Implementation of system code generation based on
Large Language Model Fine-tune with QLoRA

1*Muhamad Raihan Syahrin Sya’bani
School of Computing
Telkom University
Bandung, Indonesia
raihansyahrin@student.telkomuniversit
y.ac.id

Abstract—This study aims to improve code generation
performance by applying parameter-efficient fine-tuning using
Quantized Low-Rank Adaptation (QLoRA). Currently, large
language models (LLMs) in code generation continue to face
deployment challenges in low-resource environments,
particularly due to high computational demands. The core
problem addressed in this study is the inefficiency and limited
adaptability of pre-trained models in producing correct code
under constrained resource conditions, which results in
decreased output quality and restricts accessibility for low-
resource users. While previous approaches have employed full
fine-tuning on large-scale datasets to mitigate these issues—
yielding improvements in generalization—they remain
hindered by substantial memory usage and computational cost.
This study analyzes a compact fine-tuning pipeline utilizing
QLoRA, applied to the Qwen2.5-Coder-0.5B-Instruct model, to
address these constraints and improve generation accuracy with
minimal resource consumption. The proposed system was fine-
tuned using two benchmark datasets—CodeExercise-Python-
27k and Tested-22k-Python-Alpaca—and demonstrated
performance improvements of up to 7.3% on HumanEval and
4.3% on HumanEval+ in pass@1 metrics, compared to the base
model. These findings confirm that fine-tuning with specific
datasets, with lightweight methods like QLoRA, significantly
enhances the effectiveness of compact LLMs in code generation,
contributing to advancements in software engineering, Al-
assisted learning, and low-resource-constrained development
platforms.

Keywords—Code Generation, Large Language Models,
OLoRA, Fine-Tuning, HumanEval.

I. INTRODUCTION

Every year, the integration of artificial intelligence (Al)
into software development pipelines sees a big increase,
according to the statistics [1], [2]. The Artificial Intelligence
Index Report 2023 shows a massive surge in Al-related
projects on GitHub, rising from just 1,536 in 2011 to 347,934
by 2022 [3]. This explosive growth reflects the trends of using
Al-powered tools to streamline software development, reduce
manual effort, and improve overall productivity. At the same
time, this expansion opens up completely challenges—
particularly concerning the accuracy, reliability, and
transparency of Al-generated code—highlighting the need for
more effective integration of Al within the software
development process [4].

In recent years, advances in the field of Al technologies—
particularly in the Large Language Models (LLMs)—have
opened new possibilities for automated code generation [5],
[6]. These developments have significantly transformed the
software engineering landscape, affecting tasks such as
coding, debugging, testing, and system design [7], [8].
Notable models such as CodeLlama [9], Qwen2.5-Coder [10],
and CodeBERT [11] are examples of this transformation,

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

2" Donni Richasdy
School of Computing
Telkom University
Bandung, Indonesia
donnir@telkomuniversity.ac.id

3 Dana Sulistyo Kusumo
School of Computing
Telkom University
Bandung, Indonesia
danakusumo@telkomuniversity.ac.id

demonstrating this advancement by converting natural
language descriptions into functional source code. Although
various innovations have been achieved, the rapid progress in
the development of LLMs also raises fundamental challenges
related to context understanding and syntactic
appropriateness, which have a direct impact on the
effectiveness of their use in real-world programming practices
[12],[13].

This problem is critical in the domain of Al-assisted
software development due to its effect on model performance,
scalability, and trustworthiness, particularly as software
complexity increases [1]. Ensuring that Al-generated code is
not only syntactically correct but also semantically valid and
maintainable becomes essential for practical adoption [14].
Therefore, the challenge lies not only in generating code but
also in doing so with high accuracy, contextual relevance, and
computational efficiency. These concerns highlight the urgent
need for more effective fine-tuning strategies that address
these shortcomings.

Although various methods have been developed, the full
fine-tuning process of LLM still requires enormous resources
[15], [16], making it impractical for many real-world
applications, especially in models with billions of parameters.
This challenge has led to the emergence of alternative
approaches that are more resource-efficient while still
maintaining high performance. One example is Low-Rank
Adaptation (LoRA) [17] and its extension, Quantized LoRA
(QLoRA) [18], which offers a more storage-efficient solution.
By using the QLoRA approach, the fine-tuning process
becomes more scalable and accessible, enabling a wider

application of LLM in various real-world software
engineering tasks.
Research in this domain has experienced rapid

development, with many previous studies emphasizing the use
of PEFT methods to optimize models like CodeGen [19] and
CodeT5+ [20]. However, recent works demonstrate that
QLoRA enables fine-tuning models of up to 65 billion
parameters on a single 48GB GPU, while maintaining
performance even under 16-bit precision [18]. These
advancements motivate further investigation into QLoRA’s
applicability for smaller open-source models under code
generation tasks.

This research contributes by proposing a fine-tuning
approach using QLoRA that is both computationally efficient
and performance-oriented for the task of code generation. The
proposed method involves two main stages: first, learning rate
optimization using a 50% data subset to minimize resource
usage; and second, full-scale training and evaluation using
metrics like CodeBLEU [21], as well as Pass@k accuracy
measured on HumanEval [22], and HumanEval+ [23]. This
pipeline is designed to maximize output quality while
minimizing hardware demands.

