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Abstract— Assessing the quality of tuna loin remains a pivotal 
aspect of the global seafood industry, necessitating precise, 
consistent, and efficient grading methods that can be broadly 
implemented. This study addresses these challenges by 
developing a robust, cloud-native system for automated tuna 
loin quality classification. Utilizing a tailored image dataset, the 
system's core processing is handled by a scalable cloud-based 
backend on Google Cloud Platform, specifically employing 
Cloud Run for serverless inference. The deep learning model, 
EfficientNetV2M, is optimized into the ONNX format and 
executed efficiently by ONNX Runtime within this cloud 
environment, achieving a classification accuracy of 96% with 
rapid prediction times. An intuitive Flutter frontend application 
serves as the user interface, facilitating the transmission of 
image data to the cloud service and displaying real-time grading 
results. This architectural design ensures dynamic resource 
allocation, high availability, and cost-effectiveness through a 
pay-per-use model. Data integrity and security are maintained 
via HTTPS for secure communication between the frontend and 
the cloud-deployed backend. The integration of Docker for 
containerization, Google Cloud Run for serverless deployment, 
and Flask for API management collectively yields a highly 
scalable, reliable, and efficient system. This research presents a 
robust, cloud-centric solution for automated tuna loin quality 
classification, offering real-time predictions, secure data 
handling, and a user-friendly interface suitable for industrial 
quality control and research applications. 
Keywords — cloud computing, serverless, Google Cloud Run, 
Docker, ONNX, deep learning, computer vision, real-time 
prediction. 

 

I. INTRODUCTION 

The global tuna market, projected at $43.14 billion in 2024, 
highlights the significant economic importance of tuna 
worldwide, valued for its nutritional benefits and adaptability 
[1]. Despite its market prominence, a persistent challenge 
within the seafood industry, particularly concerning tuna loin, 
stems from traditional grading practices. These methods 
largely depend on manual, sensory evaluations, which are 
inherently labor-intensive, time-consuming, and highly 
susceptible to inconsistencies [2]. Variables such as 
fluctuating environmental lighting during inspection and the 
subjective judgment of human graders introduce substantial 
variability into the assessment process. This lack of 
standardization directly impacts product quality control, 
market value, and ultimately, consumer confidence and 
satisfaction [3]. 

To overcome these limitations, innovative solutions 
capable of providing objective, accurate, and scalable quality 
assessment are essential. Cloud computing emerges as an 
ideal paradigm for such a solution, providing on-demand 
access to computing services—including powerful 
processing, scalable storage, and advanced software—over 
the Internet [4]. This approach liberates organizations from 
the burden of owning and maintaining physical 
infrastructure, thereby reducing operational overhead and 
capital expenditure. For demanding tasks like real-time 
image-based quality grading, cloud infrastructure offers the 
elasticity and reliability that traditional on-premises solutions 
often lack. Our research capitalizes on these advantages by 
implementing a robust, cloud-native system for automated 
tuna loin quality grading. The core intelligence is powered by 
a deep learning model, specifically EfficientNetV2M, 
selected for its optimal balance of high accuracy and rapid 
inference capabilities, which are crucial for high-throughput 
processing [5]. 

This model is optimized into the ONNX format for 
efficient execution across various cloud environments. The 
entire inference pipeline, from initial image preprocessing to 
final model prediction, is deployed within a serverless 
architecture on Google Cloud Platform, primarily 
leveraging Google Cloud Run. This serverless approach 
ensures dynamic resource allocation, enabling the system to 
scale instantly from zero instances to meet fluctuating 
demand, and to scale back down when idle, thereby 
optimizing cost-efficiency [6]. User interaction with this 
powerful cloud backend is facilitated by an intuitive Flutter 
frontend application. This mobile application serves as the 
primary user interface, allowing for seamless image capture 
or upload, and securely transmitting this data to the cloud 
service for analysis. The real-time prediction results, 
including the assigned grade and confidence score, are then 
delivered back to the user's device, providing immediate 
feedback for quality control decisions [7]. This integrated 
system exemplifies how cloud computing can form the 
foundation for complex machine learning applications, 
delivering a scalable, reliable, and efficient solution for 
critical industrial processes. 

II. THEORY REVIEW 
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A. Deep Learning Models & Optimization  
Deep learning is a subfield of machine learning that 

utilizes artificial neural networks with multiple layers to learn 
complex patterns and features from large amounts of data [8]. 
Architectures like EfficientNetV2 are designed for high 
accuracy and computational efficiency, making them suitable 
for various applications [9]. These models classify inputs by 
outputting raw scores, known as logits, which are then 
transformed by a Softmax activation function into 
probabilities, indicating the likelihood of an input belonging 
to a specific class [10]. For deployment, models are often 
converted to optimized, open formats like ONNX (Open 
Neural Network Exchange), which standardizes model 
representation for interoperability [11]. The ONNX 
Runtime is a high-performance inference engine that 
efficiently executes ONNX models across various platforms, 
ensuring rapid predictions [12]. 

 
B. Frontend Application Development (Flutter) 

Frontend application development is centered on crafting 
the user interface and overall user experience, enabling direct 
interaction with the software [13]. Contemporary 
development frequently utilizes cross-platform UI toolkits, 
such as Flutter, which empower developers to construct 
natively compiled applications for diverse platforms (e.g., 
mobile, web, desktop) from a unified codebase [14]. The 
fundamental aim of a frontend application is to deliver an 
intuitive, responsive, and visually appealing interface. This 
interface facilitates user input, clearly presents information, 
and manages user interactions seamlessly, often by 
establishing communication with backend services to retrieve 
or transmit data [15]. 
 
C. Cloud Computing Fundamentals 

Cloud computing is defined as the on-demand provision 
of shared computing resources—encompassing servers, 
storage, databases, networking, software, analytics, and 
intelligence—accessible over the Internet [16]. This 
paradigm represents a fundamental shift in responsibility, 
transferring the burden of owning, operating, and maintaining 
physical computing infrastructure from the end-user to a 
third-party cloud provider. Key attributes of cloud computing 
include self-service provisioning, broad network 
accessibility, resource pooling, rapid elasticity, and 
measurable service usage. This model offers substantial 
benefits in terms of scalability, cost-effectiveness, and 
operational efficiency, thereby serving as a foundational 
element for modern application deployment and data 
processing [17]. 
D. Serverless Computing & Gooogle Cloud Run  

A prominent operational model within cloud computing 
is serverless computing, which effectively abstracts away the 
complexities of server management from the developer [18]. 
Within a serverless environment, developers deploy their 
application code or containers, and the cloud provider 
automatically manages all aspects of infrastructure 
provisioning, scaling, and maintenance. Computing 
resources are dynamically allocated only when actively 
required for execution, and can scale down to zero instances 

during periods of inactivity. This "pay-per-use" or "pay-per-
execution" model optimizes costs by eliminating charges for 
idle capacity [19]. Google Cloud Run is a prime example of 
a fully managed serverless platform that enables the 
deployment of containerized applications without the need 
for explicit server management. It automatically adjusts 
application scaling based on incoming traffic, thereby 
providing inherent high availability and resilience [20]. 

 
E. Containerization & Cloud Model Deployment 
      Containerization, primarily facilitated by technologies 
like Docker, involves packaging an application and all its 
dependencies (including code, runtime, system tools, 
libraries, and configuration settings) into a single, portable, 
and isolated unit known as a container [21]. This 
methodology ensures consistent execution across disparate 
environments, ranging from local development machines to 
various cloud platforms, by establishing a standardized and 
isolated runtime. For deploying machine learning models in 
the cloud, containerization is vital as it bundles the model, its 
inference engine (such as ONNX Runtime), and any required 
preprocessing libraries into a self-contained package. This 
facilitates seamless and reliable deployment to serverless 
platforms like Cloud Run, where the container can be rapidly 
instantiated to process inference requests [22]. 
 

III. RESEARCH METHODS 
The research methodology for developing the automated 

tuna loin grading system adopted a structured approach, 
beginning with the meticulous collection and preprocessing 
of the image dataset. This prepared data was subsequently 
used for training and optimizing the deep learning model. 
Following model development, the system underwent a 
rigorous deployment phase to a cloud-based infrastructure, 
succeeded by comprehensive testing to validate its 
performance and reliability in real-world scenarios, with a 
particular emphasis on the cloud integration. 

 
A. Data Collection & Preprocessing 
 

TABLE 1  
Tuna Loin Image Dataset Distribution After Augmentation 

 
 

The foundation of this investigation is a custom dataset of 
tuna loin images, categorized into three distinct quality 
grades: Grade A, Grade B, and Grade C [23]. The dataset 
initially comprised original images captured under varied 
lighting conditions, which were then substantially augmented 
to mitigate class imbalances and enhance the model's 
generalization capabilities [24]. Prior to model training, a 
series of image preprocessing techniques were systematically 
applied to ensure consistent illumination and to accentuate 
the visibility of crucial visual features like color and texture 
across the entire dataset. These techniques included Shades 



ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.4 Agustus 2025 | Page 5018
 

 

of Gray (SOG) for white balance correction, Self-Adaptive 
Illumination Correction (SAIC) for brightness normalization, 
and Contrast Limited Adaptive Histogram Equalization 
(CLAHE)for localized contrast enhancement [25]. 
Furthermore, image augmentation techniques, such as 
rotation, flipping, shearing, and zooming, were utilized to 
further expand the dataset size and bolster model robustness, 
thereby preparing the data for effective deep learning [26]. 
 
B. Model Training & Optimization 

The central component of the tuna loin quality grading 
system is built upon the EfficientNetV2M architecture, a 
convolutional neural network (CNN) specifically optimized 
for both training efficiency and high accuracy in image 
classification tasks [27]. The model was implemented using 
the PyTorch framework. Training experiments were 
systematically conducted to identify the optimal combination 
of hyperparameters and preprocessing methods, a crucial step 
for a model designated for cloud deployment. This involved 
evaluating various optimizers, including Stochastic Gradient 
Descent (SGD), Adam, and AdamW, paired with different 
learning rate schedulers (LRS), such as Cosine Annealing and 
Cyclic LRS [28]. The training process spanned a set number 
of epochs with a defined batch size, leveraging GPU 
acceleration for efficient computation. The model's 
performance was continuously monitored using metrics like 
training accuracy, validation accuracy, and their 
corresponding losses, to track learning behavior and prevent 
overfitting, ultimately ensuring the selection of a robust 
model for subsequent deployment [29]. 

 
C. Model Deployment and Integration 

 

 
FIGURE 1 

System Workflow Diagram 
 

Upon finalizing the optimal model configuration, the 
trained deep learning model was meticulously prepared for 
cloud deployment, forming the foundational element of our 
scalable solution. This preparation involved converting the 
model to the ONNX (Open Neural Network Exchange) 
format, which optimizes it for high-performance inference in 
diverse production environments by providing a 
standardized, interoperable representation [30]. The entire 
application, comprising the ONNX model and its associated 
dependencies, was then containerized using Docker. This 
process consolidates all necessary components into a single, 
portable image, guaranteeing consistent execution across 
different environments and streamlining deployment to cloud 
platforms [31]. 
 

The Docker image was subsequently deployed to Google 
Cloud Run, a fully managed serverless platform. This 
serverless approach is fundamental to our system's design, as 
it ensures that compute resources are dynamically allocated 
only when actively needed, scaling instantly from zero 

instances to handle concurrent requests and scaling back 
down when idle, thereby optimizing cost-effectiveness [32]. 
The deployed service exposes a Flask-based API endpoint, 
which serves as the interface for the mobile application. 
Within the Cloud Run container, the ONNX Runtime is 
utilized to efficiently execute the ONNX-formatted model, 
perform necessary image preprocessing, and generate real-
time predictions. This integrated cloud pipeline enables 
highly scalable and responsive image processing, allowing 
the system to handle concurrent user requests and perform 
updates with minimal disruption, thereby guaranteeing the 
system’s high scalability and reliability for real-time grading 
tasks [33]. 

 
The Docker image was subsequently deployed to Google 

Cloud Run, a fully managed serverless platform. This 
serverless approach is integral to our system's design, as it 
ensures that compute resources are dynamically allocated 
only when actively needed, scaling instantaneously from zero 
instances to handle concurrent requests and scaling back 
down when idle, thereby optimizing cost-effectiveness [32]. 
The deployed service exposes a Flask-based API endpoint, 
serving as the interface for the mobile application. Within the 
Cloud Run container, the ONNX Runtime is employed to 
efficiently execute the ONNX-formatted model, perform 
necessary image preprocessing, and generate real-time 
predictions. This integrated cloud pipeline enables highly 
scalable and responsive image processing, allowing the 
system to manage concurrent user requests and facilitate 
updates with minimal disruption, thereby guaranteeing the 
system’s high scalability and reliability for real-time grading 
tasks [33]. 

 
D. System Testing and Evaluation 

System testing was executed in two primary phases: 
offline and online. The offline stage concentrated on the 
rigorous evaluation of the deep learning model's inherent 
performance, assessing its accuracy, precision, recall, F1-
score, and analyzing its confusion matrix on previously 
unseen test data [34]. The online stage involved 
comprehensive testing of the integrated mobile application 
and the cloud-deployed model in real-world scenarios, with a 
strong emphasis on the cloud service's performance. This 
included functionality testing to verify correct image upload, 
secure transmission to the Cloud Run API, reception of 
predictions, and accurate display of results. Response time 
testing measured the end-to-end latency from image 
submission from the mobile application to prediction receipt 
from the Cloud Run service, confirming real-time 
capabilities. Accuracy testing was performed using actual 
tuna loin images captured under diverse lighting and 
background conditions to assess the system's robustness in 
varied field conditions. Furthermore, error handling was 
verified to ensure graceful responses to network connection 
issues, corrupted image files, or unforeseen server errors, 
particularly those originating from the cloud backend.  
 

This encompassed functionality testing to confirm correct 
image upload, secure transmission to the Cloud Run API, 
accurate reception of predictions, and proper display of 
results. Response time testing measured the end-to-end 
latency from image submission from the mobile application 
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to the receipt of the prediction from the Cloud Run service, 
thereby confirming real-time capabilities. Accuracy 
testing was conducted using actual tuna loin images captured 
under diverse lighting and background conditions to evaluate 
the system's robustness in varied field conditions. 
Furthermore, error handling was verified to ensure the 
application gracefully managed scenarios such as network 
connection issues, corrupted image file uploads, or 
unforeseen server errors, particularly those originating from 
the cloud backend, providing informative feedback to the 
user. Inference tests were also conducted under varying 
network conditions (4G and WiFi) to assess the application's 
responsiveness and consistency across different connectivity 
environments, highlighting the impact of network on cloud-
based inference [35]. Finally, the System Usability Scale 
(SUS) was employed to evaluate the user experience and ease 
of use of the mobile application, ensuring the cloud-powered 
solution is also user-friendly [36]. 

 
 

IV. RESULT AND ANALYSIS 

The evaluation of the automated tuna loin grading 
system encompassed both offline assessment of the deep 
learning model's intrinsic performance and online testing of 
the integrated cloud-based application. This comprehensive 
analysis aimed to validate the system's accuracy, efficiency, 
robustness, and user experience in real-world scenarios. 
Performance metrics were meticulously collected during 
various testing phases, including model training, inference, 
and end-to-end system interactions. The obtained data was 
then analyzed to ascertain the effectiveness of the deep 
learning model, the efficiency of the cloud deployment, and 
the overall usability of the mobile application. 

A.  Deep Learning Model Performance (Offline Evaluation) 
 The deep learning model, based on the EfficientNetV2M 
architecture, underwent rigorous offline evaluation using a 
dedicated test dataset. This dataset comprised 10% of the total 
augmented image collection, ensuring that the model was 
assessed on unseen data. The model achieved a classification 
accuracy of 96% on this test set, demonstrating its strong 
capability in correctly identifying the quality grades of tuna 
loin images. Beyond overall accuracy, the model's 
performance was further analyzed using a Confusion Matrix, 
which provided detailed insights into its ability to correctly 
classify each grade (Grade A, Grade B, Grade C) and identify 
instances of misclassification. Metrics such as Precision, 
Recall, and F1-Score were also computed for each class, 
offering a more nuanced understanding of the model's 
performance, particularly in distinguishing between similar 
grades. The effectiveness of the integrated preprocessing 
pipeline, including SAIC and CLAHE, was evident in the 
high accuracy achieved, indicating that these steps 
successfully normalized image conditions and enhanced 
critical features for the model's recognition. 

 
B. Cloud Service Performance (Online Evaluation)  
The performance of the cloud-deployed service was a critical 
aspect of the online evaluation. This involved measuring 
the end-to-end response time from the moment an image was 
submitted from the mobile application to the reception of the 

prediction result from the Cloud Run backend. The serverless 
nature of Google Cloud Run proved highly effective in 
delivering rapid inference times. While initial 'cold starts' for 
new instances might introduce a slight delay for the very first 
request after a period of inactivity, subsequent 'warm' 
requests demonstrated consistently low latency, ensuring a 
smooth user experience for continuous operation. The 
dynamic scaling capabilities of Cloud Run allowed the 
service to handle concurrent requests efficiently, maintaining 
low response times even under increased load, without 
requiring manual intervention or pre-provisioning of 
resources. 
 
B. System Robustness and Reliability 
The system's robustness was assessed through various tests 
designed to simulate real-world conditions. Accuracy testing 
was performed using actual tuna loin images captured under 
diverse lighting and background conditions, confirming the 
system's ability to maintain high performance outside of the 
controlled training environment. Error handling mechanisms 
were thoroughly verified to ensure the application gracefully 
managed scenarios such as network connection issues, 
corrupted image file uploads, or unexpected responses from 
the cloud backend, providing informative feedback to the 
user. Furthermore, inference tests were conducted under 
varying network conditions, specifically 4G and WiFi, to 
evaluate the application's responsiveness and consistency 
across different connectivity environments. These tests 
confirmed that the cloud-based inference pipeline remained 
reliable, with network latency being the primary variable 
affecting overall response time, rather than backend 
processing. 
 
D. User Experience Evaluation  
 

 
FIGURE 2 

System Usability Scale (SUS) Score Interpretation 
           
Beyond technical performance, the user experience of the 
mobile application was evaluated using the System Usability 
Scale (SUS). The SUS is a widely accepted, simple, 10-item 
questionnaire that provides a quick and reliable measure of 
usability. The results from the SUS questionnaire provided 
quantitative insights into the application's ease of use, 
learnability, and user satisfaction. A high SUS score indicates 
that the cloud-powered solution is not only technically sound 
but also provides a user-friendly interface suitable for its 
intended users in industrial quality control settings. 
 
V.  CONCLUSION 
Based on the comprehensive evaluation, it is concluded that 
the automated tuna loin grading system effectively leverages 
deep learning and cloud computing to provide an accurate, 
efficient, and scalable solution. The EfficientNetV2M model 
achieved a high classification accuracy of 96% on unseen 
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data, demonstrating its robust capability in distinguishing 
between different tuna loin quality grades. The deployment 
on Google Cloud Run proved highly effective in delivering 
rapid, real-time inference, benefiting from serverless auto-
scaling and cost-optimization. The system's reliability was 
confirmed across various network conditions, and its user-
friendliness was validated through the System Usability 
Scale, indicating a positive user experience. This project 
successfully presents a robust, cloud-centric solution for 
automated tuna loin quality assessment, addressing the 
limitations of traditional manual methods and offering 
significant potential for industrial quality control. 
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