ABSTRACT

Electronic Medical Records (EMRs) store critical information about patient

conditions and require strong protection against risks of manipulation or unauthorized

alterations (tampering). This study aims to design and evaluate a private blockchain-based

storage system for medical records, focusing on enhancing data integrity and authenticity.

The system was developed using a combination of the SHA-256 hashing algorithm,

ECDSA digital signatures, and AES encryption, with a Proof of Authority (PoA) consensus

mechanism for block validation.

The system design includes role-based user authentication, explicit patient

authorization, transaction validation, block formation, as well as synchronization and

conflict resolution among nodes. Testing was conducted on a limited-scale prototype by

simulating various forms of tampering, including modifications of hash, prev hash,

signature, and transaction content.

The results indicate that the system can detect and reject any manipulation attempts

at both data and block levels. Patient authorization proved effective in ensuring that

medical records cannot be published without the owner's consent, while the validator

mechanism maintained blockchain consistency. Therefore, this study demonstrates that

implementing a private blockchain can strengthen protection against tampering and

preserve the integrity of electronic medical records, although scalability, interoperability,

and large-scale network performance remain areas for further development.

Keywords: Private Blockchain, Tampering, Data Integrity, Digital Signature, Hashing