
 

variants, with only 33.33% packets lost, representing a 
minimal percentage. In contrast, TCP Reno has the 
highest packet loss percentage, with 36.50% packets 
lost. TCP Westwood NR falls in between, with a packet 
loss percentage of 35.59% packets. Thus, TCP 
Westwood shows the lowest packet loss percentage 
among the tested TCP variants 
Table VII Throughput Of Topology 2 

Types Of 
TCP 

Westwood 
Westwood 

NR 
Reno 

Throughput 
45396.09 
bits/sec 

29765.16 
bits/sec 

23397.93 
bits/sec 

In Table VII. Throughput in Topology 2 above 
indicates that TCP Westwood outperforms other TCP 
variants in terms of data transmission speed, with a 
throughput of 45396.09 bits/sec. In comparison, TCP 
Westwood NR achieves a throughput of 29765.16 
bits/sec, while TCP Reno has a throughput of 23397.93 
bits/sec. This makes TCP Reno the one with the slowest 
throughput among the other two TCP variants. 
Table VIII Total Delay Of Topology 2 

Types Of 
TCP 

Westwood 
Westwood 

NR 
Reno 

Total Delay 
1.527140 
seconds 

2.204676 
seconds 

3.900570 
seconds 

In Table VIII. The total delay in Topology 2 above 
illustrates the time it takes for data to transfer from one 
point to another. TCP Westwood exhibits the shortest 
delay, at 1.527140 seconds.TCP Westwood NR 
experiences a delay of 2.204676 seconds, indicating 
that it is slower than TCP Westwood In contrast, TCP 
Reno has the longest delay, with a duration of 3.900570 
seconds. 

V. CONCLUSION 

In conclusion, this study demonstrates that TCP 
Westwood outperforms TCP Westwood NR and TCP 
Reno in the context of Wireless Sensor Networks 
(WSNs) used for building structure condition 
monitoring. Through the use of NS-2 simulation, the 
results reveal that TCP Westwood provides significantly 
more stable throughput, lower delay, and reduced 
packet loss, indicating its superior ability to maintain 
high-quality data transmission under congested 
network conditions. This performance is critical in real-
time monitoring systems where continuous, reliable 
data flow is essential for the accurate assessment of 
structural integrity. The adaptive bandwidth estimation 
mechanism of TCP Westwood plays a pivotal role in its 
ability to mitigate congestion and prevent packet loss, 
making it a more effective choice for WSNs in building 
structure monitoring compared to other TCP variants. 
These findings suggest that TCP Westwood offers a 
more robust and efficient solution for ensuring the 
reliability and accuracy of data in dynamic and 
congestion-prone network environments. 
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