
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementation of system code generation based on
Large Language Model Fine-tune with QLoRA

1st Muhamad Raihan Syahrin Sya’bani
School of Computing

Telkom University

Bandung, Indonesia
raihansyahrin@student.telkomuniversit

y.ac.id

 2nd Donni Richasdy
School of Computing

Telkom University

Bandung, Indonesia
donnir@telkomuniversity.ac.id

 3rd Dana Sulistyo Kusumo
School of Computing

Telkom University

Bandung, Indonesia
danakusumo@telkomuniversity.ac.id

Abstract—This study aims to improve code generation

performance by applying parameter-efficient fine-tuning using

Quantized Low-Rank Adaptation (QLoRA). Currently, large

language models (LLMs) in code generation continue to face

deployment challenges in low-resource environments,

particularly due to high computational demands. The core

problem addressed in this study is the inefficiency and limited

adaptability of pre-trained models in producing correct code

under constrained resource conditions, which results in

decreased output quality and restricts accessibility for low-

resource users. While previous approaches have employed full

fine-tuning on large-scale datasets to mitigate these issues—

yielding improvements in generalization—they remain

hindered by substantial memory usage and computational cost.

This study analyzes a compact fine-tuning pipeline utilizing

QLoRA, applied to the Qwen2.5-Coder-0.5B-Instruct model, to

address these constraints and improve generation accuracy with

minimal resource consumption. The proposed system was fine-

tuned using two benchmark datasets—CodeExercise-Python-

27k and Tested-22k-Python-Alpaca—and demonstrated

performance improvements of up to 7.3% on HumanEval and

4.3% on HumanEval+ in pass@1 metrics, compared to the base

model. These findings confirm that fine-tuning with specific

datasets, with lightweight methods like QLoRA, significantly

enhances the effectiveness of compact LLMs in code generation,

contributing to advancements in software engineering, AI-

assisted learning, and low-resource-constrained development

platforms.

Keywords—Code Generation, Large Language Models,

QLoRA, Fine-Tuning, HumanEval.

I. INTRODUCTION

Every year, the integration of artificial intelligence (AI)
into software development pipelines sees a big increase,
according to the statistics [1], [2]. The Artificial Intelligence
Index Report 2023 shows a massive surge in AI-related
projects on GitHub, rising from just 1,536 in 2011 to 347,934
by 2022 [3]. This explosive growth reflects the trends of using
AI-powered tools to streamline software development, reduce
manual effort, and improve overall productivity. At the same
time, this expansion opens up completely challenges—
particularly concerning the accuracy, reliability, and
transparency of AI-generated code—highlighting the need for
more effective integration of AI within the software
development process [4].

In recent years, advances in the field of AI technologies—
particularly in the Large Language Models (LLMs)—have
opened new possibilities for automated code generation [5],
[6]. These developments have significantly transformed the
software engineering landscape, affecting tasks such as
coding, debugging, testing, and system design [7], [8].
Notable models such as CodeLlama [9], Qwen2.5-Coder [10],
and CodeBERT [11] are examples of this transformation,

demonstrating this advancement by converting natural
language descriptions into functional source code. Although
various innovations have been achieved, the rapid progress in
the development of LLMs also raises fundamental challenges
related to context understanding and syntactic
appropriateness, which have a direct impact on the
effectiveness of their use in real-world programming practices
[12], [13].

This problem is critical in the domain of AI-assisted
software development due to its effect on model performance,
scalability, and trustworthiness, particularly as software
complexity increases [1]. Ensuring that AI-generated code is
not only syntactically correct but also semantically valid and
maintainable becomes essential for practical adoption [14].
Therefore, the challenge lies not only in generating code but
also in doing so with high accuracy, contextual relevance, and
computational efficiency. These concerns highlight the urgent
need for more effective fine-tuning strategies that address
these shortcomings.

Although various methods have been developed, the full
fine-tuning process of LLM still requires enormous resources
[15], [16], making it impractical for many real-world
applications, especially in models with billions of parameters.
This challenge has led to the emergence of alternative
approaches that are more resource-efficient while still
maintaining high performance. One example is Low-Rank
Adaptation (LoRA) [17] and its extension, Quantized LoRA
(QLoRA) [18], which offers a more storage-efficient solution.
By using the QLoRA approach, the fine-tuning process
becomes more scalable and accessible, enabling a wider
application of LLM in various real-world software
engineering tasks.

Research in this domain has experienced rapid
development, with many previous studies emphasizing the use
of PEFT methods to optimize models like CodeGen [19] and
CodeT5+ [20]. However, recent works demonstrate that
QLoRA enables fine-tuning models of up to 65 billion
parameters on a single 48GB GPU, while maintaining
performance even under 16-bit precision [18]. These
advancements motivate further investigation into QLoRA’s
applicability for smaller open-source models under code
generation tasks.

This research contributes by proposing a fine-tuning
approach using QLoRA that is both computationally efficient
and performance-oriented for the task of code generation. The
proposed method involves two main stages: first, learning rate
optimization using a 50% data subset to minimize resource
usage; and second, full-scale training and evaluation using
metrics like CodeBLEU [21], as well as Pass@k accuracy
measured on HumanEval [22], and HumanEval+ [23]. This
pipeline is designed to maximize output quality while
minimizing hardware demands.

The remainder of this paper is structured as follows.
Section II presents the methodology, covering system
architecture, dataset selection, preprocessing strategies, model
configuration, and evaluation protocol. Section III details the
experimental results and discussion. Section IV summarizes
the main conclusions of the paper and offers suggestions for
further study on effective methods for fine-tuning code
generation models.

II. METHODOLOGY

A. System Design

This study applies a parameter-efficient fine-tuning
strategy using QLoRA to optimize a pre-trained large
language model for code generation. The process follows a
pipeline that is composed of data collection, data
preprocessing, dataset splits, fine-tuning with QLoRA, and
model evaluation. The entire workflow provides the right
environment for reproduction and scale. The next diagram
represents the overall system design.

Fig. 1. System Design

It starts with the selection and preprocessing of data.
Then, we perform a two-stage fine-tuning process on top of
a base pre-trained model. In the first stage, we select the base
model hyperparameters and load the state dictionary instead
of performing full fine-tuning. The second stage involves
full-data fine-tuning based on the selected configuration.
Model performance is examined holistically via three
features: tracking training through loss, syntactical and
semantic correctness via CodeBLEU, and functional using
HumanEval and HumanEval+ benchmarks evaluated on
Pass@1. To provide context for these evaluation stages, the
next section discusses the composition and characteristics of
the datasets used.

B. Dataset

1) Training Dataset

To facilitate model fine-tuning, this study makes use of
two publicly available datasets: CodeExercise-Python-27k
[24] and Tested-22k-Python-Alpaca [25]. An example entry

from the CodeExercise-Python-27k dataset is shown in Table
I.

TABLE I. SAMPLE DATA CODEEXERCISE-PYTHON-27K

Fields Content

data_name CodeExercise-Py
id 0
chat_rounds [

 {

 "chat_round_id": 0,

 "content": "Write a Python function named

\"add_numbers\" that takes two parameters, \"num1\"

and \"num2\", and returns the sum of the two

numbers.\nInput: None",

 "role": "human"

 },

 {

 "chat_round_id": 1,

 "content": "```python\ndef

add_numbers(num1, num2):\n \"\"\"\n This

function takes two numbers as input and returns their

sum.\n\n Parameters:\n num1 (int or float): The

first number.\n num2 (int or float): The second

number.\n\n Returns:\n int or float: The sum of

num1 and num2.\n \"\"\"\n return num1 +

num2\n\n# Example usage\nresult = add_numbers(5,

3)\nprint(result) # Output: 8\n\n\n```",

 "role": "bot"

 }

]

The CodeExercise-Python-27k dataset, sourced from the

HuggingFace platform and used in prior studies, includes
around 27,000 Python programming problems written in
English. These cover a variety of topics, including control
flow, algorithm design, data structures, database handling, and
introductory machine learning. The dataset was generated
using teacher models in conjunction with the Camel
framework [26], and since it lacks thorough human review, it
may contain noisy data or duplicate content.

While the CodeExercise-Python-27k dataset offers broad
coverage of Python programming concepts and problem
types, it has not undergone rigorous functional validation,
making it more suitable for evaluating model performance in
handling diverse syntactic patterns and general code
comprehension. On the other hand, the second experiment in
this research utilizes the Tested-22k-Python-Alpaca dataset
[24], which emphasizes execution accuracy by only including
Python code that has passed validation through local test runs.
An example from this dataset is presented in Table II.

TABLE II. SAMPLE DATASET TESTED-22K-PYTHON-ALPACA

Field Content

instruction Create a nested loop to print every combination of
numbers between 0-9, excluding any combination that
contains the number 5. Additionally, exclude any
combination that contains a repeating digit. Implement the
solution without using any built-in functions or libraries to
check for repeating digits.

input
output Here is an example of a nested loop in Python to print

every combination of numbers between 0-9, excluding any
combination that contains the number 5 or repeating digits:

```python 

for i in range(10): # First digit 

for j in range(10): # Second digit 

for k in range(10): # Third digit 


