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ABSTRAK 

 

Penelitian ini mengusulkan strategi pengendalian flocking berbasis deep 

reinforcement learning (DRL) untuk swarm quadcopter yang beroperasi dalam 

lingkungan dengan kepadatan rintangan tinggi serta variasi jumlah anggota 

kawanan. Berbeda dengan metode berbasis aturan konvensional yang kurang 

adaptif terhadap skenario yang kompleks dan dinamis, pendekatan ini 

merumuskan tugas flocking sebagai suatu proses keputusan Markov dengan 

pengamatan parsial (Partially Observable Markov Decision Process/POMDP), 

dengan mempertimbangkan keterbatasan persepsi dan komunikasi lokal dari 

setiap agen. Kebijakan kendali dilatih menggunakan algoritma Proximal Policy 

Optimization (PPO) melalui skema pelatihan tersentralisasi dan pelaksanaan 

terdesentralisasi dalam lingkungan multiagen. Fungsi perolehan (reward function) 

dirancang dengan mengintegrasikan aturan klasik berbasis boid (separation, 

cohesion, alignment), penghindaran tabrakan secara eksplisit, serta batasan 

koridor virtual. Pendekatan ini memungkinkan swarm untuk tidak hanya 

mempertahankan formasi yang stabil dan menghindari rintangan, tetapi juga 

beroperasi secara aman dalam batas wilayah yang telah ditetapkan. Simulasi 

secara ekstensif telah dilakukan pada berbagai skenario, termasuk lingkungan 

dengan keberadaan rintangan serta jumlah agen yang bervariasi antara 5 hingga 

50 quadcopter. Hasil kuantitatif menunjukkan bahwa metode yang diusulkan 

mencapai tingkat keberhasilan menuju sasaran sebesar minimal 98% pada seluruh 

skenario, mempertahankan tingkat collision dan deconfliction di bawah 2,5% 

untuk ukuran swarm yang tinggi, serta menjaga jarak spasial dan formasi yang 

stabil secara efektif. 

 

Kata Kunci : Quadcopter, Kendali Flocking, DRL, POMDP, PPO, Multi-Agent 
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ABSTRACT 

 

This research presents a deep reinforcement learning (DRL)-based 

flocking control strategy for quadcopter swarms operating in environments with 

dense obstacles and varying swarm sizes. Unlike conventional rule-based 

methods, which struggle to adapt to complex and dynamic scenarios, the proposed 

approach formulates the flocking task within a Partially Observable Markov 

Decision Process (POMDP), accounting for the local perception and 

communication constraints of each agent. The control policy is trained using the 

Proximal Policy Optimization (PPO) algorithm, implemented with centralized 

training and decentralized execution in a multi-agent setting. Classic boid-inspired 

rules (separation, cohesion, alignment), explicit collision avoidance, and a virtual 

corridor constraint are integrated into the reward function. This enables the swarm 

not only to maintain stable formation and avoid obstacles, but also to operate 

safely within predefined spatial boundaries, addressing a critical gap in existing 

flocking research. Extensive simulations were conducted across multiple 

scenarios, including environments with obstacles and swarm sizes ranging from 5 

to 50 quadcopters. The quantitative results demonstrate that the proposed method 

achieves a target goal arrival of at least 98% across all scenarios, maintains low 

collision and deconfliction rates (below 2.5% for the largest swarms), and 

preserves effective spatial separation and stable flocking formations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

In recent years, research related to UAV swarms has been explored in 

several applications such as search and rescue missions [1], agriculture [2], 

mapping [3], military [4], and entertainment [5]. Compared to single UAVs, 

swarms are capable of handling more complex tasks while offering enhanced fault 

tolerance and robustness. The collective behavior of such UAVs relies on the 

implementation of flocking strategies, which serve as a high-level control 

mechanism and are central to swarm operations [6]. Flocking is a phenomenon 

observed in nature, referring to the coordinated group movement of animals such 

as bird flocks, fish schools, or herds of land animals. Inspired by these natural 

systems, Reynolds introduced the Boids model in 1986 [7] which simulates 

flocking behavior based on three fundamental heuristic rules: separation, 

alignment, and cohesion. 

 

Separation Alignment Cohesion
 

Figure 1 Boids rules 

 

The Boids model has since formed the foundation for various studies on flocking 

control. For instance, in [8] a combination of Linear Quadratic Regulator (LQR) 

and Genetic Algorithm (GA) was applied to achieve optimal swarm movement. 

Although effective in maintaining tracking, aggregation, and velocity 

performance, the study did not address performance in obstacle-dense 

environment. Similarly, [9] proposed a distributed integral control method for 
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stable and uniform navigation in large UAV swarms. While effective, this 

approach was limited to 30 UAVs and required considerable time to achieve 

convergence. Another notable contribution is the EGO-swarm algorithm 

introduced in [10], which utilizes vision-based navigation through spatiotemporal 

joint optimization. While it demonstrates effective performance in complex 

environments, its implementation is heavily dependent on hardware capabilities 

and is constrained to a limited number of UAVs. 

Although these methods have shown promise, they generally rely on 

complex and predefined mathematical rules, limiting their adaptability to highly 

dynamic and uncertain environments. This study proposes a novel approach to 

flocking control using Reinforcement Learning (RL) for swarm quadcopter 

operations. The primary focus is to address scalability in scenarios characterized 

by dense obstacles and varying swarm sizes. 

 

1.2. Problem Identification and Objectives 

Recent advancements have highlighted RL as a powerful framework for 

swarm robotics due to its generalization capability, flexibility, and learning 

efficiency [11]. For example,  [12] demonstrated the application of RL with Deep 

Neural Networks (DNN) combined with Force-based Motion Planning (FMP), 

achieving a 75% success rate in point-mass agents. However, this setup simplifies 

the agent's physical characteristics. In another study, [13] applied Q-Learning to a 

real-world quadcopter swarm in constrained spaces with high obstacle density. 

Despite the method's success, it utilized a virtual leader-follower scheme, limiting 

the overall flexibility as the swarm behavior was dependent on a single UAV. 

To overcome these limitations, this research proposes an RL-based 

flocking control method that considers both kinematic and dynamic properties of 

quadcopters. The specific objectives of the study include: 

1) Develop a reinforcement learning-based high-level control method for 

swarm quadcopter operations. 

2) Analyze the performance of the proposed method across various simulated 

environments with different configurations. 
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1.3. Scope of Works 

The scope of work and limitation of the research problem are as follows: 

1) The Quadcopter will be used as UAV agent model incorporates kinematic 

and dynamic properties, excluding detailed aerodynamic modeling [14], 

[15]. 

2) The interaction among quadcopters is formulated under a Partially 

Observable Markov Decision Process (POMDP), considering limited 

communication and perception range. 

3) Flocking control is implemented using deep reinforcement learning 

(DRL). 

4) The training algorithm used is Proximal Policy Optimization (PPO) [16], 

with implementation as multi agent scenarios [17]. 

5) Performance evaluation focuses on the model's flexibility and robustness 

through various reward settings and environment configurations, 

assessing: 

a. Target reaching capability, 

b. Obstacle avoidance efficiency, 

c. Maintenance of stable inter-agent distances. 

 

1.4. Hypothesis 

The expected outcome of this research is that an RL-based flocking 

control model will provide a generalized and flexible solution for quadcopter 

swarm operations, particularly in obstacle-rich environments with varying swarm 

sizes. The trained model is expected to outperform traditional rule-based 

approaches in terms of adaptability and scalability. 

 

1.5. Research Method 

The methodology used in this research refers to the following structure: 

1) Literature Study 

Conduct literature studies related to the basic concepts of quadcopter 

modeling (kinematic and dynamic), Reinforcement Learning along with 

the application of Partially Observed Markov Decision Process (POMDP) 
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as a formulation and Proximal Policy Optimization (PPO) as a training 

method. 

2) Flocking Control Model Design 

Designing Flocking Control using Deep Reinforcement Learning. 

2) Experiment and Analysis  

Conducting simulations based on designed scenarios, followed by 

performance analysis.  

 


