
Telkom University 2025 School of Computing

CHAPTER 1

INTRODUCTION

This chapter delves into the essential aspects of the study, beginning with the underlying

motivations that drive the research. It progresses through an examination of the theoretical

and conceptual frameworks that anchor the study, articulates the specific problems being

addressed, and, where applicable, outlines the hypotheses and assumptions involved. It

also details the scope and limitations of the research, concluding with an analysis of the

significance of the findings. Each component is crafted to enhance understanding and

provide a cohesive structure to the exploration of the topic.

1.1 Background of the Study

In recent years, Python-based libraries and frameworks have played a pivotal role in advanc-

ing software development, particularly in data manipulation and management[1]. However,

as an interpreted language, Python generally suffers from slower execution times compared

to compiled languages[10]. This drawback becomes critical in performance-sensitive com-

ponents like Object-Relational Mapping (ORM) frameworks. Interpreted execution models

process code line-by-line at runtime, which introduces overhead for operations that are re-

peated frequently—such as converting large volumes of database rows into Python objects

during query execution. This overhead can lead to significant latency and memory ineffi-

ciencies, especially in high-traffic applications or batch processing systems.

For example, in ORM scenarios that involve retrieving thousands of records (e.g., fetch-

ing user posts or comments in a social media application), each row must be parsed and

mapped into objects repeatedly using runtime interpretation. This not only increases CPU

load but also results in inconsistent memory usage due to the lack of pre-optimization.

Furthermore, interpreted execution limits opportunities for low-level optimization tech-

niques like instruction pipelining or inlining, which are common in compiled environments.

Therefore, applying Just-In-Time (JIT) compilation to the ORM data mapping process

becomes a logical enhancement—it allows frequently used object-mapping routines to be

compiled into native machine instructions, significantly reducing interpretation overhead

and boosting execution efficiency.

Similar JIT-based approaches have been implemented in other programming environ-

ments, such as ThriveJIT in Java for expression evaluation[30], JITDB using WebAssem-

bly for real-time query execution in JavaScript[33], and PyPy or Numba in Python for

accelerating numerical computations through JIT compilation[22]. These implementations

highlight the cross-language relevance and effectiveness of embedding compilation layers

within high-level frameworks to improve runtime performance.

1



Telkom University 2025 School of Computing

Python ORM frameworks simplified database interactions by abstracting SQL queries

and managing schemas, thereby enhancing developer productivity and maintainability[5].

Frameworks such as SQLAlchemy, Pony ORM, and Tortoise ORM were widely adopted in

Python-based systems due to their intuitive APIs and high-level abstraction capabilities.

However, this convenience often comes with trade-offs, particularly in the context of large

datasets or complex relational queries[19]. The abstraction layers introduce additional

runtime processing, especially when converting query results into nested Python object

hierarchies. As applications grow in scale—such as modern social media platforms like

Instagram, which reported over two billion monthly active users by 2024[4]—the volume

of data and the complexity of data access patterns increase dramatically.

This highlights the motivation behind this research: interpreted ORM frameworks,

while developer-friendly, often struggle with performance bottlenecks in data-intensive en-

vironments. The need for faster object-relational data mapping becomes critical in sce-

narios involving millions of CRUD operations per day, like in Instagram’s comment, like,

or follow systems. By proposing JITORM, this research addresses such performance con-

cerns by integrating Just-In-Time compilation into the ORM layer—offering a promising

alternative for scalable and efficient data management in large-scale applications.

Despite Python’s advantages in rapid development, existing ORM frameworks still de-

pend heavily on interpreted execution paths, which become a bottleneck in data-intensive

scenarios [21]. This issue is exacerbated by the absence of low-level optimization tech-

niques like Just-In-Time (JIT) compilation. While some interpreter-level improvements

exist—such as PyPy’s JIT-enabled interpreter—they typically target general-purpose exe-

cution rather than optimizing specific workloads like ORM data mapping. Consequently,

operations such as batch inserts, object hydration during bulk queries, or complex joins

can suffer from increased latency and memory overhead.

JIT compilation addresses these issues by transforming high-level instructions into ef-

ficient machine code at runtime, reducing the need for repeated interpretation. In the

context of ORM, integrating JIT specifically into the data mapping phase offers a tangible

performance advantage by eliminating redundant conversion logic and improving CPU and

memory utilization. Studies such as those by Lam et al. on Numba [22], and developments

in TorchDynamo for PyTorch[23], demonstrate how domain-specific JIT techniques can

yield significant performance gains when targeted to computational bottlenecks.

To operationalize this idea, a custom ORM framework called JITORM is developed in

this study. JITORM introduces a modular architecture comprising three core components:

Model definitions to describe database schemas, Session objects to manage database con-

nections and transactions, and a JITCompiler module that converts schema-aware map-

ping logic into LLVM Intermediate Representation (IR) using llvmlite, and compiles it

into optimized native machine code. The use of llvmlite is preferred over alternatives

like PyPy or Numba because it offers fine-grained control over the compilation pipeline

2



Telkom University 2025 School of Computing

and is well-suited for integrating domain-specific compilation logic, especially at the data-

mapping layer.

This research evaluates the performance of JITORM in comparison with widely used

Python ORM libraries—namely SQLAlchemy, Pony ORM, and Tortoise ORM—to measure

its practical benefits across varying data volumes and operation types. The comparative

analysis focuses on execution time, memory usage, and CPU utilization under controlled,

resource-constrained environments to simulate realistic deployment scenarios.

The significance of this study lies in demonstrating that domain-specific JIT compila-

tion can be effectively integrated into high-level frameworks like ORM, potentially opening

new design patterns for Python performance engineering. By providing empirical evidence

on where and how JIT can outperform traditional interpreted models, this research con-

tributes both practically and academically to the field of software performance optimization

in interpreted languages.

While JIT compilation offers performance advantages in high-load scenarios, it may

introduce overhead in lightweight or one-off operations. Therefore, identifying the contexts

in which JIT integration is beneficial—or counterproductive—is essential to ensure its

practical effectiveness.

1.2 Research Question

1. To what extent does the integration of Just-In-Time (JIT) compilation into Python

ORM frameworks improve performance compared to standard ORM frameworks

across different scenarios (data scale and operation types)?

2. In what scenarios does the use of JIT in ORM frameworks become inefficient or

counterproductive, particularly in terms of execution time, memory usage, and CPU

consumption?

3. How can JITORM be integrated into modern Python web frameworks such as Flask

or FastAPI?

1.3 Objectives

This research aims to evaluate the impact of integrating Just-In-Time (JIT) compila-

tion into Python-based Object-Relational Mapping (ORM) frameworks, particularly in

data-intensive environments and under constrained computing resources. The study fo-

cused on operations involving large datasets and repeated data processing tasks, such as

bulk insertion and data list retrieval, to determine whether the use of JIT compilation

can improve execution time, CPU usage, and memory efficiency. By benchmarking the

proposed JIT-based ORM framework (JITORM) against widely used native ORM frame-

works—SQLAlchemy, Pony ORM, and Tortoise ORM—this research sought to demon-

3



Telkom University 2025 School of Computing

strate the performance advantages and limitations of JIT integration in real-world scenar-

ios.

1.4 Hypotheses

A JIT-integrated ORM framework will demonstrate higher efficiency in data process-

ing tasks—by reducing execution time and optimizing CPU and memory resource us-

age—compared to native Python ORM frameworks. It is hypothesized that this perfor-

mance advantage will be particularly evident in operations involving large datasets or

repetitive access patterns, while its benefits may be less prominent or even counterproduc-

tive in small-scale or single-record operations due to compilation overhead.

1.5 Scope And Limitations

This study is limited to the design, implementation, and evaluation of a custom ORM

framework (JITORM) that integrates Just-In-Time (JIT) compilation at the data mapping

stage. The framework is evaluated based on core CRUD operations—create (insert), read

(get single, get list), update, and delete—executed on synthetically generated datasets

ranging in size from 50,000 to 200,000 records. These operations were tested across two

resource-constrained environments (0.2 CPU & 512MB memory and 0.5 CPU & 1024MB

memory) to simulate typical low-resource deployment conditions.

The analysis distinguishes between high-volume operations (e.g., inserting or retrieving

many records) and low-volume operations (e.g., retrieving or updating a single record), to

assess where JIT offered meaningful performance gains and where it may be inefficient.

Advanced ORM features such as complex joins, relationships, or transactional consistency

are excluded to maintain a focused and controlled evaluation on core performance aspects.

4


