
hand, the fine-tuning model with the CodeExercise-Python-
27k dataset resulted in slight performance drops, with scores 
decreasing by 4.2% on HumanEval and 2.4% on 
HumanEval+. This contrast suggests that the success of fine-
tuning largely depends on the underlying properties of the 
dataset being used. 

Despite CodeExercise-Python-27k covering 27,000 
exercises across a range of coding topics—from beginner 
syntax to machine learning—the content was generated by a 
teacher model and Camel, without much human oversight. 
This approach is likely to provide incorrect answers in 
response to given questions. Such issues may have restricted 
the model’s ability to generalize effectively, increasing the 
risk of overfitting and reducing its flexibility. These findings 
highlight the critical role of high-quality, well-structured, and 
consistently formatted datasets in the fine-tuning of large 
language models. 

IV. CONCLUSION 

This study presents a parameter-efficient fine-tuning 
approach using QLoRA to improve the performance of 
compact large language models for code generation tasks in 
resource-constrained environments. By applying QLoRA to 
the Qwen2.5-Coder-0.5B-Instruct model, we demonstrated 
the potential of lightweight fine-tuning methods to 
significantly enhance model adaptability and accuracy, while 
maintaining low memory usage and computational 
efficiency. The findings emphasize the importance of high-
quality, instruction-aligned datasets in maximizing the 
benefits of such fine-tuning strategies. These contributions 
support the broader applicability of compact LLMs in 
domains like AI-assisted learning, educational platforms, and 
low-resource development settings. Future work may explore 
the impact of additional hyperparameter tuning and the 
integration of more diverse, human-validated datasets to 
improve generalization and robustness across coding tasks 
further. 
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