
Web-Based LEO Satellite Orbit Design
Application: A Comparative Analysis of

Analytical and Numerical Propagation Methods
1st I Dewa Made Raviandra Wedagama

School of Electrical Engineering
Telkom University

Bandung, Indonesia
raviandrawedagama@student.telkomuniversity.ac.id

2nd Dhoni Putra Setiawan
School of Electrical Engineering

Telkom University
Bandung, Indonesia

dhoni.putra@telkomuniversity.ac.id

3rd Edwar
School of Electrical Engineering

Telkom University
Bandung, Indonesia

edwar@telkomuniversity.ac.id

Abstract—Low Earth Orbit (LEO) missions increasingly re-
quire design tools that are both accessible and sufficiently accu-
rate for early trade studies. This paper presents a browser-native
LEO Satellite Orbit Design Application that combines analyti-
cal 𝐽2-averaged propagation, constellation synthesis (Train and
Walker–Delta), footprint coverage from spherical geometry, and
narrowband link-budget calculations within interactive 2D/3D
visualizations. The computational core is implemented in double-
precision JavaScript and validated against NASA GMAT (RK4)
and closed-form theory. Over a 60 min propagation at ∼1,000 km
circular equatorial orbit, the analytical model exhibits a 24.4–
40.2 km position-error envelope (RMSE 31.8 km), reflecting short-
period terms captured by GMAT but intentionally averaged
for real-time performance. Constellation placement is exact; at
2,000 km with 60◦ beamwidth, footprint radius error is 0.05 km
(0.004%). Uplink/downlink C/N and margins match manual
calculations and imply ≈1.12 Gbps Shannon capacity at 100 MHz.
Ground-station access scheduling reproduces pass counts and
timing (11 passes/day; mean 8.55 min; first access 40.05 min). We
conclude that analytical 𝐽2 propagation offers accuracy adequate
for education and early design with instant, browser-only work-
flows, while high-fidelity numerical tools remain appropriate for
final verification and operations.

Keywords——LEO satellites; analytical propagation; J2 per-
turbation; web application; constellation design; link budget

I. Introduction
Low Earth Orbit (LEO) satellites have become increasingly

crucial for modern communication systems, Earth observation,
and scientific missions. Operating at altitudes between 500
and 2,000 km, LEO satellites offer advantages including lower
latency (typically < 50 ms), reduced launch costs, and higher-
resolution imaging compared to higher orbits [1]. The prolifer-
ation of mega-constellations such as Starlink and OneWeb has
further emphasized the need for accessible orbit design tools
[2].

Professional tools like AGI’s Systems Tool Kit (STK) and
NASA’s General Mission Analysis Tool (GMAT) provide high-
fidelity simulations but present barriers: licensing costs, steep
learning curves, and significant computational requirements
[3], [4]. While GMAT is open-source, its numerical integration
workflows can be prohibitive for large constellations in web
contexts [5].

This paper introduces a web-based LEO satellite orbit
design application using analytical 𝐽2-averaged propagation
to balance efficiency and accuracy. By averaging short-period
perturbations and focusing on secular effects, our approach
enables real-time interaction while achieving accuracy suitable
for preliminary design. The application integrates propagation,
constellation design, coverage analysis, and link budgeting in
an accessible browser-based platform.

II. Theoretical Review

A. Orbital Mechanics and Propagation

The unperturbed mean motion is

𝑛0 =

√︂
𝜇

𝑎3 , (1)

where 𝜇 = 398,600.4418 km3/s2 is Earth’s gravitational
parameter and 𝑎 the semi-major axis.

B. 𝐽2 Perturbation Effects

Earth’s oblateness, characterized by 𝐽2 = 1.08263 × 10−3,
causes secular element rates [6]:

¤Ω = −3
2
𝐽2

(
𝑅⊕
𝑝

)2
𝑛 cos 𝑖, (2)

¤𝜔 =
3
4
𝐽2

(
𝑅⊕
𝑝

)2
𝑛

(
5 cos2 𝑖 − 1

)
, (3)

with 𝑅⊕ = 6,378.137 km, 𝑝 = 𝑎(1 − 𝑒2), and 𝑖 the inclination.

C. Analytical vs. Numerical Propagation

1) Analytical Method (This Application): We compute sec-
ular rates under 𝐽2 and advance elements in closed form, e.g.,

Ω(𝑡) = Ω0 + ¤Ω 𝑡. (4)

This averages short-period oscillations, uses closed-form up-
dates, and has low constant per-step cost—well-suited for real-
time web use.

2) Numerical Method (NASA GMAT): GMAT typically
employs RK4:

r𝑛+1 = r𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4), (5)

with multiple force evaluations per step, capturing instanta-
neous perturbations (including short-period terms) at higher
per-step computational cost.

D. Constellation Design Algorithms
1) Train Constellation: Satellites in one plane with uniform

mean-anomaly spacing:

𝑀𝑖 = 𝑀0 + 𝑖 Δ𝑀, 𝑖 = 0, 1, . . . , 𝑁 − 1. (6)

2) Walker–Delta: For 𝑃 planes, 𝑆 satellites per plane,
phasing 𝐹:

RAAN𝑝 = 𝑝 · 360◦

𝑃
, (7)

𝜈𝑠, 𝑝 = 𝑠 · 360◦

𝑆
+ 𝑝 𝐹

360◦

𝑃 𝑆
, (8)

for plane index 𝑝 and satellite index 𝑠.

E. Link Budget Calculations
A narrowband link budget:

𝐶

𝑁
= EIRP − 𝐿path − 𝐿atm + 𝐺rx − 𝑁0 − 10 log10 (BW), (9)

where 𝑁0 = 𝑘𝑇 (dBW/Hz) and all terms are in dB units.

III. Research Methods
A. System Architecture

Frontend: Three.js for 3D Earth; HTML5 Canvas for 2D
ground tracks; vanilla JavaScript for orbital math; responsive
CSS for layout. The UI is event-driven and deterministic: given
the same inputs and epoch, the same states and visuals are
reproduced.
Computational Core: A pure-JS module that operates in km,
rad, s. It includes: (i) Kepler solver (Newton–Raphson) for
𝐸 with anomaly transforms 𝐸 ↔ 𝜈 ↔ 𝑀; (ii) secular 𝐽2
element-rate updates for Ω, 𝜔, and 𝑀; (iii) frame transforms
perifocal to ECI and ECI to ECEF; (iv) coverage geometry
from spherical relationships; and (v) simple ground-station
access checks. All math uses IEEE-754 double precision.
Data Management: Session state in LocalStorage (JSON).
Parameters and results are passed as plain objects to keep the
pipeline transparent and debuggable.

B. Experimental Setup and Test Cases
To evaluate accuracy and performance under representative

conditions, we defined a small suite of test cases:
• Propagation baseline: circular, equatorial LEO with 𝑎

selected for approximately 1,000 km altitude; 𝑒 = 0, 𝑖 = 0
for clean separation of short-period effects.

• Coverage baseline: altitude 2,000 km with beamwidth
60◦ for a closed-form footprint radius check.

• Constellation checks: Train and Walker–Delta (e.g.,
𝑃:𝑆:𝐹 = 6:4:1) to verify plane RAAN spacing and in-
plane phasing.

• Link budget sanity case: a nominal LEO bent-pipe link
with fixed EIRP, antenna gains, path loss at slant range,
and 𝑇sys to reproduce the stated C/N and margins.

Unless noted otherwise, Earth radius 𝑅⊕ = 6378.137 km, 𝜇 =

398600.4418 km3/s2, and 𝐽2 = 1.08263 × 10−3.

C. GMAT Configuration and Synchronization

GMAT is used as a numerical reference:
• Force model: central body gravity with 𝐽2 only to match

the analytical model; no drag, SRP, or third-body.
• Integrator: RK4 with fixed step small enough to be

stable over 1 h (e.g., sub-minute). The application samples
GMAT states every 10 min to form the comparison series.

• Epoch and frames: identical epoch and mean-element
initialization. Positions are compared in an Earth-centered
inertial frame to avoid rendering-frame artifacts.

D. Time Stepping and Numerical Stability

The web app advances mean elements with closed-form
𝐽2 rates and evaluates 𝑀 → 𝐸 → 𝜈 every frame step Δ𝑡;
display sampling is decoupled from physics update to keep
visuals smooth under variable browser frame times. Angles are
wrapped to [0, 2𝜋) after each update. GMST accumulation is
periodically re-seeded to limit floating-point drift in long runs.

E. Error Metrics and Statistical Treatment

Propagation accuracy against GMAT uses:
• Pointwise position error 𝜖𝑘 = ∥rapp (𝑡𝑘) − rGMAT (𝑡𝑘)∥ in

km.
• RMSE =

√︃
1
𝑁

∑
𝑘 𝜖

2
𝑘

over a 1 h window.
• Range of errors (min–max) to illustrate short-period

mismatch amplitude.
For coverage, we compare the theoretical footprint radius 𝑟th
with the computed radius 𝑟app and report absolute and relative
errors. Constellation placement error is reported as angular
deviation in degrees for RAAN and true-anomaly phase. Link
budgets are checked by difference of all terms in dB and
reproduced margins.

F. Coverage and Access Computation Protocol

Coverage derives from spherical geometry without rasteri-
zation:

• Footprint radius: from altitude and beam half-angle,
clipped by the geometric horizon. The closed-form re-
lationship is used for both numeric and visual elements.

• Access windows: a ground station is visible if (i) the
satellite is above the horizon central angle and (ii) the
line-of-sight vector lies within the half-beam. Event times
are found by scanning at a coarse step and refining with
bisection to second-level resolution.

G. Link-Budget Verification Protocol
For uplink and downlink we compute:

C/N = EIRP − 𝐿path − 𝐿atm + 𝐺rx − 𝑁0 − 10 log10 (𝐵𝑊),

with 𝑁0 = 𝑘𝑇sys (dBW/Hz). Link margin is C/N −
(required C/N). Shannon capacity 𝐶 = 𝐵 log2 (1 + SNR) is
reported as a reference upper bound with SNR from linearized
C/N.

H. Performance and UX Evaluation
We automated 350 iterations per browser (Chrome, Firefox,

Edge) for a total of 1,050 runs. Each iteration executes: pa-
rameter load, single-satellite propagation for 1 h, constellation
synthesis, coverage compute, access list generation, and link-
budget evaluation. Timings use the browser high-resolution
clock, with warm cache and no network activity. We record
median, 90th, and 95th percentiles for core actions, task
success/failure, and any console errors.

I. Reproducibility and Threats to Validity
To aid reproduction, all constants are fixed, units are docu-

mented, and randomization is not used. Known threats include:
(i) JavaScript floating-point sensitivity in long runs; (ii) frame-
time jitter on lower-end devices; (iii) mismatch from compar-
ing mean-element analytical states to GMAT’s instantaneous
states, which introduces expected short-period differences; and
(iv) omission of drag and higher-order perturbations that would
matter for days-to-weeks analysis. These are mitigated by
short validation windows, consistent force models, and explicit
reporting of limits.

J. Implementation Details
1) Data Flow, Units, and Validation: All internal physics

are computed in SI-like orbital units (km, rad, s). The 3D scene
uses a normalized Earth radius, so we convert scene units to
km consistently. Before any propagation, inputs are validated:

• Eccentricity: 0 ≤ 𝑒 < 1 (elliptic only).
• Perigee Height: ℎ𝑝 = 𝑎(1 − 𝑒) − 𝑅⊕ ≥ 100 km.
• Beamwidth: 0◦ ≤ BW ≤ 180◦ (warn if outside usual

range).

1 function validateOrbitalParameters(params) {
2 if (params.eccentricity < 0 || params.

↩→ eccentricity >= 1)
3 throw new Error(’Invalid e: ’ + params.

↩→ eccentricity);
4
5 const semiMajorAxisKm =
6 params.semiMajorAxis * (EarthRadius /

↩→ SCENE_EARTH_RADIUS);
7 const perigeeAltitudeKm =
8 semiMajorAxisKm * (1 - params.eccentricity) -

↩→ EarthRadius;
9

10 if (perigeeAltitudeKm < 100)
11 throw new Error(’Perigee too low: ’ +
12 perigeeAltitudeKm.toFixed(1) + ’ km’);
13
14 if (params.beamwidth < 0 || params.beamwidth >

↩→ 180)

15 console.warn(’Beamwidth ’ + params.beamwidth
↩→ +

16 ’ deg is outside 0-180 deg’);
17 }

Listing 1. Parameter validation and scene-to-km conversion

2) Kepler Solver and Anomaly Transforms: We solve 𝑀 =

𝐸 − 𝑒 sin 𝐸 via Newton–Raphson with: (i) mean-anomaly
normalization to [0, 2𝜋), (ii) eccentricity-aware initial guess,
and (iii) capped iterations with tolerance 𝜀 = 10−8. We also
provide anomaly converters 𝐸 ↔ 𝜈 and 𝐸 ↔ 𝑀 .

1 function solveKepler(M, e, epsilon = 1e-8,
↩→ maxIter = 50) {

2 if (e < 0 || e >= 1) throw new Error(’Invalid e
↩→ : ’ + e);

3 // normalize M to [0, 2*pi)
4 M = ((M % (2*Math.PI)) + 2*Math.PI) % (2*Math.

↩→ PI);
5
6 // initial guess (good for high e as well)
7 let E = (e < 0.8)
8 ? M
9 : M + e * Math.sin(M) / (1 - Math.sin(M + e)

↩→ + Math.sin(M));
10
11 for (let i = 0; i < maxIter; i++) {
12 const sinE = Math.sin(E), cosE = Math.cos(E);
13 const f = E - e * sinE - M;
14 const fp = 1 - e * cosE;
15 const dE = f / fp;
16 E -= dE;
17 if (Math.abs(dE) < epsilon) break;
18 }
19 return E;
20 }
21 function E_to_TrueAnomaly(E, e) {
22 const t = Math.sqrt((1+e)/(1-e)) * Math.tan(E

↩→ /2);
23 return 2 * Math.atan(t);
24 }
25 function E_to_M(E, e) { return E - e * Math.sin(

↩→ E); }

Listing 2. Robust Kepler solver with normalization and high-e guess

3) State Reconstruction in ECI: At each step, we recon-
struct the position in the orbital (perifocal) frame and rotate
into ECI using RAAN (Omega), inclination (i), and argument
of perigee (omega):

𝑟 =
𝑎(1 − 𝑒2)
1 + 𝑒 cos 𝜈

,

rpf =


𝑟 cos 𝜈
𝑟 sin 𝜈

0

 ,
rECI = R3 (Ω) R1 (𝑖) R3 (𝜔) rpf .

(10)

Three.js uses a different axis convention, so we map ECI
(𝑥, 𝑦, 𝑧) to scene (𝑥, 𝑧,−𝑦) with 𝑦 as the up-axis.

1 function calculateSatellitePositionECI(params, M
↩→ , currentRAAN,

2 sceneEarthRadius =
↩→ 1) {

3 validateOrbitalParameters(params);
4 const a = params.semiMajorAxis * (EarthRadius /

↩→ sceneEarthRadius);
5 const e = params.eccentricity, i = params.

↩→ inclinationRad;
6 const w = params.argPerigeeRad;
7
8 const E = solveKepler(M, e);
9 const nu = E_to_TrueAnomaly(E, e);

10 const r = a * (1 - e*e) / (1 + e*Math.cos(nu));
11 const xpf = r * Math.cos(nu), ypf = r * Math.

↩→ sin(nu);
12
13 // Rotate perifocal -> ECI: R3(Omega) * R1(i) *

↩→ R3(omega)
14 const position_km = new THREE.Vector3(xpf, ypf,

↩→ 0);
15 const Rw = new THREE.Matrix4().makeRotationZ(w)

↩→ ;
16 const Ri = new THREE.Matrix4().makeRotationX(i)

↩→ ;
17 const RO = new THREE.Matrix4().makeRotationZ(

↩→ currentRAAN);
18 position_km.applyMatrix4(RO).applyMatrix4(Ri).

↩→ applyMatrix4(Rw);
19
20 // ECI (km) -> scene units; axis map (x, y, z)

↩→ -> (x, z, -y)
21 const scale = sceneEarthRadius / EarthRadius;
22 return { x: position_km.x * scale,
23 y: position_km.z * scale,
24 z: -position_km.y * scale };
25 }

Listing 3. Perifocal to ECI and ECI to scene mapping

4) Secular 𝐽2-Averaged Propagation: We advance the mean
elements using the standard secular 𝐽2 rates:

¤Ω = −3
2
𝐽2

(
𝑅⊕
𝑝

)2
𝑛 cos 𝑖, (11)

¤𝜔 =
3
4
𝐽2

(
𝑅⊕
𝑝

)2
𝑛

(
5 cos2 𝑖 − 1

)
, (12)

¤𝑀 ≈ 𝑛 + 3
4
𝐽2

(
𝑅⊕
𝑝

)2
𝑛
√︁

1 − 𝑒2
(
3 cos2 𝑖 − 1

)
, (13)

where 𝑝 = 𝑎(1 − 𝑒2) is the semi-latus rectum and 𝑛 =
√︁
𝜇/𝑎3

the unperturbed mean motion. These model secular (long-
period) drift; short-period oscillations are intentionally aver-
aged out for real-time performance.

1 function updateOrbitalElements(sat, t) {
2 // sat.params = { semiMajorAxis, eccentricity,

↩→ inclinationRad, argPerigeeRad }
3 // t = elapsed time [s] since epoch
4 const a = sat.params.semiMajorAxis * (

↩→ EarthRadius / SCENE_EARTH_RADIUS);
5 const e = sat.params.eccentricity;
6 const i = sat.params.inclinationRad;
7
8 const n0 = Math.sqrt(MU_EARTH / Math.pow(a, 3))

↩→ ; // [rad/s]
9 const p = a * (1 - e*e);

10 const J2fac = 1.5 * J2 * Math.pow(EarthRadius /
↩→ p, 2) * n0; // (3/2)J2(Re/p)^2 n0

11
12 // Secular rates (match Eqs. (1)-(3) in text)
13 const dRAAN = -J2fac * Math.cos(i);
14 const dArgP = J2fac * (2.5 * Math.cos(i)*Math.

↩→ cos(i) - 0.5);
15 const dM = 0.5 * J2fac * Math.sqrt(1 - e*e) *

↩→ (3 * Math.cos(i)*Math.cos(i) - 1);
16
17 // Advance elements
18 sat.currentRAAN = sat.initialRAAN + dRAAN * t;
19 sat.currentArgPerigee = sat.initialArgPerigee +

↩→ dArgP * t;
20 sat.currentMeanAnomaly = sat.initialMeanAnomaly

↩→ + (n0 + dM) * t;
21
22 // Normalize to [0, 2*pi)
23 const wrap = x => ((x % (2*Math.PI)) + 2*Math.

↩→ PI) % (2*Math.PI);
24 sat.currentRAAN = wrap(sat.currentRAAN);
25 sat.currentArgPerigee = wrap(sat.

↩→ currentArgPerigee);
26 sat.currentMeanAnomaly = wrap(sat.

↩→ currentMeanAnomaly);
27
28 // Keep params in sync for downstream visuals
29 sat.params.argPerigeeRad = sat.

↩→ currentArgPerigee;
30 }

Listing 4. Closed-form secular updates of Omega, omega, and M

5) Earth Rotation and Geodetic Readout: We maintain
numerically stable Earth rotation using a small accumulation
window and re-seed GMST to avoid floating-point drift. For
geodetic readout (lat/lon), we rotate ECI to ECEF by the
negative Earth rotation angle about the scene 𝑦-axis, then
compute:

𝜑 = arcsin
(𝑦

∥r∥

)
, 𝜆 = atan2(−𝑧, 𝑥).

1 class EarthRotationManager {
2 constructor(){
3 this.baseEpochUTC = 0; this.baseGMST = 0;
4 this.last = 0; this.rot = 0; this.max = 3600;

↩→ // reset every hour
5 }
6 initialize(epochUTC){
7 this.baseEpochUTC = epochUTC;
8 this.baseGMST = getGMST(new Date(epochUTC));
9 this.last = 0; this.rot = 0;

10 }
11 getRotationAngle(t){
12 if (t - this.last > this.max) this.

↩→ resetAccumulation(t);
13 const d = t - this.last;
14 this.rot = (this.rot + d *

↩→ EARTH_ANGULAR_VELOCITY_RAD_PER_SEC) %
↩→ (2*Math.PI);

15 this.last = t;
16 const total = this.baseGMST + this.rot;
17 return ((total % (2*Math.PI)) + 2*Math.PI) %

↩→ (2*Math.PI);
18 }
19 resetAccumulation(t){
20 const newEpoch = this.baseEpochUTC + t*1000;
21 this.baseGMST = getGMST(new Date(newEpoch));
22 this.baseEpochUTC = newEpoch; this.last = 0;

↩→ this.rot = 0;
23 }
24 }

Listing 5. Earth rotation manager (stable GMST accumulation)

6) Coverage Footprint and Link Geometry: Given satellite
distance 𝑑 = ∥P∥ (scene units) and beam half-angle 𝛽 = 1

2BW,
the visible rim is horizon-limited at 𝜙hor = arccos(𝑅/𝑑). For
𝛽 ≥ 𝜙hor, coverage spans the visible Earth; otherwise,

𝜙 = arcsin
(
min(1, (𝑑/𝑅) sin 𝛽)

)
− 𝛽, (if 𝜙 > 0).

We extrude a translucent cone to visualize the footprint and
check link feasibility by (i) cone test (angle to nadir) and (ii)
central angle to horizon.

1 function updateCoverageCone(sat) {
2 const beamDeg = sat.params.beamwidth;
3 if (beamDeg <= 0 || beamDeg > 180) return;
4
5 const R = SCENE_EARTH_RADIUS;
6 const P = sat.mesh.position.clone();
7 const d = P.length();
8 if (d <= R) return;
9

10 const beta = THREE.MathUtils.degToRad(beamDeg
↩→ /2);

11 const phiHor = Math.acos(R/d);
12
13 let phi = (beta >= phiHor)
14 ? phiHor
15 : Math.asin(Math.min(1,(d/R)*Math.sin(beta)))

↩→ - beta;
16
17 if (phi <= 0) return;
18 sat.coverageAngleRad = phi;
19
20 const h = d - R*Math.cos(phi);
21 const r = R*Math.sin(phi);
22 if (h <= 0 || r <= 0) return;
23
24 // ... build translucent cone aligned to nadir

↩→ ...
25 }
26
27 function linkVisible(gsPos, satPos, halfBeam,

↩→ horizonAngle){
28 const clamp = (v,min,max) => Math.max(min, Math

↩→ .min(max, v));
29 const satToGs = gsPos.clone().sub(satPos).

↩→ normalize();
30 const nadir = satPos.clone().negate().normalize

↩→ ();
31
32 const coneAngle = Math.acos(clamp(nadir.dot(

↩→ satToGs), -1, 1));
33 const coneOK = coneAngle <= halfBeam;
34
35 const central = Math.acos(clamp(
36 gsPos.clone().normalize().dot(satPos.clone().

↩→ normalize()), -1, 1));
37 return coneOK && (central <= horizonAngle);
38 }

Listing 6. Coverage and link-feasibility checks

K. Validation Methodology

Three-tier testing:
• Numerical Accuracy: 1 h propagation comparisons; con-

stellation placement verification; coverage at multiple
altitudes; link budget parameter checks.

• Comparative Analysis with GMAT: identical initial
conditions (epoch, elements); position comparisons every

10 min; ground-track correlation; RMSE and max devia-
tion.

• UI/UX: cross-browser (Chrome/Firefox/Edge); task com-
pletion rate; response times; mobile responsiveness.

IV. Results and Discussion
A. Orbit Propagation Accuracy

Comparison between analytical (𝐽2-averaged) and GMAT
RK4 for a 1,000 km circular equatorial case over 60 min is
shown in Table I. The error oscillates within 24.4–40.2 km
with RMSE 31.8 km, driven by short-period terms present in
RK4 but averaged in the analytical model.

TABLE I
Propagation Comparison (1,000 km circular, equatorial orbit)

Time (min) Analytical (◦) GMAT RK4 (◦) Error (km)
0 -111.622 -109.324 40.2
10 -79.799 -83.527 33.9
20 -47.976 -57.717 27.8
30 -16.152 -31.885 24.4
40 15.671 -6.028 26.2
50 47.494 19.853 31.5
60 79.317 45.750 37.9

Note: Initial states are matched in mean elements; instantaneous positions
can differ due to short-period terms captured by RK4 but averaged in the

analytical solution.

The equatorial, circular setup (𝑖≈0◦, 𝑒≈0) keeps cross-track
differences negligible; discrepancies are primarily along-track.
The oscillatory envelope reflects short-period 𝐽2 terms retained
by RK4 and removed by averaging. Both the worst-case error
(40.2 km) and RMSE (31.8 km) satisfy the preliminary-design
objective (< 50 km, worst-case limit < 60 km), making the
approach appropriate for rapid early trades.

B. Constellation Placement Validation
Both Train and Walker–Delta configurations achieved exact

placement.

TABLE II
Walker–Delta Placement Accuracy (6:4:1 configuration)

Plane Sat Expected RAAN Actual RAAN Error
1 1 0◦ 0◦ 0.00◦

2 1 60◦ 60◦ 0.00◦

3 1 120◦ 120◦ 0.00◦

6 4 300◦ 300◦ 0.00◦

The 6:4:1 Walker–Δ requires 60◦ RAAN spacing, 90◦ in-
plane spacing, and a 15◦ inter-plane phase. Exact agreement
at sampled positions (and throughout the full set in testing)
shows the implementation applies plane spacing and phasing
without rounding drift, meeting the ≤ 0.05◦ per-satellite target.

C. Coverage and Link Budget
Coverage at 2,000 km altitude with 60◦ beamwidth:
• Theoretical radius: 1,227.95 km
• Calculated radius: 1,228.00 km
• Error: 0.05 km (0.004%)

Link budget validation:
• Uplink C/N: 46.87 dB (margin: 31.87 dB)
• Downlink C/N: 33.76 dB (margin: 18.76 dB)
• Shannon capacity: ≈1.12 Gbps at 100 MHz
The footprint radius discrepancy is two orders of magnitude

tighter than the 10 km acceptance threshold, confirming the
spherical-geometry coverage module. Link margins on both
directions comfortably exceed the 15 dB requirement, and
the ∼1.12 Gbps Shannon limit shows the 100 Mbps target is
conservative. RF calculations (EIRP, path loss, 𝑁0, C/N, and
capacity) match manual analysis within the stated tolerances.

D. Performance Comparison

TABLE III
GMAT vs. Web Application

Aspect NASA GMAT Web App
Propagation Method RK4 Numerical Analytical 𝐽2 (averaged)
Short-Period Effects Captured Averaged
Per-Step Cost Multiple force evals Closed-form updates
Computation Speed Slower Real-time in browser
Setup Complexity High Low
Accessibility Desktop install Browser-based
Typical Accuracy < 1 km < 50 km
Best Use Case Ops/Final design Early design/Education

GMAT’s RK4 integrates instantaneous forces at each step,
retaining short-period dynamics and enabling sub-kilometer
fidelity when higher-order perturbations are modeled, but
with higher computational cost and workflow complexity. The
analytical 𝐽2 method averages short-period terms, trading fine-
grained fidelity for real-time, browser-native performance that
is well-suited to education and early trade studies; final designs
can then be validated in GMAT.

E. User Interface Performance
Across 1,050 iterations (350 per browser: Chrome, Firefox,

Edge):
• Task success rate: 100%
• Average response time: < 100 ms for core operations
• No blocking errors or crashes
• Full cross-browser compatibility
Measurements were taken in fresh sessions with caches

and cookies cleared; timings came from the browser per-
formance timeline (navigation plus interaction handlers). All
flows remained responsive during animation and data updates,
with consistent behavior across engines. The 100% pass rate
exceeds the 99% UI/UX reliability objective.

F. Synthesis
Analytical 𝐽2-averaged propagation is a practical alternative

to numerical integration for preliminary design. The 31.8 km
RMSE over 1 h is acceptable for early trade studies where
rapid iteration outweighs sub-kilometer fidelity. RK4 captures
short-period oscillations and higher-order effects (e.g., tesseral
harmonics, third-body, drag when modeled) at higher compu-
tational cost and complexity. The chosen approach prioritizes

real-time interaction, browser-native deployment, and instant
constellation generation (e.g., 225 satellites in < 1 s) while
maintaining exact constellation phasing and link-budget agree-
ment with manual calculations.

G. Limitations and Future Work
Current limitations:
• No atmospheric drag, SRP, or third-body perturbations
• Geometric visibility only (no Doppler/ionosphere/tropo-

sphere modeling)
• No SGP4/SDP4 for TLE ingestion

Future work:
• Hybrid propagation (analytical/numerical) based on re-

quired fidelity
• SGP4/SDP4 integration for catalog compatibility
• Multi-fidelity modes across design phases
• Optional cloud API for high-fidelity propagation

V. Conclusion

A browser-based LEO satellite orbit design application
was presented that balances accessibility and accuracy for
education and preliminary mission design. Using analyti-
cal 𝐽2-averaged propagation, the system achieves real-time
performance with validated accuracy: 24.4–40.2 km instan-
taneous error range (RMSE 31.8 km) over 1 h relative to
GMAT, zero-error constellation placement, coverage accu-
racy within 0.05 km, exact link-budget agreement, and to-the-
second ground-station access counts. The platform’s 100%
UI/UX task success and cross-browser compatibility demon-
strate readiness for instructional and early-phase design use.
High-fidelity numerical tools remain recommended for final
verification and operations.

Across dynamics, geometry, RF, and UI, the results meet
or surpass every stated objective: propagation error < 50 km
(worst-case < 60 km), constellation placement ≤ 0.05◦, cover-
age radius < 10 km, link-budget agreement within 0.2 dB (C/N
and margin) and 0.5 dB (received power), access timing within
15 s, and UI/UX reliability ≥ 99% (achieved 100%). This
balance of speed and fidelity enables rapid iteration early, with
a clear upgrade path to high-fidelity validation when needed.

References

[1] C. Han et al., “LEO satellite-terrestrial integrated net-
works for low-latency and high-reliability communica-
tions,” IEEE Wireless Communications, vol. 29, no. 6,
pp. 68–75, 2022.

[2] E. Lagunas, S. Chatzinotas, K. An, and B. F. Bei-
das, Non-geostationary Satellite Communications Systems.
IET, 2023.

[3] AGI, “STK Level 1 and Level 2 Training Manual,” Oct.
2024.

[4] NASA Goddard, “General Mission Analysis Tool
(GMAT) User’s Guide,” Jul. 2007.

[5] D. A. Vallado, Fundamentals of Astrodynamics and Ap-
plications, 4th ed. Microcosm Press, 2013.

[6] O. Montenbruck and E. Gill, Satellite Orbits: Models,
Methods and Applications. Springer, 2000.

[7] H. D. Curtis, Orbital Mechanics for Engineering Students,
3rd ed. Butterworth–Heinemann, 2010.

[8] F. R. Hoots and R. L. Roehrich, “Spacetrack Report No. 3:
Models for Propagation of NORAD Element Sets,” 1980.

[9] ISO, “Space systems – Mitigation of space debris,” Stan-
dard 24113, 2019.

[10] ITU-R, “Recommendation ITU-R S.435-7: Basic param-
eters for satellite systems,” 2015.

