1.1 Background

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, claiming ap-
proximately 17.9 million lives annually; about 85% are due to heart attacks and strokes [1]. The
burden is especially high in low- to middle-income countries, including Indonesia, where access
to timely diagnosis and treatment is limited. Arrhythmias—irregular heart rhythms—pose
substantial risk by disrupting blood flow and causing fatigue, dizziness, fainting, myocardial
infarction, or sudden cardiac death. They are also indicators of broader systemic events such as
stroke and heart attack; individuals with atrial fibrillation (AF) have about a five-fold increased
risk of stroke [2][3]. Diagnostic challenges persist due to limited availability of affordable, user-
friendly tools in resource-constrained settings. Valvular diseases such as mitral regurgitation
(MR), mitral stenosis (MS), and mitral valve prolapse (MVP) often produce systolic murmurs
detectable in heart sounds, yet differentiating among them requires advanced auscultation or
imaging (e.g., 12-lead ECG) and related evaluations in acute heart failure [4][5]. Structural
abnormalities can precipitate AF, ventricular tachycardia (VT), and premature ventricular con-
tractions (PVCs), underscoring the need for methods that capture both rhythmic and valvular

abnormalities from physiological signals such as PCG and ECG [6].

1.2 Problem Formulation

Given phonocardiogram (PCG) recordings, develop a method that classifies heart sounds into
Normal vs. Abnormal with high sensitivity and specificity, robust to real-world noise, and

feasible for deployment in resource-limited environments. Specifically:

Q1: Can a hybrid CNN-GRU model using PCG signals achieve accurate binary arrhythmia

detection comparable to or better than strong baselines?

Q2: Which training strategies (e.g., augmentation, class-weighted loss) most improve per-

formance under class imbalance and noise?

Q3: Is the approach suitable for eventual deployment on low-cost/edge hardware?

1.3 Objectives and Benefits

Objectives.

e Design a hybrid CNN-GRU architecture that leverages time—frequency PCG features for
binary arrhythmia detection [9].

o Employ augmentation and class-weighted loss to handle real-world variability and class

imbalance.

e Benchmark against CNN and CNN-LSTM baselines, reporting accuracy, precision, recall,



and F1l-score.
Benefits.

e Provide an accurate, scalable screening aid for earlier detection and triage in clinics with

limited resources.

¢ Reduce reliance on costlier modalities by leveraging PCG signals; PCG offers acoustic

information complementary to ECG’s electrical activity [10].

1.4 Problem Limitation

 Scope restricted to binary classification (Normal vs. Abnormal); specific arrhythmia sub-
types (e.g., AF, VT, PVC) are not individually classified.

o Evaluation uses publicly available PCG datasets; no prospective or in-clinic patient data

are included.

o Results may reflect dataset/sensor domain characteristics; external validation across de-

vices/environments is needed.

e ECG is referenced for context but not integrated; multimodal fusion is deferred to future

work.

1.5 Research Methods

Recent advances show strong potential for automated recognition of valvular and rhythm dis-
orders using deep learning on heart sounds: an automated VHD detector based on PCG and
deep models [7], and attention-based networks that improve explainability for heart-sound clas-
sification [8]. Building on this, a hybrid CNN-GRU model is adopted to capture both spa-
tial/spectral and temporal characteristics from PCG recordings [9]; PCG contributes acoustic

cues complementary to ECG’s electrical signals [10]. Concretely:

1. Data: Public PCG recordings spanning Normal and valve-related abnormalities (e.g., MR,
MS, MVP).

2. Preprocessing: Time-frequency representations (e.g., spectrograms) to expose joint tem-

poral-spectral patterns.

3. Model: CNN layers learn local spectral-spatial features; GRU layers model temporal

dependencies across cardiac cycles.

4. Training: Class-weighted loss for imbalance; augmentation (noise, gain, time shift, speed

perturbation, spectral filtering) for robustness.



5. Evaluation: Accuracy, precision, recall, and F1-score from the confusion matrix, with com-
parisons to CNN and CNN-LSTM baselines.



