ABSTRACT

The development of Software Defined Network increases network management flexibility by separating the control plane and data plane, but it is vulnerable to SNMP Amplification-based Distributed Denial of Service attacks that flood SNMP ports (161) with UDP packets. This research develops a detection and mitigation system using Support Vector Machine for detection and Access Control List for mitigation in SDN. Simulations were conducted using Mininet and Ryu Controller on a topology with two switches and ten IP hosts (10.0.0.1–10.0.0.10). Traffic data was collected via Traffic Logger.py, generating features such as packet count, packet rate, and average packet size, processed using Pandas and NumPy. The Support Vector Machine model with an RBF kernel was trained using 70% training data and 30% testing data, detecting attacks based on feature thresholds. ACLs were dynamically applied via the Ryu Controller and iptables. Testing included normal, attack, and mitigation scenarios. Results show SVM accuracy >90% and effective Access Control List mitigation in restoring network performance. Results also show a reduction in packet loss from 20% to 2% after mitigation, indicating that ACL is effective in mitigating SNMP Amplification attacks. Real-time visualization via Matplotlib facilitates monitoring. This research contributes to Software Defined Network security, though limited to simulation.

Keywords—Software Defined Network, Distributed Denial of Service, SNMP Amplification, Support Vector Machine, Access Control List, Mininet, Ryu Controller.