m xi,t−m + bar, (14)

where q is the look-back window of AR, and War ∈ R
q is the parameters in AR

component. We concatenate nodes’ initial features and the output of the last
layer of GCN together, and feed it to a dense layer to obtain the output:

ŷn
t+h = [H(0);H(l)]Wn + bn, (15)

where [;] is concatenation operation, and Wn ∈ R
2D. The final prediction result

ŷt+h ∈ R
N of EpiGNN is obtained by summing ŷl

t+h and ŷn
t+h:

ŷt+h = ŷl
t+h + ŷn

t+h. (16)

We employ the Mean Squared Error (MSE) to train the model by minimizing
the loss. The loss function can be defined as:

£(θ) = →yt+h − ŷt+h→2
2 , (17)

where yt+h is the ground truth value, and θ are all learnable parameters in
EpiGNN. The pseudocode of the algorithm is described in Algorithm1.

EpiGNN: Exploring Spatial Transmission with GNN 477

Algorithm 1. EpiGNN algorithm
Require: Time series data {X,y} from multiple regions, geographic adjacent

matrix Ageo, external resources E (optional).
Ensure: Prediction result ŷ.
1: for each region i do
2: htemp

i ← Multi-Scale Convolutions(xi:)
3: hl

i ← Local Transmission Risk Encoding(Ageo
i:)

4: hg
i ← Global Transmission Risk Encoding(htemp

i ,Htemp)
5: end for
6: for each region pair (i, j) do
7: ˜ai,j ← Region-Aware Graph Learner(htemp

i , htemp
j , Ageo, E)

8: end for
9: for each region i do

10: hfeat
i ← htemp

i + hl
i + hg

i

11: h(l)
i ← Graph Convolution Network(hfeat

i , Ã)
12: ŷi ← Output(xi:, [hfeat

i ;h(l)
i])

13: end for
14: return ŷ

4 Experiments and Analysis

4.1 Experimental Settings

Datasets. We conduct experiments on five epidemic-related datasets, three are
seasonal influenza datasets and two are COVID-19 datasets. The statistics of
datasets are summarized in Table 1. All datasets have been split into training
set (50%), validation set (20%), and test set (30%) in chronological order.

Table 1. Statistics of datasets, where SD is standard deviation and granularity means
the frequency of epidemic surveillance records.

Datasets Regions Length Min Max Mean SD Granularity

Japan-Prefectures 47 348 0 26635 655 1711 Weekly

US-Regions 10 785 0 16526 1009 1351 Weekly

US-States 49 360 0 9716 223 428 Weekly

Australia-COVID 8 556 0 9987 539 1532 Daily

Spain-COVID 35 122 0 4623 38 269 Daily

– Japan-Prefectures. This dataset is collected from the Infectious Diseases
Weekly Report (IDWR) in Japan,3 which contains weekly influenza-like-
illness (ILI) statistics from 47 prefectures from August 2012 to March 2019.

3 https://tinyurl.com/y5dt7stm.

https://tinyurl.com/y5dt7stm

478 F. Xie et al.

– US-Regions. This dataset is the ILINet portion of the US-HHS dataset,4

consisting of weekly influenza activity levels for 10 Health and Human Services
(HHS) regions of the U.S. mainland for the period of 2002 to 2017.

– US-States. This dataset is collected from the Center for Disease Control
(CDC) (see Footnote 4). It contains the count of patient visits for ILI (positive
cases) for each week and each state in the United States from 2010 to 2017.
After removing Florida due to missing data, we keep 49 states remaining.

– Australia-COVID. This dataset is publicly available at JHU-CSSE.5 We
collect daily new COVID-19 confirmed cases ranging from January 27, 2020,
to August 4, 2021, in Australia (including 6 states and 2 territories).

– Spain-COVID. This dataset is collected by [11], consisting of daily COVID-
19 cases for 35 administrative NUTS3 regions that were mainly affected by
pandemic in Spain from February 20, 2020, to June 20, 2020. We also collect
human mobility data in Spain from Data For Good program.6

Metrics. We adopt Root Mean Squared Error (RMSE =
√

1
N

∑n
i=1(ŷi − yi)2)

and Pearson’s Correlation (PCC =
∑N

i=1(ŷi−ŷ)(yi−y)√∑N
i=1(ŷi−ŷ)2

√∑N
i=1(yi−y)2

) as metrics. For

RMSE lower value is better, while for PCC higher value is better.

Baselines. We compared the proposed model with the following methods:

– HA: the historical average number of cases in observation window T .
– AR: the standard autoregression model.
– LSTM: the recurrent neural networks (RNN) using LSTM cell.
– TPA-LSTM [12]: an attention-based LSTM model.
– ST-GCN [20]: a spatial temporal graph neural network.
– CNNRNN-Res [17]: a deep learning model that combines CNN, RNN, and

residual links for epidemiological prediction.
– SAIFlu-Net [7]: A self-attention-based model for influenza forecasting.
– Cola-GNN [4]: a deep learning model that combines CNN, RNN and GCN

for epidemic prediction.

Implementation Details. All programs are implemented using Python 3.8.5
and PyTorch 1.9.1 with CUDA 11.1 in an Ubuntu server with an Nvidia Tesla
K80 GPU. For each task we run 5 times with different random initialization.
For all tasks, the batch size is set to 128, the look-back window T is set to 20.
The horizon h is set to {3, 5, 10, 15} and {3, 7, 14} for influenza and COVID-
19 prediction respectively in turn. We train the model using Adam optimizer
with weight decay 5e-4 and perform early stopping to avoid overfitting. We
empirically choose 5 filters: {f1×3,1, f1×5,1, f1×3,2, f1×5,2, f1×T,1}. The range of

4 https://tinyurl.com/y39tog3h.
5 https://github.com/CSSEGISandData/COVID-19.
6 https://dataforgood.fb.com/tools/disease-prevention-maps/.

https://tinyurl.com/y39tog3h
https://github.com/CSSEGISandData/COVID-19
https://dataforgood.fb.com/tools/disease-prevention-maps/

EpiGNN: Exploring Spatial Transmission with GNN 479

hidden dimension F is {8, 16, 24, 32}, the number of CNN filters k is searched
from {4, 8, 12, 16, 32}, the dimension of pooling layer p is chosen in {1, 2, 3}, the
number of GCN layers l is selected from 1 to 5. In COVID-19 task, the model
integrates an autoregressive component as a linear part, and the window size q
is optimized in {10, 20}. In Spain-COVID, we denote EpiGNNexter that utilizes
human mobility as external resources, and the look-back window e is searched
from {1, 2, 3}.

Table 2. RMSE and PCC performance of different methods on three datasets with
horizon = 3, 5, 10, 15. Bold face indicates the best result of each column and underlined
the second-best. ∗ represents that the result is reported in the corresponding reference.

Dataset Japan-Prefectures US-Regions US-States

Methods Metric Horizon Horizon Horizon

3 5 10 15 3 5 10 15 3 5 10 15

HA RMSE 2129 2180 2230 2242 2552 2653 2891 2992 360 371 392 403

PCC 0.607 0.475 0.493 0.534 0.845 0.727 0.514 0.415 0.893 0.848 0.772 0.742

AR RMSE 1705 2013 2107 2042 757 997 1330 1404 204 251 306 327

PCC 0.579 0.310 0.238 0.483 0.878 0.792 0.612 0.527 0.909 0.863 0.773 0.723

LSTM RMSE 1246 1335 1622 1649 688 975 1351 1477 180 213 276 307

PCC 0.873 0.853 0.681 0.695 0.895 0.812 0.586 0.488 0.922 0.889 0.820 0.771

TPA-LSTM RMSE 1142 1192 1677 1579 761 950 1388 1321 203 247 236 247

PCC 0.879 0.868 0.644 0.724 0.847 0.814 0.675 0.627 0.892 0.833 0.849 0.844

ST-GCN RMSE 1115 1129 1541 1527 807 1038 1290 1286 209 256 289 292

PCC 0.880 0.872 0.735 0.773 0.840 0.741 0.644 0.619 0.778 0.823 0.769 0.774

CNNRNN-Res RMSE 1550 1942 1865 1862 738 936 1233 1285 239 267 260 250

PCC 0.673 0.380 0.438 0.467 0.862 0.782 0.552 0.485 0.860 0.822 0.820 0.847

SAIFlu-Net RMSE 1356 1430 1654 1707 661 870 1157 1215 167 195 236 238

PCC 0.765 0.654 0.585 0.556 0.885 0.800 0.674 0.564 0.930 0.900 0.853 0.852

Cola-GNN∗ RMSE 1051 1117 1372 1475 636 855 1134 1203 167 202 241 237

PCC 0.901 0.890 0.813 0.753 0.909 0.835 0.717 0.639 0.933 0.897 0.822 0.856

EpiGNN RMSE 996 1031 1441 1470 589 774 984 1061 160 186 220 236

PCC 0.904 0.908 0.739 0.773 0.912 0.842 0.749 0.694 0.935 0.907 0.865 0.861

4.2 Prediction Performance

We evaluate each model in short-term (horizon < 10) and long-term (horizon
≥ 10) settings. The experimental results on influenza datasets and COVID-19
datasets are shown in Table 2 and Table 3 respectively. There is an overall trend
that the prediction accuracy drops as the prediction horizon increases because
the larger the horizon, the harder the problem. The large difference in RMSE
across different datasets is due to the scale and variance of the datasets.

We observe that EpiGNN outperforms other models on most tasks. EpiGNN
achieves 5.6% and 13.4% lower RMSE than the best baselines in the influenza
prediction task and COVID-19 prediction task respectively. In influenza pre-
diction tasks, most deep learning-based models perform better than statistical

480 F. Xie et al.

Table 3. RMSE performance of different methods on two COVID-19 datasets with
horizon = 3, 7, 14. Bold face indicates the best result of each column and underlined
the second-best. - means the forecasting results are not available.

Dataset Spain-COVID Australia-COVID

Methods Horizon Horizon

3 7 14 3 7 14

HA 167.20 189.90 214.19 2948.48 2777.37 2589.61

AR 165.07 179.51 203.13 85.21 237.73 309.03

LSTM 152.79 177.27 184.44 181.97 315.85 338.34

TPA-LSTM 150.74 183.52 227.95 180.14 220.82 462.78

ST-GCN 162.81 186.21 190.13 253.97 443.01 485.12

CNNRNN-Res 163.75 208.85 219.65 210.23 416.90 488.01

SAIFlu-Net 158.06 200.63 229.62 133.85 277.90 351.14

Cola-GNN 138.34 176.52 203.67 127.59 279.56 326.79

EpiGNN 135.54 162.51 186.41 71.42 153.07 287.90

EpiGNNexter 129.90 145.33 178.73 – – –

Table 4. Runtime (s) and model size (K) comparison on three influenza datasets when
horizon = 5. Runtime is the time spent on a single GPU per epoch.

Dataset (h = 5) Japan-Prefectures US-Regions US-States

Runtime Params. Runtime Params Runtime Params.

ST-GCN 0.18 27K 0.16 26K 0.18 27K

CNNRNN-Res 0.05 13K 0.04 5K 0.06 14K

SAIFlu-Net 0.15 35K 0.10 26K 0.14 32K

Cola-GNN 0.14 9K 0.13 7K 0.15 9K

EpiGNN (ours) 0.10 11K 0.14 9K 0.07 12K

models (i.e., HA/AR) since they make effort to deal with nonlinear character-
istics and complex patterns behind time series. We also notice that statistical
model AR is competitive on COVID-19 prediction tasks, especially on Australia-
COVID dataset. This could be because of the strong seasonal effects of influenza
datasets, which is obviously not the situation in the COVID-19 historical statis-
tics. During COVID-19 period, due to government interventions (e.g., stay-at-
home orders, lockdown), the epidemic situations of regions show significant dif-
ferences. It turns out that a simple linear aggregation over the past case numbers
can achieve relatively good performance. EpiGNN also achieves the best perfor-
mance in COVID-19 datasets attributed to the integration of a linear model. In
Spain-COVID, we conduct EpiGNNexter which considers human mobility data
as external information in Eq. 12 to distill the correlations between regions by
providing more practical evidence. The results exhibit that EpiGNNexter is bet-
ter than EpiGNN, pointing out that external information is helpful for capturing
correlations between regions. Table 4 shows the runtimes and number of parame-

EpiGNN: Exploring Spatial Transmission with GNN 481

ters for each model on influenza datasets. EpiGNN has no obvious adverse effect
on training efficiency and well controls the model size to prevent overfitting.

4.3 Ablation Study

Fig. 3. Results of ablation studies on US-States (top) and Japan-Prefectures (bottom)
datasets. For RMSE lower value is better, while for PCC higher value is better.

– w/oLTR stands for EpiGNN without local transmission risk encoding.
– w/oGTR represents EpiGNN without global transmission risk encoding.
– w/oRAGL indicates EpiGNN using self-attention [13] to capture dependen-

cies between regions instead of Region-Aware Graph Learner (i.e., applying
Ã = softmax((HfeatW1)(HfeatW2)T)).

We perform ablation studies on Japan-Prefectures and US-Regions datasets,
and the results measured using RMSE and PCC are shown in Fig. 3. We quan-
titatively show that the complete EpiGNN can yield the most stable and opti-
mal performance compared to other incomplete models. Compared with using
self-attention, RAGL can bring performance gains. The fact can be attributed
that RAGL well utilizes spatial and temporal information, which affirms the
importance of designing a suitable approach to explore the correlations between
regions. In addition, since the captured dependencies are not fully bidirectional,
it helps GCN to focus on potentially related regions to overcome the oversmooth-
ing phenomenon [9] and avoid noise accumulation. We also notice that both
w/oLTR and w/oGTR cause performance drops, which indicates the positive
impacts of transmission risk encodings, and exhibits the effectiveness of model-
ing transmission risks because they emphasize the spatial effects of regions and
provide interpretable evidence on risky areas.

482 F. Xie et al.

horizon=10

horizon=5

horizon=3

Fig. 4. Parameters analysis results of convolution filter number k (top) and GCN layer
number l (bottom) on US-Regions (left) and US-States (right) datasets.

4.4 Parameters Analysis

Number of Convolution Filters. Different convolution filters learn different
features behind data. We evaluate k in range {4, 8, 12, 16, 32}, and the results are
shown in Fig. 4. Smaller k results in poor prediction performance due to limited
representation ability. As k increases, there are more learnable parameters in
model and could bring performance gain to a certain extent. We recommend
selecting k = 12 to achieve a balance between accuracy and computation.

Number of GCN Layers. More GCN layers stacked tend to aggregate nodes’
features from wider neighborhood ranges. We vary the number of GCN layers
from 1 to 5, and the results are shown in Fig. 4. We observe that smaller l can
reach better performance. However, performance drops when l increases reveals
that integrating information from irrelevant/weakly-related nodes may result in
oversmoothing [9] or bring noises, which will undermine the performance.

4.5 Visualization

We visualize an example with window = (2016/46th–2017/13th) and horizon = 5
(week) in US-States dataset, meanwhile, we also provide potential risky regions.
Figure 5(a) is the distribution of degrees in the United States. We notice that the
more central/larger region, the greater the degree. Figure 5(b) is the distribution
of global correlation coefficients. Compared with Fig. 5(a), it can be seen that
some states (e.g., CA) that are not in the center have high global correlation
coefficients. Texas (TX) is the largest and second-most populous state in the
U.S. which has a relatively high degree and global correlation coefficient in this

EpiGNN: Exploring Spatial Transmission with GNN 483

case study. We show how Texas is related to other states as drawn in Fig. 5(c). In
Fig. 5(c), Texas does not have dependencies with all states. Nevertheless, Texas
has relatively significant dependencies with its adjacent regions and also has
relationships with some non-adjacent regions.

9

1

5

4.8

4.2

4.4

0.5

0

0.25

(a) The distribution of degrees. (b) The distribution of global
correlation coefficients.

(c) The distribution of correlations
between Texas and other states.

Fig. 5. Visualization of intermediate results.

We visualize the predicted curve of EpiGNN and LSTM in Fig. 6. Compared
with LSTM, we observe that EpiGNN fits the ground truth better, and some
trends of fluctuation are also predicted better (e.g., WY/DE/VT), while LSTM
yields quite inaccurate predictions in some states. We notice that there are simi-
lar progression patterns between TX and its adjacent states (e.g., NM/AR/LA),
which indicates that local correlations between geographically adjacent regions
may be very strong. The correlations drawn in Fig. 5(c) also show that adjacent
regions are strongly related, which is consistent with the existing finding [10].

Fig. 6. Predicted curve of EpiGNN (green) and LSTM (blue) for selected states. (Color
figure online)

484 F. Xie et al.

5 Conclusions

In this paper, we develop EpiGNN, a novel model for epidemic prediction. In
this model, we design a transmission risk encoding module to characterize local
and global spatial effects of each region. Meanwhile, we propose a Region-Aware
Graph Learner that takes transmission risk, geographical dependencies, and tem-
poral information into account to better explore spatial-temporal dependencies.
Experimental results show the effectiveness and efficiency of our method on five
epidemic-related datasets. As for future work, we will devote to better predict
by considering the time decay effects of spatial transmission.

Acknowledgment. This work is supported by the Key R&D Program of Guangdong
Province No. 2019B010136003 and the National Natural Science Foundation of China
No. 62172428, 61732004, 61732022.

References

1. Adhikari, B., Xu, X., Ramakrishnan, N., Prakash, B.A.: EpiDeep: exploiting
embeddings for epidemic forecasting. In: Proceedings of KDD (2019)

2. Aron, J.L., Schwartz, I.B.: Seasonality and period-doubling bifurcations in an epi-
demic model. J. Theor. Biol. 110, 665–679 (1984)

3. Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting dengue epidemics using
a hybrid methodology. Physica A: Stat. Mech. Appl. (2019)

4. Deng, S., Wang, S., Rangwala, H., Wang, L., Ning, Y.: Cola-GNN: cross-location
attention based graph neural networks for long-term ILI prediction. In: Proceedings
of CIKM (2020)

5. Han, X., Xu, Y., Fan, L., Huang, Y., Xu, M., Gao, S.: Quantifying Covid-19 impor-
tation risk in a dynamic network of domestic cities and international countries.
Proc. Natl. Acade. Sci. (2021)

6. Jin, X., Wang, Y.X., Yan, X.: Inter-series attention model for Covid-19 forecasting.
In: Proceedings of SDM (2021)

7. Jung, S., Moon, J., Park, S., Hwang, E.: Self-attention-based deep learning network
for regional influenza forecasting. IEEE JBHI (2021)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

9. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: Proceedings of AAAI (2018)

10. McMahon, T., Chan, A., Havlin, S., Gallos, L.K.: Spatial correlations in geograph-
ical spreading of Covid-19 in the united states. Sci. Rep. (2022)

11. Panagopoulos, G., Nikolentzos, G., Vazirgiannis, M.: Transfer graph neural net-
works for pandemic forecasting. In: Proceedings of AAAI (2021)

12. Shih, S.Y., Sun, F.K., Lee, H.: Temporal pattern attention for multivariate time
series forecasting. Mach. Learn. 108, 1421–1441 (2019)

13. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS (2017)
14. Wang, L., Adiga, A., Chen, J., Sadilek, A., Venkatramanan, S., Marathe, M.:

CausalgNN: causal-based graph neural networks for spatio-temporal epidemic fore-
casting (2022)

http://arxiv.org/abs/1609.02907

EpiGNN: Exploring Spatial Transmission with GNN 485

15. Wang, Z., Chakraborty, P., Mekaru, S.R., Brownstein, J.S., Ye, J., Ramakrishnan,
N.: Dynamic poisson autoregression for influenza-like-illness case count prediction.
In: Proceedings of KDD (2015)

16. Won, M., Marques-Pita, M., Louro, C., Gonçalves-Sá, J.: Early and real-time detec-
tion of seasonal influenza onset. PLoS Comput. Biol. (2017)

17. Wu, Y., Yang, Y., Nishiura, H., Saitoh, M.: Deep learning for epidemiological
predictions. In: Proceedings of SIGIR (2018)

18. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
multivariate time series forecasting with graph neural networks. In: Proceedings of
KDD (2020)

19. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

20. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

21. Zhang, G.P.: Time series forecasting using a hybrid Arima and neural network
model. Neurocomputing (2003)

22. Zhang, H., et al.: Multi-modal information fusion-powered regional Covid-19 epi-
demic forecasting. In: Proceedings of BIBM (2021)

http://arxiv.org/abs/1906.00121
http://arxiv.org/abs/1709.04875

Applications: Transportation

Route to Time and Time to Route: Travel
Time Estimation from Sparse Trajectories

Zhiwen Zhang2, Hongjun Wang1, Zipei Fan1,2(B), Jiyuan Chen1,
Xuan Song1(B), and Ryosuke Shibasaki2

1 Southern University of Science and Technology, Shenzhen, China
songx@sustech.edu.cn

2 The University of Tokyo, Tokyo, Japan
fanzipei@iis.u-tokyo.ac.jp

Abstract. Due to the rapid development of Internet of Things (IoT)
technologies, many online web apps (e.g., Google Map and Uber) esti-
mate the travel time of trajectory data collected by mobile devices. How-
ever, in reality, complex factors, such as network communication and
energy constraints, make multiple trajectories collected at a low sampling
rate. In this case, this paper aims to resolve the problem of travel time
estimation (TTE) and route recovery in sparse scenarios, which often
leads to the uncertain label of travel time and route between continuously
sampled GPS points. We formulate this problem as an inexact supervi-
sion problem in which the training data has coarsely grained labels and
jointly solve the tasks of TTE and route recovery. And we argue that
both two tasks are complementary to each other in the model-learning
procedure and hold such a relation: more precise travel time can lead to
better inference for routes (Time → Route), in turn, resulting in a more
accurate time estimation (Route → Time). Based on this assumption,
we propose an EM algorithm to alternatively estimate the travel time
of inferred route through weak supervision in E step and retrieve the
route based on estimated travel time in M step for sparse trajectories.
We conducted experiments on three real-world trajectory datasets and
demonstrated the effectiveness of the proposed method.

Keywords: Internet of things · Weakly supervised learning · Graph
convolutional network · Travel time estimation · Route recovery

1 Introduction

With advances in the area of the Internet of Things (IoT), GPS modules have
been widely used throughout various kinds of mobile devices. These devices col-
lected massive trajectory data and empowered many applications in the intel-
ligent transportation system. Among these applications, travel time estimation

Z. Zhang and H. Wang—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1_30.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 489–504, 2023.
https://doi.org/10.1007/978-3-031-26422-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_30
https://doi.org/10.1007/978-3-031-26422-1_30

490 Z. Zhang et al.

Fig. 1. Comparison between dense and sparse TTE scenarios.

(TTE) is an essential task for route planning, taxi dispatching, and ride-sharing.
Subsequently, a large part of relevant approaches ranging from machine learning
technologies, such as Bayesian inference [15], to deep learning models [22] have
been proposed to solve this task. However, due to the power and communica-
tion limitations of the mobile devices, the sampling rate of the trajectories is
always low, which leads to a decrease in the accuracy for both travel time and
route. Existing efforts need to label the exact travel time and route between two
consecutively sampled GPS points, which is used to train the estimation model.
We argue that this hypothesis sounds reasonable relying upon the scene of high-
sampling-rate. In practice, we have to face a large part of trajectory data with
low sampling rates [10,23].

Motivating Scenario. Figure 1 gives a comparison between two TTE scenarios:
dense and sparse. The exact label of travel time in each road segment and the
route can be easily obtained from the dense trajectories (Fig. 1a). However, we
can not obtain the precise route and travel time label from the sparse trajectories.
Figure 1b illustrates a case in low-sampling rate. We are hard to infer the route
when given two sampled GPS points pa and pb, since there are multiple choices
for possible route. Meanwhile, we were also challenged to acquire the exact travel
time in each road segment, even though we have the ground truth route marked
with a green dotted line, due to the large gap of observation Ta,b = 5min. With
missing supervision labels, traditional supervised learning is clumsy in giving a
fine-grained prediction. This motivates us to model TTE and route recovery from
sparse trajectories as a weakly supervised learning problem, more specifically a
coarse labeling problem [29].

Unlike conventional supervised learning, where each sample is assigned with
a label, coarse labeling annotates the label on a bag of samples. The authors in
[29] summarize the task of learning from 1) the mean/sum: the arithmetic mean
or the sum of X; 2) the difference/rank: the difference xi − xj or the relative
order xi > xj ; and 3) the min/max: the smallest/largest value in X. In the task
of estimating travel time, the problem can be considered as learning from the
mean/sum of X, since the path travel time can be equivalent to the summation
of each road pass time within the path, while the exact travel time of each road
segment is unknown.

Route to Time and Time to Route 491

As we know, travel time and route are highly correlated. In addition, the
exact routes can result in a better inference of travel time (Route → Time), in
turn leading to a more precise route recovery (Time → Route). In this paper, the
Expectation-Maximization (EM) algorithm [4] has been applied to alternatively
estimate the travel time and route between any two consecutive GPS points.
Technically, the E step intends to estimate the travel time of inferred route
through weakly supervised learning (WSL), and the M step schemes to recover
the route by heuristically searching for estimated travel time. Furthermore, to
model the time-variant representation of road network, we generate the travel
time distributions using the proposed spatio-temporal model. The Lognormal
distribution is employed in this paper thanks to the excellent nature of additivity
[5] and better performance in fitting real travel time.

The main contributions of this paper can be summarized as follows.

• For the first time, we integrate weakly supervised learning into the problem
of TTE, which aims to infer the travel time of each road segment in a bag
from a large gap of consecutive GPS points.

• The EM algorithm has been designed to alternatively infer the travel time
distribution of each road segment and route between two consistent GPS
samples (Route → Time and Time → Route). In addition, we propose a
spatio-temporal embedding architecture to forecast the future traffic state
that integrates the spatial relational road network and temporal correlations,
such as weather conditions and time-of-day.

• We conduct extensive experiments on three real-world large-scale trajectory
data sets, which significantly outperform the state-of-the-art baselines for
both two tasks - TTE and route recovery.

2 Related Work

Weakly Supervised Learning. Weakly supervised learning focuses on dealing
with three kinds of problems [31]: 1) incomplete supervision: only part of the
training data is labeled 2) inexact supervision: training data has only coarsely
grained labels 3) inaccurate supervision: given labels are not always accurate.
Multiple instance learning (MIL), which deals with observed data arranged in
sets [7] is a branch of weakly supervised learning belonging to the category of
inexact supervision. MIL has been widely applied in many fields, such as image
and video classification [3], as well as document and sound classification [32]. This
paper expands the concept of MIL to the application of travel time estimation
in a highly sparse scenario.

Travel Time Estimation. The loop detectors are firstly used in calculating
the travel time by recording the individual road travel speeds and dividing it
by the travel distance [13]. However, since traffic lights and left/right turns are
omitted, the estimation errors are inaccurate. Therefore, road segment-based
methods have been proposed, which can be approximately divided into two
types: 1) nearest neighbor search [20], which sets the prediction by averaging

492 Z. Zhang et al.

the historical trajectory travel time; and 2) trajectory regression methods [9],
which predict the travel time of road segment by road features. However, those
approaches are based on the assumption that the trajectory’s travel time is pre-
cise. Moreover, multiple trajectories with low sampling rates exist due to the
network communication problem. Although some works try to conduct sparse
travel time estimation [10,23], the uncertain route is also ignored. This paper
aims to simultaneously resolve the problem of estimating vehicle travel time and
route recovery in a highly sparse scenario.

Route Recovery. The route recovery problem in the low sample rate scenario
is vital to reduce the uncertainty of the trajectory, and the TTE problem [17].
As we mentioned, the problems of TTE and route recovery play a role together,
and this idea has been considered in previous work. For example, [24] designs a
regression TTE model and applies the exact route search to obtain the poten-
tial route based on the learned travel time. [19] proposes STGAN to generate a
travel time distribution in each road segment throughout the road network based
on data from traffic surveillance cameras and update the possible route by pos-
terior estimation in every iteration. Unlike the existing approach, the superior
advantage of WSL-TTE is to model the sparse observation problem as weakly
supervised learning, which is skilled in coarse labeling problems, and adopt it
into the EM framework.

3 Methodology

This section first gives the problem formulation of travel time estimation based
on weakly supervised learning and then introduces our proposed weakly super-
vised learning travel time estimation (WSL-TTE) system.

Xi

pa

pb

Zi Ta,b

W Zi−1

K roads segments

|Tr| − 1 pairs

Fig. 2. The graphical model of the data generating process. The grey and white nodes
represent the observation and hidden variable, respectively.

3.1 Notation

Let X be the features of the road (e.g., road types, road lanes) and Z be the
unobserved true travel-time distribution of K road segments that we

Route to Time and Time to Route 493

want to predict. The goal is to learn a discriminative model f that predicts
the true target Z from the feature vector X, so as to maximize the conditional
probability P (Z | X). Here, the travel time distribution Z highly depends on the
real-time traffic condition. Intuitively, we discretize one day into I time steps
(i.e., a specific time window Δt = 30min). So given a trajectory Tr at time step
ts, which can be denoted as sequence of sampled GPS point: p1 → p2 → · · · →
p|Tr|, r̃ is the most likely route (bag) between two continuous GPS points pa and
pb during Tr, where |r̃| = K denotes the number of total travelled road segments
in r̃. Especially, X1:K

1 stands for the bag of the travelled road segments’ features
corresponding to r̃. W is the collection of all weight parameters in the neural
network f to learn Z. Ta,b is the actual observation of total time cost between
pa and pb.

Figure 2 illustrates the data generation process with a graphical represen-
tation. Given pa and pb, we first infer the most likely route r̃ from the road
network with P (r̃ | pa, pb, Z), which is equal to estimate P (X1:K | pa, pb, Z1:K).
Subsequently, we generate the conditional probability P (Zi | θ) for each travel
time distribution Zi. Specifically, we here assume that each latent variable Zi

belongs to the Lognormal distribution Zi ∼ 1
zσ

√
2π

exp
(

− (ln z−μ)2

2σ2

)

[16]. We
let the conditional probability P (Zi | θ) = P (Zi | (μ, σ) = f (X;W)), where W
and X are the cofactors that generate the parameterized μ and σ of Zi by the
deterministic function f . Consequently, total travel time Ta,b can be observed
by an aggregate function Q with Ta,b = Q(Z1:K) =

∑K
i=1 Zi.

3.2 Assumptions

Here, we summarize the two basic assumptions used in our paper.

Assumption 1 (Aggregate observation assumption). P (Ta,b | X1:K , Z1:K) =
P (Ta,b | Z1:K)

We assume that observation Ta,b is conditionally independent on X1:K when
given Z1:K . This assumption is informed by existing studies [2] and conforms
to the TTE problem, since given Z1:K , observation Ta,b can be determined by
aggregate function Q.

Assumption 2 (Markov chain assumption). P (Z1:K | X1:K) = P (Z1 |
X1)

∏K
i=2 P (Zi+1 | Xi+1;Zi)

We assume that Zi+1 are mutually independent except for Zi. This is under
the assumption of a Markov chain and is based on extensive applications in
trajectory data mining [1]. Furthermore, since Ta,b can be determined by the
function Q, the conditional probability can be defined as P (Ta,b | Z1:K) =
δQ(Z1:K)(Ta,b), where δ(·) represents the Dirac delta function.

1 The subscript for example X1:K denotes an abbreviation for the set {X1, X2,
· · · , XK}.

494 Z. Zhang et al.

3.3 Problem Formulation

In summary, the objective function in this paper can be written as follows:

log P (Ta,b | pa, pb,W) = log

(

∑

Z

P (Ta,b | pa, pb, Z,W)P (Z | pa, pb,W)

)

, (1)

which is the maximum of a posterior estimation by taking the Z as latent vari-
ables with the observation of sparse travel time Ta,b. Therefore, we divide the
training process into expectation (E step) and maximization (M step) according
to the above assumptions.

E step: EZ

[

log P (Ta,b, Z | X1:K ,W) | X
(i)
1:K ;W (i)

]

=
∫

ZK

log P (Ta,b | Z1:K ;X1:K)P (Z1:K | X1:K)dZ1:K

=
∫

ZK

δQ(z1:K)(Ta,b)P (Z1 | X1)
K
∏

i=2

P (Zi+1 | Xi+1;Zi)dZ1:K

≈ E
Zi∼p(Zi|Xi)

i=1,...,K

[

δQ(Z1:K)(Ta,b)
]

(2)

M step: r̃ = arg max
r

log P (Ta,b | Ωa,b; pa; pb; W) (3)

E step aims to estimate the travel time of the most likely route r̃ by learned
travel time distribution Z through weakly supervised learning, and M step
heuristically searches r̃ from the candidate set Ωa,b = {r1, r2, · · · , rm} to reduce
the computational cost. According to the above EM procedure, we obtain the
estimated route r̃ for every pair of pa and pb, as well as travel time distribution
Z. Thus, the final travel time of trajectory Tr can be obtained by summing all
the estimation components Θ = { ˜T1, ˜T2, · · · , ˜T|Tr|−1} between every continuous
GPS sample with ˜T =

∑|Tr|−1
i=1

˜Ti, where ˜Ti, produced by f , denotes the forecast
travel time of pi and pi−1.

3.4 System Overview

Figure 3 shows our proposed WSL-TTE system with the EM algorithm, which
consists of three main components - processor, spatio-temporal model and model
training with EM procedure.

(1) Processor temporally partitions the low-sampling-rate historical trajecto-
ries from the datasets into each time step ts.

(2) Spatio-Temporal Model f estimates the travel time distribution Z of the
road segments. We firstly transform a road network into a multi-relational
graph G, and encode each time step ts into a vector. Then we fuse the afore-
mentioned spatial representation and temporal encoding as the time-variant

Route to Time and Time to Route 495

Travel Time Distribution
of Road Segments

Weak supervision

Initialize Travel
Time Distribution

Update

Current Route

Temporal
Partitioning

Road 4
(Primary)

Road 5
(Trunk link)

R
oad

1

(Secondary)

R
oad

2

Secondary
R

oad

3

(Secondary)

Road Network Multi-relational graph

1

2

3 5

4

Secondar y
Secondary
Secondary Trunk link

Time-of-day Day-of-week Weather Holiday
Each time step

M
LPs

Temporal
Embedding

Travel Time of
Current Route

Low-Sampling-Rate
Trajectories

Sub-trajectories for
Each Time Step Route Search

R-GCNs

Candidate route set

Spatio-Temporal Model

Processor Model Training with EM Procedure

Fig. 3. The system architecture of our proposed WSL-TTE with EM procedure.

vertex representations. In the final, μts
and σts

of travel time distribution
Z are parameterized by two MLPs (Multi-Layer Perception).

(3) Model Training with EM Procedure is used to optimize the learned Z
in E-step using Eq. (5) and infer route r̃ by Eq. (6). Travel time distribution
Z is initially default as μ = Li

Si
and σ = 1, where Li and Si are the length

and speed limits of ith road segment, respectively. The EM algorithm will
be finished when the estimated variables Z converge.

Residential type

Secondary type

Fig. 4. Motivation example of the traffic speed in Xi’an during Chinese National Day.
We used high-sampling-rate GPS trajectories to calculate the exact travel speed for
these road segments, and observed that the road’s speed distribution with adjoining
roads is highly related with the road types.

496 Z. Zhang et al.

3.5 Spatio-Temporal Model

The spatio-temporal model aims to learn f to estimate travel time distribu-
tion Z of road segments from road network. Figure 4(a) shows the locations of
the neighbors of Yongquan Street, and Fig. 4(b) depicts the maximum, mini-
mum and average traffic speed during Chinese national day. We observe several
phenomena: 1) road speed is highly related to the road types; and 2) the road
speed is also affected by the type of connection road. For example, Yongquan
road and Liyuan street are residential and secondary roads, respectively. Even
though they are neighbors, the road speeds are relatively different. Thus, the
road network is represented as a multi-relational graph G = (V, E ,R), where V
denotes the set of vertices (i.e. road segments) and E denotes the set of edges.
An edge eijk = (vi, vj , rk) ∈ E indicates that the road segment vi ∈ V connects
to the road segment vj ∈ V with a relation type rk ∈ R.

Based on this multi-relational graph, we adopt a 3-layer Relational Graph
Convolution Networks (R-GCNs) [18] as the building block to learn the graph
structure information. lth R-GCN can be defined as

h(l+1)
vi

=
∑

rk∈R

∑

j∈N rk
i

1
ci,rk

W (l)
rk

h
(l)
j + W

(l)
0 h(l)

vi
, (4)

where h
(l)
vi ∈ R

d(l)
is the hidden state of road segment vi in the lth layer of the

model with dimension d(l) and W
(l)
rk ,W

(l)
0 present the learnable parameters. N rk

i

denotes the set of neighbor indices of node vi in relation to rk ∈ R. ci,rk
is the

normalization constant. Note that h
(0)
vi is the spatial feature Xvi

of road segment
vi. We use the embedding layer to encode the following statistical features:

• Road types: for example, primary, primary link, secondary, secondary link;
• Number of lanes: how many marked traffic lanes;
• Whether it is one way or not.

The final output of R-GCNs, represented as svi
∈ R

D, where vi ∈ V. But spatial
representation svi

only provides the static representation, which could not show
the temporally dynamic correlations for each road segment.

As we mentioned previously, the spatio-temporal model f is to estimate the
mean value μ and variance σ of Lognormal distribution for each road segment vi

at each time step ts. Intuitively, we encode the day-of-week and time-of-day of
each time step ts into R

7 and R
I using one hot encoding, and concatenate them

with the embedding of weather conditions and HolidayID (holiday or not). Then
we use one-layer MLP to transform the above temporal embedding vector into a
vector sts

∈ R
D, which is equal to the spatial representation svi

. To obtain the
time-variant road segment representations, we fuse the above spatial represen-
tation and reconstruct temporal embedding vector: for each road segment svi

at
time step ts, the spatio-temporal representation is defined as Fvi,ts

= svi
+ sts

,
which contains both spatial road structure and temporal information. Based
on the spatio-temporal representation F ∈ R

(|V|∗Nts)×D, where Nts
denotes the

total number of time steps, μts
∈ R

|V| and σts
∈ R

|V| for each time step ts ∈ R
Nts

are parameterized by two-layer MLPs with shared fused representation F .

Route to Time and Time to Route 497

3.6 Model Training with EM Procedure

Next, we introduce the learning procedure of estimated travel time distribution Z
through weakly supervised learning. The aforementioned expected log-likelihood
in Eq. (2) defines the aggregate expectation from Z to T . Here, we assume
the distribution Ta,b also under the Lognormal distribution approximated by
summation of all Z1:K on route r [5] as

T ∼ Lognormal

(

μ :=
K

∑

i=1

μ
(i)
ts

, σ2 :=
K

∑

i=1

(σ(i)
ts

)2
)

Thus, the term of expectation in Eq. (2) can be derived to be

Lμ,σ = log p

(

{

x
(i)
ts

, z
(i)
ts

}K

i=1
;W

)

=
K

∑

i=1

(

z
(i)
ts

− μ
(i)
ts

)2

2σ2
ts

− 1
2

log
(

2πσ2
ts

)

≈ − (Q(Z1:K) − Q(μ))2

2σ2
− 1

2
log

(

2πσ2
)

. (5)

In the final, we introduce how to maximize the conditional probability in Eq. (3).
Given two continuous samples pa, pb, and the last-step parameters W (i) produced
from Eq. (5), our objective is to find the optimal route r̃ with the travel time
closest to the observation Ta,b. As mentioned in [8], it is natural to assume that
the route r̃ is very likely to be among the top m-shortest paths between pa

and pb. Therefore, we utilize Yen’s algorithm [26] to generate the candidate set
Ωa,b = {r1, r2, · · · , rm} and the optimal route r̃ can be selected by

r̃ = arg min
r

| Ta,b −
∑

ei∈rj

μ(i) |, ∀rj ∈ Ωa,b. (6)

We perform Eq. (6) for every pair of continuous samples to update their
corresponding route r̃. Furthermore, to prevent extensive overlap in Ωa,b, this
paper leverages the weighted Jaccard (wJCD) value to calculate each pair of
routes ri, rj ∈ Ωa,b referring to [8]. The EM algorithm will complete when it
reaches the estimated variables μ and σ convergence.

4 Experiments

4.1 Experimental Settings

Data. We validate our proposed methods on three real-world datasets, including
Xi’an, Porto and Chengdu dataset. More details can be found in Appendix A.1.

498 Z. Zhang et al.

Sampling Rate Setting. According to [27], taxis should report their GPS
positions with a low sampling rate to save communication and energy costs. We
further vary the sampling ratio of the sets 3.125%, 6.25% and 12.5% to evaluate
the robustness of our proposed model. Since the original trajectories are sampled
every 15 s, the generated low- sampling-rate trajectories of 3.125%, 6.25% and
12.5% are considered to be as the average time interval of such trajectories is 8
min, 4 min, and 2 min, respectively.

4.2 Baseline Models and Evaluation Metrics

• DeepTTE: [22] is an end-to-end deep learning framework, which infers the
travel time from both the entire path and each local path simultaneously.

• DeepGTT: [11] learns the travel time distribution through the deep gener-
ative model, which takes the real-time traffic condition into account.

• MVSTM: [14] is a multi-view spatial-temporal model that captures the
mutual dependence of spatial-temporal relations and trajectory features.

• MURAT: [12] is a multi-task representation learning method by utilizing
the underlying road network and the spatio-temporal prior knowledge.

• DCRNN: [13] exploits GCN to capture spatial dependency and then uses
recurrent neural networks to model temporal dependency.

• ConSTGAT: [6] adopts a graph attention mechanism to explore the joint
relations of spatio-temporal information.

• T-GCN: [30] proposes a temporal GCN model that combines the GCN and
GRU to simultaneously extract the spatial and temporal dependencies.

Additionally, three state-of-the-art algorithms STRS [24], MTrajRec [17], and
DeepGTT [11] are used as baseline models for route recovery. STRS and Deep-
GTT learn the travel time of the road network and conduct the route search
for low-sampling-rate trajectories. MtrajRec recoveries the route via a two-stage
Seq2Seq model based on coarse grid representation.

Evaluation Metrics. We evaluate the task of TTE with RMSE (radial mean
square error), MAE (mean absolute error) and MAPE (mean absolute percent-
age error). Then the route recovery performance is evaluated by route recovery
accuracy, which is defined as the ratio of the length of correctly inferred road
segments against the maximum value of the length of the ground truth route
RG and the inferred route RI , that is, accuracy = (RG∩RI).len

max{RG.len,RI .len} .

4.3 Performance Comparison

Performance on Travel Time Estimation. As reported in Table 1, our WSL-
TTE achieves the best results among all baseline methods for three kinds of
minute intervals: 2, 4, 8. We summarize the reasons for our model outperform-
ing all baselines by a large margin: 1) The GCN production is used to learn
the route’s travel time and its travel time distribution for each road segment
simultaneously, helping it to yield robust and abundant features. 2) The EM

Route to Time and Time to Route 499

Table 1. Performance comparison for TTE under three datasets. Here, the units of
both RMSE and MAE are minutes, and the unit of MAPE is percentages (%). The
best performance is marked in bold font.

Data Models
2 mins 4 mins 8 mins

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

X
i’a

n

DeepTTE 2.89 1.74 14.89 3.88 2.57 15.7 3.87 2.79 18.25
DeepGTT 4.31 3.51 32.16 5.27 4.11 39.85 7.33 6.14 45.31
MVSTM 4.13 2.59 15.42 4.45 3.68 29.37 5.62 3.84 26.51
MURAT 8.86 6.87 84.06 9.45 7.76 94.16 11.36 9.23 113.69
T-GCN 3.24 2.00 14.78 4.23 3.04 15.61 4.43 3.19 18.37
DCRNN 3.20 1.96 14.6 4.18 2.98 15.43 4.37 3.13 18.16
ConSTGAT 3.21 1.99 14.41 4.20 3.01 15.22 4.39 3.17 17.91
Ours 1.36 1.07 9.66 1.53 1.32 13.35 1.81 1.92 15.69

P
or

to

DeepTTE 2.14 1.46 12.59 2.90 2.10 12.36 3.38 2.48 15.01
DeepGTT 3.39 2.83 28.58 4.07 3.03 32.05 6.23 5.08 39.34
MVSTM 3.10 2.27 13.00 3.39 2.75 24.28 4.69 3.18 22.18
MURAT 6.24 5.35 74.27 7.17 5.63 75.54 9.40 7.39 96.79
T-GCN 2.04 1.31 12.13 2.85 1.83 11.92 3.16 2.23 14.26
DCRNN 2.02 1.28 11.99 2.81 1.80 11.78 3.12 2.19 14.09
ConSTGAT 2.03 1.29 11.83 2.82 1.82 11.62 3.13 2.22 13.90
Ours 1.11 0.88 8.25 1.30 1.14 10.58 1.72 1.63 12.77

C
he

ng
du

DeepTTE 3.13 1.97 15.11 4.09 2.99 15.96 4.28 3.14 18.79
DeepGTT 4.97 3.83 34.31 5.75 4.32 41.39 7.89 6.44 49.24
MVSTM 4.54 3.07 15.61 4.78 3.92 31.36 5.94 4.03 27.77
MURAT 9.13 7.24 89.17 10.12 8.03 97.57 11.92 9.36 121.16
T-GCN 2.99 1.77 14.56 4.02 2.61 15.39 4.01 2.83 17.85
DCRNN 2.95 1.73 14.39 3.97 2.56 15.21 3.96 2.78 17.64
ConSTGAT 2.97 1.75 14.20 3.98 2.59 15.01 3.97 2.81 17.40
Ours 1.89 1.31 10.15 2.14 1.93 13.98 2.55 2.21 16.28

Table 2. Performance of our framework and ablation variants for TTE under extremely
sparse scenario (8 min).

Models Xi’an/Porto/Chengdu
RMSE MAE MAPE

SimpleGCN 1.92/2.09/2.83 2.04/1.74/2.37 15.96/13.09/16.82
GAT 1.96/2.14/2.89 2.15/1.80/2.42 15.92/13.10/16.87
GTN 1.95 /2.10/2.82 2.11/1.78/2.41 15.94/13.07/16.77
Normal Distribution 1.88/2.06/2.79 2.09/1.84/2.56 15.88/13.09/16.89
Variance = 1 2.07 /2.43/3.45 2.71/2.17/2.79 16.12/13.28/17.13
Ours 1.81/1.72/2.55 1.92/1.63/2.21 15.69/12.77/16.28

500 Z. Zhang et al.

iteration algorithm has been proposed to update the potential travelled path,
which helps our method to learn a more reasonable travel time distribution.
Meanwhile, the estimation results among different sampling intervals also reflect
that the uncertainty of a sparse GPS trajectory would seriously affect the model
performance.

Ablation Study. As is shown in Table 2, in order to validate how the relational
GCN modules and weak supervision can effectively capture the spatio-temporal
dependencies in WSL-TTE, we first test the effects of relational GCN on mod-
eling road network. Our WSL-TTE removes the relational GCN module and
replaces it with a simple GCN, GAT [21] and graph transformer network (GTN)
[28] to extract the spatial representation. The experimental results show that
using our model with relational GCN can achieve better performance on two
datasets. It can be explained that the complex adjacency of the road network
needs to model different correlations among different road types. Next, we val-
idate the assumption that the travel time variables belong to the Lognormal
distribution. Compared to this setting, we conduct the test of normal distri-
bution and variance=1, respectively. We find that they cannot achieve better
performance than the Lognormal distribution. This validates our formulation
of weak supervision regarding travel time. In sum, we can conclude that our
WSL-based method is effective in travel time estimation.

Performance on Route Recovery. Figure 5 reports the route recovery accu-
racy and daily divergence over different sampling time intervals. Figure 5(a),

(a) Route recovery accuracy
of Xi’an.

(b) Route recovery accuracy
of Porto.

(c) Route recovery accuracy
of Chengdu.

(d) Daily divergence of
Xi’an by ours.

(e) Daily divergence of
Porto by ours.

(f) Daily divergence of
Chengdu by ours

Fig. 5. Route recovery performance.

Route to Time and Time to Route 501

Fig. 5(b) and Fig. 5(c) show that our WSL achieves better performance among
three sampling intervals, compared to DeepGTT, MTrajRec and STRS. Noted
that DeepGTT achieves worse performance at 4 min and 8 min. This is because
grid-based traffic condition tensors can not provide efficient road conditions at
high sampling intervals. Figure 5(d), Fig. 5(e) and Fig. 5(f) provide the daily
divergence of the route recovery accuracy by our proposed WSL. We find that
the total recovery performance stays stable from 6:00 AM to 22:00 PM for Xi’an,
Porto, and Chengdu. However, the performance of Chengdu is relatively worse
than both Xi’an and Porto due to the more complex road network. Further-
more, significantly as the sampling time interval increases, the accuracy of both
methods drops, as expected. The reason is that a more extensive sampling time
interval leads to more possible candidate routes to be inferred between two sam-
ple points. Meanwhile, the daily divergence of our WSL also shows this pattern.

4.4 Case Study

We conducted a real-world case study in Chengdu, which visualizes the learned
road conditions using our proposed WSL-TTE. To acquire the road conditions of
the road network, we here transform travel time μ estimated by our WSL-TTE
into the average speed by Speedi = Lengthi

μi
for each road vi. Four kinds of colors

are used to represent the different road states, which can be defined as 1) red -
very congested, 2) yellow - congested, 3) orange - slow, and 4) green - unblocked.
We equally divide the limiting velocity for each road type and set the speed
interval for these four road states. For example, the speed limit of the primary
road type is 60 kph, then the speed range that represents very congested is [0, 15),

Fig. 6. Traffic condition comparison. We pick two-time steps, i.e., non-rush hour (6:00–
6:30) and rush hour (17:00–17:30), and compute the ground truth by original dense
trajectories in Chengdu, compared with the transformed speed based on the learned
travel time distributions of our WSL-TTE.

502 Z. Zhang et al.

congested is [15, 30), slow is [30, 45) and unblocked is [45, 60). We calculate the
average speeds by the original dense trajectories as the ground truth. Specifically,
we mark them with an unblocked state for the roads without a trajectory. The
compared result is shown in Fig. 6, our model can generate approximate road
conditions with ground truth for both non-rush and rush hour.

In addition, we provide a visualization example of the route update process
in route recovery. As is shown in Fig. 7, our route update process with the EM
algorithm can gradually find the approximate route with ground truth, owing
to the precise travel time, which demonstrated our previous assumption that:
the more precise travel time can lead to a better inference of routes, in turn,
resulting in more accurate time estimation.

Fig. 7. Visualization example of the route update process. Here, Fig. (a) shows the
ground truth and initial route of low-sampling-rate trajectories, and Fig. (b)∼(d) shows
the intermediate iteration results of route recovery.

5 Conclusion

This paper formulates the TTE and route recovery in a highly sparse scenario
as an inexact supervision. Based on the EM algorithm, we solve the inexact
travel time labeling and uncertain route choice by alternatively updating the
travel time distribution through weakly supervised learning and route searching
using the top m-shortest path respectively. Both two tasks are complementary
to each other in the iteration process. In future work, we intend to consider more
hypotheses of travel time distribution under weakly supervised learning, such as
Gamma, Weibull, as well as Burr XII distribution. Source code is available at
https://github.com/Dreamzz5/WSL-TTE.

https://github.com/Dreamzz5/WSL-TTE

Route to Time and Time to Route 503

Acknowledgment. This work was partially supported by National Key Research
and Development Project (2021YFB1714400) of China and Guangdong Provincial Key
Laboratory (2020B121201001).

References

1. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proceedings of the 31st International Conference on Very Large Data
Bases, pp. 853–864 (2005)

2. Carbonneau, M.A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance
learning: a survey of problem characteristics and applications. Pattern Recogn.
77, 329–353 (2018)

3. Chen, Y., Bi, J., Wang, J.Z.: Miles: multiple-instance learning via embedded
instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1931–1947
(2006)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22
(1977)

5. Dufresne, D.: Sums of lognormals. In: Actuarial Research Conference, pp. 1–6
(2008)

6. Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., Wang, H.: ConSTGAT: contex-
tual spatial-temporal graph attention network for travel time estimation at Baidu
maps. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2697–2705 (2020)

7. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)

8. He, T., et al.: What is the human mobility in a new city: transfer mobility knowl-
edge across cities. In: Proceedings of The Web Conference 2020, pp. 1355–1365
(2020)

9. Idé, T., Sugiyama, M.: Trajectory regression on road networks. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 25 (2011)

10. Jabari, S.E., Freris, N.M., Dilip, D.M.: Sparse travel time estimation from stream-
ing data. Transp. Sci. 54(1), 1–20 (2020)

11. Li, X., Cong, G., Sun, A., Cheng, Y.: Learning travel time distributions with deep
generative model. In: The World Wide Web Conference, pp. 1017–1027 (2019)

12. Li, Y., Fu, K., Wang, Z., Shahabi, C., Ye, J., Liu, Y.: Multi-task representation
learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1695–1704
(2018)

13. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

14. Liu, Z., Wu, Z., Wang, M., Zhang, R.: Multi-view spatial-temporal model for travel
time estimation. In: Proceedings of the 29th International Conference on Advances
in Geographic Information Systems, pp. 646–649 (2021)

15. Mil, S., Piantanakulchai, M.: Modified Bayesian data fusion model for travel time
estimation considering spurious data and traffic conditions. Appl. Soft Comput.
72, 65–78 (2018)

16. Pu, W.: Analytic relationships between travel time reliability measures. Transp.
Res. Rec. 2254(1), 122–130 (2011)

http://arxiv.org/abs/1707.01926

504 Z. Zhang et al.

17. Ren, H., et al.: MTrajRec: map-constrained trajectory recovery via seq2seq multi-
task learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 1410–1419 (2021)

18. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4_38

19. Shao, K., Wang, K., Chen, L., Zhou, Z.: Estimation of urban travel time with sparse
traffic surveillance data. In: Proceedings of the 2020 4th High Performance Com-
puting and Cluster Technologies Conference & 2020 3rd International Conference
on Big Data and Artificial Intelligence, pp. 218–223 (2020)

20. Tiesyte, D., Jensen, C.S.: Similarity-based prediction of travel times for vehicles
traveling on known routes. In: Proceedings of the 16th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, pp. 1–10
(2008)

21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

22. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? Estimating
travel time based on deep neural networks. In: Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

23. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse tra-
jectories. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 25–34 (2014)

24. Wu, H., et al.: Probabilistic robust route recovery with spatio-temporal dynamics.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1915–1924 (2016)

25. Yang, C., Gidofalvi, G.: Fast map matching, an algorithm integrating hidden
Markov model with precomputation. Int. J. Geogr. Inf. Sci. 32(3), 547–570 (2018)

26. Yen, J.Y.: Finding the K shortest loopless paths in a network. Manag. Sci. 17(11),
712–716 (1971)

27. Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.Z.: An interactive-voting based
map matching algorithm. In: 2010 Eleventh International Conference on Mobile
Data Management, pp. 43–52. IEEE (2010)

28. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks.
In: Advances in Neural Information Processing Systems, vol. 32, pp. 11983–11993
(2019)

29. Zhang, Y., Charoenphakdee, N., Wu, Z., Sugiyama, M.: Learning from aggregate
observations. arXiv preprint arXiv:2004.06316 (2020)

30. Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic pre-
diction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)

31. Zhou, Z.H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev.
5(1), 44–53 (2018)

32. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as
non-IID samples. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 1249–1256 (2009)

https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2004.06316

Attention, Filling in the Gaps
for Generalization in Routing Problems

Ahmad Bdeir(B), Jonas K. Falkner, and Lars Schmidt-Thieme

Hildesheim Universität, Hildesheim, Germany
bdeira@uni-hildesheim.de, {falkner,schmidt-thieme}@ismll.de

Abstract. Machine Learning (ML) methods have become a useful tool
for tackling vehicle routing problems, either in combination with popular
heuristics or as standalone models. However, current methods suffer from
poor generalization when tackling problems of different sizes or different
distributions. As a result, ML in vehicle routing has witnessed an expan-
sion phase with new methodologies being created for particular problem
instances that become infeasible at larger problem sizes.

This paper aims at encouraging the consolidation of the field through
understanding and improving current existing models, namely the atten-
tion model by Kool et al. We identify two discrepancy categories for
VRP generalization. The first is based on the differences that are inher-
ent to the problems themselves, and the second relates to architectural
weaknesses that limit the model’s ability to generalize. Our contribution
becomes threefold: We first target model discrepancies by adapting the
Kool et al. method and its loss function for Sparse Dynamic Attention
based on the alpha-entmax activation. We then target inherent differ-
ences through the use of a mixed instance training method that has
been shown to outperform single instance training in certain scenarios.
Finally, we introduce a framework for inference level data augmentation
that improves performance by leveraging the model’s lack of invariance
to rotation and dilation changes.

Keywords: Neural networks · Vehicle routing problems ·
Generalization

1 Introduction

The vehicle routing problem, first introduced in [4], lends itself as one of the
most studied combinatorial optimization problems in the field. It describes the
process of optimally serving a set of customers with fixed demands using a fleet
of vehicles from a fixed depot. The attention on VRPs has only been bolstered by
the more recent explosion of practical applications in the production and delivery
of goods whether from local or global sources. This is especially amplified by the
global COVID pandemic that forced brick and mortar retail shops to shut down
for extended periods of time.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 505–520, 2023.
https://doi.org/10.1007/978-3-031-26422-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_31&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_31

506 A. Bdeir et al.

Current approaches to tackling VRPs are divided between classical heuris-
tic methods, machine learning, or a combination of the two. Exact methods
do exist for the simpler problem variants however they become infeasible when
tackling larger problem instances due to computational constraints [1]. Classical
heuristics also suffer from a similar constraint though to a lesser extent. Comb-
ing through the solution space becomes very expensive, especially with larger
neighborhoods. Additionally, classical heuristics produce a solution for every
instance independently. No general model is learned and every further instance
will require a reset of the solving time. More time-constrained VRP applications
have then come to rely on machine learning to learn a generally applicable model
for similar problem types. Despite this trend however, the research has so far
been focused on improving performance in smaller problem instances. Scaling
the models to even slightly greater sizes has proven inefficient in terms of the
training time required and the incurred computation cost. As a result, when
targeting these larger VRPs, most methods rely on breaking down the problem
into a set of smaller sub-problems and solving them individually. The model
would then need components to find optimal route combinations. This is with
the earlier approach beginning to gain more traction in the research field [1].

It also seems that the issue of generalization remains somewhat overlooked.
There is a rush towards expanding the field with new methods that improve
results on the default small instances rather than consolidation of existing
research and scaling improvements. This paper will attempt the latter where
the second option becomes selecting promising current methods and building on
possible flaws so that they can generalize better to large instances. Specifically,
we aim at improving one such model by Kool et al. that is based on a combina-
tion of reinforcement learning and self-attention [6]. The paper is currently used
a base for multiple other models and we hope the improvements derived would
extend to those variations as well. Our contribution becomes as follows:

– Identification, classification, and attempted resolution of the model and prob-
lem inconsistencies that hinder generalization. Through the proposed solu-
tions we show that the identified issues are valid and we lay the grounds for
further research

– Creation of an adapted attention model that improves performance in both
upscaling and downscaling scenarios

– Proposition of a modified REINFORCE loss for sparse attention activation
functions (α−entmax) and a modified VRP training scheme that reduces
training time and increases performance

– Proposition of an inference-stage data augmentation method that boosts both
regular performance and generalization ability for most ML-based VRP con-
struction methods.

2 Related Work

The attention model (AM) by kool et al. leverages the transformer model and
replaces RNN based structures with attention in the encoder and the decoder.

Attention, Filling in the Gaps for Generalization in Routing Problems 507

The encoder takes node-wise features and applies a linear projection then
updates the resulting embeddings through N attention layers. This is done once
at the beginning of the training process. The decoder uses these embeddings as
the keys and the values along with a context vector as queries in order to deter-
mine the best node to add to the route. The context vector represents the current
state of the route and so the problem is solved sequentially, adding one node at a
time till completion [6]. This was the first successful transformer model employed
for VRPs and the basis for many later works, extending it to VRPs with time
windows [5], multi-decoder architectures [15] and off-policy learning [2].

Wu et al. combine the attention approach with classical heuristics to achieve
state-of-the-art results in a smaller time frame than using heuristics alone [14].
An initial solution is first generated using nearest insertion, the improvement
problem is then formulated into a reinforcement learning process. The state
is the current solution, the action is a node pair in the solution to perform a
local operator on, and the reward is the difference between the current solution
length and the newly generated one. The goal of the model is then to learn an
optimal policy for selecting the best local operator pairs. Wu et al. also limit the
maximum number of actions that can be performed per iteration to T . Larger
Ts lead show better results but slower time performance and as such a balance is
made based on the required performance and the training time constraints [14].

To augment the input node features, Wu et al. use self-attention on the
encoder and decoder level similar to kool et al. [14]. The model is also trained
on a maximum problem graph size of 100. This is because the attention model
encoding is computationally expensive at higher sizes. The Wu et al. model is
then infeasible when running on larger scale problems even when using smaller
T values. In addition, the generalization studies performed by the paper show
a drastic increase in the optimality gap when the model is used on different
problem size instances. This was true for both downscaling and upscaling respec-
tively [6,14]. Attention models become unable to tackle large, real-world problem
instances.

Another method based on the Kool et al. attention model is Policy Opti-
mization with Multiple Optima (POMO). In their paper, Kwon et al. dissect the
solution construction problem into the selection of a first node π1 = pθ(a1|s1) and
the selection of the remaining nodes πt = pθ(at|st, a1:t−1) where t ∈ /2, ..., T/.
When using this formulation the final solution becomes contingent on the first
action a1 similar to a form of bias [7]. The POMO model exploits this lack of
consistency to introduce a low variance baseline for REINFORCE applications in
VRPs. The model first samples a set of N different nodes as “favorable” starting
actions a1

1, ..., a
N
1 and constructs N different trajectories in parallel. The mean

cost of N trajectories is used as the baseline when updating the model weights
with the REINFORCE algorithm. Kwon et al. show this achieves lower variance
and enhances the model’s overall performance drastically [7].

Peng et al. criticize another limitation to the attention-based models and
present the Adaptive Dynamic Attention for VRPs(ADM-VRP) as a possible
solution. They claim that the dynamic nature of the problem is poorly repre-
sented in the original Kool et al. model. The graph embedding is only calculated

508 A. Bdeir et al.

once at the beginning of the solving process [9] and is not updated to reflect the
changes in the remaining unserved nodes. To tackle this, ADM instead recom-
putes the embeddings after every partial solution. The decoder treats the remain-
ing customers as a separate problem w.r.t. the original model and utilizes the
encoding of the new subgraph when making decisions. The authors show that
ADM performs better on same size problems, and is also able to generalize much
better on instances of different sizes [9].

3 Preliminaries

3.1 Problem Definition

We define a CVRP instance of size N over an undirected graph G(V,E) where
V = {v0, ..., vN} is the set of vertices and E = {eij = (vi, vj) : vi, vj ∈ V, i < j}
is the set of edges connecting the vertices. We also define the symmetric matrix
C = [cij] that corresponds to the cost of traversing edge (eij as the travel distance
between the graph nodes. We fix the node v0 to the depot node which holds a
homogeneous fleet of K vehicles with a carrying capacity of DN . The goal is to
serve the set of customers V \{v0} with individual non-negative demands di > 0
while minimizing the total travel cost incurred. Each node, except for the depot,
is visited exactly once by one vehicle.

The solution for a CVRP instance or tour can then be defined as the sequence
τ = {(τ0, ..., τT)ß where T is the number of individual routes traversed and τt

is a subset of the graph and begins and ends with the depot node τt = {v0,⊂
V \{v0}, v0}. For the CVRPs tackled in this paper, we assume an unconstrained
number of vehicles K and as such, an unconstrained number of tours T .

3.2 Original Model

The original Kool et al. model is based on the transformer architecture with an
attention encoder-decoder. The main difference is the lack of positional encoding
as the input order of the nodes has no significance for the problem representa-
tion [6].

Encoder. The encoder first calculates an initial dh-dimensional graph node
embedding through a learned projection:

h
(0)
i =

{
Wxxi + bx if i �= 0
W0xi + b0 if i = 0

(1)

where xi is the dx-dimensional node features (dx = 3 for CVRP) and separate
weights are used for the depot embedding. We then update these embeddings
with N = 3 attention layers to compute the final embeddings h

(N)
i . Here an

attention layer is defined as an MHA sublayer and a fully connected feed-forward
sub-layer (FF). The MHA layer is used as the message passing algorithm in the

Attention, Filling in the Gaps for Generalization in Routing Problems 509

graph. It is the standard MHA used in the transformer model with 8 heads. As
for the FF layer we use a hidden dimension of 512 and ReLU activations. Both
layers also use skip connections and batch normalization:

ĥ
(l)
i = BN l(h(l−1)

i + MHA
(l)
i (h(l−1)

1 , ..., h(l−1)
n)) (2)

FF (ĥ(l)
i) = WF

1 ReLU(WF
0 ĥ

(l)
i + bF

0) + bF
1 (3)

h
(l)
i = BN l(ĥi + FF l(ĥi)) (4)

This gives us the final node embeddings h
(N)
i . The encoding is done once

for the entire solving process and the embeddings are reused statically for every
decoding step. We also calculate a graph embedding h̄ as an aggregation of the

total node embeddings h̄ =
1
n

∑n
i=1 h

(N)
i to be used for the decoder.

Decoder. The problem is solved sequentially with a node being visited at every
construction step t ∈ {1, . . . , T}. The model uses a context vector hc and the
node embeddings to create a probability distribution over the remaining nodes
and sample the next action. The theory behind using a context vector hc is
guiding the decoding process under the current problem state. To calculate hc

we first generate an initial vector h′
c as:

h
(N)
(c) =

{
[h̄(N), h

(N)
πt−1 , D̂t], if t > 1

[h̄(N), h
(N)
0 , D̂t], otherwise

(5)

where h̄(N) is the average graph embedding, h
(N)
πt−1 is the last visited node, D̂t is

the remaining vehicle capacity and [.,.,.] is used as the concatenation operator.
We then pass h′

c through a single M-head attention layer) to get the final
context vector hc. The parameters are not shared with the encoder layers, and
only a single query qc, the linear transformed h′

c vector, is computed for every
head. This gives:

qm
(c) = Wm

q h′
c, km

j = Wm
k hN

j , vm
j = Wm

v hN
j (6)

and the remaining MHA operations are done as discussed in the transformer
section. Finally, a single head attention layer is used to calculate probabilities
p(πt|X,π1:t−1):

q = Wqhc, k = WkhN
j (7)

uj =

⎧⎨
⎩C . tanh(

qT
i kj√
dk

), if dj < D̂t and xj /∈ π1:t−1

−∞, otherwise
(8)

where C is the clipping operator between [−10, 10]. This gives:

pθ(πt = xj |X,π1:t−1) = softmax(uj) (9)

For training, the model samples the next action from the calculated distribution
and for inference, it takes a greedy approach and select the node with the highest
probability.

510 A. Bdeir et al.

4 Targeting Generalization

In order to alleviate the issues with generalization, we first divide the discrepan-
cies between problems of different graph sizes into fixed problem differences and
model differences. Fixed differences are discrepancies that are inherent to the
problem itself and cannot be changed by altering the model. These include dif-
ferences in capacities, differences in the action space, differences in the required
number of routes, etc. These cannot be changed and instead the model must
be altered or trained to accommodate them. As for model differences, they are
related to the model’s ability to represent the problem properly. The following
section discusses the differences tackled in this paper.

4.1 Inherent Differences

In the case of inherent issues, we identify the following key problems:

– Node Density: Training data is sampled in the unit square by default.
Any increase in the number of nodes generated in the same area will cause an
increase in overall node density. This changes the typically expected distances
between the nodes and can lead to model confusion when selecting the next
best action.

– Capacity Difference: Larger problem instances utilize vehicles with greater
capacities that can carry more load. When faced with a similar distribution
in demands, that leads to a change in the average node-wise route length. We
theorize that the model could be learning average route lengths and might
tend to have root length bias based on the problem size trained on.

4.2 Model Differences

As for the model differences, we identify:

– Attention Dilution: By default, the attention mechanism uses the softmax
activation function which is unable to deliver 0 attention to any node [6,10].
By increasing or decreasing the number of nodes we then effectively concen-
trate or dilute attention and present the model with attention distributions
that are unfamiliar to it.

– Static Encodings: The Kool et al. model is static in the embedding tech-
nique, the encodings are calculated once in the beginning and reused for every
subsequent decoding step [6]. It is unable to capture the dynamic changes in
the problem as the solution develops [9]. The nodes that have already been
visited in a previous route are no longer relevant to the selection of the next
node in the current route. Available attention, embedding capacity, and model
resources are exhausted.

We realize there are other architectural decisions that could be examined but
we recognize the above as more major issues and tackle them in specific.

Attention, Filling in the Gaps for Generalization in Routing Problems 511

5 Methodology

5.1 Dynamic Encoder

Kool et al. encode the graph once at the 0-time step and then reuse the encodings
in every decoding step until termination [6]. In their paper, Peng et al. state that
after a route in the tour is generated, the remaining unvisited nodes form a new
subproblem [9]. The static embeddings that were previously calculated become
less suited to represent the new structure information. We follow Peng et al. in
introducing more frequent encodings to resolve this. Specifically, we re-encode
the remaining node features every time a partial solution is found. Formally, the
embedding of the problem node i then becomes:

h
(t)
(i) =

{
ME(h0

0, ..., h
0
n), if πt−1 = x(depot)

h
(t−1)
(i) , otherwise

(10)

Re-embedding the new subproblem simulates training on smaller graph sizes
which would typically help to downscale. However, even for the task of upscal-
ing, breaking down the problem allows it to eventually reach familiar sizes that
resemble the training data. This is similar to approaches that rely on the par-
titioning of the complete problem into smaller subgraphs. The difference here
is that problem partitions are done sequentially after a solution route is estab-
lished. Another difference is that the new problem graph is a subset of the older
graph node-set. This is opposed to normal graph partitioning methods where the
subproblems are independent, determined in the beginning, and can be solved
in parallel (Fig. 1).

G1

G2

(1) (2) (3)

Fig. 1. Problem graph re-encoding at every partial solution found. The new instance
G2 is a subgraph of G1 and is encoded as a separate problem.

We follow Peng et al. in their implementation of the re-encoding logic. During
the training process, the encoder can only be run for the entire batch, this
includes problem instances that have not yet finished their current routes. The
model can perform the re-encoding and discard the values but that would be
wasteful computationally. To resolve this, a problem instance that has already

512 A. Bdeir et al.

reached the depot is forced to remain at the depot until all other instances in
the batch also finish their partial solutions.

πb
t =

{
xdepot, if πb

t−1 = 0 and
∑B

b=0 πb
t−1 = 0

DECODE, otherwise
(11)

where B is the batch size and b ∈ B.

5.2 α-Entmax Implementation

We recognize two options for the implementation of the α-entmax activation in
the place of the softmax activations. This is based on the two roles the softmax
plays in the attention model. Internally, the softmax function is used to compute
the normalized attention weights in the encoder and the decoder [12]. Applying
the entmax function here is straightforward and it is a simple replacement. This
has been tried in NLPs and has shown to help remove noise when processing the
attention weights by removing the effect of irrelevant data points, see [10].

However, the softmax is also used in order to map the final attention score to
a probability distribution for node selection [6]. Introducing the entmax function
here is more complicated with the use of the REINFORCE loss. Applying the
entmax function without any changes heavily degrades performance. We find
that the model converges early to relatively bad actions. We suspect that the
high sparsity further exacerbated this by encouraging these overconfident actions
and assigning zero values to good actions causing them to be completely ignored
early on. Their attention would also be diverted to the remaining actions that
are assigned even larger probabilities. This highly limits exploration and the
ability to recover good next nodes, which causes the performance to decrease
dramatically.

Williams et al. previously notes this problem of early convergence and sug-
gests adding an entropy regularization factor in [13] (entropy maximization). In
their paper, Peters et al. also comment on a similar issue with models based on
the α-entmax activation. They propose a new loss function to replace the Nega-
tive Log-Likelihood Loss (NLL) typically used with the softmax activations. The
loss incorporates the Tsallis entropy specific to each α value. They state that
“harder” time steps that allow for multiple optimal or close to optimal actions
will then lead to a higher entropy that forces the algorithm to better explore the
state space [10]. We follow both papers and account for the respective expected
entropy for every α. The loss becomes:

∇L(θ|s) = Epθ(π|s)[(L(π) − b(s))∇log p(π|s) + β∇Hπ)] (12)

where β is a hyperparameter to control the entropy regularization amount and
Hπ is the corresponding entropy for the entmax activation used in policy π.
This method allows for the model to learn without any performance issues or
instability.

Attention, Filling in the Gaps for Generalization in Routing Problems 513

5.3 Mixed Problem Sizes

So far we attempt to address the generalization issue based on the observable het-
erogeneity between problems of different graph sizes. However, given the black-
box nature of deep learning, the reasoning utilized by the model while tackling
the different sizes is still ambiguous. We acknowledge this and instead attempt
to leverage the model’s ability to learn on mixed data.

To do this we generate the training set F = f1, ..., fM where fm is a generated
data subset for a particular problem size, and M is the number of different
problem sizes S to train on. All subsets are equal in size. At every training
iteration i in an epoch, the model samples a batch bi from fm where m =
(i + 1) − �i/M	M and feeds it into the model. The different problem sizes may
incur different cost magnitudes, and seeing as the objective is minimizing the
cost, this could cause confusion while training. One option would be shifting the
cost formula for the problem to account for the average expected problem cost.

costnorm(τ) =
T∑

t=0

cost(τt)
sm

(13)

where sm ∈ S is the size of the problems in the current batch sample set fm.
However, we found no benefit from this normalization and instead used the
default cost formula.

5.4 Inference Data Augmentation

Kwon et al. introduce the concept of instance augmentation for VRP graph
data. They state that the attention-based model by Kool et al. arrives at a
different solution when reformulating the same problem through small linear
transformations [7]. The POMO model does this by shifting the graphs a certain
amount in 8 different directions before inference. Since the relative position of
graph nodes with respect to each other is conserved, solutions derived from the
augmentations remain valid.

We take this a step further by introducing two new types of instance augmen-
tation, graph dilation, and graph rotation. In the case of the latter the problem is
rotated with respect to (0.5, 0.5), the center of the unit square. Rotation degrees
are determined manually however, intuitively, we only rotate the problem by
multiples of 90◦. This avoids instances where the transformed graph nodes lie
outside the unit square.

RO,θ(xi, yi) =
(

cos θ − sin θ
sin θ cos θ

) (
xi − a
yi − b

)
+

(
a
b

)
(14)

where O is the center of rotation at (a, b) and θ is the rotation degrees in radians.
Tour cost can be calculated directly from the solution of the augmented graphs
since the distances between the nodes remain constant.

The second method, however, graph dilation, relies on scaling the distances
between graph nodes with respect to a center of dilation, also taken as O =

514 A. Bdeir et al.

(0.5, 0.5). For any augmented node i with coordinates (xi, yi) the transformed
coordinates become

DO,k(xi, yi) = (k(xi − a) + a, k(yi − b) + b) (15)

where O is the center of dilation at (a, b) and k is the scale factor. The inference is
done on dilated graphs with different scale factors that cater towards fitting the
inference problem size to the density of the training problem size. It should be
noted that the costs from these solutions cannot be directly computed. Instead,
we generate the solutions, apply them to the original data instances and then
calculate costs. This is because the inferred cost will scale with the dilation
process.

5.5 Model Training and Evaluation

For training, we follow Nazari et al. in their data generation method [8]. The
depot node and n customer node coordinates are sampled uniformly in the unit
square [0, 1]. The demands δi are sampled uniformly in the interval 1, ..., 9 and
normalized by the problem vehicle capacity Dn. This gives δ̂i = δi/Dn, where
D20 = 30, D50 = 40 and D>100 = 50.

For testing as well, we follow Nazari et al. in their use of the optimality gap
with the best-known solution [8]. The test dataset is also generated based on the
distribution above as in [6–9]. Given a large enough test set, this should ensure
the ability of reusing the numbers as reported by other papers that also utilize
this. We then circumvent the difficulties with typical benchmark evaluations that
include a lack of available code, or a lack of trained models (that in turn could
lead to deterioration of benchmark performance due to an unknown initialization
of benchmark hyperparameters when retraining).

In terms of model time consumption, we rely on the original time values
reported by every model’s corresponding authors. However, we note that it is
difficult to extract meaningful insight from the comparison of these run times.
The hardware configurations used in every paper are greatly varied and play a
very large role in the overall time consumption. This problem is only exacerbated
when models such as LKH-3 are mainly CPU reliant and not only GPU reliant.
We find that the field could benefit from a unified routing library that compiles
existing literature methodologies. This would facilitate benchmark evaluations in
terms of time consumed on the same hardware and a more accurate performance
comparisons.

6 Results

6.1 Dynamic Training and Entmax

In the following section, we rely on the 1.5–entmax throughout the experiments.
The α = 1.5 value is used in all heads of the MHA layers during encoding
and decoding. It has been shown that allowing for different degrees of sparsity

Attention, Filling in the Gaps for Generalization in Routing Problems 515

between heads improves performance as different learned features do not neces-
sarily share the same relation sparsity [3]. It is possible to use separate learned α
values but this is not done in the paper. At current, the 1.5–entmax function has
an optimized closed-form solution for both computations and gradients. Other
values rely on the bisect method to find a close estimate of the outputs (the
degree of accuracy depends on the number of bisections permitted). By allowing
the adaptive sparsities we incur a very high computation time and resource cost.
Should more efficient methods for estimation become available, we see this as a
very promising approach to build upon.

The application of the entmax function happens twofold: once using the func-
tion only as an attention normalization mechanism, and once using the function
for both normalization and probability distribution mapping. The losses used
are vanilla REINFORCE and REINFORCE with expected entropy normaliza-
tion respectively. All models are trained on the default problem size C50 and the
results are recorded in Table 1.

Table 1. Performance comparison of the trained C50 model with different entmax
implementation methods (once with 1.5-entmax as attention normalization only, and
once with entmax probability output as well).

20 50 100
Cost Gap Cost Gap Cost Gap

LKH-3 6.14 0.00% 10.38 0.00% 15.65 0.00%
ADM-50 6.48 5.54% 10.78 3.85% 16.55 5.75%
SADM - reg. only 6.43 4.72% 10.86 4.62% 16.48 5.30%
SADM - both 6.34 3.26% 10.74 3.47% 16.28 4.03%

Overall we can see that the implementation of the entmax activation for
sparse attention leads to a significant increase in the model’s generalization
ability. We note that when used in conjunction with the softmax activation,
the model performance decreases w.r.t. to the original ADM paper on prob-
lems of the same training size. We suspect that despite the default loss function
implemented allowing training without convergence problems in this scenario,
it remains not ideal for use with the entmax activations in general. This is due
to the problems stated in the methodology section. When 1.5-entmax is applied
for both normalization and in the final output layer, the model is able to exceed
the performance of the original ADM model in both the C50 test set and the
generalization sets.

Based on these results, we deduce that attention dilution is a probable issue in
the model encoding and decoding of the problem. The sparse adaptive dynamic
model (SADM) is then used as a basis for the final model implemented.

516 A. Bdeir et al.

6.2 Final Model

We first compare the C50, C100 and C50/100 trained models to popular baselines.
The baseline results here are reported from the original papers (the models are
trained on the graph sizes corresponding to the test set graph sizes) (Table 2).

Table 2. Experimental results on CVRP

Method Problem size

20 50 100

Mean Gap Time Mean Gap Time Mean Gap Time

LKH3 6.14 0.66% 2h 10.38 0.00% 7h 15.65 0.00% 13 h

Kool (greedy) 6.4 4.23% 1 s 10.98 5.78% 3 s 16.8 7.35% 8 s

Kool (sampling 1280) 6.25 1.79% 6min 10.62 2.31% 28min 16.23 3.71% 2h

Wu et. al. (5000 impr. steps) 6.12 −0.33% 2 h 10.45 0.67% 4h 16.03 2.43% 5h

POMO 6.17 0.49% 1 s 10.49 1.06% 4 s 15.83 1.15% 19 s

POMO + Aug. 6.14 0.00% 5 s 10.42 0.39% 26 s 15.73 0.51% 2min

ADM 6.28 2.28% 1 s 10.78 3.85% 7 s 16.4 4.79% 26 s

SADM-50 6.34 3.26% 1 s 10.73 3.37% 5 s 16.28 4.03% 19 s

SADM-100 6.45 5.05% 1 s 10.83 4.34% 5 s 16.23 3.71% 19 s

SADM-Mix 6.34 3.26% 1 s 10.75 3.56% 5 s 16.18 3.39% 19 s

SADM-Mix + Aug. 6.24 1.63% 10 s 10.6 2.12% 38 s 15.99 2.17% 2min

We see that the model shows competitive performance on all the given prob-
lem sizes despite being trained only for specific instance sizes. The model’s gen-
eralization ability is also able to outperform both the Kool et al. model and the
base ADM models when they are trained for the corresponding test size. This
is true for both upscaling and downscaling instances. We also notice that the
model trained on mixed instances of sizes 50 and 100 (SADM-Mix) seems to
outperform the model trained on 100 alone (SADM-100). This is even on C100

test instances. Further experiments with other models are required to see if the
same behavior is exhibited. If so, this would prove to be a beneficial training
method that saves both training time and increases model abilities.

In Table 3, we find that both upscaling and downscaling results have
improved dramatically even when compared with the already dynamic attention
model proposed by [9]. We extend this to compare with generalization results
on significantly greater problem sizes as depicted in Table 4 and Fig. 2.

While the model does seem to remain usable for the C200 problem instances,
the performance continues to fall off with the increasing sizes. It should be noted
that not only does SADM perform better than the Kool et al. model, the falloff
between C500 and C1000 instances is greatly reduced. For Kool et al. the optimal-
ity gap increases almost two-fold, this is contrasted with a very slight increase in
the gap for the SADM model. We assume that the architectural changes imple-
mented manage to counteract a lot of the model deficiencies with greater scaling.
It should also be noted that any lower optimality gap for higher problem sizes
could be the result of a fall-off in LKH-3 performance given the time constraint.

Attention, Filling in the Gaps for Generalization in Routing Problems 517

Table 3. Generalization comparison with base models trained on C50

20 100
Cost Gap Cost Gap

LKH-3 6.14 0.00% 15.65 0.00%
Kool-50 (greedy) 6.8 10.75% 16.96 8.37%
Kool-50 (sampling) 6.63 7.98% 16.34 4.41%
ADM-50 6.48 5.54% 16.55 5.75%
SADM-50 6.34 3.26% 16.28 4.03%
SADM-Mix 6.34 3.26% 16.18 3.39%
SADM-Mix + Aug. 6.24 1.63% 15.99 2.17%

Table 4. Generalization ability on large graph sizes in table form

200 500 1000
Cost Gap Cost Gap Cost Gap

LKH-3 26.8 0.00% 61.87 0.00% 119.02 0.00%
Clarke-Wright 27.69 3.32% 63.1 1.99% 120.2 0.99%
AM (100) 30.23 12.80% 69.08 11.65% 151.01 26.88%
SADM-50 28.95 8.02% 67.05 8.37% 130.58 9.71%
SADM-100 28.5 6.34% 65.1 5.22% 125.66 5.58%
SADM-Mix 28.46 6.19% 64.5 4.25% 123.84 4.05%
SADM-Mix + Aug 28.15 5.04% 64 3.44% 122.99 3.34%

Fig. 2. Comparison of the Generalization ability on large graph sizes

518 A. Bdeir et al.

6.3 Graph Augmentation

In terms of data augmentation, we use two main methods of manipulating the
inference test set. We are able to rotate the graphs or enlarge and compress them
about the center of the unit square they were sampled in. We refer to the process
of enlarging and compressing the graphs as dilation. Initially, dilation was only
attempted as graph compression, however, an ablation study was conducted
to measure any possible benefits from increasing the graph scale. Intuitively,
we predicted this would cause a degradation in model performance since graph
nodes will no longer be restricted to the trained unit square coordinate space.
The graphs were scaled by k ∈ [1, 1.8] in intervals of 0.1. The results are recorded
for the respective validation datasets and reported in the Fig. 3. We record the
cumulative performances (take the lowest cost of each instance in the set in
different dilations), and single dilation performances.

Fig. 3. Model performance for C100 through C500 using different dilation scales

We notice that model performance continued to benefit when scaling up
the graph node coordinates. This was counter to initial thoughts and could
prove to be an inexpensive solution to resolving density discrepancies even when
upscaling. For the final model, we rely on 5 dilation values {1.1, 1.2, 1.6, 1.8}
along with the original problem scale. In practice, should the method be applied
to graph sizes with high inference time, we can adjust the dilation factors to
predetermined values that best suit the target problem size.

As noted in Table 4, the impact of dilation decreases as the problem size
grows significantly. Even higher dilation factors are used but no benefit can be

Attention, Filling in the Gaps for Generalization in Routing Problems 519

drawn which is typically the case as we can see in Fig. 3. We hypothesize that
this is due to the very large difference between training and inference densities.
In order to mimic the training density, the problem nodes must be dilated too far
a distance from the original unit square. The encoder does not have the degree of
flexibility required to capture the graph information accordingly at that point.
The fall-off in encoder performance counteracts any benefit seen from density
dilution.

Fig. 4. Model performance for C20 through C100 using dilation vs rotation

We also find that the larger augmentation benefits come from the dilation
operation rather than rotation as can be seen in Fig. 4. This is especially in gen-
eralization tasks and likely due to dilation mitigating the graph density issue.
However, and with the encoder proving able to handle coordinates slightly out-
side the unit square, we increase the number of possible rotations from multiples
of 90 to multiples of 45. The optimal values of rotation and dilation factors for
each problem size should be determined to benefit inference performance while
limiting inference time and the number of solving instances. It should be noted,
however, that augmented inferences can be done in batches in parallel, this is
opposed to the sequential nature of beam search methods. This makes solving a
large number of augmentations much faster in comparison.

7 Conclusion

In conclusion, in this paper we provide a series of possible solutions that benefit
both the upscaling and downscaling abilities of the attention model by Kool et
al. This also inherently verifies our assumptions on the underlying causes of poor
performance when moving to other graph sizes. These problems are alleviated

520 A. Bdeir et al.

but not solved completely as can be seen in the results. The model does perform
significantly better than the base attention model and other baselines but the
optimality gap still grows as we generalize farther away from the original training
set size.

Overall the solutions provided set up a framework for both future works on
generalization as well as attention-based models for VRPs in general. Imple-
menting sparse attention, specifically using the α-entmax activation, improves
performance at a very small computation cost. This is the same with regard to
mixed training instances and the proposed inference level data augmentation.
More research is required on the topic but we believe these are good first steps
in the direction of expanding pure ML methods in solving the CVRP.

Acknowledgements. This work was supported by the German Federal Ministry of
Education and Research (BMBF), project “Learning to Optimize” (01IS20013A:L2O).

References

1. Bai, R., et al.: Analytics and machine learning in vehicle routing research.
arXiv:2102.10012 [cs, math] (2021)

2. Bdeir, A., et al.: RP-DQN: an application of Q-learning to vehicle routing problems.
In: Proceedings of the KI: Advances in Artificial Intelligence, pp. 3–16 (2021)

3. Correia, G.M., et al.: Adaptively sparse transformers. arXiv:1909.00015 [cs, stat]
(2019)

4. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80–91 (1959). https://doi.org/10.1287/mnsc.6.1.80

5. Falkner, J.K., Lars, S.-T.: Learning to solve vehicle routing problems with time
windows through joint attention. arXiv:2006.09100 [cs] (2020)

6. Kool, W., et al.: Attention, learn to solve routing problems! 25 (2019)
7. Kwon, Y.-D., et al.: POMO: policy optimization with multiple optima for rein-

forcement learning. arXiv:2010.16011 [cs] (2021)
8. Nazari, M., et al.: Reinforcement learning for solving the vehicle routing problem.

arXiv:1802.04240 [cs, stat] (2018)
9. Peng, B., et al.: A deep reinforcement learning algorithm using dynamic attention

model for vehicle routing problems. arXiv:2002.03282 [cs, stat] (2020)
10. Peters, B., et al.: Sparse sequence-to-sequence models. arXiv:1905.05702 [cs] (2019)
11. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. Society

for Industrial and Applied Mathematics. SIAM, Philadelphia (2015)
12. Vaswani, A., et al.: Attention is all you need. arXiv:1706.03762 [cs] (2017)
13. Williams, R., Peng, J.: Function optimization using connectionist reinforce-

ment learning algorithms. Connect. Sci. 3, 241 (1991). https://doi.org/10.1080/
09540099108946587

14. Wu, Y., et al.: Learning improvement heuristics for solving routing problems. IEEE
Trans. Neural Netw. Learn. Syst. 1–13 (2021). https://doi.org/10.1109/TNNLS.
2021.3068828

15. Xin, L., et al.: Multi-decoder attention model with embedding glimpse for solving
vehicle routing problems. In: AAAI 2021, pp. 12042–12049 (2021)

http://arxiv.org/abs/2102.10012
http://arxiv.org/abs/1909.00015
https://doi.org/10.1287/mnsc.6.1.80
http://arxiv.org/abs/2006.09100
http://arxiv.org/abs/2010.16011
http://arxiv.org/abs/1802.04240
http://arxiv.org/abs/2002.03282
http://arxiv.org/abs/1905.05702
http://arxiv.org/abs/1706.03762
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1109/TNNLS.2021.3068828
https://doi.org/10.1109/TNNLS.2021.3068828

Can we Learn from Outliers?
Unsupervised Optimization of Intelligent

Vehicle Traffic Management Systems

Tom Mertens and Marwan Hassani(B)

Eindhoven University of Technology, Eindhoven, The Netherlands

m.hassani@tue.nl

Abstract. Vehicle traffic flow prediction is an essential task for several
applications including city planning, traffic congestion management and
smart traffic light control systems. However, recent solutions suffer in
outlier situations where traffic flow becomes more challenging to predict.
In this work, we address the problem of predicting traffic flow on differ-
ent intersections in a traffic network under the realistic assumption of
having outliers. Our framework, called OBIS, applies an existing LOF-
based approach to detect outliers on each intersection in the network
separately. Based on the spatio-temporal interdependencies of these out-
liers, we infer the correlations between intersections in the network. We
use these outlier-based correlations then to improve the predictability of
existing traffic flow prediction systems by selecting more relevant inputs
for the prediction system. We show that our framework considerably
improves the performance of LSTM-based models both under outlier sce-
narios and also under normal traffic. We test our framework under two
real-life settings. In the first, we show how improving the predictability
using our framework reduces the overall delays of vehicles on an intersec-
tion with a smart traffic light control system. In the second, we demon-
strate how OBIS improves the predictability of a real dataset from four
trajectories of intersections in the city of The Hague. We share the latter
dataset together with an implementation of our framework.

Keywords: Outlier detection · Correlations · Dimensionality
reduction · Traffic flow prediction

1 Introduction

Traffic flow modelling is a broad field with many applications, such as enabling
city planners to better regulate traffic in a city [16] or reducing and better man-
aging congestion [13]. Next to this, reducing the time spent in traffic jams is time
has always been in the interest of researchers and practitioners. In 2014, the US
economy lost around 160 billion dollars due to this lost time [15]. Improvements
in infrastructure benefit the economy and the well-being of humans. However,
upgrading the road capacity by increasing the amount of lanes can be expensive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 521–537, 2023.
https://doi.org/10.1007/978-3-031-26422-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_32&domain=pdf
http://orcid.org/0000-0002-4027-4351
https://doi.org/10.1007/978-3-031-26422-1_32

522 T. Mertens and M. Hassani

Fig. 1. A traffic network explaining the setting of the problem addressed in this work.
Top-k outliers are calculated locally on each intersection. The correlation between the
intersections is then checked based on the temporal correlations between their top-k
local outliers within a window w = 1 h before and after each top-k outlier of the target
intersection.

and requires space, something that is often scarce in urban settings. In urban
settings, intersections managed by traffic light installations (traffic controllers)
are very common, but they are not always optimal. One way of decreasing con-
gestion and optimizing the traffic flow is to increase the efficiency of traffic
controllers, the intelligent systems that control the traffic lights [8]. Ineffective
traffic controllers can cause unnecessary delays (e.g. when there are less vehicles
than predicted on a specific lane). These kinds of problems can cause congestion.
If we can introduce more effective traffic controllers, we can reduce congestion,
average travel time and average amount of stops required in an intersection, and
as such create smoother and faster traffic flows.

In Fig. 1, assume that the task is to predict the traffic flow on the target
intersection (A). To count the real number of vehicles flowing on each lane,
each intersection is equipped with several activation sensors that continuously
collect these values and forward them close to the real time to a prediction
model to estimate future traffic flows that are used by the intelligent traffic
controller of that intersection. The model used to predict the near-future values
of the traffic flow on intersection A can use previous readings on intersection
A merely. Obviously this might work, but not as effective as one aims to. The
dynamics in the traffic network allow for more connections between intersections.
As such, including the traffic flows on neighbouring intersections B, C, D & E
while predicting near-future values on A will add more context to the prediction

Can we Learn from Correlations Among Outliers? 523

model and should intuitively improve the model prediction accuracy. This is
however not a golden rule as some intersection readings might be contributing
much more noise to the prediction model than a useful input. Additionally, with
slightly complex traffic networks, it becomes almost impossible to know when to
stop including further intersections (e.g. is it meaningful to include the readings
from the far intersections R & Q?).

The problem we address in this work is how to decide which intersections are
“relevant”, such that their readings should be included in the prediction model
of a target intersection to maximize its accuracy. In Fig. 1, those are intersec-
tions marked in green. Due to the connectivity between traffic intersections,
deviating traffic situations, or outliers, in the traffic flow in intersection A can
propagate to intersection B (or the other way around). We use this propagation
of outliers from an intersection to another in our proposed framework to infer
the correlating intersections in an unsupervised setting. For each intersection,
we find its local outliers individually and in a later step we check the spatio-
temporal correlations between the outliers on different intersections. In Fig. 1,
the local outliers found on intersection B had a high temporal correlations with
the local outliers found on intersection A. Additionally B has a shorter driving
time to A than a specified threshold which makes it spatially correlated to A.
The outliers found on D are not temporally correlated with the ones found on
A, although it is a neighbouring intersection to A. Thus, we assume that D is
not a correlating intersection with A. The same applies for Q but the other way
around, although the temporal correlation is satisfied, it is not included because
the spatial threshold is not satisfied.

Existing traffic prediction models perform relatively well, except when they
have to handle an outlier traffic situation. By relaying outlier information to
the prediction model, we hope to be able to improve the general performance of
traffic prediction flow models. To this end, we propose OBIS, an Outlier-Based
Intersection Selection framework which aims to improve an existing intelligent
traffic controller that works on real intersections. The existing traffic controller
is a product of our industrial partner, Siemens Mobility.

This controller, called DIRECTOR, aims to minimize vehicle traffic delays
by using an LSTM-based model for predicting the queues in front of traffic
lights. However, it suffers from the limitations mentioned above as it focuses
only on the previous readings of the target intersection and the intersections
directly preceding it for predicting its future traffic flows. Additionally, it does
not perform well under outlier situations. Since both the code of DIRECTOR
and the readings from intersections are the ownership of Siemens, we additionally
test our method on a large open dataset from 30 real traffic intersections in
the city of The Hague collected for 2 years and 3 months and with a total of
7, 093, 440 readings (cf. Table 1). We share our implementation of OBIS which
contains additionally a link to The Hague dataset.

More precisely, the contributions of this work are: (1) we introduce a novel
outlier-correlation-based method, called OBIS, for improving the predictability
of traffic flows on intersections by selecting more relevant input, (2) we test OBIS
on the prediction models of DIRECTOR, a real intelligent traffic controller, (3)

524 T. Mertens and M. Hassani

we show that the accuracy improvements introduced when using OBIS over
DIRECTOR considerably reduces the delay time of vehicles on the intersections
to the half, (4) we additionally test OBIS on an open dataset from 30 inter-
sections in the city of The Hague with more than 7 Million readings and show
that OBIS increases the accuracy of an LSTM prediction model by 17.9% under
outlier situations and by 10.3% in general, and finally, (5) for reproducibility
purposes, we share an implementation of OBIS and The Hague dataset too.

The remainder of this paper is organized as follows: Sect. 2 introduces the
related work. Preliminaries and some notations are introduced in Sect. 3 after
which the main OBIS method is presented in Sect. 4. The applied scenarios are
introduced in Sect. 5, and then extensively experimented and evaluated in Sect. 6.
Section 7 concludes the paper with an outlook.

2 Related Work

Density-based outlier detection is one of the most common unsupervised ways
to detect outliers due to its ability to compare the local outlierness values of
data points by using the reachability distance of a data point relative to those
of neighbouring data points. There are two main techniques for similarity-based
outlier detection and both are based on the nearest neighbours concept. The kNN
(k-nearest-neighbours) algorithm and the LOF (Local Outlier Factor) algorithm
[5]. There are many dialect techniques which are adapted versions of those two
base methods. For example, a kNN based algorithms is: kNN-weight [3] which
uses the sum of distances to reduce the variation and sensitivity to the parameter
k. Outlier Detection using Indegree Number (ODIN) [9] is a graph based kNN
algorithm that defines outlierness as a low number of in-adjacent edges in the
graph. An example of a LOF based algorithm is INFLO (Influenced Outlierness)
[10] which combats the problem of outlier estimation based on local neighbours
that occurs when a dense cluster is close to a data point in a sparse cluster. It
does so by considering both neighbours and reverse neighbours of a data point
when estimating its density neighbourhood for the LOF. Many more examples of
modified kNN and LOF algorithms exist. Research into those different techniques
has shown that the original LOF and kNN were still the state of the art in the
field of outlier detection [6]. The authors in [17] have designed an LOF-based
model that detects outliers over Probability Distributions of traffic flows [17].
A Flow Probability Distribution (FPD) [20] is a stream of multiple values that
show what proportion of the traffic happened at which time [17]. The assumption
here is that traffic is distributed in certain patterns which can be learned and
that a clear deviation from the pattern might mean that we have obtained an
outlier. To find these outliers, the work applies the LOF algorithm to the FPDs,
creating the FPD-LOF method. In the outlier detection phase of our framework,
we will apply an adapted version of FPD-LOF.

Traffic flow modelling has been thoroughly researched. Currently, due to the
high effectiveness on time series, LSTM-based architectures are one of the most
applied solutions in this field. In [19], several prediction techniques are tested

Can we Learn from Correlations Among Outliers? 525

and LSTM neural networks are considered the best option. LSTMs have also
been used for trajectory prediction, for all traffic participants (not just cars,
but bikes, pedestrians etc. as well) [1,12]. In [11], the authors model traffic
using a Recurrent Neural Network that also applies Diffusion Convolution and
incorporates random walks on the road graph, better accounting for the spatial
structure of traffic modelling, finally leading to a significant increase in prediction
accuracy. However, in addition to traffic flow data, this technique requires traffic
speed and the distances between the intersections. Particularly the former is
not available in the majority of sensor settings on intersections. [14] expected
a slightly similar input but applied a hierarchical linear vector autoregressive
model and a relatively deep neural network to predict traffic flow. In [18], the
authors proposed a neural network based traffic prediction model to capture
region-level correlations, temporal periodicity and inter-traffic correlations.

In all of the previous applications, no attention was paid on outlier-based
selection of input traffic flow data to the prediction model. The information from
all intersections were considered when predicting near-future flow information
on any intersection in the network. Our work focuses on finding, for each target
intersection, the most relevant other intersections whose traffic flow is correlat-
ing with that of the target intersection. For checking the correlations between
intersections, we detect the outliers individually on each intersection using an
adapted method from the one presented in [17]. Consequently, we check the tem-
poral correlations between the outliers found on different intersections and use
that to decide on the list of correlating intersections in general. We show through
an extensive experimental evaluation on two real-life scenarios that this consid-
erably improves the predictability of models that blindly include traffic input
from all intersections in the network, in general but specifically during outlier
situations, where most delays occur. Similar to the most related literature, this
work will apply an LSTM-based model in the prediction part without claiming
any contribution on the model itself. Also because an LSTM-based architecture
that considers the data from the target stream data merely is already in use by
Siemens for the traffic flow prediction. This paper extends our proof of concept
results presented in [7] by broadening the correlation scope, applying two large
real-world datasets and including real KPIs beyond the prediction accuracy.

3 Preliminaries and Notations

The traffic data used in this work are sensor data from inductive loops on any
intersection from the set of intersections I. Those sensors are activated when
enough metal passes over them, such as a vehicle. Singular activations do not
tell us much about the patterns in the traffic, thus these sensor measurements
are aggregated every 5 min. The intersection that is controlled by the traffic
controller is called the Target Intersection and let us call it A (cf. Fig. 1).
To control this intersection, models are trained to predict upcoming traffic. A
model is trained for each road leading to the target intersection. Intersections
that are along those roads form a trajectory, denoted as T . The intersections
are then formally noted as TB , with B ∈ I being the name of an intersection

526 T. Mertens and M. Hassani

along trajectory T , and the target intersection is noted as TA, with A ∈ I. Thus,
only sensors that include data relevant to the trajectory are included in the
models, creating streams of aggregated activations (x) for each 5 min (h) of
relevant sensors at an intersection B. This stream is denoted by xhB .

Flow Probability Distributions (FPDs): to obtain representations of traffic
flows that make them comparable with each other, distributions of traffic over
a period of time H with a set number of time intervals h within H are created.
In this work, H = 1 h and h = 5 min making 12 time intervals. In short, those
FPDs are sets of 12 values, with each value representing the proportion of traffic
of that hour within the time interval of 5 min. Let FPD(HB) be the FPD for
time period H on intersection B and let XHB

=
〈
xhB1, xhB2, · · · , xhB H

h

〉
be a

collection of aggregated traffic flow values xhB of length H
h for intersection B,

the FPDs are calculated as:

FPD(HB) =
〈 xh∑

XH

〉
,∀xh ∈ XH , h = 1, ...,

H

h
(1)

The Bhattacharyya Distance Measure: to compare FPDs, a distance mea-
sure that compares two distributions should be applied. We use the Bhat-
tacharyya distance [4]. Given two distributions p(x) and q(x) with x ∈ X, the
Bhattacharyya distance DB between p(x) and q(x) is defined as:

DB(p(x), q(x)) = −ln(BC(p(x), q(x))) (2)

where BC(p(x), q(x)) =
∑

x∈X

√
p(x)q(x) is the Bhattacharyya coefficient for

discrete probability distributions. Other distance measures than DB can be also
applied [2].

The Weekly Intersection Periodic Pattern: in this work, we used the
domain knowledge to decide the length of the period after which a repetitive
traffic flow pattern on an intersection is expected. Intuitively, this is one week.
In particular, this is suitable when we choose H = 1 h. This means that, for
instance, the traffic flow on a Tuesday between 9 AM and 10 AM is comparable
with all of the traffic flows of Tuesdays in the same period on the same inter-
section. A reading deviating from the other flows on some Tuesday 9 AM to 10
AM in the measurements on a specific intersection is an indication of an outlier.
As such, our task becomes to calculate for each intersection B, the distances
between the weekly hour flow probability distributions using DB. Note that it is
then to be expected that some of the found outliers are caused by holidays, days
with extreme weather or special events in the city. We have purposely considered
those outliers in our analysis, as we are still interested in how they correlate with
other outliers on other intersections under this unusual setting. An important
sub-goal of our work is to predict the traffic flow under abnormal scenarios.

Local Outlier Factor over FPDs: the LOF algorithm [5] is used to calculate
outlier scores of FPDs within an individual intersection. For an FPD denoted
as f̂ , let us use reachk to denote the reachability of f̂ to f̂k, the k Nearest
Neighbour FPD of f̂ .

Can we Learn from Correlations Among Outliers? 527

The Local Reachability Distance (LRD) of f̂ is defined as follows:

LRD(f̂) = 1/

(∑
f̂k∈kNN(f̂) reachk(f̂ , f̂k)

|kNN(f̂)|

)

with reachk(f̂ , f̂k) = max{DBkNN (f̂k),DB(f̂ , f̂k)} where DBkNN (f̂k) is the dis-
tance from f̂k to its kNN for any f̂k ∈ kNN(f̂). The LOF score of f̂ is then
defined as:

LOF (f̂) =
1

|kNN(f̂)|
∑

f̂k∈kNN(f̂)

LRD(f̂k)

LRD(f̂)
(3)

Outlier Correlations and Intersection Selection: to use these outlier scores
for selecting the right intersections, correlations are determined. For each trajec-
tory T , the Pearson correlation CAB is found between the target intersection TA

and all other intersections in that T . Then, to select intersections, a correlation
threshold is determined, the intersections that meet the correlation threshold
are included in the prediction model. In practice, this means that the intersec-
tions that are included in the prediction model often experience similar outliers
as the target intersection TA. Additional spatial filtering is performed such that
correlating intersections are considered only if they are spatially closer than ∆ to
the target intersection. With ∆ being the spatial threshold for all intersections
that are within a driving time of τ of the target intersection. The list of included
intersections is noted as I

T . Optimizing the traffic controller can be done by
improving its main Key Performance Indicators (KPIs). For a traffic controller,
the most important KPIs are the delay and the amount of stops.

Fig. 2. The context with OBIS framework components in the upper row.

4 OBIS: Outlier-Based Intersection Selection Framework

This section explains each part of the OBIS Framework for traffic controllers, as
shown in the upper row of Fig. 2. We will explain each component and introduce

528 T. Mertens and M. Hassani

all steps taken in the main parts of OBIS framework (not the pre-processing)
by referring to the psuedo-code in Algorithm 1. Whose output is a list of most
relevant intersections I

T
A to be included in the prediction model of a target inter-

section TA from a Trajectory T . As per Fig. 2, traffic data is recorded and stored
as a historical dataset, sets of 1 h with 5 min aggregations, so 12 values xhB for
a flow XHB

per hour H. From there, Flow Probability Distributions, FPDs
are created as per Eq. 1, in Line 5 of the algorithm. These FPDs are compared
with regards to the Bhattacharyya distance between them (Line 10), after which
the LOF algorithm is applied to find traffic flows deviating from the norm on
that intersection, which receive higher LOF scores than inliers (Line 13). The
Pearson correlations between those LOF scores and the LOF scores of A are
then calculated to find out which intersections’ outliers correlate with those of
the target intersection A (Line 17). Intersections that sufficiently correlate are
then selected and stored in I

T
A to be included included in the predictive model

of the traffic controller (Line 19) if they are spatially closer than ∆ to the target
intersection A.

Algorithm 1: The main components of OBIS
Data: T, LOFscoresAH , Threshold, ε, w
Result: I

T
A

1 I
T
A = [] // Initialization ;

2 for each B ∈ T do
3 FPDsB = [];
4 for H ∈ XHi do
5 FPDsB+ = FPD(XHB) // Eq. 1

6 end
7 Bha matrix = [] ;
8 for each FPDi ∈ FPDsB do
9 for each FPDj ∈ FPDsB do

10 Bha matrixij+ = DB(FPDi, FPDj) // Eq. 2

11 end

12 end
13 LOFscoresBH = LOF (FPDsB , Bha matrix)// Eq. 3

14 end
15 for each B ∈ T do
16 CAB = Pearson(LOFscoresBH , LOFscoresAH , w) ;
17 /* calculate the correlations within a window w before & after

each top-k outlier of A */

18 if CAB > Threshold and dist(A, B) ≤ ε then
19 I

T
A+ = B ;

20 end

21 end

Can we Learn from Correlations Among Outliers? 529

5 Applied Scenarios

The OBIS Framework is applied to two scenarios. First with DIRECTOR, the
traffic controller system which was provided by Siemens using a dataset collected
from a real intersection owned by Siemens. This allows for testing with the
use of a traffic simulator that can keep track of important KPIs such as the
delay and the number of stops. We refer to this scenario by the DIRECTOR
scenario. Second, OBIS is tested on a public dataset, provided by the city of
The Hague in a fully reproducible scenario, with the code and dataset publicly
provided. For this scenario, to which we refer to by The Hague scenario, only
the prediction accuracy can be taken into account, as we cannot test it with
the traffic simulator nor the traffic controller developed by Siemens. For both
scenarios, the preprocessing and output of the OBIS algorithm are the same, as
described above. For both scenarios, LSTM-based neural networks are used for
prediction. The goal is to achieve a lower prediction error while using the OBIS
framework to decide the input as compared to using input from: (a) all preceding
intersections, (b) no other intersections or (c) merely using the directly preceding
intersection (the default setting for the DIRECTOR traffic controller).

DIRECTOR Scenario: The target intersection here is called intersection I00.
A schematic overview of I00 is given in Fig. 3. Each white box is an available
sensor. The numbers in front of the traffic lights indicate the signal group. This is
a set of lanes that are controlled by the same signal, e.g. two lanes crossing over
belong to the signal group for crossing over. Thus, for the traffic approaching
from the left in Fig. 3, Signal Group 03 goes straight while Signal Group 02 goes
left. DIRECTOR works by predicting the queues for each lane, with 3 models for
the three trajectories for each road approaching the intersection. These are the
trajectories for this scenario and along these trajectories are intersections which
can be included in the trajectory’s model. The available intersections and the
trajectories are shown in Fig. 4a. Firstly, the target intersection is intersection
I00. The first trajectory, Trajectory 0, relates to the queues for Signal Groups 02
and 03 and is shown in green on the map, Trajectory 1 relates to Signal Groups

Fig. 3. DIRECTOR: target intersection I00 schematic overview.

530 T. Mertens and M. Hassani

04 & 06 and is shown in red on the map, lastly Trajectory 2 relates to Signal
Groups 07 & 08, is shown in blue on the map. Thus, three prediction models
are working simultaneously, predicting queue lengths for each trajectory, for the
next 10 s. From these predicted queue lengths, DIRECTOR seeks to optimize a
scheme for the traffic lights by minimizing delay. This scheme is simulated in a
professional traffic simulator and the KPIs are recorded. The characteristics of
the dataset are available in Table 1.

Fig. 4. Trajectory & intersection maps for DIRECTOR and The Hague scenarios.

The Hague Scenario: The Hague Scenario is meant to provide an additional
proof to the utility of the OBIS Framework and is fully reproducible. The dataset
features traffic data for 30 intersections, aggregated per 5 min. In this scenario,
only the prediction quality is assessed since the traffic controller DIRECTOR
and the traffic simulator are owned by Siemens. Two trajectories are formed and
traffic data from vehicles heading up and down these trajectories is preprocessed
through the OBIS Framework. Figure 4b shows the intersections included and
the two trajectories found. Trajectory 1 is in blue and features all intersections in
the South-West, with K198 being the target intersection for traffic going South
and K504 for traffic going North. Trajectory 2 is in green, with K206 being the
Southern target intersection and K703 the Northern.

An overview of the datasets used in this work is given in Table 1. Not
all data in the datasets could be used, as the sensors used sometimes have
noise, such as no activations for a long time or extremely high activations in
a short amount of time. We filtered all such noisy data from each dataset. An
access to The Hauge dataset is available under the implementation link here:
https://github.com/Tom-Mertens/OBIS.

https://github.com/Tom-Mertens/OBIS

Can we Learn from Correlations Among Outliers? 531

Table 1. The characteristics of the two datasets used in this work.

Name Intersections Start End Aggregation interval

DIRECTOR 18 15-09-2019 16-09-2020 10 ms

The Hague 30 01-01-2018 31-03-2020 5min

6 Experimental Results

To evaluate the performance of OBIS, several measures are used. Firstly, the
accuracy of the traffic predictions is measured with the Root Mean Squared
Error. Furthermore, the eventual performance of the traffic controller in the
DIRECTOR scenario is measured with regards to the KPIs: (i) the delay in
seconds, and (ii) the amount of required vehicle stops in the intersection. To
elaborately test OBIS, it needs to be proven that using it to select intersections is
beneficial to the prediction accuracy of the traffic prediction model and that this
increase in accuracy can also minimize the delay and amount of stops. Firstly,
the parameter tuning of the minimum correlation threshold is discussed, which
regulates which intersections will be included in the eventual prediction model.
Then, the models for both scenarios are discussed with a general perspective,
evaluating the performance in normal settings, before diving deeper into the
material and discussing the performance in outlier situations, which are most
important for the traffic controller KPIs delay and stops. Lastly, these two KPIs
are specifically discussed with regards to the simulated performance of the traffic
controller DIRECTOR.

Parameter Tuning. To determine the correlation threshold for including an
intersection in the dataset, this section presents the correlations between the
LOF scores within Trajectory 1 in The Hague and also those within Trajectory
2 of the DIRECTOR Target Intersection I00 from the DIRECTOR dataset. The
correlations found in the The Hague dataset for Trajectory 1 (South) are shown
in Fig. 5a. Highly correlating intersections are often close to each other. While
this result is not surprising, it is confirming the correctness of our concept.
The intersection that barely correlates with the rest of the dataset is K502,
which is also a bit outside of the trajectory; is only connected to the rest of the
network through K504 (cf. Fig. 4b). The correlation heatmap of Trajectory 2
of the DIRECTOR dataset in Fig. 5b is somewhat surprising. In particular, the
total lack of correlation for Intersection I02 with any other intersection which
is an intersection into the neighboring city. Further analysis indicated that this
is because of the reduction in the quality of the data which might be related to
noise or absence of the data during several outlier situations. We have chosen
to remove data points from I02 due to this reduced quality. For many other
intersections, the correlations do make sense, for example, I03 and I04 correlate
much more with target Intersection I00; these are other major gateways into the
city whose readings are almost complete in the dataset.

532 T. Mertens and M. Hassani

Fig. 5. Correlations for The Hague (a) and DIRECTOR (b) scenarios.

Table 2. Correlation threshold setting using MSE for The Hague scenario.

Threshold T 0 T 0.1 T 0.2 T 0.3 T 0.4 T 0.5 T 0.6 T 0.7 T 1.0

Trajectory 1 N 0.310 0.215 0.260 0.218 0.218 0.228 0.351 0.351 0.351

Trajectory 1 S 0.230 0.251 0.258 0.258 0.153 0.380 0.380 0.380 0.380

Trajectory 2 S 0.318 0.287 0.357 0.304 0.271 0.305 0.305 0.354 0.354

Trajectory 2 N 0.303 0.424 0.415 0.415 0.415 0.202 0.196 0.196 0.196

Average 0.29 0.29 0.32 0.30 0.26 0.29 0.31 0.32 0.32

To decide which intersections to include in the prediction model, a threshold
correlation level needs to be selected. The higher the threshold, the fewer inter-
sections to be considered in the model. Thus, for both datasets, many thresholds
are selected and models are trained. Eventually the models which perform the
best are selected. For the DIRECTOR model, prediction models are trained
that are also used by the traffic controller and these are more complex and deal
with time intervals of 10 seconds, while for the The Hague dataset, traffic for
all incoming lanes of the target intersection is predicted per 5 min by the use of
a simple LSTM model. The introduced errors when trying different correlation
thresholds over the selected trajectories are listed in Table 2 for The Hague sce-
nario and in Table 3 for the DIRECTOR scenario. As can be seen, a threshold
of 0.4 constitutes the best results for the The Hague scenario and a threshold of
0.35 constitutes the best results for the DIRECTOR scenario. We chose those
values for the rest of our experiments. Tables 2 and 3 show some non-consistent
trends wrt the threshold. This is to be expected as OBIS aims at striking a
balance between the one extreme of using the readings of all intersections and
the other extreme of using only the readings of the target intersection.

Evaluation Under Normal Settings. Although OBIS is meant to mostly
boost performance during outlier situations, the performance in general should
not suffer. Thus, for The Hague scenario, the performance is compared to the
threshold 1.0 (T 1.0) and threshold 0.0 (T 0.0) scenarios which are: adding
no intersections, and adding all intersections respectively. For the DIRECTOR

Can we Learn from Correlations Among Outliers? 533

Table 3. Correlation threshold setting using MSE for DIRECTOR scenario.

Threshold T 0.35 T 0.5 T 0.6 T 0.7 T 1.0

Trajectory 0 0.750 0.812 0.801 1.076 1.127

Trajectory 1 0.651 0.806 0.822 0.746 0.772

Trajectory 2 0.858 0.934 0.937 0.907 0.910

Average 0.753 0.851 0.853 0.910 0.936

scenario, it is compared to the original setting of the traffic controller, adding
only the intersection directly preceding the target intersection to the model. As
seen in Table 2, the average errors for T 1.0, T 0.0 and T 0.4 are, respectively,
0.32, 0.29 & 0.26. Using OBIS framework in this case yields an improvement of
10.3% over the T 0.0 baseline. Thus, the T 0.4 threshold is significantly better
than both baselines, while also being much more efficient than the 0.0 threshold,
since less intersections are included.

For the DIRECTOR scenario, the modified director has a mean RMSE of
0.75, a slight improvement compared to the mean RMSE of the original DIREC-
TOR (0.79). The RMSEs for the original DIRECTOR and DIRECTOR + OBIS
(with T035) are listed in Table 4.

Table 4. RMSEs for DIRECTOR and DIRECTOR + OBIS.

DIRECTOR DIRECTOR+OBIS Difference (%)

Mean 0.791 0.753 4.7%

Trajectory 0 0.960 0.749 22.0%

Trajectory 1 0.661 0.648 2.0%

Trajectory 2 0.751 0.863 −14.8%

Thus, DIRECTOR + OBIS performs especially well on Trajectory 0 but is
lacking on Trajectory 2. With this improved prediction accuracy, DIRECTOR
should be better able to predict the length of the queue and therefore better
optimize the signal schedule to them.

Evaluation Under Outlier Setting. For all 4 trajectories in The Hague
scenario, the predictions of T0.4 are compared to the real values, the predictions
for T1.0 (Target intersection only) and for T0.0 (all intersections) and the errors
are recorded. T1.0 and T0.0 can be considered two baselines for the prediction.
To see how well the model is performing during outlier situations, for each model
the predictions from all three models are compared to the actual values in terms
of MSE, during the 5 largest outlier situations in the test set. The results are
shown in Table 5. As can be seen, the 0.4 threshold is performing much better

534 T. Mertens and M. Hassani

than both baseline models. The T 0.4 threshold has a 17.9% lower error than
the best performing baseline, T 0.0. For Trajectory 2, it seems that including
just the target intersection also works quite well, this might be because these
are extreme outliers. On average, the T 0.4 threshold performs better.

Table 5. MSE for baseline models and T 0.4 model under top outliers setting.

Trajectory T 1.0 T 0.4 T 0.0

T1 North 0.776 0.371 0.532

T1 South 0.989 0.422 0.720

T2 South 0.195 0.704 0.585

T2 North 0.160 0.173 0.201

Mean 0.530 0.418 0.509

For the DIRECTOR scenario evaluation under outlier settings, one particular
outlier situation is tested and discussed, for which traffic simulations in AIMSUN
8.4 have been used. This is a three hour scenario from 15:00–18:00 on Tuesday
07-01-2019, where outlier traffic behaviour is heavily seen in the middle hour,
which got a high LOF score. The FPD for these hours is shown in Fig. 6.

Fig. 6. FPDs for 07-01-2019 15:00–18:00. Outliers in middle flow.

KPIs for DIRECTOR. In Table 6, the upper table shows the mean aggregated
delay in Seconds and the number of stops per model, the lower table sets them
apart per Signal Group (SG), showing the delay in Seconds and the amount of
stops. The OBIS-optimized DIRECTOR only has half the waiting time of the
original DIRECTOR, which is a considerable improvement. Even though the
accuracy in terms of RMSE actually decreased on Trajectory 2 (Signal Groups
7 & 8) as shown in Table 4, the performance in terms of KPIs is much better for
the OBIS-optimized DIRECTOR. The number of stops is not always reduced

Can we Learn from Correlations Among Outliers? 535

Table 6. Aggregate simulation results (delay in seconds), SG = Signal Group.

Means Delay (s) Stops

DIRECTOR 442.7 186.5

DIRECTOR + OBIS 221.8 194

SG DIR + OBIS Delay (s) DIR Delay (s) DIR + OBIS Stops DIR Stops

02 10.3 230.2 162.0 156.0

03 355.4 628.9 219.0 205.0

04 137.7 305.9 171.0 172.0

06 401.5 482.1 192.0 187.0

07 285.5 635.9 219.0 197.0

08 140.1 373.1 201.0 202.0

because of OBIS. To see how the models perform per hour, the stops and the
delay are aggregated per 3 min and for all lanes and signal groups. The results
can be seen in Fig. 7a.

Fig. 7. Delay per 3min for (a) all trajectories and (b) Trajectory 1 alone.

To get a better insight, the means per hour can be found in Table 7. From
the table and the figures it becomes clear that the OBIS-optimized DIRECTOR
is better prepared to deal with outlier situations in terms of delay.

The outlier was on Trajectory 1, so to get a closer look at those results,
Fig. 7b shows the delay per 3 min for Signal Groups 4 and 6 which belong to
Trajectory 1. DIRECTOR model incurs a large delay around 16:15, while the
OBIS-optimized DIRECTOR incurs much smaller delays for that peak.

536 T. Mertens and M. Hassani

Table 7. Mean delay (D) in Seconds and stops (S) per hour for Trajectory 1.

Hour 15:00 16:00 17:00

Delay: D (s), Stops: S D (s) S D (s) S D (s) S

DIRECTOR 22.8 20.1 66.7 18.4 43.3 17.5

DIRECTOR + OBIS 26.8 20.3 17.6 18.8 22.3 19.2

7 Conclusion and Outlook

In this work, we proposed the OBIS Framework, which applies an existing LOF-
based approach to detect outliers on each intersection in the traffic network
separately. Based on the spatio-temporal interdependencies of these outliers, we
infer the correlations between intersections in the network. We use these outlier-
based correlations then to improve the predictability of traffic flow prediction
systems by choosing more relevant inputs to the system. We showed through an
extensive experimental evaluation that our framework considerably improves the
performance of LSTM-based models both under outlier scenarios and also under
normal traffic. The prediction accuracy during outlier situations was improved
by 19.7% over the baselines in the The Hague scenario and the delay KPI was
optimized by 50% in the traffic simulation of the DIRECTOR scenario.

In the future, we would like to investigate the traffic network dynamics and/or
the correlation settings that are potentially leading to the increase in the number
of stops after applying OBIS to DIRECTOR. Also, we would like to see whether
other outlier detection methods or distance metrics can be much more effective
than the Bhattacharyya distance. Recent results [2] indicate that the Earth
Movers distance is showing more promising results.

Acknowledgment. The authors would like to thank Marco Hennipman and Siemens
Mobility for the support with the data, the access to DIRECTOR and the domain
expertise.

References

1. Altché, F., de La Fortelle, A.: An LSTM network for highway trajectory prediction.
In: ITSC, pp. 353–359 (2017)

2. Andersen, E., Chiarandini, M., Hassani, M., Jänicke, S., Tampakis, P., Zimek,
A.: Evaluation of probability distribution distance metrics in traffic flow outlier
detection. In: 23rd IEEE International Conference on Mobile Data Management,
MDM, Paphos, Cyprus, 6–9 June 2022, pp. 64–69. IEEE (2022). https://doi.org/
10.1109/MDM55031.2022.00030

3. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE
Trans. Knowl. Data Eng. 17(2), 203–215 (2005)

4. Bhattacharyya, A.: On a measure of divergence between two multinomial popula-
tions. Sankhyā Indian J. Stat. (1933–1960) 7(4), 401–406 (1946)

https://doi.org/10.1109/MDM55031.2022.00030
https://doi.org/10.1109/MDM55031.2022.00030

Can we Learn from Correlations Among Outliers? 537

5. Breunig, M., Kriegel, H., Ng, R., Sander, J.: LOF: identifying density-based local
outliers. In: SIGMOD, Dallas, Texas (2000)

6. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: mea-
sures, datasets, and an empirical study. DMKD 30, 891–927 (2016)

7. Fitters, W., Cuzzocrea, A., Hassani, M.: Enhancing LSTM prediction of vehicle
traffic flow data via outlier correlations. In: COMPSAC, pp. 210–217 (2021)

8. Ghazal, B., et al.: Smart traffic light control system. In: EECEA, pp. 140–145
(2016)

9. Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neigh-
bor graph. In: ICPR (2004)

10. Jin, W., Tung, A., Han, J., Wang, W.: Ranking outliers using symmetric neigh-
borhood relationship. In: PAKDD (2006)

11. Li, Y., Yu, R., Shahabi, C., Lui, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. In: ICLR, Vancouver (2018)

12. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict:
trajectory prediction for heterogeneous traffic-agents. In: AAAI, vol. 33 (2019)

13. Pasquale, C., et al.: Two-class freeway traffic regulation to reduce congestion and
emissions via nonlinear optimal control. Transp. Res. 55, 85–99 (2015)

14. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction.
Transp. Res. Part C Emerg. Technol. 79, 1–17 (2017)

15. Schrank, D., Eisele, B., Lomax, T., Bak, J.: Urban mobility scorecard. In: Texas
A M Transportation Institute (2015)

16. Tanaguchi, E., Thompson, R.G., Yamada, T.: Modelling city logistics. Cairns,
Queensland, Australia (1999)

17. Djenouri, Y., Zimek, A., Chiarandini, M.: Outlier detection in urban traffic data.
In: ICDM, pp. 935–940 (2018)

18. Yuan, H., et al.: An effective joint prediction model for travel demands and traffic
flows. In: ICDE, pp. 348–359 (2021)

19. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning
approach for short-term traffic forecast. ITS 11(2), 68–75 (2017)

20. Zimek, A., Djenouri, Y.: Outlier detection in urban traffic data tutorial. In: 8th
International Conference on Web Intelligence, Mining and Semantics (2018)

A Bayesian Markov Model
for Station-Level Origin-Destination

Matrix Reconstruction

Victor Amblard, Amir Dib, Noëlie Cherrier(B), and Guillaume Barthe

CITiO, 22 rue René Boulanger, 75010 Paris, France
{victor.amblard,amir.dib,noelie.cherrier,guillaume.barthe}@cit.io

Abstract. This paper tackles Origin-Destination (OD) matrix recon-
struction at a station level, which consists in computing the volume of
passengers traveling between two different stations on a public trans-
portation network. This information is critical for the transport operator
to compute various indicators concerning the network’s state and per-
formance such as vehicle occupancy and travelers’ behavior. Trip recon-
struction for smart card holders, whose history of validations is available,
has been thoroughly investigated in prior work. Conversely, trip recon-
struction for non smart card holders has received less attention, mainly
due to the difficulty of obtaining ground truth data. Among recent work
in this domain, very few contributions have tackled large networks in
their entirety, with millions of validations over a month and the compu-
tational challenges that come with it.

In this work, we present a new Bayesian Markov Model for OD matrix
reconstruction. The novelty of our model lies in its scalability and the
fact that it uses all available data, including Automated Fare Collection
(i.e. smart card holders) data and Automatic Passenger Counting data
(i.e. data from counting sensors), to accurately infer the trips’ distri-
bution. Moreover, the proposed approach produces proper OD matrices
while taking into account sensor noise and fraud.

We empirically establish the relevance, robustness, and accuracy of
the proposed method compared to the popular trip chaining algorithm
and a previous Markov based approach on real-world, large-scale indus-
trial datasets for two transportation networks in major cities.

Keywords: Origin destination matrix · Bayesian · Markov model ·
Real world data · Automatic passenger counting data

1 Introduction

Origin-Destination (OD) matrix reconstruction is a key element of public trans-
port management. It provides insights regarding the network’s performances
and state, which drive strategic decisions regarding the network configuration,

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 33.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 538–553, 2023.
https://doi.org/10.1007/978-3-031-26422-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_33&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_33
https://doi.org/10.1007/978-3-031-26422-1_33

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 539

such as determining the line routing or evaluating the optimal level of service.
OD reconstruction consists in reconstructing the flow of passengers who traveled
from one station (origin) to another (destination) during a given period. The OD
matrix is defined as the flows for all possible pairs of stations in the network.
Since the origin stations are known in most cases (through user ticket valida-
tions when boarding the vehicle), accurately reconstructing these flows boils
down to reconstructing passengers’ alighting stations. For smartcard holders,
most current approaches rely on a procedure called trip chaining that lever-
ages consecutive validations within a predefined time frame. Each validation is
tracked thanks to the related smart card unique identifier, and the associated
alighting station is deduced from consecutive boarding stations.

Although very effective, this approach cannot be applied to single-use ticket
holders or even smartcard holders whose behavior is not compatible with trip
chaining rules based on expert knowledge. These drawbacks motivate the explo-
ration of alternative approaches that use external sensors as additional data to
reconstruct passengers’ trips. Akin to traffic counts that provide information
about vehicles entering and exiting a network of highways, counting cells are
sensors installed at the vehicles’ doors to count the number of passengers board-
ing and alighting the vehicle at each station. The availability of data from these
detectors can often counterbalance the lack of information about individual pas-
sengers. However, the uncertainty associated with these sensors’ measurements is
significant due to intrinsic sensor noise and high false detection rates (passengers
may trigger multiple detections). Hence, filtering and denoising raw sensor data
is mandatory for these countings to be used. Finally, these sensors can be costly
to install and maintain for transport operators leading to a partial equipment
rate of the vehicle fleet. Altogether, these issues make OD reconstruction chal-
lenging and call for end-to-end approaches that consider sensor quality, scarcity,
and scalability.

In this work, we propose a novel full Bayesian Markov-based model for OD
reconstruction that considers all commonly available data sources. Our approach
is based on the finding that sampling OD matrices based on Markov chain mod-
eling of agents’ behavior amounts to drawing from a multivariate hypergeometric
distribution. Moreover, we overcome the short trip problem, which is the main
drawback of such an approach, by considering a biased version of the hyperge-
ometric sampling. Subsequently, we tackle two problems that commonly arise
when dealing with real-world data: noise and scarcity. We propose a new denois-
ing method for counting sensors that preserve the OD matrix structure and use
a time series similarity metric to deal with unequipped vehicles. Finally, we show
that this approach can be applied to large-scale networks with real-world data
to better reconstruct the flow of passengers.

Section 2 introduces the basic concepts of OD matrix and trip reconstitution
along with related works. Then, Sect. 3 presents the various aspects of our app-
roach toward station-level OD reconstruction. Finally, Sect. 4 is devoted to the
practical evaluation of our approach on real-world industrial use cases. Detailed
proofs and derivations are deferred to the supplementary material.

540 V. Amblard et al.

Fig. 1. Illustration of trip chaining with deterministic rules: the first trip is chained
since a candidate alighting station lies within the time and distance thresholds Δt and
Δd, while the second trip cannot be chained since no candidate alighting station abides
by the thresholds.

2 Related Work

Historically, OD matrices were obtained as part of the four-step model [25] for
demand modeling using fully deterministic models inspired by physics such as
the gravity [32] and the entropy models [31] are the best-known examples.

This work focuses on OD matrix reconstruction in public transport, a sub-
field of OD reconstruction that presents a few peculiarities, notably considering
the amount and quality of available data. Thanks to the recent advancements in
technologies, many transportation agencies are now using Automatic Data Col-
lection (ADC) systems, that include Automated Fare Collection (AFC) systems,
i.e. smart cards most of the time; Automatic Vehicle Location (AVL) systems,
giving access to real arrival time of vehicles to stations; and Automatic Passenger
Counting (APC) systems, with sensors installed on board the vehicles.

Although these increasingly abundant sources of data have been used for var-
ious applications in the last two decades (mining travel patterns, trip purpose
detection among others) [5], this work tackles another major application which
is station-level OD reconstruction (a review can be found in [13]). More specifi-
cally, it focuses on estimating alighting locations from known boarding locations
(thanks to smart card validation data).

Until now, the area of OD reconstruction has been dominated by rule-based
approaches using smart card data. Notably, trip chaining is a method that infers
alighting locations from successive boarding locations, supposing the user has not
traveled more than a distance threshold during a time threshold between the
sought alighting and the next boarding [13,21,29] (see Fig. 1). Other advanced
methods are probabilistic [11,12,17] or based on the full user’s history [11,18,
19,29].

Recently, increasing attention has been drawn to machine learning approaches
[34], notably with neural networks [1,15]. Machine learning is expected to bridge

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 541

the gap between different data sources, e.g. smartphone location data [9,33] or land
use data [23,28]. More recent works use graph convolutional networks to infer OD
flows [23,24,35] but require labeled training data.

Finally, while the vast majority of the literature focuses on exploiting AVL
and AFC (i.e. vehicle location and smart card) data, only a few studies make use
of other sources of data and especially APC data. APC data is mostly used as a
scaling factor to the OD matrix extracted from previous methods, using methods
such as Iterative Proportional Fitting (IPF) [2,7,14,26]. However, IPF as well as
other optimization methods [16,22] do not enable any uncertainty estimation. On
the opposite, statistical frameworks have been proposed and notably Bayesian
approaches [10,20,36], with the recurrent drawback of being hardly scalable to
larger and more complex networks. Also, the work from [3] derived a statistical
approach that is inspired by the maximum entropy method, and the study from
[14] proposed a Markov-chain Monte Carlo method to infer route OD with large
amounts of APC data only.

However, few of these works consider the imprecision associated to APC data:
they are usually considered 100% reliable while studies estimated the accuracy of
standard infrared sensors to be around 80% [8]. Evaluating the quality and accu-
racy of the counting instruments is hard, while APC data can cover the entire net-
work and make indicators easy to calculate [4]. In addition, the existing methods
often lack validation through real transportation data, and when a validation pro-
cedure is proposed it is often on a very small perimeter, missing demonstration of
scalability [13]. For instance, [27] validate their approach with an OD survey and a
group of volunteers. This work proposes a denoising module for the counting cells
data to be used more reliably by a Bayesian Markov model for OD reconstruction.
The experiments are conducted on real data collected from Casablanca (Morocco)
and Orléans Métropole (France) public transport networks.

3 Origin Destination Matrix Reconstruction Using
Ticketing and Count Data

This section describes the different steps of the proposed OD matrix reconstruc-
tion procedure. This method is based on a Bayesian Markov model inspired
by [20] that takes into account the validations (AFC) and counting cells (APC)
data per course. The latter is first denoised to get valid boarding and alight-
ing counts. Then, a biased hypergeometric sampling integrating priors on trip
lengths is proposed to simulate trips for each course based on the denoised
counts. Finally, the posterior parameters of the Markov model are inferred and
extrapolated to courses without counting cells.

In what follows, we consider a network with different routes (i.e. lines with
specified directions). A course corresponds to a vehicle following a given route
with a predefined schedule. For clarity, unless otherwise specified, we focus on a
single course that occurs on a specific route. Let us denote by n the number of
stations on the route and Yi, Zi respectively the number of passengers boarding
and alighting at station i and pij the probability of alighting at station j con-
ditionally to the fact that a passenger boarded at station i. The passengers are

542 V. Amblard et al.

assumed to behave the same way and independently of one another. The pas-
sengers’ behavior is described by a non-homogeneous Markov chain valued on a
binary state space.

The inference relies on alighting counts, which in this case stem from counting
cells measures and are typically tainted with imprecision. The following aims at
correcting the counting cells noise before any inference of the model.

3.1 Count Data Preprocessing

This part presents a preprocessing method for counting cells measures. Due to
multiple factors, all referred to as noise in what follows, the actual observed
boarding counts Ỹi (resp. alighting counts Z̃i) differ from the real ones by a
noise η+,IN

i − η−,IN
i (resp. η+,OUT

i − η−,OUT
i):

Ỹi = Yi + η+,IN
i − η−,IN

i , η+,IN
i ∼ Bin(Yi, p

+), η−,IN
i ∼ Bin(Yi, p

−). (1)

The same applies for (Z̃i)i with η+,OUT
i and η−,OUT

i also following binomial
distributions Bin(Zi, p

+) and Bin(Zi, p
−). Note that the noise is not required to

be symmetric, as counting cells may over-count more than they under-count or
conversely.

Fraud Removal. In this work, only trips corresponding to passengers who
validated their tickets are reconstructed. Counting cells, however, record all pas-
sengers entering and exiting the vehicle, regardless of whether they did validate.
Therefore, the total passenger count Zi alighting at station i of a given course
must be disaggregated between ZF

i fraudsters and ZV
i persons who validated

their ticket. To estimate the number of fraudsters on board, a two-step app-
roach first determines the total number of fraudsters during the course and then
allocates them to different stations.

Let F be the total number of fraudsters on a given course and S the total
number of passengers on the course. S = F + 1T Y V is unobserved since neither
the true boarding nor alighting counts are known. Nevertheless, two noisy ver-
sions of it are observed: S̃Y = 1T Ỹ and S̃Z = 1T Z̃. Therefore, S is the sum of
the observed count S̃Y plus the sum of the noises for each station measure. Since
the (η+,IN

i)i and (η−,IN
i)i are i.i.d variables, their sum also follows a binomial

distribution of parameters (
∑

i Yi = S, p+) and (S, p−) respectively. Formally,

S̃Y =
n∑

i=1

Ỹi = S+η+,IN
Σ −η−,IN

Σ , η+,IN
Σ ∼ Bin(S, p+), η−,IN

Σ ∼ Bin(S, p−). (2)

Thanks to the conditional independence between S̃Y an S̃Z conditionally to S,
the posterior distribution for S is derived and therefore the number of frauding
passengers F is sampled from this distribution:

p(S|S̃Y , S̃Z) ∝ p(S̃Y |S)p(S̃Z |S)p(S)

∝ p(η+,IN
Σ − η−,IN

Σ |S)p(η+,OUT
Σ − η−,OUT

Σ |S)p(S).
(3)

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 543

In addition, each station i is assigned a predetermined fraud rate fi. The fi

can either be provided as prior expert knowledge or computed as the average
fraud rate from boarding counting and ticketing data over all courses passing
by station i in the opposite direction, making the hypothesis that the alighting
fraudsters rate in one direction, aggregated over a sufficient number of courses,
is approximated by the boarding fraudsters rate in the opposite direction. From
there, the F fraudsters of a given course are disaggregated into Fi fraudsters
alighting at station i, by sampling them from a Fisher’s noncentral hypergeo-
metric distribution with weights f̃i and initial number of objects Z̃i. The Fi are
removed from the Z̃i to yield adjusted alighting counts denoted as Z̃i

ad
= Z̃i−Fi.

Alighting Counts Denoising with Gibbs Sampling. The following aims
at refining the adjusted alighting counts Z̃i

ad
to obtain a denoised alighting

sequence that matches the validations boarding counts Y V
i . Such an alighting

sequence is further referred to as a feasible alighting sequence.

Definition 1. A feasible alighting sequence with respect to a boarding sequence
Y = (Y1, ..., Yn−1, 0) ∈ N

n is a sequence Z = (0, Z2, ..., Zn) ∈ N
n such that

n∑

i=1

Yi =
n∑

i=1

Zi, (4a) ∀i ∈ �1, n − 1�,

i∑

k=1

Yk ≥
i∑

k=1

Zk. (4b)

The feasible alighting set is the set S(Y) of feasible alighting sequences w.r.t. Y.

Conditions (4a) and (4b) simply enforce the following two physical constraints:
the number of boarding passengers must be equal to those alighting during the
course, and occupancy must always be nonnegative. The goal is thus to select
a feasible alighting sequence close to the observed one (Z̃i). Although the noise
model presented in Eq. (1) is quite simple, the dependencies between the Zi

stemming from constraints (4a) and (4b) make it impossible to sample each count
independently and call for a more sophisticated sampling algorithm. Hence, a
Gibbs sampler approach is adopted to iteratively sample one of the alighting
counts Zi conditionally to all others sampled so far, so that constraint (4b) is
satisfied all the times. Note that to abide by condition (4a), one of the values of
the alighting sequence must act as a pivot. Z1 is arbitrarily chosen to balance
the sum of the remaining Zi. From the noise model defined in Eq. (1), the
conditional posterior probability of Zi given Z−i = (Z2, ..., Zi−1, Zi+1, ..., Zn), Y
and Z̃ writes

∀k ∈ N, p(Zi = k|Y, Z̃ad, Z−i) ∝ p(Z̃i
ad|Zi = k) p(Zi = k)

p

⎛

⎝Z̃1
ad|Z1 = S −

∑

k ′=i

Zk − k

⎞

⎠ p

⎛

⎝Z1 = S −
∑

k ′=i

Zk − k

⎞

⎠ .
(5)

544 V. Amblard et al.

Algorithm 1. Gibbs sampler
Require: Y, Z̃ad, NIT the number of sampling iterations, n the number of stops

z0 = (0, Y1, ..., Yn−1)
for t ∈ �1, NIT � do

for j ∈ �2, n� do

mj = max
i∈�1,j�

n∑

k=i+1

Yk −
(

j−1∑

k=i+1

zt
k −

n∑

k=j+1

zt−1
k

)

Mj = 1T Y −
(

j−1∑

k=2

zt
k +

n∑

k=j+1

zt−1
k

)

For k ∈ �mj , Mj�, pk = p(Zj = k|Z̃ad, Z1 = zt
1, ..., Zj−1 = zt

j−1, Zj+1 =
zt−1

j+1, ..., Zn = zt−1
n)

Sample zt
j ∼ Discrete([pmi , ..., pMi])

end for

zt =

(

0, 1T Y −
n∑

k=2

zt
k, zt

2, ..., z
t
n

)

end for
return Z = zNIT

One can show that conditions (4a) and (4b) imply that Zi has a finite support,
i.e. that there exist two non-negative integers mi and Mi such that p(Zi = k) = 0
for all k not in �mi,Mi�. The full conditional probability is finally derived in
closed form, provided that a prior is chosen for the true alighting counts. If
no information is available, one could choose a uniform prior over the interval
�mi,Mi� for the alighting count Zi. Finally, Gibbs sampling requires a valid ini-
tialization, i.e. an initial alighting sequence that belongs to the feasible alighting
set. For instance, z0 = (0, Y V

1 , ..., Y V
n−1) is a feasible alighting sequence w.r.t.

Y V . The full algorithm is presented in Algorithm 1. An improved initialization
to reduce the number of iterations is proposed in the supplementary material.

3.2 Trips Sampling and Posterior Estimation

The model presented in this section uses the denoised alighting counts for poste-
rior parameter estimation and trip sampling. A first-order Markov model is first
described as a basis for the proposed approach.

Definition 2. The first-order Markov model is defined by a set of n − 1 param-
eters (θ2, ..., θn) such that for all i ∈ �2, n�,

p(ξi = 0|ξi−1 = 1) = θi, p(ξi = 1|ξi−1 = 1) = 1 − θi, (6)

with ξi the variable indicating if the passenger is on board as the vehicle departs
from station i (ξi = 1) or not (ξi = 0).

The above statement conveys that the model is without memory and “forgets”
about the passengers’ boarding stations, only focusing on whether they were on
board the vehicle when it arrived at a station i.

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 545

The Markov property allows for simple derivation of the probability pij for
a passenger to alight at a station j provided that they boarded at station i [20]

pij = θj

j−1∏

k=i+1

(1 − θk). (7)

The parameters’ likelihood is directly derived from the boarding and alighting
counts [20] and writes

Zi|θi ∼ Bin

(
i−1∑

k=1

Yk − Zk, θi

)

. (8)

Finally, to obtain a full Bayesian model, it is needed to choose a prior distribution
over the set of parameters (θi)n

i=1. For clarity and simplicity of derivations, we
set θj ∼ Beta (αj , βj) with hyperparameters α, β inferred from the chained trips.
Once sampled from the posterior distribution, the model’s parameters θ are used
in Sect. 3.3 to extrapolate to courses without counting cells.

However, the first-order Markov model’s shortcoming lies in that all pas-
sengers are considered equal: they all share the same probability to alight at
a given station regardless of their boarding station, as long as they are in the
vehicle. As a direct consequence, the longer the trip, the less likely it is since
pij = θj

∏j−1
k=i+1(1 − θk) ∼ O(θj−i). The probability of staying in the vehicle for

j − i stations decays exponentially. This is far from being realistic and clashes
with empirical observations. Indeed, over various networks and cities, it is fre-
quent for the mode of the trip length distribution to be located around a length
of 5 with a slow decay followed by a more rapid decay. Therefore, the following
proposes a sampling procedure to overcome the short trips issue.

Let us denote by Xij the number of passengers that boarded the vehicle
at station i and alighted at station j. Formally we are looking for (Xij)i,j

given (Yk)k, (Zk)k. Here, X = (Xij)i,j is the OD matrix. Although in general
the underlying true trip length distribution is unknown, chained trips provide
insights into this distribution and prior information. Once estimated, these priors
are used to bias our sampling procedure using a Fisher’s noncentral hypergeo-
metric distribution for (Xij)j |Y,Z, L where L are the trip length priors. The
practical details are deferred to the supplementary material.

This result extends the work of [20] in case priors are available and explores
how to leverage biased multivariate hypergeometric distributions to sample
directly from the model. As shown in the experiments section, it also allevi-
ates the so-called short trips issue. Algorithm 2 summarizes the different steps
to reconstruct the OD matrix from counting cells observations.

546 V. Amblard et al.

Algorithm 2. OD matrix reconstruction for courses with counting cells on a
given route
Require: p(θ) prior for the θ parameters of the first-order model, L prior for trips

lengths for the considered route, C all courses, (fi)i fraud rates by station i, Nsim

number of simulations
1: for course ct ∈ C do
2: for k ∈ �1, Nsim� do
3: Z̃ad

k,t = Remove fraud from alighting counts(Y V
t , Ỹt, Z̃t, fi) (Section 3.1)

4: Zk,t = Sample feasible alighting counts(Ỹ ad
k,t , Z̃

ad
k,t, Y

V
t) (Section 3.1)

5: θk,t = Infer posterior parameters(Y V
t , Zk,t, p(θ)) (Section 3.2)

6: Xk,t = Sample feasible OD matrix(Y V
t , Zk,t, L) (Section 3.2)

7: end for
8: Xt = Mode

(
(Xk,t)k

)

9: end for
10: return (Xt)t , (θk,t)k,t

3.3 Extrapolation to Courses Without Counting Cells

Most of the times, due to the high cost of equipping vehicles with counting
cells, only a fraction of the fleet operates with them. This is problematic since
the proposed approach relies on alighting counts to simulate alighting stations.
However, other courses associated to the same route can be used to extrapolate
the first-order model’s parameters on non-equipped courses.

More specifically, consider a target course cT,r that is associated with route
r ∈ R. The idea is to match the target course to some of the courses with count
data on the same route (ct,r)t which are available in the data history.

The proposed method considers a course as a temporal series based on its
station-wise validations: Y V

t = (Y V
1,t, ...Y

V
n−1,t). Two courses are said to be sim-

ilar if their validations are similar, for some time-series similarity metric. Here,
Dynamic Time Warping (DTW) [30] is used as the similarity metric. Similar
courses are the k-nearest neighbors for the DTW metric with k set experimen-
tally.

C(T, r) is then the subset of courses {ct,r|ct,ris similar to cT,r} that contains
all courses matched to cT,r and Θ(T, r) is the set of parameters of the first-order
Markov model for the matched courses: Θ(T, r) = {(θ1,t, ..., θn,t)t|t ∈ C(T, r)}.
Then, the parameters θT,i for the target course are sampled as follows for all
stations i in �1, n�:

θT,i ∼ N (θ, σθ), (9)

with θ = (θ1, ..., θn) the experimental average and σθ = (σθ1 , ...σθn
) the standard

deviation of these parameters over all courses belonging to C(T, r).

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 547

4 Experiments

This section aims at testing the proposed improved Bayesian Markov model.
Some considerations on time and space complexity are developed, and the accu-
racy and robustness of the proposed method are discussed.

4.1 Experimental Setup

The experiments are performed on two different networks. The first one is the
Casablanca network with two streetcar lines of 30–40 stations each, totaling
more than 100,000 boarding validations per day on average. This network is
of high interest since passengers validate when they board but also when they
alight, therefore providing ground truth data. However, none of the streetcars are
equipped with counting cells, which have been simulated for the experiments (see
supplementary material). The Orléans Métropole network is used for scalability
assessment. It has a more complex topology than Casablanca’s, with more than
50 bus and streetcar lines, numerous connections, and around 70,000 validations
and 2,000 courses per day. Counting cells data is available, but this network does
not give access to ground truth data since passengers validate only when they
board. Both networks are illustrated in the supplementary material.

Five simulations are performed for each course in the dataset to come up
with five candidate alighting stations for each passenger. The mode (i.e. the
most probable station) is designated as the assigned alighting station. In the
simulations, p+ and p− the counting cells noise parameters are both set to 0.4.
The predefined fraud rates fi are the same for all stations (the absolute value
is not important since they only serve as bias for the hypergeometric sampling).
All algorithms are implemented in Python and can run on multiple cores. The
BiasedUrn library [6] is used for hypergeometric sampling.

4.2 Scalability

Table 1 summarizes and compares the time and space complexity of trip chaining
and the proposed model. For trip chaining, passengers without an alighting sta-
tion are aggregated by boarding station and their alighting stations are inferred
simultaneously for the whole batch, which is done in O(n2). The proposed model
utilizes counting cells at the course level and therefore has a time complexity
that is growing linearly with the number of courses |C|. Moreover, the time com-
plexity is directly proportional to the number of simulations Ns. Regarding the
space complexity, since all of the passengers’ candidate alighting stations are
stored, the space complexity is proportional to the number of passengers P and
the number of simulations.

However, the implementation still runs comfortably on a laptop: for instance,
running 10 simulations on a month of data for the Orléans Métropole network
(more than two million validations) takes up to 2 h on an Apple M1 processor.
Moreover, if multiples cores are available, courses can be inferred independently
on different cores, speeding up the simulation process.

548 V. Amblard et al.

Table 1. Time and space complexity comparison.

Model Time complexity Spatial complexity

Trip chaining O(n2) O(P)

Proposed model O(n2|C|Ns) O(PNs)

Table 2. Comparison of the proposed method with three baselines along three metrics
compared to ground truth in Casablanca network.

KL Accuracy Avg. max.

divergence occupancy error

Random model 0.45 6% 5.5%

Trip chaining [29] 0.15 10% 3.8%

Markov model [20] (5 simulations) 0.075 15% 0%

Proposed model (5 simulations) 0.07 17% 0%

4.3 Accuracy of Trips Reconstitution

Three baselines are considered: a random model that assigns to each passenger
an alighting station randomly, the popular trip chaining algorithm [29], and the
Markov model from [20], to be compared with the proposed improved Bayesian
implementation. For trip chaining, passengers whose validation could not be
chained are assigned an alighting station following the distribution of chained
trips. The Casablanca network is used here with simulated noise-free counting
cells and alighting validations removed: the models are run on boarding valida-
tions only, and the resulting OD matrices are compared to the true OD matrix
obtained from both boarding and alighting validations.

Table 2 compares the proposed model to the baselines according to three met-
rics: the Kullback-Leibler (KL) divergence between the predicted and the true
OD matrices, the accuracy of individual trips (whether the predicted alighting
station is correct w.r.t. the ground truth) and the maximum relative error on
the occupancy, averaged over all courses. The proposed model outperforms the
baselines considering any metric. Both Markov model based approaches obtain
a perfect occupancy estimation: indeed, the models are designed to comply with
the provided boarding and alighting counts per course. Here, perfect counts are
simulated, resulting in errorless occupancy estimation.

Trip Length Distribution. The following experiment evaluates the impact
of adding priors and biasing the Hypergeometric distribution to obtain more
realistic trip lengths. The same Casablanca dataset as above is used. Figure 2
compares the trip length distribution obtained by the vanilla Markov model
(top figure) from [20] to the proposed one with priors over trip lengths (bottom
figure). Incorporating priors results in a trip length distribution much closer to
the true distribution: the sum of the absolute errors was reduced by over 50%.

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 549

Fig. 2. Top: Markov model without priors. Bottom: Markov model with priors on
trip length. The left plots display the distribution of trip lengths over all trips, and
the right plots show the relative difference between the predicted distribution and the
ground truth distribution.

4.4 Robustness

In this part, results are shown for the proposed model only since neither the ran-
dom model nor trip chaining makes use of counting cells. Moreover, the Markov
model from [20] does not deal with situations where count data is not perfect.

Influence of the Noise Level and Fraud. This experiment evaluates how
the noise in counting cells data affects the different metrics when considered with
and without fraud. The dataset from Casablanca is still used, but counting cells
are simulated with a noise level p.

Table 3 presents the same three metrics with respect to Casablanca ground
truth with different noise levels and with the presence or absence of fraud. The
proposed model is shown resilient to noise: even with significant sensor noise
levels, the KL divergence and the accuracy remain almost as high as when there
is no noise. However, it is less robust to fraud, even in the absence of noise.
This is explained by the fact that the fraud disaggregation algorithm assigns the
inferred number of fraudsters to the course stations based on station fraud rates
which are given as prior data and may be quite inaccurate. Future work may
explore alternate approaches to station-level fraud rate estimation.

550 V. Amblard et al.

Table 3. Comparison of the performance metrics as a function of the noise level and
of the presence of fraud. The first four lines do not include fraud, while the two last
do.

KL Accuracy Avg. max.

divergence occupancy error

No fraud No noise (p = 0) 0.069 16.6%(28.9%) 0%

Low noise (p = 0.1) 0.071 16.5% (28.8%) 1.2%

Moderate noise (p = 0.2) 0.074 16.3% (28.7%) 1.4%

High noise (p = 0.4) 0.077 16.2% (28.4%) 1.6%

Fraud No noise (p = 0) 0.101 14.9% (27.3%) 1.5%

High noise (p = 0.4) 0.105 14.2% (26.6%) 1.8%

Fig. 3. Alighting station estimation accuracy with respect to the number of simulations
of the proposed model, for varying equipment rates (25% CC means 25% of courses
are equipped with counting cells), compared to trip chaining.

Influence of Equipment Rate. Here, the sensitivity of the proposed model
to lower coverage in counting cells is examined. To this end, counting cells are
simulated only for a portion of all vehicles in the Casablanca network.

Figure 3 depicts the accuracy of passenger trip reconstitution (i.e. the per-
centage of correctly inferred alighting stations) as a function of the number of
simulations of the proposed model, for different scenarios depending on the per-
centage of courses equipped with counting cells. One can see that even with
low equipment rates, the proposed model consistently outperforms trip chain-
ing (black dotted line). This is particularly important as, for most networks,
equipment rates do not exceed 50%. In addition, the accuracy loss resulting
from having incomplete data can be compensated by an increased number of
simulations at the cost of a linear increase in run time.

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 551

5 Conclusion and Perspectives

5.1 Conclusion

This paper aims to reconstruct Origin-Destination matrices to better understand
flows in public transport networks. The idea is to infer each passenger’s alighting
station with the data collected from the operators, the counting cells and the
geolocalised stations. While recent statistical approaches may use sophisticated
probabilistic models that are not scalable, we started from the model introduced
by [20] which allows trips to be directly simulated and the parameters’ distri-
bution expressed in a closed form. Our implementation improved this model
by using prior knowledge about the OD matrix that a trip chaining algorithm
can provide. More importantly, several additions were built on top of this model,
allowing us to tackle various phenomena that frequently occur when dealing with
large-scale and real data and significantly affect the quality of the resulting OD
matrix. Specifically, the objectives of these additions are to denoise count data
and take fraudsters into account using a Bayesian approach. Dealing with both
at once is challenging because their effects tend to mix and potentially cancel
out. In the end, we demonstrated the robustness and accuracy of this approach
on two real-world transportation networks. To the best of our knowledge, this
approach is a novelty and as of today, extensive tests are performed on multiple
networks in cities of different sizes.

5.2 Future Work

Better Understanding of the Sensors. Although the simulation environment
enabled us to test different models with real-life phenomena, the lack of true
counts to compare on the Orléans’ network use case makes it challenging to
estimate the correct value of the noise hyperparameters p+ and p− or the fraud
rates at each station. It could be interesting to collect ground truth data for
these sensors by manually counting passengers in vehicles. The value for these
hyperparameters could then be estimated using an Expectation-Maximization
algorithm.

Multi-source. Although counting cells is very beneficial to OD matrix recon-
struction, the problem remains highly uncertain. Indeed, many stations lead to
high uncertainty in the resulting OD matrix. Nevertheless, adding other sensors,
such as Bluetooth scanners, could reduce the system’s underdetermination and
increase the reconstruction’s reliability.

Denoising Method. The actual statistical denoising method proposed in Sub-
sect. 3.1 is incomplete. Indeed, only observed alighting counts are denoised with
respect to the boarding validations, which requires removing fraud beforehand.
Thereby, denoising both boarding and alighting counts would give access to the
total count of boarding and alighting passengers per station without needing to
remove fraudsters, which is useful notably for occupancy estimation.

552 V. Amblard et al.

References

1. Assemi, B., Alsger, A., Moghaddam, M., Hickman, M., Mesbah, M.: Improving
alighting stop inference accuracy in the trip chaining method using neural networks.
Public Transp. 12(1), 89–121 (2020)

2. Ben-Akiva, M., Macke, P.P., Hsu, P.S.: Alternative methods to estimate route-level
trip tables and expand on-board surveys. No. 1037, Transportation Research Board
(1985)

3. Carvalho, L.: A Bayesian statistical approach for inference on static origin-
destination matrices in transportation studies. Technometrics 56(2), 225–237
(2014)

4. Egu, O., Bonnel, P.: Can we estimate accurately fare evasion without a survey?
Results from a data comparison approach in Lyon using fare collection data, fare
inspection data and counting data. Public Transp. 12(1), 1–26 (2020)

5. Faroqi, H., Mesbah, M., Kim, J.: Applications of transit smart cards beyond a fare
collection tool: a literature review. Adv. Transp. Stud. 45 (2018)

6. Fog, A.: Sampling methods for Wallenius’ and Fisher’s noncentral hypergeometric
distributions. Commun. Stat.-Simul. Comput. R≤ 37(2), 241–257 (2008)

7. Gordon, J.B., Koutsopoulos, H.N., Wilson, N.H.: Estimation of population origin-
interchange-destination flows on multimodal transit networks. Transp. Res. Part
C Emerg. Technol. 90, 350–365 (2018)

8. Grgurević, I., Juršić, K., Rajič, V.: Review of automatic passenger counting systems
in public urban transport. In: Knapč́ıková, L., Peraković, D., Behúnová, A., Perǐsa,
M. (eds.) 5th EAI International Conference on Management of Manufacturing
Systems. EICC, pp. 1–15. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-67241-6 1

9. Harrison, G., Grant-Muller, S.M., Hodgson, F.C.: New and emerging data forms
in transportation planning and policy: opportunities and challenges for “track and
trace” data. Transp. Res. Part C Emerg. Technol. 117, 102672 (2020)

10. Hazelton, M.L.: Network tomography for integer-valued traffic. Ann. Appl. Stat.
9(1), 474–506 (2015)

11. He, L., Trépanier, M.: Estimating the destination of unlinked trips in transit smart
card fare data. Transp. Res. Rec. 2535(1), 97–104 (2015)

12. Huang, D., Yu, J., Shen, S., Li, Z., Zhao, L., Gong, C.: A method for bus OD
matrix estimation using multisource data. J. Adv. Transp. 2020 (2020)

13. Hussain, E., Bhaskar, A., Chung, E.: Transit OD matrix estimation using smart-
card data: recent developments and future research challenges. Transp. Res. Part
C Emerg. Technol. 125, 103044 (2021)

14. Ji, Y., You, Q., Jiang, S., Zhang, H.M.: Statistical inference on transit route-level
origin-destination flows using automatic passenger counter data. J. Adv. Transp.
49(6), 724–737 (2015)

15. Jung, J., Sohn, K.: Deep-learning architecture to forecast destinations of bus pas-
sengers from entry-only smart-card data. IET Intel. Transp. Syst. 11(6), 334–339
(2017)

16. Kumar, P., Khani, A., Davis, G.A.: Transit route origin-destination matrix esti-
mation using compressed sensing. Transp. Res. Rec. 2673(10), 164–174 (2019)

17. Kumar, P., Khani, A., He, Q.: A robust method for estimating transit passenger
trajectories using automated data. Transp. Res. Part C Emerg. Technol. 95, 731–
747 (2018)

https://doi.org/10.1007/978-3-030-67241-6_1
https://doi.org/10.1007/978-3-030-67241-6_1

A Bayesian Markov Model for Station-Level OD Matrix Reconstruction 553

18. Lee, S., Lee, J., Bae, B., Nam, D., Cheon, S.: Estimating destination of bus trips
considering trip type characteristics. Appl. Sci. 11(21), 10415 (2021)

19. Lei, D., Chen, X., Cheng, L., Zhang, L., Wang, P., Wang, K.: Minimum entropy
rate-improved trip-chain method for origin-destination estimation using smart card
data. Transp. Res. Part C Emerg. Technol. 130, 103307 (2021)

20. Li, B.: Markov models for Bayesian analysis about transit route origin-destination
matrices. Transp. Res. Part B Methodol. 43(3), 301–310 (2009)

21. Li, T., Sun, D., Jing, P., Yang, K.: Smart card data mining of public transport
destination: a literature review. Information 9(1), 18 (2018)

22. Liu, X., Van Hentenryck, P., Zhao, X.: Optimization models for estimating transit
network origin-destination flows with big transit data. J. Big Data Anal. Transp.
3(3), 247–262 (2021)

23. Liu, Z., Miranda, F., Xiong, W., Yang, J., Wang, Q., Silva, C.: Learning geo-
contextual embeddings for commuting flow prediction. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 808–816 (2020)

24. Luca, M., Barlacchi, G., Lepri, B., Pappalardo, L.: A survey on deep learning for
human mobility. ACM Comput. Surv. (CSUR) 55(1), 1–44 (2021)

25. McNally, M.G.: The Four-Step Model. Emerald Group Publishing Limited, Brad-
ford (2007)

26. Mishalani, R.G., Ji, Y., McCord, M.R.: Effect of onboard survey sample size on
estimation of transit bus route passenger origin-destination flow matrix using auto-
matic passenger counter data. Transp. Res. Rec. 2246(1), 64–73 (2011)

27. Munizaga, M., Devillaine, F., Navarrete, C., Silva, D.: Validating travel behavior
estimated from smartcard data. Transp. Res. Part C Emerg. Technol. 44, 70–79
(2014)

28. Simini, F., Barlacchi, G., Luca, M., Pappalardo, L.: A deep gravity model for
mobility flows generation. Nat. Commun. 12(1), 1–13 (2021)

29. Trépanier, M., Tranchant, N., Chapleau, R.: Individual trip destination estimation
in a transit smart card automated fare collection system. J. Intell. Transp. Syst.
11(1), 1–14 (2007)

30. Vintsyuk, T.K.: Speech discrimination by dynamic programming. Cybernetics
4(1), 52–57 (1968)

31. Wilson, A.G.: The use of entropy maximising models, in the theory of trip distri-
bution, mode split and route split. J. Transp. Econ. Policy 108–126 (1969)

32. Wilson, A.G.: A family of spatial interaction models, and associated developments.
Environ. Plan. A 3(1), 1–32 (1971)

33. Wu, X., Guo, J., Xian, K., Zhou, X.: Hierarchical travel demand estimation using
multiple data sources: a forward and backward propagation algorithmic framework
on a layered computational graph. Transp. Res. Part C Emerg. Technol. 96, 321–
346 (2018)

34. Yan, F., Yang, C., Ukkusuri, S.V.: Alighting stop determination using two-step
algorithms in bus transit systems. Transportmetrica A Transp. Sci. 15(2), 1522–
1542 (2019)

35. Yao, X., Gao, Y., Zhu, D., Manley, E., Wang, J., Liu, Y.: Spatial origin-destination
flow imputation using graph convolutional networks. IEEE Trans. Intell. Transp.
Syst. 22(12), 7474–7484 (2020)

36. Zapata, L.P., Flores, M., Larios, V., Maciel, R., Antunez, E.A.: Estimation of peo-
ple flow in public transportation network through the origin-destination problem
for the South-Eastern corridor of Quito city in the smart cities context. In: 2019
IEEE International Smart Cities Conference (ISC2), pp. 181–186. IEEE (2019)

BusWTE: Realtime Bus Waiting Time
Estimation of GPS Missing via Multi-task

Learning

Yuecheng Rong1,2(B), Jun Liu1,3, Zhilin Xu2, Jian Ding2, Chuangming Zhang2,
and Jiaxiang Gao2

1 College of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an, China

2 Baidu Inc., Beijing, China
{rongyuecheng,xuzhilin01,dingjian01,zhangchuanming,gaojiaxiang}@baidu.com

3 National Engineering Lab for Big Data Analytics, Xi’an Jiaotong University,
Xi’an, China

liukeen@mail.xjtu.edu.cn

Abstract. Realtime bus waiting time is of great importance to the intel-
ligent public transportation system and is beneficial for improving user
satisfaction by online map services. While there are limited realtime bus
waiting time services in a city, because of the expensive cost of GPS
sensor deployment and realtime service operation. To address the above
problem, we propose a novel end-to-end multi-task framework named
BusWTE, which estimates bus waiting time for those bus routes with-
out GPS sensors deployed. BusWTE utilizes a variety of urban datasets,
including historical bus trip data reported by a limited number of GPS
equipped buses, road network data, traffic condition data, and mobil-
ity data. Specifically, we firstly use a classical BiLSTM architecture to
encode the sequence of bus route related features, and employ two fully-
connected layers to embed the stop related features and temporal fea-
tures, respectively. Then a temporal attention mechanism is proposed to
capture the dynamic correlation between the route features and temporal
features. Furthermore, we employ multi-task learning to estimate the bus
waiting time and the bus interval simultaneously, which highly improves
the model performance. Finally, extensive experiments conducted on two
large-scale real-world datasets demonstrate the effectiveness of BusWTE.
In addition, BusWTE has been deployed on Baidu Map app, servicing
over twenty major cities in China.

Keywords: Bus waiting time · DNN · LSTM · Attention · Multi-task

1 Introduction

With the rapid expansion of public transportation network, bus navigation has
become an essential service for urban residents. As a core function, effective

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 554–570, 2023.
https://doi.org/10.1007/978-3-031-26422-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_34&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_34

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 555

realtime bus waiting time estimation can significantly improve user satisfaction
and ultimately optimize the public transportation system [5].

Traditionally, the bus waiting time can be calculated by the estimated travel
time and the collected bus realtime location. However, the realtime services with
high coverage of bus routes are still limited [3], due to the cost of GPS sensor
deployment and maintenance, and the dispersion of operators.

The average waiting time for passengers is considered as a measure of quality
for the public transportation service [6,9]. Therefore, it is meaningful yet diffi-
cult to estimate the realtime bus waiting time for arbitrary bus stops without
GPS sensors in the city. Specifically, the challenges of the above problem lie
in two aspects. First, the result of waiting time estimation is affected by many
complex factors, including traffic condition, spatial context and temporal depen-
dencies. Existing headway-based methods deduce the static average waiting time
as half of the departure interval, assuming that passengers arrive randomly at
bus stops and passengers can be served by the earliest arriving bus [2]. However,
the static estimation cannot meet the demand for realtime and highly accurate
waiting time. Second, staged approaches estimate essential information (e.g.,
bus departure schedule) separately, which may introduce cumulative error. In
practice, the bus schedule information has a great significance on waiting time
estimation. However, it is very difficult to reduce the cumulative error while fully
leveraging the bus schedule information.

Recent advances of location-acquisition and wireless communication tech-
nologies have resulted in massive spatial-temporal data, which provide great
potentials to estimate the realtime information in metropolis [11,13,16,17]. To
tackle the above challenges, in this paper, we propose BusWTE, a novel end-
to-end multi-task framework to estimate bus waiting time for those bus routes
without GPS sensors using a variety of urban datasets (e.g., traffic condition
data, road network data and mobility data). Specifically, we firstly use a clas-
sical BiLSTM architecture to encode the sequence of bus route features and
employ two fully-connected layers to embed the stop features and temporal fea-
tures, respectively. Then, we propose a temporal attention mechanism to capture
the dynamic correlation between the bus route features and temporal features.
Finally, we employ multi-task learning to estimate the bus waiting time and the
bus interval simultaneously, which obviously improves the performance.

To verify the effectiveness of the proposed framework BusWTE, we con-
duct extensive experiments on two large-scale real-world datasets collected from
Baidu Maps. The experimental results demonstrate that BusWTE significantly
outperforms the baseline approaches in terms of multiple metrics. In addition,
it has already been deployed on Baidu Maps which is one of the world’s largest
online map services, serving over twenty major cities in China. Figure 1 shows
an illustrative example of bus waiting time estimation service on Baidu Maps.

In summary, our main contributions are as follows:

– To the best of our knowledge, we present the first attempt to formally study
the problem of estimating waiting time for those bus routes without GPS
sensors, in a realtime fashion.

556 Y. Rong et al.

Fig. 1. The bus waiting time application of BusWTE on Baidu Maps. The figure
illustrates Baidu Maps provide realtime waiting time estimation service for No. 40 and
No. 301 bus without GPS information.

– We propose an end-to-end multi-task framework that learns to estimate the
bus waiting time and the bus interval simultaneously, which reduces the cumu-
lative error caused by staged estimation.

– We extract discriminative spatial-temporal related features contributing to
our model. Moreover, we design a temporal attention mechanism to adaptively
model the dynamic correlation between the bus route features and temporal
features, therefore, leading to a high estimation accuracy.

– We conduct extensive experiments on two real-world urban-scale datasets,
which demonstrate the effectiveness of BusWTE and its components and fea-
tures. The successful deployment of BusWTE at Baidu Maps further shows
that it is a large-scale practical solution for real-world bus waiting time esti-
mation services.

The rest of this paper is organized as follows. In Sect. 2, we discuss the related
work of the proposed approach. Section 3 presents the definitions and problem
statement. We elaborate on the detailed methodologies of BusWTE in Sect. 4.
Experimental results are presented in Sect. 5. Finally, we conclude this paper
and suggest future work in Sect. 6.

2 Related Work

In this section, we mainly discuss the relevant work of bus waiting time esti-
mation. In addition, we also discuss the related work of estimating the realtime
information for those entities missing hardware sensors by fusing multi-source
spatial-temporal data.

2.1 Bus Waiting Time Estimation

Reliable and realtime waiting time of the bus can help passengers plan their
trips better, which would be an effective way to improve the service of public

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 557

transportation systems. Bus waiting time estimation methods can be organized
into the following two categories:

Realtime Location Based Methods: Realtime location based methods
acquire the vehicle realtime location using the hardware devices like GPS and
then calculate the waiting time by estimating the travel time from the realtime
location to the waiting stop. The realtime location-based methods rely on the
bus location information, which can be collected by GPS devices or other avail-
able sensing resources, including cell tower signals, movement statuses, audio
recordings, etc. [18]. However, the realtime bus information is limited due to the
expensive cost of GPS sensor deployment and maintenance.

Headway Based Methods: Headway based methods deduce the static average
waiting time using the headway distributions through some assumptions, such
as passengers arrive randomly at bus stops and passengers can be served by
the earliest arriving bus [2]. Under the abovementioned assumptions, the aver-
age waiting time is half that of the departure interval. However, sometimes the
assumption of regular service cannot be completely reliable and some methods
have been proposed to address cases where some degree of irregularity is involved
in bus arrivals [1,2]. The static average waiting time is not always applicable,
because the punctuality and regularity of bus travel may be heavily affected
by traffic and other external fluctuations, which directly impacts the waiting
time [10].

It is extremely valuable but hard to estimate the realtime waiting time with-
out directly tracking the bus in real time and timetable information, which is
even considered infeasible [3]. However, compared to existing approaches, we
propose an end-to-end multi-task learning framework to estimate bus realtime
waiting time for those bus routes without GPS sensors.

2.2 Spatial-Temporal Data Estimation

Due to the cost or data constraints, it is a very critical issue to estimate the
realtime information by spatial-temporal data without hardware sensors, such
as air quality inference [17] and parking difficulty estimation [11,16].

Recently, deep learning techniques have enjoyed considerable success due
to their powerful hierarchical feature learning ability in spatial-temporal data
estimation [13]. U-Air [17] incorporates a neural network into the co-training
framework to inference air quality for any location based on the air pollutant of
some monitoring stations and a variety of urban datasets. SHARE [16] employs a
semi-supervised hierarchical recurrent graph neural network to predict parking
availability for the parking lots without parking sensors, based on historical
data reported by a limited number of existing sensors and a variety of datasets
observed in the city.

Compared with the prediction tasks of missing sensors at fixed positions, it
is more complex to estimate bus realtime waiting time when GPS information
is completely missing.

558 Y. Rong et al.

3 Preliminaries

We first introduce some important definitions and formally define the bus waiting
time estimation problem.

Definition 1: Bus Waiting Time. Consider a set of bus routes R = Rl ∪ Ru =
{r1, r2, ..., rL}, where L is the total number of bus routes, Rl and Ru denote a
set of bus routes with and without position sensors, respectively. Given current
time t, the route r ∈ R, the k-th stop stoprk of the route r, the earliest bus b
arrival time arrtimeb

rk at stoprk since t, the bus waiting time can be given by
arrtimeb

rk − t.

Let Xrkt ∈ R
M and Yrkt ∈ R denote observed M dimensional feature vectors

and bus waiting time for the stop stoprk at time t, respectively.

Definition 2: Bus Departure Interval. Bus departure interval is the duration
between the departure times of two adjacent buses of the same route. In this
paper, we assume that bus departure interval is constant in each time period
(e.g., an hour), but may vary in different time periods.

Let Y val
r = (yval

r1 , yval
r2 , ..., yval

rT) ∈ R
T denote the bus departure interval for

bus route r ∈ R at T time intervals in one day.

Problem: Bus Waiting Time Estimation. Suppose we have the feature vector set
for all bus routes XR ⊂ R

M , partially bus waiting times YRl
⊂ R and partially

bus intervals Y val
Rl

⊂ R
T . We aim to estimate the bus waiting time with the given

current time t, and the bus stop stoprk of the bus route r ∈ Ru.

4 BusWTE

As shown in Fig. 2, our framework consists of two major parts, feature extraction
and waiting time estimation model. We extract discriminative features from the
crowdsourcing data, mobility data and transportation network data of Baidu
Maps. See Sect. 4.1 for details. The waiting time estimation model is designed
as an end-to-end multi-task learning network, as detailed in Sect. 4.2.

4.1 Feature Extraction

We introduce the process of constructing and transforming feature vectors below.
Table 1 lists the features we construct with a detailed description.

Bus Route Features. The bus route departure interval has a great influence
on the waiting time at the bus stops. In the case of regular bus services, the
average waiting time of a bus stop in a time interval is close to half of the
departure interval, assuming that the traffic condition remains stable and the
time for passengers to arrive at the stop is random [2]. For the route feature
extraction, we pay more attention to the bus route departure interval features.

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 559

Fig. 2. The framework of BusWTE.

Table 1. The description of features.

Feature
type

Feature Description

Bus route
(Fr)

Geolocation (Frg) The popularity of visitors located in the region
of a bus route in a time interval

Query (Frq) The popularity of a bus route search queries in
a time interval

Static attributes
(Fra)

The length and the number of bus stops in the
bus route on the road network

Bus stop
(Fs)

Bus Trip (Fstrip) The length and the number of bus stops in the
bus trip from the first stop to the corresponding
stop on the road network

Realtime traffic
condition (Fsrtc)

The total current traffic travel time for each
road segment in the bus trip

Historical traffic
condition (Fshtc)

The total Historical traffic travel time for each
road segment in the bus trip

Temporal
(Ftemp)

Minite (Ftm) The corresponding time period in a hour

Hour (Fth) The corresponding time period in a day

Day of week (Ftd) The ordinal number of the day in a week

Workday (Ftw) Whether the day is a workday

560 Y. Rong et al.

Our insight into the departure interval features is that the departure intervals
of a bus route must match the actual travel demand, which can be represented
by the human mobility data in the city, such as crowdsourcing map queries.

Bus route features Fr are comprised of three features: geolocation feature Frg,
query feature Frq and route static attributes Fra. Frg is the frequency of visitors
located in each bus stop region of a bus route in a time interval, which presents
human mobility of the areas crossed by the bus route. Frq is the popularity of
bus route queries representing the demand of passengers to take the bus on this
route. Figure 3(a) shows a strong correlation between the query feature and bus
average waiting time for the same bus route. Fra includes the total length and
the total number of stops in each bus route, which are considered in the design
of the bus route departure interval.

Bus Stop Features. The travel time from the first stop to the waiting stop
has a great significance on the bus waiting time assuming that the departure
interval is known in advance. For the stop feature extraction, we focus on the
bus travel time from the first stop to each stop. Figure 3(b) shows that there is
a very significant difference in the average waiting time distributions between
different bus stops on the same route.

Bus stop features Fs are comprised of bus trip feature Fstrip, realtime traffic
condition feature Fsrtc and historical traffic condition feature Fshtc. We use the
distance and the stop number of the bus trip as bus trip feature Fstrip. The bus
travel time is highly correlated with the route that bus travels through and the
bus stops for the bus trip. We use the realtime traffic travel time as Fsrtc and
the historical average traffic travel time as Fshtc to capture the realtime and
historical pattern of traffic conditions, respectively.

Fig. 3. The correlation between features and bus waiting time on Xiamen City.

Temporal Features. The waiting time of one bus stop could be affected by lots
of temporal information. The start waiting time is one of the most important
factors. Figure 3(c) shows the strong correlation between time (hour in day)

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 561

and bus average waiting time. In fact, the average waiting time of the bus stop
changes periodically as long as time. We exploit hour of day Fth, minute of
hour Ftm, day of week Ftd and weekday Ftw as the temporal features Ftemp to
estimate bus waiting time.

4.2 Waiting Time Estimation Model

Figure 2 shows the high-level overview of the proposed model, which is comprised
of three major components, modeling bus route scheduling patterns, bus stop
spatial-temporal information and general temporal factors, respectively.

The route features in each time interval are fed into the route component,
which uses the classical BiLSTM to model the temporal dependencies among
features at different time intervals. In the stop component and temporal compo-
nent, the features are fed into a two-layer fully-connected neural network, respec-
tively. Then we propose a temporal attention mechanism to capture the dynamic
correlation between the latent representations of the bus route component and
temporal component. The outputs of the temporal attention, stop component
and temporal component, are concatenated and fed through the fully-connected
layer to output the bus waiting time result. Finally, we employ a multi-task
mechanism to estimate the bus intervals and the bus waiting time simultane-
ously, capable of leveraging the operation patterns of bus routes.

Bus Route Component. In this paper, we denote the bus route interval
feature at time interval t as F t

r = (F t
rg, F

t
rq, F

t
ra). We employ the Bidirectional

Long-Short Term Memory (BiLSTM) architecture to encode the sequence of
departure features, generating the latent vector representation for each time
step feature.

The bus departure interval continuously changes over time, companing the
fluctuation of temporal factors that affect it. Intuitively, the previous interval
features may influence on the current departure interval, which can be effectively
handled by the recurrent neural network (RNN) [12].

Therefore, we employ BiLSTM in the proposed model which can be trained
using all the available input temporally-related information from two directions
to improve the estimation performance.

A BiLSTM consists of a forward and backward LSTM. The forward
→
f reads

the input interval temporally-related feature sequence from F 1
r to FT

r and out-

puts a sequence of forward hidden states (
→
h1,

→
h2, ...,

→
hT). The backward LSTM

←
f reads the input feature sequence in the reverse order, i.e., from FT

r to F 1
r ,

resulting in a sequence of backward hidden states (
←
h1,

←
h2, ...,

←
hT).

We concatenate the forward hidden state
→
h t and the backward one

←
h t, which

becomes the final latent vector representation as h t = [
→
h t;

←
h t].

562 Y. Rong et al.

Bus Stop Component. We use a neural network model, which can effectively
capture the relationship among different information, to represent bus stop fea-
tures. In this paper, the bus stop features is denoted as Fs = (Fstrip, Fsrtc, Fshtc).
Fstrip, Fsrtc and Fshtc are first fed into the embedding layer followed by an acti-
vation, respectively. Then we concatenate the output of each sub embedding
layer as H se, followed by fully-connected layer as:

H ostop = ReLU (W hseH se + bhse) , (1)

where W hse and bhse are the parameters to be learned.

Temporal Component. Temporal information is essential for bus waiting
time estimation. We use fully-connected neural network component to repre-
sent temporal information. In this paper, the temporal features are denoted as
Ftemp = (Fth, Ftm, Ftd, Ftw). Then Fth, Ftm, Ftd and Ftw are first fed into the
embedding layer which is followed by an activation, respectively. Then we con-
catenate the output of each sub embedding layer as H te, which is followed by
fully-connected layer as:

H otemp = ReLU (W hteH te + bhte) , (2)

where W hte and bhte are the parameters to be learned.

Temporal Attention Mechanism. We employ an attention mechanism to
adaptively model the dynamic correlation between the bus route interval features
and temporal features. We introduce a temporal attention setting to compute
the attention vector for the temporal hidden representation H otemp. In this
setting, the temporal hidden representation H otemp is taken as the query of
the attention mechanism. The bus route feature hidden states h t(t ∈ [1, T]) are
taken as the keys and values of the attention mechanism. To be specific, the
attention mechanism is formulated as:

Q = H otemp, (3)

K t = h t, (4)

V t = h t, (5)

f (Q ,K t) =
Q� · K t√

d(H)
, (6)

α(Q ,K t) =
exp(f(Q ,K t))∑
t′ exp(f(Q ,K t′))

, (7)

Attention(Q ,K ,V) =
∑

t′
α(Q ,K t′)V t′ , (8)

where the d(H) denotes the hidden size of the keys and values. Then, the
dynamic correlation between the bus route interval features and temporal fea-
tures can be encoded as H oatt = Attention(Q ,K ,V) by Eq. (8).

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 563

Multitask Learning. Intuitively, the departure interval changes over time and
has a great significance on waiting time estimation. Staged approaches estimate
bus departure schedule separately, which may introduce cumulative error. There-
fore, we designed a multi-task structure to reduce the cumulative error while
fully leveraging the bus interval information. More specifically, we estimate bus
waiting time and each departure interval of a bus route using a sequence model
simultaneously, which is similar to the sequence labeling task in natural language
processing (NLP).

Based on the bus route component, we have latent representations of the
bus route feature h t(t ∈ [1, T]) at time interval t. h t is fed through the fully-
connected layer to output new hidden state, defined as:

h to = ReLU (W hth t + bht) . (9)

Then, ho is fed through the fully-connected layer to output the bus departure
interval result ŷval

t , defined as:

ŷval
t = V �

htoh to + bhto, (10)

where the W ht, bht, V hto and bhto are the parameters to be learned. Finally,
we use a linear transformation to generate the final output result.

Training and Optimization. Based on the above components, we concatenate
all the latent representation layers H oatt, H ostop and H otemp as H f , which is
then fed into the fully-connected layer to output the bus waiting time result,
defined as:

ŷ = V �
hfH f + bhf , (11)

where the V hf and bhf are the parameters to be learned. Finally, we use a linear
transformation to generate the final output result.

Our proposed model aims to minimize the mean squared error (MSE)
between the ground truth bus waiting time y and the estimated bus waiting
time ŷ :

L1 = ‖y − ŷ‖2
2. (12)

In addition, the bus interval estimation auxiliary task aims to minimize the
mean squared error (MSE) between the ground truth departure interval yval

t

and the estimated departure interval ŷval
t , defined as:

L2 =
T∑

t=1

‖yval
t − ŷval

t ‖2

2. (13)

By considering the MSE loss and auxiliary task loss, our model aims to jointly
minimize the following objective:

L (θ) = L1 + λL2, (14)

where θ are all learnable parameters in our model, λ is the hyper-parameter
controls the importance of the auxiliary task loss.

564 Y. Rong et al.

5 Experiments

A set of experiments are employed in this section to measure the performance of
BusWTE and verify the effectiveness of each component in BusWTE. All of our
approaches are deployed on Baidu PaddlePaddle deep learning platform [15].

5.1 Datasets

In the evaluation, we use the following 2 real datasets in the experiments. Table 2
shows the statistical details of the datasets.

Bus Trip Data: Two datasets are used to evaluate our solutions of this prob-
lem. Both of them are acquired from Baidu maps, from December 1st 2021 to
December 28th 2021.

Mobility Data: We also employ sampled geolocation data and map query data
from crowdsourcing data of Baidu Maps.

Traffic Data: The realtime traffic data and historical traffic data are also from
Baidu Maps.

Road Network Data: The public transportation network containing the geolo-
cation information of bus routes and stops, is acquired from Baidu Maps.

Table 2. Detail of dataset.

Data description Xiamen City Nanjing City

Bus trip data Bus trip records 4,042,772 3,919,149

Road network data Bus routes 665 870

bus stops 16,802 19,096

Mobility data Crowdsourcing queries 334,241 402,118

Crowdsourcing geolocations 19,917,326 27,915,180

The ground truth of bus waiting time, bus departure interval and bus travel
time are all produced by the bus trip datasets mentioned above. We use the
data from December 1st 2021 to December 21th 2021 for training, and the data
from December 22th 2021 to December 28th 2021 is used for testing. We also
guarantee that the bus routes of test dataset are not in the training dataset.

5.2 Experimental Settings

Evaluation Metrics. We use three metrics including root mean square error
(RMSE) [7], mean absolute error (MAE) [14] and mean absolute percentage
error (MAPE) [8] to evaluate all tasks (e.g., bus waiting time estimation and
bus interval estimation). We use second as the unit of bus waiting time. For the
above-mentioned evaluation metrics, a smaller evaluation metric value means
better performance in the following experiments.

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 565

Implementation Details. The time period of bus departure interval is set to
an hour, which indicates the total number T of time intervals is 24. The super
parameter λ in Equation (14) is set to 0.35 in our multi-task learning model.
The number of hidden states in BiLSTM layer is 64. Each of the two layers has
64 neurons in the stop component the same as the temporal component. The
hidden state size of the output layer is 64 in both bus waiting time task and
bus interval task. To optimize the model, we choose Adam as the optimizer and
set the learning rate to 0.001. Each of the two layers has 128 neurons in the
DNN model. We also employ Adam as the optimizer of the DNN model, and the
learning rate is set to 0.0006. We choose ReLU as the activation function of all
the hidden layers.

5.3 Baselines and Variants

Baselines. We compare our proposed BusWTE with following approaches:

Historical Average (HA): The historical average waiting time of all the bus
stops, covered by bus trip datasets in a time interval in the city.
Waiting Time Based Interval (WTBI): In the case of regular bus services,
the average waiting time of passengers is estimated assuming that passengers
arrive randomly at bus stops and passengers can be served by the earliest arriving
bus [2], and is given by: E(W) = 1

2H, where H is bus departure interval.
Waiting Time Based Pipeline (WTBP): We also compared BusWTE with
pipeline based method, which estimates bus waiting time based on approxi-
mating the realtime locations of buses, using the estimated bus intervals and
realtime travel times.
Linear Regression (LR): Linear regression is widely used to model the rela-
tionship of multiple independent variable and single dependent variable [19].
Gradient Boosting Decision Tree (GBDT): GBDT is well-known for
its outstanding performance and efficiency. The XGBoost (eXtreme Gradient
Boosting) is an open source gradient boosting library which also provides an
optimized distributed version [4].
Deep Neural Network (DNN): We also use a two fully-connected layers
neural network with ReLU activation to estimate the bus waiting time.

Variants. To evaluate each component of our proposed model, we also compare
it with different variants of BusWTE:

BusWTE-noRoute: BusWTE-noRoute removes the bus route component.
BusWTE-noStop: BusWTE-noStop removes the bus stop component.
BusWTE-noTemp: BusWTE-noTemp removes the temporal component.
BusWTE-noAttn: BusWTE-noAttn removes the attention mechanism.
BusWTE-noMul: BusWTE-noMul removes the multil-task mechanism.

566 Y. Rong et al.

5.4 Overall Performance

A set of experiments compares the performance of BusWTE and several baseline
methods. Table 3 shows the experimental results. From the results, we have the
following observations:

(1) From Table 3, we can see that GBDT algorithm outperforms Linear Inter-
polation. Both Xiamen City and Nanjing City present good performance on
the MAE and MAPE. Thus our features are general and robust for different
cities.

(2) BusWTE significantly outperforms other methods on the two datasets. HA
is a simple baseline and works the worst. The main reasons for such improve-
ment lie in two aspects. First, we introduce several feature components and
the attention mechanism to extract more useful spatial-temporal informa-
tion from the designed features. Second, we propose an end-to-end multi-
task network to estimate bus waiting time and bus interval simultaneously,
which is able to reduce the cumulative error compared with pipeline based
methods.

Table 3. Performance of BusWTE and Baseline Methods.

Methods Xiamen City Nanjing City

MAPE MAE (sec) RMSE (sec) MAPE MAE (sec) RMSE (sec)

HA 93.9% 359.81 450.86 98.0% 328.58 407.24

LR 70.6% 231.81 286.23 71.3% 202.45 254.08

GBDT 66.1% 227.80 280.19 70.9% 200.36 252.63

DNN 54.8% 228.10 300.36 63.3% 198.46 257.01

WTBT 72.1% 231.60 288.77 75.7% 230.46 312.72

WTBP 67.0% 232.00 325.67 72.1% 228.01 348.91

BusWTE 52.4% 220.28 276.82 50.2% 196.47 252.30

5.5 Ablation Study

In this section, we conduct ablation studies on BusWTE, including model abla-
tion and feature ablation, to further verify the effectiveness of each component.
The experiments are finished for three metrics on both Xiamen City and Nanjing
City datasets. Table 4 shows the experimental results of ablation study.

Feature Ablation. To examine the performance impact of feature components,
we evaluate BusWTE with complete features and its three variants: BusWTE-
noRoute, BusWTE-noStop and BusWTE-noTemp.

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 567

Table 4. Performance of BusWTE and Variants.

Methods Xiamen City Nanjing City

MAPE MAE (sec) RMSE (sec) MAPE MAE (sec) RMSE (sec)

BusWTE-noRoute 61.7% 233.34 298.12 71.2% 204.46 254.08

BusWTE-noStop 59.0% 235.43 298.62 62.2% 209.31 272.31

BusWTE-noTemp 56.1% 231.47 299.05 58.2% 198.01 260.05

BusWTE-noAttn 57.8% 226.05 293.07 55.2% 196.49 272.31

BusWTE-noMul 54.9% 228.29 300.36 63.3% 198.46 257.01

BusWTE 52.4% 220.28 276.82 50.2% 196.47 252.30

Effectiveness of the Route Component: We evaluate the relevance of the
route component by removing all the route features. Table 4 shows that the MAE
and MAPE of BusWTE-noRoute declines significantly compared with BusWTE.
The contribution of the route component is significant. The main reason is bus
route interval information has a great influence on the result of waiting time
estimation. In fact, in the case of regular bus services, the average waiting time
of passengers is estimated by the bus departure interval [2]. As can be seen in
Table 4, the results of WTBI and WTBP are also effective, which indicates that
the route interval information is always beneficial for this problem.

Effectiveness of the Stop Component: We also evaluate the relevance of
the stop component by removing all the stop features. As shown in Table 4, the
results of BusWTE-noStop drops significantly compared with BusWTE. The
contribution of stop component is important, i.e., the MAPE of Xiamen City
and Nanjing City increases 12% and 23% respectively, after removing the stop
component. Intuitively, there is a significant difference in average waiting time
distribution between different bus stops, which is caused by the spatial-temporal
factors conditions along bus route, such as dynamic traffic conditions.

Effectiveness of the Temporal Component: We also evaluate the relevance
of the stop component by removing all the temporal features. Table 4 shows that
the results of BusWTE-noTemp drops obviously compared with BusWTE. The
contribution of temporal component is also important, i.e., the MAE and MAPE
of Xiamen City and Nanjing City increase to a certain extent, after removing
the temporal component. Therefore, temporal information is critical for waiting
time estimation.

Model Ablation. We evaluate the performance of BusWTE and it’s two vari-
ants, which are BusWTE-noAttn and BusWTE-noMul.

Effectiveness of the Attention Mechanism: We remove the attention mech-
anism from BusWTE to test its contribution. As illustrated in Table 4, the results

568 Y. Rong et al.

of BusWTE-noAttn falls obviously compared with BusWTE. Particularly, the
MAPE of Xiamen City and Nanjing City increases 9% and 10% respectively,
after removing the attention mechanism. A possible reason is that temporal
attention mechanism can effectively capture the realtime bus routes departure
information.

Effectiveness of the Multil-task Mechanism: To evaluate the importance
of multil-task mechanism, we compare BusWTE-noMul to BusWTE. As can be
seen from Table 4, when the multil-task mechanism is removed, the performance
declines significantly. Especially, the MAE, MAPE and RMSE of Xiamen City
and Nanjing City increase in varying degrees, after removing the multil-Task
mechanism. This is because the multitask mechanism can reduce cumulative
error and fully leverage the valuable information of bus route interval, which is
beneficial for bus waiting time estimation.

5.6 Application and Deployment

We applied BusWTE to provide the realtime bus waiting time service in Baidu
Maps, in more than twenty major cities in China. We build online service
based on BRPC (https://github.com/brpc/brpc), a scalable RPC framework
used throughout Baidu. We can acquire the waiting time query information
such as the query route, stop and current time from Baidu map app. First,
we retrieve the route related features, stop related features, and temporal fea-
tures from database, which are extracted in advance. Then all above features
are fused into a single feature vector for the bus stop at current time. Finally,
the bus waiting time is estimated by the trained model and the online service
sends the estimated travel time to Baidu map app.

Table 5 presents the online efficiency of our approach, which was tested on
a 64-bit server with 8-core 2.4G CPU, 64 GB RAM and NVIDIA A100 GPU.
The feature processing accounts for up to more than 90% of the total online
processing time.

Table 5. Efficiency study

Procedures Time (ms)

Feature processing (per query) Online process 6.37

Inference (per query) BusWTE-CPU 0.76

BusWTE-GPU 0.24

6 Conclusion

We propose BusWTE, an end-to-end multi-task model to estimate bus wait-
ing time for those bus routes without GPS sensors. BusWTE utilizes historical

https://github.com/brpc/brpc

BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing 569

bus trip data reported by a few existing buses with GPS sensors and various
datasets, such as traffic condition data, map mobility data and road network
data. Then we propose a temporal attention mechanism to capture the dynamic
correlation between the bus route features and temporal features. Furthermore,
we employ multi-task learning to estimate the bus waiting time and the bus
interval simultaneously, which reduces the cumulative error caused by staged
estimation. Experimental results on two real-world datasets prove the effective-
ness of BusWTE. We applied it to provide the realtime bus waiting time services
on Baidu Maps, serving over 20 major cities in China. In the future, we will try
to model the dynamic temporal autocorrelation inside of and between bus routes
(stops) with and without GPS sensors, to improve the estimation performance.

Acknowledgment. This work was supported by National Key Research and Devel-
opment Program of China (2020AAA0108800), National Natural Science Foundation
of China (62137002, 61721002), Innovation Research Team of Ministry of Education
(IRT 17R86), and Project of China Knowledge Centre for Engineering Science and
Technology.

References

1. Amin-Naseri, M.R., Baradaran, V.: Accurate estimation of average waiting time
in public transportation systems. Transp. Sci. 49, 213–222 (2014)

2. Ansari Esfeh, M., Wirasinghe, S., Saidi, S., Kattan, L.: Waiting time and headway
modelling for urban transit systems - a critical review and proposed approach.
Transp. Rev. 41(2), 141–163 (2020)

3. Barnes, R., Buthpitiya, S., Cook, J., Fabrikant, A., Tomkins, A., Xu, F.: BusTr:
predicting bus travel times from real-time traffic, pp. 3243–3251 (2020)

4. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: XGBoost: extreme gra-
dient boosting (2015)

5. Chu, K., Lam, A.Y.S., Loo, B.P.Y., Li, V.O.K.: Public transport waiting time
estimation using semi-supervised graph convolutional networks. In: ITSC (2019)

6. Hsu, S.: Determinants of passenger transfer waiting time at multi-modal connecting
stations. Transp. Res. Part E 46, 404–413 (2010)

7. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int.
J. Forecast. 22(4), 679–688 (2006)

8. de Myttenaere, A., Golden, B., Le Grand, B., Rossi, F.: Mean absolute percentage
error for regression models. Neurocomputing 192, 38–48 (2016)

9. Politis, I., Papaioannou, P., Basbas, S., Dimitriadis, N.: Evaluation of a bus pas-
senger information system from the users’ point of view in the city of Thessaloniki,
Greece. Res. Transp. Econ. 29, 249–255 (2010)

10. Ramli, M.A., Jayaraman, V., Chee, K., Heong, T., Khoon, G., Monterola, C.:
Improved estimation of commuter waiting times using headway and commuter
boarding information. Physica A 501, 217–226 (2017)

11. Rong, Y., Xu, Z., Yan, R., Ma, X.: Du-parking: spatio-temporal big data tells you
realtime parking availability. In: SIGKDD. ACM (2018)

12. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NeurIPS (2014)

570 Y. Rong et al.

13. Wang, S., Cao, J., Yu, P.: Deep learning for spatio-temporal data mining: a survey.
IEEE Trans. Knowl. Data Eng. (2020)

14. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance. Cli-
mate Res. 30(1), 79–82 (2005)

15. Ma, Y., Yu, D., Wu, T., Wang, H.: Paddlepaddle: an open-source deep learning
platform from industrial practice. Front. Data Comput. 1(1), 105–115 (2019)

16. Zhang, W., Liu, H., Liu, Y., Zhou, J., Xiong, H.: Semi-supervised hierarchical
recurrent graph neural network for city-wide parking availability prediction. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1186–
1193 (2020)

17. Zheng, Y., Liu, F., Hsieh, H.P.: U-air: when urban air quality inference meets big
data. In: SIGKDD. ACM (2013)

18. Zhou, P., Zheng, Y.: How long to wait? Predicting bus arrival time with mobile
phone based participatory sensing. TMC 13 (2012)

19. Zou, K.H., Tuncali, K., Silverman, S.G.: Correlation and simple linear regression.
Radiology 227(3), 617–628 (2003). PMID: 12773666

PathOracle: A Deep Learning Based Trip
Planner for Daily Commuters

Md. Tareq Mahmood1(B) , Mohammed Eunus Ali1 ,
Muhammad Aamir Cheema2 , Syed Md. Mukit Rashid1, and Timos Sellis3

1 Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
{tareqmahmood,eunus,mukitrashid}@cse.buet.ac.bd

2 Monash University, Melbourne, Australia
aamir.cheema@monash.edu

3 Archimedes/Athena RC, Marousi, Greece

Abstract. In this paper, we propose a novel data-driven approach for a
trip planner, that finds the most popular multi-modal trip using public
transport from historical trips, given a source, a destination, and user-
defined constraints such as time, minimum switches, or preferred modes
of transport. To solve the most popular trip and its variants, we pro-
pose a multi-stage deep learning architecture, PathOracle, that consists
of two major components: KSNet to generate key stops, and MPTNet
to generate popular path trips from a source to a destination passing
through the key stops. We also introduce a unique representation of stops
using Stop2Vec that considers both the neighborhood and trip popular-
ity between stops to facilitate accurate path planning. We present an
extensive experimental study with a large real-world public transport
based commuting Myki dataset of Melbourne city, and demonstrate the
effectiveness of our proposed approaches.

Keywords: Public transport · Path recommendation · Trip planning ·
Learning popular trips

1 Introduction

Almost every modern city offers a must-have trip planner (or a journey plan-
ner) [1] for the smooth and convenient daily commuting of its dwellers. A trip
planner is a web or mobile search engine application to find an optimal means
(e.g., fastest, shortest, or cheapest) of traveling between two locations in the city
using public transport, where a single trip may use a sequence of several modes
of transport. The service has become so ubiquitous that major map services such
as Google Maps integrate such trip planners with their system. These search-
based trip planners rely on the available transport networks and the timetables
of the public transport services of a city and find one or more trip options from a
source to a destination by optimizing different criteria [2], e.g., minimum travel
time or a minimum number of switches. These existing planners have the follow-
ing limitations: (i) they do not support returning the preferred trip (i.e., popular
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 571–586, 2023.
https://doi.org/10.1007/978-3-031-26422-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_35&domain=pdf
http://orcid.org/0000-0002-1248-6939
http://orcid.org/0000-0002-0384-7616
http://orcid.org/0000-0003-2139-9121
http://orcid.org/0000-0002-9067-5639
https://doi.org/10.1007/978-3-031-26422-1_35

572 Md. T. Mahmood et al.

one) taken by the past users, which might be of interest for many users, espe-
cially tourists; and (ii) these systems rely on the transport network and fixed
timetables of the transport service and, thus, do not work when timetables are
not available which is the case for a large number of developing mega cities like
Dhaka, Karachi, Delhi etc. To mitigate the above problems, in this paper, we
take an orthogonal and a completely new data-driven approach for a trip planner
that finds the most popular trip from historical trips given a source s, a des-
tination d, and user-defined constraints such as minimum switches or preferred
modes of transport.

Popular paths between a source and a destination may vary at different times
of the day (or days of the week). Moreover, for the case of daily commuting, the
user may want to know the details of the popular path, if the path consists of a
combination of different transport modes such as bus, train, and walk. Also, the
path preferences of individuals may change, e.g., some may prefer bus over tram,
others may prefer a single transport mode rather than taking a combination of
bus, train, tram, etc. Answering popular paths tailored for individuals based on
different contexts is a challenging research problem. In this paper, we propose
a deep learning framework that learns from historical trips to generate popular
paths between a given pair of source and destination and user preferences for a
trip using public transport.

There have been few efforts to solve the popular path problems using tra-
jectory data [6,9,12], which largely falls under route planning. A route planning
problem typically deals with finding a route using a single private mode of trans-
portation such as taxis or cars. In contrast, in our trip planner, we are interested
in a path that uses one or more public transport modes to reach the destination.
Chen et al. [6] find the popular route between two locations using HMM. Guo
et al. [9] proposed a learning to route (L2R) approach that learns the routing
behavior of trajectories in a region and transfers this learning to another region
where enough user trajectories are not available for answering paths. In the most
recent work, Li et al. [12] use a deep probabilistic learning based framework,
called DeepST, to find the popular path from historical taxi trips.

Though the above works make important contributions for finding popular
routes by learning from historical taxi trajectories, they have the following major
limitations in addressing our problem of interest. (i) Transport-Mode Oblivious:
They are oblivious to the transport mode of the route, i.e., they assume that
users will use a single mode of transport in their entire path, which is not the case
for most of the journeys on public transport. This limits the applicability of such
systems in many cities, especially in developing cities where no journey planner
is available for public transport network; also, although most of the modern
cities provide a journey planner for commuting from one place to another, there
are a number of ways to reach from one place to another, and there is no way
for the users of these planners to know which path is generally used by most
of the commuters. (ii) Context Oblivious: Existing works assume that popular
paths will remain fixed for the entire day or may only change in peak and off-
peak hours. For example, a simple additional time context in the popular path

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 573

queries requires both approaches [6,9] to construct separate graphs for each
time range, which is costly. We argue that the model should also learn useful
contexts such as time, preferences, etc., while learning the user trajectories and
also reflect this learning while answering path queries in a particular context.
(iii) Fixed Preference: Existing works do not allow users to set their preferences
while generating the path from source to destination. However, users may have
some personal choices for the preferred trip, e.g., an older person may prefer a
bus over a train as it is more accessible to her, or a disabled person may prefer a
path with a minimum number of switches. Thus, incorporating user preferences
in the popular path construction will facilitate more flexibility for the user.

The key challenges of solving the problem include how to incorporate the
complex multi-modal nature of user trips and other preferences, such as mini-
mum switches or preferred mode of transport, of the users in the learning process.
A straightforward way to build such a system by adapting the methodologies
of existing works (e.g., [6] or [9]) may need to build a separate model for each
transport mode and every conditional constraint such as time range and then
answer popular paths by combining these models. Building such a large number
of models, and more importantly, combining them in answering path queries tai-
lored for individuals is infeasible. While the existing DeepST [12] model can be
adapted to provide popular paths considering multi-modal transport and differ-
ent departure times (which we consider as a baseline in our experimental study),
none of the existing approaches can handle user preferences such as preferred
mode or a minimum number of switches.

In this paper, we propose a multi-stage neural network framework, called
PathOracle, that essentially learns the travel patterns of users while commuting
in a city using public transport. The key intuition of PathOracle is to learn
key intermediate stops to reach from a source to a destination and use these
intermediate stops to generate a mostly preferred trip from historical trips. To
achieve this, we build two networks, Key Stops Net (KSNet) to generate key
stops on the most probable trip for a given source to a destination and Most
Probable Trip Net (MPTNet) to generate trips by progressively connecting key
stops to reach from the source to the destination. One of the most important
features of PathOracle is the flexibility of incorporating constraints such as time,
preferred mode, or trip with the minimum number of switches during query time.
PathOracle achieves this flexibility by decoupling key stop generation with the
popular trip generation. In short, our contributions are as follows:

– We are the first to formulate the problem of answering the most popular path
query from historical trips in the context of multi-modal public transports
based city commuting, which allows users to find the popular path for a
given source-destination, and preferences such as time, a preferred mode of
transport, and minimum switches.

– We propose a deep learning architecture, PathOracle, that consists of two
major components: KSNet to generate key stops and MPTNet to generate
popular path trips from a source to a destination passing through the key
stops. We also introduce a unique representation of stops using Stop2Vec
that considers both the neighborhood and trip popularity between stops.

574 Md. T. Mahmood et al.

– We present an extensive experimental study with a large real-world public
transport based commuting dataset of Melbourne city and test the effective-
ness of our proposed approaches.

2 Definitions and Problem Statement

Stop: A stop x is a location in a map where a person can get on or get off a
vehicle. A stop is represented as a tuple x = (id, lat, lon), where id is the stop-id,
lat is the latitude and lon is the longitude of the stop. S is the set of all stops.

Mode: A mode m represents the type of a transport mode. M is the set of
all modes. In our case, M = {bus, train, tram,walk} as we consider city based
public transport in Melbourne city.

Hop: A hop h = (u, v,m, t) is represented as a tuple, where a person starts from
stop u ∈ S at time t and goes to stop v ∈ S using a transport mode m ∈ M.

Trip: A trip T = [hi]ni=1 is a sequence of n hops, where h1.u is the source, hn.v
is the destination and hi.v = hi+1.u for i > 0.

Stop Sequence: The stop sequence of a trip T includes starting stops of the
hops and the destination. It is represented as x(T) = ⊆h1.u, h2.u, . . . , hn.u, hn.v→.
Mode Sequence: The mode sequence of a trip T is the sequence of types of
transport modes of the trip. It is represented as m(T) = ⊆h1.m, h2.m, . . . , hn.m→.
Trip Length: The length of a trip T is defined as the length of its node sequence,
which is l(T) = |x(T)|
Mode Coverage: Mode coverage mc(T,m) of a mode m in a trip T is the
fraction of the distance of T travelled by m. For simplicity, in the calculation of
mode coverage, we exclude walking distances as distances travelled by walk is
significantly smaller compared to the distance travelled on vehicles.

Query: A query q = (s, d, t) is a tuple of source s ∈ S, destination d ∈ S and
starting time t.

Most Popular Trip (MPT): Given a list of historical trips H and a query
q = (s, d, t), the MPT query predicts the most popular trip T ∗ that starts from
stop s at time t and ends at stop d.

Most Popular Trip with Preferred Mode (MPTPM): Given a list of
historical trips H, a query q = (s, d, t), a preferred mode m and mode coverage
c, the MPTPM query predicts the most popular trip T ∗ that starts from stop s
at time t, ends at stop d and the mode coverage mc(T,m) ≥ c.

Most Popular Trip with Minimum Switch (MPTMS): Given a list of
historical trips H and a query q = (s, d, t), the MPTMS query predicts the most
popular trip T ∗ that starts from stop s at time t, ends at stop d and has a trip
length of l(T ∗) ≤ lq where lq is the minimum length of all trips T ∈ H for query
q, i.e., lq = argminT∈Hl(T).

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 575

Note that, in our deep learning based approach we do not require to define
any explicit popularity metrics; rather, our approach learns from the historical
trips and returns the most likely path as the most popular path. This is also
recommended as, in many cases, there may not be any direct trip from s to
d in the historical trips, and the proposed algorithms learn to connect s with
d using parts of other existing trips to return the preferred path. Thus, we
predict the most probable trip with respect to the historical trips, and also design
our evaluation metrics accordingly. Please see Sect. 4.2 for the details of the
evaluation metrics and how predicted trips are compared with real observations.

3 Methodology

Query
KSNet

Key Stops

Forward

LSTM

Backward

LSTM

MPTNet

Most

popular

trip

Fig. 1. The block diagram of PathOracle

To answer the MPT query
and its variants, we propose
a multi-stage deep learn-
ing architecture, namely
PathOracle. PathOracle con-
sists of two major compo-
nents: the key stop genera-
tion network (KSNet), and
the popular trip generation
network (MPTNet). Given
a source and a destination,
and the preferred time of the trip, the KSNet generates a number of key stops
through which the popular trips from the source to the destination may pass
through. The key intuition of KSNet comes from the observation that most
of the trips pass through key stops such as central stations or transportation
hubs, and thus identifying key stops play a vital role to the popular trip gener-
ation. Based on the identified key stops, we use another deep learning network,
MPTNet, that constructs the popular paths by connecting the source and the
destination via the key stops.

Moreover, to generalize among stops in the same neighborhood and historical
trip frequency among stops, we coin a concept called, Stop2Vec, for learning the
vector representation of stops. Figure 1 shows an overview of PathOracle.

3.1 Stop Representation Using Stop2Vec

Inspired by Node2Vec [8], we propose a new representation of stops, namely
Stop2Vec, which learns low-dimensional features of stops based on historical
trips. Learning representations directly from trajectories may be challenging due
to the data sparsity issue of rarely-visited nodes. Also, a simple application of
Node2Vec will not capture underlying popularity in the historical trips. Stop2Vec
addresses both of these issues. The construction of Stop2Vec works as follows.
First, we build a weighted graph G from historical trips. The weight of an edge
(u, v) is the frequency of hops from u to v. Then, we sample R random walks per

576 Md. T. Mahmood et al.

node from G. Finally, we adopt the Skip-Gram approach of word embedding as
used in Node2Vec to learn node representation es(x) ∈ R

ns for each stop x ∈ S.

3.2 Time Representation

The travel patterns of users in a city largely vary at different times of the day
(peak vs. off-peak) or on different days of the weeks (e.g., weekdays vs. week-
ends). Also, some transports may only be available for a particular period of
a day. Thus, the popular trip using multi-modal transports between two stops
may change with the time of the day. Thus, to capture the impact of time in
the learning of popular trips, we split a day into σt time windows each having
an interval of σt

24 hours. We represent each of the time windows as a fixed-sized
vector et(t) ∈ R

nt of size nt. For this, both in KSNet and MPTNet, we add
embedding layers that learn the representation of time as et(t) while training.

3.3 Key Stop Generation (KSNet)

The key intuition for KSNet is that if we can identify the key stops such as
transportation hubs of a trip that comes along reaching the destination, we
can predict accurate paths. Thus, KSNet finds the most probable key stops
between a source and a destination for a given time. Formally, given a query q =
(s, d, t), KSNet estimates the probability distribution Pz(x|q), which represents
the probability of any stop x ∈ S being an intermediate stop of a trip from s to d
at time t. To achieve this, we assign KSNet a task to predict every intermediate
stop of a trip from the source, destination, and starting time of the trip. The
learning objective of KSNet is to maximize the sum of log-probability of all
intermediate stops of all historical trips for the respective source, destination,
and starting time. This is represented by the following objective function:

Jθ =
1

|H|
∑

T∈H

⎛

⎝ 1
l(T) − 2

l(T)−1∑

i=2

log p(xi|T.q, θ)

⎞

⎠

Here, p(xi|T.q, θ) is a probability estimation of Pz(xi|T.q) based on the learn-
able parameter θ of KSNet. The learned probability function will produce the
likelihood of a stop being an intermediate stop of a query. For KSNet, first, we
generate training samples from historical trips and then use a neural network to
learn the probability function.

Sample Generation. Suppose, a trip T starts at time t and has a
stop sequence ⊆x1, x2, . . . xn→. Here, the source is x1 and the destination
is xn. We generate n − 2 training samples from T for KSNet, where the
inputs are the source, destination, and starting time, and outputs are the
intermediate stops. For example, the generated samples from T will be
[(x1, xn, t), x2], [(x1, xn, t), x3], . . . , [(x1, xn, t), xn−1]. Similarly, we generate sam-
ples for all the trips in H.

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 577

KSNet Architecture. For a generated sample [(s, d, t), x], we first obtain the
embeddings of the source, destination and time. The embedding of the source
and destination (es(s), es(d)) is obtained from the learned representation of
Stop2Vec. The embedding layer et for time is randomly initialized and is tuned
gradually while training KSNet. The core part of KSNet is a Multi-Layer Per-
ceptron (MLP). The MLP takes the concatenation of es(s), es(d), and et(t) as
input. The input is passed through hidden layers of this feed-forward network.
The output layer is comprised of |S| neurons with LogSoftmax activation func-
tion. LogSoftmax produces the log probabilities of all stops being an interme-
diate stop for query q. To maximize the objective function Jθ, we use Negative
Log-Likelihood Loss (NLL Loss).

Prediction. After the training phase, KSNet is able to infer the probability
distribution Pz(x|q) for a query q. We select a list of top K key stops (Zq) for
the trip generation task, where K is a hyperparameter.

3.4 Most Popular Trip Generation (MPTNet)

At the last step of the PathOracle, we develop a separate neural network model,
MPTNet. This part of our solution is motivated by [17] that finds alternate
paths. MPTNet generates the most popular trip from a source to a destination
that passes through the selected key stop. MPTNet consists of two RNN units,
a forward-LSTM, and a backward-LSTM, to capture the forward and backward
influence, respectively, from historical trips. The output of each LSTM unit is
passed through two separate MLPs to predict the stop and the mode.

To generate the most popular trip for a query q = (s, d, t), we obtain the key
stops from KSNet in order of their likelihood, and we use MPTNet to perform
the following procedure for finding a popular trip from source to destination
via the selected key stop. Let Zq

i be a key stop. We generate two candidate
trips using MPTNet for the key stop Zq

i . First, we generate a sub-trip from
Zq

i to s using the backward-LSTM and then consider the generated sub-trip as
the given past sequence to generate another sub-trip from Zq

i to d using the
forward-LSTM. Second, we generate a sub-trip from Zq

i to d using the forward-
LSTM and then treat the generated sub-trip as the future sequence (of the to be
generated trip) to generate another sub-trip from Zq

i to s using the backward-
LSTM. While selecting the next stop for a sub-trip in forward-LSTM, we only
consider those stops that have a hop from the current stop according to historical
trips. A similar strategy is implemented for backward-LSTM too. Finally, of the
two candidate trips generated above, we pick the most probable trip as the most
popular trip. We use the forward LSTM to compute the probability of a trip.

3.5 Preferred Mode Constraint

PathOracle is flexible enough to incorporate the mode preference of the user. In
such a case, we find the most popular trip that mostly uses the preferred mode of

578 Md. T. Mahmood et al.

choice. Specifically, we allow a user to give two constraint parameters, a transport
mode m and target mode coverage c. Based on this, we extend the KSNet (of
Sect. 3.3) in such a way that the choice of preferred mode can influence the choice
of key stops. For this, KSNet learns another probability function Pm(x|q,m),
which indicates the probability of x being a key stop of the popular trip from s
to d at time t that mostly uses the transport mode m. The preferred mode m
is passed to the MLP of KSNet through a learnable embedding layer em. The
MLP of KSNet takes the concatenation of (es(s), es(d), et(t), em(m)), and gives
the key stops with associated probabilities.

The sample generation for the training phase is also similar to Sect. 3.3.
Suppose a trip T starts at time t, has stop sequence ⊆x1, x2, . . . , xn→ and mode
sequence ⊆m1,m2, . . . ,mn−1→. We find the mode mp that has the most mode
coverage in that trip,

mp = argmax
m∈M

mc(T,m)

where mc(T,m) is the coverage of m in T . Then, we generate n − 2 samples:
[(x1, xn, t,mp), x2], [(x1, xn, t,mp), x3] , . . . , [(x1, xn, t,mp), xn−1]. From the gen-
erated samples, KSNet learns to capture the pattern of key stops depending on
preferred modes.

During the trip generation phase, we obtain K key stops from KSNet. In
order of their likelihood, each of the key stops is passed to MPTNet to complete
the trip by connecting the source and destination to the key stop. Once we find
a trip that satisfies the mode coverage constraint, we consider that trip as the
most popular trip with the preferred mode.

3.6 Minimum Switch Constraint

MPTNet allows us to fix the maximum length (L) of a generated trip. Suppose,
MPTNet is generating a candidate trip and it has generated the first sub-trip of
length L1 from a key stop to the source. Then, MPTNet tries to connect the key
stop to the destination within a sub-trip of length L − L1. Thus, MPTNet can
find the most probable trip within length L. This capability facilitates MPTNet
to generate trips with the minimum switch constraint. Specifically, we set L to
the minimum trip length value (i.e., 2) and enforce MPTNet to generate a trip.
If MPTNet fails, L is incremented gradually up to the maximum value until
MPTNet generates a trip.

4 Experiments and Results

In this section, we present the experimental evaluation for our solution, PathO-
racle, to answer the MPT query and its variants. As there is no prior work
that directly answers these problems, we compare our solution with a number of
baselines that we adapted by appropriately modifying state-of-art deep learning
techniques suitable for these tasks.

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 579

4.1 Experimental Setup

Dataset. We use Myki1 dataset which contains real-world public transport
data of Victoria, Australia. The dataset consists of touch-on (getting on a vehi-
cle) and touch-off (getting off a vehicle) events of the first 10 weeks of 2017.
The dataset has 27620 stops, 2357 routes and on average 10 million events per
week. Among the 10 weeks of 2017 datasets - we consider the first 8 weeks as the
training dataset, the 9th week as the validation dataset, and the 10th week as
the testing dataset. Each event has the following information: Mode, Date and
time, User ID, Vehicle ID, Route ID, and Stop ID. We extract the trips taken
by various users by connecting the discrete user events. Finally, we are able to
reconstruct about 18 million trips. The number of trips we use for training, val-
idation, and testing are 14 million (first eight weeks), 2 million (9th week), and
2 million (10th week), respectively.

We define trip length as the number of stops in a trip, including source and
destination. A trip length includes walking events in between changes of vehicles.
For example, if a person takes a train from Clayton to Melbourne Central, then
walks to a nearby tram stop and reaches the University of Melbourne using a
tram, the trip length is four, whereas the number of vehicles involved is 2 (train
and then tram) and the number of vehicle switches is 1 (train to tram). We
exclude the trips with a trip length of more than six or a vehicle count of more
than three because such trips are extremely rare in the dataset.

Baselines. As no prior works focus on finding the popular trip using multi-
modal public transports, we developed three baselines by adopting popular deep
learning frameworks and state-of-the-art techniques.

– LSTM: We adapt vanilla LSTM [10] for popular trip generation using only
forward influence. The output of LSTM is passed to two MLPs: one predicts
the next stop, and the other predicts the next mode of transport.

– FB-LSTM: As a second baseline, we use both forward and backward influ-
ence with FB-LSTM (Forward-Backward LSTM) to answer our popular path
queries. We separately train the two LSTM models, namely forward-LSTM
for modeling forward influence and backward-LSTM for modeling backward
influence. In this approach, we predict two trips from these two models and
take the most probable one.

– DeepST: As the final baseline, we extend DeepST [12], which is the state-of-
art model for finding the most probable trip for a given source, destination,
traffic condition, and historical trajectories of taxi trips. We modify DeepST
to predict sequences of stops and sequences of modes.

For consistency, each baseline is implemented to predict only those stops that
have a hop from the current stop according to historical trips. On top of that, as
there is no way to incorporate constraints during learning for the baselines, for

1 https://www.ptv.vic.gov.au/tickets/myki/.

https://www.ptv.vic.gov.au/tickets/myki/

580 Md. T. Mahmood et al.

preferred mode and minimum switch constraints, we implement Beam Search
for each of the baselines. We generate 20 alternate trips using Beam Search and
select the most optimal one according to the constraints. We observed that these
two strategies improve the performance of the baselines.

Implementation Details. In Stop2Vec, we generate R = 80 random walks per
stop. Random walks are generated up to a length of 10. The window size of the
Skip-Gram model is set to 5. For PathOracle, the sizes of stop, time, and mode
embeddings are set to 256, 36, and 36, respectively. We split 24 h of a day into
σt = 4 windows, each with a 6-hour interval. The MLP in KSNet has four layers
where two hidden layers of size 128 and 32, respectively, are used. Forward and
backward LSTMs of MPTNet are two single layer LSTM units with hidden size
512. The maximum allowable trip length L is set to 6 (as trips of more than six
stops are extremely rare and thereby discarded from our dataset). We select top
K = 20 key stops from KSNet. Models including baselines are implemented in
PyTorch and are trained with one NVIDIA GeForce GTX 1080 GPU. Models
are trained up to 30 epochs with Adam optimizer [11] and batch size 128.

4.2 Evaluation of MPT Query

In this section, we evaluate PathOracle against the baselines on the performance
of generating the most popular trip for MPT queries.

Evaluation Metrics for MPT. The performance of an MPT query is eval-
uated based on five metrics: stop accuracy, stop recall, mode accuracy, mode
recall, and reachability. The measurement of accuracy and recall is based on
the metrics used in DeepST [12]. For a given ground-truth sequence y and a
prediction sequence y∗, we can define the metrics as follows.

– Accuracy is the ratio of the count of correctly predicted stops/modes to the
maximum length between y and y∗. Accuracy = |y∩y∗|

max(|y|,|y∗|)
– Recall is the ratio of the count of correctly predicted stops/modes from the

first |y| stops of y∗ to the length of y. Recall is measured for both stop sequence

and mode sequence. Recall =
|y∩y∗

1:|y||
|y|

– Reachability is a boolean metric. If a predicted trip is able to reach the des-
tination, the reachability of the trip is one. Otherwise, it is zero.

Performance Comparison. Table 1 and 2 show the performances of different
approaches on predicting stop sequence and Table 3 and 4 show the performances
on predicting mode sequence. Lastly, we show the performance on finding a trip
to the destination. Here, we vary the trip length as 2, 3, 4, 5, and 6.

For shorter length of trips (i.e., 2–4), all models perform similarly well because
it is relatively straightforward to capture short-range dependencies. As trip

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 581

Table 1. The stop sequence accuracy
versus trip length

Models Trip length

2 3 4 5 6

PathOracle 0.98 0.97 0.83 0.80 0.73

DeepST 0.97 0.96 0.82 0.76 0.63

FB-LSTM 0.96 0.94 0.75 0.69 0.51

LSTM 0.95 0.91 0.79 0.69 0.48

Table 2. The stop sequence recall ver-
sus trip length

Models Trip length

2 3 4 5 6

PathOracle 0.98 0.97 0.83 0.80 0.73

DeepST 0.97 0.96 0.82 0.76 0.63

FB-LSTM 0.96 0.94 0.75 0.69 0.51

LSTM 0.95 0.91 0.79 0.69 0.48

Table 3. The mode sequence accuracy
versus trip length

Models Trip length

2 3 4 5 6

PathOracle 0.97 0.96 0.90 0.88 0.84

DeepST 0.96 0.97 0.62 0.67 0.51

FB-LSTM 0.95 0.94 0.84 0.82 0.70

LSTM 0.95 0.90 0.87 0.79 0.71

Table 4. The mode sequence recall ver-
sus trip length

Models Trip length

2 3 4 5 6

PathOracle 1.00 0.97 0.92 0.88 0.84

DeepST 1.00 0.97 0.65 0.69 0.54

FB-LSTM 0.99 0.95 0.86 0.82 0.73

LSTM 1.00 0.91 0.91 0.81 0.75

length becomes longer (i.e. 5–6), the performances of all methods drop. This
is because (i) the number of possible trips from source to destination increases
rapidly with the increase of trip length, and (ii) capturing the long-range depen-
dencies among stops in long sequences is challenging. We observe that, for lengths
5 and 6, PathOracle outperforms every other model significantly in accuracy and
recall metrics. This is because PathOracle significantly reduces the number of
possible trips by fixing a key stop between source and destination. The inclusion
of the key stop also reduces the length of the sequence to be generated, thus,
tackling the challenge of modeling long-range dependencies.

Moreover, PathOracle and FB-LSTM show significantly better reachability
than others in long trips. In shorter trips, models perform similarly. However,
especially for lengths 6, PathOracle and FB-LSTM are able to generate a valid
trip to destination 94% times, whereas DeepST is able to generate such a trip
only 83% times. Both PathOracle and FB-LSTM employ forward and backward
influences together and thus have a better chance of reaching to destination
compared to others, which is also evident from the results.

4.3 Evaluation of MPTPM Query

In this section, we compare the performance of models in generating the most
popular trip with a preferred mode constraint. The constraint consists of a pre-
ferred mode m and a target mode coverage c.

582 Md. T. Mahmood et al.

Metric for MPTPM. The performance of a predicted trip of an MPTPM
query is measured by the metric, Coverage Score. Coverage score is the ratio
of the coverage of the preferred mode cp in the predicted trip and the target
coverage c. Coverage Score = min(1, cp/c). The maximum value of a Coverage
Score can be 1. Also, if the predicted trip does not reach the destination, the
coverage score will be 0.

Performance Comparison. We evaluate performance for different preferred
modes (bus, train, tram) with different mode coverages. Evaluating performance
under this constraint is challenging because (i) there is no information about
mode preferences in the dataset and (ii) a trip with random preferred transport
mode and desired coverage may not be possible. So, for fair evaluation, we gen-
erate queries from the test dataset in such a way as to increase the chance of
the existence of trips for those queries. The generation of queries is done in two
approaches.

Firstly, we consider only the test dataset. For a transport mode m, we find
the trips in the test dataset where the coverage of m is higher than other trans-
port modes. From each of these query trips T , we query each method six times
with the same source T.s, destination T.d, time T.t, and preferred mode m, while
varying target coverage c from 0.5 to 1.0 with a 0.1 interval. We also keep track
of the lengths of the trips we generated the queries from. We show the mean
coverage score of MPTPM queries in Fig. 2 for different preferred modes and
lengths of the query trip. As the performance of the methods largely varies for
long sequence trips, we only show the results for lengths 5 and 6. Here, PathO-
racle consistently shows better performance than DeepST and FB-LSTM in all
cases. This is because KSNet can effectively select preferred mode-specific key
stops that increase the mode coverage while MPTNet generates the popular trips
through them. The coverage score of each method decreases with the increase
of c.

Secondly, we generate only those queries from the test dataset such that
each query has a trip in the historical dataset that satisfies the constraint. Let,
T is the trip in the test dataset we are currently considering and m is our
preferred mode. We find the maximum coverage (cm) of m for all trips between
T.s and T.d at time T.t in the historical dataset. If cm < 0.5, we discard the trip.
Otherwise, we set target coverage to c, where value of c is 0.5, 0.7 or 0.9 when
cm is within [0.5, 0.6), [0.7, 0.8) or [0.9, 1.0), respectively. Then, we generate an
MPTMP query with source T.s, destination T.d, time T.t, preferred mode m,
and target coverage c. We keep track of the length l of the historical trip where
m has the maximum coverage cm. We generate such queries for bus, train, and
tram, for length l = 5, 6. Figure 3 shows the mean coverage score of models
for different preferred modes and coverages. We observe that the PathOracle
outperforms the baselines in all cases except one. We observe a lack of pattern
with the change of c. This is because in each case of preferred mode, length, and
target coverage, results are coming from a particular set of queries tailored for
that case.

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 583

4.4 Evaluation of MPTMS Query

In this section, we compare the capabilities of the methods in finding the most
popular trip with minimum change of vehicles. In other words, we want to gen-
erate the most popular trip with a minimum trip length. Models are compared
based on two experiments.

Fig. 2. Performance under preferred mode constraint on test dataset queries

In the first set of experiments, we evaluate models based on historical ground
truth of minimum length. For each query q = (s, d, t) in the test dataset, we find
the minimum length lm of all historical trips that start from s at t and end in d.
Then each of the methods predicts its most popular minimum trip for q. Say, the
length of a predicted trip is lp. We define a metric ML Score (Minimum Length
Score), that measures the ratio of lm and lp. ML Score = min(1, lm/lp). If the
length of the predicted trip is less than or equal to lm, the score is 1.

In the first four columns of Table 5, we show the mean ML scores of different
methods against different lm. For the lack of variation in the score and for space
constraints, we exclude the results for shorter paths. We observe that PathOracle
consistently surpasses the competing methods, especially for length 6. This is
because PathOracle can effectively impose restrictions on the trip generation
process by reducing L. Whereas, FB-LSTM and DeepST are producing alternate
trips using Beam Search without any consideration of the constraint.

For the second set of experiments, we compare the methods in the test
dataset. We define a metric, Comparative Score, which is the fraction of cases
where a model generated the shortest trip compared to other methods. Compar-
ative scores of PathOracle, DeepST and FB-LSTM in this experiment are shown
in the last column of Table 5. PathOracle outperforms DeepST and FB-LSTM
by a significant margin.

584 Md. T. Mahmood et al.

Fig. 3. Performance under preferred mode constraint on historical queries

Table 5. Performance comparison of different methods in MPTSM query

Models Historical minimum length Comparative
score

4 5 6

PathOracle 0.999 0.999 0.975 0.958

DeepST 0.918 0.886 0.715 0.802

FB-LSTM 0.995 0.991 0.859 0.906

5 Related Works

Trip planners like Google maps, PTV Journey Planner [1], OpenTripPlanner [2],
etc., are widely used by millions every day commuting in a city using public
transport. These planners use shortest path algorithms to find the fastest (or
shortest/cheapest) route on the public transport network, given the schedule
of the services run on the transport network. To facilitate these planners with
real-time transit data, a number of works (e.g., [3,4,20]) proposed multi-modal
trip planning algorithms. All these systems and algorithms work on the pro-
vided public transport network and public transport schedules of the services to
recommend a route.

Though no work exists for learning based multi-modal popular trip planning,
automated route planning (that considers trips with a single vehicle, such as taxis
or cars) between two locations based on historical trajectories has been studied
extensively in recent years. These studies tackle a variety of route planning

PathOracle: A Deep Learning Based Trip Planner for Daily Commuters 585

related tasks such as the most popular trip planning [6,12], personalized route
recommendation [5,7,14], route pattern modeling [19], route cost estimation [15],
travel time estimation [13,18], etc. Next, we will discuss the works on route
planning and path recommendation from historical trajectories.

MPR [6] finds the most popular route between a source and a destination
from historical trajectories. It works without road network data by first creating
a transfer model to estimate the transfer probability of nodes. The most popular
path is inferred by finding a path that maximizes the probability according to the
transfer model. L2R [9] solves the problem of route planning in sparse trajecto-
ries. They learn the routing patterns between frequent regions and then transfer
those patterns to regions with sparse trajectories. However, to answer time-
based queries, both L2R and MPR have to create multiple models for different
time ranges. MFP [16] is a search-based technique that considers the temporal
context in finding the popular path. It searches the most frequent path from a
source to a destination for a time frame in history. MFP processes a query by
instantly building a sub-graph that captures the historical routing information
for that time frame, then finds the most frequent path from the sub-graph. Being
a search-based algorithm, query processing in MFP is expensive in computation
and memory.

Recently, Li et al. [12] propose DeepST, a deep probabilistic model to
learn spatial transition patterns from taxi trajectories. DeepST incorporates the
impact of the past traveled route, destination, and real-time traffic condition for
route generation, which shows the best performance in generating the most prob-
able route. We have considered DeepST as one of our baselines by modifying it
for the multi-modal popular path problem. To the best of our knowledge, none of
the previous works can learn to generate popular multi-modal trips considering
the impact of the time of the day and user preferences in a unified model.

6 Conclusion

In this paper, we have introduced the problem of answering the most popular
path query by learning historical trips in the context of multi-modal public
transports based city commuting. To solve this problem, we have developed a
multi-stage deep learning architecture, PathOracle, that enables users to find
the popular path for a given source-destination pair and the time of the travel.
The PathOracle can gracefully accommodate user preferences constraints such
as preferred mode of transports, and minimum number of switches in the trip.
We have conducted an extensive experimental study with a large real-world
public transport based commuting Myki dataset of Melbourne city. The results
show that PathOracle outperforms all the baselines significantly, especially while
answering longer trips involving multiple modes of public transport.

Acknowledgments. This work is done at DataLab, BUET. Muhammad Aamir
Cheema is supported by ARC FT180100140.

586 Md. T. Mahmood et al.

References

1. Journey Planner - Public Transport Victoria. https://www.ptv.vic.gov.au/journey.
Accessed 30 June 2022

2. Opentripplanner - Multimodal trip planning. http://opentripplanner.org/.
Accessed 30 June 2022

3. Benchimol, P., Amrani, A., Khouadjia, M.: A multi-criteria multi-modal predictive
trip planner: application on Paris metropolitan network. In: ISC2 (2021)

4. Borole, N., Rout, D., Goel, N., Vedagiri, P., Mathew, T.V.: Multimodal public
transit trip planner with real-time transit data. Procedia-Soc. Behav. Sci. 104,
775–784 (2013)

5. Chang, K.P., Wei, L.Y., Yeh, M.Y., Peng, W.C.: Discovering personalized routes
from trajectories. In: ACM SIGSPATIAL LBSN (2011)

6. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In:
ICDE (2011)

7. Dai, J., Yang, B., Guo, C., Ding, Z.: Personalized route recommendation using big
trajectory data. In: ICDE (2015)

8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: ACM
SIGKDD (2016)

9. Guo, C., Yang, B., Hu, J., Jensen, C.: Learning to route with sparse trajectory
sets. In: ICDE (2018)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
12. Li, X., Cong, G., Cheng, Y.: Spatial transition learning on road networks with deep

probabilistic models. In: ICDE (2020)
13. Li, X., Cong, G., Sun, A., Cheng, Y.: Learning travel time distributions with deep

generative model. In: WWW (2019)
14. Liu, H., Tong, Y., Zhang, P., Lu, X., Duan, J., Xiong, H.: Hydra: a personalized

and context-aware multi-modal transportation recommendation system. In: ACM
SIGKDD (2019)

15. Liu, H., Jin, C., Zhou, A.: Popular route planning with travel cost estimation from
trajectories. Front. Comput. Sci. 14, 191–207 (2020)

16. Luo, W., Tan, H., Chen, L., Ni, L.M.: Finding time period-based most frequent
path in big trajectory data. In: ACM SIGMOD (2013)

17. Rashid, S.M., Ali, M.E., Cheema, M.A.: DeepAltTrip: top-k alternative itineraries
for trip recommendation. arXiv (2021)

18. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? Estimating
travel time based on deep neural networks. In: AAAI (2018)

19. Wu, H., Chen, Z., Sun, W., Zheng, B., Wang, W.: Modeling trajectories with
recurrent neural networks. In: IJCAI (2017)

20. Yu, L., Shao, D., Wu, H.: Next generation of journey planner in a smart city. In:
ICDMW (2015)

https://www.ptv.vic.gov.au/journey
http://opentripplanner.org/

Demo Track

Logistics, Graphs, and Transformers:
Towards Improving Travel Time

Estimation

Natalia Semenova1,2(B), Vadim Porvatov1,3, Vladislav Tishin1,3,
Artyom Sosedka1,3, and Vladislav Zamkovoy1

1 Sberbank, Moscow 117997, Russia
semenova.bnl@gmail.com

2 Artificial Intelligence Research Institute, Moscow 105064, Russia
3 National University of Science and Technology “MISIS”, Moscow 119991, Russia

Abstract. The problem of travel time estimation is widely considered
as the fundamental challenge of modern logistics. The complex nature of
interconnections between spatial aspects of roads and temporal dynamics
of ground transport still preserves an area to experiment with. However,
the total volume of currently accumulated data encourages the construc-
tion of the learning models which have the perspective to significantly
outperform earlier solutions. In order to address the problems of travel
time estimation, we propose a new method based on transformer archi-
tecture – TransTTE.

Keywords: Graph embedding · Travel time estimation · Geospatial
linked data

1 Introduction

As long as ground transport dramatically increases its quantitative presence in
the cities, traffic management becomes more complex and hence less predictable
for drivers. In order to handle the escalation of such a negative trend, it is impor-
tant to effectively estimate the essential parameters describing traffic dynamics.
One of the most important values among such quantities is the estimated time
of arrival (ETA) which could be considered as the expected time expenditure for
a trip between two locations. Accurate travel time estimation (TTE) is mostly
challenging for cars due to the presence of the extensive limitations induced by
the road network structure. These aspects of urban traffic ordinary require spe-
cial spatio-temporal methods implementation to be handled. The contributions
of our work are the following:

1. We proposed TransTTE model that could utilize the spatio-temporal depen-
dencies and explored the capabilities of the transformer model application

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26422-1 36.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 589–593, 2023.
https://doi.org/10.1007/978-3-031-26422-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_36&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_36
https://doi.org/10.1007/978-3-031-26422-1_36

590 N. Semenova et al.

in the domain of TTE via comparison with several baselines. Computational
experiments allow us to conclude that the TransTTE architecture achieves
competitive performance.

2. We published a new dataset related to the city of Omsk.
3. For the needs of demonstration, we developed a web service based on the

TransTTE model.

The application is available at http://transtte.online and the code could be
accessed from https://github.com/Vloods/TransTTE demo.

2 Related Work

Generally, the TTE methods could be divided into two categories related to the
different approaches of ETA computing. The first one is based on the extraction
of the total traveled time regarding each segment of the path [1]. Such models do
not capture any global properties of the path which is explicitly reflected in their
performance. The second class of methods utilizes the corresponding trip path
as a whole [2]. The results achieved by these approaches defined the mainstream
of current research in the domain of TTE and hence are widely established in
the experiments section.

3 Framework Design

In this section, we discuss the aspects of model design and deployment as a part
of a developed web service.
Task. Given an origin, destination, and departure time, our goal is to estimate
the duration using the set of historical trip dataset X and the underlying road
network G.
Model. The transformer architecture has recently become a prevalent approach
in many domains, such as natural language processing and computer vision. Yet,
it has not achieved competitive performance on popular leaderboards of graph-
level prediction compared to mainstream GNN variants. Therefore, it remains a
question of how transformers could perform well for graph representation learn-
ing in the TTE task.

One of the graph-oriented aspects in the Graphormer architecture [8] is a
centrality encoding which assigns each node two real-valued embedding vectors
according to its indegree and outdegree h

(0)
i = xi + z− + z+, where z−, z+ ∈ R

d

are learnable embedding vectors specified by the indegree deg−(vi) and outdegree
deg+(vi) respectively. Along with centrality encoding, spatial encoding is used to
capture the structural relation via function φ(vi, vj) : V ×V → R which measures
the spatial relation between nodes vi and vj of road network G. Original choice
of such function φ(vi, vj) is the shortest distance between vi and vj which further

serves as a bias term in the self-attention module Aij = (hiWQ)(hjWK)T

√
d

+bφ(vi,vj),

http://transtte.online
https://github.com/Vloods/TransTTE_demo

Logistics, Graphs, and Transformers 591

Fig. 1. Application interface.

where bφ(vi,vj) is a learnable scalar indexed by φ(vi, vj) which is shared across
all layers.
Data. In this paper, we use the dataset related to the road networks of Abakan
and Omsk1 which have different scales and road topology [6]. The datasets are
collected in a monthly period starting from December 1, 2020. The datasets con-
sist of a road network with corresponding to its segments features and trip part.
The presence of the noisy data among the trip part of the datasets encourages
us to apply filtering regarding the rebuild count feature, maximum/minimum
length, and the total time of the trips.
Web Application. For the needs of model demonstration, we deployed our
TTE service in the platform of the Yandex Maps project, Fig. 1. The interface
allows choosing between two cities and three types of routes regarding demands
of a user.

4 Results

In addition to the computing TTE for the shortest route, the framework also
evaluates the routes based on the metrics of picturesqueness and historicity.
Using the OpenStreetMap API, we managed to parse information about the
location of historical, cultural and natural objects. The number of certain objects
is used as the road segments weights for Dijkstra’s algorithm Wi = 1

1+Cr
, where

Wi is the weight for the i’th segment of the road, Cr is the number of objects
within a radius r of a road segment.

We reimplemented Graphormer architecture to accelerate the training pro-
cess and consider the peculiar properties of road trips. Due to caching spatial
1 The full data could be requested from semenova.bnl@gmail.com.

592 N. Semenova et al.

Table 1. Evaluation of different pipelines and comparison with proposed method

Dataset Omsk Abakan

Split Train Test Train Test

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GBDT 403.921 582.011 408.644 573.559 244.119 449.250 248.862 399.534

MURAT 279.616 438.228 286.491 443.397 179.037 285.003 185.153 286.934

WDR 311.581 440.511 336.756 487.876 173.684 285.132 182.296 293.551

TransTTE 101.381 387.241 105.464 261.103 81.048 285.032 83.616 168.421

encoding values, we were able to speed up training by almost 10 times. Several
baselines for TTE task were also implemented to verify the effectiveness of the
proposed model, Table 1. We considered results made by gradient boosted deci-
sion trees along with the more sophisticated pipelines. WDR [7] uses generalized
linear model and LSTM together to compute travel time. MURAT [3], in its
turn, produces unsupervised representations due to DeepWalk [5] and applies
residual feedforward blocks to predict travel time and distance.

The best result was achieved on GraphormerSlim (L = 12, d = 80) version
with reduced size of dimension. As the optimizer we used AdamW [4]. Experi-
ments were done with 5 Tesla V100 GPUs and 460 Gb of RAM. The training
time of the different configurations of TransTTE lies in the interval from 2.5 h
up to 5 h which is smaller than in case of WDR (7 h) and MURAT (5.5 h).

5 Conclusion and Outlook

In this paper, we proposed the new transformer-based approach to the com-
puting of ETA and explored its performance. The experiments revealed the per-
spective of graph transformer utilization in the travel time estimation. In the
upcoming studies, we want to extend the current transformer architecture by
virtue of extra road network features and more precise work with the temporal
aspect of road trips. Future research should be devoted to the development of
a joint TransTEE model which could compute travel time for rides on different
city networks indeed.

References

1. Asghari, M., Emrich, T., Demiryurek, U., Shahabi, C.: Probabilistic estimation of
link travel times in dynamic road networks, pp. 1–10 (2015)

2. Jin, G., Wang, M., Zhang, J., Sha, H., Huang, J.: STGNN-TTE: travel time
estimation via spatial-temporal graph neural network. Future Gener. Com-
put. Syst. 126, 70–81 (2022). https://www.sciencedirect.com/science/article/pii/
S0167739X21002740

https://www.sciencedirect.com/science/article/pii/S0167739X21002740
https://www.sciencedirect.com/science/article/pii/S0167739X21002740

Logistics, Graphs, and Transformers 593

3. Li, Y., Fu, K., Wang, Z., Shahabi, C., Ye, J., Liu, Y.: Multi-task representation
learning for travel time estimation. In: International Conference on Knowledge Dis-
covery and Data Mining (KDD 2018) (2018)

4. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)
5. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-

tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

6. Porvatov, V., Semenova, N., Chertok, A.: Hybrid graph embedding techniques in
estimated time of arrival task. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E.,
Rocha, L.M., Sales-Pardo, M. (eds.) Complex Networks & Their Applications X.
SCI, vol. 1016, pp. 575–586. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-93413-2 48

7. Wang, Z., Fu, K., Ye, J.: Learning to estimate the travel time. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 858–866. KDD 2018, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3219819.3219900

8. Ying, C., et al.: Do transformers really perform bad for graph representation? arXiv
preprint arXiv:2106.05234 (2021)

https://doi.org/10.1007/978-3-030-93413-2_48
https://doi.org/10.1007/978-3-030-93413-2_48
https://doi.org/10.1145/3219819.3219900
http://arxiv.org/abs/2106.05234

Explainable Anomaly Detection System
for Categorical Sensor Data in Internet of Things

Peng Yuan1, Lu-An Tang1, Haifeng Chen1(B), Moto Sato1, and Kevin Woodward2

1 NEC Labs America, Princeton, NJ, USA
{pyuan,ltang,Haifeng,moto}@nec-labs.com

2 Lockheed Martin Space, Denver, CO, USA
kevin.woodward@lmco.com

Abstract. Internet of things (IoT) applications deploy massive number of sensors
to monitor the system and environment. Anomaly detection on streaming sensor
data is an important task for IoT maintenance and operation. However, there are
two major challenges for anomaly detection in real IoT applications: (1) many
sensors report categorical values rather than numerical readings; (2) the end users
may not understand the detection results, they require additional knowledge and
explanations to make decision and take action. Unfortunately, most existing solu-
tions cannot satisfy such requirements. To bridge the gap, we design and develop
an eXplainable Anomaly Detection System (XADS) for categorical sensor data.
XADS trains models from historical normal data and conducts online monitoring.
XADS detects the anomalies in an explainable way: the system not only reports
anomalies’ time periods, types, and detailed information, but also provides expla-
nations on why they are abnormal, and what the normal data look like. Such
information significantly helps the decision making for users. Moreover, XADS
requires limited parameter setting in advance, yields high accuracy on detection
results and comes with a user-friendly interface, making it an efficient and effective
tool to monitor a wide variety of IoT applications.

Keywords: Explainable AI · Internet of things · Sensor data · Anomaly detection

1 Introduction

Internet of things (IoT) integrates sensor devices with informational components to form
a context sensitive system that responds intelligently to dynamic changes in real-world
environments [9]. With rapid developments in recent years, IoT devices are widely
used in different fields such as satellite, healthcare, transportation, and environment
monitoring. A typical IoT application usually contains thousands of sensors to monitor its
components and surrounding environment. Evaluating the streaming sensor data in real-
time and detecting abnormal symptoms are critical for IoT maintenance and operation
tasks.

In real applications, IoT sensors contain not only numerical readings but also cate-
gorical data representing the working status or operational mode. Unfortunately, most

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 594–598, 2023.
https://doi.org/10.1007/978-3-031-26422-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_37&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_37

Explainable Anomaly Detection System for Categorical Sensor Data 595

existing methods on anomaly detection are proposed to detect outliers and anomalies
of numerical data [1–8]. They cannot be used on categorical data. In addition, many
methods only provide a timestamp of the detected anomaly. Without enough context
information, the users cannot understand such detection results. To bridge the gap, we
design and develop an eXplainable Anomaly Detection System (XADS) to monitor the
sensor data of IoT devices. The solution constructs a three dimensional histogram model
of category, event duration, and frequency. XADS profiles the normal states by learning
from historical data, and automatically determines the anomaly thresholds despite of
noisy data. After training models from historical data, XADS monitors newly arrived
data and detects the anomalies in real time. Once an anomaly is detected, XADS searches
in the normal profiles and generates detailed reasons to explain the result. It also provides
expected values as a normal baseline for comparison. With such detailed explanations,
the users can understand the detected anomalies and take out correct actions.

Another major advantage of XADS is on the applicability and feasibility. The solution
only requires limited parameter setting in advance and can be applied to a wide variety
of IoT devices. In many real applications, it is difficult to obtain the abnormal or fault
events as training data. XADS does not need such abnormal data for training. It trains the
model only with normal data, which are much easier to collect. XADS can detect both
seen and unseen anomalies (i.e., the types of anomalies that has not appear before) with
high accuracy. The solution has been tested and applied in multiple real IoT applications
including satellite and spacecraft [10, 11]. A demo of XADS can be accessed from
the project page at: https://github.com/pengyuan0106/eXplainable-Anomaly-Detection-
System.

2 System Description

Fig. 1. System framework of XADS

As shown in Fig. 1, the overall structure of XADS is consisted of two modules: (1)
offline training from historical data and (2) online monitoring for streaming data.

https://github.com/pengyuan0106/eXplainable-Anomaly-Detection-System

596 P. Yuan et al.

In offline training module, XADS segments categorical sensor data into event
sequences through sliding windows of adaptive length. The window length is learned
from the distribution of events. After window separation, XADS learns the features of all
historical segments and generates a 3D histogram model to profile the normal data from
the dimensions of category, event duration, and frequency. At last, XADS computes the
anomaly threshold by running trained model on historical data.

In online monitoring module, XADS first converts streaming data into a new sliding
window and transforms the window into a histogram. The new histogram is then matched
with trained model to calculate an anomaly score. The system raises an alert if the score
is higher than anomaly threshold.

Figure 2 shows a snapshot of using XADS to monitor the telemetry sensor data from
a soil moisture active passive satellite [3]. The dashboard of XADS includes two parts:
a tool panel (left) and a set of view panels (right).

Fig. 2. Main interface of XADS

Tool Panel: It allows the user to upload historical data and train the model. Once the 3D
histogram models are trained, XADS can either load testing data or receive streaming
data from network and conduct online monitoring.

View Panels: XADS provides six different view panels for streaming data monitoring
and anomaly detection. (1) As shown in Fig. 2 (A), the streaming data panel plots the
so-far arrived sensor data by time; (2) The sliding window panel (Fig. 2 (B)) provides
a zoom-in view of the current data; (3) The anomaly score panel (Fig. 2 (C)) plots the
computed anomaly scores in real time. It is aligned with the streaming data panel. The
period labeled by orange color are with abnormal events. (4) The 3D histogram panel
(Fig. 2 (D)) shows the constructed histogram from streaming data in the new window;

Explainable Anomaly Detection System for Categorical Sensor Data 597

(5&6) To provide a global view to the users, XADS shows all the received data in Fig. 2
(E) and anomaly scores of multiple sensors in Fig. 2 (F).

Once an anomaly is detected, the users can check more details in anomaly report
panel. XADS lists out the abnormal values and context information in an anomaly
explanation panel, as shown in Fig. 3 (B). Figure 3 (C) shows the histogram of abnormal
data. The blue lines indicate the normal range of frequency in trained model. The orange
rectangle represents the abnormal frequency of current window. Figure 3 (D) has two
plots: the left one is a zoom in view of the observed anomaly, the orange color denotes
the abnormal event. The right plot is a normal baseline, where the blue color denotes
expected normal values during the abnormal period. In this way, XADS provides an
explicit comparison to illustrate detected anomalies.

Fig. 3. Anomaly report panel of XADS

3 Conclusion and Future Work

In this paper, we present a novel eXplainable Anomaly Detection System (XADS) to
monitor categorical sensors in IoT applications. XADS generates a histogram model on
the dimensions of category, event duration, and frequency. It automatically determines
the value’s normal ranges and anomaly thresholds. The detected anomalies are reported
in GUI interfaces with detailed explanations, as well as a normal baseline to help the
user’s understanding and decision making.

In the near future, we plan to extend XADS to complex IoT monitoring with both
categorical and numerical sensors, and to test XADS on more applications such as
weather forecasting and financial analysis.

Acknowledgements. The authors would like to thank Matthew Horak, Giovanni A Tobar,
Sowmya S Chandrasekaran, and Sadananda Narayanappa from Lockheed Martin Space for the
constructive comments and suggestions.

598 P. Yuan et al.

References

1. Li, X., Han, J.: Mining approximate top-k subspace anomalies in multi-dimensional time-
series data. In: 33rd International Conference on Very Large Data Bases, pp. 447–458 (2007)

2. Gao, Y., Yang, T., Xu, M., Xing, N.: An unsupervised anomaly detection approach for
spacecraft based on normal behavior clustering. In: 2012 Fifth International Conference on
Intelligent Computation Technology and Automation, pp. 478–481 (2012)

3. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft
anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 387–395 (2018)

4. Tang, L.A., Cui, B., Li, H., Miao, G., Yang, D., Zhou, X.: Effective variation management
for pseudo periodical streams. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 257–268 (2007)

5. Wu, H., Salzberg, B., Zhang, D.: Online event-driven subsequence matching over finan-
cial data streams. In: Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, pp. 23–34 (2004)

6. Wu, H., Sharp, G.C., Salzberg, B., Kaeli, D., Shirato, H., Jiang, S.B.: A finite state model for
respiratory motion analysis in image guided radiation therapy. Phys. Med. Biol. 49(23), 5357
(2004)

7. Wu, H., Salzberg, B., Sharp, G.C., Jiang, S.B., Shirato, H., Kaeli, D.: Subsequence matching
on structured time series data. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 682–693 (2005)

8. Schwabacher, M., Oza, N., Matthews, B.: Unsupervised anomaly detection for liquid-fueled
rocket propulsion health monitoring. J. Aerosp. Comput. Inf. Commun. 6(7), 464–482 (2009)

9. Tang, S., Shelden, D.R., Eastman, C.M., Pishdad-Bozorgi, P., Gao, X.: A review of building
information modeling (BIM) and the internet of things (IoT) devices integration: present
status and future trends. Autom. Constr. 101, 127–139 (2019)

10. Chen, H., Horak, M., Narayanappa, S., Woodward, K.: Integrating AI into planning, diag-
nostic, and prescription systems for human & robotic deep space exploration missions. In:
AAAI 2018 Fall Symposium Series (2018)

11. Yuan, P., Tang, L.A., Chen, H., Sato, M., Woodward, K.: 3D histogram based anomaly detec-
tion for categorical sensor data in Internet of Things. Submitted to VLDB Workshop on Very
Large Internet of Things (VLIoT 2022)

12. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2),
85–126 (2004)

13. Tamboli, J., Shukla, M.: A survey of outlier detection algorithms for data streams. In: 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIACom),
pp. 3535–3540 (2006)

14. Panjei, E., Gruenwald, L., Leal, E., Nguyen, C., Silvia, S.: A survey on outlier explanations.
VLDB J., 1–32 (2021). https://doi.org/10.1007/s00778-021-00721-1

https://doi.org/10.1007/s00778-021-00721-1

AGG: An Automated Genogram
Generator by Discovering Information in

Clinical Texts

Nuria Garćıa-Santa(B) and Kendrick Cetina

Fujitsu Research of Europe (FRE), Camino Cerro de los Gamos 1, 28224 Pozuelo de
Alarcón (Madrid), Spain

{nuria.garcia.uk,kendrick.cetina}@fujitsu.com

Abstract. In Deep Learning, the use of pre-trained language models
such as BERT has exploded within NLP for model fine-tuning due to the
top performance results. We showcase AGG, an Automated Genogram
Generator, capable of extracting relevant family data in clinical texts to
generate genograms, which are hierarchical relationship diagrams of a
family with special emphasis in the family health. The contributions are:
(i) automated real-time genograms generation by family history data
discovery in texts through language models fine-tuning; (ii) real-time
customization of the visual representation of the genograms; and (iii) web
service with user-friendly interactive UI. AGG allows the easy genogram
creation to users without expertise and saves time in physicians work.

Keywords: NLP · Deep Learning · Family history extraction ·
Genogram

1 Introduction

Genograms1 are visual family relationship representations that use the known
genealogy tree structure and focus in describing family health. This is relevant
for diagnosing patterns of inheritance conditions. Healthcare professionals ana-
lyze genograms to identify health risks that can be transmitted through family,
supporting the anticipation and prevention of future conditions.

There are several commercial products available in the market for the cre-
ation of genograms, such as GenoPro2, Genogram Analytics3, or iGenogram for
iPad4. However, current tools only provide creation of genograms manually from
scratch. Therefore, users need previous healthcare knowledge, require long time
for building the genogram (30mins of average), and, there is one unique way of
visual representation of the genogram.

In this paper we present AGG, a novel Automated Genogram Generator tool
that creates genograms in real-time by discovering relevant information in the
1 https://www.sciencedirect.com/topics/medicine-and-dentistry/genogram.
2 https://genopro.com/genogram/.
3 http://www.genogramanalytics.com.
4 http://www.ilogotec.com/igenogram-1-8/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 599–602, 2023.
https://doi.org/10.1007/978-3-031-26422-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_38&domain=pdf
https://www.sciencedirect.com/topics/medicine-and-dentistry/genogram
https://genopro.com/genogram/
http://www.genogramanalytics.com
http://www.ilogotec.com/igenogram-1-8/
https://doi.org/10.1007/978-3-031-26422-1_38

600 N. Garćıa-Santa and K. Cetina

Family Medical History of the patient from unstructured clinical documents (see
demo: https://youtu.be/JNtNtwsLvbI). For the Family Medical History extrac-
tion, we use Natural Language Processing (NLP) and semi-supervised machine
learning. Previous research challenges in 2018 BioCreative/OHNLP [4] and 2019
n2c2 [5] studied widely the family history extraction in clinical texts with
approaches from rule-based to machine learning techniques. For the genogram
generation, we use the open source software of Graphviz 5 to transform the family
data and relationships extracted to the graph diagram visualization.

The main contribution of AGG is the exploitation of family history extraction
from clinical texts through machine learning approaches to generate automati-
cally in seconds a genogram of the patient, saving crucial time to healthcare pro-
fessionals. In addition, we provide functionality for customization of the visual
representation of the genograms by processing template configurations.

2 AGG Tool: System Overview

We provide a system overview of AGG, describing the features and the behind
technology. AGG tool consists of three major components: (1) a family medical
history discovery module; (2) a genogram manager module; and (3) an interac-
tive UI. The first two components run on back-end services that handle the core
computation. On top of such services are deployed HTTP REST APIs to com-
municate with the UI. Below, we provide further details of AGG components.

2.1 Family Medical History Discovery

This module receives a patient’s clinical text and retrieves the family history
information included. The data extracted is a list of family members; for each
one we obtain the family role (mother, father, etc.) and the entities related, i.e.
family side (maternal, paternal), status (healthy, deceased, etc.) and observa-
tions (any kind of condition suffered by the family member). Also, the module
recognizes modalities for status and observations; positive for occurrence (e.g.
...is diabetic...), negative in case of absence (e.g. ...is not diabetic...).

We fine-tuned the state-of-the-art BioBERT [3] pre-trained language model
to train Named Entity Recognition (NER) and Relation Extraction for the family
history discovery task. We used BioBERT because is a BERT-based [1] language
model with top performance results in the biomedical domain. For the dataset,
we collected anonymous family history text fragments from MIMIC-III [2] clin-
ical notes (in English language) related to section of family antecedents history.
Such text fragments were not annotated. Therefore, we followed a distant super-
vision approach by rule-based methods for the dataset annotation of 6817 sam-
ples. In the rule-based methodology we exploited several NLP techniques such as
POS tagging, dependency parser, negation detection and dictionary matching.
For preliminary evaluation, we used a test set of 100 samples and we obtained,

5 https://graphviz.org/.

https://youtu.be/JNtNtwsLvbI
https://graphviz.org/

AGG: Automated Genogram Generator 601

for joint NER and Relation Extraction, an F-score of 91.2% in the BioBERT
fine-tuned in contrast to 81.3% achieved in the baseline rule-based approach.

2.2 Genogram Manager

The Genogram Manager is in charge of building automatically the genograms
from patients’ family history information extracted. We use Graphviz Python
library in back-end services to create the graph diagram visualizations. Besides
the automated genogram generation, this component is provided with the fol-
lowing functionalities:

– Detection of inner-relations: Processing of family history data to detect
and include the implicit family members inner relations (e.g. patient’s pater-
nal grandmother is transformed to mother of patient’s father). The inter-
pretation of this information is relevant to build an appropriate hierarchical
genogram. We used a rule-based approach over known family member rela-
tions.

– Customization of genogram visualizations: Definition of JSON tem-
plate files to configure the shapes of nodes and edges of the genograms. This
includes options of customization for nodes (e.g. depending on family member
gender, or, family member status to differentiate deceased people), and, for
edges (e.g. line shapes in sibling relation, parent relation, etc.). Therefore, the
same genogram could be visualized in different ways in real-time depending
on the template file created/selected.

2.3 Interactive User Interface

The AGG user interface scenario is illustrated in Fig. 1. This UI includes a panel
of synthetic text samples to be selected and show the family data extracted
and the generated genograms associated to such texts. In addition, users can
write new texts on-the-fly to be analysed and select different customization tem-
plates to change the visual representation of the genograms. Figure 1 shows (a)
User selects the note sample ’Cancer pattern in family history’ in correspondent
panel; (b) The panel TEXT outputs the family note, marking with colours the
family data extracted where entities of the same colour reference relationship;
(c) User selects the first template sample and panel TEMPLATE FEATURES
exposes the configuration chosen; (d) Lastly, there is a panel to visualize the
automated genogram generated following the representation expressed in the
template attributes. Currently, AGG tool supports English and Japanese lan-
guage. MIMIC-III dataset was translated to ensure a Japanese-native solution
since the beginning, with adaptation of rule-based methods and fine-tuning of
Multilingual BERT6 to cover this new language.

6 https://github.com/google-research/bert/blob/master/multilingual.md.

https://github.com/google-research/bert/blob/master/multilingual.md

602 N. Garćıa-Santa and K. Cetina

Fig. 1. UI usage scenario

3 Conclusions and Future Work

We presented AGG, an innovative framework for the real-time generation of
genograms by discovering family history information in clinical texts. The intu-
itive UI allows easy interaction for any user and the automatisation enables to
save crucial time to healthcare professionals. In the future we plan to extend
the tool to other languages and incorporate more editable features for making
modifications to the initial generated genogram.

References

1. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT (1) (2019)

2. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data
3, 160035 (2016). https://doi.org/10.13026/C2XW26

3. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

4. Liu, S., et al.: Overview of the BioCreative/OHNLP 2018 family history extraction
task. In: Proceedings of the BioCreative 2018 Workshop, p. 2018 (2018)

5. Shen, F., et al.: Family history extraction from synthetic clinical narratives using
natural language processing: overview and evaluation of a challenge data set and
solutions for the 2019 National NLP Clinical Challenges (n2c2)/Open Health Nat-
ural Language Processing (OHNLP) competition. JMIR Med. Inform. 9(1), e24008
(2021). https://doi.org/10.2196/24008

https://doi.org/10.13026/C2XW26
https://doi.org/10.2196/24008

TAMOR: Tier-Aware Multi-objective
Recommendation for Ant Fortune

Financial Marketing

Xu Min, Xiaolu Zhang, Jun Zhou(B), Changxun Fan, and Junlin Yu

Ant Group, Beijing, China
{minxu.mx,yueyin.zxl,jun.zhoujun,changxun.fcx,julian.yjl}@antgroup.com

Abstract. Online marketing recommendation is crucially important for
user growth of mobile applications. However, there are currently three
common challenges in designing such an efficient recommendation sys-
tem. First, on the user side, users can be stratified into different layers
which have distinctive user characteristics and marketing objectives. Sec-
ond, on the item side, items from heterogeneous business scenarios need
to be mixed together for ranking. Third, there are often multiple mar-
keting objectives, which are even internally related to each other. In this
paper, we address the above challenges by proposing a joint training
system Tier-Aware Multi-Objective Recommendation (TAMOR). The
TAMOR system leverages all tiers of data to train a unified model, while
the representation learned by the model for users and items are aware
of data tiers. Besides, in order to better deal with the multi-objective
prediction problem, the user bias learning is designed to learn user pref-
erences, which are then used to assist learning for user-specific tasks.
TAMOR has been deployed for financial marketing of Ant Fortune, which
brings a 10.67% boost for the number of daily new high-holding users.

Keywords: Tier-aware · Multi-objective · User bias learning

1 Introduction

In online marketing of mobile applications, the recommendation system plays
an important role in the accurate distribution of traffic. Ant Fortune is a wealth
management platform under Ant Group, where various kinds of mission cards
are pushed to specific users to stimulate their investment behaviors within the
app. For example, a typical sequential pattern of user actions is: impression →
click → conversion → investment → large investment (single transaction > 100
yuan). The core goal of the recommendation system in financial marketing is
to increase the number of users with positions over 100 yuan. Different from
traditional recommendation in e-commerce like Taobao, we are confronted with
the following three major challenges. (1) Stratified Users: Different users have
different user characteristics and marketing goals. (2) Heterogeneous Scenar-
ios: The items belonging to heterogeneous scenarios should be mixed together
for ranking. (3) Multiple Objectives: There are multiple objectives to predict,
which are usually related to each other.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 603–606, 2023.
https://doi.org/10.1007/978-3-031-26422-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_39&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_39

604 X. Min et al.

Fig. 1. System overview of TAMOR

Conventional practice in the industry is to build models individually for a
certain combination of user group and business scenario. Formally, a model can
hence be defined by a triple of <user group, item scenario, objectives>. Since
it is a multi-task learning problem, we usually choose Multi-gate Mixture-of-
Experts (MMoE) [1] as backbone model, which is the state-of-the-art method in
multi-task recommendation. However, the amount of data in separate data tiers
is relatively small and can hardly support the training of large-scale recommen-
dation models. Besides, independent modeling blocks the information sharing
between different data tiers, thus limiting the model performance.

With the above consideration, we propose a novel recommendation sys-
tem TAMOR1, namely tier-aware multi-objective recommendation, especially
for cases when there are stratified users and heterogeneous scenarios, as shown
in Fig. 1. TAMOR trains one model on the union dataset of all user groups
and item scenarios, so that it can exploit all available data. TAMOR is able to
perceive data tiers through tier-aware representation learning module. Besides,
TAMOR inherits the ability of multi-task learning from MMoE, with an extra
user bias learning module to facilitate the training of user-specific tasks. In a
real industrial dataset of Ant Fortune, our TAMOR system achieves higher area
under the ROC curve (AUC) than MMoE in all tasks on three user groups, with
significant improvement ranging from 1.3% to 4.1%. Furthermore, TAMOR has
been successfully applied in the financial marketing of Ant Fortune, and achieved
10.67% boost for the number of daily new high-holding users.

2 System Overview

We now present an overview of the TAMOR system for Ant Fortune financial
marketing, which can be split into three levels, as is demonstrated in Fig. 1(a). (1)
Data Level. In the bottom level of TAMOR system, we collected Ant Fortune
marketing dataset. Based on business settings, we stratified users into three
layers according to the amount of positions held, and clustered the items into

1 An introductory video is available at https://www.bilibili.com/video/BV1CR4y1
P7qv.

https://www.bilibili.com/video/BV1CR4y1P7qv
https://www.bilibili.com/video/BV1CR4y1P7qv

TAMOR: Tier-Aware Multi-objective Recommendation 605

six groups according to the business scenarios they belong to. (2) Model Level.
We use one unified model as the core recommendation engine of the TAMOR
system. (3) Task Level. We define five tasks including: 1) click, 2) conversion,
3) investment, 4) a single large investment with over 100 yuan, and 5) user total
investment with over 100 yuan in recent period of time.

Fig. 2. An illustration of finan-
cial marketing in Ant Fortune

As is illustrated in Fig. 2, we have a spe-
cial page in the APP to recommend financial
mission cards to users. Users of different lay-
ers have different recommendation results. For
new users, the main goal is to simply increase
their daily activity, such as click, conversion and
investment. Meanwhile, for existing users with
low positions, the key goal is to achieve large
investment to bring more high-holding users.
The items exposed to users may be associated
with multiple lines of business, including Huabei,
Jiebei, Yuebao. These business scenarios are dis-
tinct from each other and have different busi-
ness purposes. Meanwhile, together they form
the product matrix of Ant Fortune, and share a
common marketing purpose of user growth.

The core model contains three major parts as
demonstrated in Fig. 1(b), including 1) A: tier-aware representation learn-
ing for both user side and item side, 2) B: user bias learning, and 3) C&D:
user-specific and common task learning. Basically, the model adopts a joint
training framework, which shares data information between different data tiers as
much as possible. Bottom embedding table of raw features is shared across differ-
ent user groups and item scenarios From the perspective of multi-task learning,
TAMOR divides tasks into three categories according to their business relation-
ships. First, in user bias learning (B), we focus on the task which can reflect the
user preferences or characteristics, such as financial investment capacity. Second,
in user-specific task learning (C), we intend to learn prediction tasks which are
more relevant to the user’s mind, such as investment action after click-through.
Third, in common task learning (D), we predict early behaviors in the action
chain, such as the click-through rate (CTR) and conversion rate (CVR) predic-
tion tasks.

Tier-Aware Representation Learning: Tier-aware representation learning is
the key component of TAMOR to realize the simultaneous modeling of multiple
data tiers and retain the specific information of each data tier. In this module,
the raw features of users/items are projected into a unified feature space with
the stratification information. In detail, we first obtain multiple representation
V ∈ R

d×g from the raw features using the PLE [2] network. Second, we learn
a weight w ∈ R

g across groups through an encoding module. This encoding
module can be either simple one-hot encoding, or soft encoding with learnable
weights. Finally, we use the vector multiplication to compute the tier-aware

606 X. Min et al.

Fig. 3. Visualization of tier-aware representations vs. tier-agnostic representations

representation V w ∈ R
d. Empirically, we compare the tier-aware representations

and the representations learned in the way which is agnostic about data tiers.
As is visualized in Fig. 3, the tier-aware representations successfully discriminate
the samples into separate local regions in the feature space.

User Bias Learning: User bias learning plays a key role in multi-objective
recommendation, if there are predicted events that are strongly related to user
preference. Specifically, in this module, the user-side data is deeply mined to
model user bias to predict some item-independent tasks. The learning process is
essentially item-agnostic allowing us to focus on the modeling of user features
alone. Ultimately, this module is primarily intended to alleviate the learning
difficulty of user-specific tasks.

User-Specific and Common Task Learning: The multiple objectives in rec-
ommendation are subdivided into common tasks, and user-specific tasks which
are more dependent on user bias. Separate DNN towers are built upon the tier-
aware representations to make predictions on corresponding tasks. In particular,
for user-specific tasks, the user bias vector is concatenated with the input vector
of their DNN towers, to enhance the user-side features.

3 Conclusion

In this paper, we propose TAMOR for stratified users and heterogeneous sce-
narios. TAMOR learns tier-aware representations and models the relationship
among multiple objectives. We proved the effectiveness of TAMOR through its
successful application in Ant Fortune financial marketing. Future work involves
further refining the encoding module for tier-aware representation learning.

References

1. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in
multi-task learning with multi-gate mixture-of-experts. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1930–1939 (2018)

2. Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (PLE): a novel
multi-task learning (MTL) model for personalized recommendations. In: Fourteenth
ACM Conference on Recommender Systems, pp. 269–278 (2020)

Benchmarking GNNs with GenCAT
Workbench

Seiji Maekawa1(B), Yuya Sasaki1, George Fletcher2, and Makoto Onizuka1

1 Osaka University, 1-5, Yamadaoka, Suita, Osaka, Japan
{maekawa.seiji,sasaki,onizuka}@ist.osaka-u.ac.jp

2 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

g.h.l.fletcher@tue.nl

Abstract. We present GenCAT Workbench, an end-to-end framework
with which users can generate synthetic attributed graphs with node labels
and evaluate their graph analytic methods, e.g., graph neural networks
(GNNs), on the generated graphs. GenCAT Workbench supports various
types of graphs with controlled node attributes and graph topology. We
demonstrate the GenCAT Workbench and how it clarifies the strong and
weak points of GNN models. Our code base is available on Github (https://
github.com/seijimaekawa/GenCAT/tree/main/GenCAT Workbench).

Keywords: Attributed graph · Graph generator · Community · Node
label

1 Introduction

Graph analytics methods, e.g., graph neural networks (GNNs), have attracted
attention from both academia and industry. To clarify their applicability or lim-
itations, many studies address benchmarking GNNs [2,3]. Though repositories
[3] provide collections of real-world graphs with node labels, i.e., an assignment
of nodes to groups we call classes, the variety of available graphs is still limited.

Because of the large demands for various graphs, synthetic graphs are neces-
sary to mitigate the insufficiency of real-world graphs. Several studies developed
benchmarking frameworks with synthetic graphs for evaluating graph analytic
methods [2]. However, these frameworks suffer from two drawbacks. First, they
use graph generators that cannot generate realistic graphs such as SBM [1]. Sec-
ond, these frameworks require users to manually set an overwhelming number of
parameters of graph generators from scratch when users generate their desired
graphs. Hence, the requirements of benchmarking frameworks are 1) the flexi-
bility of controlling the characteristics of generated graphs and 2) the usability
for setting parameters of the graph generation.

We present GenCAT Workbench, a framework satisfying both of these desired
features. First, our framework allows users to flexibly control the characteristics
of generated graphs since we adopt GenCAT [5], an attributed graph genera-
tor which supports various characteristics of real-world graphs, such as node
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 607–611, 2023.
https://doi.org/10.1007/978-3-031-26422-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_40&domain=pdf
https://github.com/seijimaekawa/GenCAT/tree/main/GenCAT_Workbench
https://github.com/seijimaekawa/GenCAT/tree/main/GenCAT_Workbench
https://doi.org/10.1007/978-3-031-26422-1_40

608 S. Maekawa et al.

Fig. 1. Overview of the GenCAT workbench.

degree distributions, attribute distribution, and class structure. The class struc-
ture indicates the interplay between classes, attributes and topology. Second, the
GenCAT Workbench can extract the parameters for its graph generation from
a given graph and then allows users to configure the parameters, which reduces
users’ effort compared to fully manual settings. In our demonstration1, we clarify
the pros/cons of each graph analytic method across various topology structures
and attribute values. Figure 1 gives an overview of our framework.

Related Work. Many studies have addressed benchmarking graph analytic
methods [2,3]. However, there are no frameworks which allow users to generate
various graphs and evaluate analytic methods by the graphs. For example, a
recent framework uses SBM which generates graphs that are not similar to real-
world graphs [2].

2 GenCAT Workbench

GenCAT [5] is the state-of-the-art attributed graph generator which allows users
to flexibly control the characteristics of generated graphs. Since it captures the
relationships between classes, attributes, and topology, the attributes and topol-
ogy in generated graphs share the class structure. More specifically, GenCAT
can flexibly generate graphs with controlled edge connection proportions between
classes, called class preference mean. Given as inputs user specified features such
as node degrees, attribute distribution, and class features (e.g., class preference
mean and class size distribution), GenCAT generates graphs having similar fea-
tures to these inputs.

GenCAT is the only method satisfying our requirements; supporting various
class structures and extracting parameters from a given graph. Current state of
the art methods [1,7] fail to support one or more features supported by GenCAT.
Moreover, it can simulate existing generators in terms of class structures and
node degrees. Please see more detailed and precise procedures in [5].

2.1 Features of the GenCAT Workbench

The workflow of the GenCAT Workbench is illustrated in Fig. 1. We describe
the features of the GenCAT Workbench as follows.
1 Our demo video is available on https://www.youtube.com/watch?v=28xVOHR

DpCE.

https://www.youtube.com/watch?v=28xVOHRDpCE
https://www.youtube.com/watch?v=28xVOHR

Benchmarking GNNs with GenCAT Workbench 609

Fig. 2. Demonstration. (Color figure online)

Easy Parameter Setting. Users can extract statistics from a given graph,
and then configure the parameters to obtain their desired graphs. We present
examples of Cora, Citeseer, and Pubmed, which are commonly used citation net-
works [4], on the GenCAT Workbench. Also, users can add other new datasets.

Benchmarking Graph Analytic Methods. Users can investigate how each
parameter (e.g., class preference mean or the number of edges) affects the per-
formance (e.g., accuracy and training time) of graph analytic methods, while
keeping the rest of the parameters the same. This investigation clarifies the
advantages and drawbacks of methods on various settings.

End-to-End Framework. The GenCAT Workbench provides all necessary
components for benchmarking, including parameter setting (i.e., extraction and
configuration), graph generation, execution of graph analytic methods, and result
viewer. This enables users to easily investigate their methods in various settings.

To enhance the extensibility of the GenCAT Workbench, we implement it on
Jupyter Notebook. This allows users to easily add new methods to our frame-
work. This implementation is rather simple yet suitable for GNNs that are chang-
ing rapidly.

3 Demonstration Plan

Graph Generation Usage. We demonstrate and explain how to generate
graphs by the GenCAT Workbench in Fig. 2a. First, users can choose a dataset
from which they extract statistics (see the blue box). In this demonstration, we

610 S. Maekawa et al.

extract parameters from Cora and configure the class preference mean. As an
example, we modify the diagonal elements of the class preference mean such that
classes have fewer intra-edges than the original graph, i.e., we simulate a graph
with the weaker homophily property than the original graph.

Next, the GenCAT Workbench generates a graph by inputting class fea-
tures and node degree distribution (see the red box). The GenCAT Workbench
presents the heatmaps of class preference means of the original and the generated
graphs, which are shown in the bottom part of Fig. 2a. Users can observe that
the generated graph actually has fewer intra-edges in classes than the original.

Demonstration Use Case. We demonstrate sample use cases for clarifying the
pros and cons of existing graph analytic methods. We pick up three represen-
tative GNNs, GCN [4], GAT [6], and H2GCN [8], since graph neural networks
are inarguably the hottest topic in graph-based deep learning [2]. The detailed
experimental setups are described in our codebase.

In Fig. 2b, we demonstrate a sample use case investigating how much class
preference means affect the node classification accuracy of the models. First, the
GenCAT Workbench extracts parameters from Cora and configures the class
preference means to have few intra-edges (i.e., heterophily property) from many
intra-edges (i.e., homophily property). Second, the GenCAT Workbench gener-
ates graphs with the configured class preference means. Third, the framework
executes GNN models on the generated graphs. To compare the models with a
graph-agnostic classifier, we execute multi-layer perceptron (MLP).

Next, we discuss observations from this use case. First, GCN, GAT, and
H2GCN outperform MLP on graphs with the homophily property since MLP
does not use the topology information (see the bottom part in Fig. 2b). Then,
H2GCN, which considers the heterophily property, performs well on graphs with
the heterophily property (the leftmost points). In contrast, GCN and GAT do
not perform well since they ignore the heterophily property.

In our demo video, we present two more use cases: 1) accuracy on graphs
with various attribute values, and 2) training time per epoch for various numbers
of edges. Through the demonstrations, we show how GenCAT Workbench can
support investigations of the pros/cons of graph analytics methods on generated
graphs with various class preference means, attributes, and graph sizes.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Numbers
JP20H00583 and JST PRESTO Grant Number JPMJPR21C5.

References

1. Abbe, E.: Community detection and stochastic block models: recent developments.
J. Mach. Learn. Res. 18, 6446–6531 (2017)

2. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
graph neural networks. arXiv (2020)

3. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs.
arXiv (2020)

Benchmarking GNNs with GenCAT Workbench 611

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

5. Maekawa, S., Sasaki, Y., Fletcher, G., Onizuka, M.: GenCAT: generating attributed
graphs with controlled relationships between classes, attributes, and topology. arXiv
(2021)

6. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

7. Wang, B., Wang, C., Feng, H.: FastSNG: the fastest social network dataset genera-
tor. In: WWW (2021)

8. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. NeurIPS 33,
7793–7804 (2020)

SLISEMAP: Combining Supervised
Dimensionality Reduction with Local

Explanations

Anton Björklund(B) , Jarmo Mäkelä , and Kai Puolamäki

University of Helsinki, Helsinki, Finland

anton.bjorklund@helsinki.fi

Abstract. We introduce a Python library, called slisemap, that con-
tains a supervised dimensionality reduction method that can be used
for global explanation of black box regression or classification models.
slisemap takes a data matrix and predictions from a black box model as
input, and outputs a (typically) two-dimensional embedding, such that
the black box model can be approximated, to a good fidelity, by the same
interpretable white box model for points with similar embeddings. The
library includes basic visualisation tools and extensive documentation,
making it easy to get started and obtain useful insights. The slisemap

library is published on GitHub and PyPI under an open source license.

Keywords: Manifold visualisation · Explainable AI

1 Introduction

In our recent manuscript [3] we introduce an algorithm, slisemap, that extends
[1,2] and combines manifold visualization (e.g., [6–8]) with local, model-agnostic
explanations of regression or classification models (see [5] for a review). The idea
of the latter is to find an interpretable white box surrogate model that locally
approximates a complex black box model for a given data point.

slisemap produces a non-linear embedding of the data into d dimensions
(typically d = 2), such that data points projected nearby can, with good fidelity,
be explained by the same white box model. Each data point have an embedding
and an associated white box model. Together the white box models and the
visual embedding provide a global explanation of the black box model.

In this paper we describe a Python library, called slisemap, that implements
the algorithm by the same name.

The slisemap library can be used by all who want to explore datasets or are
interested in global explanations for complex black box models.

While there are plethora of software for manifold embeddings or local expla-
nations, none exist that combine these two.

Support by Academy of Finland (grants 320182, 346376) & Future Makers Program.

c� The Author(s) 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 612–616, 2023.
https://doi.org/10.1007/978-3-031-26422-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_41&domain=pdf
http://orcid.org/0000-0002-7749-2918
http://orcid.org/0000-0002-8788-3939
http://orcid.org/0000-0003-1819-1047
https://doi.org/10.1007/978-3-031-26422-1_41

SLISEMAP 613

2 Problem Definition

Formally, input to slisemap is given as a dataset of n points (x1,y1), . . . ,
(xn,yn), where the covariates are given by real vectors xi ∈ R

m and the
responses yi = f(xi) ∈ R

p, where f : R
m → R

p is a pre-trained black box
regression or classification model that we wish to explain. For regression prob-
lems p = 1 and for classification problems p is the number of classes, where yi

represents the predicted class probabilities.
We also need a type of easy-to-understand, white box, surrogate model,

gi : R
m → R

p, that we use to approximate the black box model f in the neigh-
bourhood (as defined by the embedding) of the data point i ∈ {1, . . . , n}. We
collect the parameters of the white box models into a matrix B ∈ R

n×q such
that the ith row Bi· contains the parameters of the white box model gi. As gi for
regression problems we use a simple linear model and for classification problems a
multinomial logistic regression. Additionally, the loss function l : R

p×R
p → R≥0

quantifies the mismatch between the black box and white box models. We use
quadratic loss for regression problems and Hellinger loss (which is related to
log-loss) for classification problems. Formally, the slisemap algorithm finds an
embedding of a given radius by solving the following computational problem.

Problem 1. [3] Given the definitions above, regularization parameters λlasso ≥ 0
and λridge ≥ 0, and the radius of the embedding zradius > 0, find the parameters
B ∈ R

n×q and embedding of data points Z ∈ R
n×d that minimise the loss given

by L =
∑n

i=1

∑n
j=1 WijLij +

∑n
i=1

∑q
j=1

(
λlasso|Bij | + λridgeB2

ij

)
, where Lij =

l(gi(xj),yj), Wij = e−Dij /
∑n

k=1 e−Dik , and Dij = (
∑d

k=1 (Zik − Zjk)2)1/2,
with the constraint that (

∑n
i=1

∑d
k=1 Z2

ik/n)1/2 = zradius.

This means that the local models are optimised using weights. The weights are
based on distances between the data points in the embedding. Incompatible local
models are, thus, pushed away from each other. Conversely, the constraint on
the embedding size leads to interchangable local models forming clusters.

We refer to [3] for a detailed summary of related work, description and anal-
ysis of the algorithm, as well as experimental validation.

3 The Slisemap Library

slisemap is implemented in Python using PyTorch for the optimisation, enabling
automatic differentiation and optional GPU-acceleration. However, the library
also interfaces with standard Numpy. For the built-in visualisation, exploration,
and diagnostics tools we use Seaborn.

The design goals of the library are flexibility, performance, and ease of use.
This is accomplished through optional parameters, closures, and just-in-time
compilation, while providing extensive documentation, sane defaults, and helpful
warning messages.

The slisemap library is open source and available under an MIT license at
https://github.com/edahelsinki/slisemap. The repository also includes a demon-
stration video and an extended version of the example discussed below in the

https://github.com/edahelsinki/slisemap

614 A. Björklund et al.

Table 1. Descriptions and default values for the most important parameters.

form of a Jupyter notebook. The package can also be installed using pip install
slisemap.

4 Usage Example

The autompg dataset [4] is a multivariate real-valued dataset with eight
attributes describing the properties of 398 distinct cars (6 rows with missing
values removed). The covariates are in a (normalised) Numpy array X, that con-
sists of seven ordinal attributes for each car. The response vector y contains the
fuel consumption (miles per gallon), as estimated by a random forest regressor.
Code 1 shows how we apply slisemap on this dataset.

1 sm = Slisemap(X, y, lasso =0.01) # Slisemap object

2 sm.optimise () # Optimise the solution

3 sm.plot(title="Slisemap with local model clusters",

4 clusters=4, bars=6, jitter =0.1, variables=names)

Code 1. Basic slisemap usage.

We make the interpretation of the local models easier by clustering (using
k-means) the local model coefficients (rows of matrix B) and colour-code the
embedding based on the cluster indices. Furthermore, we add some jitter (since
some points are on top of each other), and show only the five most meaningful
attributes.

The result is shown in Fig. 1.
We can now identify which attributes in a given cluster are the most impor-

tant in getting the predictions correct. For example, model year is an important
indicator of fuel economy for cluster 0, but it is less important in cluster 3. Fur-
ther analysis of the clusters reveals that cluster 3 consists of mostly heavy, U.S.-
made cars with poor fuel economy, where the weight is the primary determinant
for fuel consumption. On the other hand, cluster 0 has primarily non-U.S. cars,
which are, on average, newer and lighter. Here horsepower is also an important
attribute in predicting fuel consumption.

SLISEMAP 615

Fig. 1. Two-dimensional Slisemap embedding (left) with clusters based on white box
surrogate models. The bar plot (right) shows the cluster centroids for the coefficients
(rows of matrix B) of the white box models.

After optimising an embedding and finding local models with slisemap, it is
possible to investigate, with a built-in command, how new data items would be
projected onto the same embedding and what their local white box models would
be. This is useful for faster embedding of large datasets (using subsampling)
or to detect concept drift. Also, the same command can highlight alternative
explanations (locations in the embedding) for existing data points.

Classification. To use slisemap for classification tasks we only have to replace
the white box model (local model in Table 1) with a classifier, such as logistic
regression (included in the library). Alternatively we can transform the predic-
tions of a black box model from [0, 1] to [−∞,∞] with a logit transformation,
y′ = log(y/(1 − y)), and use linear regression for the approximation. A classi-
fication example on a larger dataset is also included in the GitHub repository
(https://github.com/edahelsinki/slisemap).

References

1. Björklund, A., Henelius, A., Oikarinen, E., Kallonen, K., Puolamäki, K.: Sparse
robust regression for explaining classifiers. In: Discovery Science, vol. 11828, pp.
351–366 (2019)

2. Björklund, A., Henelius, A., Oikarinen, E., Kallonen, K., Puolamäki, K.: Robust
regression via error tolerance. Data Min. Knowl. Discov. 36, 781–810 (2022)

3. Björklund, A., Mäkelä, J., Puolamäki, K.: SLISEMAP: Supervised dimensionality
reduction through local explanations. Mach. Learn. 112(1), 1–43 (2023). https://
doi.org/10.1007/s10994-022-06261-1

4. Dua, D., Graff, C.: UCI machine learning repository (2017)
5. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:

A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
1–42 (2019)

https://github.com/edahelsinki/slisemap
https://doi.org/10.1007/s10994-022-06261-1
https://doi.org/10.1007/s10994-022-06261-1

616 A. Björklund et al.

6. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(86), 2579–2605 (2008)

7. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv:1802.03426 [cs, stat] (2020)

8. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1802.03426
http://creativecommons.org/licenses/by/4.0/

A Camera-Based System to Detect Driver Hands
on the Steering Wheel in Semi-autonomous

Vehicles

Raphaël Morvillier, Christophe Prat(B), and Saifeddine Aloui

Univ. Grenoble Alpes, CEA, Leti, 38000 Grenoble, France
christophe.prat@cea.fr

Abstract. Semi-autonomous vehicles require monitoring the driver to check if
he is supervising the system and/or ready to take over. Most cars rely on steering-
wheel sensors to detect hands and do not monitor the non-driving related task
the driver might be performing. We present a camera-based system with a multi-
branch architecture, which provides the number of hands on the steering wheel,
on a tablet representing a secondary task and the tablet position. It also tackles
a common issue with other camera-based systems: a free hand in front of the
steering wheel can be classified as grasping it. Moreover, our system deals with
cases when the driver might use a tablet on the steering wheel, as he is allowed
to do in autonomous mode. These two points are critical to assess the time the
driver will need to take over. Finally, combining both steering wheel and camera
systems would also make vehicles harder to trick and therefore safer.

Video available at: https://www.youtube.com/watch?v=qfYOM4sdWr4

Keywords: Driver monitoring · Deep learning · Hands on steering wheel

1 Introduction

Before the advent of fully autonomous vehicles, the driver will still have to supervise
the car and/or to take over the control, in order to deal with situations that the car cannot
resolve. In such semi-autonomous cars, it is critical to monitor the driver, to know if
he is ready to take over, with his hands on the steering wheel, or if he is engaged in a
non-driving related task.

In this work, we place ourselves in the scope of such vehicles and show a system to
detect if a driver has his hands on the steering wheel or on a tablet (representing the non-
driving related task). An increasing number of vehicles integrate hands detection systems
embedded in the steering wheel. Such systems can prove very reliable under most of
the situations. However, we intend to show that camera-based systems can complement
steering wheel-based systems and are critical in specific situations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 617–621, 2023.
https://doi.org/10.1007/978-3-031-26422-1_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_42&domain=pdf
https://www.youtube.com/watch?v=qfYOM4sdWr4
https://doi.org/10.1007/978-3-031-26422-1_42

618 R. Morvillier et al.

Numerous work address the detection of hands on the steering wheel with a camera.
One of the most direct approach is to classify the entire image captured by the camera,
like in [1], however we found it did not perform well with a small database. Systems
similar to those described in [2] and [3] rely on object detection. They first detect the
steering wheel, then the hands and finally determine whether the hands are on the steering
wheel or not, based on their joint area. These systems have limitations, because if a hand
is masking the steering wheel and not touching it, it might be classified as grasping the
steering wheel. In [4], the model relies on a first object detection to detect the driver
hands, and then segments them. Finally, it classifies the hands state between grasping the
steering wheel, the mobile phone or no object. Such a system should distinguish between
a hand grasping or overlapping the steering wheel. However, it doesn’t use the rest of
the image and the steering wheel and hands positions to perform the final classification.
We intend to tackle these limitations with the proposed method.

2 Proposed System Demonstration

2.1 System Description

Our system consists of:

1. a steering wheel with grip sensors detecting the hands and the gripping force
2. a tablet, on its stand, on the right of the steering wheel
3. a color camera pointing towards the steering wheel and the tablet
4. a PC executing the software which processes the camera images and the grip sensor

signals to output information about the driver current behavior in real-time (Fig. 1)

Camera

Instrumented steering wheel

Tablet

Fig. 1. The system set-up, with the steering wheel, the tablet and the camera

A Camera-Based System to Detect Driver Hands on the Steering Wheel 619

The software executes two models in real-time:

1. a decision tree algorithm, which processes the grip sensor signals and outputs:

a. the hands position on the steering wheel
b. an indicator of the gripping force

2. a deep learning model, which processes the camera images and outputs:

a. the number of hands on the steering wheel
b. the number of hands on the tablet
c. if the tablet is on its stand or held by the driver

The deep learning algorithm has a multi-branch architecture: first an encoder as a
common trunk and then three branches, each dedicated to one of the three tasks described
above. To improve this model, we added a fourth branch which identifies the most relevant
zones in the image. The advantages of this approach are that we use the entire image
(the position of the relevant elements is as critical as their appearance) and the shared
information between tasks (if a hand is on a tablet, it is not the steering wheel) (Fig. 2).

Decision Tree

Model

Hands on the

steering wheel

Hands on the

tablet

Tablet on its

stand

Encoder

Deep Learning Model

Grip sensor

Camera

"0", "1" or "2"

"0", "1" or "2"

"on stand" or

"held by the driver"

PositionPresence Force indicator
1 0 -

2 1 0,4

3 0 -

4 0 -

5 0 -

6 0 -

7 1 0,9

8 0 -

Fig. 2. Models of the system

2.2 System in Action

In Fig. 3, we present four cases of hands detection by our system. Cases a) and b)
are simple cases where most of the existing system would give accurate results. In c),
most camera systems would detect that a hand is on the steering wheel even if it is only
masking it. In d), the driver uses the tablet on the steering wheel. A steering wheel sensor
might detect the hands but our camera system would detect the tablet usage.

620 R. Morvillier et al.

Fig. 3. Examples of hands detection by the system

3 Conclusion

We describe here a system showing the complementarity of the sensitive steering wheel
and the camera-based systems. Both systems runs in parallel. Future works should focus
on merging the two outputs and validating on an embedded platform with a larger
database. However, we show the advantages of using a camera-based system: both sys-
tems back-up each other, the camera-based system tells if the driver is engaged in a
secondary task and if the driver uses a tablet on the steering wheel. Our model also
makes the difference between a hand grasping the steering wheel or occulting it. Finally,
considering that most of steering wheel-based systems can be tricked [5], adding an
extra verification would make semi-autonomous vehicles more secure.

Acknowledgements. Results obtained in close collaboration with Nervtech (Slovenia) and the
University of Granada (Spain). This research was conducted within the project HADRIAN (Holis-
tic Approach for Driver Role Integration and Automation - Allocation for European Mobility
Needs), which has received funding from the European Union’s Horizon 2020 research and inno-
vation program under grant agreement No 875597, https://hadrianproject.eu/. The European Cli-
mate, Infrastructure and Environment Executive Agency (CINEA) is not responsible for any use
that may be made of the information it contains.

References

1. Schmitz, J.-C., Tilgner, S., Kalischewski, K., Wagner, D., Kummert, A.: Hands on wheel
classification based on depth images and neural networks. MATEC Web Conf. 308, 06003
(2020). https://doi.org/10.1051/matecconf/202030806003

2. Le, T.H.N., Zheng, Y., Zhu, C., Luu, K., Savvides, M.: Multiple scale faster-RCNN approach
to driver’s cell-phone usage and hands on steering wheel detection. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA,
pp. 46–53, June 2016. https://doi.org/10.1109/CVPRW.2016.13

https://hadrianproject.eu/
https://doi.org/10.1051/matecconf/202030806003
https://doi.org/10.1109/CVPRW.2016.13

A Camera-Based System to Detect Driver Hands on the Steering Wheel 621

3. Zhang, L., Yu, G., Zhou, B., Wang, Z., Xu, G.: Detection algorithm of takeover behavior of
automatic vehicles’ drivers based on deep learning. In: 2019 4th International Conference on
Intelligent Transportation Engineering (ICITE), pp. 126–130, September 2019. https://doi.org/
10.1109/ICITE.2019.8880230

4. Siddharth, Rangesh, A., Ohn-Bar, E., Trivedi, M.M.: Driver hand localization and grasp analy-
sis: a vision-based real-time approach. In: 2016 IEEE 19th International Conference on Intelli-
gent Transportation Systems (ITSC), pp. 2545–2550, November 2016. https://doi.org/10.1109/
ITSC.2016.7795965

5. Car and Driver: It’s Not Just Tesla: All Other Driver-Assist Systems Work without Drivers, Too,
11 August 2021. https://www.youtube.com/watch?v=trrmgpzPVQg. Accessed 20 Apr 2022

https://doi.org/10.1109/ICITE.2019.8880230
https://doi.org/10.1109/ITSC.2016.7795965
https://www.youtube.com/watch?v=trrmgpzPVQg

ADEPT: Anomaly Detection, Explanation
and Processing for Time Series with a
Focus on Energy Consumption Data

Benedikt Tobias Müller , Marvin Ender, Jan Erik Swiadek(B) ,
Mengcheng Jin , Simon Winkel, Dominik Niedziela, Bin Li ,

Jelle Hüntelmann , and Emmanuel Müller

TU Dortmund University, Dortmund, Germany

jan-erik.swiadek@tu-dortmund.de

Abstract. Anomaly detection techniques are applicable for recognizing
excessive energy consumption and device failure, thereby contributing
to the maintenance of operational and sustainable energy supply sys-
tems. In this context, human decision makers can benefit from receiving
explanation attempts for detected anomalies as part of a semi-automated
software solution. Therefore we introduce the framework ADEPT, which
comprises interfaces for processing user-supplied time series data and
interactively visualizing explanatory anomaly information. Our frame-
work features several shallow and deep machine learning algorithms
for anomaly detection and explanation. We demonstrate ADEPT using
energy consumption data collected from our university campus.

Keywords: Anomaly detection · Energy consumption · Explainability

1 Introduction

Conserving and efficiently utilizing energy are essential principles in sustainable
development. They also reduce cost and afford greater autonomy in times of
scant or uncertain energy supply. However, it is challenging to monitor energy
consumption for large-scale systems because of the complexities inherent to visu-
alizing and understanding high-dimensional time series data. Anomalous events
can arise in various patterns and across all subsets of the deployed sensors, so
they are hard to detect and interpret even for domain experts. On the technical
side, recent methods show convincing performance in anomaly detection [1], but
fully-automated solutions can’t make use of human domain knowledge and lack
in transparent explanations. This creates demand for semi-automated solutions
offering intuitive and trustworthy anomaly explanations, which can help humans
reliably find, e.g., periods of unusual consumption or sensor defects.

For the reasons stated, anomaly detection and explanation are challenging
machine learning problems. Some already existing tools and frameworks make
pertinent research results available to users, though they primarily focus on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 622–626, 2023.
https://doi.org/10.1007/978-3-031-26422-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_43&domain=pdf
http://orcid.org/0000-0003-4945-6546
http://orcid.org/0000-0001-7936-4795
http://orcid.org/0000-0001-7710-0825
http://orcid.org/0000-0002-9707-4596
http://orcid.org/0000-0001-7430-7847
http://orcid.org/0000-0002-5409-6875
https://doi.org/10.1007/978-3-031-26422-1_43

ADEPT: Anomaly Detection, Explanation and Processing for Time Series 623

different application domains, like eX2 [2] for cybersecurity, DAART [8] for mili-
tary purposes, and EXAD [9] for big data tracing. Other options for explainable
anomaly detection include MSDA [3], a library targeting data scientists, and
VADETIS [4], which does not go beyond comparative explanations. We thus pro-
pose ADEPT, a novel interactive framework providing easily accessible anomaly
explanations in addition to energy consumption monitoring for homeowners and
facility managers maintaining energy supply systems. Furthermore, our frame-
work enables the research community to assess and compare machine learning
methods concerning anomaly detection and explainability.

2 Framework Overview

Because our target audience is partly non-technical, a simple and easy-to-use
way of comfortably and quickly assessing anomalies is needed. For this purpose
we chose a microservice-based web application. That means users can access the
application from every device, no calculations need to take place on the device
itself, and the framework is extensible. A demonstration video of the ADEPT
web application is available here: https://youtu.be/Uk28ipbJGiY.

2.1 Flexible Architecture

The framework is composed of a multitude of microservices, one for each core
component. This allows researchers and developers to quickly and independently
test innovative techniques, simply by adapting the appropriate component of the
framework. Due to ADEPT’s dynamic and flexible design, data can be read from
many different sources, like real-time sensor data or static data files. These design
principles extend to all parts of the software including the machine learning
pipeline, which consists of normalization, feature engineering and model training
as well as the detection, explanation and visualization of anomalies.

2.2 Interactive Exploration

ADEPT enables users to easily browse through and analyze existing data for
anomalies without prior knowledge in data science. A screenshot of the ADEPT
web interface can be found in Fig. 1. The first row contains the raw data and a
configuration panel. Here users can select their desired sensors, features, a time
period, and an anomaly detection algorithm. Detected anomalies are displayed
in the second row. The table on the left side presents the timestamps and types
of the anomalies, while the diagram on the right side features calculated anomaly
likelihood scores with a threshold. Selecting one of the anomalies from the table
fills the bottom row with corresponding explanation results, allowing users to
analyze the anomaly in depth. The bottom left tile depicts an example-based
explanation of the feature most responsible for the selected anomaly, contrasting
the anomaly with normal patterns. This gives users immediate feedback on the
shape of the anomaly. The bottom right tile displays the feature attribution of
the anomaly, i.e., how much each feature contributes to its anomaly score.

https://youtu.be/Uk28ipbJGiY

624 B. T. Müller et al.

Fig. 1. Screenshot of the ADEPT web interface

3 Detection Models and Explainability Challenges

Each anomaly detection model comes with different strengths and weaknesses,
which is why we need several models to detect all kinds of anomalies reliably.
On a high level, models are categorized as shallow or deep models. Shallow mod-
els provide high training efficiency and are often sufficient for detecting simple
anomalies, such as low-dimensional or extreme-value anomalies. Thanks to their
simplicity, explanations can usually be derived directly. Meanwhile, explaining
the results of deep models requires more sophisticated techniques, but their
enhanced detection performance is essential for our use case because of the typi-
cally complex anomaly patterns hidden in high-dimensional energy consumption
data. Among others, ADEPT makes use of the shallow algorithms Isolation For-
est [5] and One-Class SVM [7] as well as the deep model LSTM Autoencoder
[6]. Each model returns anomaly likelihood scores for all measurement times-
tamps. It is possible to train all models on-demand with user-supplied data.
Shallow models can also be fitted using real-time data from the machine learn-
ing pipeline.

To facilitate human understanding and trust in the models, ADEPT includes
explanation techniques that highlight anomalies by presenting normal patterns
for comparison. We identify three key challenges in this regard. Firstly, a uniform
normal state might not exist, as the meaning of “normal” not only depends on the
respective time series, but can also vary over the course of a single time series,
e.g., due to concept drifts. Secondly, the interplay of multiple time series can
obfuscate the normal state and result in very complex anomalies. For instance,
a slight deviation from a correlation involving a large number of dimensions
is hardly noticeable. Thirdly, there are many approaches for extracting normal
patterns and it has not yet been fully explored how intuitive their results are

ADEPT: Anomaly Detection, Explanation and Processing for Time Series 625

under different conditions. By implementing multiple methods for extracting
normal patterns, ADEPT makes it possible to compare them. In order to find
the dimension with the greatest contrast between a detected anomaly and the
corresponding normal state, feature attributions are provided. In the case of
LSTM Autoencoder, they are calculated using Integrated Gradients [10].

4 Evaluation and Future Work

For evaluating the detection performance of our models we use data from TU
Dortmund University that consists of electricity, heat and water consumption
measurements across more than 40 buildings on the university campus. This data
is provided to us by the facility managers of our university, who also collaborate
with us in interpreting normal states and abnormal events as domain experts.
Thus far, ADEPT helped us find many events in the campus data that were
confirmed by the facility managers as known anomalies, but also a few previously
unknown, more subtle occurrences. These findings might enable them to optimize
the energy efficiency of some buildings with abnormal energy consumption.

Considering the challenges we laid out before, there are still limits to the
capabilities of ADEPT. At the same time, this creates opportunities for future
research, in which our framework could help with assessing and comparing
anomaly detection and explanation methods. Moreover, we plan to conduct reg-
ular stakeholder meetings for discussing its usage in the decision making process
regarding the sustainability goals of our university’s energy supply system.

Acknowledgements. This work was supported by the Research Center Trustworthy
Data Science and Security, an institution of the University Alliance Ruhr.

References

1. Aggarwal, C.C.: Outlier Analysis, 2 edn. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-47578-3

2. Arnaldo, I., Veeramachaneni, K., Lam, M.: eX2: a framework for interactive
anomaly detection. In: Joint Proceedings of the ACM IUI 2019 Workshops (2019)

3. Arunachalam, A.: MSDA (2021). https://pypi.org/project/msda/
4. Khelifati, A., et al.: VADETIS: an explainable evaluator for anomaly detection

techniques. In: 37th IEEE International Conference on Data Engineering, pp. 2661–
2664 (2021)

5. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: Proceedings of the 8th IEEE
International Conference on Data Mining, pp. 413–422 (2008)

6. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.:
LSTM-based encoder-decoder for multi-sensor anomaly detection. CoRR (2016).
https://arxiv.org/abs/1607.00148

7. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Sup-
port vector method for novelty detection. In: Advances in Neural Information Pro-
cessing Systems 12, pp. 582–588 (1999)

8. Smith-Renner, A., Rua, R., Colony, M.: Towards an explainable threat detection
tool. In: Joint Proceedings of the ACM IUI 2019 Workshops (2019)

https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1007/978-3-319-47578-3
https://pypi.org/project/msda/
https://arxiv.org/abs/1607.00148

626 B. T. Müller et al.

9. Song, F., Diao, Y., Read, J., Stiegler, A., Bifet, A.: EXAD: a system for explainable
anomaly detection on big data traces. In: ICDMW 2018, pp. 1435–1440 (2018)

10. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks.
In: Proceedings of the 34th International Conference on Machine Learning, pp.
3319–3328 (2017)

RE-Tagger: A Light-Weight Real-Estate
Image Classifier

Prateek Chhikara , Anil Goyal(B), and Chirag Sharma

Housing.com, Gurugram, India
{prateek.chhikara,anil.goyal,chirag.sharma}@housing.com

Abstract. Real-estate image tagging is one of the essential use-cases
to save efforts involved in manual annotation and enhance the user
experience. This paper proposes an end-to-end pipeline (referred to as
RE-Tagger) for the real-estate image classification problem. We present a
two-stage transfer learning approach using custom InceptionV3 architec-
ture to classify images into different categories (i.e., bedroom, bathroom,
kitchen, balcony, hall, and others). Finally, we released the application as
REST API hosted as a web application running on 2 cores machine with
2 GB RAM.

1 Introduction

Over the past few years, the demand for online real-estate tools has increased
drastically due to the ease of accessibility of the internet, especially in devel-
oping countries like India. There are many online real-estate platforms (e.g.,
Housing.com, Proptiger.com, Makaan.com, etc.) for owners, developers, and real-
estate brokers to post properties for buying and renting purposes. Daily, these
platforms receive 8, 000 to 9, 000 new listings consisting of approximately 60, 000
to 70, 000 house images belonging to different categories like bedroom, bathroom,
kitchen, balcony, living room, etc. To enhance the customer experience, it is nec-
essary to organize the listing images by tagging/categorizing images into one of
these categories. Generally, a team of data annotators manually tag a massive
volume of images, which is both costly and time-consuming. Moreover, manual
tagging introduces a delay of approximately 40 h from when seller upload the
images on the platform to when the listing becomes online.

To overcome these challenges and enhance the user experience, we have devel-
oped an end-to-end pipeline for real-estate image tagging (called RE-Tagger). For
any input image, the RE-Tagger categorizes the image into one of the six cate-
gories, i.e., bedroom, balcony, bathroom, kitchen, hall, and others. Concretely,
we have used two-stage transfer learning using the custom InceptionV3 [5] archi-
tecture for multi-class image classification problem [1]. Finally, we released the
pipeline as REST API, which runs in a web browser. It requires 2 cores machine
with 2 GB RAM for hosting the API and can be easily hosted on edge devices.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 627–630, 2023.
https://doi.org/10.1007/978-3-031-26422-1_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_44&domain=pdf
http://orcid.org/0000-0003-4833-474X
https://doi.org/10.1007/978-3-031-26422-1_44

628 P. Chhikara et al.

Fig. 1. Model architecture

2 Model Training and Validation

In this section, we present the proposed model architecture along with data
acquisition and evaluation results.

2.1 Model Architecture

We have proposed a two-stage transfer learning approach using the custom Incep-
tionV3 [5] model for the real-estate image classification problem. In the proposed
architecture, we have replaced the final classification block of the original Incep-
tionV3 with a global 2D average pooling layer, fully connected layer, dropout
layer (rate = 0.5), and softmax layer. Figure 1 illustrates the proposed archi-
tecture. Please note that, we have experimentally validated that InceptionV3
architecture provides best performance as compared to ResNet [3], VGG [4] and
Xception [2] architectures on real-estate image classification task. For training
the architecture, we have initialized the network with ImageNet weights followed
by a two-stage transfer learning approach. In the first step, we freeze the base
model and only fine-tune the newly added layers (global 2D average pooling,
fully connected, dropout, and softmax layers) using Housing.com data. Further,
we train the complete end-to-end network on Housing.com data in the second
step. We have empirically selected the input image dimensions to be 299×299×3
without cropping and padding. The model training was performed for 50 epochs
(both stages) using RMSProp as an optimizer with a learning rate of 0.0001 and
discounting factor (ρ) to be 0.9. We have used categorical cross-entropy as a loss
function and set the batch size to 64.

2.2 Data Acquisition

We have collected 3.1 million manually annotated images from Housing.com’s
databases. The majority of examples (approximately 73%) in the obtained
dataset belong to the bedroom, bathroom, balcony, living, dining, and kitchen
classes. Moreover, there is a high overlap between dining room and living room
classes because residences generally do not have separate living and dining rooms
in India. Therefore, we considered living and dining rooms a single class, i.e.,
‘hall’. The images which do not belong to any of these categories are classified
as ‘others.’ The detailed distribution of classes is shown in Fig. 2.

RE-Tagger 629

Others

27.41%
Bedroom

27.35%

Bathroom

15.66%

Kitchen

14.17% Hall

10.84%
Balcony

4.58%

Fig. 2. The distribution of classes in obtained dataset

Table 1. Obtained precision, recall and F1-scores on the test dataset over all the
classes

Class Balcony Bathroom Bedroom Hall Kitchen Others

Precision 0.98 0.98 0.87 0.84 0.85 0.82

Recall 0.82 0.98 0.89 0.94 0.95 0.98

F1-score 0.90 0.98 0.88 0.89 0.90 0.90

2.3 Experimental Protocol and Results

For evaluation, we reserved 100K images for testing and the remaining for train-
ing. For training the model, we randomly under-sample the samples from the
majority classes such that all the classes have an equal number of images at the
time of training. After under-sampling, we had 1.2 million images consisting of
200K images from each class. Furthermore, the training dataset is divided into
train and validation in the ratio of 9:1. Since the classes are imbalanced, we eval-
uated the learning algorithm in terms of Precision, Recall, and F1-score. Finally,
in Table 1, we present the obtained results over all the classes. The results show
that the proposed method performs more than 88% (in terms of F1-score) over
all the classes.

3 REST API and Web Application

RE-Tagger is developed in Python using Deep Learning frameworks: Keras and
Tensorflow. We have released the application as REST API1 which is hosted as
a web application running on 2 cores machine with 2 GB RAM2. Please note
that, the API can be easily hosted on edge devices as well.

In Table 2, we present the Python code snippet along with JSON response for
making a HTTP POST request to REST API. The web interface of RE-Tagger
is shown in Fig. 3 where a user can upload a real-estate image to receive an API
response in real-time.
1 The endpoint for REST API is http://52.70.157.211:5000/re-tagger.
2 Web Interface is accessible at http://52.70.157.211:5000/.

http://52.70.157.211:5000/re-tagger
http://52.70.157.211:5000/

630 P. Chhikara et al.

Table 2. An example of Python code for making HTTP request to RE-Tagger API url
using POST request along with output JSON response

Python Code JSON Response

import requests

url='http ://52.70.157.211:5000/re-tagger '

filename = 'path_to_file '

files =

{'image ':(filename , open(filename , 'rb'))}

response=requests.post(url ,files=files)

print(response.json())

{

"bedroom":"score",

"bathroom":"score",

"balcony":"score",

"kitchen":"score",

"hall":"score",

"others":"score"

}

Fig. 3. Web Interface of RE-Tagger API with home page (left) and output page (right)

4 Conclusion

This demo paper introduces the RE-Tagger pipeline that classifies real-estate
images into multiple categories: bathroom, bedroom, hall, etc. We proposed a
two-stage transfer learning approach using a custom InceptionV3 model and
released the application as REST API hosted as web application.

References

1. Abou Baker, N., Zengeler, N., Handmann, U.: A transfer learning evaluation of
deep neural networks for image classification. Mach. Learn. Knowl. Extr. 4(1), 22–
41 (2022)

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. corr
abs/1610.02357 (2016). arXiv preprint arXiv:1610.02357 (2016)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
Comput. Vis. Pattern Recognit. (2015). Google Scholar There is no corresponding
record for this reference pp. 770–778 (2015)

4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

5. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision And Pattern Recognition, pp. 2818–2826 (2016)

http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1409.1556

An Embedded Continual Learning
System for Facial Emotion Recognition

Olivier Antoni1(B), Marion Mainsant1, Christelle Godin2, Martial Mermillod3,
and Marina Reyboz1

1 Univ. Grenoble Alpes, CEA, List, 38000 Grenoble, France
{olivier.antoni,marion.mainsant,marina.reyboz}@cea.fr
2 Univ. Grenoble Alpes, CEA, Leti, 38000 Grenoble, France

christelle.godin@cea.fr
3 Univ. Grenoble Alpes, LPNC, Grenoble, France
martial.mermillod@univ-grenoble-alpes.fr

Abstract. While being a key element of human-human communication,
face emotion recognition is an important challenge for human-computer
interactions. Feature extraction and classification methods have been
developed during the past decades in order to propose increasingly accu-
rate emotion recognition algorithms. Nevertheless, in a changing environ-
ment where systems need to be continually adapted, the issue of catas-
trophic forgetting becomes a major challenge. Based on the bio-inspired
continual learning algorithm Dream Net, we propose an embedded sys-
tem for face emotion recognition. This system is innovative in its abil-
ity to learn incrementally on a NVIDIA Jetson Nano platform without
catastrophic forgetting while preserving privacy and being agnostic to
data. Live demonstration of this system can be done and users can test
it in several modes of operation: emotion recognition or learning of new
emotions.

Keywords: Facial emotion recognition · Embedded deep learning ·
Continual learning

1 Introduction

Emotions are one of the cornerstones of human social interactions. Expressing
as well as understanding emotions from others is strongly needed in an envi-
ronment where several people interact with each other. In today environment
where interaction with computers is increasingly common, introducing emotional
skills in technologies appears as a way to simplify human-computer interactions
[8]. Facial expressions are the most used features in non-verbal communication
[7]. Therefore, facial emotion recognition have been particularly studied in past
decades and many deep learning methods were proposed [4]. Nevertheless, as
they need a large amount of data to be correctly trained, most of the pro-
posed models are not designed to be robust to a changing environment where
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 631–635, 2023.
https://doi.org/10.1007/978-3-031-26422-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_45&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_45

632 O. Antoni et al.

new emotions or new people can appear. When dealing with human emotion
data, especially in the context of facial emotion recognition, privacy becomes an
important concern. Another key issue of deep learning is that “classical” artifi-
cial neural network are not able to learn and fine-tune new concepts without a
drastic reduction of their performances called “catastrophic forgetting”. Based
on this observation, Mainsant et al. [6] proposed a bio-inspired continual learn-
ing model, called Dream Net, that overcomes catastrophic forgetting, preserves
privacy, and is data agnostic. Using this algorithm, we developed an embedded
system able to learn and recognize face emotion of people in front of a camera.
This work is part of a larger purpose to use the Dream Net algorithm in real
life applications such as environmental monitoring, personalization of wearable
sensors for healthcare applications or autonomous driving support.

2 Demonstration

2.1 Goal

The system is initially able to recognize five of the seven basic emotions: neutral,
angry, disgust, fear and sad. The goal of the demonstration is to extend the
system’s knowledge to two additional emotions (happy and surprise) without
forgetting the five initially learned emotions. This demonstration shows that
using Dream Net algorithm allows the system to learn new emotions without
storing examples of previous emotions while overcoming catastrophic forgetting.

2.2 Scenario

The demonstration begins with the evaluation of the recognition capabilities of
the system. Then, some face images are placed in front of the camera to collect
the necessary data for the detector to learn the last two unknown emotions.
Next, Dream Net algorithm is used to teach the system these emotions. Finally,
the system is updated and tested, not only with face images, but also with real
faces. The tests confirm that the system is able to detect all emotions after
learning.

2.3 Specifications and Related Optimizations

For the demonstration to run smoothly, the following conditions must be met.
First, people seen by the camera should not experience a lag between their
movements or emotional changes and the system response: the processing time
of the whole system must be less than 100 ms. Second, to keep people’s attention,
the time it takes for the system to learn new emotions should not exceed one
minute.

Such a real-time system has been achieved by using TensorFlow [1] to train
the models, and TensorRT [2] to generate 16-bit floating-point optimized runtime
engines for inference. Special attention has been paid to minimizing the update

An Embedded Continual Learning System for Facial Emotion Recognition 633

time of TensorRT engines once TensorFlow models are trained, and to allow
both frameworks to run simultaneously on the same platform, without stepping
on each other’s toes. A time-memory trade-off was also found due to the small
amount of memory available on the embedded platform.

2.4 Performance

The final performance of the emotion detection system is about 10 FPS and the
overall learning time for happy and surprise emotions learnt together is about
45 s. There is an increase in emotion detection accuracy of 25% on average
compared to a system that does not use a specific continual learning algorithm
to overcome catastrophic forgetting.

2.5 Execution

Please see the demonstration video at https://youtu.be/XFVE7vq3iGk.

3 Technology

3.1 System Hardware

The system is running on NVIDIA Jetson Nano platform, featuring 128-core
GPU and 4 GB memory capacity. It is a very popular low-cost embedded plat-
form with great GPU performances, but with a relatively small amount of mem-
ory. The platform is enclosed in a metal casing equipped with IMX219-77 camera
producing 1280× 720 pixel resolution images. Finally, a monitor is connected to
the HDMI output to display emotion detection results.

3.2 System Architecture

The system pipeline for emotion detection is shown on Fig. 1. The face detector is
responsible for detecting faces in the camera image. Face images are cropped and
resized to grayscale images of 197×197 pixels. These images are then fed into the
features extractor that outputs feature vectors of size 2048, which are normalized
and used by the emotion detector to recognize the associated emotions.

Fig. 1. Pipeline for emotion detection

https://youtu.be/XFVE7vq3iGk

634 O. Antoni et al.

The face detector model is frozen and provided by OpenCV. It was created
with SSD framework [5] using ResNet10 like architecture and trained in Caffe
framework. Camera images are scaled to 533 × 300 pixels, knowing that the
neural network was initially trained on 300 × 300 pixel images.

The features extractor model is frozen and based on a ResNet50 architecture
trained on FER2013 database by Stanford University [3] in which the emo-
tion classifier has been removed. We evaluated the embedded emotion detector
trained offline to recognize the seven emotions with this feature extractor and
obtained the same accuracy value of 73% on the test set.

The emotion detector model is a hybrid architecture [6] able of replicating the
input (like an auto-encoder) and classifying facial emotion in a single inference.
It is composed of one input layer of size 2048, one dense layer with 1024 neurons
and ReLu activation function, one 50% dropout layer to avoid over-fitting, and
one output layer of size 2055 (2048 features replicated and 7 emotions classified)
with a sigmoid activation function. This model was trained on FER2013 database
where happy and surprise faces have been removed from the training set.

3.3 System Interface

A menu displayed in the execution window allows user to select the desired mode
of operation from the three presented below.

The first mode of operation is dedicated to the recognition of live emotions
of at most 10 faces simultaneously detected in the camera image. The monitor
displays the detected faces enclosed by emotion-annotated bounding boxes.

The second mode of operation is dedicated to generate the “learning dataset”
for the continual learning of emotions by the emotion detector. For each emotion
to be learnt, several images are captured by the camera, complemented by few
images from FER2013 dataset so that the emotion detector can generalize well
while learning the new emotions. To preserve privacy, only the associated features
are computed and stored in memory.

The third mode of operation is dedicated to learn new emotions. It imple-
ments the Dream Net algorithm proposed by Mainsant et al. [6]. The particu-
larity of this model is that it does not store any example of emotions previously
learnt because it is able to generate pseudo-examples that represent the past
knowledge. New emotions are learnt using these pseudo-examples and the new
examples available in the “learning dataset”.

4 Conclusion and Future Work

In this paper, we have presented a face emotion recognition system based on the
Dream Net algorithm, able to continually learn new emotions without forgetting
previous ones. The very good results obtained on NVIDIA Jetson Nano platform
demonstrate that Dream Net model can be used on resource-limited embedded
platforms in order to benefit from its two main differentiating properties com-
pared to other continual learning models, namely the agnosticity of the data and

An Embedded Continual Learning System for Facial Emotion Recognition 635

the preservation of privacy. Future work will be about bringing personalization
and multimodality to the system.

Acknowledgements. This demonstrator was developed within the scope of the
Carnot MIEL (Multimodal and Incremental Embedded Learning) project. It was also
partially supported by MIAI @ Grenoble Alpes (ANR-19-P3IA-0003).

References

1. TensorFlow framework. https://www.tensorflow.org
2. TensorRT framework. https://developer.nvidia.com/tensorrt
3. Khanzada, A., Bai, C., Celepcikay, F.T.: Facial expression recognition with deep

learning (2020)
4. Li, S., Deng, W.: Deep facial expression recognition: a survey (2020)
5. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,

N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

6. Mainsant, M., Solinas, M., Reyboz, M., Godin, C., Mermillod, M.: Dream net: a
privacy preserving continual learning model for face emotion recognition. In: 2021
9th International Conference on Affective Computing and Intelligent Interaction
Workshops and Demos (ACIIW). IEEE (2021)

7. Revina, I., Emmanuel, W.S.: A survey on human face expression recognition tech-
niques (2018)

8. Wu, C.H., Lin, J.C., Wei, W.L.: Survey on audiovisual emotion recognition:
databases, features, and data fusion strategies (2014)

https://www.tensorflow.org
https://developer.nvidia.com/tensorrt
https://doi.org/10.1007/978-3-319-46448-0_2

CAGE: A Hybrid Framework for
Closed-Domain Conversational Agents

Edward Burgin(B), Sourav Dutta, Haytham Assem, and Raj Nath Patel

Huawei Research, Dublin, Ireland
{edwardburgin,sourav.dutta2,raj.nath.patel}@huawei.com,

hithsala@amazon.co.uk

Abstract. Current conversational agents are primarily designed to
answer user queries based on structured pre-defined utterance-response
pairs. While question-answering (QA) systems extracts potential
answers, to queries, from unstructured texts. However, in domain-specific
settings, manual creation of query-response pairs is expensive, and
domain adaptation of QA platforms is crucial. To this end, we propose
Cage, a “hybrid” conversational framework seamlessly integrating struc-
tured and unstructured data to obtain precise answers for user queries –
improving user experience and quality-of-service. We describe the dif-
ferent components combining query matching and extractive question
answering, and demonstrate the multi-lingual chatbot interface provided
to a user.

1 Introduction

Chatbots or “virtual agents” provide a natural dialogue interface to users, simpli-
fying information search and assisting in domain-specific applications. As such,
chatbots are increasingly used in healthcare [8], ecommerce [6], public adminis-
tration [9], and education [1] – involving (i) domain understanding; (ii) anticipat-
ing question styles; (iii) query responses; and (iv) multi-linguality. This makes it
more challenging than open-domain digital assistants like Google Voice, Alexa,
Siri and Cortana.

Traditionally chatbots relied on IR [9] on curated FAQ utterance-responses [5]
– depicting high precision, but poor recall due to vocabulary mismatch and
domain specificity. Machine reading comprehension (MRC) extracts answer
spans from unstructured texts [14], providing flexibility in terms of data and
coverage, but lacks contextual answer generation. Light-weight chatbots using
MRC [13] have been widely incorporated [10]. Unfortunately, limited efforts exist
towards combining the above techniques [4], and separate channels are proposed
like Google DialogFlow (chatbot and knowledge connector), Amazon Services
(Lex and Kendra) and Microsoft Azure (LUIS and QnAMaker). This paper
presents a hybrid and unified chatbot prototype for integration of both struc-
tured and unstructured domain-specific data, to seamlessly answer diverse user
queries.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 636–640, 2023.
https://doi.org/10.1007/978-3-031-26422-1_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_46&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_46

Cage: A Hybrid Framework for Closed-Domain Conversational Agents 637

Meta Embeddings Layer

Classification Layer

Sentence Embeddings Standard Passage Retrieval

Answer Extraction

Question Generation

Fine-tuned EQA Model

Structured
Intent Dataset

Unstructured
Domain-Specific Dataset

CAGE Intent Module
(IC)

CAGE QA Module
(QASAR)

CAGE
Checker

Few-Shot
checker

Manual
Checker

CAGE Framework – Online Learning Phase

Fine-tuned
EQA Model

Answer

SBERT-based
Context Retrieval

Model
IC Model

Query

CAGE

Checker ?

Answer

QASAR

CAGE – Inference Phase

(a) (b)

Fig. 1. (a) System architecture of Cage with IC Module, Qasar Module, and
Checker Module. (b) Interaction flow diagram of Cage at interaction (inference) time.

2 CAGE Framework

We now introduce our hybrid conversational framework, Closed-Domain
Conversational AGEnt (Cage) (Fig. 1a). Cage comprises 3 components, as
described next.

• IntentClassificationModule (IC) – This module trains a supervised learn-
ing model for User Question Classification based on a pre-defined structured
query-response dataset, specifying questions (with a few paraphrases) along
with curated answers. The trained model is used to classify an end-user’s query,
during inference, to one of the pre-defined questions. Internally, the IC mod-
ule utilizes several multi-lingual sentence encoders to map questions into high-
dimensional dense vector representations. The embeddings from the encoders
are concatenated to obtain “query meta-embedding”. Finally, a shallow Multi-
Layer Perceptron (MLP) with two hidden layer with ReLU non-linear activa-
tions and a softmax layer is used for classification. Specifically, the IC mod-
ule implements the approach of [11], with the underlying “frozen” sentence
encoders (instead of fine-tuning) to achieve (1) few-shot learning and (2) inex-
pensive compute requirement – making Cage suitable for deployment as an
online cloud based chatbot service using Amazon Lex or Google DialogFlow.

• EQA Module (Qasar) – This module fine-tunes a QA model for self-
supervised domain adaptation by automatically generating context-question-
answer triples from domain-specific unstructured documents. We employ pre-
trained T5 model [12] for self-learning, wherein extracted paragraphs from a
document are used to generate possible questions and corresponding answer
spans – providing a set of triples that forms the synthetic training dataset for
Cage. These triples are then used to fine-tune a pre-trained SpanBERT QA
model [7] for adapting it to our application domain. This provides a fully self-
supervised approach with enhanced performance, especially for closed-domain
datasets [2]. Currently, multi-linguality is supported via machine translation,
however a multi-lingual QA model can be easily incorporated.

• Checker Module – The final module drives the integration for seamless tran-
sition between the IC andQasarmodules to extract the best answer – enabling

638 E. Burgin et al.

the “hybrid” nature of our system. The appropriate selection/triggering thresh-
old can be set either by (a) manually setting the module selection threshold
based on application data, or (2) F1-score on a small validation data based on
different confidence scores of both the modules. In our framework, we empir-
ically set the default threshold to 0.65. That is, if the match confidence of
IC module is 0.65 or more, the predicted response is returned, else the answer
span obtained from the text by Qasar module is presented.
Inference: A user query is first passed to the IC module to obtain a match-
ing question (as prediction on structured data typically depicts high precision)
along with the matching probability. If the score is greater than the switching
threshold, the matched answer is returned. Otherwise, the query is routed to
Qasar (to extract a possibly answer) along with a set of sentences (i.e., con-
text) from the text, that might have the answer – to obtain the answer text span
from Qasar. As a fall-back policy, if the EQA module is also not confident, the
chatbot requests the user to rephrase the query (or flags it as out-of-scope).

3 CAGE System Demonstration

(a) User interaction with inter-play between
IC and Qasar modules.

(b) Multi-lingual user query answering, rephras-
ing, and fall-back policy.

Fig. 2. System demonstration of Cage framework.

We now present snapshots
of user interaction for our
multi-lingual Cage chat-
bot platform. Cage was
integrated with the popu-
lar BotFront dialogue sys-
tem interface (based on
Meteor app) provided by
Rasa [3]. We showcase on
three data sources – (a)
chitchat data with vari-
ous “small talk” and greet-
ings; (ii) structured FAQ
data on Huawei Mobile
Service (HMS) with 50
different questions (and
paraphrasings); and (iii)
unstructured text descrip-
tion of HMS applications
obtained from the web.

In Fig. 2(a), we show
a typical user interaction
wherein the user initially
greets the system followed
by a domain pertinent
question. We see that our
system correctly matches

Cage: A Hybrid Framework for Closed-Domain Conversational Agents 639

the user question to the pre-defined FAQ, even for colloquially phrased user
queries. Further, we see factoid-based questions are efficiently answered by the
Qasar module, wherein information present in the text are retrieved along with
a longer context for readability.

For example, for the question ‘How many languages are supported?”, Cage is
seen to report: The Huawei account service covers 190+ countries ..., supports

‘‘70+ languages’’. Here, the text span in quotes provides the direct answer, while
the entire response presents a well-contexted human readable response. In fact,
even seemingly objective questions like “ Why should I use Petal Maps?” are well
answered by Cage (to find locations, driving directions, and public transport
navigations in this case). In Fig. 2(b), we depict the multi-linguality and out-of-
scope scenarios of our framework. Overall, we showcase our usability, performance
and quality-of-service. The inference time was typically less than 500 ms.

Table 1. Accuracy results
on small HMS dataset.

Method P R F1
EQA 0.78 1.00 0.88
Intent 0.89 1.00 0.94
Cage 0.93 1.00 0.97

Note, a standalone question matching or question
answering system would fail for many of the above
queries. Thus, we empirically compare the perfor-
mance on a small annotated HMS data sample; with
questions half of which are answerable from the text,
while the others are related to pre-defined questions.
We use F1 score to gauge the performance, with: True
Positive (TP) for correct answer, True Negative (TN)
for null returned on unanswerable question, False Pos-
itive (FP) for incorrect matching, and False Negative (FN) if null response is
given to a true answer.

From Table 1, we observe that our “hybrid” Cage framework performs better
than the classification and EQA system individually, precisely answering both
types of user questions. For detailed results of IC and Qasar modules on other
datasets, please refer to [2,11]. A short demo of Cage can be found at https://
youtu.be/PIzwbrmM4UU.

4 Conclusion

This paper presented Cage, a novel multi-lingual “hybrid” deployable conversa-
tional system seamlessly coupling both question matching from structured data
as well as extractive answering from unstructured data. Cage combines few-shot
classification with domain-adapted answering to provide high efficiency, improv-
ing quality-of-service.

References

1. Adamopoulou, E., Moussiades, L.: An overview of chatbot technology. In: AIAI,
pp. 373–383 (2020)

2. Assem, H., Sarkar, R., Dutta, S.: QASAR: self-supervised learning framework for
extractive question answering. In: IEEE Big Data, pp. 1797–1808 (2021)

https://youtu.be/PIzwbrmM4UU
https://youtu.be/PIzwbrmM4UU

640 E. Burgin et al.

3. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language
understanding and dialogue management. In: NIPS Workshop on Conversational
AI (2017)

4. Gapanyuk, Y., Chernobrovkin, S., Leontiev, A., Latkin, I., Belyanova, M.,
Morozenkov, O.: A hybrid chatbot system combining QA and knowledge-base
approaches. In: AIST (2018)

5. Hussain, S., Sianaki, O., Ababneh, N.: A survey on conversational agents/chatbots
classification and design techniques. In: Barolli, L., Takizawa, M., Xhafa, F.,
Enokido, T. (eds.) Web, Artificial Intelligence and Network Applications. WAINA
2019. AISC, vol. 927, pp. 946–956. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-15035-8 93

6. Manzano, M.D.I., Lopez, N.V., Gonzalez, N.A., Rodriguez, C.C.: Implementation
of chatbot in online commerce, and open innovations. J. Open Innov. Tech. Market
Complx. 7(2) (2021)

7. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert:
improving pre-training by representing and predicting spans. TACL 8, 64–77 (2020)

8. Jovanovic, M., Baez, M., Casati, F.: Chatbots as conversational healthcare services.
IEEE Internet Comput. 25(3), 44–51 (2021)

9. Lommatzsch, A., Katins, J.: An information retrieval-based approach for building
intuitive chatbots for large knowledge bases. In: LWDA (2019)

10. McTear, M.: Conversational AI: Dialogue Systems. Conversational Agents and
Chatbots, Morgan and Claypool (2021)

11. Patel, R.N., Burgin, E., Assem, H., Dutta, S.: Efficient multi-lingual sentence classi-
fication framework with sentence meta encoders. In: IEEE Big Data, pp. 1889–1899
(2021)

12. Raffel, C., et al.: Exploring the limits of transfer learning with a unified t2t trans-
former. arXiv:1910.10683 (2019)

13. Yan, Z., et al.: DocChat: an IR approach for chatbot engines using unstructured
documents. In: ACL, pp. 516–525 (2016)

14. Zhang, Z., Zhao, H., Wang, R.: Machine reading comprehension: the role of con-
textualized language models and beyond. Comput. Linguist. 1(1), 1–51 (2020)

https://doi.org/10.1007/978-3-030-15035-8_93
https://doi.org/10.1007/978-3-030-15035-8_93
http://arxiv.org/abs/1910.10683

Cloud-Based Real-Time Molecular
Screening Platform with MolFormer

Brian Belgodere, Vijil Chenthamarakshan, Payel Das, Pierre Dognin,
Toby Kurien, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti,

Jarret Ross(B), Yair Schiff, and Richard A. Young

IBM Research, Cambridge, USA

rossja@us.ibm.com

Abstract. With the prospect of automating a number of chemical tasks
with high fidelity, chemical language processing models are emerging at
a rapid speed. Here, we present a cloud-based real-time platform that
allows users to virtually screen molecules of interest. For this purpose,
molecular embeddings inferred from a recently proposed large chemical
language model, named MolFormer, are leveraged. The platform cur-
rently supports three tasks: nearest neighbor retrieval, chemical space
visualization, and property prediction. Based on the functionalities of
this platform and results obtained, we believe that such a platform can
play a pivotal role in automating chemistry and chemical engineering
research, as well as assist in drug discovery and material design tasks. A
demo of our platform is provided at www.ibm.biz/molecular demo.

Keywords: Molecular screening · Drug discovery · Cloud platform

1 Introduction

Machine learning (ML) offers high throughput material exploration that is more
efficient than high-cost quantum chemical/empirical force-field calculations and
wet lab evaluations. In this work, we present a cloud-based platform for real-time
virtual screening of molecules, which uses a general-purpose deep learning model
of large organic small molecule libraries. Specifically, our Molecular Explorer
Platform builds on our previous work “MolFormer”, a large, masked chemi-
cal language model trained on over 1.1 billion molecular string representations
known as SMILES (see [11] for details). MolFormer provides representations for
molecules that we showcase here in a platform enabling neighbor search, chemical
space visualization, and property prediction for molecules of interest.

2 Real-Time Screening Platform

Given a backend dataset, such as PubChem [4] or FlavorDB [1], we start by
embedding this database through MolFormer and obtain a latent representa-
tion of 768 dimensions. To index the database for nearest neighbor search, we

B. Belgodere, V. Chenthamarakshan, P. Das, P. Dognin, T. Kurien, I. Melnyk, Y.
Mroueh, I. Padhi, M. Rigotti, J. Ross, Y. Schiff, R. A. Young—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 641–644, 2023.
https://doi.org/10.1007/978-3-031-26422-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_47&domain=pdf
www.ibm.biz/molecular_demo
https://doi.org/10.1007/978-3-031-26422-1_47

642 B. Belgodere et al.

Fig. 1. Diagram of our molecular explorer platform.

start by reducing the dimensionality of MolFormer representations using Dis-
crete Cosine Transform to 128 dimensions. We then leverage the approximate
nearest neighbor search library HNSWlib [8]. with hyperparameters calibrated
so that retrieval would be faster than 10 milliseconds per query with a recall of
0.99 (Fig. 1).

Our molecular platform consists of a frontend GUI that enables 3 critical
molecule screening functionalities: 1) neighbor search, 2) visualizing latent space
of molecules using t-SNE visualization in 2D, and 3) nearest neighbor property
prediction using Sklearn [10] for moderately sized datasets and FAISS [3] for
large-scale predictions. User queries are provided in the form of a line separated
list or .txt file of molecule SMILES strings. An implementation of MolFormer
running on OpenShift on IBM Cloud enables real-time feedforward embedding
of SMILES strings, which are normalized using the RDKit library [5,6]. The
obtained MolFormer representation is subsequently used to query the indexed
backend database, which returns the user provided N nearest neighbors along
with molecular properties, such as logP, QED, and weight, which are computed
on-the-fly using RDKit. Optional call to PubChem’s similarity search API is
provided in our user interface allowing the user to compare it to MolFormer
similarity. If a user provides property labels for each SMILES string, such as
toxicity or flavor (see use case 2), the molecular platform enables visualization
of the embedding space color-coded by labels in t-SNE 2-dimensional space.
Finally, nearest neighbor prediction functionalities using known properties of
the backend index database are also provided, along with predictions for these
properties of query molecules and graphical visualization of the results.

Use Case 1: Similarity Search Among Known Drug Molecules. A
typical task that arises in molecule screening/discovery is to identify similar
molecules in existing chemical libraries. This is a frequent use case for medicinal
chemists, for example. Our molecule explorer platform allows users to retrieve
similar molecules from PubChem using the PubChem API [4] and MolFormer

Cloud-Based Real-Time Molecular Screening Platform with MolFormer 643

Fig. 2. Use Case 1: nearest neighbor search in large chemical embedding space.

embeddings. To achieve this, we index over 100 Million molecules from pubchem
embedded in the MolFormer latent space. As an example, we show the neighbor
retrieval results for known drug molecules (Table S4 from [2]) obtained using the
platform in Fig. 2. The maximal common subgraph of the query molecule and
closest molecules are also shown allowing a user to understand the key differences
between the query molecules and its closest neighbors.

Fig. 3. Use Case 2: visualization of unsu-
pervised MolFormer Embeddings in t-SNE
space and separation of flavor molecules in
that space.

Use Case 2: Flavor Molecules
Screening. The molecule explorer
platform also allows a user to upload a
set of molecules along with a their cor-
responding class (property) labels and
visualize their chemical space. The
user can visually explore the t-SNE
[7] representation of those molecules
obtained using MolFormer embed-
dings and check if the resulting chem-
ical space captures the distribution
of class labels for a particular appli-
cation. Alternatively, a k-NN classi-
fier can be trained on the MolFormer
embeddings and performance charac-
teristics of the classifier can be visual-
ized as a confusion matrix. We show
the application of these techniques to
molecules with different flavor descriptions from [1]. The flavor database consists
of 25,595 individual flavor molecules with up to 43 different attributes. 4 basic
flavors were chosen for evaluation; bitter, sweet, sour, and savory. Figure 3 shows
that our chemical space map captures the different flavors and provides excellent
predictive performance.

Use Case 3: Drug-like Molecules Screening. Lastly, we predict the confor-
mity to the RO5 (Lipinski rule of five) of 1.8M molecules out of ∼2M from the

644 B. Belgodere et al.

CheMBL dataset [9], which presented SMILES representations. A k-NN clas-
sifier was trained on 1.44M MolFormer embeddings with the FAISS library [3]
and used to predict RO5 violations of 360k held-out molecules based on their
neighbors, resulting in a classification accuracy of 90% (see Fig. 4). We then pre-
dicted HBA (hydrogen bond acceptor) and HBD (hydrogen bond donor) on the
same split by averaging the HBA and HBD values of k = 3 nearest neighbors,
obtaining high coefficients of determination of R2 = 0.926 (see Fig. 4).

Fig. 4. Use Case 3: Retrieval of r05-violations of 1.8M drug-like molecules with 1-NN
gives an average holdout prediction accuracy of 0.90 (left). HBA and HBD are also
predicted with high accuracy (R2 = 0.926 for both) by k = 3 NN-Regression (right).

References

1. Garg, N., et al.: FlavorDB: a database of flavor molecules. Nucleic Acids Res.
46(D1), D1210–D1216 (2017)

2. Hoffman, S.C., Chenthamarakshan, V., Wadhawan, K., Chen, P.Y., Das, P.: Opti-
mizing molecules using efficient queries from property evaluations. Nat. Mach.
Intell. 4(1), 21–31 (2022). https://doi.org/10.1038/s42256-021-00422-y

3. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2019)

4. Kim, S., et al.: PubChem in 2021: new data content and improved web interfaces.
Nucleic Acids Res. 49(D1), D1388–D1395 (2020). https://doi.org/10.1093/nar/
gkaa971

5. Landrum, G.: RDKit: A software suite for cheminformatics, computational chem-
istry, and predictive modeling (2013)

6. Landrum, G.: Rdkit: Open-source cheminformatics (2013). https://www.rdkit.org
7. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.

9(86), 2579–2605 (2008), http://jmlr.org/papers/v9/vandermaaten08a.html
8. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor

search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell. 42(4), 824–836 (2018)

9. Mendez, D., et al.: ChEMBL: towards direct deposition of bioassay data. Nucleic
Acids Res. 47(D1), D930–D940 (2018)

10. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

11. Ross, J., Belgodere, B., Chenthamarakshan, V., Padhi, I., Mroueh, Y., Das, P.:
Do large scale molecular language representations capture important structural
information? (2021)

https://doi.org/10.1038/s42256-021-00422-y
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1093/nar/gkaa971
https://www.rdkit.org
http://jmlr.org/papers/v9/vandermaaten08a.html

ImbalancedLearningRegression - A Python
Package to Tackle the Imbalanced

Regression Problem

Wenglei Wu1 , Nicholas Kunz2 , and Paula Branco1(B)

1 Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
{wwu077,pbranco}@uottawa.ca

2 College of Engineering, Cornell University, Ithaca, NY, USA
nhk37@cornell.edu

Abstract. This package helps Python users address imbalanced regres-
sion problems. Popular Python packages exist for imbalanced classifica-
tion. However, there is still little Python support for imbalanced regres-
sion. Imbalanced regression is a well-known problem that occurs across
domains, where a continuous target variable is poorly represented on
ranges that are important to the end-user. Here, a re-sampling strat-
egy is applied to modify the distribution of the target variable, bias-
ing it towards the end-user interests so that downstream learning algo-
rithms can be trained on the most relevant cases. The package provides
an easy-to-use and extensible implementation of eight state-of-the-art
re-sampling methods for regression, including four under-sampling and
four over-sampling techniques. Code related to this paper is available at:
https://github.com/paobranco/ImbalancedLearningRegression.

1 Introduction

Imbalanced domains are characterized by having an imbalanced target variable.
A model trained on an imbalanced data set cannot focus on the important
regions and thus is not able to predict well the most important rare cases [2].
Research has been more intensive on the imbalanced classification problem, with
a vast number of re-sampling techniques being proposed. However, this issue also
occurs in regression tasks where the target variable is continuous. To define the
important and unimportant ranges of the target variable, we use the notion of
relevance function that can be either estimated from the data distribution or
explicitly provided by the end-user [12]. In the automatic method, low-density
ranges are mapped to high relevance values while high-density ranges are mapped
to low relevance values. The formed ranges can be thought of as different minority
(important) and majority (unimportant) classes, in a classification setting.

Implementations of a high diversity of re-sampling techniques for class imbal-
ance are available in Python (imbalanced-learn [10]) and R (imbalance [5],
UBL [1]). However, this is not the case for imbalanced regression for which
some methods exist in R (UBL [1]), but only one package exists in Python that
implements a single over-sampling method: SMOGN [3,9]. The proposed Python
package ImbalancedLearningRegression fills this gap.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 645–648, 2023.
https://doi.org/10.1007/978-3-031-26422-1_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_48&domain=pdf
http://orcid.org/0000-0001-5584-5543
http://orcid.org/0000-0002-3218-2131
http://orcid.org/0000-0002-9917-3694
https://github.com/paobranco/ImbalancedLearningRegression
https://doi.org/10.1007/978-3-031-26422-1_48

646 W. Wu et al.

2 The ImbalancedLearningRegression Package

Our package provides different re-sampling techniques for the imbalanced regres-
sion problem in Python based on the data analysis libraries pandas, numpy,
and scikit-learn. At the current stage of development, eight re-sampling
methods have been implemented, including four over-sampling methods: Ran-
dom Over-sampling (RO) [4,11], SMOTE [14], Introduction of Gaussian Noise
(GN) [4], ADASYN [8]; and four under-sampling methods: Random Under-
sampling (RU), Condensed Nearest Neighbor (CNN) [7], TomekLinks [13],
Edited Nearest Neighbor (ENN) [15]. These methods perform differently in
terms of data manipulation, execution time, and the number of samples cre-
ated or deleted. It is up to the user to select an appropriate method for
re-sampling a specific domain. The representation of the data sets through
pandas data frame in ImbalancedLearningRegression gives the end-user the
flexibility to apply any pre-processing steps before and/or after the use of
ImbalancedLearningRegression.

For the sake of usability, only two parameters are required to be speci-
fied to execute a re-sampling method in the package: (i) the data set in the
form of a pandas data frame, and (ii) the name of the target variable. The
remaining parameters have default values that globally correspond to the fol-
lowing assumptions: the less dense target variable regions are the most impor-
tant ones, and the user’s goal is to balance the important and unimportant
cases. End-users can change any parameter to control the behavior of the
re-sampling strategy. ImbalancedLearningRegression is organized into sev-
eral modules and is therefore consistent, maintainable, and extensible. Future
collaborators can take advantage of its structure to implement improvements
or add more re-sampling techniques for the imbalanced regression problem.
The package can be used on any OS supported by Python, including Win-
dows, macOS, and Linux. It is fully open-source and is available under a
GNU General Public License v3 (GPLv3). The source code can be found
at https://github.com/paobranco/ImbalancedLearningRegression, and an intro-
duction video is available at https://youtu.be/BanN904NyX0. The documen-
tation can be found at https://imbalancedlearningregression.readthedocs.io/
en/latest. The package can be easily installed via PyPI1 using pip install
ImbalancedLearningRegression.

3 Some Application Examples

We present a basic use case of re-sampling with the Ames Housing data set [6]
to show how simple it is to use ImbalancedLearningRegression. This data set
illustrates a regression task where SalePrice is the continuous target variable.
We applied four different re-sampling methods with default parameter settings.
The complete code of execution is shown below.

1 https://pypi.org/project/ImbalancedLearningRegression/.

https://github.com/paobranco/ImbalancedLearningRegression
https://youtu.be/BanN904NyX0
https://imbalancedlearningregression.readthedocs.io/en/latest
https://imbalancedlearningregression.readthedocs.io/en/latest
https://pypi.org/project/ImbalancedLearningRegression/

The ImbalancedLearningRegression Python Package 647

import ImbalancedLearningRegress ion as i b l r
import pandas as pd

housing = pd . r ead c sv (” housing . csv ”)
housing smote = i b l r . smote (data = housing , y = ” Sa l ePr i c e ”)
hous ing gn = i b l r . gn (data = housing , y = ” Sa l ePr i c e ”)
hous ing cnn = i b l r . cnn (data = housing , y = ” Sa l ePr i c e ”)
hous ing enn = i b l r . enn (data = housing , y = ” Sa l ePr i c e ”)

The first two lines import our package ImbalancedLearningRegression, as
well as the data analysis library pandas. The following line loads the data from a
file to a standard pandas data frame. Each one of the next four lines applies a re-
sampling method available in the package. In this example, we selected SMOTE,
GN, CNN, and ENN methods. Two parameters are necessary to be specified
to run the techniques: the instance of the pandas data frame is assigned to the
parameter data, and a string of the name of the target variable is assigned to the
parameter y that represents the target variable. Users can also control the degree
of re-sampling by setting the parameter samp method, or control the threshold
of classifying majority and minority by setting the parameter rel thres. For
more details regarding the optional parameters, please refer to the package doc-
umentation.

The original Ames Housing data set contains 1460 samples. After applying
SMOTE, GN, CNN, and ENN, the number of samples in the modified data
sets changed to 1974, 1459, 401, and 1428 respectively. Figure 1 shows the den-
sity distribution of our data set before and after applying the four different
re-sampling techniques. We observe that the distribution of the Ames Housing
data set changes considerably when SMOTE, GN, and CNN are applied, whereas
it is only slightly affected when ENN is used.

Fig. 1. Density distribution of Ames Housing data set before and after applying four
re-sampling methods using ImbalancedLearningRegression package.

648 W. Wu et al.

4 Conclusion

Here we introduced the ImbalancedLearningRegression package that allows
the application of multiple re-sampling techniques to address the imbalanced
problem in regression tasks in a Python environment. This package provides an
easy-to-use, extensible, and freely available implementation of solutions for this
problem.

Acknowledgements. We would like to thank Xinzi Hu, Lingyi Kong, and Chengen
Lyu for their contributions to the re-sampling implementations.

References

1. Branco, P., Ribeiro, R.P., Torgo, L.: UBL: an R package for utility-based learning
(2016). https://arxiv.org/abs/1604.08079

2. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced
domains. ACM Comput. Surv. (CSUR) 49(2), 1–50 (2016)

3. Branco, P., Torgo, L., Ribeiro, R.P.: SMOGN: a pre-processing approach for imbal-
anced regression. In: First International Workshop on Learning with Imbalanced
Domains: Theory and Applications, pp. 36–50. PMLR (2017)

4. Branco, P., Torgo, L., Ribeiro, R.P.: Pre-processing approaches for imbalanced
distributions in regression. Neurocomputing 343, 76–99 (2019)

5. Cordón, I., Garćıa, S., Fernández, A., Herrera, F.: Imbalance: Oversampling algo-
rithms for imbalanced classification in r. Knowl.-Based Syst. 161, 329–341 (2018).
https://doi.org/10.1016/j.knosys.2018.07.035

6. De Cock, D.: Ames, iowa: alternative to the boston housing data as an end of
semester regression project. J. Stat. Educ. 19(3) (2011)

7. Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory
14(3), 515–516 (1968)

8. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: 2008 IEEE International Joint Conference on
Neural Networks, pp. 1322–1328. IEEE (2008)

9. Kunz, N.: SMOGN: synthetic minority over-sampling technique for regression with
gaussian noise (2020). https://pypi.org/project/smogn

10. Lemâıtre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. JMLR 18(17), 1–5
(2017), http://jmlr.org/papers/v18/16-365.html

11. Menardi, G., Torelli, N.: Training and assessing classification rules with imbalanced
data. Data Mining Knowl. Disc. 28(1), 92–122 (2014)

12. Ribeiro, R.P.: Utility-based regression. Ph.D. thesis, Dep. Computer Science, Fac-
ulty of Sciences - University of Porto (2011)

13. Tomek, I.: Two modifications of cnn. IEEE Trans. Syst. Man Cybern. 6, 769–772
(1976)

14. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In:
Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp.
378–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-
0 33

15. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

https://arxiv.org/abs/1604.08079
https://doi.org/10.1016/j.knosys.2018.07.035
https://pypi.org/project/smogn
http://jmlr.org/papers/v18/16-365.html
https://doi.org/10.1007/978-3-642-40669-0_33
https://doi.org/10.1007/978-3-642-40669-0_33

A Light Weight Cardiac Monitoring
System for On-device ECG Analysis

Rohan Banerjee(B) and Avik Ghose

TCS Research, Tata Consultancy Services, Mumbai, India
{rohan.banerjee,avik.ghose}@tcs.com

Abstract. In this paper, we propose a demonstrable prototype of an on-
device cardiac monitoring system comprising bio-sensor module and a low-
powered microcontroller. Apart from measuring physiological vitals, the
proposed system can classify abnormal heart rhythms on the microcon-
troller itself for low-cost 24 × 7 unobtrusive monitoring. A Convolutional
Neural network (CNN) is duly optimized to run on the constrained hard-
ware platform for identification of normal, Atrial Fibrillation (AF) and
other abnormal rhythms from single-lead electrocardiogram (ECG) sig-
nals. The system is successfully verified on offline dataset. It also reports
promising accuracy when deployed for real-time health monitoring.

Keywords: TinyML · CNN · ECG analysis · Real-time system

1 Introduction

In recent times, the healthcare industry has seen a rapid transformation towards
automation owing to the proliferation of artificial intelligence (AI) and machine
learning techniques. AI-based decision support systems are even used in the
intensive care units of the hospitals for various applications in cardiology like
anomaly detection or prediction of intermittent abnormal rhythms from 24× 7
electrocardiogram (ECG) recordings which are difficult to analyze manually.
Machine learning algorithms are resource-hungry and hence large machine learn-
ing jobs are typically done in the cloud. Streaming of healthcare data via internet
to the cloud has security and privacy risks. There may be delay in response due to
network latency. The recent trend is to optimize large machine learning models
to effectively run on low-powered microcontrollers.

Commercial wearable devices like fitness-bands or smartwatches typically com-
municate with smartphones to offload the machine learning tasks. Although user
privacy is preserved, one still needs to carry the smartphone all the time which
is inconvenient for continuous monitoring. In this paper, we propose a prototype
system for real-time on-device cardiac monitoring using single-lead ECG and Pho-
toplethysmogram (PPG) signals. The system can be used as a portable stand-alone
device for personal healthcare and continuous monitoring at home. We design an
optimized light weight Convolutional Neural Network (CNN) for ECG classifica-
tion. The optimized model is ported to a small low-powered microcontroller which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 649–653, 2023.
https://doi.org/10.1007/978-3-031-26422-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_49&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_49

650 R. Banerjee and A. Ghose

directly communicates with the ECG sensor. Apart from predicting Atrial Fibril-
lation (AF) and other abnormal rhythms which are considered as early signs of a
cardiac arrest, the proposed system measures heart rate and blood oxygen satu-
ration level (SpO2) from PPG with high accuracy.

2 Proposed System for Health Monitoring

MAX86150 ECG-
PPG

Breakout

Arduino Nano
BLE 33

Microcontroller

OLED display

Gateway device
(smartphone)

Data collection unit
• single-lead ECG
• PPG – Red channel
• PPG – IR channel

Processing unit

Communication with
external edge
device via Bluetooth for
sending alerts and also
for updating model

Fig. 1. Block diagram of proposed on-device health monitoring system

Figure 1 shows a high-level block diagram of our proposed on-device health
monitoring system. MAX86150, an integrated PPG-ECG breakout board is used
for getting the data [1]. It can simultaneously record single-lead ECG and two
PPG signals using red and infrared optical emitters. Three metal electrodes,
connected to the breakout board via 3.5 mm jack are used to record single-lead
ECG from a person. The operating voltage is 1.8 V for the chip and 3.3 V for the
LEDs. The breakout board communicates with an Arduino Nano BLE 33 Sense
microcontroller for processing via I2C interface. The Arduino Nano development
board is widely recommended for TinyML applications. It has an operating
voltage of 3.3 V. It comes with 32-bit ARM R© CORTEX R©-M4 processor at a clock
frequency of 64 MHz which is powerful enough to run optimized deep learning
models for inference. It has 1 MB of flash memory and 256 KB of Random
Access memory (RAM). The processed output is displayed on a 128 × 64 OLED
display which also communicates with the Arduino board via I2C interface. The
Arduino can also communicate with external devices via Bluetooth for sending
of recorded data or alert messages and downloading necessary updates.

A Light Weight Cardiac Monitoring System for On-device ECG Analysis 651

2.1 Brief Description of the Processing Algorithms

We first define a baseline deep CNN architecture for single-lead ECG classifi-
cation. Subsequently, the model is optimized for microcontrollers. The baseline
CNN has 4 convolutional layers. 32 filters are used in the first convolutional layer
and the number of filters gets doubled in every following layer. The kernel dimen-
sion is selected as 7 × 1 for 1D ECG signals. Depthwise separable convolution,
proposed in the Mobilenets architecture [3] is used in our network, which reduces
the number of computations with a lesser number of trainable parameters for
efficiently running the convolution operations on small edge devices. Each con-
volutional layer is associated with a maxpool layer with a pooling dimension
of 2× 1. Rectified Linear Unit (ReLU) is used as the activation function. The
final feature-map is flattened and applied to a dense layer with 64 neurons fol-
lowed by a softmax layer for classifying three classes- normal, AF and other
abnormal rhythms. Length of an input signal is selected as 9 s for decision mak-
ing. The baseline CNN is trained on the publicly available PhysioNet challenge
2017 database [2]. Model optimization is done in two steps. First, we apply
magnitude-based weight pruning to trim the smaller insignificant weights in the
baseline model. The baseline model is retrained in an iterative manner to add
40% of sparsity up to which no significant impact is found on the performance.
Finally, we quantize the pruned model weights and activation from 32-bit float-
ing point to 8-bit integer by applying post training quantization. The optimized
model is 10x smaller than the baseline model with a size of 95 KB which is small
enough to run on the Arduino Nano. TensorFlow 2.8.0 is used to implement the
baseline model and the optimization is done using TensorFlow Lite.

Instantaneous heart rate and Sp02 are measured from PPG which measures
the volumetric blood flow in blood vessels through optical sensor and photode-
tector. If b is the number of PPG pulses within a time-frame of T seconds, heart
rate (HR) is measured in bpm as, HR = b∗60

T . SpO2 is highly correlated with
the ratio of modulation (R), which is given by, R = (ACR

DCR
)/(ACIR

DCIR
). ACR, DCR,

ACIR and DCIR are the AC and DC components of the red and infrared PPG
channels. We define an equation, Sp02 = a ∗ R2 + b ∗ R + c. The parameters a,
b, c are obtained by fitting a linear regression on an in-house training dataset.

2.2 Deployment on Target Platform

Figure 2(a) shows a snapshot of our prototype system, and a sample waveform
of the three simultaneously recorded signals are shown in Fig. 2(b). Three metal
electrodes are placed near the chest of a person via disposable pads for recording
of ECG. Red and infrared PPG are recorded by placing the tip of right hand
index finger on the optical sensor of the PPG-ECG breakout. All three signals
are sampled 200 Hz for processing. The Arduino Nano board is powered by a
9 V battery. Raw signals are passed through five-point moving average filter to
remove the high frequency noise components. The algorithms run as continuous
process. The system has a push button to start and end the process. Heart rate
and SpO2 are measured and displayed in every 3 s, whereas ECG classification is

652 R. Banerjee and A. Ghose

(a) Prototype system (b) Sample waveform

Fig. 2. Our prototype system for cardiac monitoring

done in every 9 s. Average processing time of a 9 s long ECG data is measured as
185 milli-seconds on the Arduino board. A small video of the system is publicly
available for viewing1.

3 Experimental Results and Conclusion

Currently, TensorFlow Lite has a limited number of supported deep network
layers for microcontrollers. Hence, the proposed network is kept simple enough
for effective optimization and porting to the target platform. The baseline ECG
classifier and the optimized model are evaluated on the PhysioNet Challenge
2017 database. The baseline model yields an average F1-score of 0.82 in detecting
the three target classes (normal, AF and other abnormal rhythms) in a 5-fold
cross validation, which is similar to other approaches reported in literature [2].
The optimized model is 10× smaller and 6× faster than the baseline model
with a mere 1.5% drop in overall classification performance. The end-to-end
system is successfully tested on a small population of normal and diseased people
with above 90% accuracy. Regarding measurement of heart rate and SpO2, our
system reports only 1% mean absolute difference with respect to an FDA-grade
commercial pulse-oximeter when tested on 20 different subjects.

The proposed system can be logically extended for predicting other dis-
eases having markers in ECG or PPG. However, PPG and single-lead ECG are
highly susceptible to external noise and motion artificts. As of now, the users are
expected to remain still as much as possible while recording the data. We are
working on to incorporate on-device noise cancellation at the front-end so that
the system can be reliably used for measurements of physiological parameters
even during exercises. Another future research aspect is to predict an abnormal
cardiac rhythm well in advance which can be very useful in preventive medicine.

1 https://drive.google.com/file/d/1n06lLU98wbudpCcbIzzfI9vAsh5SEErw/view?
usp=sharing.

https://drive.google.com/file/d/1n06lLU98wbudpCcbIzzfI9vAsh5SEErw/view?usp=sharing
https://drive.google.com/file/d/1n06lLU98wbudpCcbIzzfI9vAsh5SEErw/view?usp=sharing

A Light Weight Cardiac Monitoring System for On-device ECG Analysis 653

References

1. Max86150 sensor. https://datasheets.maximintegrated.com/en/ds/MAX86150.pdf.
Accessed 30 Apr 2022

2. Clifford, G.D., et al.: Af classification from a short single lead ecg recording: the phy-
sionet/computing in cardiology challenge 2017. In: 2017 Computing in Cardiology
(CinC), pp. 1–4. IEEE (2017)

3. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

https://datasheets.maximintegrated.com/en/ds/MAX86150.pdf
http://arxiv.org/abs/1704.04861

Urban Traveller Preference Miner:
Modelling Transport Choices with Survey

Data Streams

Maciej Grzenda(B) , Marcin Luckner , and Przemys�law Wrona

Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warszawa, Poland

{M.Grzenda,M.Luckner,P.Wrona}@mini.pw.edu.pl

Abstract. The unprecedented interest in sustainable transport modes
for urban areas raises the question of what makes citizens select envi-
ronmentally friendly transport modes such as public transport rather
than private cars. While travel surveys are conducted to document real
transport mode choices, they can also shed light on how these choices
are made.

In this paper, we demonstrate a system combining survey data with
complex information documenting public transport features, as perceived
by individual respondents. The system relies on a combination of big data
modules to collect vehicle location records and travel planning engines
to calculate candidate connection features, including disruptions faced
by individuals. Hence a combination of streaming and batch modules is
used to transform survey data into instances used to learn classification
models. This takes place while taking into account concept drift. Real-life
data from the city of Warsaw, including recently collected survey data,
location records of trams and buses, and planned and true schedules, are
used to demonstrate the system. A video related to this paper is available
at https://youtu.be/fTcxUxEMGlk.

Keywords: Public transport · Feature engineering · Stream mining

1 Introduction

The ever growing need for reduced pollution and city congestion raises the ques-
tion of what makes citizens select sustainable transport modes such as public
transport (PT) rather than private cars. The analysis of transport mode selec-
tion can rely on declared choices for hypothetical journeys. Another approach
involves collecting travel diaries documenting actual journeys and mode choices
made for these journeys by citizens during the day(s) preceding the survey. How-
ever, such a survey does not elicit the reasons for the choices made, or may collect
just the subjective opinions of respondents justifying their choices.

In this work, we demonstrate the Urban Traveller Preference Miner (UTPM)
system, which combines data on journeys reported by individuals with features
documenting both planned and real transport availability for these journeys.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 654–657, 2023.
https://doi.org/10.1007/978-3-031-26422-1_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_50&domain=pdf
http://orcid.org/0000-0002-5440-4954
http://orcid.org/0000-0001-7015-2956
http://orcid.org/0000-0002-5479-4489
https://youtu.be/fTcxUxEMGlk
https://doi.org/10.1007/978-3-031-26422-1_50

Modelling Transport Choices with Urban Traveller Preference Miner 655

Importantly, citizen preferences clearly evolve over time, which is best exem-
plified by reduced public transport use due to COVID-19 concerns. Therefore,
the UTPM system produces a stream of instances integrating survey data and
transport mode features. This stream of instances can be forwarded to online
learning modules capable of addressing concept drift, or used for batch learning.
In both cases, classifiers are trained and used to predict mobility choices under
varied circumstances, such as distance, the median number of transfers needed,
and the walking time needed to reach the relevant stops. The role of the UTPM
system is to provide data and findings relevant to city planners and other actors
such as NGOs interested in promoting sustainable transport. We describe the
way the system has been used for the City of Warsaw.

2 The Overview of the System

2.1 Data Collection

NiFi Cluster

Flink Cluster

Railway Schedule Public Transport
Location APIMetro ScheduleBus&Trams Schedule

Planned GTFS Generator

Survey Storage Survey Data Processor ML Modules

IPlannedTimetables
Hadoop Cluster

Real GTFS Generator

IRealTimetables

OpenTripPlanner

Fig. 1. High level architecture of the Urban Traveller Preference Miner

The UTPM system extends the USE4IoT architecture we proposed in [2] to
enable survey data processing and mode choice modelling. Figure 1 presents the
outline of the system. First of all, the Planned GTFS Generator downloads sched-
ules and makes them available in General Transit Feed Specification (GTFS)1

format. In parallel, every 10 s Apache NiFi makes a request to Warsaw Open
Data API to get the current location of each of up to 2000 PT vehicles. The
Apache Flink-based module is responsible for consuming the stream of raw loca-
tion records and combining location data with timetables to calculate delays and
produce a PT behaviour data stream. Hence, features like average speed, delay
at the previous stop, and the difference in delay between current and previous
stops are calculated. These results are stored in Apache Hadoop and then used
by inter alia Real GTFS Generator for generating real schedules based on true

1 https://gtfs.org.

https://gtfs.org

656 M. Grzenda et al.

departure times. Next, actually available public transport connections can be
calculated by the OpenTripPlanner engine.

Finally, Survey Storage includes files with survey records. The Survey Data
Processor is prepared to handle data from multiple surveys possibly based on
heterogeneous schema, i.e. a stream of survey data sets. In particular, the surveys
can use varied sets of questions and different wordings of some of the questions,
as suggested by the outcomes of previous surveys.

2.2 Preparing Candidate Connections with Journey Planning
Engine

OpenTripPlanner2 (OTP) is a system which we supply inter alia with GTFS
schedules, road network and elevation data. It calculates the time needed to reach
a destination from a given origin at a given time for individual transport modes.
It can also determine candidate connections with public transport, including
multimodal connections such as connections combining the use of train, metro
and bus.

(a) Using planned schedules (b) Using real schedules

Fig. 2. Sample public transport connections proposed by OTP

Figure 2 presents the two scenarios which we consider in the UTPM system.
The first was calculated using official schedules obtained through the Planned
GTFS Generator and thus corresponds to the planned behaviour of the PT sys-
tem. Citizens planning their journeys, including survey respondents, are likely
to take such a scenario into account when planning their journeys and mak-
ing mode choices. The second was created based on real departure times and
delays present in the PT behaviour data stream. This reflects the actual experi-
ence of travellers including possible disruptions and missed connections. Figure 2
shows that planned and real journeys may vary in travel time, number of tran-
sits, and even routes. Such differences bring additional information to the mode
choice modelling about passengers’ preliminary assumptions and travel experi-
ence influencing mode choices.

2 https://www.opentripplanner.org.

https://www.opentripplanner.org

Modelling Transport Choices with Urban Traveller Preference Miner 657

2.3 Feature Engineering with Survey Data Processor

The core part of the system is the Survey data processor (SDP), which is respon-
sible for analysing survey responses and preparing data for training classification
models. For every data record present in a survey for one individual, it develops
a number of composite data records (CDR). One CDR represents one jour-
ney made by the individual and includes information coming from the survey
and complex aggregated OTP-based information. Out of the different methods
of compositing data records from different sources discussed inter alia in [1],
the method the SDP implements is most similar to deterministic record link-
age. However, instead of linking travel data records to predefined data records
describing possible PT connections, the SDP module requests such connections
from OTP, based both on planned schedules and true departure-based schedules.
This is because of the large number of (origin, destination) pairs, which is in the
order of the squared number of addresses in the city. The features of possibly
many candidate connections as well as alternatives such as the use of cycling
only are aggregated to provide one vector of feature values per a CDR.

2.4 Learning Mobility Choices

Both features coming from the survey, such as departure time, and features of
matching connections, such as average travel time, necessary walking distance
or transfer count, are placed in CDRs. Hence, each CDR includes travel features
x and transport mode y reported by an individual. These records are then used
to build classification models. This is in order to predict the transport mode
preferred for the journey under different individual, travel and available trans-
port modes features. Both batch learning and stream mining modules can be
used to develop prediction models. As real concept drift is likely to occur, i.e.
p(y|x) may change with time, one of the options is to use methods capable of
adapting their models to such changes. Therefore, SDP makes CDRs available as
a stream of instances sorted by the departure date of the journey. The outcomes
of mode choice modelling performed by the UTPM system include decision trees
and learning curves for stream mining models such as adaptive random forest.
Results are based on survey and PT data for the City of Warsaw.

Acknowledgements. This work was supported by the CoMobility project. The
CoMobility benefits from a 2.05 million€ grant from Iceland, Liechtenstein and Nor-
way through the EEA Grants. The aim of the project is to provide a package of tools
and methods for the co-creation of sustainable mobility in urban spaces.

References

1. Lohr, S.L., Raghunathan, T.E.: Combining survey data with other data sources.
Stat. Sci. 32, 293–312 (2017). https://doi.org/10.1214/16-STS584

2. Luckner, M., Grzenda, M., Kunicki, R., Legierski, J.: IoT architecture for urban
data-centric services and applications. ACM Trans. Internet Technol. 20(3), 1–30
(2020). https://doi.org/10.1145/3396850

https://doi.org/10.1214/16-STS584
https://doi.org/10.1145/3396850

Interactive Toolbox for Two-Dimensional
Gaussian Mixture Modeling

Michael C. Thrun(B) , Quirin Stier, and Alfred Ultsch

Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Straße 6,
35032 Marburg, Germany

mthrun@informatik.uni-marburg.de

Abstract. Research data obtained during economics or human studies experi-
ments often displays a complex distribution. Even in the two-dimensional case,
the statistical identification of subgroups in research data poses an analytical chal-
lenge. Here we introduce an interactive R-based tool called “AdaptGauss2D”.
It enables a valid identification of a meaningful multimodal structure in two-
dimensional data. With a human-in-the-loop approach, a Gaussian mixture model
(GMM) can be fitted to the data. The interactive interface allows a supervised selec-
tion of the number and parameters of the GMM based on various visualizations.
Integrating a Human-in-the-loop into the process of modeling two-dimensional
gaussian mixtures enables the expectation-maximization (EM) algorithm to adapt
to more complex GMM compared to the standard non-interactive approach. The
work demonstrates that the interactive modeling process for GMM improves the
quality of the model in contrast to non-interactive modeling. The improvement is
shown using the datasets of EngyTime and a large flow cytometry dataset. The R
package “AdaptGauss2D” is available on GitHub https://github.com/Mthrun/Ada
ptGauss2D.

Keywords: Gaussian mixtures · Human-in-the-loop · Interactive ML

1 Introduction

A Gaussian mixture model (GMM) is a probabilistic model that explains the chance of
detecting an event x with probability p with the assumption that underlying data is gen-
erated using the weighted sum of a finite number k of normal distributions N(X |Mi, Si)

also known as modes or components, with means Mi and covariance Si. The weighting
wi determines the relative contribution of each of these normal distributions to the mix-
ture and is the prior probability of occurrence of the modes with

∑k
i=1wi = 1. In the

two-dimensional case, a k-modal GMM is defined as p(X |M , S) = ∑k
i=1wiN(X |Mi, Si)

where Si is the 2 × 2 matrix of covariances, X =
(

x1

x2

)

and Mi =
(

m1

m2

)

. The GMM

calculates a “soft” assignment to the modes with the Bayes theorem, which determines
the likelihood of X being allocated to one of the k modes for a given value. Param-
eter optimization methods such as the expectation-maximization (EM) algorithm [1]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 658–661, 2023.
https://doi.org/10.1007/978-3-031-26422-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_51&domain=pdf
http://orcid.org/0000-0001-9542-5543
https://github.com/Mthrun/AdaptGauss2D
https://doi.org/10.1007/978-3-031-26422-1_51

Interactive Toolbox for Two-Dimensional Gaussian Mixture Modeling 659

are commonly utilized in various domains to fit GMMs to two-dimensional data [2–4].
However, automatic modeling of two-dimensional GMMs does not guarantee accu-
rate findings because the EM algorithm is quite sensitive to initial values [5]. As a
result, it is advisable to assess the correctness of the derived GMM model through
visual means [6]. Therefore, we propose a human-in-the-loop (HIL) approach for mod-
eling two-dimensional gaussian mixtures. Although commercial software approaches
exist that provide some range of interactivity for modeling two-dimensional GMMs
(e.g., https://www.originlab.com/fileExchange/details.aspx?fid=472: or https://de.mat
hworks.com/help/stats/tune-gaussian-mixture-models.html), to the authors’ knowledge,
no fully interactive user interfaces for two-dimensional GMMs have been published
so far. Here, we fully integrate the EM optimization of two-dimensional GMM into
the interactive adjustment of EM parameters based on visualizations and automatically
estimate the number of modes using [7]. To ease the Human-the-loop (HIL) into our
interactive tool, we simplify the EM parameters as described in the next section. The
third demonstrates that the proposed system “AdaptGauss2D” can improve the automatic
state-of-the-art EM modeling of two-dimensional GMMs.

2 System Description

The interactive tool allows the manual modification of all GMM parameters. In this
work, the covariance matrix is approximated with the principal component axes (PCA)
to ease interactivity for HIL connecting structure of GMM component to parameter
axes and angle. Therefore, we propose to compute the principal component axis with
a singular value decomposition (SVD) in the first step. Since a two-dimensional space
is used, both the diagonal matrix � and the unitary matrices U and V ∗ from the SVD
are square matrices. A second step computes ellipsoids based on the two axes for the
two-dimensional case. The angle of the axes can be deducted from the axes’ position
relative to the cartesian coordinate system. The covariance matrix can be computed in a
final third step based on the ellipsoid with a rotation matrix. The first step is the SVD of
the matrix M resulting from the EM computation with M, U, �, V ∗ εR

2×2. The square
root of the singular values p1 and p2 denote the length of the principal component axes.
The angles can be computed based on the vectors in matrix U and the standard basis
vectors. Furthermore, the orientation can be determined by the smaller angle between

the main axis and the first vector of the standard basis using α = acos
(〈u1,e1〉‖u1‖

)
. The

main axes and the angle define a unique ellipsoid on the cartesian coordinate system,
which can be transformed into a symmetric positive definite matrix. A rotation matrix
R needs to be defined based on the priorly computed angle and axes with

R =
⎛

⎝
cos

(
alpha·π

180

)
−sin

(
alpha·π

180

)

sin
(

alpha·π
180

)
cos

(
alpha·π

180

)

⎞

⎠ (1)

The rotation matrix is applied to transform the matrix P defined by the length of the

principal component axes P =
(

p1 0
0 p2

)

. The symmetric positive definite matrix C can

https://www.originlab.com/fileExchange/details.aspx?fid=472
https://de.mathworks.com/help/stats/tune-gaussian-mixture-models.html

660 M. C. Thrun et al.

be deployed as the covariance matrix for the original problem with C = R · P2 · RT . The
following actions can be done by the user: 1. Select the Gaussian that you intend to edit.
Add new Gaussians or remove the currently selected one. 2. Modify the parameters of
the selected Gaussian. The selected Gaussian is shown in blue. 3. Use the knob slider as
an alternative way to set the ellipsoids angle of the currently selected gaussian. 4. Use
the interactive three-dimensional plots to understand the two-dimensional data and/or
model. 5. Use one of the four two-dimensional visualizations to understand the data or
model better. 6. Use the upper buttons to switch between a view of the empirical density
estimation and the model, switch on or off the data’s scatter, or compare the original
classification (if given) of the data versus the model’s classification using the Bayes
Theorem. Here, the maximum of the posterior distribution is used as a hard classification.
7. Switch between the four different two-dimensional plots (upper button row) and switch
on or off the ellipsoid’s axis and outline the models’ components, the data scatter or
choose between the original classification (if given) and the model’s classification. 8.

Fig. 1. Top Screenshot of the interface of the AdaptGauss2D tool. Bottom: Three-dimensional
visualization of the model fitted with the interactive tool in color versus the density estimation of
data in black of the flow-cytometry dataset that was interactively modeled after the usage of EM.
The third dimensions indicate the density.

Interactive Toolbox for Two-Dimensional Gaussian Mixture Modeling 661

Execute the EM algorithm with the desired number of steps (EM Steps), allow the EM
to add/remove modes or not, undo or redo any change made by the algorithm or by
hand, preserve the currently selected Gaussian weight, and norm the others or norm all
the Gaussian weights. 9. Load a classification to compare with the model’s computed
classification, save the current setting, or close AdaptGauss2D.

3 Evaluation and Application

In the video https://www.youtube.com/watch?v=MV7DVEWys_c the dataset EngyTime
is used, which is described in [8]. The identification of cluster structures combined
with an EM algorithm yields a root mean square deviation (RMSD) of 20%. A manual
fitting of the initialized results from the automatized adaptation reduced RMSD to 5%.
Comparing both solutions to the ground truth shows an improvement of accuracy from
0.921 to 0.965. Figure 1 presents a flowcytometry sample file of blood with N = 296.755
measured event. In a flow cytometer, each cell rapidly passes through a laser beam one
by one. Two light scatter and several surface parameters can be measured for each event.
Figure 1 (top) presents the forward scatter FS versus side scatter SS in which three
modes are visible in the shiny interactive app. However, the EM algorithm is unable to
fit the Gaussians to the data, as Fig. 1 (top) shows. Here, the identification of cluster
structures combined with an EM algorithm yields an RMSD of 0.4233%. A manual
fitting by a HIL of the initialized results from the automatized adaptation reduced the
RMSD to 0.0605%. The result of the interactive modeling is presented in Fig. 1 bottom
as a three-dimensional plot for which the density of the model (colors) and data (black)
is shown in the third dimension.

References

1. Baggenstoss, P.M.: Statistical modeling using Gaussian mixtures and HMMS with matlab.
Naval Undersea Warfare Center, Newport RI (2002)

2. Yoshida, E., Kimura, Y., Kitamura, K., Murayama, H.: Calibration procedure for a DOI detector
of high resolution PET through a Gaussian mixture model. IEEE Trans. Nucl. Sci. 51(5),
2543–2549 (2004)

3. Yu, J.: Bearing performance degradation assessment using locality preserving projections and
Gaussian mixture models. Mech. Syst. Signal Process. 25(7), 2573–2588 (2011)

4. Wang, et al.: Efficient volume exploration using the Gaussian mixture model. IEEE Trans. Vis.
Comput. Graph. 17(11), 1560–1573 (2011)

5. Yang, M.-S., Lai, C.-Y., Lin, C.-Y.: A robust EM clustering algorithm for Gaussian mixture
models. Pattern Recogn. 45(11), 3950–3961 (2012)

6. Ultsch, et al.: Identification of molecular fingerprints in human heat pain thresholds by use of
an interactive mixture model R toolbox (AdaptGauss). Int. J. Mol. Sci. 16(10), 25897–25911
(2015). https://doi.org/10.3390/ijms161025897

7. Thrun, M.C., Stier, Q.: Fundamental clustering algorithms suite SoftwareX 13(C), 100642
(2021). https://doi.org/10.1016/j.softx.2020.100642

8. Thrun, M.C., Ultsch, A.: Clustering benchmark datasets exploiting the fundamental clustering
problems. Data Brief 30(C), 105501 (2020). https://doi.org/10.1016/j.dib.2020.105501

https://www.youtube.com/watch?v=MV7DVEWys_c
https://doi.org/10.3390/ijms161025897
https://doi.org/10.1016/j.softx.2020.100642
https://doi.org/10.1016/j.dib.2020.105501

Demonstrator on Counterfactual
Explanations for Differentially Private

Support Vector Machines

Rami Mochaourab1(B), Sugandh Sinha1, Stanley Greenstein2,
and Panagiotis Papapetrou3

1 Digital Systems Division, RISE Research Institutes of Sweden, Stockholm, Sweden
{rami.mochaourab,sugandh.sinha}@ri.se

2 Department of Law, Stockholm University, Stockholm, Sweden
stanley.greenstein@juridicum.su.se

3 Department of Computer and Systems Sciences, Stockholm University,
Stockholm, Sweden

panagiotis@dsv.su.se

Abstract. We demonstrate the construction of robust counterfactual
explanations for support vector machines (SVM), where the privacy
mechanism that publicly releases the classifier guarantees differential pri-
vacy. Privacy preservation is essential when dealing with sensitive data,
such as in applications within the health domain. In addition, providing
explanations for machine learning predictions is an important require-
ment within so-called high risk applications, as referred to in the EU
AI Act. Thus, the innovative aspects of this work correspond to study-
ing the interaction between three desired aspects: accuracy, privacy, and
explainability. The SVM classification accuracy is affected by the pri-
vacy mechanism through the introduced perturbations in the classifier
weights. Consequently, we need to consider a trade-off between accuracy
and privacy. In addition, counterfactual explanations, which quantify
the smallest changes to selected data instances in order to change their
classification, may become not credible when we have data privacy guar-
antees. Hence, robustness for counterfactual explanations is needed in
order to create confidence about the credibility of the explanations. Our
demonstrator provides an interactive environment to show the interplay
between the considered aspects of accuracy, privacy, and explainability.

Keywords: Counterfactual explanations · Support vector machines ·
Differential privacy

1 Motivation

Machine learning algorithms have proven to be powerful for learning from data
and making decisions with high accuracy. In particular, they are able to outper-
form humans on many specific tasks. However, such data-driven technologies are

Demonstrator video is available under: https://rami-mochaourab.github.io/papers/
2022-ECML/demo-video.mp4.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 662–666, 2023.
https://doi.org/10.1007/978-3-031-26422-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_52&domain=pdf
https://rami-mochaourab.github.io/papers/2022-ECML/demo-video.mp4
https://rami-mochaourab.github.io/papers/2022-ECML/demo-video.mp4
https://doi.org/10.1007/978-3-031-26422-1_52

Demonstrator on Counterfactual Explanations 663

Fig. 1. The considered relationship between accuracy, privacy, and explainability.

seldom value-neutral to the extent that they include social and ethical values.
Even when such values are integrated into the models they may be mandated
by regulatory frameworks, such as traditional laws or policy documents. The
goal of our work, reported in [2,3], is to demonstrate in a technical context
the link between three social and ethical values advocated by the General Data
Protection Regulation (GDPR), namely, explainability, privacy, and accuracy.

Figure 1 gives an overview on how the three mentioned social values are
related within this work: Accuracy is targeted when learning an SVM clas-
sifier. Privacy is guaranteed using a differentially private mechanism for the
classifier [4]. Afterwards, the private SVM version is made publicly available.
Explainability for private SVM is done by designing counterfactual explana-
tions [5] which take into account the characteristics of the classifier and privacy
mechanism [3].

The innovative aspects of this work correspond to the simultaneous analysis
of these three desired aspects, namely, accuracy, privacy, and explainability. The
application domains of our work include those with sensitive data, such as within
health, as well as within high risk applications as referred to by the EU AI
Act, where explainability for data driven predictions is needed. To the best of
our knowledge, there does not exist other work that studies explainability for
privacy-preserving machine learning models.

The target users of our work are both machine learning researchers, working
on explainable AI, as well as AI regulatory bodies interested in understanding the
interplay between machine learning based decision-making, privacy guarantees,
and explainability of machine learning predictions.

2 Demonstrator

Our demonstrator provides an interactive environment to understand the effects
of privacy guarantees on the classification accuracy and counterfactual explana-
tions. We use two datasets for this purpose as is shown in the snapshots from
the demo in Fig. 2 and Fig. 3.

Figure 2 shows the optimal linear SVM (solid line) and its private version
(dashed line). The first sliding bar corresponds to the differential privacy param-
eter [1] which affects the extent of privacy guarantees. A low value means larger

664 R. Mochaourab et al.

Fig. 2. Demo snapshot for explanability of linear SVM classifications on data generated
from two bivariate Guassian distributions.

privacy. Consequently, larger perturbations on the classifier weights are per-
formed when constructing the private SVM. Counterfactual explanations are the
closest points to the selected instance (•) that lie on the decision boundaries.
Non-robust explanation (→) may have the same class as the instance with respect
to the optimal (unknown) SVM, as is shown the screenshot. Hence, non-robust
explanations are not credible and therefore we construct robust explanations (�)
that provide confidence in explanation credibility.

The second sliding bar at the top corresponds to the confidence in the cred-
ibility of the counterfactual explanations. A large confidence means that we are
more certain that the explanation has a different classification compared to that
of the instance. However, a larger confidence level comes at a cost in terms of
a larger distance between the explanation and the instance we want to explain.
In other words, we have a tradeoff between the explanation credibility and the
smallest changes needed to alter the classifier decision from the instance.

Figure 3 demonstrates similar functionality as above but on the publicly avail-
able UCI Breast Cancer Wisconsin (Diagnostic) dataset. Here, we use a feature
mapping generated using a Radial Basis Function (RBF) kernel approximation
(see details in [3]). Due to the high number of features, the demo allows to
visualize in two dimensions by selecting pairs of features through a drop-down
menu. In order to identify the classifier errors, we mark the false positives and
false negatives for both optimal and private SVM. In this way, we can see the
extent of errors for different privacy parameter values. In addition, at the top-
right corner we show the classification of both the selected instance and the

Demonstrator on Counterfactual Explanations 665

Fig. 3. Demo snapshot for explainability of kernel SVM classifications on the UCI
Breast Cancer Wisconsin (Diagnostic) dataset.

explanation. This, highlights the diverse miss-classification possibilities inherent
in the machine learning models.

The calculation of robust counterfactual explanations for kernel SVM is based
on the bisection method aided by prototypes, as is detailed in [3]. A prototype
for a specific data class is a typical case for that class known by the domain
expert. By increasing the explanation confidence level, we can visualize how the
explanations move towards the prototype at the center of the desired data class.

Acknowledgements. The authors would like to thank Luis Quintero and Zhendong
Wang for their help in developing the demonstrator. This work has been supported
by the Digital Futures center (https://www.digitalfutures.kth.se) within the project
“EXTREMUM: Explainable and Ethical Machine Learning for Knowledge Discovery
from Medical Data Sources”.

References

1. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

2. Greenstein, S., Papapetrou, P., Mochaourab, R.: Embedding human values into
artificial intelligence. De lege 2021: Law, AI and Digitalisation, pp. 91–115 (2022)

3. Mochaourab, R., Sinha, S., Greenstein, S., Papapetrou, P.: Robust counterfactual
explanations for privacy-preserving SVMs. In: International Conference on Machine
Learning (ICML 2021), Workshop on Socially Responsible Machine Learning (2021)

https://www.digitalfutures.kth.se

666 R. Mochaourab et al.

4. Rubinstein, B.I.P., Bartlett, P.L., Huang, L., Taft, N.: Learning in a large function
space: privacy-preserving mechanisms for SVM learning. J. Priv. Confidentiality
4(1) (2012)

5. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without open-
ing the black box: automated decisions and the GDPR. Harvard J. Law Technol.
Forthcoming 31(2), 841 (2018)

Correction to: Recognizing Cognitive Load
by a Hybrid Spatio-Temporal Causal Model

from Multivariate Physiological Data

Zirui Yong, Guoxin Su, Xiaohu Li, Lingyun Sun, Zejian Li,
and Li Liu

Correction to:
Chapter “Recognizing Cognitive Load by a Hybrid
Spatio-Temporal Causal Model from Multivariate
Physiological Data” in: M.-R. Amini et al. (Eds.): Machine
Learning and Knowledge Discovery in Databases, LNAI 13718,
https://doi.org/10.1007/978-3-031-26422-1_20

In the originally published version of chapter 20, there was an error in the name of the
author Li Liu; first name and last name had been swapped erroneously. This has been
corrected.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-031-26422-1_20

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, p. C1, 2023.
https://doi.org/10.1007/978-3-031-26422-1_53

https://doi.org/10.1007/978-3-031-26422-1_20
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26422-1_53&domain=pdf
https://doi.org/10.1007/978-3-031-26422-1_20
https://doi.org/10.1007/978-3-031-26422-1_53

Author Index

A
Adak, Sayantan 335
Ahmad, Altaf 335
Ahmadzadeh, Azim 87
Ali, Mohammed Eunus 571
Aloui, Saifeddine 617
Amblard, Victor 538
Angarano, Simone 203
Angryk, Rafal A. 87
Antoni, Olivier 631
Assem, Haytham 636

B
Banerjee, Rohan 649
Bao, Ruihan 105, 137
Barthe, Guillaume 538
Basu, Aditya 335
Bdeir, Ahmad 505
Belgodere, Brian 641
Björklund, Anton 612
Born, Stefan 36
Branco, Paula 645
Brinkmeyer, Lukas 3
Buettner, Florian 219
Burchert, Johannes 3, 36
Burgin, Edward 636

C
Cao, Qi 453
Cerrato, Simone 203
Cetina, Kendrick 599
Cheema, Muhammad Aamir 571
Chen, Guihai 302
Chen, Haifeng 594
Chen, Jiyuan 489
Chen, Ruibo 137
Chen, Yang 87
Chenthamarakshan, Vijil 641

Cherrier, Noëlie 538
Chhikara, Prateek 627
Chiaberge, Marcello 203
Clijmans, Jeroen 370
Cui, Suhan 437
Cui, Tianyu 270

D
Das, Payel 641
Davis, Jesse 370
Deng, Shuwen 403
Deng, Zhengqiao 386
Dib, Amir 538
Ding, Jian 554
Dognin, Pierre 641
Dou, Dejing 302
Drumond, Rafael Rego 3
Duong-Trung, Nghia 36
Dutta, Sourav 636
Dwivedi, Arpit 236
Dziemian, Sabine 403

E
Ender, Marvin 622

F
Falkner, Jonas K. 505
Fan, Changxun 603
Fan, Zipei 453, 489
Fletcher, George 607
Fu, Peipei 270

G
Gao, Jiaxiang 554
García-Santa, Nuria 599
Ghose, Avik 649
Glass, Lucas 437
Godin, Christelle 631

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13718, pp. 667–669, 2023.
https://doi.org/10.1007/978-3-031-26422-1

https://doi.org/10.1007/978-3-031-26422-1

668 Author Index

Gou, Gaopeng 270
Goyal, Anil 627
Goyal, Vikram 353
Greenstein, Stanley 662
Gross, Ralf 219
Grzenda, Maciej 654
Gupta, Rishabh 353

H
Haas, Stefan 170
Harimoto, Keiko 105, 137
Hassani, Marwan 521
Hawkin, John 121
Hazra, Rima 236
Hu, Ting 121
Hüllermeier, Eyke 170
Hüntelmann, Jelle 622
Huynh, Van-Nam 53

J
Jäger, Lena A. 403
Jiang, Renhe 453
Jin, Mengcheng 622

K
Koebler, Alexander 219
Kolokolova, Antonina 121
Kong, Linghe 302
Krakowczyk, Daniel 403
Kunz, Nicholas 645
Kurien, Toby 641

L
Langer, Nicolas 403
Le, Xuan-May 53
Lee, Zed 70
Li, Bin 622
Li, Lei 105
Li, Liang 469
Li, Wei 137
Li, Xiaohu 318
Li, Yuchen 302
Li, Zejian 318
Liang, Ying 419
Lien, Yun-Hsuan 154
Lin, Yu-Syuan 154
Liu, Chang 270
Liu, Jun 554
Liu, Li 318, 386

Liu, Zhengjun 419
Lu, Xuesong 286
Luckner, Marcin 654

M
Ma, Fenglong 437
Ma, Ruizhe 87
Madhusudhanan, Kiran 36
Maekawa, Seiji 607
Mahmood, Md. Tareq 571
Mainsant, Marion 631
Mäkelä, Jarmo 612
Makowski, Silvia 403
Martini, Mauro 203
Melnyk, Igor 641
Mermillod, Martial 631
Mertens, Tom 521
Min, Xu 603
Mochaourab, Rami 662
Mohania, Mukesh 353
Morik, Katharina 19
Morvillier, Raphaël 617
Mroueh, Youssef 641
Mukherjee, Animesh 236, 335
Müller, Benedikt Tobias 622
Müller, Emmanuel 622
Mykula, Hanna 19

N
Nickerson, Kyle 121
Niedziela, Dominik 622

O
Onizuka, Makoto 607

P
Padhi, Inkit 641
Papapetrou, Panagiotis 70, 662
Patel, Raj Nath 636
Porvatov, Vadim 589
Prasse, Paul 403
Prat, Christophe 617
Puolamäki, Kai 612
Puthucode, Krishna Rukmini 87

Q
Qi, Jing 386
Qian, Cheng 437
Qian, Shuang 386

Author Index 669

R
Rashid, Syed Md. Mukit 571
Reich, David R. 403
Reyboz, Marina 631
Rigotti, Mattia 641
Robertson, Charles 121
Rong, Yuecheng 554
Ross, Jarret 641

S
Saadallah, Amal 19
Salvetti, Francesco 203
Sasaki, Yuya 607
Sato, Moto 594
Scheffer, Tobias 403
Schiff, Yair 641
Schmidt-Thieme, Lars 3, 36, 505
Schubert, Matthias 185
Seidl, Thomas 185
Sellis, Timos 571
Semenova, Natalia 589
Sharma, Chirag 627
Shi, Junzheng 270
Shibasaki, Ryosuke 453, 489
Shoeleh, Farzaneh 121
Sinha, Sugandh 662
Song, Xuan 453, 489
Sosedka, Artyom 589
Stegenwallner-Schütz, Maja 403
Stier, Quirin 658
Strauß, Niklas 185
Su, Guoxin 318
Sun, Lingyun 318
Sun, Xu 105, 137
Swiadek, Jan Erik 622

T
Tan, Yusong 469
Tang, Lu-An 594
Thon, Ingo 219
Thrun, Michael C. 658
Tishin, Vladislav 589
Tran, Minh-Tuan 53
Tricco, Terrence 121
Trincavelli, Marco 70

U
Ultsch, Alfred 658

V
Van Roy, Maaike 370
Venktesh, V. 353

W
Wang, Dongxia 286
Wang, Hongjun 489
Wang, Jiaqi 437
Wang, Yu-Shuen 154
Wang, Zisen 419
Weng, Yang 253
Winkel, David 185
Winkel, Simon 622
Woodward, Kevin 594
Wrona, Przemysław 654
Wu, Wenglei 645

X
Xie, Feng 469
Xiong, Gang 270
Xiong, Haoyi 302
Xu, Bo 386
Xu, Zhilin 554

Y
Yang, Chuang 453
Yong, Zirui 318
Young, Richard A. 641
Yu, Junlin 603
Yuan, Jingyi 253
Yuan, Peng 594

Z
Zamkovoy, Vladislav 589
Zhang, Chuangming 554
Zhang, En 286
Zhang, Rui 302
Zhang, Xiaolu 603
Zhang, Zhiwen 489
Zhang, Zhiyuan 105, 137
Zhang, Zhong 469
Zhou, Bin 469
Zhou, Jun 603

	Preface
	Organization
	Contents – Part VI
	Time Series
	Few-Shot Forecasting of Time-Series with Heterogeneous Channels
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Setting
	3.2 Model Formulation

	4 Experimental Setup
	4.1 Meta-Dataset
	4.2 Experimental Details
	4.3 Baseline Methods
	4.4 Results
	4.5 Ablations

	5 Conclusion
	References

	Online Adaptive Multivariate Time Series Forecasting
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Preliminaries
	3.2 Forecasting Models Learning
	3.3 Adaptive Input Time Series Variables Selection
	3.4 Forecasting Models Adaptation
	3.5 Online Automated MTS Forecasting

	4 Experiments
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion and Future Work

	5 Concluding Remarks
	References

	U-Net Inspired Transformer Architecture for Far Horizon Time Series Forecasting
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Background
	5 Methodology
	6 Experiments
	6.1 Datasets
	6.2 Experimental Setup
	6.3 Results and Analysis

	7 Ablation Study
	7.1 Y-Former Architecture
	7.2 Effectiveness of the U-Net Based Skip Connections
	7.3 Reconstruction Factor

	8 Conclusion
	References

	Learning Perceptual Position-Aware Shapelets for Time Series Classification
	1 Introduction
	2 Relative Works
	2.1 State-of-the-Art Time Series Classifiers
	2.2 Perceptually Important Points

	3 Preliminaries
	4 Perceptual Position-Aware Shapelet Network
	4.1 Perceptual Shapelet Extractor
	4.2 Position-Aware Sub-Distance for Shapelet Evaluating
	4.3 Learning Shapelet Network

	5 Experimental Results
	5.1 Hyperparameter Setting
	5.2 Compared with Shapelet Methods
	5.3 Compared with Current State-of-the-Art Methods
	5.4 Computation Time Comparison
	5.5 Ablation Study and Sensitivity Study
	5.6 Experiments on Interpretability

	6 Conclusion
	References

	Finding Local Groupings of Time Series
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Problem Definition
	3 The Z-Grouping Algorithm
	3.1 Event Sequence Matrix Generation
	3.2 Local Grouping Generation
	3.3 Association Generation
	3.4 Validation of Local Groupings
	3.5 Complexity of Z-Grouping

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusion
	References

	TS-MIoU: A Time Series Similarity Metric Without Mapping
	1 Introduction
	2 Background
	2.1 Popular Distance/Similarity Measures
	2.2 Measures with Comparable Ideas

	3 Multiscale IoU (MIoU) for Time Series
	3.1 MIoU Recap
	3.2 TS-MIoU: MIoU for Time Series
	3.3 Ill-Definedness of Space
	3.4 Segmentation with Proportional Binning
	3.5 TS-MIoU as a Metric
	3.6 Time Complexity of TS-MIoU

	4 Experiments and Results
	4.1 Experimental Settings
	4.2 Accuracy Gain of TS-MIoU

	5 Discussion, Conclusion, and Future Work
	References

	Financial Machine Learning
	Distributional Correlation–Aware Knowledge Distillation for Stock Trading Volume Prediction
	1 Introduction
	2 Methodology
	2.1 Task Formulation
	2.2 Conventional Knowledge Distillation for Classification
	2.3 Distributional Knowledge Distillation for Regression Problems
	2.4 Transferring Knowledge via Correlation Consistency

	3 Experiments
	3.1 Datasets
	3.2 Baselines
	3.3 Implementation Details
	3.4 Main Results

	4 Analysis
	4.1 Interplay Between Distributional KD and Correlational KD
	4.2 Correlational Objectives Boost More with Fewer Data
	4.3 Correlational Objectives Improve Magnitude Ordering

	5 Related Work
	5.1 Knowledge Distillation
	5.2 Volume Prediction

	6 Conclusion
	A Cosine Similarity of Gaussian Distributions
	References

	Banksformer: A Deep Generative Model for Synthetic Transaction Sequences
	1 Introduction
	2 Datasets
	3 Methods
	3.1 Generative Adversarial Networks (GANs)
	3.2 Transformers

	4 Related Work
	4.1 Synthetic Financial Time Series
	4.2 Evaluation of Synthetic Sequence Data

	5 Banksformer
	5.1 Date Mechanism
	5.2 Architecture
	5.3 Generating Data

	6 Results
	6.1 Univariate Distributions
	6.2 N-grams
	6.3 Joint Distributions
	6.4 Ablation

	7 Discussion
	References

	Stock Trading Volume Prediction with Dual-Process Meta-Learning
	1 Introduction
	2 Related Work
	2.1 Stock Market Prediction
	2.2 Meta-Learning

	3 Approach
	3.1 Encoder-Decoder Framework
	3.2 Dual Meta-Learning Process
	3.3 Inference
	3.4 Model Agnostic

	4 Experiment
	4.1 Tasks and Datasets
	4.2 Baselines
	4.3 Settings and Hyperparameters
	4.4 Experimental Results

	5 Analysis
	5.1 Effectiveness of Meta-Learning
	5.2 Effectiveness of Encoder-Decoder Framework
	5.3 Analyzing Dual Meta-Learning Process

	6 Conclusion
	References

	Uncertainty Awareness for Predicting Noisy Stock Price Movements
	1 Introduction
	2 Related Work
	3 Method
	3.1 Transforming Aleatoric Uncertainty to Model Uncertainty
	3.2 Model Uncertainty Estimation
	3.3 Implementation Details

	4 Results and Evaluations
	4.1 Comparison to Baselines
	4.2 Uncertainty Estimation Using Variance and Predictive Entropy
	4.3 The Effectiveness of Removing Aleatoric Uncertainty
	4.4 Confidence v.s. Certainty
	4.5 Compatibility to Other Network Structures
	4.6 Limitations and Future Works

	5 Conclusions
	References

	A Prescriptive Machine Learning Approach for Assessing Goodwill in the Automotive Domain
	1 Introduction
	2 The Vehicle Goodwill Assessment Process
	3 Prescriptive Machine Learning for Goodwill Assessment
	3.1 Enhancing the Goodwill Assessment Process
	3.2 Prescriptive Machine Learning
	3.3 Human Goodwill Decision Data
	3.4 Hierarchical Cost-Sensitive Learning

	4 Evaluation and Results
	5 Conclusion and Future Work
	References

	Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection
	1 Introduction
	2 Related Work
	3 Background
	4 Risk-Aware Portfolio Optimization
	4.1 Risk Measure
	4.2 Policy
	4.3 Algorithm
	4.4 Network Architectures

	5 Experiments
	5.1 Environment
	5.2 Experimental Setup
	5.3 Evaluation

	6 Conclusion
	References

	Applications
	Waypoint Generation in Row-Based Crops with Deep Learning and Contrastive Clustering
	1 Introduction
	2 Methodology
	2.1 Backbone Design
	2.2 Waypoint Estimation
	2.3 Contrastive Clustering

	3 Experimental Setting
	3.1 Dataset Description
	3.2 Network Training

	4 Results
	4.1 Waypoint Estimation
	4.2 Waypoint Clustering
	4.3 Qualitative Results

	5 Conclusions
	References

	Grasping Partially Occluded Objects Using Autoencoder-Based Point Cloud Inpainting
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Methodology
	4.1 Dataset Generation
	4.2 Data Processing Pipeline
	4.3 Segmentation
	4.4 Inpainting

	5 Experiments
	5.1 Training Procedure
	5.2 Sensitivity to Initialization
	5.3 Performance on Synthetic Data
	5.4 Performance on Real Data
	5.5 Performance of the Pipeline on the Real Process

	6 Conclusion
	References

	Is This Bug Severe? A Text-Cum-Graph Based Model for Bug Severity Prediction
	1 Introduction
	2 Related Work
	3 Dataset
	4 Bug Severity Prediction
	5 Experiments and Results
	6 Ablation Study
	7 Error Analysis
	8 Conclusion
	References

	Physically Invertible System Identification for Monitoring System Edges with Unobservability
	1 Introduction
	2 Related Work
	2.1 Solve the Inverse Problem of Physical Systems
	2.2 Enforce Inverse in Representation Learning

	3 Problem Formulation for Two-Way System Monitoring with Unobservability
	3.1 Optimization Objectives to Identify Invertible System Model
	3.2 Virtual Storage Variables to Compensate System Unobservability

	4 Physically Invertible System Identification
	4.1 Invertible Transformation
	4.2 Building Invertible NN Structure for Physical Interpretability

	5 Experiments
	5.1 Inverse Kinematics Problem
	5.2 Inverse Power Flow Problem: Distribution System State Estimation

	6 Conclusion
	References

	GALG: Linking Addresses in Tracking Ecosystem Using Graph Autoencoder with Link Generation
	1 Introduction
	2 Related Work
	2.1 User Tracking
	2.2 Link Prediction

	3 Preliminaries
	3.1 Problem Definition
	3.2 Link Generation

	4 Design of GALG
	4.1 Graph and Distribution Construction
	4.2 Model Architecture

	5 Experiment Setup
	6 Evaluation
	6.1 Distribution Analysis
	6.2 Attention Analysis
	6.3 Link Generation
	6.4 User Tracking

	7 Conclusion
	References

	Automatic Grading of Student Code with Similarity Measurement
	1 Introduction
	2 Related Work
	3 The SimGrader System
	3.1 Feature Extraction
	3.2 Enhancing the Discrimination of Semantic Features
	3.3 Grading Student Code

	4 Performance Evaluation
	4.1 The Datasets and Evaluation Metrics
	4.2 The Comparative Methods
	4.3 The Hyperparameter Setting
	4.4 Experiment 1: Predicting Code Closeness
	4.5 Experiment 2: Evaluating Feature Discrimination
	4.6 Experiment 3: Grading with Similarity Measurement
	4.7 Experiment 4: Grading with Supervised Learning

	5 Application: Using SimGrader in an OJ System
	6 Conclusion and Future Work
	References

	Meta Hierarchical Reinforced Learning to Rank for Recommendation: A Comprehensive Study in MOOCs
	1 Introduction
	2 Background and Formulation
	2.1 Background
	2.2 Formulations

	3 Methodology
	3.1 Reinforced User Profiling with Item Filtering
	3.2 End-to-End Pre-training with Meta Enhancing
	3.3 Gradient Boosting with Order Promoting

	4 Experiments
	4.1 Experimental Settings
	4.2 Offline Experimental Results
	4.3 Online Experimental Results

	5 Related Work
	6 Conclusion
	References

	Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model from Multivariate Physiological Data-4pt
	1 Introduction
	2 Related Work
	2.1 Knowledge-driven Associations Between Physiological Signals and Cognitive Load
	2.2 Data-driven Models for Cognitive Load Assessment
	2.3 Granger Causality

	3 Problem Formulation
	4 Our Approach
	4.1 GC Network Generation
	4.2 GADF Map Construction
	4.3 Capsule Network-Based Recognition Model

	5 Empirical Evaluations
	5.1 Datasets and Preprocessing
	5.2 Experimental Set-Ups
	5.3 Experimental Results
	5.4 Ablation Study

	6 Conclusion and Future Work
	References

	Placing (Historical) Facts on a Timeline: A Classification Cum Coref Resolution Approach
	1 Introduction
	2 Related Work
	3 Data Preparation
	3.1 Datasets
	3.2 Pre-processing
	3.3 Annotation

	4 Methodology
	4.1 Important Sentence Extraction
	4.2 Sentence Coreference Resolution
	4.3 Timeline Visualization

	5 Experiments
	5.1 Evaluation Metrics
	5.2 Results

	6 Ablation Study
	7 Timeline Visualization
	8 Conclusion
	References

	`John Ate 5 Apples' != `John Ate Some Apples': Self-supervised Paraphrase Quality Detection for Algebraic Word Problems
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Augmentation
	3.2 Positive Augmentations
	3.3 Negative Augmentations
	3.4 Paraphrase Quality Detection

	4 Experiments
	4.1 Datasets
	4.2 Test Set Generation
	4.3 Baselines
	4.4 Metrics
	4.5 Test Set Details

	5 Results and Analysis
	5.1 Performance
	5.2 Embedding Plots
	5.3 Operator Ablations
	5.4 Effects of Loss Functions, Encoder and Seed
	5.5 Error Analysis and Limitations

	6 Conclusion
	References

	Looking Beyond the Past: Analyzing the Intrinsic Playing Style of Soccer Teams
	1 Introduction
	2 Capturing Team Behavior as a DTMC
	2.1 Data Set
	2.2 Retrieving Possession Sequences
	2.3 Constructing Team-Specific DTMCs

	3 Characterizing a Team's Playing Style
	3.1 Features Regarding a Team's Preference for Certain Locations
	3.2 Features Regarding a Team's Preference for Certain Sequences
	3.3 Features Regarding the Directness of Play
	3.4 Features Regarding the Ability to Create Shots

	4 Use Cases
	4.1 Finding Similar Teams
	4.2 Assessing Mismatch in Efficiency of the Sides
	4.3 In-depth Analysis of Playing Style

	5 Related Work
	6 Conclusion
	References

	Recognizing Non-small Cell Lung Cancer Subtypes by a Constraint-Based Causal Network from CT Images
	1 Introduction
	2 Related Work
	2.1 Conventional Models with Radiomics Features
	2.2 Deep Model-Based Recognition from Raw CT Images

	3 Preliminaries
	3.1 Data Acquisition
	3.2 CT Image Preprocessing
	3.3 Problem Formulation

	4 Our Model
	4.1 Skeleton Identification
	4.2 Causal Link Orientation
	4.3 Representative Node Selection

	5 Experiments
	5.1 Comparison Results Against Other Competing Models
	5.2 Comparison Results Against Other Radiomics Feature Selection Approaches
	5.3 Ablation Study

	6 Conclusion
	References

	Detection of ADHD Based on Eye Movements During Natural Viewing
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Method
	4.1 Model
	4.2 Pre-training

	5 Datasets
	6 Experiments
	6.1 Evaluation Protocol
	6.2 Reference Methods
	6.3 Hyperparameter Tuning
	6.4 Results
	6.5 Ablation Study and Feature Importance

	7 Discussion
	8 Conclusion
	References

	FFBDNet: Feature Fusion and Bipartite Decision Networks for Recommending Medication Combination
	1 Introduction
	2 Related Works
	2.1 Medication Recommendation
	2.2 Medication Representation

	3 Problem Formulation
	4 The FFBDNet
	4.1 Patient Feature Encoder
	4.2 Medication Feature Encoder
	4.3 Bipartite Decision Module
	4.4 Model Training and Inference

	5 Experiment
	6 Conclusion
	References

	Towards Federated COVID-19 Vaccine Side Effect Prediction
	1 Introduction
	2 Related Work
	3 COVID-19 Vaccine EHR Data
	3.1 Dataset Overview
	3.2 Training and Test Data Construction

	4 Task and Notation
	5 Methodology
	5.1 Model Overview
	5.2 Local Update: Patient Representation Learning
	5.3 Local Update: Data Augmented Hybrid Local Training
	5.4 Server Update: Client Size-Aware Aggregation
	5.5 Ordinal Training Strategy

	6 Experiment
	6.1 Experiment Setup
	6.2 Performance Evaluation
	6.3 Ablation Study
	6.4 Convergence Analysis
	6.5 Hyperparameter Sensitivity Analysis

	7 Conclusion
	References

	MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Problem
	4 Methodology
	4.1 Metapopulation SIR Module
	4.2 Spatio-Temporal Module for Epidemiological Parameters
	4.3 Graph Learning Module for Epidemic Propagation

	5 Experiment
	5.1 Data
	5.2 Setting
	5.3 Evaluation
	5.4 Case Study

	6 Conclusion
	References

	EpiGNN: Exploring Spatial Transmission with Graph Neural Network for Regional Epidemic Forecasting
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Problem Formulation
	3.2 Multi-scale Convolutions
	3.3 Transmission Risk Encoding Module
	3.4 Region-Aware Graph Learner
	3.5 Graph Convolution Network
	3.6 Prediction and Objective Function

	4 Experiments and Analysis
	4.1 Experimental Settings
	4.2 Prediction Performance
	4.3 Ablation Study
	4.4 Parameters Analysis
	4.5 Visualization

	5 Conclusions
	References

	Applications: Transportation
	Route to Time and Time to Route: Travel Time Estimation from Sparse Trajectories
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Notation
	3.2 Assumptions
	3.3 Problem Formulation
	3.4 System Overview
	3.5 Spatio-Temporal Model
	3.6 Model Training with EM Procedure

	4 Experiments
	4.1 Experimental Settings
	4.2 Baseline Models and Evaluation Metrics
	4.3 Performance Comparison
	4.4 Case Study

	5 Conclusion
	References

	Attention, Filling in the Gaps for Generalization in Routing Problems
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Original Model

	4 Targeting Generalization
	4.1 Inherent Differences
	4.2 Model Differences

	5 Methodology
	5.1 Dynamic Encoder
	5.2 -Entmax Implementation
	5.3 Mixed Problem Sizes
	5.4 Inference Data Augmentation
	5.5 Model Training and Evaluation

	6 Results
	6.1 Dynamic Training and Entmax
	6.2 Final Model
	6.3 Graph Augmentation

	7 Conclusion
	References

	Can we Learn from Outliers? Unsupervised Optimization of Intelligent Vehicle Traffic Management Systems
	1 Introduction
	2 Related Work
	3 Preliminaries and Notations
	4 OBIS: Outlier-Based Intersection Selection Framework
	5 Applied Scenarios
	6 Experimental Results
	7 Conclusion and Outlook
	References

	A Bayesian Markov Model for Station-Level Origin-Destination Matrix Reconstruction
	1 Introduction
	2 Related Work
	3 Origin Destination Matrix Reconstruction Using Ticketing and Count Data
	3.1 Count Data Preprocessing
	3.2 Trips Sampling and Posterior Estimation
	3.3 Extrapolation to Courses Without Counting Cells

	4 Experiments
	4.1 Experimental Setup
	4.2 Scalability
	4.3 Accuracy of Trips Reconstitution
	4.4 Robustness

	5 Conclusion and Perspectives
	5.1 Conclusion
	5.2 Future Work

	References

	BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing via Multi-task Learning
	1 Introduction
	2 Related Work
	2.1 Bus Waiting Time Estimation
	2.2 Spatial-Temporal Data Estimation

	3 Preliminaries
	4 BusWTE
	4.1 Feature Extraction
	4.2 Waiting Time Estimation Model

	5 Experiments
	5.1 Datasets
	5.2 Experimental Settings
	5.3 Baselines and Variants
	5.4 Overall Performance
	5.5 Ablation Study
	5.6 Application and Deployment

	6 Conclusion
	References

	PathOracle: A Deep Learning Based Trip Planner for Daily Commuters
	1 Introduction
	2 Definitions and Problem Statement
	3 Methodology
	3.1 Stop Representation Using Stop2Vec
	3.2 Time Representation
	3.3 Key Stop Generation (KSNet)
	3.4 Most Popular Trip Generation (MPTNet)
	3.5 Preferred Mode Constraint
	3.6 Minimum Switch Constraint

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Evaluation of MPT Query
	4.3 Evaluation of MPTPM Query
	4.4 Evaluation of MPTMS Query

	5 Related Works
	6 Conclusion
	References

	Demo Track
	Logistics, Graphs, and Transformers: Towards Improving Travel Time Estimation
	1 Introduction
	2 Related Work
	3 Framework Design
	4 Results
	5 Conclusion and Outlook
	References

	Explainable Anomaly Detection System for Categorical Sensor Data in Internet of Things
	1 Introduction
	2 System Description
	3 Conclusion and Future Work
	References

	AGG: An Automated Genogram Generator by Discovering Information in Clinical Texts
	1 Introduction
	2 AGG Tool: System Overview
	2.1 Family Medical History Discovery
	2.2 Genogram Manager
	2.3 Interactive User Interface

	3 Conclusions and Future Work
	References

	TAMOR: Tier-Aware Multi-objective Recommendation for Ant Fortune Financial Marketing
	1 Introduction
	2 System Overview
	3 Conclusion
	References

	Benchmarking GNNs with GenCAT Workbench
	1 Introduction
	2 GenCAT Workbench
	2.1 Features of the GenCAT Workbench

	3 Demonstration Plan
	References

	SLISEMAP: Combining Supervised Dimensionality Reduction with Local Explanations
	1 Introduction
	2 Problem Definition
	3 The Slisemap Library
	4 Usage Example
	References

	A Camera-Based System to Detect Driver Hands on the Steering Wheel in Semi-autonomous Vehicles
	1 Introduction
	2 Proposed System Demonstration
	2.1 System Description
	2.2 System in Action

	3 Conclusion
	References

	ADEPT: Anomaly Detection, Explanation and Processing for Time Series with a Focus on Energy Consumption Data
	1 Introduction
	2 Framework Overview
	2.1 Flexible Architecture
	2.2 Interactive Exploration

	3 Detection Models and Explainability Challenges
	4 Evaluation and Future Work
	References

	RE-Tagger: A Light-Weight Real-Estate Image Classifier
	1 Introduction
	2 Model Training and Validation
	2.1 Model Architecture
	2.2 Data Acquisition
	2.3 Experimental Protocol and Results

	3 REST API and Web Application
	4 Conclusion
	References

	An Embedded Continual Learning System for Facial Emotion Recognition
	1 Introduction
	2 Demonstration
	2.1 Goal
	2.2 Scenario
	2.3 Specifications and Related Optimizations
	2.4 Performance
	2.5 Execution

	3 Technology
	3.1 System Hardware
	3.2 System Architecture
	3.3 System Interface

	4 Conclusion and Future Work
	References

	Cage: A Hybrid Framework for Closed-Domain Conversational Agents
	1 Introduction
	2 CageFramework
	3 CageSystem Demonstration
	4 Conclusion
	References

	Cloud-Based Real-Time Molecular Screening Platform with MolFormer
	1 Introduction
	2 Real-Time Screening Platform
	References

	ImbalancedLearningRegression - A Python Package to Tackle the Imbalanced Regression Problem
	1 Introduction
	2 The ImbalancedLearningRegression Package
	3 Some Application Examples
	4 Conclusion
	References

	A Light Weight Cardiac Monitoring System for On-device ECG Analysis
	1 Introduction
	2 Proposed System for Health Monitoring
	2.1 Brief Description of the Processing Algorithms
	2.2 Deployment on Target Platform

	3 Experimental Results and Conclusion
	References

	Urban Traveller Preference Miner: Modelling Transport Choices with Survey Data Streams
	1 Introduction
	2 The Overview of the System
	2.1 Data Collection
	2.2 Preparing Candidate Connections with Journey Planning Engine
	2.3 Feature Engineering with Survey Data Processor
	2.4 Learning Mobility Choices

	References

	Interactive Toolbox for Two-Dimensional Gaussian Mixture Modeling
	1 Introduction
	2 System Description
	3 Evaluation and Application
	References

	Demonstrator on Counterfactual Explanations for Differentially Private Support Vector Machines
	1 Motivation
	2 Demonstrator
	References

	Correction to: Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model from Multivariate Physiological Data
	Correction to: Chapter “Recognizing Cognitive Load by a Hybrid Spatio-Temporal Causal Model from Multivariate Physiological Data” in: M.-R. Amini et al. (Eds.): Machine Learning and Knowledge Discovery in Databases, LNAI 13718, https://doi.org/10.1007/978-3-031-26422-1_20

	Author Index

