DAFTAR PUSTAKA

- [1] E. A. Jo, S. B. Lee, S. Kim. D. Kim, H. Kwon, and W. Y. Chung. "Combination of wearable multi-biosensor platform and AI-based analysis for health monitoring," IEEE Accsess, vol. 0, pp. 134488-134503, September 2021.
- [2] Y.-C. Lin, W.-H. Yang, C.-Y. Lin, and C.-T. Lin, "A new reflective PPG LED-PD sensor module for cuffless blood pressure measurement at wrist artery," IEEE Sensors Journal, vol. 20, pp. 11492–11502, June 2020.
- [3] S. Lee, Y. Jeong, S. Bae, H. Jeon, and K. Park, "Development of a PPG sensor array as a wearable device," Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6198–6201, July 2019.
- [4] S. Liao, H. Liu, W.-H. Lin, D. Zheng, and F. Chen, "Filtering-induced changes of pulse transit time across different ages: A neglected concern in photoplethysmography-based cuffless blood pressure measurement," Front. Physiol., vol. 14, Art. no. 1172150, Jul. 2023.
- [5] M. Valenza, L. Citi, C. D. Santis, A. Lanatà, and E. P. Scilingo, "PPG and bioimpedance-based wearable applications in heart monitoring and activity tracking: A review," IEEE Reviews in Biomedical Engineering, vol. 15, pp. 35–49, 2022.
- [6] H. Zeng, X. Yang, Y. Huang, Y. Wang, S. Lin, and X. Liu, "Low-power high-sensitivity PPG sensor for wearable health monitoring system," in Proceedings of the 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR), Naples, Italy, 2022, pp. 358–363.
- [7] K. Yadav and B. P. Patil, "A low-power photoplethysmogram-based heart rate monitoring system using a microcontroller," Microprocessors and Microsystems, vol. 92, Art. no. 104040, Aug. 2022.
- [8] A. Bizzego, M. Battisti, G. Gabrieli, C. Esposito, and G. Esposito, "Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis," Sensors (Basel), vol. 20, no. 11, Art. no. 3154, May 2020.

- [9] C. B. Kuncoro, W.-J. Luo, and Y.-D. Kuan, "Wireless photoplethysmography sensor for continuous blood pressure biosignal shape acquisition," Journal of Sensors, vol. 2020, Art. ID 7192015, 9 pp., 2020.
- [10] B. Mishra, N. Arora, and Y. Vora, "An ECG-PPG Wearable Device for Real Time Detection of Various Arrhythmic Cardiovascular Diseases," in 2019 Ninth International Symposium on Embedded Computing and System Design (ISED), 2019, pp. 1–6.
- [11] R. Elliott, "Notch filters Design and application," ESP Articles, [Online]. Available: https://sound-au.com/articles/notch-filters.htm. [Accessed: Jul. 26, 2025].
- [12] "Operational amplifier basics," Electronics-Tutorials.ws, [Online].

 Available: https://www.electronics-tutorials.ws/opamp/opamp_3.html.

 [Accessed: Jul. 26, 2025].
- [13] Texas Instruments, OPA353, OPA2353, OPA4353: High-Speed, Single-Supply, Rail-to-Rail Operational Amplifiers, Burr-Brown Corporation, Datasheet No. SBOS103, Mar. 1999.
- [14] Texas Instruments, OPT101: Monolithic Photodiode and Single-Supply Transimpedance Amplifier, Datasheet No. SBBS002B, Rev. B, Jun. 2015.
- [15] Texas Instruments, Single-supply, 2nd-order, Sallen-Key Low-pass Filter Circuit, Analog Engineer's Circuit Cookbook, Application Report SBOA226, Jun. 2021.
- [16] Texas Instruments, INA333: Micro-Power (50μA), Zero-Drift, Rail-to-Rail Out Instrumentation Amplifier, Datasheet No. SBOS445C, Rev. C, Dec. 2015.
- [17] Texas Instruments, Single-supply, 2nd-order, Sallen-Key high-pass filter circuit, SBOA225, Analog Engineer's Circuit, Jun. 2021.
- [18] Texas Instruments, TL431, TL432 Precision Programmable Reference Datasheet (Rev. S), SLVS543S, May 2024.
- [19] C. A. Pratiwi, P. Madona, dan Y. P. Wijaya, "Akuisisi Data Sinyal Photoplethysmograph (PPG) Menggunakan Photodioda," Jurnal Elementer, vol. 2, no. 2, pp. 33, Nov. 2016.

- [20] R. Yulian and B. Suprianto, "Rancang Bangun Photoplethysmography (PPG) Tipe Gelang Tangan untuk Menghitung Detak Jantung Berbasis Arduino," Jurnal Teknik Elektro, vol. 06, no. 03, pp. 223–231, 2017.
- [21] F. Ahamed and R. Ghosh, "Analysis of radio frequency reflectance type PPG sensor based on systolic amplitude and source wavelength," J. Biomed. Eng. Med. Dev., Allied Academies.2016.