
with details of 25,281 data categorized as containing 
depression (Depression) and 25,242 data that does not contain 
depression (Non-Depression). In this study, FastText plays a 
role in feature expansion by categorizing similar words into 
three categories including Top 1, Top 5, and Top 10, based on 
corpus similarity totaling 151,117 data derived from three 
datasets, namely Tweet, IndoNews, and a combination of 
both. This research uses five evaluation scenarios for the 
hybrid deep learning model, namely Split Data, N-Gram, Max 
Features, Feature Expansion, and Optimization, where the 
best results from each scenario are used as the basis for the 
next scenario. Based on scenarios 1 to 4, each model achieved 
the best performance at 90:10 Split Data, the best N-Gram 
variation with Unigram + Bigram + Trigram, and the best 
number of max features, which is 10,000 for CNN and GRU 
models, and 5,000 for CNN + GRU and GRU + CNN hybrid 
deep learning models. Furthermore, the application of 
FastText Feature Expansion using the Top 1 category from the 
corpus similarity combination of the Tweet + IndoNews 
dataset resulted in optimal performance for the hybrid model. 
In the optimization scenario, Optimizer Nadam provides the 
best results for the CNN + GRU model, while Optimizer 
Adam provides optimal performance for the GRU + CNN 
model. 

The results showed that the non-hybrid CNN and GRU 
models only experienced an accuracy improvement of 0.02% 
in the N-Gram scenario, with the best accuracy of 83.44% for 
CNN and 82.97% for GRU, respectively. This can be 
explained because the non-hybrid architecture has limitations 
in capturing complex patterns compared to the hybrid 
architecture. In contrast, in the FastText Feature Expansion 
scenario, the CNN + GRU and GRU + CNN hybrid models 
showed improved accuracy. The CNN + GRU model achieved 
the best accuracy of 83.19% with an increase of 1.36% from 
the baseline, while the GRU + CNN model achieved the best 
accuracy of 83.32% with an increase of 1.44%. The successful 
application of feature expansion using FastText and 
optimization on the hybrid model shows that this method is 
able to enrich the word information in the dataset and 
minimize the loss function resulting in better model 
performance. As a suggestion for future research, other feature 
expansion methods can be applied to increase the variety and 
complexity of data. In addition, the use of data from other 
social media can be considered to expand the scope of the 
research so as to allow for more optimal performance of the 
hybrid deep learning model. 
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