
testing subsets using a 9 : 1. ratio. Subsequently, the classes
within both the training and testing data are separated into two
sets: x, which includes the classes that the model will learn to
classify, and y, which represents the target classes. The model
is trained and tested using the same prepared data as the
BK method, with a reweighting mechanism applied to each
misclassified sample during each iteration. This approach
boosted the base classifier by ensuring the model focuses
more on learning from the misclassified samples in each
iteration. The results of these experiments are presented in
Table II.

TABLE II
CONFUSION MATRIX FOR THE BN METHOD

Predicted Values
Normal Short Very Short

Normal 14899 0 0
Actual Values Short 3753 9832 0

Very Short 2209 0 76

E. Accuracy Comparison

The methods that are used to classify the stunting dataset
perform differently. Here are the classification results between
BK and BN.

TABLE III
ACCURACY AND F-1 SCORE FOR COMPARISON

Method Accuracy F-1 Score Macro Avg
BK 98.62% 97.44%
BN 80.62% 57.91%

Table III demonstrates that although the accuracy of the
BN method is not as high as that of the BK method,
the classification performance of the BN method surpasses
that reported in previous research[7], achieving an accuracy
exceeding 80%. Furthermore, the F-1 score macro average
of the BK method is nearly identical to that of the BK
method in previous research, despite the preprocessing results
in this study being significantly more imbalanced compared
to those in earlier work[2]. These findings indicate that the
boosting technique has effectively enhanced both the KNN
and Naı̈ve Bayes methods, despite the unsatisfactory results
of the preprocessing step.

IV. CONCLUSION

This research demonstrates that the BK and BN methods
yield different results. As shown in Table III, the accuracy
of the BN method is lower than that of the BK method.
However, the BN method exhibits a significant improvement
in their accuracy compared to previous studies, indicating
enhanced performance overall. Table III further illustrates
the comparison between the BK and BN models. The BK
model, which employs AdaBoost to enhance KNN as the base
classifier, achieves an accuracy of 98.62% and an F-1 score
of 97.44%. Meanwhile, the BN model, which uses AdaBoost
to boost Naı̈ve Bayes as the base classifier, achieves an
accuracy of 80.62% and an F-1 score of 57.91%. Therefore,
the BK and BN have succeeded in boosting the performance
of the original KNN and Naı̈ve Bayes method. Future work
should focus on further balancing the training and testing data

prior to implementing the BN method, as this is expected to
enhance both the F-1 score and the accuracy of the model.
Additionally, this research concludes that the BK method is
superior for classifying stunting data among toddlers.
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