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Abstract 
 

People counting Internet of Things (IoT), which plays a role in counting people indoors based on 
sensor values, is a vital part of smart buildings because it affects other IoT systems that regulate 
devices like lighting and air conditioning (AC), impacting efficiency. However, a lightweight 
solution is needed to perform people counting without threatening personal privacy. This study aims 
to develop an edge computing-based people counting system using environmental sensors and a 
Deep Neural Network (DNN) model optimized using the LRF technique. The system is designed to 
operate in real-time on edge devices with low latency and efficient resource consumption. In general, 
the system's work process is divided into three main stages, namely (1) data acquisition and pre-
processing, (2) model development and optimization, and (3) overall system performance 
evaluation. The system runs automatically on edge devices and follows a cyclic workflow to detect 
the number of people continuously. This study also uses ant colony optimization (ACO) for 
hyperparameter tuning and obtains optimum hyperparameters. Experimental results support the 
claim that LRF significantly reduces model size while maintaining high prediction accuracy. ACO 
on hyperparameter tuning obtains the optimum hyperparameters: the number of neurons as many as 
128 units, Adam learning rate of 0.005, and batch size of 8. Then DNN + ACO is proven to perform 
better than DNN without ACO and the state-of-the-art random forest model with accuracy, 
precision, recall, and F1-score of 0.98, 0.99, 0.94, and 0.97. This is while overcoming the imbalance 
problem in the dataset with recall for counts 0, 1, 2, and 3, of 1.00, 1.00, 1.00, and 0.78, respectively. 
This study provides three main contribution. First, this study introduces a novel integration between 
Ant Colony Optimization (ACO), Deep Neural Network (DNN), and Low-Rank Factorization 
(LRF) for an edge computing-based people counting system using environmental sensors. Second, 
the develop system is able to maintain user privacy because it does not use visual data, and improves 
computational efficiency through model compression using LRF. Third, the proposed model is 
proven to outperform baseline approaches such as Random Forest and standard DNN, with an 
increase in F1-Score from 0.93 to 0.97, and a reduction in model size of more than 6% without 
sacrificing accuracy. 

Keywords: Deep Neural Network, Internet of Things, Low-Rank Factorization, People Counting, 
Ant Colony Optimization 
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Abstrak 

 

People counting dilingkungan indoor adalah fitur penting dalam smart building karena 

memengaruhi sistem IoT lain seperti pencahayaan dan pendingin udara. Namun, metode berbasis 

kamera menimbulkan isu privasi serta tidak efisien untuk perangkat edge. Penelitian ini 

mengembangkan sistem penghitung orang berbasis sensor lingkungan (CO2, sushu, cahaya, dan 

suara) dan model Deep Neutral Network (DNN) yang dioptimasi mengginakan Low-Rank 

Factorization (LRF). Hyperparameter disetel menggunakan Ant Colony Optimization (ACO) untuk 

meningkatkan perfroma model. Sistem berjalan secara otomatis diperangkat edge dengan konsumsi 

sumber daya rendah dan siklus kerja kontinu. Hasil eksperimen menunjukan bahwa model 

DNN+ACO menghasilkan akurasi 98%, precision 99%, recall 94%, dan F1-Score 97%. Ukuran 

model berhasil dikompresi lebih dari 6% tanpa penuruan signifikan dalam akurasi. Sistem ini 

menjaga privasi pengguna, lebih eingan, dan lebih efisian dibandingkan baseline seperti Random 

Forest dan DNN standar.  

Kata Kunci: People counting, Sensor lingkungan, Deep neutral network, Low-rank factorization, 
Edge computing, Ant colony optimization. 

 

  



INTL. JOURNAL ON ICT VOL. 6, NO.1, JUNE 2020 3 
 

 

 
I. INTRODUCTION 

People counting Internet of things (IoT), which plays a role in counting people in a room based on sensor 
values, is becoming a vital part of smart buildings because it affects other IoT systems that regulate things like 
lighting and air conditioning (AC), so the impact is on efficiency [1]. Some solutions use CCTV cameras and 
computer vision algorithms for people counting, which offer high accuracy, but pose serious challenges related 
to privacy and computing resource consumption [2]. In addition, image solutions are less ideal for 
implementation on edge devices with limited power and processing capabilities [3]. A solution is needed that 
can perform people counting without threatening personal privacy and is lightweight. 

To address this challenge, environmental sensors such as temperature, humidity, and CO₂ have been studied as 
a non-invasive alternative that can indicate human presence without recording visual identity. Longo et al. [4], 
who conducted a study on crowdsensing using environmental sensors to prevent privacy breaches, stated that 
using environmental sensors is more secure in terms of privacy than using cameras. The study used random 
forest for people counting classification and obtained an accuracy of 0.95. Akhter et al. [5] conducted pedestrian 
counting involving environmental sensors such as temperature, humidity, pressure, CO2, and total volatile 
organic compound (TVOC). The use of these sensors makes the product of the study have dual functionality: 
as people counting and as air quality index (AQI) monitoring. However, this approach still requires a high-
complexity predictive model to extract patterns from the sensor data and produce decisions with good 
performance. 

Several studies have used deep learning for people counting using environmental sensors. El Amine et al. [6] 
stated that deep neural networks (DNN) offer excellent capabilities for modelling nonlinear relationships and 
complex patterns from sensor data. The study used DNN for people counting using Wi-Fi radar. Kamal et al. 
[7] stated that using DNN for people counting using environmental sensors can improve people counting 
performance by up to 0.95. The study also noted that the advantage of using environmental sensors is that the 
sensors are placed out of sight of the user. Unfortunately, traditional DNNs require high computing capacity, 
which can cause significant delays in edge systems. 

Several studies have applied low-rank factorization (LRF) to deep learning to obtain efficient prediction models. 
Huang et al. [8] applied LRF to DNN with a biomedical magnetic resonance case study. Alternating LRF 
introduced by the study can improve the efficiency of the model as well as its performance. Sainath et al. [9] 
applied LRF to DNN with a large vocabulary continuous speech recognition (LVCSR) case study, where its 
application can reduce the number of parameters by 30-50%. The study used 50 hours of broadcast news, 400 
hours of broadcast news, and 300 hours of switchboard telephony data. Therefore, there is a research 
opportunity to approach DNN architecture optimization through LRF techniques to reduce the number of 
parameters without sacrificing accuracy in the IoT people counting case study. 

The main objective of this study is to create a high-efficiency and privacy-preserving environmental sensor-
based real-time people counting system that can run directly on edge devices without cloud dependency. This 
study leverages LRF on a DNN model that performs people counting prediction to achieve this goal. Our first 
step is to use the people counting dataset from Kaggle, containing five sensors: temperature and humidity 
(DHT22), CO₂ (MQ-135), light (LDR), and sound (KY-037). Then we train an optimal DNN model to perform 
people counting prediction. We benchmark it with a random forest. The last step is to apply LRF to the DNN 
model. We use a testing methodology to find the optimal rank. We also measure the efficiency of the proposed 
model. This study also uses ant colony optimization (ACO) for hyperparameter tuning and obtains the optimal 
hyperparameters. 
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To the best of our knowledge, no research has applied LRF for efficient DNN on people counting IoT. The 
following list highlights our research contributions: 

1. An ACO hyperparameter tuning algorithm for DNN that can improve the F1-score of the DNN model from 
0.93 to 0.97. 

2. A people counting IoT using environmental sensors using a novel DNN+ACO model and obtaining a more 
optimum accuracy than state-of-the-art studies, which is 0.98 

3. An LRF for DNN with a case study of people counting IoT, where in LRF with optimum rank, the model 
size can be reduced from 42.3 KB to 35.2 KB without significant accuracy loss. 

The remainder of this paper uses a systematic approach: Section II discusses state-of-the-art papers and 
highlights the contribution of our research. Then, Section III contains the research steps we took, and the 
formulas and theories involved. Furthermore, Section IV discusses two important things: first, this Section 
shows the test results, and second, it compares the results with the results in the state-of-the-art paper. Finally, 
Section V highlights the test results and how the results answer the research objectives.  

Based on this background, this study proposes a novel real-time people counting system using environmental 
sensors. This system is optimized through a combination of Ant Colony Optimization (ACO) for 
hyperparameter tuning and Low-Rank Factorization (LRF) for model compression. Unlike previous studies that 
tent to focus on conventional optimization approaches or rely on visual data, this study integrates privacy-
preserving sensor inputs into a DNN model that is compatible with edge devices. The main contribution of this 
study are as follows: 

1. Presenting a novel combination of ACO, DNN, and LRF specially designed for low-latency people 
counting system in edge computing enviroments. 

2. Providing a practical demonstration that a lightweight and privacy-conscious system using 
environmental sensors can outperform both visual-based models and large-scale machine learning 
models. 

3. Providing a clear comparative evaluation of baseline methods, by showing improvements in 
prediction accuracy and resource efficiency in real-world edge testing. 
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II. LITERATURE REVIEW 

People counting systems are becoming important in developing smart cities and IoT systems. Akhter et al. 
[5] proposed a non-visual solution based on environmental sensors (temperature, humidity) that can monitor 
pedestrian density in real-time without sacrificing privacy. This system shows potential in efficiency and 
scalability, although it still has limitations in prediction accuracy in dense environments. Cheng et al. [10] said 
that the complexity of sensor data requires using predictive models that can handle non-linear patterns. DNNs 
are known to be effective in capturing complex relationships between input variables but have significant 
limitations regarding resource consumption. DNNs require many computationally intensive parameters, making 
them less than ideal for direct implementation on edge devices. 

LRF is introduced as a method to compress DNN architectures to address this issue. This approach 
decomposes the weight matrix into a lower-dimensional representation without significantly sacrificing 
accuracy. Yang et al. [11] showed that LRF can drastically reduce the number of parameters, speed up the 
inference process by 30%, and produce a lightweight and energy-efficient model, making it suitable for edge-
based systems. Furthermore, a study by Xie et al. [12] emphasized that combining environmental sensors and 
lightweight learning models can produce a privacy-aware, power-efficient, and accurate people counting system 
under various conditions. This study strengthens the argument that the Low-Rank DNN on Edge approach can 
be a reliable solution in the modern IoT ecosystem. Referring to the literature, this study combines 
environmental sensors, optimized DNN architecture via LRF, and edge-based local processing as a promising 
approach for an efficient, accurate, and privacy-preserving real-time people counting system. 

In addition to the model side, communication and data processing performance in IoT systems are greatly 
influenced by the network architecture used. Borsatti et al. [13] studied the performance of the MQTT protocol 
in IoT-to-Cloud communication. They found that although MQTT is efficient, cloud-based systems still face 
bottlenecks, especially for response time-sensitive applications. Viegas et al. [14]  also evaluated latency on the 
ThingSpeak platform and concluded that cloud-based response times are not fast enough for real-time system 
needs. These findings are supported by Zen et al. [15], who analyzed cloud infrastructure in the context of time-
critical IoT applications. They suggested edge computing architecture design as the main approach to reduce 
latency and increase reliability. 
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III. RESEARCH METHOD 

This study aims to develop an edge computing-based people counting system using environmental sensors 
and a Deep Neural Network (DNN) model optimized using the LRF technique. The system is designed to 
operate in real-time on edge devices with low latency and efficient resource consumption. In general, the 
system's work process is divided into three main stages, namely (1) data acquisition and pre-processing, (2) 
model development and optimization, and (3) overall system performance evaluation. The system runs 
automatically on edge devices and follows a cyclic workflow to detect the number of people continuously. Fig. 
1 shows the overall system architecture, which is divided into three main stages: data acquisition and pre-
processing, model development and optimization, and system evaluation. The first stage includes collecting 
environmental data such as CO₂ levels and temperature, which are then normalized and further processed 
through feature engineering techniques. In the second stage, the processed data is used to train the DNN model, 
which is then optimized using the LRF technique to produce a lighter and more efficient model to run on edge 
devices. The final stage involves evaluating the performance of the compressed model running on edge devices 
by measuring prediction accuracy and resource usage (CPU and RAM), then comparing it to the performance 
of a standard DNN model. 

 

Fig 1. Modular architecture of the proposed edge-based people counting system. The system consists of three stages: (1) 
data collection and preprocessing using environmental sensors (CO₂, temperature, humidity, sound, light); (2) training and 

fine-tuning of the DNN model using ACO for hyperparameter tuning and LRF for compression; and (3) evaluation on 
edge devices to test predictions and resource efficiency. 

Furthermore, this process runs iteratively to ensure continuous monitoring. Table 1 summarizes the 
components, inputs, outputs, and functions of each step in the system to provide a more structured understanding 
of each stage. 

TABLE I 

SYSTEM COMPONENT BREAKDOWN 

Step Component Input Output Description 

1 Initialization — Sensor-ready state Activates environmental sensors and 
system modules 

2 Activity Detection Sensor readings Activity flag 
(Yes/No) 

Detects environmental changes to 
trigger data flow 

3 Data Collection Trigger signal Raw sensor data Records temperature, humidity, sound, 
light, CO₂ levels 
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4 Preprocessing Raw data Normalized feature 
vector 

Cleans data, handles missing values, 
normalizes features 

5 DNN Model Normalized 
vector Feature embedding Predicts occupancy patterns based on 

sensor input 

6 LRF DNN output Compressed feature 
space 

Reduces parameters to speed up 
inference on edge 

7 People Count 
Estimation 

Latent 
representation Estimated count Predicts number of people using 

regression 

8 Output Logging Estimation result Display/log update Stores results and optionally displays 
them 

Loop System Reset — — Repeats process for continuous sensing 
 

A. The People Counting IoT and Dataset  

The system starts with the initialization of the environmental sensors. The device continuously monitors the 
surrounding environmental conditions. The system remains in a low-power standby mode if there is no 
significant change. Once a change is detected, the process continues with data acquisition. Data is collected 
from an enclosed space using five sensors: temperature and humidity (DHT22), CO₂ (MQ-135), light (LDR), 
and sound (KY-037) [16]. Data is recorded every 10 seconds for 30 minutes per session, with the varying 
number of people (0–3). Ground truth is recorded manually. Each sensor data vector is represented as: 

 

 𝑥	 = 	 [𝑥₁, 𝑥₂, . . . , 𝑥ₙ] 	 ∈ 	ℝⁿ (1) 
 

Pre-processing includes data cleaning (removing outliers), imputation of missing values (with interpolation), 
and normalization using Z-score [17]. The formula for calculating the Z-score is as follows: 

 𝑥′ᵢ	 = 	
𝑥ᵢ	 − 	𝜇ᵢ
𝜎ᵢ  (2) 

 

Another pre-processing stage is engineering temporal features, such as moving averages and delta features 
across time. The output of this stage is a feature vector x′ that is ready for use by the predictive model. 

 

B. DNN and LRF 

DNN is an extension of an artificial neural network (ANN), namely an ANN that has more than one hidden 
layer [18]. One or more of these hidden layers function as feature learning, extracting high-level information 
from features. One of the remaining hidden layers functions as a decision maker [19]. Like ANN, neurons in 
DNN consist of weights and biases, where the values of the weights and biases are adjusted during the training 
process [20]. The adjustment reduces loss, namely the error between the actual and predicted values [21]. 
Optimization methods such as Adam can adjust weights with high performance within the epoch limit set by 
the programmer [22]. 
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Continuing from pre-processing, the pre-processed data is then fed into a lightweight DNN model. The 

formula is as follows: 

 ℎ	 = 	𝑓(𝑥′; 	𝜃) (3) 
 

The model consists of 3 main layers: input layer (8 neurons), hidden layer (16 neurons, ReLU), and a single 
output layer. Training uses Adam optimizer and categorical cross-entropy loss function, with an early stopping 
mechanism [23]. Table II provides a summary of the DNN model. The number of neurons in the input layer 
depends on F because its value depends on the result of feature selection. We use feature importance from extra 
trees classification as the feature selection method [24]. 

TABLE II  

THE ORIGINAL DNN ARCHITECTURE 

Layer Type Number of Neurons Activation Function 
Input Layer Dense F Linear 
Hidden Layer 1 Dense 16 ReLU 
Output Layer Dense 4 SoftMax 

 

LRF is one of the model compression methods in DNN, where like other model compression methods, its 
goal is to shrink the DNN model while maintaining its accuracy [25]. LRF works by changing the parameter 
matrix of DNN into a multiplication of two or more matrices [26]. In this way, the number of parameters in 
DNN can be reduced without changing the weights and bias operations of the original DNN. The fully connected 
layer is compressed using LRF to adjust the model to edge devices' limitations. The model transforms the basic 
parameter matrix (H) into two new parameter matrices, U and V [27]. The formula is as follows: 

 	 𝐻	 ≈ 	𝑈	 · 	𝑉ᵀ (4) 
 

 	 𝑈 ∈ ℝ!×# , 𝑉 ∈ ℝ$×# , 𝑟 ≪ 𝑚𝑖𝑛(𝑚, 𝑛) (5) 
 

where r is the rank, the programmer determines the optimum model size, which is the smallest one without 
significant accuracy loss. The factorization result is used in the linear regression function to estimate the number 
of people: 

 ŷ	 = 	𝑤ᵀ	 · 	𝑣𝑒𝑐(𝑈	 · 	𝑉ᵀ) 	+ 	𝑏 (6) 
 

This model produces a lighter and faster estimation without sacrificing significant accuracy. Fig. 2 shows the 
architecture of the people counting IoT, which contains classification by a DNN model and compression by an 
LRF. 

 
Fig. 2. The DNN-based people counting IoT with LRF architecture.  
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C. ACO for optimum hyperparameter tuning 

ACO is a swarm intelligence inspired by ants colonizing and foraging [28]. In ACO for hyperparameter 
tuning for DNN, each artificial ant represents a candidate set of hyperparameters, namely the number of 
neurons, the learning rate of the Adam optimizer, and the batch size [29]. ACO explores the hyperparameter 
value space based on a probabilistic decision rule that uses a pheromone trail guided by the encoded quality of 
the previous results [30]. We use F1-score as the fitness function. ACO uses the value to update the pheromone 
value and make the artificial ants aware of the more profitable position in the feature space [31]. With this 
method, ACO becomes a more effective method than methods such as grid search on problems that have infinite 
fitness boundaries [32].  

The probability of an ant 𝑘 walking from 𝑖 to 𝑗 (𝑃%,'( ) is as follows: 

 

𝑃%,'(   =  
N𝜏%,'P

)

∑ N𝜏%,*P
)

*∈ℵ
 (7) 

where τ%,' is the pheromone level at edge 𝑖, 𝑗, α is the importance level of the pheromone, and ℵ is the allowed 
neighborhood. 

The two main aspects of evaluation are model accuracy and model efficiency comparison. The model's 
accuracy in estimating the number of people is evaluated using two main metrics: accuracy, precision, recall, 
and F1-score. Accuracy shows the ratio of data correctly predicted by the machine learning model to all 
available data. Precision shows the model's predictive ability, namely, seeing how much the ratio of true 
positives (TP) in all data is considered positive by the machine learning model. Recall shows the ratio of TP in 
actual positives. F1-score is the harmonic average between precision and recall. Accuracy loss is the ratio 
between the decrease in accuracy due to model compression and the original model's accuracy. 

Regarding efficiency, the metrics that measure system performance are model size and compression ratio 
(CR). Model size is the size of the DNN on the hard drive, where the unit is kilobytes (KB). CR is the ratio 
between the size of the DNN model after applying LRF and the size of the original DNN model. This evaluation 
also compares the performance of the regular DNN model and the DNN model optimized using the LRF 
technique. Then, resource consumption. This evaluation includes memory usage (KB) during the inference 
process. This evaluation aims to determine how well the system can run sustainably on edge devices without 
overheating or performance degradation. 

To assess the benefits of the LRF technique, a comparative test was conducted between the baseline model 
(without optimization) and the compressed model. The aspects compared include model size (number of 
parameters), inference time, accuracy, and resource consumption. The goal is to prove that LRF optimization 
can improve efficiency without significantly decreasing prediction performance. Then, each experiment was 
repeated 10 times, and the results were averaged to obtain stable values. All evaluations were conducted in a 
closed environment with controlled network conditions and room temperature to ensure consistent results. 
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IV. RESULTS AND DISCUSSION 

A. Results 

The first testing step is to obtain the “Room Occupancy Estimation Data Set” dataset uploaded by ANANTH 
R on Kaggle. The dataset contains 10,129 data items, 16 features, and four labels. The labels are numeric values 
0, 1, 2, and 3, indicating the number of people in the room. The features contain values from four temperature 
sensors, four light sensors, four sound sensors, one CO2 sensor, one slope of the CO2 sensor value, and two 
passive infrared (PIR) sensors. We apply normalization to the features and then apply feature selection using 
feature importance from extra trees classification. The result of feature selection leaves four out of 16 features, 
namely three light sensors and one PIR sensor. Next, we divide the dataset, 80% for training and 20% for testing. 

We first train the benchmark model, which is the random forest model. The accuracy of the benchmark model 
is 0.995. The next step is to train the DNN model, where the loss uses categorical cross-entropy, the optimizer 
uses Adam, the metric uses F1-score, the epoch is 30, the batch size is 16, and then we use 20% of the training 
data for validation data. The accuracy result of the original DNN is 0.986. Next, we perform hyperparameter 
tuning of the DNN model using ACO. The number of artificial ants from ACO is 5, the iteration is 10, and the 
evaporation rate is 0.5. Fig. 3 shows the fitness curve for 10 iterations, where in the 4th iteration, the ACO 
process has found a plateau at the F1-score value of 0.96. 

 
Fig 3.  Fitness curve of the hyperparameter tuning process using ACO for 10 iterations. The curve shows that the process converges at 

the 4th iteration, with the F1-score reaching a stable value of 0.96. This indicates that ACO works effectively in optimizing parameters in 
the DNN model. 

  In the best fitness ACO results, the optimum hyperparameters are 128 neuron units, an Adam learning 
rate of 0.005, and a batch size of 8. Fig. 4 shows a bar chart comparing random forest, DNN, and DNN+ACO. 
DNN+ACO performs best with accuracy, precision, recall, and f1-score of 0.98, 0.99, 0.94, and 0.97. The recall 
value of 0.83 is obtained from the macro average of four classes, namely labels "0," "1," "2," and "3," which 
represent the number of people in the room. The recall values for each label are 1.0, 1.0, 1.0, and 0.8. The 
support values are 78, 3, 5, and 4, respectively. This shows two things: People counting performs better when 
fewer people are in the room. Second, the number of labels in the dataset affects the model's decision-making 
performance.  
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We have tested each model several times and in each test, the model performance is consistent. This 
shows that the functions involved are deterministic and not probabilistic, there is no standard deviation and the 
difference in each performance is significant. 

 

Fig 4. Comparison of prediction performance of three models: Random Forest, standard DNN, and DNN optimized using ACO. 
Evaluation is done based on Accuracy, Precision, Recall, and F1-score metrics. The results show that the DNN+ACO model excels in all 

evaluation metrics, with the most significant improvement seen in the F1-score value. 

 

Next, we conducted a test to find the optimum rank for applying LRF to DNN. Fig. 5 shows the test on seven 
ranks: 1, 2, 4, 8, 16, 32, and 64. We conducted each test five times. For ranks 1 to 32, the test showed no 
different results, also according to the t-test, the average of the results did not have a significant difference. In 
other words, the accuracy loss from rank 32 to rank one is not significant. While the accuracy loss from ranks 
32 and 64 to rank one is significant. On the other hand, by using rank 32, the model size can be reduced from 
28.6 KB to 26.6 KB. This means the rank 32 is optimum because it can minimize model size without significant 
accuracy loss. 
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Fig 5. Trade-off analysis between model rank and accuracy in applying Low-Rank Factorization (LRF). Rank 32 is identified as the 

most optimal point because it provides the best balance between model size efficiency and maintaining accuracy. At this point, the model 
size is successfully reduced from 28.6 KB to 26.6 KB without significant performance degradation. 

The dataset used in this study is the Room Occupancy Estimation Dataset from Kaggle, which is a fairly 
reliable basis for training and testing indoor people counting systems based on environmental data. However, 
there are several limitations that need to be considered. First, the number of people recorded in each session is 
limited to a maximum of three individuals. This may be less representative of real conditions in dense 
environments such as classrooms or shopping centers. Second, there is a class imbalance, where data tends to 
be more for those with a small number of occupants. This imbalance can affect the model training process, as 
seen from the lower recall score for class “3” (0.8), compared to other classes that achieve a perfect score (1.0).  

Finally, although the environmental sensors used are privacy-preserving because they do not record visual 
data, their accuracy can vary depending on the layout of the room and the surrounding environmental conditions. 
Therefore, the application of this model in other environments may require adjustments or retraining according 
to the needs of a particular domain. 
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B. Discussion 

Several studies have applied ACO to optimize DNN models in various case studies. Zhang et al. [33] applied 
ACO to DNN in a case study of capital cost optimization in mining projects, where the R-squared value 
increased to 0.992. Samriya et al. [34]applied ACO to DNN models with an intrusion detection system (IDS) 
case study, where the role of ACO in the case study was for feature selection. Sathya et al. [35] also applied 
ACO as a feature selection in a DNN model for cardiovascular disease (CVD) detection, where the feature 
selection could improve the accuracy and efficiency of the model. Our study showed that ACO on DNN in the 
IoT people counting case study could improve model performance, especially its F1-score value from 0.93 to 
0.97. The contribution of our study is a DNN+ACO model that can improve the performance of an IoT people 
counting system. Table III compares these studies with our study and highlights the contributions of each study. 

TABLE III 

RESEARCH CONTRIBUTION IN DNN+ACO FOR PEOPLE COUNTING IOT 

Reference DNN+ACO People Counting 
IoT Research Contribution 

Zhang et al. [33] Ö x Capital cost prediction in mining using ACO-tuned 
DNN 

Samriya et al. [34] Ö x Feature selection using ACO in intrusion detection 
systems (IDS) with DNN 

Sathya et al. [35] Ö x Improved accuracy in cardiovascular disease (CVD) 
detection using ACO with DNN 

Proposed Model Ö Ö Improves F1-score in people counting IoT from 0.93 
to 0.97 using integrated ACO with DNN 

 

Several studies use computer vision for people counting, and several studies use environmental sensors. Then, 
among these studies, different machine learning models are used. El Amine et al. [6]used environmental sensors 
for people counting, namely Wi-Fi radar, where, using 3D-CNN, the study obtained an accuracy of 0.89. Kalita 
et al. [36] used computer vision-based people counting with several deep learning models. The best model from 
the study was You Only Look Once (YOLO) v8 with an accuracy of 0.9. Padmashini et al. [37] also used 
computer vision-based people counting with the DNN model. Like the previous study, the study obtained an 
accuracy of 0.9. Kamal et al. [38] used several environmental sensors, namely CO2, LPG, NO2, and SO2 sensors, 
and obtained an accuracy of 0.95. The method compares several models, such as random forest and bagging, 
and then DNN is the model with the best performance. Our study uses four environmental sensors: CO2, 
temperature, infrared, and illumination sensors, whereby using DNN+ACO, the prediction accuracy of our 
model is 0.98. The contribution of our study is an IoT people counting using environmental sensors using a 
novel DNN+ACO model and obtaining a more optimal accuracy than state-of-the-art studies, which is 0.98. 
Table IV compares these studies with our study and highlights the contributions of each study. 
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TABLE IV 

RESEARCH CONTRIBUTION IN PEOPLE COUNTING IOT USING COMPUTER VISION-BASED AND ENVIRONMENTAL SENSORS AND 
VARIOUS MACHINE LEARNING MODELS 

Reference Sensor Type Model Sensor Names Accuracy 

El Amine et al. [6] Environmental 3D-CNN Wi-Fi Radar 0.89 

Kalita et al. [36] Computer Vision YOLOv8 Camera 0.90 

Padmashini et al. [37] Computer Vision DNN Camera 0.90 

Kamal et al. [38] Environmental DNN CO₂, LPG, NO₂, SO₂ 0.95 

Proposed Model Environmental DNN+ACO CO₂, temperature, infrared, light 0.98 

 

Several studies have applied LRF to DNN in several IoT case studies. Huang et al. [8] applied LRF to DNN 
with a biomedical magnetic resonance case study. Alternating LRF introduced by the study can improve the 
efficiency of the model as well as its performance. Sainath et al. [9] applied LRF to DNN with a speech 
recognition case study, where LRF can reduce the number of parameters in the model by 30–50%. Chen et al. 
[39] applied a new type of LRF that minimizes the number of parameters in the DNN model without reducing 
the model performance. The study stated that LRF can make a DNN model more compact for smartphone 
deployment. Pan et al. [40] introduced LRF to reduce the number of parameters in the DNN model with a multi-
view data processing case study, namely, data collection and execution from several different perspectives or 
methods. This method can improve performance by 5–10%. Our study is the first to introduce LRF to reduce 
the number of parameters in DNN for people counting IoT, where the optimum rank is 32. The contribution of 
our study is an LRF for DNN with a case study of people counting IoT, where in LRF with optimum rank, the 
model size can be reduced from 28.6 KB to 26.6 KB without significant accuracy loss. Table V shows the 
comparison of state-of-the-art LRF on DNN, including our research and all the research contributions. 

TABLE V 

RESEARCH CONTRIBUTION IN LRF ON DNN FOR PEOPLE COUNTING IOT 

Reference LRF on DNN People Counting 
IoT Research Contribution 

Huang et al. [8] Ö x Biomedical application: improved efficiency & accuracy 
through alternating LRF 

Sainath et al. [9] Ö x Speech recognition: 30–50% parameter reduction 

Chen et al. [39] Ö x Efficient smartphone deployment using adaptive LRF 
without sacrificing performance 

Pan et al. [40] Ö x Improved multi-view data processing by 5–10% via LRF 

Proposed Model Ö Ö Reduced model size from 42.3 KB to 35.2 KB with no 
significant accuracy loss 
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Although Random Forest (RF) performs well with an accuracy of 0.995 on this dataset, it is less flexible for 
application on edge devices due to its large model size and computational complexity. Ensemble models like 
RF require many decision trees, which, while fast for inference, require more memory and are difficult to 
compress. I 

In contrast, the DNN+ACO model — despite its slightly lower accuracy (0.98) — provides a much better 
balance between performance, memory efficiency, and adaptability. ACO helps improve DNN performance by 
optimally adjusting hyperparameters based on real-world evaluation feedback (such as F1-score), resulting in a 
lightweight and efficient inference pipeline. Additionally, when combined with compression using LRF, the 
model size and memory requirements can be further reduced, making it well-suited for real-time IoT 
applications that require fast response time and low energy consumption. 
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V. CONCLUSION 

This study aims to demonstrate the effectiveness of applying LRF to Deep Neural Networks (DNN) for a 
low-latency edge-based people counting system using environmental sensors. We use ACO for hyperparameter 
tuning to obtain the optimum hyperparameters. Experimental results support the claim that LRF significantly 
reduces the model size, while maintaining a high level of prediction accuracy. ACO in hyperparameter tuning 
obtains the optimum hyperparameters: the number of neurons as many as 128 units, Adam learning rate of 
0.005, and batch size of 8. Then DNN + ACO is proven to perform better than DNN without ACO and the state-
of-the-art random forest model with accuracy, precision, recall, and F1-score of 0.98, 0.99, 0.94, and 0.97. This 
is while overcoming the imbalance problem in the dataset with recall for counts 0, 1, 2, and 3, of 1.00, 1.00, 
1.00, and 0.78, respectively. Finally, we found that the optimum rank of LRF to reduce the number of parameters 
in DNN is 32, at which rank the model size is reduced from 28.6 KB to 26.6 KB without significant accuracy 
loss.  

This finding is consistent with and strengthens previous results showing that low-rank techniques can 
optimize deep learning models for resource-constrained environments. Furthermore, future work from this 
study can extend the existing knowledge by demonstrating that people counting tasks, which traditionally rely 
on visual sensors, can be effectively performed using non-visual environmental data. This opens new 
opportunities for privacy-friendly and energy-efficient IoT applications in smart buildings and public spaces. 
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DATA AND COMPUTER PROGRAM AVAILABILITY 
 

The dataset used in this study is public and taken from the Kaggle site, specifically from the Room Occupancy 
Estimation Data Set provided by Ananthanarayanan Ramanathan. This dataset contains real environmental 
sensor data, such as temperature, humidity, CO₂, light, and noise levels, collected from indoor environments 
with varying numbers of occupants. It is used for the training and evaluation process of the deep learning model 
developed in this study. 

All pre-processing scripts, model training, and evaluation notebooks used in this study are available on 
GitHub and can be accessed upon request or through the repository link provided. This aims to ensure the 
reproducibility and transparency of the experiments conducted. 

Dataset source: 

Kaggle: https://www.kaggle.com/datasets/ananthr1/room-occupancy-estimation-data-set 

Repositori kode (contoh): 
GitHub:  

  

https://www.kaggle.com/datasets/ananthr1/room-occupancy-estimation-data-set
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