ABSTRACT

Emergency Broadband Access Network (EBAN) is an unmanned balloon-

based wireless broadband access that flies at low altitude and provide a variety of

applications as an alternative emergency communications for emergency response in

affected areas. One of the applications owned by EBAN is IP video camera that

useful for the observation of affected areas. The emergency team can use internet

access service with WiFi contained in the EBAN sky station. In addition, EBAN also

provides VoIP services, video conference, and Emergency Medical Care Information

System (EMCIS). Conditions used in this final project is the Low Altitude (<2.5 km).

In this final project, simulations carried out to see the effect of altitudes and

attitudes toward the coverage area. Modelling the system in this final project has been

designed by Telkom R & D Center. WiFi solution was chosen because of its

popularity use and relatively easy to operate.

The simulation results show that increasing the platform height and angle of

platform attitude have an impact on decreasing the Receive Signal Level at the client.

Based on the sensitivity of -92 dBm at the client, increasing height of the balloon

transmitter EBAN have an impact on decreasing radius and coverage area.

Keywords: WiFi 802.11b / g, Eban, low-altitude platform, free space loss, link

budget, platform attitude

ii