ABSTRAK

Penelitian ini mengusulkan strategi pengendalian flocking berbasis deep
reinforcement learning (DRL) untuk swarm quadcopter yang beroperasi dalam
lingkungan dengan kepadatan rintangan tinggi serta variasi jumlah anggota
kawanan. Berbeda dengan metode berbasis aturan konvensional yang kurang
adaptif terhadap skenario yang kompleks dan dinamis, pendekatan ini
merumuskan tugas flocking sebagai suatu proses keputusan Markov dengan
pengamatan parsial (Partially Observable Markov Decision Process/POMDP),
dengan mempertimbangkan keterbatasan persepsi dan komunikasi lokal dari
setiap agen. Kebijakan kendali dilatih menggunakan algoritma Proximal Policy
Optimization (PPO) melalui skema pelatihan tersentralisasi dan pelaksanaan
terdesentralisasi dalam lingkungan multiagen. Fungsi perolehan (reward function)
dirancang dengan mengintegrasikan aturan klasik berbasis boid (separation,
cohesion, alignment), penghindaran tabrakan secara eksplisit, serta batasan
koridor virtual. Pendekatan ini memungkinkan swarm untuk tidak hanya
mempertahankan formasi yang stabil dan menghindari rintangan, tetapi juga
beroperasi secara aman dalam batas wilayah yang telah ditetapkan. Simulasi
secara ekstensif telah dilakukan pada berbagai skenario, termasuk lingkungan
dengan keberadaan rintangan serta jumlah agen yang bervariasi antara 5 hingga
50 quadcopter. Hasil kuantitatif menunjukkan bahwa metode yang diusulkan
mencapai tingkat keberhasilan menuju sasaran sebesar minimal 98% pada seluruh
skenario, mempertahankan tingkat collision dan deconfliction di bawah 2,5%
untuk ukuran swarm yang tinggi, serta menjaga jarak spasial dan formasi yang

stabil secara efektif.
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ABSTRACT

This research presents a deep reinforcement learning (DRL)-based
flocking control strategy for quadcopter swarms operating in environments with
dense obstacles and varying swarm sizes. Unlike conventional rule-based
methods, which struggle to adapt to complex and dynamic scenarios, the proposed
approach formulates the flocking task within a Partially Observable Markov
Decision Process (POMDP), accounting for the local perception and
communication constraints of each agent. The control policy is trained using the
Proximal Policy Optimization (PPO) algorithm, implemented with centralized
training and decentralized execution in a multi-agent setting. Classic boid-inspired
rules (separation, cohesion, alignment), explicit collision avoidance, and a virtual
corridor constraint are integrated into the reward function. This enables the swarm
not only to maintain stable formation and avoid obstacles, but also to operate
safely within predefined spatial boundaries, addressing a critical gap in existing
flocking research. Extensive simulations were conducted across multiple
scenarios, including environments with obstacles and swarm sizes ranging from 5
to 50 quadcopters. The quantitative results demonstrate that the proposed method
achieves a target goal arrival of at least 98% across all scenarios, maintains low
collision and deconfliction rates (below 2.5% for the largest swarms), and

preserves effective spatial separation and stable flocking formations.
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CHAPTER 1
INTRODUCTION

1.1. Background

In recent years, research related to UAV swarms has been explored in
several applications such as search and rescue missions [1], agriculture [2],
mapping [3], military [4], and entertainment [S]. Compared to single UAVs,
swarms are capable of handling more complex tasks while offering enhanced fault
tolerance and robustness. The collective behavior of such UAVs relies on the
implementation of flocking strategies, which serve as a high-level control
mechanism and are central to swarm operations [6]. Flocking is a phenomenon
observed in nature, referring to the coordinated group movement of animals such
as bird flocks, fish schools, or herds of land animals. Inspired by these natural
systems, Reynolds introduced the Boids model in 1986 [7] which simulates
flocking behavior based on three fundamental heuristic rules: separation,

alignment, and cohesion.

Separation Alignment Cohesion

Figure 1 Boids rules

The Boids model has since formed the foundation for various studies on flocking
control. For instance, in [8] a combination of Linear Quadratic Regulator (LQR)
and Genetic Algorithm (GA) was applied to achieve optimal swarm movement.
Although effective in maintaining tracking, aggregation, and velocity
performance, the study did not address performance in obstacle-dense

environment. Similarly, [9] proposed a distributed integral control method for



stable and uniform navigation in large UAV swarms. While effective, this
approach was limited to 30 UAVs and required considerable time to achieve
convergence. Another notable contribution is the EGO-swarm algorithm
introduced in [10], which utilizes vision-based navigation through spatiotemporal
joint optimization. While it demonstrates effective performance in complex
environments, its implementation is heavily dependent on hardware capabilities
and is constrained to a limited number of UAVs.

Although these methods have shown promise, they generally rely on
complex and predefined mathematical rules, limiting their adaptability to highly
dynamic and uncertain environments. This study proposes a novel approach to
flocking control using Reinforcement Learning (RL) for swarm quadcopter
operations. The primary focus is to address scalability in scenarios characterized

by dense obstacles and varying swarm sizes.

1.2.  Problem Identification and Objectives

Recent advancements have highlighted RL as a powerful framework for
swarm robotics due to its generalization capability, flexibility, and learning
efficiency [11]. For example, [12] demonstrated the application of RL with Deep
Neural Networks (DNN) combined with Force-based Motion Planning (FMP),
achieving a 75% success rate in point-mass agents. However, this setup simplifies
the agent's physical characteristics. In another study, [13] applied Q-Learning to a
real-world quadcopter swarm in constrained spaces with high obstacle density.
Despite the method's success, it utilized a virtual leader-follower scheme, limiting
the overall flexibility as the swarm behavior was dependent on a single UAV.

To overcome these limitations, this research proposes an RL-based
flocking control method that considers both kinematic and dynamic properties of
quadcopters. The specific objectives of the study include:

1) Develop a reinforcement learning-based high-level control method for
swarm quadcopter operations.
2)  Analyze the performance of the proposed method across various simulated

environments with different configurations.



1.3.

1))

2)

3)

4)

5)

14.

Scope of Works

The scope of work and limitation of the research problem are as follows:
The Quadcopter will be used as UAV agent model incorporates kinematic
and dynamic properties, excluding detailed aerodynamic modeling [14],
[15].

The interaction among quadcopters is formulated under a Partially
Observable Markov Decision Process (POMDP), considering limited
communication and perception range.

Flocking control is implemented using deep reinforcement learning
(DRL).

The training algorithm used is Proximal Policy Optimization (PPO) [16],
with implementation as multi agent scenarios [17].

Performance evaluation focuses on the model's flexibility and robustness
through various reward settings and environment configurations,
assessing:

a. Target reaching capability,

b. Obstacle avoidance efficiency,

c. Maintenance of stable inter-agent distances.

Hypothesis

The expected outcome of this research is that an RL-based flocking

control model will provide a generalized and flexible solution for quadcopter

swarm operations, particularly in obstacle-rich environments with varying swarm

sizes. The trained model is expected to outperform traditional rule-based

approaches in terms of adaptability and scalability.

1.5.

1))

Research Method

The methodology used in this research refers to the following structure:
Literature Study

Conduct literature studies related to the basic concepts of quadcopter
modeling (kinematic and dynamic), Reinforcement Learning along with

the application of Partially Observed Markov Decision Process (POMDP)



2)

2)

as a formulation and Proximal Policy Optimization (PPO) as a training
method.

Flocking Control Model Design

Designing Flocking Control using Deep Reinforcement Learning.
Experiment and Analysis

Conducting simulations based on designed scenarios, followed by

performance analysis.



