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Abstract— Assessing the quality of tuna loin remains a pivotal
aspect of the global seafood industry, necessitating precise,
consistent, and efficient grading methods that can be broadly
implemented. This study addresses these challenges by
developing a robust, cloud-native system for automated tuna
loin quality classification. Utilizing a tailored image dataset, the
system's core processing is handled by a scalable cloud-based
backend on Google Cloud Platform, specifically employing
Cloud Run for serverless inference. The deep learning model,
EfficientNetV2M, is optimized into the ONNX format and
executed efficiently by ONNX Runtime within this cloud
environment, achieving a classification accuracy of 96% with
rapid prediction times. An intuitive Flutter frontend application
serves as the user interface, facilitating the transmission of
image data to the cloud service and displaying real-time grading
results. This architectural design ensures dynamic resource
allocation, high availability, and cost-effectiveness through a
pay-per-use model. Data integrity and security are maintained
via HTTPS for secure communication between the frontend and
the cloud-deployed backend. The integration of Docker for
containerization, Google Cloud Run for serverless deployment,
and Flask for API management collectively yields a highly
scalable, reliable, and efficient system. This research presents a
robust, cloud-centric solution for automated tuna loin quality
classification, offering real-time predictions, secure data
handling, and a user-friendly interface suitable for industrial
quality control and research applications.

Keywords — cloud computing, serverless, Google Cloud Run,
Docker, ONNX, deep learning, computer vision, real-time
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L INTRODUCTION

The global tuna market, projected at $43.14 billion in 2024,
highlights the significant economic importance of tuna
worldwide, valued for its nutritional benefits and adaptability
[1]. Despite its market prominence, a persistent challenge
within the seafood industry, particularly concerning tuna loin,
stems from traditional grading practices. These methods
largely depend on manual, sensory evaluations, which are
inherently labor-intensive, time-consuming, and highly
susceptible to inconsistencies [2]. Variables such as
fluctuating environmental lighting during inspection and the
subjective judgment of human graders introduce substantial
variability into the assessment process. This lack of
standardization directly impacts product quality control,
market value, and ultimately, consumer confidence and
satisfaction [3].
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To overcome these limitations, innovative solutions
capable of providing objective, accurate, and scalable quality
assessment are essential. Cloud computing emerges as an
ideal paradigm for such a solution, providing on-demand
access to computing services—including powerful
processing, scalable storage, and advanced software—over
the Internet [4]. This approach liberates organizations from
the burden of owning and maintaining physical
infrastructure, thereby reducing operational overhead and
capital expenditure. For demanding tasks like real-time
image-based quality grading, cloud infrastructure offers the
elasticity and reliability that traditional on-premises solutions
often lack. Our research capitalizes on these advantages by
implementing a robust, cloud-native system for automated
tuna loin quality grading. The core intelligence is powered by
adeep learning model, specifically EfficientNetV2M,
selected for its optimal balance of high accuracy and rapid
inference capabilities, which are crucial for high-throughput
processing [5].

This model is optimized into the ONNX format for
efficient execution across various cloud environments. The
entire inference pipeline, from initial image preprocessing to
final model prediction, is deployed within a serverless
architecture on Google  Cloud  Platform,  primarily
leveraging Google Cloud Run. This serverless approach
ensures dynamic resource allocation, enabling the system to
scale instantly from zero instances to meet fluctuating
demand, and to scale back down when idle, thereby
optimizing cost-efficiency [6]. User interaction with this
powerful cloud backend is facilitated by an intuitive Flutter
frontend application. This mobile application serves as the
primary user interface, allowing for seamless image capture
or upload, and securely transmitting this data to the cloud
service for analysis. The real-time prediction results,
including the assigned grade and confidence score, are then
delivered back to the user's device, providing immediate
feedback for quality control decisions [7]. This integrated
system exemplifies how cloud computing can form the
foundation for complex machine learning applications,
delivering a scalable, reliable, and efficient solution for
critical industrial processes.

II. THEORY REVIEW
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A. Deep Learning Models & Optimization
Deep learning is a subfield of machine learning that

utilizes artificial neural networks with multiple layers to learn
complex patterns and features from large amounts of data [8].
Architectures like EfficientNetV2 are designed for high
accuracy and computational efficiency, making them suitable
for various applications [9]. These models classify inputs by
outputting raw scores, known as logits, which are then
transformed by
probabilities, indicating the likelihood of an input belonging
to a specific class [10]. For deployment, models are often
converted to optimized, open formats like ONNX (Open
Neural Network Exchange), which standardizes model
representation  for interoperability [11]. The ONNX
Runtime is a high-performance inference engine that
efficiently executes ONNX models across various platforms,
ensuring rapid predictions [12].

a Softmax activation function into

B. Frontend Application Development (Flutter)

Frontend application development is centered on crafting
the user interface and overall user experience, enabling direct
interaction with the software [13]. Contemporary
development frequently utilizes cross-platform UI toolkits,
such as Flutter, which empower developers to construct
natively compiled applications for diverse platforms (e.g.,
mobile, web, desktop) from a unified codebase [14]. The
fundamental aim of a frontend application is to deliver an
intuitive, responsive, and visually appealing interface. This
interface facilitates user input, clearly presents information,
and manages user interactions seamlessly, often by
establishing communication with backend services to retrieve
or transmit data [15].

C. Cloud Computing Fundamentals

Cloud computing is defined as the on-demand provision
of shared computing resources—encompassing servers,
storage, databases, networking, software, analytics, and
intelligence—accessible over the Internet [16]. This
paradigm represents a fundamental shift in responsibility,
transferring the burden of owning, operating, and maintaining
physical computing infrastructure from the end-user to a
third-party cloud provider. Key attributes of cloud computing
include  self-service  provisioning, broad network
accessibility, resource pooling, rapid elasticity, and
measurable service usage. This model offers substantial
benefits in terms of scalability, cost-effectiveness, and
operational efficiency, thereby serving as a foundational
element for modern application deployment and data
processing [17].
D. Serverless Computing & Gooogle Cloud Run

A prominent operational model within cloud computing
is serverless computing, which effectively abstracts away the
complexities of server management from the developer [18].
Within a serverless environment, developers deploy their
application code or containers, and the cloud provider
automatically manages all aspects of infrastructure
provisioning, scaling, and maintenance. Computing
resources are dynamically allocated only when actively
required for execution, and can scale down to zero instances

e-Proceeding of Engineering : Vol.12, No.4 Agustus 2025 | Page 5017

during periods of inactivity. This "pay-per-use" or "pay-per-
execution" model optimizes costs by eliminating charges for
idle capacity [19]. Google Cloud Run is a prime example of
a fully managed serverless platform that enables the
deployment of containerized applications without the need
for explicit server management. It automatically adjusts
application scaling based on incoming traffic, thereby
providing inherent high availability and resilience [20].

E. Containerization & Cloud Model Deployment

Containerization, primarily facilitated by technologies
like Docker, involves packaging an application and all its
dependencies (including code, runtime, system tools,
libraries, and configuration settings) into a single, portable,
and isolated unit known as a container [21]. This
methodology ensures consistent execution across disparate
environments, ranging from local development machines to
various cloud platforms, by establishing a standardized and
isolated runtime. For deploying machine learning models in
the cloud, containerization is vital as it bundles the model, its
inference engine (such as ONNX Runtime), and any required
preprocessing libraries into a self-contained package. This
facilitates seamless and reliable deployment to serverless
platforms like Cloud Run, where the container can be rapidly
instantiated to process inference requests [22].

11 RESEARCH METHODS

The research methodology for developing the automated
tuna loin grading system adopted a structured approach,
beginning with the meticulous collection and preprocessing
of the image dataset. This prepared data was subsequently
used for training and optimizing the deep learning model.
Following model development, the system underwent a
rigorous deployment phase to a cloud-based infrastructure,
succeeded by comprehensive testing to validate its
performance and reliability in real-world scenarios, with a
particular emphasis on the cloud integration.

A. Data Collection & Preprocessing

TABLE 1

Tuna Loin Image Dataset Distribution After Augmentation
| Grades | Original | Augmented | Original + Augmented

Grade A| 418 | 3762 4180
Grade B | 602 | 3612 4214
Grade C | 247 | 3952 4199
[Total | 1267 | 11,326 12,503

The foundation of this investigation is a custom dataset of
tuna loin images, categorized into three distinct quality
grades: Grade A, Grade B, and Grade C [23]. The dataset
initially comprised original images captured under varied
lighting conditions, which were then substantially augmented
to mitigate class imbalances and enhance the model's
generalization capabilities [24]. Prior to model training, a
series of image preprocessing techniques were systematically
applied to ensure consistent illumination and to accentuate
the visibility of crucial visual features like color and texture
across the entire dataset. These techniques included Shades
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of Gray (SOG) for white balance correction, Self-Adaptive
[llumination Correction (SAIC) for brightness normalization,
and Contrast Limited Adaptive Histogram Equalization
(CLAHE)for localized contrast enhancement [25].
Furthermore, image augmentation techniques, such as
rotation, flipping, shearing, and zooming, were utilized to
further expand the dataset size and bolster model robustness,
thereby preparing the data for effective deep learning [26].

B. Model Training & Optimization

The central component of the tuna loin quality grading
system is built upon the EfficientNetV2M architecture, a
convolutional neural network (CNN) specifically optimized
for both training efficiency and high accuracy in image
classification tasks [27]. The model was implemented using
the PyTorch framework. Training experiments
systematically conducted to identify the optimal combination
of hyperparameters and preprocessing methods, a crucial step
for a model designated for cloud deployment. This involved
evaluating various optimizers, including Stochastic Gradient
Descent (SGD), Adam, and AdamW, paired with different
learning rate schedulers (LRS), such as Cosine Annealing and
Cyclic LRS [28]. The training process spanned a set number
of epochs with a defined batch size, leveraging GPU
acceleration for computation. The
performance was continuously monitored using metrics like
training validation their
corresponding losses, to track learning behavior and prevent
overfitting, ultimately ensuring the selection of a robust
model for subsequent deployment [29].
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C. Model Deployment and Integration
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Upon finalizing the optimal model configuration, the
trained deep learning model was meticulously prepared for
cloud deployment, forming the foundational element of our
scalable solution. This preparation involved converting the
model to the ONNX (Open Neural Network Exchange)
format, which optimizes it for high-performance inference in
diverse production environments by providing a
standardized, interoperable representation [30]. The entire
application, comprising the ONNX model and its associated
dependencies, was then containerized using Docker. This
process consolidates all necessary components into a single,
portable image, guaranteeing consistent execution across
different environments and streamlining deployment to cloud
platforms [31].

The Docker image was subsequently deployed to Google
Cloud Run, a fully managed serverless platform. This
serverless approach is fundamental to our system's design, as
it ensures that compute resources are dynamically allocated
only when actively needed, scaling instantly from zero
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instances to handle concurrent requests and scaling back
down when idle, thereby optimizing cost-effectiveness [32].
The deployed service exposes a Flask-based API endpoint,
which serves as the interface for the mobile application.
Within the Cloud Run container, the ONNX Runtime is
utilized to efficiently execute the ONNX-formatted model,
perform necessary image preprocessing, and generate real-
time predictions. This integrated cloud pipeline enables
highly scalable and responsive image processing, allowing
the system to handle concurrent user requests and perform
updates with minimal disruption, thereby guaranteeing the
system’s high scalability and reliability for real-time grading
tasks [33].

The Docker image was subsequently deployed to Google
Cloud Run, a fully managed serverless platform. This
serverless approach is integral to our system's design, as it
ensures that compute resources are dynamically allocated
only when actively needed, scaling instantaneously from zero
instances to handle concurrent requests and scaling back
down when idle, thereby optimizing cost-effectiveness [32].
The deployed service exposes a Flask-based API endpoint,
serving as the interface for the mobile application. Within the
Cloud Run container, the ONNX Runtime is employed to
efficiently execute the ONNX-formatted model, perform
necessary image preprocessing, and generate real-time
predictions. This integrated cloud pipeline enables highly
scalable and responsive image processing, allowing the
system to manage concurrent user requests and facilitate
updates with minimal disruption, thereby guaranteeing the
system’s high scalability and reliability for real-time grading
tasks [33].

D. System Testing and Evaluation

System testing was executed in two primary phases:
offline and online. The offline stage concentrated on the
rigorous evaluation of the deep learning model's inherent
performance, assessing its accuracy, precision, recall, F1-
score, and analyzing its confusion matrix on previously
unseen test data [34]. Theonline stage involved
comprehensive testing of the integrated mobile application
and the cloud-deployed model in real-world scenarios, with a
strong emphasis on the cloud service's performance. This
included functionality testing to verify correct image upload,
secure transmission to the Cloud Run API, reception of
predictions, and accurate display of results. Response time
testing measured the end-to-end latency from image
submission from the mobile application to prediction receipt
from the Cloud Run service, confirming real-time
capabilities. Accuracy testing was performed using actual
tuna loin images captured under diverse lighting and
background conditions to assess the system's robustness in
varied field conditions. Furthermore, error handling was
verified to ensure graceful responses to network connection
issues, corrupted image files, or unforeseen server errors,
particularly those originating from the cloud backend.

This encompassed functionality testing to confirm correct
image upload, secure transmission to the Cloud Run API,
accurate reception of predictions, and proper display of
results. Response time testing measured the end-to-end
latency from image submission from the mobile application
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to the receipt of the prediction from the Cloud Run service,
thereby  confirming real-time capabilities. Accuracy
testing was conducted using actual tuna loin images captured
under diverse lighting and background conditions to evaluate
the system's robustness in varied field conditions.
Furthermore, error handling was verified to ensure the
application gracefully managed scenarios such as network
connection issues, corrupted image file uploads, or
unforeseen server errors, particularly those originating from
the cloud backend, providing informative feedback to the
user. Inference tests were also conducted under varying
network conditions (4G and WiFi) to assess the application's
responsiveness and consistency across different connectivity
environments, highlighting the impact of network on cloud-
based inference [35]. Finally, the System Usability Scale
(SUS) was employed to evaluate the user experience and ease
of use of the mobile application, ensuring the cloud-powered
solution is also user-friendly [36].

Iv. RESULT AND ANALYSIS

The evaluation of the automated tuna loin grading
system encompassed both offline assessment of the deep
learning model's intrinsic performance and online testing of
the integrated cloud-based application. This comprehensive
analysis aimed to validate the system's accuracy, efficiency,
robustness, and user experience in real-world scenarios.
Performance metrics were meticulously collected during
various testing phases, including model training, inference,
and end-to-end system interactions. The obtained data was
then analyzed to ascertain the effectiveness of the deep
learning model, the efficiency of the cloud deployment, and
the overall usability of the mobile application.

A. Deep Learning Model Performance (Offline Evaluation)

The deep learning model, based on the EfficientNetV2M
architecture, underwent rigorous offline evaluation using a
dedicated test dataset. This dataset comprised 10% of the total
augmented image collection, ensuring that the model was
assessed on unseen data. The model achieved a classification
accuracy of 96% on this test set, demonstrating its strong
capability in correctly identifying the quality grades of tuna
loin images. Beyond overall accuracy, the model's
performance was further analyzed using a Confusion Matrix,
which provided detailed insights into its ability to correctly
classify each grade (Grade A, Grade B, Grade C) and identify
instances of misclassification. Metrics such as Precision,
Recall, and F1-Score were also computed for each class,
offering a more nuanced understanding of the model's
performance, particularly in distinguishing between similar
grades. The effectiveness of the integrated preprocessing
pipeline, including SAIC and CLAHE, was evident in the
high accuracy achieved, indicating that these steps
successfully normalized image conditions and enhanced
critical features for the model's recognition.

B. Cloud Service Performance (Online Evaluation)
The performance of the cloud-deployed service was a critical

aspect of the online evaluation. This involved measuring
the end-to-end response time from the moment an image was
submitted from the mobile application to the reception of the
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prediction result from the Cloud Run backend. The serverless
nature of Google Cloud Run proved highly effective in
delivering rapid inference times. While initial 'cold starts' for
new instances might introduce a slight delay for the very first
request after a period of inactivity, subsequent 'warm'
requests demonstrated consistently low latency, ensuring a
smooth user experience for continuous operation. The
dynamic scaling capabilities of Cloud Run allowed the
service to handle concurrent requests efficiently, maintaining
low response times even under increased load, without

requiring manual intervention or pre-provisioning of

resources.

B. System Robustness and Reliability

The system's robustness was assessed through various tests
designed to simulate real-world conditions. Accuracy testing
was performed using actual tuna loin images captured under
diverse lighting and background conditions, confirming the
system's ability to maintain high performance outside of the
controlled training environment. Error handling mechanisms
were thoroughly verified to ensure the application gracefully
managed scenarios such as network connection issues,
corrupted image file uploads, or unexpected responses from
the cloud backend, providing informative feedback to the
user. Furthermore, inference tests were conducted under
varying network conditions, specifically 4G and WiFi, to
evaluate the application's responsiveness and consistency
across different connectivity environments. These tests
confirmed that the cloud-based inference pipeline remained
reliable, with network latency being the primary variable
affecting overall response time, rather than backend
processing.

D. User Experience Evaluation

Mot Acceptable Marginal Acceptable
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System Usability Scale (SUS) Score Interpretation

Beyond technical performance, the user experience of the
mobile application was evaluated using the System Usability
Scale (SUS). The SUS is a widely accepted, simple, 10-item
questionnaire that provides a quick and reliable measure of
usability. The results from the SUS questionnaire provided
quantitative insights into the application's ease of use,
learnability, and user satisfaction. A high SUS score indicates
that the cloud-powered solution is not only technically sound
but also provides a user-friendly interface suitable for its
intended users in industrial quality control settings.

V. CONCLUSION

Based on the comprehensive evaluation, it is concluded that
the automated tuna loin grading system effectively leverages
deep learning and cloud computing to provide an accurate,
efficient, and scalable solution. The EfficientNetV2M model
achieved a high classification accuracy of 96% on unseen
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data, demonstrating its robust capability in distinguishing
between different tuna loin quality grades. The deployment
on Google Cloud Run proved highly effective in delivering
rapid, real-time inference, benefiting from serverless auto-
scaling and cost-optimization. The system's reliability was
confirmed across various network conditions, and its user-
friendliness was validated through the System Usability
Scale, indicating a positive user experience. This project
successfully presents a robust, cloud-centric solution for
automated tuna loin quality assessment, addressing the
limitations of traditional manual methods and offering
significant potential for industrial quality control.
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