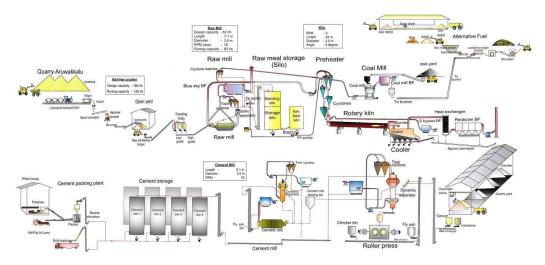
BABI

PENDAHULUAN


1.1 Latar Belakang

Perkembangan perusahaan industri manufaktur di Indonesia sebagai salah satu penunjang perekonomian negara, saat ini terus mengalami perkembangan yang positif ditengah ketidakpastian perekonomian dunia. Hal ini dapat dilihat dari banyaknya investor yang menanamkan modalnya untuk berinvestasi menjalankan usaha di Indonesia (Rahmawati & Kosasih, 2020). PT. XYZ merupakan salah satu produsen semen terbesar di Indonesia yang memiliki cukup banyak mesin yang digunakan dalam proses produksi, karena pada perusahaan ini memproduksi semen secara terus menerus tanpa menunggu order terlebih dahulu dan nantinya akan dilanjutkan ke gudang. Proses produksi semen dimulai dari pengambilan bahan baku berupa batu kapur (limestone) menggunakan alat berat, yang kemudian diangkut menggunakan kereta pengangkut menuju pabrik. Batu kapur tersebut dipindahkan ke apron conveyor dan selanjutnya dihancurkan menggunakan hammer crusher dengan kapasitas 150 ton/jam. Hasil penghancuran kemudian disalurkan ke open yard dan disimpan di raw mill feeding hopper, yang terbagi menjadi material berkualitas rendah (low grade) dan berkualitas tinggi (high grade).

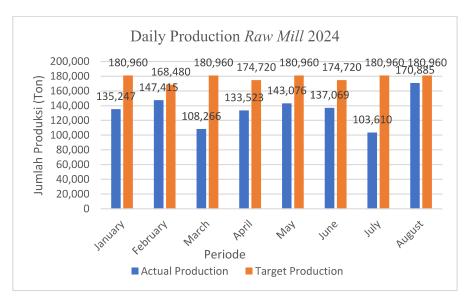
Material tersebut kemudian diproses di *raw mill*, di mana batu kapur dan bahan tambahan lainnya digiling hingga halus dengan kapasitas 62 ton/jam. Di dalam *raw mill*, material dipisahkan melalui *cyclone batteries* dan *static separator*, lalu disimpan dalam *blending silo* dan *storage silo* untuk memastikan homogenisasi bahan baku. Material yang sudah siap ini selanjutnya dipompa ke *kiln feed bin* dan diteruskan ke bagian *preheater*. Di dalam *preheater*, material kering dipanaskan secara bertahap melalui beberapa *cyclone* menggunakan panas dari *rotary kiln*. Setelah melalui *preheater*, material masuk ke *rotary kiln*, sebuah tabung berputar sepanjang 54 m dengan diameter 3,5 m, di mana material dibakar pada suhu sangat tinggi. Proses pembakaran ini menggunakan bahan bakar utama dari *coal mill* dan alternatif seperti biomassa, sekam padi, dan limbah organik kering. Hasil dari

proses pembakaran ini adalah *clinker*, yaitu bahan setengah jadi berupa butiran keras.

Clinker yang keluar dari rotary kiln masih dalam kondisi panas, sehingga harus didinginkan di cooler. Udara panas dari proses pendinginan ini dialirkan kembali ke kiln sebagai efisiensi energi. Clinker yang sudah dingin kemudian disimpan di clinker bin atau gantry yard. Selanjutnya, clinker digiling bersama gypsum dan fly ash di cement mill dan roller press. Proses penggilingan ini bertujuan menghasilkan semen dengan ukuran partikel yang halus sesuai standar. Hasil gilingan ini disaring menggunakan dynamic separator sebelum akhirnya disimpan dalam cement silo. Setelah itu, semen jadi dipindahkan ke cement packing plant untuk proses pengemasan. Di sini, semen dikemas menggunakan packer dan disusun menggunakan paletizer sebelum didistribusikan ke konsumen melalui truk pengangkut atau bulk loading. Sepanjang proses produksi, berbagai sistem filtrasi seperti blue sky BF, redeccam BF, dan Cl bypass BF diterapkan untuk mengendalikan emisi debu dan menjaga lingkungan sekitar tetap bersih (Aupanisa, 2022). Alur produksi semen dapat dilihat pada Gambar 1.1 berikut.

Gambar 1. 1 Alur Proses Produksi Semen

Sumber: www.siamcitycement.com


Proses produksi semen pada PT. XYZ berlangsung setiap hari dengan menetapkan target produksi. Hal tersebut menyebabkan adanya potensi terjadinya kerusakan pada komponen mesin yang dapat mengganggu jalannya proses produksi. Perusahaan harus dapat mengatur proses *maintenance* dengan baik agar

mesin tidak mudah mengalami kerusakan. Proses produksi semen melibatkan serangkaian tahapan yang kompleks salah satunya adalah proses penghancuran bahan baku yang dilakukan di mesin *raw mill* (Lutfi & Tarigan, 2023). Berikut merupakan mesin *tube raw mill* dapat dilihat pada Gambar 1.2.

Gambar 1.2 Mesin Tube Raw Mill

Raw mill merupakan tempat penggilingan bahan baku berupa limestone, clay, silica dan iron sand. Hasil penggilingan pada raw mill ini dinamakan raw mix (Lutfi & Tarigan, 2023). Pemanfaatan mesin raw mill yang sudah tua dan sering dipaksa beroperasi tanpa jadwal perawatan yang memadai secara terus-menerus menjadi penyebab utama sering terjadinya downtime. Seiring bertambahnya usia, komponen-komponen mesin ini mengalami kerusakan alami, retakan minor, dan kelelahan material yang dipercepat oleh beban kerja berat yang berkelanjutan. Data daily production pada mesin raw mill dapat dilihat pada Gambar 1.3 berikut.

Gambar 1. 3 Output Mesin Raw Mill 2024 PT. XYZ

Gambar 1.3 menunjukkan perbandingan antara produksi aktual dan target bulanan dari Januari hingga Agustus 2024. Total produksi aktual selama delapan bulan mencapai 1.079.091 ton, yang lebih rendah dibandingkan dengan total target produksi sebesar 1.422.720 ton. Selisih antara produksi aktual dan target mencapai 343.629 ton, menunjukkan bahwa perusahaan tidak mencapai target yang ditetapkan. Melihat kinerja bulanan, bulan Maret mencatat produksi terendah dengan 108.266 ton, yang merupakan sekitar 60% dari target. Selain itu, bulan Januari dan April juga menunjukkan angka yang di bawah target, masing-masing dengan produksi 135.247 dan 133.523 ton. Sebaliknya, bulan Agustus merupakan bulan terbaik dengan produksi aktual mencapai 170.885 ton, yang mendekati target 180.960 ton. Secara keseluruhan PT. XYZ mengalami peningkatan produksi pada beberapa bulan, seperti Agustus, kinerja produksi masih jauh dari memadai. Hal ini menunjukkan perlunya evaluasi yang lebih mendalam terhadap proses produksi dan penerapan strategi pemeliharaan yang lebih efektif untuk meningkatkan produktivitas serta mencapai target yang telah ditetapkan.

Mesin yang digunakan dalam proses produksi harus bisa berjalan secara optimal. Operasi mesin dianggap efisien saat *downtime*-nya rendah. Untuk memastikan operasi mesin yang eifisien, dibutuhkan sistem perawatan dan pemeliharaan mesin yang sesuai. *Downtime* merupakan waktu yang dihitung saat mesin tidak beroperasi karena faktor teknis maupun non-teknis. Pengertian lain dari

downtime adalah akumulasi waktu yang terjadi pada mesin atau peralatan saat tidak dapat beroperasi karena aktivitas lain yang harus dilakukan. Salah satu penyebab terjadinya downtime adalah terganggunya proses produksi (Rahmawan et al., 2021). Data downtime pada mesin raw mill periode Januari sampai Agustus 2024 dapat dilihat pada Tabel 1.1 berikut.

Tabel 1. 1 Rekap Data Downtime Mesin Raw Mill Plant 9 Januari-Agustus 2024

Period	Down Hours (Jam)	Down Frequency	Actual Operation Hours (Jam)
January	165,72	3	578,28
February	88,44	4	607,56
March	58,87	2	685,13
April	72,68	3	647,32
May	147,13	3	596,87
June	154,92	4	565,08
July	58,97	3	685,03
August	61,72	3	682,28
Total	808,45	25	5455,78

Tabel 1.1 menunjukkan jam *down*, frekuensi *down*, dan jam aktual untuk setiap bulan. Total jam *down* selama periode yang dianalisis mencapai 808,45 jam, dengan frekuensi *down* sebanyak 25 kali, mengindikasikan adanya masalah yang signifikan dalam operasional. Perlu untuk melakukan analisis terhadap penyebab *downtime*, terutama pada bulan Januari, serta mempertimbangkan kinerja terbaik yang diterapkan pada bulan Maret. Selain itu, mengembangkan strategi pemeliharaan dan manajemen resiko yang lebih baik akan membantu mengurangi frekuensi dan durasi jam *down* di masa mendatang.

Perusahaan dituntut untuk memberikan perhatian yang lebih terhadap perawatan mesin serta komponen-komponen yang terdapat dalam mesin tersebut untuk mencegah terjadinya kerusakan. Perawatan terhadap mesin dan komponen-komponen yang digunakan dalam proses produksi dapat dilakukan dengan metode preventive maintenance. Preventive maintenance adalah pemeliharaan yang dilakukan secara terjadwal umumnya secara periodik, dimana sejumlah tugas

pemeliharaan seperti inspeksi, perbaikan, penggantian, pelumasan yang dilaksanakan.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas, permasalahan yang terjadi pada proses produksi semen disebabkan oleh kerusakan pada komponen mesin. Mesin produksi harus beroperasi secara optimal dengan waktu henti minimal, sehingga target produksi dapat tercapai tanpa gangguan. Namun, realitanya, perusahaan mengalami downtime yang signifikan, terutama pada bulan Januari, yang mengakibatkan ketidakpuasan dalam pencapaian target produksi. Konsekuensi dari masalah ini adalah penurunan efisiensi operasional dan potensi kerugian finansial akibat gangguan dalam proses produksi. Untuk mengatasi masalah ini, alternatif solusi yang dapat diterapkan meliputi pengembangan sistem pemeliharaan yang lebih terstruktur, seperti penerapan metode preventive maintenance secara berkala. Selain itu, perusahaan juga dapat melakukan analisis mendalam terhadap penyebab downtime dan menerapkan pelatihan bagi karyawan untuk meningkatkan keterampilan mereka dalam menangani perawatan mesin. Dengan langkah-langkah ini, diharapkan frekuensi dan durasi downtime dapat berkurang, sehingga kinerja produksi di PT. XYZ dapat meningkat secara signifikan.

1.3 Tujuan Tugas Akhir

Berdasarkan rumusan masalah yang ada, tujuan penelitian ini dapat disimpulkan sebagai berikut:

- 1. Mengetahui tingkat produktivitas mesin raw mill
- 2. Mengetahui rata-rata waktu *running* mesin sampai mengalami kerusakan.
- 3. Mengetahui rata-rata waktu perbaikan mesin setelah mengalami kerusakan.
- 4. Memberikan rekomendasi tindakan perawatan untuk mesin *raw mill*.

1.4 Manfaat Tugas Akhir

Manfaat yang terdapat dalam peneltian ini mengenai penjadwalan pemeliharaan *preventif* mesin *raw mill* di PT. XYZ dapat dijelaskan sebagai berikut:

1. Bagi Penulis

Penulis diharapkan dapat memahami dan merancang penjadwalan pemeliharaan *preventif* mesin *raw mill* dengan mempertimbangkan semua tantangan yang dihadapi perusahaan.

2. Bagi Pembaca

Hasil penelitian ini terkait penjadwalan pemeliharaan mesin raw mill di PT. XYZ diharapkan dapat menjadi sumber informasi dan acuan mengenai penerapan penjadwalan pemeliharaan mesin dalam proses produksi.

3. Bagi Institusi

Tujuan dari penelitian ini tentang penjadwalan pemeliharaan *preventif* mesin *raw mill* di PT. XYZ adalah untuk menghasilkan lulusan yang memiliki pemahaman tentang proses dan dapat berpikir kritis dalam merancang rencana penjadwalan pemeliharaan di sektor manufaktur.

4. Untuk Perusahaan

Studi ini diharapkan mampu memberikan wawasan serta pemahaman yang mendalam mengenai berbagai elemen yang menghalangi implementasi pemeliharaan *preventif* yang efektif di PT. XYZ, sehingga pabrik semen dapat mengenali penjadwalan pemeliharaan mesin dengan lebih baik.

1.5 Batasan dan Asumsi Tugas Akhir

Batasan masalah yang ditetapkan pada penelitian ini adalah sebagai berikut:

- 1. *Output* penelitian hanya terbatas pada pengusulan kebijakan jadwal *preventive maintenance*.
- Penelitian ini hanya terbatas pada mesin *raw mill* yang berada di *Plant* Departemen *Maintenance Control Center* di PT. XYZ.

1.6 Sistematika Tugas Akhir

Sistematika penulisan hasil penelitian ini adalah sebagai berikut:

1. BAB I PENDAHULUAN

Pada Bab 1 Pendahuluan ini berisikan latar belakang dari permasalahan yang akan menjadi dasar penelitian yang dilakukan. Pada bab juga dilengkapi dengan perumusan masalah, tujuan penelitian, manfaat penelitian serta sistematika penulisan.

2. BAB II TINJAUAN PUSTAKA

Pada Bab 2 Tinjauan Pustaka ini berisikan kajian teori yang berkaitan denganpermasalahan yang sedang diangkat. Kajian teori ini akan mendasari penelitian tugas akhir yang akan dilakukan.

3. BAB III METODOLOGI PENELITIAN

Pada Bab 3 Metodologi Penelitian ini berisikan metode konseptual permasalahan yang sedang diangkat. Selain itu, pada bab ini juga berisikan sistematika penyelesaian yang digunakan untuk menyelesaikan permasalahan yang sedang diangkat.

4. BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Pada bab 4 berisi proses pengumpulan dan pengolahan data yang berkaitan langsung dengan penelitian yang telah dilakukan. Data yang diperoleh kemudian dianalisis dan diolah untuk menjadi dasar dalam perancangan strategi. Selain itu, bab ini juga mencakup evaluasi terhadap hasil perancangan berdasarkan data yang tersedia, serta mencantumkan proses verifikasi, validasi dan implementasi dari perancangan yang telah dilakukan guna memastikan kesesuaian dan efektivitas strategi yang diusulkan.

5. BAB V KESIMPULAN DAN SARAN

Pada Bab 5 Kesimpulan dan Saran ini berisikan kesimpulan dari hasil yang telah didapatkan pada penelitian ini serta berisikan saran untuk pelaku usaha yang menjadi objek penelitian.