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Abstract—This study aims to improve code generation 

performance by applying parameter-efficient fine-tuning using 

Quantized Low-Rank Adaptation (QLoRA). Currently, large 

language models (LLMs) in code generation continue to face 

deployment challenges in low-resource environments, 

particularly due to high computational demands. The core 

problem addressed in this study is the inefficiency and limited 

adaptability of pre-trained models in producing correct code 

under constrained resource conditions, which results in 

decreased output quality and restricts accessibility for low-

resource users. While previous approaches have employed full 

fine-tuning on large-scale datasets to mitigate these issues—

yielding improvements in generalization—they remain 

hindered by substantial memory usage and computational cost. 

This study analyzes a compact fine-tuning pipeline utilizing 

QLoRA, applied to the Qwen2.5-Coder-0.5B-Instruct model, to 

address these constraints and improve generation accuracy with 

minimal resource consumption. The proposed system was fine-

tuned using two benchmark datasets—CodeExercise-Python-

27k and Tested-22k-Python-Alpaca—and demonstrated 

performance improvements of up to 7.3% on HumanEval and 

4.3% on HumanEval+ in pass@1 metrics, compared to the base 

model. These findings confirm that fine-tuning with specific 

datasets, with lightweight methods like QLoRA, significantly 

enhances the effectiveness of compact LLMs in code generation, 

contributing to advancements in software engineering, AI-

assisted learning, and low-resource-constrained development 

platforms. 
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I. INTRODUCTION 

Every year, the integration of artificial intelligence (AI) 
into software development pipelines sees a big increase, 
according to the statistics [1], [2]. The Artificial Intelligence 
Index Report 2023 shows a massive surge in AI-related 
projects on GitHub, rising from just 1,536 in 2011 to 347,934 
by 2022 [3]. This explosive growth reflects the trends of using 
AI-powered tools to streamline software development, reduce 
manual effort, and improve overall productivity. At the same 
time, this expansion opens up completely challenges—
particularly concerning the accuracy, reliability, and 
transparency of AI-generated code—highlighting the need for 
more effective integration of AI within the software 
development process [4].  

In recent years, advances in the field of AI technologies—
particularly in the Large Language Models (LLMs)—have 
opened new possibilities for automated code generation [5], 
[6]. These developments have significantly transformed the 
software engineering landscape, affecting tasks such as 
coding, debugging, testing, and system design [7], [8]. 
Notable models such as CodeLlama [9], Qwen2.5-Coder [10], 
and CodeBERT [11] are examples of this transformation, 

demonstrating this advancement by converting natural 
language descriptions into functional source code. Although 
various innovations have been achieved, the rapid progress in 
the development of LLMs also raises fundamental challenges 
related to context understanding and syntactic 
appropriateness, which have a direct impact on the 
effectiveness of their use in real-world programming practices 
[12], [13]. 

This problem is critical in the domain of AI-assisted 
software development due to its effect on model performance, 
scalability, and trustworthiness, particularly as software 
complexity increases [1]. Ensuring that AI-generated code is 
not only syntactically correct but also semantically valid and 
maintainable becomes essential for practical adoption [14]. 
Therefore, the challenge lies not only in generating code but 
also in doing so with high accuracy, contextual relevance, and 
computational efficiency. These concerns highlight the urgent 
need for more effective fine-tuning strategies that address 
these shortcomings.  

Although various methods have been developed, the full 
fine-tuning process of LLM still requires enormous resources 
[15], [16], making it impractical for many real-world 
applications, especially in models with billions of parameters. 
This challenge has led to the emergence of alternative 
approaches that are more resource-efficient while still 
maintaining high performance. One example is Low-Rank 
Adaptation (LoRA) [17] and its extension, Quantized LoRA 
(QLoRA) [18], which offers a more storage-efficient solution. 
By using the QLoRA approach, the fine-tuning process 
becomes more scalable and accessible, enabling a wider 
application of LLM in various real-world software 
engineering tasks. 

Research in this domain has experienced rapid 
development, with many previous studies emphasizing the use 
of PEFT methods to optimize models like CodeGen [19] and 
CodeT5+ [20]. However, recent works demonstrate that 
QLoRA enables fine-tuning models of up to 65 billion 
parameters on a single 48GB GPU, while maintaining 
performance even under 16-bit precision [18]. These 
advancements motivate further investigation into QLoRA’s 
applicability for smaller open-source models under code 
generation tasks. 

This research contributes by proposing a fine-tuning 
approach using QLoRA that is both computationally efficient 
and performance-oriented for the task of code generation. The 
proposed method involves two main stages: first, learning rate 
optimization using a 50% data subset to minimize resource 
usage; and second, full-scale training and evaluation using 
metrics like CodeBLEU [21], as well as Pass@k accuracy 
measured on HumanEval [22], and HumanEval+ [23]. This 
pipeline is designed to maximize output quality while 
minimizing hardware demands. 



The remainder of this paper is structured as follows. 
Section II presents the methodology, covering system 
architecture, dataset selection, preprocessing strategies, model 
configuration, and evaluation protocol. Section III details the 
experimental results and discussion. Section IV summarizes 
the main conclusions of the paper and offers suggestions for 
further study on effective methods for fine-tuning code 
generation models. 

II. METHODOLOGY 

A. System Design 

This study applies a parameter-efficient fine-tuning 
strategy using QLoRA to optimize a pre-trained large 
language model for code generation. The process follows a 
pipeline that is composed of data collection, data 
preprocessing, dataset splits, fine-tuning with QLoRA, and 
model evaluation. The entire workflow provides the right 
environment for reproduction and scale. The next diagram 
represents the overall system design.  

 

Fig. 1. System Design 

It starts with the selection and preprocessing of data. 
Then, we perform a two-stage fine-tuning process on top of 
a base pre-trained model. In the first stage, we select the base 
model hyperparameters and load the state dictionary instead 
of performing full fine-tuning. The second stage involves 
full-data fine-tuning based on the selected configuration. 
Model performance is examined holistically via three 
features: tracking training through loss, syntactical and 
semantic correctness via CodeBLEU, and functional using 
HumanEval and HumanEval+ benchmarks evaluated on 
Pass@1. To provide context for these evaluation stages, the 
next section discusses the composition and characteristics of 
the datasets used. 

B. Dataset 

1) Training Dataset 

To facilitate model fine-tuning, this study makes use of 
two publicly available datasets: CodeExercise-Python-27k 
[24] and Tested-22k-Python-Alpaca [25]. An example entry 

from the CodeExercise-Python-27k dataset is shown in Table 
I.  

TABLE I.        SAMPLE DATA CODEEXERCISE-PYTHON-27K 

Fields Content 

data_name CodeExercise-Py 
id 0 
chat_rounds   [ 

    { 

      "chat_round_id": 0, 

      "content": "Write a Python function named 

\"add_numbers\" that takes two parameters, \"num1\" 

and \"num2\", and returns the sum of the two 

numbers.\nInput: None", 

      "role": "human" 

    }, 

    { 

      "chat_round_id": 1, 

      "content": "```python\ndef 

add_numbers(num1, num2):\n    \"\"\"\n    This 

function takes two numbers as input and returns their 

sum.\n\n    Parameters:\n    num1 (int or float): The 

first number.\n    num2 (int or float): The second 

number.\n\n    Returns:\n    int or float: The sum of 

num1 and num2.\n    \"\"\"\n    return num1 + 

num2\n\n# Example usage\nresult = add_numbers(5, 

3)\nprint(result)  # Output: 8\n\n\n```", 

      "role": "bot" 

    } 

  ] 

 
The CodeExercise-Python-27k dataset, sourced from the 

HuggingFace platform and used in prior studies, includes 
around 27,000 Python programming problems written in 
English. These cover a variety of topics, including control 
flow, algorithm design, data structures, database handling, and 
introductory machine learning.  The dataset was generated 
using teacher models in conjunction with the Camel 
framework [26], and since it lacks thorough human review, it 
may contain noisy data or duplicate content.  

While the CodeExercise-Python-27k dataset offers broad 
coverage of Python programming concepts and problem 
types, it has not undergone rigorous functional validation, 
making it more suitable for evaluating model performance in 
handling diverse syntactic patterns and general code 
comprehension. On the other hand, the second experiment in 
this research utilizes the Tested-22k-Python-Alpaca dataset 
[24], which emphasizes execution accuracy by only including 
Python code that has passed validation through local test runs. 
An example from this dataset is presented in Table II.   

TABLE II.        SAMPLE DATASET TESTED-22K-PYTHON-ALPACA 

Field Content 

instruction Create a nested loop to print every combination of 
numbers between 0-9, excluding any combination that 
contains the number 5. Additionally, exclude any 
combination that contains a repeating digit. Implement the 
solution without using any built-in functions or libraries to 
check for repeating digits. 

input  
output Here is an example of a nested loop in Python to print 

every combination of numbers between 0-9, excluding any 
combination that contains the number 5 or repeating digits: 

```python 

for i in range(10): # First digit 

for j in range(10): # Second digit 

for k in range(10): # Third digit 


