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CHAPTER 1 INTRODUCTION 
 

1.1 Background 

The rapid integration of artificial intelligence (AI) and machine learning (ML) 

technologies is transforming many critical domains, including healthcare, defence, 

education, manufacturing, and transportation [1]. A prominent example of this 

transformation is the development of autonomous vehicles (AVs), which rely 

heavily on AI-driven perception systems to navigate and interact safely with their 

environments [2]. Among these perception tasks, object recognition (OR)—the 

ability to detect, identify, and classify objects in real time—is essential for avoiding 

collisions, planning trajectories, and making informed decisions, especially in 

dynamic settings such as smart factories [3]. Ensuring the safety of ML-based 

object recognition systems remains a critical challenge due to the inherent 

complexity, probabilistic behaviours, and unpredictability of ML models [4]. These 

properties can introduce risks such as data drift, bias, and vulnerability to 

adversarial inputs [5], [6], [7]. 

Recognizing these challenges, structured safety assurance methodologies 

have been proposed to support the safe adoption of ML in safety-critical systems. 

The Assurance of Machine Learning in Autonomous Systems (AMLAS) 

framework offers a lifecycle-based approach for systematically identifying safety 

requirements, managing risks, and demonstrating compliance [8]. Existing research 

often adopts the Goal Structuring Notation (GSN) as the framework for 

representing AMLAS-based assurance cases [9], [10], [11], [12], [9], [10], [11], 

[12]. GSN is valued for its clear, visual representation of claims, arguments, and 

supporting evidence, and has been widely used in safety-critical industries as a 

standardized approach to safety case communication. In this thesis, the version of 

GSN selected for comparison is the GSN Community Standard Version 2 (v2.0), 

which serves as the formal, standardized reference for representing assurance cases 

consistently across domains. 

However, while GSN is widely adopted, other assurance case frameworks 

also exist that provide complementary and potentially more expressive modelling 
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constructs. The Structured Assurance Case Metamodel (SACM) is one such 

framework that supports modular, traceable, and dialectical argument structures, 

enabling explicit modelling of claims, assumptions, context, counterclaims, and 

supporting evidence [13], [14], [15], [14], [15]. These features are valuable for 

capturing the complexity and uncertainty of ML-based systems in safety-critical 

applications. Despite its potential, there remains limited research exploring the 

adoption of SACM to support the safety assurance of AI/ML systems. A literature 

review conducted in this study highlights this gap, showing that while GSN is 

frequently applied to support AMLAS-based assurance cases, empirical studies 

adopting SACM in this context are scarce [13]. 

To address this research gap, this study proposes adopting SACM as the 

assurance case framework integrated with the AMLAS lifecycle to support the 

safety assurance of an ML-based object recognition system in an AV context. The 

practical scenario for this investigation is set within a smart factory environment 

conceptualized as a logistics-oriented industrial setting designed to emulate 

automated package delivery workflows typical of modern manufacturing. Drawing 

on the taxonomy presented by Zuehlke (2010) [16] and Lu et al. (2017) [17], the 

testbed mimics an intralogistics system where an autonomous ground vehicle must 

detect, navigate toward, and manoeuvre around packages within a constrained 

indoor industrial floor. This scenario reflects real-world use cases in modern smart 

factories that rely on cyber-physical production systems (CPPS) to enable flexible, 

automated material transport using mobile platforms. 

To support this investigation, the Donkey Car S1 platform is employed as a 

low-cost, customizable simulation testbed for evaluating object recognition systems 

under controlled yet realistic factory-like conditions. The ML component is 

implemented using a YOLOv8 object detection model trained on a custom dataset 

representing varied factory scenarios, including different lighting conditions, 

occlusions, and background complexity [18]. The Donkey Car platform is equipped 

with upgraded hardware, including an ESP microcontroller, a smartphone-based 

camera system for high-quality inference, and an integrated ultrasonic sensor to 

support real-time collision avoidance override logic. These upgrades ensure that 
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object recognition outputs meaningfully inform vehicle control actions, supporting 

safe navigation within narrow, obstacle-rich factory pathways. 

Furthermore, this study is motivated by the need for empirical evaluations 

of SACM's graphical notation in practical domains, as identified in future work 

such as Selviandro et al. [13]. By applying SACM within the AMLAS lifecycle for 

an SAE J3016 Level 2 [4] scenario in a simulated smart factory environment, this 

research contributes to addressing that gap while supporting the development of 

clear, maintainable, and traceable safety arguments for the deployment of ML-

based perception systems in safety-critical industrial settings. 

 

1.2 Problem Statement 

The assurance of ML-based object recognition systems remains underdeveloped in 

safety-critical domains [4]. Existing frameworks such as Goal Structuring Notation 

(GSN) and Claims-Argument-Evidence (CAE) provide structured reasoning but 

fall short in addressing the uncertainties and dynamic behaviours inherent in ML 

models [19]. Although advances in ML safety methodologies have been made, there 

is still a need for approaches that integrate formal structured reasoning with 

empirical validation of model performance. 

This research explores the adoption of the Structured Assurance Case 

Metamodel (SACM) to support the safety assurance of ML-based object 

recognition systems within an autonomous vehicle (AV) simulation. By 

investigating SACM’s application, the study aims to examine its suitability for 

modelling safety arguments in ML contexts and to identify the benefits and 

challenges associated with its use. Accordingly, the study is guided by the following 

research questions (RQ): 

1. RQ1: How can SACM be adopted to support assuring the safety of an ML-

based object recognition system in an AV simulation environment? 

2. RQ2: What are the benefits and challenges in adopting SACM in the 

context of supporting the safety assurance of an ML-based object 

recognition system in an AV? 
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1.3 Objectives 

The objectives (OB) of this study are as follows: 

1. OB1: To adopt and implement the Structured Assurance Case Metamodel 

(SACM) for structuring the safety assurance of an ML-based object 

recognition system within a smart factory simulation environment. 

2. OB2: To investigate the potential benefits and challenges arising from the 

integration of SACM (Structured Assurance Case Metamodel) into the 

AMLAS (Assurance of Machine Learning in Autonomous Systems) 

process for ML safety assurance. 

Through these objectives, the study aims to contribute practical insights into 

applying SACM for ML-based system assurance, addressing current gaps in both 

theory and empirical practice. 

 

1.4 Justification for Research 

Aligned with the background of this study, existing research commonly adopts GSN 

as the assurance case framework in the implementation of AMLAS [8]. However, 

SACM offers potential benefits that support more expressive and rigorous safety 

assurance analysis. Therefore, it is important to investigate these benefits for 

adoption in studies aiming to assure the safety implementation of ML systems. 

Additionally, this research contributes to the broader field of ML safety 

assurance by providing a structured methodology that explicitly integrates ML 

performance metrics with assurance case development, ensuring traceable linkage 

between empirical evidence and safety claims. By applying SACM in a smart 

factory simulation, this study offers empirical validation of its applicability and 

effectiveness in supporting safety assurance for ML-based object recognition 

systems. 

Unlike prior work that often remains at the conceptual or modelling level, this 

research demonstrates SACM-based assurance through an integrated, real-world-

inspired simulation using the Donkey Car S1 platform. The complete design, 

hardware-software integration, and empirical testing are detailed in Chapter 3 

(particularly Sections 3.4 and 3.5), while the evaluation results and their role in 



Telkom University  2025, School of Computing 

 5 
 

 

supporting the assurance argument are elaborated in Chapter 4, especially Section 

4.2. This approach strengthens the empirical value and novelty of the research by 

ensuring the assurance case is grounded in realistic, replicable evidence. 

 

1.5 Scope and Limitations 

The definition of safety in this research is scoped specifically to obstacle detection 

and crash avoidance capabilities enabled by the object recognition system. The 

study does not extend to high-level planning, path planning, motion control, or 

other aspects of full autonomous navigation. Instead, it focuses on ensuring that the 

ML-based perception component can reliably and accurately detect critical objects 

in time to support safe human-supervised navigation decisions. 

In terms of functional safety classification, the system aligns with SAE 

J3016 Level 2 (Partial Automation), where the vehicle can perform some automated 

functions—such as perception and limited navigation assistance—within structured 

environments, but still requires human oversight or pre-defined paths for overall 

control [18]. This scope ensures that the safety assurance case remains precisely 

targeted to perception-level risks, without making claims about end-to-end or fully 

autonomous driving capabilities.  

This research focuses on developing and assuring the safety of an object 

recognition system using SACM. The system is trained and evaluated with the 

following specifications in Table 1.5.1: 
Table 1.5.1 Summary of Methodology and Tools 

Aspect Tool/Approach Purpose 

Object Recognition YOLOv8 Detect and classify objects 

Dataset Preparation Roboflow Annotate and split datasets 

Training Platform Google Colab Train the YOLOv8 model 

Simulation 

Environment 

Donkey Car S1 Simulate smart factory object 

recognition 

Safety Assurance 

Framework 

SACM (Structured 

Assurance Case 

Metamodel) 

Provide structured safety assurance 

and dialectical reasoning 
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The platform utilized in this research is the Donkey Car S1 simulation, 

designed to emulate smart factory conditions in a controlled environment. The 

machine learning model employed is YOLOv8, trained using datasets prepared 

through Roboflow and processed on Google Colab. A custom dataset comprising 

1,775 images was developed, with splits of 71% for training, 20% for validation, 

and 9% for testing, as detailed in Table 1.5.2. 
Table 1.5.2 Overview of Dataset Characteristics 

Aspect Details 

Total Images 1,775 

Training Split 71% (1255 images) 

Validation Split 20% (354 images) 

Test Split 9% (166 images) 

Preprocessing No preprocessing applied. 

Augmentations No augmentations applied. 

Notably, no preprocessing or augmentation techniques were applied to the 

dataset. This choice was intentional to preserve the raw, unaltered characteristics of 

the factory-like environment, including variations in lighting, occlusion, and 

background clutter. The goal was to ensure that model performance metrics would 

realistically reflect deployment conditions without overfitting to artificially 

enhanced data distributions (as elaborated in Chapter 4 for further discussion of this 

rationale). 

The limitations of this study include the following: the scope is restricted to 

object recognition tasks and does not encompass higher-level decision-making, 

path planning, or navigation autonomy. The research is confined to a simulation 

environment and does not extend to real-world deployment or field testing. 

Additionally, the performance metrics and safety assurance arguments are tailored 

specifically to the YOLOv8 model, which may limit the generalizability of findings 

to alternative models or detection architectures. 

 

1.6 Significance of the Study 

The study contributes to the field of autonomous systems and safety assurance in 

the following ways: 
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1. It demonstrates the practical adoption of SACM in a simplified case study 

involving object recognition in smart factory simulations. 

2. It highlights the integration of ML performance metrics (e.g., mAP, 

Precision, and Recall) with safety assurance frameworks, showcasing a 

structured approach to addressing safety concerns in AI-based systems. 

3. It provides insights into the advantages of SACM over CAE and GSN in 

presenting dialectical arguments for safety assurance cases. 

Furthermore, this study demonstrates characteristics of both maintainability and 

scalability within its assurance framework. Maintainability refers to the system’s 

ability to be updated or extended with minimal effort or risk, achieved here through 

the modular nature of SACM modelling. Each SACM element (claim, context, 

evidence) is traceable and can be individually revised without disrupting the overall 

assurance structure [20]. This approach enables future safety updates—such as 

model retraining, integrating new sensors, or deployment in novel environments—

to be incorporated without overhauling the entire safety case. 

By adopting SACM in a smart factory simulation, this research also aligns 

with best practices for structured, adaptable assurance arguments [21], ensuring the 

framework remains robust even as system capabilities evolve. 

Scalability, in turn, is demonstrated by the methodology’s capacity to 

accommodate a diverse range of ML models or application scenarios beyond 

YOLOv8. Owing to its structured alignment with AMLAS stages and its generic 

mapping to SACM constructs (as elaborated in Section 3.3), the assurance 

framework offers a reusable and adaptable foundation. This structure enables its 

application to alternative use cases—such as pedestrian detection, path planning, or 

other perception tasks—thereby enhancing its potential utility in larger, multi-

component autonomous vehicle systems. 

 

1.7 Structure of the Thesis 

This thesis is structured to systematically address the research problem and to 

answer the stated research questions while achieving the defined objectives. 

The flow of the thesis begins with an exploration of the existing challenges 

in assuring ML-based object recognition systems, as articulated in the Problem 
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Statement (Section 1.2). Based on these challenges, two Research Questions (RQ1 

and RQ2) and corresponding Objectives (OB1 and OB2) were formulated to guide 

this study (Sections 1.3 and 1.2). 

To address these questions and objectives, a methodology combining the 

AMLAS lifecycle with SACM-based assurance modelling was designed and is 

detailed in Chapter 3. The practical implementation of this methodology and the 

results of the study are presented in Chapter 4, where: 

1. RQ1 / OB1 is addressed through the integration of SACM within each 

AMLAS assurance stage (Sections 4.4.1 to 4.4.8) and the development of 

the structured assurance case. 

2. RQ2 / OB2 is addressed through the analysis of the benefits and challenges 

of SACM adoption, discussed in Section 4.6 and further summarized in 

Section 4.5. 

Finally, Chapter 5 provides a synthesis of the findings, outlines the study’s 

limitations, and offers recommendations for future work. This structured flow 

ensures a clear alignment between the research problem, objectives, methodology, 

and outcomes, thereby providing a coherent narrative for the thesis. 

 

 

 

 

  


