REFERENCES

- [1] I. Kurniawan, N. Kamil, A. Aditsania, and E. Setiawan, "Implementation of ant colony optimization artificial neural network in predicting the activity of indenopyrazole derivative as anti-cancer agent," Jurnal Online Informatika, vol. 8, pp. 81–90, Dec. 2023.
- [2] I. Putra and I. Kurniawan, "Implementation of gravitational search algorithm- support vector machine in prediction bioactivity of plk1 inhibitor as anti-cancer agent," in Proceedings of the International Conference on Advances in Big Data, Computing and Data Communication Systems (ICoABCD), Dec. 2024, pp. 297–302.
- [3] S. Banerjee, S. K. Baidya, B. Ghosh, T. Jha, and N. Adhikari, "Exploration of structural alerts and fingerprints for novel anticancer therapeutics: a robust classification-qsar dependent structural analysis of drug-like mmp-9 inhibitors," SAR and QSAR in Environmental Research, vol. 34, no. 4, pp. 299–319, Apr. 2023.
- [4] S. Mondal, N. Adhikari, S. Banerjee, S. A. Amin, and T. Jha, "Matrix metalloproteinase-9 (mmp-9) and its inhibitors in cancer: A minireview," European Journal of Medicinal Chemistry, vol. 194, p. 112260, 2020.
- [5] J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, "The price of innovation: new estimates of drug development costs," Journal of Health Economics, vol. 22, no. 2, pp. 151–185, 2003.
- [6] M. F. Rizqi, R. R. Septiawan, and I. Kurniawan, "Implementation of simulated annealing-support vector machine on qsar study of indenopyrazole derivative as anti-cancer agent," in 2021 9th International Conference on Information and Communication Technology (ICoICT), 2021, pp. 662–668.
- [7] T. O. Omotehinwa, M. O. Lawrence, D. O. Oyewola, and E. G. Dada, "Bayesian optimization of one-dimensional convolutional neural networks (1d cnn) for early diagnosis of autistic spectrum disorder," Journal of Computational Mathematics and Data Science, vol. 13, p. 100105, 2024.
- [8] G.-G. Wang, S. Deb, and Z. Cui, "Monarch butterfly optimization," Neural Computing and Applications, vol. 31, no. 7, pp. 1995–2014,2019.
- [9] Y. Feng, S. Deb, G.-G. Wang, and A. H. Alavi, "Monarch butterfly optimization: A comprehensive review," Expert Systems with Applications, vol. 168, p. 114418, 2021.
- [10] B. Li, Z. Yu, and X. Ke, "One-dimensional convolutional neural network for mapping mineral prospectivity: A case study in changba ore concentration area, gansu province," Ore Geology Reviews, vol. 160, p. 105573, 2023.
- [11] M. Mnif, S. Sahnoun, Y. B. Saad, A. Fakhfakh, and O. Kanoun, "Combinative model compression approach for enhancing 1d cnn efficiency for eit-based hand gesture recognition on iot edge devices," Internet of Things, vol. 28, p. 101403, 2024.
- [12] E. C. Nisa and Y.-D. Kuan, "Comparative assessment to predict and forecast water-cooled chiller power consumption using machine learning and deep learning algorithms," Sustainability, vol. 13, p. 744, Dec 2021.
- [13] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, and M. Tuba, "Monarch butterfly optimization based convolutional neural network design," Mathematics, vol. 8, no. 6, 2020.
- [14] O. Dorgham, M. Alweshah, M. Ryalat, J. Alshaer, M. Khader, and S. Alkhalaileh, "Monarch butterfly optimization algorithm for computed tomography image segmentation," Multimedia Tools and Applications, vol. 80, December 2021.
- [15] A. Nainwal, Y. Kumar, and B. Jha, "Arrhythmia classification based on improved monarch butterfly optimization algorithm," Journal of King Saud University Computer and Information Sciences, vol. 34, no. 8, Part A, pp. 5100–5109, 2022.
- [16] C. Kencana, E. Setiawan, and I. Kurniawan, "Hoax detection system on twitter using feed-forward and back-propagation neural networks classification method," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, pp. 655–663, December 2020.