
hand, the fine-tuning model with the CodeExercise-Python-
27k dataset resulted in slight performance drops, with scores
decreasing by 4.2% on HumanEval and 2.4% on
HumanEval+. This contrast suggests that the success of fine-
tuning largely depends on the underlying properties of the
dataset being used.

Despite CodeExercise-Python-27k covering 27,000
exercises across a range of coding topics—from beginner
syntax to machine learning—the content was generated by a
teacher model and Camel, without much human oversight.
This approach is likely to provide incorrect answers in
response to given questions. Such issues may have restricted
the model’s ability to generalize effectively, increasing the
risk of overfitting and reducing its flexibility. These findings
highlight the critical role of high-quality, well-structured, and
consistently formatted datasets in the fine-tuning of large
language models.

IV. CONCLUSION

This study presents a parameter-efficient fine-tuning
approach using QLoRA to improve the performance of
compact large language models for code generation tasks in
resource-constrained environments. By applying QLoRA to
the Qwen2.5-Coder-0.5B-Instruct model, we demonstrated
the potential of lightweight fine-tuning methods to
significantly enhance model adaptability and accuracy, while
maintaining low memory usage and computational
efficiency. The findings emphasize the importance of high-
quality, instruction-aligned datasets in maximizing the
benefits of such fine-tuning strategies. These contributions
support the broader applicability of compact LLMs in
domains like AI-assisted learning, educational platforms, and
low-resource development settings. Future work may explore
the impact of additional hyperparameter tuning and the
integration of more diverse, human-validated datasets to
improve generalization and robustness across coding tasks
further.

REFERENCES

[1] U. Durrani et al., “A Decade of Progress: A Systematic Literature
Review on the Integration of AI in Software Engineering Phases
and Activities (2013-2023),” IEEE Access, p. 1, 2024, doi:
10.1109/access.2024.3488904.

[2] K. Qiu, N. Puccinelli, M. Ciniselli, and L. Di Grazia, “From
Today’s Code to Tomorrow’s Symphony: The AI Transformation
of Developer’s Routine by 2030,” ACM Transactions on Software

Engineering and Methodology, 2024, doi: 10.1145/3709353.
[3] L. Fattorini, “Artificial Intelligence Index Report 2023,” Artificial

Intelligence Index Report, 2023.
[4] K. Misiejuk, R. Kaliisa, and J. Scianna, “Augmenting assessment

with AI coding of online student discourse: A question of
reliability,” Computers & Education: Artificial Intelligence, vol.
6, p. 100216, 2024, doi: 10.1016/j.caeai.2024.100216.

[5] H. Ghaemi, Z. Alizadehsani, A. Shahraki, and J. M. Corchado,
“Transformers in source code generation: A comprehensive
survey,” Journal of Systems Architecture, p. 103193, 2024, doi:
10.1016/j.sysarc.2024.103193.

[6] M. R. Lyu, B. Ray, A. Roychoudhury, S. H. Tan, and P.
Thongtanunam, “Automatic Programming: Large Language
Models and Beyond,” ACM Transactions on Software Engineering
and Methodology, 2024, doi: 10.1145/3708519.

[7] S. Pooja, C. B. Chandrakala, and L. K. Raju, “Developer’s
Roadmap to Design Software Vulnerability Detection Model
Using Different AI Approaches,” IEEE Access, vol. 10, 2022, doi:
10.1109/ACCESS.2022.3191115.

[8] S. Martínez-Fernández et al., “Software Engineering for AI-Based
Systems: A Survey,” ACM Transactions on Software Engineering
and Methodology, vol. 31, no. 2, 2022, doi: 10.1145/3487043.

[9] B. Rozière et al., “Code Llama: Open Foundation Models for
Code,” pp. 1–48, 2023, [Online]. Available:
http://arxiv.org/abs/2308.12950

[10] B. Hui et al., “Qwen2.5-Coder Technical Report,” pp. 1–23, 2024,
[Online]. Available: http://arxiv.org/abs/2409.12186

[11] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” in Findings of the Association for

Computational Linguistics Findings of ACL: EMNLP 2020, 2020.
doi: 10.18653/v1/2020.findings-emnlp.139.

[12] M. A. K. Raiaan et al., “A Review on Large Language Models:
Architectures, Applications, Taxonomies, Open Issues and
Challenges,” IEEE Access, doi: 10.1109/access.2024.3365742.

[13] X. Chen, C. Gao, C. Chen, G. Zhang, and Y. Liu, “An Empirical
Study on Challenges for LLM Application Developers,” ACM
Transactions on Software Engineering and Methodology, 2025,
doi: 10.1145/3715007.

[14] D. Cotroneo, A. Foggia, C. M. Improta, P. Liguori, and R. Natella,
“Automating the Correctness Assessment of AI-generated Code
for Security Contexts,” Journal of Systems and Software, vol.
abs/2310.18834, 2023, doi: 10.48550/arxiv.2310.18834.

[15] M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui,
“Exploring Parameter-Efficient Fine-Tuning Techniques for Code
Generation with Large Language Models,” ACM Transactions on
Software Engineering and Methodology, Jan. 2025, doi:
10.1145/3714461.

[16] Z. R. K. Rostam and S. Szénási, “Achieving Peak Performance for
Large Language Models: A Systematic Review,” IEEE Access, p.
1, 2024, doi: 10.1109/access.2024.3424945.

[17] E. Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS,” in ICLR 2022 - 10th International

Conference on Learning Representations, 2022.
[18] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer,

“QLoRA: Efficient Finetuning of Quantized LLMs,” May 2023,
[Online]. Available: http://arxiv.org/abs/2305.14314

[19] E. Nijkamp et al., “CodeGen: An Open Large Language Model for
Code with Multi-Turn Program Synthesis,” Mar. 2022, [Online].
Available: http://arxiv.org/abs/2203.13474

[20] Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and S. C. H.
Hoi, “CodeT5+: Open Code Large Language Models for Code
Understanding and Generation,” May 2023, [Online]. Available:
http://arxiv.org/abs/2305.07922

[21] S. Ren et al., “CodeBLEU: a Method for Automatic Evaluation of
Code Synthesis,” Sep. 2020, [Online]. Available:
http://arxiv.org/abs/2009.10297

[22] M. Chen et al., “Evaluating Large Language Models Trained on
Code,” Jul. 2021, [Online]. Available:
http://arxiv.org/abs/2107.03374

[23] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated
by ChatGPT really correct? rigorous evaluation of large language
models for code generation,” in Proceedings of the 37th

International Conference on Neural Information Processing

Systems, in NIPS ’23. Red Hook, NY, USA: Curran Associates
Inc., 2023.

[24] B. Liu et al., “MFTCoder: Boosting Code LLMs with Multitask
Fine-Tuning,” Nov. 2023, [Online]. Available:
http://arxiv.org/abs/2311.02303

[25] N. Mejia Petit, “Vezora/Tested-22k-Python-Alpaca,” Hugging
Face, [Online]. Available:
https://huggingface.co/datasets/Vezora/Tested-22k-Python-
Alpaca

[26] G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and B.
Ghanem, “CAMEL: Communicative Agents for ‘Mind’
Exploration of Large Language Model Society,” Mar. 2023,
[Online]. Available: http://arxiv.org/abs/2303.17760

[27] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a
method for automatic evaluation of machine translation,” in
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, in ACL ’02. USA: Association for
Computational Linguistics, 2002, pp. 311–318. doi:
10.3115/1073083.1073135.

