
search test are lr with a value of 0.001, l2 with a value
of 0.00001, and hidden size with a value of 100. After
determining the best parameters for the baseline, an evaluation
matrix will be calculated to see which model is superior.

TABLE III
RESULTS OF HR AND MRR FOR MODEL COMPARISON WITH BASELINE

Next-One Recommendation

Model HR@10 HR@20 MRR@10 MRR@20

Baseline (SRGNN) 43.53 48.39 29.75 30.10
Our Model 44.25 49.16 30.36 30.71
Improvement (%) 1.65 1.61 2.05 2.04

Next-New Recommendation

Model HR@10 HR@20 MRR@10 MRR@20

Baseline (SRGNN) 32.34 36.60 22.91 23.20
Our Model 32.69 37.06 23.34 23.64
Improvement (%) 1.10 1.27 1.89 1.89

The results of the comparison with the baseline are pre-
sented in Table III. Our model outperforms the baseline
model for all evaluation metrics with an improvement in
the range of 1% to 2% for next-one music recommendation
and an improvement in the range of 1% for next-new music
recommendation.

Table III shows that the performance of the base model that
only captures part of the item history is not much better than
our model that captures the entire item history. In addition, the
model formed from a graph with entity relationships between
users, music, albums, and artists performs much better than
the graph with no entity relationships between users, music,
albums, and artists.

V. CONCLUSION

In this paper, we implement a combination of graph
neural networks with attention mechanisms for sequential
music recommendations adapted from the GASM model.
Graph neural networks capture the relationships between users
and items, while attention mechanisms capture changes in
preferences during a session. Experiments with Music4All
data demonstrate that our model can effectively recommend
music despite facing a wide distribution of users. Optimal
performance is achieved through appropriate parameters for
learning rate, small regularization, and large embedding size.
Additionally, the short-term attention mechanism proved to
be highly influential, as losing information about changes in
user preferences led to a drastic decline in all evaluation met-
rics. Other preferences, such as long-term and dynamic, also
complement each other in creating good recommendations.
This was demonstrated when losing one of these preferences
caused the model to fail to achieve its best evaluation. In
addition, the combination of heterogeneous graphs with user
preference and item information enables the model to absorb
complex information for accurate recommendations. In the
future, research can be conducted by testing the scalability of
the model on larger and more diverse music datasets, exploring

more varied parameter settings to maximize model evaluation
results, and evaluating the model’s generalization ability to
other recommendation domains such as movies or books to
demonstrate the model’s capabilities in the SRS approach.
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